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Abstract

Gene expression patterns are established by cross-regulating target genes that interpret mor-
phogen gradients. However, as development progresses, morphogen activity is reduced, leaving the
emergent pattern without stabilizing positional cues. The pattern then can be deteriorated by the
intrinsically noisy biochemical processes acting at the cellular level. But remarkably, the established
gene expression patterns remain spatially and temporally stable in many biological systems. Here we
combine spatial-stochastic simulations with an enhanced sampling method (Non-Stationary Forward
Flux Sampling) and a recently developed stability theory to address how spatiotemporal integrity of
a gene expression pattern is maintained in developing tissue lacking morphogen gradients. Using a
minimal embryo model consisting of spatially coupled biochemical reactor volumes, we study a stripe
pattern in which weak cross-repression between nearest neighbor domians alternates with strong re-
pression between next-nearest neighbor domains, inspired by the gap gene system in the Drosophila
embryo. We find that fine-tuning of the weak repressive interactions to an optimal level can increase
temporal stability of the expression patterns by orders of magnitude, allowing for stable patterns over
developmentally relevant times in the absence of morphogen gradients. The numerically determined
optimal parameter regime closely agrees with the predictions of the stability theory. By analizing the
properties of the reduced phase space defined by pattern asymmetry factors that characterize pattern
integrity, we trace back the pattern stability enhancement to the emergence of a metastable basin
that protects intact patterns from rapid destruction in the optimal repression regime via restoring
forces that counteract pattern perturbations. The origin of these forces is further explained by the
effective model, describing the emergent deterministic dynamics of the system. Altogether our re-
sults demonstrate that metastable attractors can emerge as a property of stochastic gene expression
patterns even without system-wide positional cues, provided that the gene regulatory interactions
shaping the pattern are optimally tuned.
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1 Introduction

Maintaining the integrity of spatial gene expression patterns over time is essential in embryonic de-
velopment. In early embryo development locally expressed morphogenetic proteins spread through the
tissue to form gradients of chemical signals [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Inside developing cells,
these chemical signals are interpreted by gene regulatory networks to form remarkably precise and re-
producible spatial patterns of gene expression that subsequently give raise to different body parts and
organs [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. However, as spatial patterns are established
by reading out upstream morphogen gradients, their stability is constantly subject to inherently noisy
cellular and extracellular processes [24, 25, 26, 27, 28, 29, 30]. Moreover, the activity of morphogenetic
gradients that is interpreted by target cells can decrease over developmental time. This decrease in
activity can take different forms, including reduction of the relative signaling range as the embryo grows
in size [16, 31, 32], signalling pathway desensitization [33], or complete disappearance of the gradients
at later developmental stages [34, 35]. Together, the inherent cellular stochasticity and reduced role of
morphogen gradients at later stages raise the question whether stable patterns can be maintained over
sufficiently long developmental times in the absence of morphogen gradients, and, if so, how.

Focusing on the cellular stochasticity, biological cells are facing two types of noise, namely intrinsic
and extrinsic noise, with different notions of robustness against the respective noise types [24, 25, 26,
27, 28, 29, 30]. Intrinsic noise originates from the processes of gene regulation, protein production,
and intracellular transport. Thus, robustness of spatial patterns to intrinsic noise amounts to buffering
random fluctuations in the copy numbers of patterning proteins. Extrinsic noise, on the other hand,
terms the variations originating from different external conditions including cell size variability [36, 37],
cell-to-cell variation in ribosome abundance [27] or fluctuations in the cellular environment [38, 39].
Therefore, the robustness of spatial patterns to extrinsic noise refers to the capability of producing
precise patterns in spite of imperfect initial conditions, classically termed “canalization” in Waddington’s
picture of development [40, 41]. Several gene regulatory strategies providing either type of robustness
have been studied [11, 21, 29], but our understanding of how nature orchestrates them in the fully
interacting wild-type organism is still incomplete.

Among the regulatory mechanisms that drive developmental pattern formation, the regulatory motif in
which two genes mutually repress each other is particularly prevalent [4, 42, 43, 44, 45, 15, 46, 47, 20, 30].
Intriguingly, mutual repression can have a dual role in the establishment of spatial patterns. On the one
hand, in systems driven by threshold-dependent activation of patterning genes via morphogen gradients,
mutual repression is crucial for shaping out expression domains that are bounded from two sides, thus
increasing the positional information carried by the expression pattern [14, 48, 16, 20, 22]. On the other
hand, mutual repression can induce bistability leading to stochastic switching between cell fates. Hence,
it is a priori unclear to which extent mutual repression supports or counter-acts the formation of stable
spatial patterns [14, 16, 20]. This issue is particularly relevant to systems that lack external cues for
symmetry breaking, such as morphogen or maternal gradients, that could force bistable cells into one of
their opposing fates.

Here we ask whether a system of mutually interacting genes can maintain an initially arranged
expression pattern in the absence of upstream input gradients. To address this question we study a
spatially resolved gene regulatory network, conceptually motivated by the gap gene system in the early
embryo of the fruit fly Drosophila melanogaster [49, 50, 51, 52, 53, 54]. This system implements
a particular regulatory architecture, in which weak and strong mutual repressive interactions between
expression domains of different genes alternate depending on whether the domains are adjacent or not.
This motif, termed “alternating cushions”, was earlier investigated in terms of stability and robustness
against extrinsic noise in initial conditions [43]. That study employed a reaction-diffusion model with
step-like activation functions for representing the underlying gene expression dynamics. Using the so-
called “moving kink approximation”, the study predicted an extensive basin of pattern stability in the
parameter space of the model, where the stability could be attributed to repulsive forces between mutually
repressing gene expression domains (“cushions”). More recently, an exact solution was obtained in an
analogous model for the dynamics of the contact zones between two gene expression domains and for
arbitrary combination of activating or repressing interactions between the involved genes [55]. This work
provided exact conditions for stability, leading to a better quantitative understanding of the conditions
under which gene expression patterns can survive arbitrary long time. Importantly, it was shown that
perfect pattern stability (i.e., a pattern surviving infinitely long) can only be achieved for a very specific
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combination of system parameters; nevertheless, in the vicinity of these states, there exists a continuity
of well-defined but slowly changing gene expression patterns, which can fulfill their biological role for a
finite but typically sufficiently long period of time. However, since the reaction-diffusion model considered
in [55] is only a continuous and deterministic limit of the genuinely stochastic microscopic dynamics of
gene expression, it remained unclear whether the derived stability conditions provide useful insight into
the regime of strong fluctuations.

In this work, we assess the temporal stability of gene expression patterns interacting via the “alter-
nating cushions” motif by numerical simulations of a minimal spatial-stochastic model that features a
full microscopic representation of stochastic gene expression and protein diffusion, thus incorporating
the relevant intrinsic noise sources. Using Non-Stationary Forward Flux Sampling (NS-FFS) [56, 57], an
enhanced biased sampling technique for stochastic systems changing in time, we quantify for how long
patterns shaped and maintained only by mutual repression can self-maintain themselves. Contrasting
with previous approaches [43, 58, 49], NS-FFS allows us to go beyond a local, linear stability analysis of
the studied system, and to assess the depth and the width of the emerging basin of stability from large
ensembles of stochastic trajectories of the full spatially interacting gene expression pattern. Moreover,
we derive the effective, deterministic model of simulated system that expands the stability theory from
[55] to the case of multiple interfaces and allows us to determine the parameter regime within which
the distances between boundaries of adjacent gene expression domains are predicted to remain stable.
Eventually, we employ this model to identify the mechanism enhancing the pattern survival time.

Our results show that the stability of patterns arranged in the alternating cushions scheme strongly
varies with the strength of mutual repression between adjacent gene expression domains. We find
that pattern stability time is significantly longer when spatially adjacent genes repress each other with
intermediate strength and the next-nearest neighbor genes repress each other strongly. This results in
a broad peak of pattern survival time for a range of interaction strength ratios, with a single maximum
at the optimal choice. In this enhanced regime, we confirm the existence of robust restoring forces
and find signatures of a metastable basin that stabilizes well-ordered patterns (dynamical attractor),
in accordance with the previous findings of [43]. Away from the optimum, forces induced by strong
nearest neighbor mutual repression destroy the stripe patterns rapidly, while for weaker nearest neighbor
repression the forces are imperceptible when compared to stochastic fluctuations. We manage to explain
these observations employing our deterministic, effective model and the recent exact stability theory. We
determine the theoretical optimal interaction strength ratio, situated in the vicinity of the numerically
predicted optimum. Further analysis reveals a nuanced interplay between fluctuations and a few stabilizing
mechanisms present in the deterministic, effective model, leading to enhanced survival time in the vicinity
of optimal choice and qualitatively in agreement with numerical observations. In result, we highlight the
connection between effective restoration forces seen in simulations, moving-kink approximation model
[43] and exact stability theory [55]. Going beyond the setting studied in [43], we also show that pinning
of the pattern at the embryo boundaries, which could be achieved by very short-ranging, peripherally
acting maternal inputs, can significantly further enhance the optimal pattern stability.

Taken together, we demonstrate that forces generated in the alternating cushions scheme can maintain
the gene expression pattern subject to stochastic production and diffusion of proteins for extremely long
times, thanks to the interplay between fluctuations and deterministic dynamics, constituting emergent
noise-control mechanism for the close-to-optimal choice of mutual repression parameters.

Modelling framework

In order to investigate stability of gene expression patterns without external input gradients, we
performed stochastic simulations of a spatial pattern of four mutually repressing genes, using NS-FFS.
Here we opted for a minimal spatially resolved stochastic model, shown in schematic Fig. 1, inspired by the
posterior gap gene pattern in Drosophila development [49]. The model considers four mutually interacting
genes A, B, C and D, arranged in a five-stripe pattern (with order A-B-C-D-A) along a cylindrical spatial
lattice. The four genes are analogous to the arrangement of the expression domains of gap genes hb, kr,
kni and gt in nuclear cycle 14 in the posterior half of the early fly embryo, where hb is expressed in two
domains, in the first (anteriormost) and last (posteriormost) expression domain [49, 50, 51, 52, 53, 54].
The spatial lattice consists of Nz × Nϕ equally spaced and well-stirred reaction volumes with periodic
boundary conditions in the circumferential (ϕ-) direction motivated by the arrangement of cortical nuclei
in the developing fly embryo. Protein diffusion and nuclear exchange are modeled via hopping between
neighboring reaction volumes, with a rate proportional to the diffusion coefficient. In each nucleus,
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Figure 1: Schematic of the spatial gene-regulatory model. We use a cylindrical lattice of reaction
volumes to mimic the arrangement of cortical nuclei in the posterior Drosophila embryo at developmental
cycle 14. In each nuclear volume (shaded squares) we simulate production, degradation, dimerization
and mutual repression of the four genes A, B, C and D via the Gillsepie algorithm. Each gene is
subject to repression by the protein dimers of the other genes, as indicated by the schematic promoters.
Neighboring nuclei can exchange monomers and dimers via diffusive hopping. The system is initialized in
a five-stripe pattern of expression domains in the order A–B–C–D–A, corresponding to the experimentally
observed order in the fly embryo. The strength of mutual repression varies among gap gene pairs: genes
associated with nearest neighbor (NN) domains repress each other weakly (dashed arrows), while next-
nearest neighbors (NNN) domains exhibit strong mutual repression (thick arrows). By default, the
concentration of A is pinned at the system boundary where the set of modelled reactions differs from
the rest of the system by the fact that the A promoter can not be repressed. Details in the Methods,
Sec. 4.

proteins of the genes A, B, C and D are produced from their corresponding promoters, dimerize and
mutually repress each other by promoter binding. Each gene can repress the promoter of each other
gene. Repression is non-competitive, i.e., each promoter has binding sites for each of the three other
genes’ dimers and is inactivated when at least one dimer is bound (“OR”-logics). The model combines
transcription and translation into one production step, neglecting some features of eukaryotic gene
expression such as transcriptional bursts and enhancer dynamics, but previous work has shown that
this does not alter the results qualitatively [59, 14].

In the anterior-posterior arrangement A-B-C-D-A, the genes repress each other mutually via the char-
acteristic pattern of strong next-nearest neighbor (NNN) and weaker nearest-neighbor (NN) repression
(alternating cushions), as observed in the Drosophila embryo [43, 49, 54, 60, 61, 62, 63, 64]. Specifically,
there are two pairs of strongly repressing genes, (A,C) and (B,D), and four pairs of genes that repress
each other weakly, (A,B), (B,C), (C,D) and (D,A). In our model, the difference in repression strength
is tuned via the unbinding rate of the repressors from the repressed promoter. The strong-repressor
unbinding rate koffs is chosen such that the NNN pairs (A,C) and (B,D) are in the bistable regime, while
the weak-repressor unbidning rate koffw is varied. In this context, bistability means that in individual nuclei
one of two solutions is chosen in which one of the strongly repressing genes is expressed at high level and
the other at low level, or vice versa. In the absence of cues capable of forcing the bistable systems into a
preferred state, stochastic switching is expected to eventually result in one of the domains to dominate
over the respective other domain in the NNN pair, causing its elimination and simultaneous expansion of
the dominating gene’s domain. This partial breakdown of the initial pattern can happen independently
for both strongly repressing NNN pairs and thus in random temporal order; however, ultimately one of
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the strong repression partners is eliminated in each of the NNN pairs and the system settles in a new,
effectively irreversible state in which only the remaining two genes are co-expressed.

On the one hand, we expect that the presence of the third expression domain in between the NNN
pair domains can impede elimination of (one of) the NNN pair domains when additional NN repression
is present, because it can spatially move apart the strongly repressing (NNN) expression domains and
form a ”cushion” domain between them, effectively replacing one interface of strong competition by two
interfaces of weak competition that allow for local coexistence of the competitors. On the other hand,
overly strong NN repression is expected to enhance pattern breakdown because then even the overlapping
NN expression domains are brought towards the bistable regime. We therefore study the pattern stability
as a function of the repression strength ratio κ, defined as

κ ≡ koffw /koffs , (1)

where koffw and koffs are the repressor unbinding rates for weakly repressing NN pairs and strongly repressing
NNN pairs, respectively. κ is varied through the weak repression unbinding rate koffw . For κ = 1, i.e.
koffw = koffs , both the NNN and the NN gene pairs are deeply in the bistable regime, while in the opposite
limit κ → ∞ (koffw → ∞) the NN pairs do not affect each other at all.

2 Results

Pattern stability is quantified by asymmetry factors

A typical spatial pattern of gene expression with equally-sized domains is shown in Fig. 2. In order,
to quantify pattern stability we measure, as a function of κ, the average time until at least one domain
is lost. Further, in our system the strong NNN repression effectively prohibits coexistence of the strongly
repressing genes at one location. Hence, the increase in size of one domain is always accompanied by a
reduction in of the domain with its strong interaction partner. This lead us to introduce the following
two order parameters, λAC and λBD, here termed asymmetry factors, that measure the asymmetry for
each of the two strongly antagonistic NNN pairs:

λAC ≡ max([A]tot, [C]tot)/N , λBD ≡ max([B]tot, [D]tot)/N . (2)

Here [P ]tot is the total copy number of P proteins (counting dimers twice), and N = [A]tot + [B]tot +
[C]tot + [D]tot is the total protein number in the system across all species. In the spatially well-ordered
pattern each protein domain occupies roughly the same fraction of the system, such that λAC ≃ λBD ≃
0.25. As expansion of a domain progresses at the expense of its strong antagonist, λAC (or λBD) is
enlarged and reaches values around 0.5 when the shrinking domain is eventually lost. In order to track
progress of complete pattern losing one of its domains, we use sum λ = λAC + λBD, with values around
0.5 for five-stripe patterns and values above 0.75 indicating pattern breakdown.

Our initial simulations revealed that even for very low protein copy numbers (≲ 20) the waiting
times until one domain is lost are long compared to the duration of the actual breakdown event, and
therefore difficult to sample by direct simulation. This lead us to ask, whether the five-stripe pattern is
stabilized by an entropic barrier that separates it from the pattern with fewer domains. Alternatively, the
five-stripe pattern might not be stabilized by such barrier, but by a kinetic effect, where progress towards
pattern breakdown is a slow directed process. In order to resolve which of these alternative mechanisms
is responsible for the stabilization of the expression pattern, we combined our stochastic simulations with
Non-Stationary Forward Flux Sampling (NS-FFS), which is particularly suited for enhanced sampling of
non-equilibrium rare events. We used λ as the progress coordinate for NS-FFS, which aims at generating
a branched and weighted trajectory ensemble that, in the most favorable cases, samples the relevant
λ-range uniformly. This allowed us to generate sufficient statistics of rare breakdown events even in the
most stable regions of parameter space (see Methods, Sec. 4) .

The early simulations also showed that the expression domains of gene A at the boundaries of the
system (green expression domains in Fig. 2) are particularly prone to destruction by their opponent
domains, because they can only expand into one direction, towards the interior of the system. We
therefore decided to keep constant the level of A proteins in the volume at the system boundaries by
locally disallowing repression in the outermost nuclei at the boundaries. To assess how this model
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Figure 2: Spatial pattern of gene expression. Snapshots of the total copy numbers of all considered
patterning proteins as a function of the axial coordinate z of the cylinder, averaged over its circumference.
Colors correspond to Fig. 1 (green = A, blue = B, red = C, black = D). Snapshots were taken every
60 min over a total simulated time of 20 h after an initial relaxation phase of 30 min, starting from
rectangular domain profiles of equal length. No-flux boundary condition at either end.

assumption influences our results, we later compare to simulations in which A could vary at the system
boundaries, finding that our main findings also hold in this less restricted system.

Long-term pattern stability requires optimal repression strengths

In order to see how varied repression strength affects pattern stability, we reweighted histograms of
simulated trajectories over the reduced phase space spanned by order parameters λAC and λBD at
different times, for different values of κ ranging from strong NN repression (κ ≃ 3) to the limit of
non-interacting nearest neighbors (κ = ∞), see Fig. 3. We found that there exists a region of stable
expression patterns in phase space which is populated rapidly and then remains quasi-stationary, indicating
that the system can remain in a metastable state if NN repression is moderate. In particular, the velocity
with which the system escapes from the quasi-stationary region strongly depends on κ, with low and very
high κ resulting in quick pattern deterioration, and intermediate κ values resulting in the most long-lived
quasi-stationary states.

Stochastic fluctuations can lead to two different events corresponding to partial pattern destruction:
one in which either the A or C domain is lost first and one in which either the B or D domain is lost
first. Motivated by these observations we defined a region of stable patterns in terms of the asymmetry
factors as RS ≡ {(λAC, λBD)|λAC ≤ 0.45 and λBD ≤ 0.43}, see Fig. 3. States that lie outside of RS

are considered deteriorated patterns, and accordingly we also defined two regions R†
AC and R†

BD and a
region R‡ accumulating patterns with one expression domain lost and patterns with two domains lost,
respectively. The pattern survival probability S(t) =

∫∫
RS

p(λAC, λBD, t)dλACdλBD is the probability for
the system to remain in the region of stable patterns until time t. We have never observed re-entry into
RS. We found that S(t) is well-described by an exponential decay, S(t) ∝ e−kDt, for times t larger than
a certain lag-time tlag. kD then defines a deterioration rate, corresponding to average pattern stability
time or the mean time until pattern has lost one of its domains, τD ≡ 1/kD (see Methods, Sec. 4).

By quantifying pattern stability time, we found that τD depends strongly on the repression strength
ratio, with a maximum of τD as a function of κ at κopt ≃ 30, see Fig. 4 (blue curve). For κ values
close to κopt pattern stability is still markedly enhanced. While significantly less stable than in the region
around the optimum, patterns with stability time on the order of several hours remain possible in the
absence of NN repression (κ → ∞). In contrast, when NN and NNN repression have close to equal
strength (κ → 1) patterns collapse almost immediately.
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Figure 3: Pattern breakdown in the phase space spanned by asymmetry factors. Probability
density snapshots of the phase space spanned by asymmetry factors λAC and λBC, defined in (2),
at different times t for varied repression strength ratio κ. The conditions are following: strong NN
repression, κ = 3.16 (top row), optimal NN repression for pattern stability, κ = 31.6 (middle row), and
lack of NN repression, κ = ∞ (bottom row). The simulation was started with the initial rectangular
five-stripe A-B-C-D-A pattern (λAC, λBD)=(0.4, 0.2) (white circle) in the pinned system. All snapshots
are normalized histograms of reweighted (λAC, λBD)-points within t± 5 min. In the middle and bottom
rows we identify three densely populated regions: a broad region centered around (0.30, 0.30), RS, which

contains five-stripe patterns, and two smaller regions close to (0.55, 0.30), R†
AC, and (0.30, 0.55), R†

BD,
representing patterns with one domain lost (region boundaries (dashed white), details in Methods, Sec.
4). Ultimately trajectories will converge towards region centered around (0.55, 0.55), R‡, where two
domains are lost.

In the maximally stable regime restoring forces reconstitute perturbed patterns

The observation of a phase space region in which system trajectories persist for long times raises
the question whether this region constitutes a true metastable basin of attraction. We first addressed
this question next by analyzing transient behavior of the perturbed patterns. If enhanced phase space
density in certain regions of the (λAC, λBD)-space were indeed due to the presence of a metastable basin,
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Figure 4: An optimal strength of nearest neighbor repression maximizes pattern stability. The
mean time until pattern destruction τD as a function of κ, the ratio between the weak and strong
repressor off-rate, for the system in which expression of gene A is fixed at the boundaries. We observe
a pronounced maximum of the stability time when the weak repression is about 30 times weaker than
the strong repression (κopt = 31.6) in the system with pinning at the boundaries (blue line). When
pinning of the pattern at the system boundaries is relaxed (red line), the maximum of stability time
moves to κ = 100. The dashed horizontal lines indicate the values for the completely uncoupled systems
with κ = ∞. The dashed vertical line (orange) shows the optimal repression strength ratio predicted
analytically by our stability theory, κtheor ≃ 76 (see last part of Results section).

perturbations that transiently drive the system away from the stable pattern should be counteracted by
restoring forces. To test this hypothesis, we perturbed relaxed five-stripe patterns from the hypothetical
basin by artificially enlarging domains in which one gap gene is dominant. Using these perturbed states as
initial conditions, we then ran the spatial-stochastic simulator with higher time resolution, and checked
whether the perturbed systems relax back into the presumed basin. We investigated two types of
asymmetric perturbations: “C expansion”, in which the central C domain is unidirectionally expanded at
the expense of the posterior A domain, and the converse “A expansion”, in which the anterior A domain
is enlarged at the expense of the C domain. The perturbation experiments are described in detail in the
Methods, Sec. 4, and the Supporting Information.

We find that at κ = κopt, for both perturbations the perturbed pattern ensembles relax back to
their original positions on a timescale ∼ 10 h (see Supporting Fig. S1). This demonstrates that for
optimal repression strength ratio an effective restoring force counteracts deviations from the five-stripe
pattern for varied λAC. Moreover, this suggests that the probability-enriched region within RS is a real
metastable state confined by an underlying force field. In accordance, the timescale of relaxation is orders
of magnitude shorter than the timescale of pattern collapse. Thus, for κ = κopt pattern destruction is
a Markovian transition between metastable basins with transition waiting times much longer than the
timescales of intra-basin dynamics. In contrast, we could not observe clear restoring behavior in the
systems with very weak or no nearest neighbor interaction. Here perturbations of similar strength tend
to result in almost immediate pattern destruction.

In summary, for the repression strengths ratio κopt ≃ 30 that maximizes stability, pattern breakdown
appears to be an activated process characterized by a restoring force towards the initial state.
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Figure 5: Phase space velocity fields and passage statistics reveal metastable basins. (A, B)
Average phase space velocity fields for the system with optimal (κ = κopt, A) and suboptimal (κ = 1000,
B) repression strength ratio, in the phase space spanned by asymmetry factors λAC and λBD as defined
in (2). The small subregion with concentrically inwards-pointing velocities towards which perturbed
trajectories relax, corresponding to metastable basin of five-stripe patterns, is indicated (RMB, dashed
circle). Velocity fields were obtained by averaging displacements of all trajectories that exit the local bin
(see Methods, Sec. 4). Two examples of trajectories relaxing after perturbations are shown (blue lines
= pert. from boundary, turquoise lines = pert. from center) with their starting points (circles). The
boundaries of phase space regions (thin dashed lines) are as in Fig. 3. Velocity magnitude is indicated
with colors. (C) The velocity field corresponding to κ = κopt for the alternative asymmetry factors
(“differences”) δAC and δBD, as in (4). In C the metastable basin RMB is localized around the center
(δAC, δBD) = (12 ,

1
2 ), corresponding to a perfectly symmetric pattern. The magnitude unit “phase space

unit per hour” (PSU/h) is specific to the chosen asymmetry factors. (D, E) The landscapes of the
“pseudopotential” − log p̃ computed from the total number of phase space trajectories registered in the
respective bin of the phase space. The contour plots to the right of the 3D views show a projected
view of the same landscapes. (F, G) Comparison of sections in λAC and λBD directions, respectively,
at λ⊥ = 0.28 between the optimal and suboptimal choice of the repression strength ratio κ. Here the
− log p̃ profile is almost identical in the metastable basin RMB, but transitions towards the destroyed
pattern states face a higher barrier in the system with optimal κ = κopt, in both phase space directions.
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Statistical analysis of phase-space dynamics reveals a metastable basin

We further figured that the existence of a true metastable basin should manifest itself also in the
statistics of transient dynamics in phase space. Here the local velocities in the (λAC, λBD) phase space
are particularly informative: forces that drive trajectories back into basins of attraction should translate
into local mean phase space velocities with a clear bias towards the bottom of the basin.

To extract the velocity field for our system we modeled the coarse-grained pattern dynamics as over-
damped diffusive motion in the λ⃗ ≡ (λAC, λBD) plane, assuming that these degrees of freedom capture
the slowest time scales of the system and making a Markov approximation for the fast dynamics [65, 66].
This technique has been successfully applied in protein folding [67, 68, 69, 70]. The corresponding model
equation is

d

dt
λ⃗ = ⟨v⃗λ⟩ (λ⃗) +

√
2Dλ(λ⃗)dW⃗ (3)

where W⃗ is uncorrelated (2D) white noise with unit covariance. We estimated the local drift ⟨v⃗λ⟩ (λ⃗) and
diffusion coefficient Dλ(λ⃗) from our reweighed simulated trajectories by averaging local displacements

(see Methods, Sec. 4, and Sec. S1.2 in the Supporting Text). Furthermore, ⟨v⃗λ⟩ (λ⃗) is proportional

to the effective force acting at the reduced phase space point λ⃗ in the overdamped Langevin model.
The local mean velocity field v⃗λ(λ⃗) is determined by the conditional transition probabilities π(λ⃗, λ⃗′)
between states λ⃗ and λ⃗′, and thus can be extracted from our transient simulation data. The resulting
average velocity field in the reduced phase space of (λAC, λBD) for the optimal repression strength ratio
(κ = 31.6) is in Fig. 5A, and for suboptimal (κ = 1000) is shown in Fig. 5B.

Interestingly, in Fig. 5A one can identify two regions of (λAC, λBD)-space with low average velocities:

one within the region of stable states RS, the other within the region R†
AC of states in which the C

expression domain is lost. The region R†
BD in which either B or D are lost, has no clear boundaries for

optimal κ = 31.6, and only for much larger κ = 1000 a low-velocity plateau is clearly seen in this region
(Fig. 3B). Notably, in the lower-left corner of the RS plateau we notice a small region in which average
velocities are significantly higher and all pointing inwards. We refer to this region as RMB, and identify
it as the metastable basin of intact, relaxed five-stripe patterns. In accordance, the two shown exemplary
perturbed trajectories relax into RMB after randomly exploring the RS plateau, and remain confined to
the RMB for later times (Fig. 5A). However, if the system drifts far away from RMB, in the direction of

R†
AC, the trajectories are quickly absorbed into R†

AC once they reach the edge of RS characterized by

high velocity components towards R†
AC.

In order to further investigate the low-velocity attraction basins and the high-velocity ridges that sep-
arate these basins, we use a different representation of pattern asymmetry, defining the shifted difference
coordinates

δAC ≡ 1

2
([A]tot − [C]tot)/N +

1

2
, δBD ≡ 1

2
([B]tot − [D]tot)/N +

1

2
. (4)

These coordinates measure the deviation from a perfectly symmetric pattern P0 = (δAC, δBD) = ( 12 ,
1
2 ) in

a way that retains information about which of the antagonistic genes becomes dominant. Similar latent-
space projections have recently proven instrumental in analyzing the temporal dynamics of the emerging
gap gene expression pattern [71]. The corresponding average velocities in (δAC, δBD)-space are shown
in Fig. 5C. The low-velocity basin, corresponding to RMB, occupies the central part of (δAC, δBD)-space
in Fig. 5C. Accordingly, perturbed trajectories relax towards the region enclosed by concentric velocity
vectors pointing towards P0. This is in line with the Waddington picture of canalization [40, 41], in which
developmental stages are seen as successive attractors of the underlying dynamics with the five-stripe
pattern representing such an attractor.

In Fig. 5B we show the average velocity field for the case with weaker NN repression (κ = 1000).
Here the velocity fields are even more plateau-like in the region corresponding to weakly asymmetric
patterns, and the characteristic concentric velocity pattern indicative of the basin in the optimal case
cannot be clearly discerned any more in this case. In accordance, trajectories starting from perturbed
patterns do not relax back and progress towards patterns with at least one domain lost.

In addition to the average velocity fields of the registered phase space trajectories, the signatures of
the metastable basins are also visible in the local phase space density sampled over many trajectories
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that explored the phase space during the whole sampled time interval, p(λ⃗). A suitable quantity for

visualizing the corresponding phase space “landscape” is the negative logarithm of p(λ⃗); note that in an
equilibrated, stationary system this quantity would be proportional to the energy (landscape) defining
the stationary probability distribution of the system. Since our system is genuinely non-stationary, this
relationship does not hold. Nevertheless we can consider our most stable systems transiently equilibrated
in the metastable basins or origin and akin to stationary systems until they irreversibly cross the barrier
towards one of the basins corresponding to destroyed patterns. Notably, while the depth of these basins
grows with the amount of simulated time after the destruction event, the height difference between the
metastable basin of intact patterns and the barrier separating it from the destroyed patterns basin is
entirely determined by the recurring properties of the destruction process, and not expected to change
provided that sufficiently many destruction events have been recorded.

In Fig. 5D and E we plot the “pseudopotential landscape” defined as − log(p̃(λ⃗)) for optimal κ = 31.6

(D) and suboptimal κ = 1000 (E), where p̃(λ⃗) is a locally smoothened version of p(λ⃗) which equalizes

out small local spikes in p(λ⃗) but preserves the overall structure of the resulting landscape (see Methods
for details). The small plots right of the landscape visualizations show sections through the landscapes in
direction of the asymmetry factors λAC and λBD at chosen constant values of the respective orthogonal
factor (see Fig. 5 caption). In both cases we can clearly identify the metastable basin of undestroyed
patterns and a barrier separating it from the basins of (half-) destroyed patterns. The basin corresponding
to the states in which either the B or D domain is lost is less pronounced for the optimal choice of κ
due to its lower accessibility, and—more importantly—separated by a higher barrier. This is best seen
in a more detailed explicit comparison of the sections through the landscapes, shown in Fig. 5F. The
comparison clearly reveals that the barrier separating the metastable basin of intact patterns from the
basin in which the C domain is lost is both higher and wider for the optimal choice of κ, overall leading
to a markedly lower rate of pattern destruction.

Taken together, the analysis of both the velocity fields and the empirically sampled phase space
density demonstrate that the long-time confinement of phase space trajectories close to the five-stripe
pattern at optimal NN repression is due to the existence of a metastable basin which impedes progress
towards losing one of the domains by restraining the system from leaving the metastable basin. With
decreasing strength of NN repression the basin gradually disappears, thus enhancing the probability of
pattern deterioration. The finding that pattern stability is enhanced by the emergence of a metastable
basin is in line with our observation that the average diffusion constants in the stable region of the
phase-space, ⟨Dλ(λ⃗)⟩RS

, systematically increase with growing κ, and therefore cannot be the cause of
pattern stabilization, as discussed in Sec. S1.2 and Fig. S2 of the Supporting Text.

Stability enhancement does not require pinning

To assess whether pinning of the A-domains at the system boundaries is necessary for the observed
stability enhancement at intermediate NN repression, we repeated our simulations and analysis for a
system without pinning. In contrast to the system with pinning, here the promoters of gene A in the
nuclei at the system boundaries can be inhibited by the repressors of A. We found that also in the system
without pinning, pattern stability is markedly enhanced by the presence of weak interaction partners
between two strongly repressing gene domains. In Figure 4 the red curve shows the mean destruction
time τD against the ratio of the repressor off-rates κ for the system without pinning. We again find the

highest pattern stability at an optimal repression strength ratio κ
(np)
opt = 100 (red curve), which is close

to the optimum in the system with pinning (κ
(p)
opt ≃ 30, blue curve), albeit with about 10 times lower

overall stability times; yet, these stability times are still about an order of magnitude larger than without
fine-tuning of NN interactions.

Overall this demonstrates that enhancement of pattern stability by at least one order of magnitude is
possible both with and without pinning of expression at the system boundaries. However, pinning alters
the proportion of destruction pathways that the collapsing patterns pursue; we discuss this effect in more
detail in Sec. S1.3 of the Supporting Text.
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An analytical model of expression domain competition predicts optimal pattern stability

The problem of pattern stability has been recently addressed analytically in [55], where general and exact
stability conditions for a pattern of two interacting domains were derived. In that work “stability” refers
not only to the robustness against perturbations, but the ability of a pattern to survive for infinitely
long time. In this section, we show that these stability conditions can be successfully applied to the
multi-gene system studied in this work, in order to obtain a coarse-grained prediction of the parameter
values leading to pattern stabilization.

The central result reported in [55] is the description of the dynamics of a contact zone between two
gene-expression domains for various levels of mutual repression between the two expressed genes. A single
expression domain can form either by overcoming the “activation threshold” in the nearby undifferentiated
tissue, resulting in asymptotically constant-velocity expansion, or emerge instantaneously in the entire
available tissue, when expression is constitutive (active by default). For two genes in the system (and
two respective domains) the scenario depends on the strength of mutual repression. If one gene cannot
prevent the expression of the other gene in the bulk of its own domain, the dominating gene overtakes
the system exponentially fast, expressing in the entire volume and without forming a meaningful contact
zone between domains. For stronger repression, which prevents gene expression deeper in the bulk of
its adversary domain, a contact zone emerges, within which both domains of active expression overlap.
However, this region of overlap grows indefinitely, albeit with asymptotically constant velocity. When the
interaction strength surpasses a critical value, an asymptotically finite-size contact zone is formed. In this
regime one domain can still shrink and the other grow, but in a coordinated manner, preserving the width
of the contact zone. Asymptotically, the contact zone drifts with a constant velocity that is determined
by the system parameters. This gives rise to a “travelling” gene expression pattern. The width and
velocity of the contact zone are stable against perturbations in this phase, acting as an attractor of the
system dynamics. However, the travelling pattern is not stable as a whole, as in the finite-size systems
it survives only for a limited time, until one domain “pushes out” the other. Finally, perfectly stable
patterns arise as a special case of travelling patterns, namely in the limit of zero-velocity drift.

The simulations in this work are stochastic, tracking the chemical reactions at single-molecule reso-
lution across the set of reaction-volumes constituting the system. However, in the limit of large particle
number and small reaction volumes, this type of spatially discrete and stochastic dynamics approaches the
continuous and ultimately deterministic reaction-diffusion dynamics of the type considered in [55]. The
existence of this deterministic limit can be also seen as the manifestation of the emergent noise-control
mechanism that overtakes the system. Therefore, we compare the numerically found optimal κopt with
the theoretically predicted κtheor to assess how well the deterministic theory approximates the dynamics
in the highly stochastic regime, and to explain the nature of the emergent noise-control mechanism.

To this end, we mapped the microscopic model used in our stochastic simulations onto the effective
reaction-diffusion model analysed in [55] (see Methods). With the necessary readjustments, the adapted
effective model equation reads

∂tX2(x, t) = D ∂xxX2(x, t)− γX2(x, t) +H θ


1−

∑

Y ̸=X

ϵXYY2(x, t)


 , (5)

where X,Y ∈ {A,B,C,D} denotes the particular proteins, X2(x, t), Y2(x, t) are the concentration pro-
files of their respective dimers, D is the diffusion constant, γ the degradation constant, H a production
constant, and ϵXY are gene-gene interaction strengths. θ(. . . ) denotes the Heaviside step function,
corresponding to steep Hill-type regulatory kinetics. Note that the derivations in [55] only apply to
systems with size L ≫ λ, where λ ≡

√
D/γ is the characteristic length of gene interaction. For the

systems studied here, λ ≈ 8.62 µm, which is much smaller than the system size L ≃ 340 µm, warranting
application of the theory.

While the original theory in [55] describes only the contact zone involving exactly two domain bound-
aries, we can adapt it to the four-gene system studied here. Fig. 2 shows that in the alternating cushions
system there are only two types of contact zones: (i) between two strongly interacting genes (NNN
domains) with the third, weakly interacting gene (NN domains), expressed in the background or (ii) be-
tween two weakly interacting genes (NN domains), with all other genes having close-to-zero expression
level. Thus, we will consider stability of both contact zone types separately.
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In the type-(i) contact zone, the dynamics of gene expression is described by the effective equations





∂tX2(x, t) = D∂xxX2(x, t)− γX2(x, t) +Hθ

(
1−K−1

w

H

γ
−K−1

s Y2(x, t)

)

∂tY2(x, t) = D∂xxY2(x, t)− γY2(x, t) +Hθ

(
1−K−1

w

H

γ
−K−1

s X2(x, t)

) (6)

where we approximate that the third “background gene”, has a constant expression level over the contact
zone. The equilibrium value of this expression level isH/γ. Kw andKs are the weak and strong repression
constants, respectively and they satisfy (cf. Eq. 1 and Methods, Sec. 4):

κ =
Kw

Ks
=

koffw
koffs

. (7)

Type-(i) contact zones are established between genes A and C (with B or D in the background) as well
as between B and D (with C in the background). In the type-(ii) contact zone, the equations take the
form: {

∂tX2(x, t) = D∂xxX2(x, t)− γX2(x, t) +Hθ
(
1−K−1

w Y2(x, t)
)

∂tY2(x, t) = D∂xxY2(x, t)− γY2(x, t) +Hθ
(
1−K−1

w X2(x, t)
) (8)

This contact zone emerges between gene pairs (A,B), (B,C), (C,D), and (D,A).
The general stability conditions in [55] are derived in the following manner: The crucial property of

Eq. (5) is that the shape of expression profile X2(x, t) can be found without knowing explicitly where the
domain boundaries are. Then, these shapes are substituted into the conditions for production activation,
0 = 1 −∑Y ϵXYY2(x, t) (see Eq. (5)), resulting in a set of formally non-linear integral equations and
defining boundary positions. However, these equations are solved by the constant velocity dynamics,
in the large t limit. In result, we can obtain algebraic relations that describe the relationship between
the velocities of boundaries, the relative distances between them, and the system parameters. These
relations take a particularly simple form for systems with immobile contact zones, thus defining stability
conditions. Adapted for the system studied here, these conditions read:

(1− |RX|)λ = (1− |RY|)λ , −1 ≤ RX ≤ 1 , −1 ≤ RY ≤ 1, sgn RX = sgn RY , (9)

where

RX =
−2γC̃X − ϵXXH

ϵXYH
− 1 , RY =

−2γC̃Y − ϵYYH

ϵYXH
− 1 , (10)

Additionally, the theory from [55] establishes the width of the stable contact zone, which reads:

∆r = −sgn(RX)λ ln(1− |RX|) (11)

Equations (9) can be applied separately to the type-(i) and type-(ii) contact zones in order to identify
the range of stabilizing parameters in each case. Subsequently, we will investigate whether these ranges
overlap, as the entire pattern is only stabilized when both types of contact zones are stable at the same
time. We specify the constants in (9) for each contact zone type as follows:

(i) C̃X = C̃Y = 1−K−1
w

H

γ
, ϵXY = ϵYX = −K−1

s , ϵXX = ϵYY = 0 , (12)

(ii) C̃X = C̃Y = 1 , ϵXY = ϵYX = −K−1
w , ϵXX = ϵYY = 0 . (13)

Notice that as we choose D, γ and H to be the same for all dimers, RX = RY in each type of contact
zone, and the first and the last of stability conditions (9) are automatically satisfied. Inserting parameters
(12) for the type-(i) contact zone and parameters (13) for the type-(ii) contact zone into the formula
for RX and RY, we obtain:

R
(i)
X = R

(i)
Y =

2(1−K−1
w

H
γ )

K−1
s

H
γ

− 1 R
(ii)
X = R

(ii)
Y =

2γ

K−1
w H

− 1 (14)
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Then, we must solve the remaining stability conditions:

−1 ≤ R
(i)
X ≤ 1 −1 ≤ R

(ii)
X ≤ 1 (15)

which results in the following inequalities:

(i) Kw ≥ H

γ
, Ks ≤

1

(Hγ )
−1 −K−1

w

,

(ii) Kw ≤ H

γ
.

(16)

These conditions show that the addition of weak interactions is instrumental for increasing system sta-
bility. On the one hand, the type-(i) contact zone is stable (i.e. non-moving) provided that the weak

interaction strength K−1
w does not exceed (H/γ)

−1; otherwise it would prevent the expression of strongly
interacting genes in this region. On the other hand, for the type-(ii) contact zone it is necessary that

K−1
w > (H/γ)

−1, as this minimal strength of repression is required to prevent co-expression of both
weakly interacting genes in the same region. In order to simultaneously stabilize both types of contact
zones, one needs to negotiate between these two largely opposite goals. This trade-off can be achieved
only for the most marginal value in both parameter ranges, Kw = H/γ, which highlights why in the
alternating cushions architecture the weak interactions have to be fine-tuned for pattern stability. In
contrast, but in line with the numerical findings, the strong interactions characterized by Ks can be
arbitrarily large, Ks ≤ +∞.

The simulations in this work were performed for Ks ≃ 0.003 µm−3 with Kw varied to obtain different
values of κ, see Methods, Sec. 4. Calculated from these microscopic parameters, H/γ ≃ 0.23 µm−3.
The resulting theoretical value of κ that ensures stability is then κtheor ≃ 76. This number is of the
same order of magnitude as the optimal κ in the simulated stochastic systems, showing slightly better

agreement with the no-pinning case (κ
(np)
opt ≃ 100) than with the case with pinning at the boundaries

(κ
(p)
opt ≃ 30), see Fig. 4.

The emergent noise-control mechanism can be understood via the analytical model

The analytical deterministic model can be employed to obtain further insights into the mechanism of
increased pattern robustness against noise in the vicinity of optimal κ. For this, we must first consider
the width of type-(i) and type-(ii) contact zones in their stability regions predicted by the theory from

[55]. Inserting R
(i)
X and R

(ii)
X into Eq. (11) with Kw = κKs, we obtain ∆r(i) and ∆r(ii) as functions of

κ, shown in Fig. 6A. Here, ∆r > 0 indicates a no-expression region between the domains (a gap), while
∆r < 0 means that active expression regions overlap. One can instantly notice that ∆r(i) → +∞ and
∆r(ii) → −∞ at κ = κtheor. Tending to infinite values is an artefact of our analysis, in which we treat
each contact zone as a separate volume, disconnected from the others. However, this behaviour conveys
an important message. At κ = κtheor the system attempts to maximize the size of each contact zone,
forming five contact zones tightly filling the entire system. In this state, any pattern perturbation distorts
at least two contact zones. Since each contact zone is stable, their maximized widths are attractors for
the deterministic dynamics [55], and consequently the system tends to remove the perturbation. This is
the origin of increased survival time of patterns at optimal κ. This restoration behavior is qualitatively
similar to the model of repulsive forces between domain boundaries (kinks), discussed in [43]. Although
the analytical stability theory [55] does not rely on the concept of explicit restoration forces, these forces
arise effectively, leading to the occurrence of the pseudopotential in our phase space analysis, in Fig.
5. Thus, the effective restoration forces form a link between the exact stability theory [55] and the
approximation of interacting kinks in [43].

The existence of a rigorously sharp stability condition, Kw = H/γ, raises the question about the
deterministic dynamics for suboptimal choice of κ and its influence on the stochastic system. Let us
first consider the case κ < κtheor, in which type-(ii) contact zones are stable. In this regime, the system
forms a pattern of domains A-B-C-D-A, but the NNN domains are so distant from each other that strong
interactions are not yet important. There are four type-(ii) contact zones in this system. For κ ≃ 0, the
weak interactions are extremely repressive and ∆r(ii) → +∞. Thus, the pattern collapses. For somewhat
larger κ, a finite-size gap (∆r(ii) > 0) between NN domains emerges (see Fig. 6B) and is reduced to zero
width (∆r(ii) = 0) at κ0 ≃ 37.9. In this regime, the pattern can survive arbitrarily long in the absence
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Figure 6: Analysis of theoretical contact zone widths uncovers a deterministic stabilization
mechanism. (A) Plot of theoretical contact zone widths in the approximation of separate interfaces,
∆r(i) and ∆r(ii), for type-(i) contact zones (between two NNN domains with third interacting gene
expressed in the background) and type-(ii) contact zones (between NN domains), calculated from Eq. (11)
and Eqs. (14) with κ = Kw/Ks and Ks kept constant. In their respective regimes of stability, the widths
are restored by deterministic dynamics if perturbed. Vertical lines: κ0 ≃ 37.9 (red, dashed) at which
∆r(ii) changes sign; critical κtheor ≃ 76 (black, dashed) ensuring simultaneous stability of type-(i) and
type-(ii) contact zones. Horizontal line (gray, dashed): limit of ∆r(i) ≃ 31.3 [µm] without any weak
interactions (κ → +∞). (B-E) Schematic representations of system states in various regimes of κ,
predicted by the deterministic model. Solid arrows: stable contact zones (restorable width); dashed
arrows: unstable contact zones (non-restorable width); inward arrowheads indicate ∆r(ii) < 0; contact
zones of type-(ii) (red), and type-(i) (blue). (B) 0 < κ < κ0: type-(ii) contact zone stable, ∆r(ii) > 0,
no type-(i) contact zones, domain widths lack stabilization against fluctuations. (C) κ0 < κ < κtheor:
type-(ii) contact zone stable, partial overlap of domains, ∆r(ii) < 0, provides minimal domain width
stabilization against fluctuations, but fluctuations can shift entire contact zones. (D) κ = κtheor: type-
(i) and type-(ii) contact zones stable, maximizing their widths (∆r(i) and ∆r(ii) tend to ±∞ in the
approximation of separate contact zones). Pattern is restored after any perturbation. (E) κ > κtheor

type-(i) contact zones stable, but ∆r(i) ≪ L, fluctuations can shift entire contact zones.

of fluctuations, but the domain widths are not stabilized in any way. Thus, in the presence of noise, the
survival time of the domain depends on its size (which grows with κ), as larger domains take longer to
be destroyed. For κ > κ0 NN domains begin to overlap, as ∆r(ii) becomes negative (see Fig. 6C). This
marks the first emergence of the additional stabilizing mechanism, as the deterministic dynamics will
tend to restore ∆r(ii) in each contact zone if perturbed. This means that, in the presence of noise, ∆r(ii)
would keep returning to its deterministic value, but fluctuations can still shift a stable contact zone as
one entity. If, as a result, two contact zones meet or one is pushed to the system boundary, this causes
the collapse of a domain and partial desintegration of the pattern. As κ further approaches κtheor, the
overlap becomes large enough such that NNN domains begin to interact and type-(i) contact zones are
formed. These contact zones have a certain minimal width, but they are not stable, in the sense that this
width would not be restored if increased. The occurrence of type-(i) contact zones imposes a barrier for
the further growth of ∆r(ii) with κ (see Fig. 6D). At this stage, a major enhancement of pattern stability
occurs, as stable type-(ii) contact zones and type-(i) contact zones tightly fill the system. At κ = κtheor

also the type-(i) contact zones gain stability, due to the further increase of overlap between NN domains.
This results in the maximal global robustness of the pattern against noise. For κ > κtheor, the width of
the now-stable type-(i) contact zones quickly decreases and eventually saturates at ∆r(i) = 31.3 [µm] in
the limit of completely absent weak interactions (κ → +∞). In this regime, with type-(i) contact zones
width ∆r(i) < L/3 and no mechanism restoring the width of type-(ii) contact zones (see Fig. 6E), the
pattern gradually loses stability against noise. Fluctuations can shift each type-(i) contact zone as one
entity (analogous behaviour to the type-(ii) interfaces in κ0 < κ < κtheor regime), eventually leading to
pattern destruction.

In summary, the emergent deterministic dynamics, described in [55], is crucial for stabilizing the highly
stochastic system simulated in this work. The increase in survival time τD, towards κopt, illustrated in Fig.
4, is directly associated with the gradual activation of deterministic stabilization mechanisms, described
in the paragraphs above. General principles of pattern stabilization, outlined in [55] for two genes, apply
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also to the four-gene system studied here, but many-gene competition and stochasticity results in a
more nuanced picture of stabilization. A more detailed investigation would require considering the full
spatial variability of all expression profiles together, but the approximated effective model proves useful
in predicting optimal parameters.

3 Discussion

In many developing organisms, morphogen gradients provide a long-range positioning system by activating
downstream patterning genes in a concentration-dependent manner. Prominent examples are the gap
gene system in Drosophila, whose main maternal regulators are the morphogen gradients of Bcd and
Cad spreading along the embryo axis [53, 49, 72, 73, 74, 75, 76, 77, 78], and the vertebrate neural tube
with Shh and BMP/Wnt secreted from the opposite sides of the neural tube [4, 7, 8, 18, 20, 23]. For
the Drosophila embryo, multiple studies have shown that mutual interactions between gap genes play a
crucial role in abdominal segmentation [14, 49, 51, 52, 53, 48, 79, 80, 58], leading to the formation of
stable domains with slow effective dynamics [43]. However, it remains unclear how such a system could
be robust given the stochastic nature of gene expression and regulation if the emergent interactions
are not fine-tuned to mitigate the resulting noise. Moreover, it is observed that maternal regulators
such as the Bcd gradient disappear while the expression patterns invoked downstream persist [81, 82].
In support of the view that self-coordination properties emerge in the gap gene system after maternal
activation, a more recent study which found that the gap gene expression pattern scales with the size
of the embryo with high precision, while—surprisingly—the Bcd gradient does not display any scaling
properties [83]. Similar emerging self-organizing properties have been observed in other developmental
systems [15, 32, 84].

Here we asked whether a system of mutually repressing developmental patterning genes arranged in
successive expression domains can indeed be stable over developmentally relevant time intervals without
upstream morphogen gradients while facing unavoidable fluctuations in the expressed gene products.
Such copy number fluctuations can induce bistable switching at the domain boundaries, resulting in
stochastic movement of the boundary which ultimately can lead to destruction of one of the gene
expression domains. We quantified the mean stability time of a five-stripe expression pattern formed by
four interacting genes in a stochastic model conceptually inspired by the posterior Drosophila embryo in
cycle 14 as a function of the repression strength between neighboring stripes. To be able to simulate the
breakdown of very stable patterns we employed Non-Stationary Forward Flux Sampling (NS-FFS), an
enhanced sampling scheme for simulating rare events in non-stationary systems with transient dynamics
[57]. We find that for an optimal value of the repression strength between adjacent expression domains
the stability of the pattern is increased by about an order of magnitude. This stability optimum can be
traced back to the fact that bistable switching at the boundary between domains of strongly mutually
repressing genes is inhibited by an intervening cushion domain of a gene that weakly represses both
strong partners. This stabilizing mechanism works best if the spacer gene represses its nearest neighbors
(NN) with moderate strength: very weak NN repression has no effect while strong NN repression globally
destabilizes overlapping domains. At the optimal repression strength (κ = κopt) the cushion thus slows
down the random motion of the domain boundary and subsequent pattern destruction.

Stability is enhanced even more, by one more order of magnitude, if expression of the outermost gene is
pinned at the system boundaries, which effectively anchors the whole expression pattern. Such a situation
may emerge when the outermost gene remains under control of maternal cues, such as maternally
deposited mRNA, while the other gene stripes form only by zygotic interactions. Furthermore, it resembles
the late stages of neural tube development in which the Shh and BMP morphogen gradients are acting
close to system boundaries [31, 16]. In the system considered here we find that five-stripe patterns form
a metastable attractor of the dynamics with a restoring force that counteracts perturbations, such as
non-perfect initial conditions. In the optimal stability regime, our observations are consistent with the
Waddington picture [40, 41] of development as canalization into successive metastable states, with the
ordered initial gap gene pattern representing one of the metastable states in this succession. Earlier
work already demonstrated that developmental attractors may emerge as an intrinsic property of the
gene expression pattern established through mutual interactions [52, 58]. Here, we demonstrate that
even without morphogen gradients metastable basins can arise and protect expression patterns against
stochastic fluctuations.

Further insight comes from the application of the stability theory derived in [55] to the model of four
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genes interacting in the alternating cushions scheme. In agreement with the simulations, these analytical
calculations reveal that the presence of weak interactions is necessary for stabilizing the system and
establishing long-surviving patterns. More specifically, theoretical analysis shows that requirements for
stability of type-(i) contact zones (i.e. two strongly interacting genes with the third weakly interacting in
the background) and type-(ii) contact zones (i.e. two weakly interacting genes with other genes at very
low expression level) are to certain degree incompatible, and agreement between them can be achieved
only for the most marginal value of κ = κtheor in the respective stability range for each type. As a
consequence, simultaneously ensuring perfect stability of both contact zone types requires fine-tuning of
the weak repression strength, quantified by the corresponding dissociation constant Kw. This analytical
prediction of one optimal value of κ is in qualitative agreement with the numerical simulations, which
show a very sharp rise in the survival time of expression pattern near one particular value of κ = κopt,
see Fig. 4.

Quantitatively, the numerical κopt and theoretical κtheor agree particularly well in the no-pinning case

(for pinning: |κ(p)
opt − κtheor|/κ(p)

opt = 139%, for no-pinning: |κ(np)
opt − κtheor|/κ(np)

opt = 24%). This is in
line with the assumptions of [55], where an open system was considered and system boundary effects,
such as pinning, were neglected. Differences between κtheor and κnum are expected due to the nature
of approximations employed in the mapping of microscopic model on its effective representation (5). It
is plausible that this discrepancy could be resolved by constructing an even higher-level stability theory
that takes into account the spatial variability of all four genes in each contact zone.

Further, using the division into type-(i) and type-(ii) contact zones, we investigated the behaviour
of effective deterministic model Eq. (5), in the entire range of κ. We found that the preference of
the system to form possibly large contact zones, combined with the stability of at least one type of
interfaces between domains, results in the increased robustness of the pattern against fluctuations, in the
vicinity of optimal κ. These observations are in agreement with our highly stochastic and microscopically
detailed simulations, for which the deterministic model is only the continuous-limit approximation. Yet,
the approximate agreement between κopt and κtheor as well as the broad peak of increased survival
time (Fig. 4), suggest that the deterministic dynamics of model (5) is still remarkably important for
this system. The interplay between deterministic and stochastic component of dynamics in simulations
results in the emergent noise-control mechanism, significantly increasing survival time of patterns. We
also found that the shifting of the stable contact zones by fluctuations is the major reason of pattern
destruction for κ away from the optimal value.

The observed stability times appear sufficient for early fly embryogenesis (≃ 2h until cycle 14) for all
NN repression strengths weaker than the optimal value, with or without pinning, even for the reduced
system size considered here for computational feasibility. In a more realistic description, stability times
will be likely modified due to the influence of system size. We expect that as expression domains grow in
spatial extension or maximal copy numbers stability will be further enhanced. In the first case, stability
is enhanced because more local cell fates need to be switched while the noise level remains the same.
In the second case, the relative noise level is reduced in the first place. Nevertheless, based on the
theoretical and numerical evidence we believe that the stability enhancing mechanisms uncovered in this
study will also apply to biologically relevant system sizes. Other factors potentially affecting stability are
autoactivation interactions and interactions with other genes not included in the simplified regulatory
network studied here, which will likely affect the dynamics of the gene expression pattern. Note, however,
that the adapted stability theory clearly identifies the weak nearest-neighbor repression strength as the
key parameter for enhancing stability, while the strong repressive interactions are found not to affect
stability as long as they are chosen strong enough.

Our work puts an interesting perspective on the role of maternal gradients in establishing and main-
taining developmental patterns. We show that sufficiently stable patterns can exist without morphogen
gradients, but at the same time that their stability is significantly enhanced by pinning the patterns
at the embryo boundaries. Taken together, this suggests that morphogens do not act deep inside the
embryo interior, which could explain why the patterns remain stable even when the morphogen inputs
disappear [81, 82]. Instead, they may predominantly act at the embryo boundaries as to break symmetry,
by selecting the desired pattern from the larger set of patterns that, by permutation, would also be stable.
By acting only at the periphery, the morphogens, which themselves do not exhibit scaling, still would
allow scaling of the downstream pattern with embryo length, in line with recent findings [83].

The stabilizing mechanism arising from fine-tuning nearest-neighbor interactions in the alternating
cushions scheme can be also considered in the broader class of regulatory mechanisms providing pattern
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stability against intrinsic and extrinsic noise [11, 21, 29]. In future studies, it may be instrumental to
further numerically and analytically explore the proposed model by including other biologically relevant
features. Possible extensions include growth of the tissue by cell divisions, self-correcting mechanisms
through cell-to-cell communication other than diffusive exchange of proteins, or inclusion of more specific
noise types. These extensions could further test the validity of our stability theory under more realistic
biological conditions. However, due to the remarkable agreement between our adapted stability theory
and the numerical simulations of the minimal model studied in this work, we believe that more realistic
variants of it will result in quantitative but not qualitative changes in our predictions.

4 Methods

Details of the model

Our model is inspired by arguably the most paradigmatic developmental system in which development
of distinct cell fates is determined by local protein expression patterns driven by external morphogen
gradients, the early embryo of the fruit fly Drosophila melanogaster. We model the egg-shaped embryo
with its cortical layer of nuclei as a cylindrical array of reaction volumes coupled by diffusion of proteins.
Every volume (nucleus) contains four individual promoters for each of the genes A, B, C and D. Each
promoter can be repressed by the products of the three others with different affinities; this system of
four mutually inhibiting genes represents the gap gene system in the early fly embryo, formed by the four
genes hb, kr, kni and gt, and comprises its essential regulatory interactions. For combined repressive
interactions, we employ OR-logic, i.e. whenever one of the three repressor sites is occupied expression
of the gene is completely blocked. There is no competition for repressor sites on the promoters. In
the unrepressed state the promoters exhibit constitutive protein production, i.e. no external activator
signal is required. This deliberately mimics a situation in which activation of the genes is not provided
by external morphogen gradients but by either an omnipresent master activator or auto-activation with
a low activation threshold. Consequently, our model explicitly does not include morphogen gradients.
As a simplifying assumption, we treat the whole production process, i.e. transcription, elongation and
translation, as one step governed by a single rate β. Proteins however can form (homo)dimers and
dedimerize again [85, 86], and only in their dimeric form they act as repressors. This is to ensure that
antagonistic genes form bistable pairs for sufficiently strong mutual repression. Initially, all simulations
are set up in a stripe pattern similar to the experimentally observed order in the embryo posterior,
i.e. A-B-C-D-A [53, 49, 54]. This implies a fixed definition of “gene neighborhood” to which we refer
throughout this paper: by nearest neighbors (NN) we mean the pairs (A, B), (B, C), etc., while the
pairs (A, C) and (B, D) are considered next-nearest neighbors (NNN). A key ingredient of our model is
that nearest-neighbor repression is weaker than repression between next-nearest neighbor domains (see
“Parameter choice” in Methods). By default we pin the expression of A at the system boundaries,
i.e. in nuclei on the two outermost rings of the cylinder the A promoter is irrepressible, and therefore
constitutively produces A proteins. This is motivated by the fact that in the real Drosophila embryo the
gene Hb is under strict control by the maternal morphogen Bcd throughout the anterior half [87], while
in the posterior a second enhancer exposes Hb to positive regulation by the maternal terminal system
[88, 89, 90]. We compare this system to a system in which there is no pinning and all nuclei are identical.

Simulations

To perform rare-event sampling of the spatially resolved system we integrate our “Gap Gene Gillespie”
(GGG) simulator used in previous work [14, 59] with the NS-FFS scheme [57]. NS-FFS is used to monitor
and process a progress coordinate written out by GGG at regular simulation interrupts, at which GGG
trajectories are cloned and restarted in a way that sampling is enhanced in the direction of increased
progress coordinate, i.e. towards pattern destruction.

Spatially resolved stochastic simulations (GGG)

In GGG, the model is implemented via the Stochastic Simulation Algorithm by Gillespie [91, 92] on
a cylindrical 2D lattice of reaction volumes at constant distance l = 8.5 µm, with periodic boundary
conditions in the circumferential direction of the array. An abstract graph of the reaction network
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that displays the set of reactions for any of the simulated promoters is shown in Figure S8 in the
Supporting Text. Diffusive chemical species (patterning gene proteins and their dimers) hop between
neighboring volumes via the next-subvolume method [93] which integrates diffusion into the Gillespie
algorithm by annihilation of a species copy in the volume of origin and instantaneous insertion of that
copy in a randomly chosen neighboring volume with a rate kdiff = 4DP/l

2, where DP corresponds
to the protein diffusion coefficient. The source code of GGG with examples can be downloaded from
https://github.com/YetAnotherTomek/GGG.

Forward flux sampling

We employ the recently developed non-stationary forward flux sampling (NS-FFS) method [57, 56, 94]
to enhance stochastic sampling of system realizations that increase a (reaction) progress coordinate λ
while retaining correct statistical weight. NS-FFS achieves this by branching off multiple child trajectories
upon crossing predefined interfaces in undersampled regions of (λ, t)-space and pruning trajectories that
cross interfaces in oversampled regions. The NS-FFS scheme aims at equilizing the flux of simulated
trajectories in the reaction coordinate direction among the time bins. The rate of branching and pruning
is calculated from the temporal trajectory crossing statistics collected during runtime. To that purpose
the time domain is subdivided into equidistant time intervals. For a detailed account of the reweighting
procedure we refer to [57].

Progress coordinates

The choice of a suitable progress coordinate is a critical step of the FFS technique. Here, we seek to
enhance progress of the simulated patterns towards their destroyed state. The destruction events are in
particular characterized by the disappearance of one of the partners within each of the strongly repressing
gene pairs. Progress towards destruction thus is accompanied by increasing pair asymmetry, which can
be quantified for each pair separately by the following two asymmetry factors:

λAC ≡ max([A]tot, [C]tot)/N (17)

λBD ≡ max([B]tot, [D]tot)/N (18)

where N = [A]tot + [B]tot + [C]tot + [D]tot is the number of all proteins in the system. Based on
this we define our progress coordinate, which increases whenever asymmetry among any of the pairs is
augmented, via

λ ≡ λAC + λBD = [max([A]tot, [B]tot) + max([B]tot, [D]tot)] /N . (19)

Since NS-FFS features multi-dimensional reaction coordinates we compared our standard choice to a
setup in which the two components λAC, λBD of the reaction coordinate λ are treated as two separate
reaction coordinates with an own set of interfaces each. While an orthogonal pair of reaction coordinates
captures the principal reaction paths in our system more accurately, the acquisition of crossing statistics
is prolongated because of the increased number of bins in these simulations, and we did not find any
substantial advantage of this choice in terms of branching behavior. We therefore preferred the standard
definition.

Combination of simulation methods

In order to wrap NS-FFS around the GGG simulator we run GGG for a predefined simulation time
tGGG = 60 s. At the end of the simulation the reaction coordinates are calculated and passed on to the
NS-FFS module, and the end state of the simulation is recorded. The NS-FFS module then determines
whether an interface crossing has occured and, if so, decides on whether the trajectory shall be branched
or pruned. In case of branching NS-FFS will prompt nB ≥ 1 restarts of the GGG simulator with the
recorded end state as initial condition, different random seeds and with new statistical weights. At each
crossing and at measuring times spaced by a regular interval ∆t the time, branch weight and reaction
coordinate values are stored in a tree-like data structure that facilitates later analysis.

Trajectory trees are started from a standartized, regular-stripe initial condition passed to the first
call of GGG. Propagation of the tree stops when all child branches have either reached the end of the
time histogram or have been pruned. Subsequently a new tree is started with a different random seed.
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NS-FFS monitors the cumulative simulated time Tcum and terminates simulation when Tcum exceeds a
predefined maximal simulation time Tmax and the last trajectory tree has been propagated towards the
end. Typically, Tmax = 3 − 7 h and Tcum = 2 − 5 · 107 s, which usually results in several thousand
independent starts from the initial condition.

By default we start from an artificial pattern consisting of five non-overlapping stripes with rectangular
profiles occupying an equal part of the total system length L/5 each and equal number of monomers (no
dimers) in each nucleus close to the expected total copy numbers. We find that these initial patterns
quickly relax towards typical metastable patterns, i.e. into the metastable main basin of attraction, which
justifies our approach a posteriori.

Parameter choice

Repression

We are mainly concerned about the importance of distinct repression strength of nearest-neighbor (NN) as
compared to next-nearest neighbor (NNN) interaction. We assume repressor binding-rates to be diffusion-
limited via kRon = 4πσRDN, where DN is the intranuclear diffusion constant and σR an effective target
radius. Repression strength therefore is varied by changing the unbinding rates of the repressing dimers.
The main parameter in our simulations is κ = koffw /koffs , the ratio between NN and NNN repressor off-
rate. In this work only koffw is varied, while koffs is chosen sufficiently low to guarantee bistability between
next-nearest neighbor genes, which is a precondition for the formation of individual stripe domains in
the first place, see Table S1 in the Supporting Text. For κ = 1 NN and NNN repressive interactions
are equally strong, while for large κ values NN repression is much weaker than NNN repression. In the
“uncoupled limit” κ → ∞ the two bistable pairs coexist without sensing each other. We do not consider
cases with κ < 1.

Dimerization

We set the dimerization forward rate kDon to be equal to two times the diffusion-limited repressor binding
rate, which is accounting for the fact that both reaction partners are diffusing. The dimerization backward
rate is set via kDoff = kDon/VN (VN = nuclear volume) as in [95, 96, 97, 14] to ensure that at any moment
most of the proteins are dimerized.

Production and degradation

In our model both monomers and dimers are degraded. This leads to a nontrivial dependence of the total
copy number on production, degradation and (de)dimerization rates, as we discuss with more detail in
[14]. Since we did not find any experimental reports of gap protein lifetimes, we chose equal monomeric
(µM) and equal dimeric degradation rate (µD) for all genes and set these quantities to values that lead
to a reasonable effective lifetime of the corresponding proteins of teff ≃ 100 s. The steady-state copy
number is tuned via the production rate β. By default, we consider copy numbers as low as possible
(≃ 15) to minimize computational effort. The effect of increasing the average copy number is discussed
in the “Discussion” section.

Geometry and internuclear transport

The choice of our geometric parameters, in particular of the lattice constant, is inspired by experimental
measurements in the Drosophila embryo by Gregor et al. [1]. Information on the diffusion constants
of proteins involved in early Drosophila patterning is scarce. The diffusion constant of the morphogen
Bcd has been measured by several groups, yet its true value is still under debate [12, 98]. In our model
we therefore set for all patterning proteins an effective internuclear diffusion constant DP = 1 µm2/s,
which comprises both protein import/export and actual diffusion. This value is a reasonable cytoplasmic
diffusion coefficient and well within the bounds reported for Bcd.

The simulated lattice is 40 nuclei long so that the total system length L roughly corresponds to the
posterior 2/3 of the Drosophila embryo in cycle 14. To reduce computation effort we simulate a system
with smaller circumference (8 nuclei) as compared to the living embryo. This is justified by the fact
that for our standard diffusion constant DP and effective protein lifetime µeff the diffusive correlation
length lcorr =

√
DP/µeff is ≤ 2 nuclei. A larger circumference therefore is not expected to introduce

20



new features into the system, but might alter the timescales of expression boundary movement and
domain desintegration. We discuss the effect of reduced system size on measured stability times in the
“Discussion” section.

A complete overview of the specific numerical values of our model parameters is found in Table S1
of the Supporting Text.

Data analysis

Quantification of pattern stability

In order to analyse pattern stability we represent each simulated pattern as a point in (λAC, λBD) phase
space. For every pattern simulation from time t = 0 until time t = tend the temporal sequence of these
points corresponds to a trajectory in the (λAC, λBD) space. For each parameter choice and pinning
scenario, we restarted the simulations with 6000 trajectories started from the relaxed initial patterns
at t = 0; the trajectories ensemble is then further enriched by the branching process at the NS-FFS
interfaces. Next, the trajectories are binned with the statistical weight assigned by NS-FFS, and then
the histograms are normalized. As a result, we can identify a few distinct regions that accumulate
probability. In order to formally define these regions we define rectangular boundaries that enclose
accumulated probability regions corresponding to different types of patterns:

• the metastable main basin with five-stripe pattern:
RS ≡ {(λAC, λBD)|λAC ≤ 0.45 ∧ λBD ≤ 0.43}

• the basin in which either the A or C protein domain was lost:
R†

AC ≡ {(λAC, λBD)|λAC > 0.45 ∧ λBD ≤ 0.43}

• the basin in which either the B or D protein domain was lost:
R†

BD ≡ {(λAC, λBD)|λAC ≤ 0.45 ∧ λBD > 0.43}

• the basin in which either A or C and one of B or D were lost:
R‡ ≡ {(λAC, λBD)|λAC > 0.45 ∧ λBD > 0.43}

Note that the location of the regions slightly changes for different values of κ. We found that the
above boundary definitions constitute a good compromise. For each basin we compute the fraction of
total probability as a function of time by integrating the weights of trajectories that are within the basin
at time t. We define the pattern survival probability to be the integrated probability in RS at time t
after initialization: S(t) =

∫∫
RS

p(t)dλACdλBD. As expected, S(t) displays roughly exponential decay
behavior after a certain lag phase that can be attributed to initial relaxation. To obtain the pattern
destruction rate kD we fit a function f(x) ≡ exp(−kD(t − tlag)) to S(t). This only yields satisfactory
results if the fitting range is adapted accordingly, i.e. only S(t) values for t > tlag are taken into account.
Since tlag itself is a fitting parameter we adopted the following protocol: Starting from a value of tstart
that is clearly in the relaxation regime we perform the fit on the interval [tstart, tend] where tend is the
largest time recorded. We then choose the fitted values kD and tlag for which |tlag − tstart| is minimal.
From this we compute the pattern stability time (average time until pattern has lost one of the domains)
via τD ≡ 1/kD. In most considered cases the patterns are very stable, i.e. kD very small, and we can
expand S(t) ≃ 1− kD(t− tlag). As a control, we therefore also fitted g(t) ≡ kD(t− tlag) to 1−S(t) for
a fixed tlag clearly in the exponential regime and obtained almost identical results.

Computation of average probability fluxes

To quantify which destruction pathways are dominant we computed the average fluxes Javg into the
regions of (partly) destroyed patterns. Here the average flux is defined as the average rate of increase in
time of the fractional probability in the region and obtained by fitting a linear function h(t) ≡ Javgt+P0

to PR(t) ≡
∫∫

R
p(t)dλACdλBD for R ∈ {R†

AC, R
†
BD, R

‡} over the interval [tstart, tend] with tstart chosen
such that ∂tPR(t) ̸= 0 for t > tstart. P0 depends on the particular choice of tstart and is discarded.
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Computation of average flux velocities

The average local drift velocity and diffusion constant of the trajectories in the (λAC, λBD) phase space
are computed by averaging displacements ∆λAC(BD) ≡ λAC(BD)(t + ∆t) − λAC(BD)(t) and squared
displacements ∆λ2 ≡ ∆λ2

AC + ∆λ2
BD on a two-dimensional lattice of bins covering the whole phase

space. Displacements ∆λAC(BD) are assigned to the bin at λ⃗ ≡ (λAC, λBD), i.e. we are averaging

outgoing displacements and the averaged vector ⟨∆⃗λ⟩(λ⃗) therefore will represent the average velocity

with which trajectories leave this bin. The local phase space diffusion constant is calculated as Dλ(λ⃗) ≡
1

4∆t

[
⟨∆λ2⟩(λ⃗)−

(
⟨∆λAC⟩2(λ⃗) + ⟨∆λAC⟩2(λ⃗)

)]
. This is done in the same way for other combinations

of phase space coordinates. The diffusion-drift decomposition is explained in more detail in the Supporting
Text.

Computation of “pseudopotential” landscapes

The trajectory binning procedure used for computing the average flux velocities as described above was
at the same time used for computing the “pseudopotential” − log(p̃(λ⃗). Herein p̃(λ⃗) is the local density

calculated from the reweighed number of trajectories leaving the bin at λ⃗ = (λAC, λBD), and smoothened
afterwards by 2D median filtering over nfilt neighboring bins. For the 2D median filtering we used the
medfilt2 function from the MATLAB Image Processing Toolbox. We empirically chose nfilt = 4 as we
found that this choice efficiently removes local spikes in p(λ⃗) without changing the overall shape of the
landscape.

Perturbation experiments

Simulations starting from perturbed initial conditions were performed directly via the GGG simulator.
First the systems were relaxed to representative states within the metastable basin for a simulated time
of trelax = 30 min. The final states of these runs then were post-modified according to the following
two protocols:

1. “C expansion”: starting from mid-embryo the central C protein domain was expanded as follows:
the configurations in the nuclei just posterior to mid-embryo were copied and used to overwrite
configurations in the subsequent ∆ rows in the axial (z-) direction of the cylinder. The original
configurations were stored and for each nucleus at row zi > Nz/2+∆ (counting from the anterior)
the configuration was overwritten by the original configuration at zi − ∆. The posterior-most
nucleus was exempted from overwriting to preserve pinning.

2. “A expansion”: here the anterior A protein domain was enlarged at the expense of the C protein
domain. To this purpose we applied the same copy-paste procedure as above starting form zi = 5,
however only nuclei up to mid-embryo (zi ≤ Nz/2) were overwritten by the original configurations
at zi −∆.

∆ quantifies the severity of perturbation. We found that∆ < 4 results in changes to the pattern that were
hard to distinguish from noise, while for ∆ > 12 perturbations were large enough to induce immediate
pattern destruction with high probability. We therefore limited systematic tests to pertubations with
∆ ∈ {4, 8, 12}. Starting from the perturbed initial conditions simulations were continued for tsim = 20 h
and snapshots of the current configurations in all nuclei were written out with an acquisition interval
of 10 min (simulated time). 10 samples starting from 10 different perturbed initial conditions were
produced for each set of parameters.

In order to overcome the difficulties of boundary detection we quantified the motion of protein domains
by tracking their center of mass (CoM) along the z-axis of the cylinder. For each considered gene G we
define the CoM zG as

zG ≡
∫
z

∫
r
zGtot(r, z)drdz∫

z

∫
r
Gtot(r, z)drdz

(20)

where Gtot = [G] + 2[G2] is the total copy number. Since our system features two A domains we
calculate zA separately for the anterior (Aant) and the posterior (Apost) part of the embryo by restricting
z-integration adequately. While the CoM remains unchanged upon symmetric changes of the domain
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boundaries or global copy number increase, it is well-suited to indicate relaxations from the asymmetric
perturbations that we apply. To find general trends in the time-evolution of the domains CoM trajectories
were averaged over the 10 samples.

Effective reaction-diffusion dynamics of dimer expression

In this section we map the fully microscopic model defined in Fig. 1 onto the effective model from [55].
First, we postulate that the stochastic dynamics of gene expression studied in this paper corresponds to
the following effective dynamical equations:

∂tX1(x, t) = −µMX1(x, t)− kDonX
2
1 (x, t) + kDoffX2(x, t) + βf({Y2(x, t)}Y ̸=X) ,

∂tX2(x, t) = D0∂xxX2(x, t)− (kDoff + µD)X2(x, t) + kDonX
2
1 (x, t) ,

(21)

where X,Y ∈ {A,B,C,D} denotes the expressed protein species, X1, Y1 are the concentrations of its
monomer, and X2, Y2 are concentrations of its dimers. The synthesis and decay of dimers is described
by rates kon and koff . Both, monomers and dimers degrade with rates µD and µM. In this system,
only dimers are allowed to diffuse (with diffusivity D0) and only monomers are primarily synthesized,
with maximal production rate β and production kinetics described by function f({Y2(x, t)}Y ̸=X), which
we specify later. However, we assume that in the absence of other dimers Y2 ̸= X2 the production is
active by default, so f({0}) = 1. Since the system has cylindrical symmetry, we will treat the axis x as
distinguished and treat the system as effectively one-dimensional.

The fact that the model defined by eqs. (21) involves monomers and dimers complicates its mapping
onto the model in [55]. We therefore translate it into a simplified model, tracking the effective dynamics
of dimers only. To this end, we will first determine the ratio between stationary concentrations X̃1

and X̃2 in the absence of other dimers (Y2(x, t) = 0) and assuming system homogeneity. In this case,
equations (21) turn into:

0 = −µMX̃1 − kDonX̃
2
1 + kDoffX̃2 + β ,

0 = −(kDoff + µD)X̃2 + kDonX̃
2
1 .

(22)

Solving for X̃1 and X̃2, we obtain:

X̃1 =
1

2kDon

(
−kDoff + µD

µD
+

√
(kDoff + µD)2

µ2
D

µ2
M + 4kDonβ

kDoff + µD

µD

)
,

X̃2 =
β

µD
− µM

µD
X̃1 .

(23)

We will now sum both equations in (21) to obtain

∂t(X1(x, t) +X2(x, t)) = D∂xxX2(x, t)− µDX2(x, t)− µMX1(x, t) + βf({Y2}Y ̸=X) , (24)

and approximate

X1(x, t) ≈
X̃1

X̃2

X2(x, t) . (25)

In other words, we assume that X1(x, t) follows strictly X2(x, t). The advantage of this approximation
is that it becomes exact in the stationary state. This procedure results in the following effective equation
for X2(x, t):

∂tX2(x, t) = DX∂xxX2(x, t)− γXX2(x, t) +HXf({Y2}Y ̸=X) , (26)

where the rescaled constants are:

DX =
D0

1 + X̃1

X̃2

, γX =
µD + µM

X̃1

X̃2

1 + X̃1

X̃2

, HX =
β

1 + X̃1

X̃2

. (27)

We can now specify the kinetics function. The microscopic dynamics is such that each gene X is
produced, unless it is blocked by the biding of any other dimer to its repressor site on the promoter. In
the averaged-out description, we expect that a sufficiently high concentration of free repressor particles
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effectively shuts down the production of X. Similarily to [55], we will assume that this transition is steep,
so we can choose the functional form of the regulatory Hill function in (26) to have the overall shape of
Heaviside step function:

f({Y2}Y ̸=X) = θ


∑

Y ̸=X

ϵXYY2(x, t)− CX


 . (28)

Finally, we relate the effective gene interaction constants ϵXY to microscopic parameters by the
following reasoning: In the microscopic simulations, the attachment of Y2 to the repressor site is described
by the constant kRon and detachment by koffs or koffw . Assuming that the repressor production speed can
be approximated by Michealis-Menten kinetics, with the repressor site acting like a “catalyst”, we know
that

KY = koffw,s/k
R
on (29)

where koffw,s (standing for either koffw or koffs ) is the concentration of repressor dimers Y2 at which the
velocity of production of Y1 is at the half of its maximal value. We postulate that at this point Y2

effectively switches off the production of X, and we equate this point with reaching the threshold for
production in (28). Hence, the following is satisfied:

ϵXYKY − CX = 0 . (30)

Solving for ϵXY we obtain:

ϵXY =
CX

KY
. (31)

We choose CX < 0 to ensure that the production of X is active by default, in the absence of repressive
dimers (Y2(x, t) = 0). Since CX is now present in every term in (28), we can factor it out and neglect.
Taken together, and assuming that diffusion, degradation and production constants are the same for all
genes, that is: DX = D, γX = γ and HX = H for all X ∈ {A,B,C,D}; the microscopic dynamics of
gene expression mapped onto the effective model results in eq. (5).
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S1.1 Analysis of perturbation experiments for assessing pattern restor-
ing forces

Perturbation experiments on patterns initially relaxed into their long-persisting intact state were carried out by
expanding expression domains at the expense of the respective antagonistic gene’s domains and simulating the
subsequent dynamics of the system, as described in the main text and Methods, Sec. 4. The stochastic time
trajectories of such perturbation experiments that were repeated many times were then analysed as follows:

In order to quantify the spatial properties of a given domain G we used its center of mass, zG, where G
stands for one of the five domains {Aa, B, C,D,Ap}, with Aa and Ap marking the anterior and posterior parts
of A. Advantageously, zG is a robust measure, as it avoids ambiguity associated with determining domain
boundaries in the presence of gene expression noise. Figure S1 shows, for κ = κopt, time traces of zG for the
two types of perturbations, averaged over 10 independent samples in each case. For both perturbations the
average centers of copy number relax back to their original positions on a timescale ∼ 10 h. This demonstrates
that for optimal repression strength ratio an effective restoring force counteracts deviations from the five-stripe
pattern for varied λAC.

S1.2 Estimation of phase space diffusion coefficient from overdamped
Langevin dynamics

Let f(X,Y, t) be a twice differentiable real function depending on a two-dimensional diffusion-drift processes

X⃗ = (X,Y ) and time t (explicitly). In the overdamped Langevin limit, i.e. assuming that the displacements
of the random walker are goverened only by forces that stem from an underlying force field and by Gaussian
noise, and that its accelerations and inertia are negligible, we can describe this random processes via

dX⃗ = v⃗dt+ σdW⃗ (S1)

where W⃗ is a (two-dimensional) Wiener processes and v⃗ = (vX, vY) a (local) drift velocity resulting from the
potential forces.
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Figure S1. Perturbed trajectories are restored to their origin at optimal NN repression strength.
Shown are averaged time traces of the copy number center-of-masses zG for the five domains of the stable
pattern (Aa = anterior A domain, Ap = posterior A domain) at κ = κopt for two different perturbations:
(A) “C expansion”, i.e. prolongation of the central C domain by ∆ = 8 nuclei into the posterior and (B) “A
expansion”, i.e. prolongation of the anterior A domain by ∆ = 8 nuclei towards the center of the embryo.
The gray-dashed line marks the center of the system. In both cases we observe a restoration of the metastable
state on a timescale ≲ 10 h.

We then can calculate the differential of f with Itō’s Lemma (as a generalization of Taylor expansion) as
follows:

df(X,Y, t) = σ
∂f

∂X
dWX + σ

∂f

∂Y
dWY

+

[
∂f

∂t
+ vX

∂f

∂X
+ vY

∂f

∂Y
+

σ2

2

∂2f

∂X2
+

σ2

2

∂2f

∂Y 2
+ ζσ2 ∂2f

∂X∂Y

]
dt

(S2)

Here ζ measures the correlation between X and Y .
In order to apply this general formula to the specific diffusion-drift problem for the phase space coordinates

(λAC, λBD) defined in the main text eq. (2), we assign for brevity λx = λAC and λy = λBD, and then we set
X = λx, Y = λy and f(X,Y, t) = f(λx, λy) = (λx − λx0

)2 + (λy − λy0
)2 ≡ ∆λ2 (the squared displacement

function).
Itō’s Lemma now reads (note that the time and mixed derivatives vanish):

d(∆λ2) = d
[
(∆λx)

2 + (∆λy)
2
]
= d

[
(λx − λx0)

2 + (λy − λy0)
2
]

≃ 2(λx − λx0)(vλxdt+ σdWx) + 2(λy − λy0)(vλydt+ σdWy)

+
σ2

2
2dt+

σ2

2
2dt (S3)
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A B

C

Figure S2. Average phase space diffusion coefficients as a function of κ. (A) The diffusion coefficient
of phase space trajectories in the (λx, λy) = (λAC, λBD) space are obtained from the overdamped Langevin
analysis, see section S1.2. The diffusion coefficients are averaged over the phase space region RP = [0.3, 0.4]2,
which is part of the diffusive plateau, for different repression strength ratios κ. The PSU stands for the phase
space units. (B) The resulting approximate diffusion times from the phase space region of the five-stripe
relaxed patterns, towards the edge of the diffusive plateau as a function of κ, assuming a distance of 0.2
PSU for the initial phase space distance to the edge. The edge of diffusive plateau is defined as a region of
(λAC, λBD) from which the states are quickly absorbed into the regions with one the domains lost.
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To relate the above formula to the displacements sampled in our simulations with a fixed acquisition
time interval ∆t we shall integrate the infinitesimal contributions over this interval. At the same time we
take the ensemble average to account for the averaging of independent samples, which causes the Gaussian
terms σdWx and σdWy to vanish. We further assume that, to a good approximation, the drift velocities and
diffusion coefficients are constant over the time interval ∆t and diffusion isotropic in λx and λy direction, i.e.

Dλx = Dλy = Dλ(λ⃗). Finally, using σ =
√
2Dλ, we obtain:

〈
∆λ2

〉
=

〈∫

∆t

d(∆λ2)

〉

=

〈∫ ∆t

0

2 [λx(t)− λx(0)]︸ ︷︷ ︸
≃⟨vλx ⟩t

vλx︸︷︷︸
≃⟨vλx ⟩

dt

〉
+

〈∫ ∆t

0

2 [λy(t)− λy(0)]︸ ︷︷ ︸
≃⟨vλy⟩t

vλy︸︷︷︸
≃⟨vλy⟩

dt

〉

+

〈∫ ∆t

0

4Dλdt

〉
+

∫

∆t

⟨2∆λxσdWx⟩︸ ︷︷ ︸
0

+

∫

∆t

⟨2∆λyσdWy⟩︸ ︷︷ ︸
0

≃
〈
⟨vλx⟩2

∫ ∆t

0

2tdt

〉
+

〈
〈
vλy

〉2 ∫ ∆t

0

2tdt

〉
+ 4 ⟨Dλ⟩∆t

≃ ⟨vλx∆t⟩2 +
〈
vλy∆t

〉2
+ 4 ⟨Dλ⟩∆t

= ⟨∆λx⟩2 + ⟨∆λy⟩2 + 4 ⟨Dλ⟩∆t (S4)

The final result shows that, knowing the average displacements ⟨∆λx⟩ and ⟨∆λx⟩ and average squared

displacements
〈
∆λ2

〉
at λ⃗, we can compute the average diffusion coefficient ⟨Dλ⟩ (λ⃗) via:

⟨Dλ⟩ (λ⃗) =
1

4∆t

[〈
∆λ2

〉
(λ⃗)−

(
⟨∆λx⟩2 (λ⃗) + ⟨∆λy⟩2 (λ⃗)

)]
=

1

4∆t
V⟨λ⟩(λ⃗) (S5)

The bracket term containing the first moments corrects the mean squared displacement for the contributions
coming from the deterministic drift and tends to zero as the process becomes purely diffusive.

The results of this analysis applied to our simulated systems are shown in Fig. S2, where we plot the diffusion
coefficients and the resulting expected diffusion times to the edge of the basin of initial patterns as a function
of our main parameter, the repression strength ratio κ. Interestingly, we find that the diffusion constant
remains almost constant for large κ, corresponding to weak nearest-neighbor repression (Fig. S2A). In this
regime, the estimated time of diffusion to the edge of the stable basin, τ0.2 is about 12 hours and comparable
to the recorded average stability times (∼ 20 hours, panels B and C). When κ is reduced, meaning that the
nearest-neighbor repression is increased, we observe an increase of the diffusion constant and correspondingly a
reduction of τ0.2 to values below 10 hours. Since in this regime the pattern stability increases dramatically, our
analysis corroborates the finding that the stability increase is not due to a slow-down of the pattern boundary
dynamics, but due to the emergence and deepening of a metastable basin that generates restoring forces to
pattern perturbations.
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S1.3 Supplementary velocity field figures

Figures S3, S4, S5 and S6 show phase space velocity fields and trajectories starting from perturbed initial
conditions for three different projections of the reaction coordinates, for the following cases:

• for the repression strength ratio κ ≃ 31.6 that optimizes pattern stability with pinning, see Fig. S3,

• for weaker NN repression strength κ = 1000 with pinning, see Fig. S4,

• for the optimal repression strength ratio κ = 100 that optimizes pattern stability without pinning, see
Fig. S5,

• for weaker NN repression strength κ = 1000 without pinning, see Fig. S6.
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Figure S3. Average phase space velocities for the maximally stable system (κ ≃ 31.6) with pinning.
Left plots (A, C, E) show local average phase space velocities, right plots (B, D, F) additionally show example
trajectories for the two types of perturbations considered in the restoration experiments (blue = pert. from
boundary, turquoise = pert. from center). Starting points are marked by black bullets.
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Figure S4. Average phase space velocities for weaker NN interaction (κ = 1000) in the system with
pinning. Left plots (A, C, E) show local average phase space velocities, right plots (B, D, F) additionally
show example trajectories for the two types of perturbations considered in the restoration experiments (blue
= pert. from boundary, turquoise = pert. from center). Starting points are marked by black bullets.
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Figure S5. Average phase space velocities for the maximally stable system (κ = 100) without pinning.
Left plots (A, C, E) show local average phase space velocities, right plots (B, D, F) additionally show example
trajectories for the two types of perturbations considered in the restoration experiments (blue = pert. from
boundary, turquoise = pert. from center; purple = pert. from center resulting in complete pattern destruction).
Starting points are marked by black bullets.
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Figure S6. Average phase space velocities for weaker NN interaction (κ = 1000) in the system without
pinning. Left plots (A, C, E) show local average phase space velocities, right plots (B, D, F) additionally
show example trajectories for the two types of perturbations considered in the restoration experiments (blue
= pert. from boundary, turquoise = pert. from center). Starting points are marked by black bullets.
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Figure S7. Pinning affects destruction pathways We plot here the average probability fluxes from the
region of stable patterns RS into the different remote basins identified in the (λAC, λBD) phase space as a
function of the repression strength ratio κ for the systems with and without pinning. Here the flux is defined
as the average increase per time of the total probability in the basin. Basin boundaries and flux quantities are
described in detail in Methods, Sec. 4. Shown are the flux into the basin R†

AC, corresponding to destruction

of either the A or C domain (red lines), the flux into the basin R†
BD, in which either the B or D domain breaks

down (blue lines), and the total outflux from RS, which equals the pattern destruction rate kD (black bullets).
Solid lines and triangles show the data for the system with pinning, dashed lines and circles the values for the
system without pinning. Clearly, in both with and without pinning and for all κ considered here, R†

AC is the
dominant fraction of the flux, reflecting that the dominant pathway to destruction is the one that starts with
the disappearance of either the A or C domain. Pinning of A expression at the system boundaries leads to a
pronounced reduction of the flux through this pathway for κ = 10− 100.
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S1.4 Pinning alters the proportion of destruction pathways

Both with and without pinning of A expression at the system boundaries, pattern stability is maximal at
an optimal strength of NN repression. Stability times, however, are significantly higher in the system with
pinning. In order to understand whether this is simply due to the fact that pinning prohibits destruction of
the A domains or due to other pinning-induced effects, we compared the different pathways to destruction
by computing probability fluxes through distinct reaction pathways (see Methods, Sec. 4 for details). The
different reaction pathways are defined by the order in which gap gene domains are destroyed. In our system
there are two major pathways: the A-C destruction pathway (either the A or the C domain vanishes first)
and the B-D destruction pathway (either the B or D domain vanishes first). The phase space histograms
in Figure 3 of the main text demonstrate that simultaneous destruction of two domains, corresponding to
trajectories that progress diagonally in (λAC, λBD) space, is highly improbable. We find that, while in general
the A-C destruction pathway prevails, the fact that the A-destruction pathway is dominant for κ ≤ 100 in the
system without pinning accounts for the strong enhancement of pattern stability due to pinning.

In Figure S7 we plot for different repression strength ratios κ the magnitude of average fluxes from the
region of intact patterns RS in the (λAC, λBD) space into the respective neighboring regions that correspond
to states in which one expression domain vanished. The figure reveals that for all κ the flux through the A-C
destruction pathway is approximately ten times higher than the flux through the B-D pathway, for systems both
with and without pinning. The figure also shows that pinning indeed reduces the flux through the dominant,
i.e. A-C, pathway, most significantly for κ ≃ 10− 100, i.e. around the optimal value κopt. This gives rise to
the pronounced stability enhancement. The simultaneous reduction of the flux through the B-D pathway is
not relevant for overall stability.

We analysed further the detailed composition of fluxes through the dominant (A-C) pathway by computing
the average flux into the regions of destroyed states in ([A]tot/Ntot, [C]tot/Ntot) space, see Fig. S8. As
expected, in the systems with pinning the entire flux through the dominant pathway goes into the C-destroyed
state. Interestingly, this is also the case for the weakly coupled systems without pinning. Here the flux into
the A-destroyed state is clearly dominant over the flux into the C-destroyed state for strong NN interaction.
This explains why pinning, which prohibits exit through the B-destruction pathway, increases stability in the
κ ≲ 100 regime. While the flux through the C-destruction pathway is minimal at κ = 31.6 with or without
pinning, in the system without pinning the accessibility of A destruction shifts the minimum of the combined
flux through both pathways towards κ = 100, see Fig. S7.
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Figure S8. Pinning shifts the destruction flux balance in the dominant (A-C) destruction pathway
The figure shows the contributions of the A-destruction and C-destruction pathways to the outflux from RS as
a function of the repression strength ratio κ for the systems with (A) and without (B) pinning. See Methods,
Sec. 4 for the definitions of basin boundaries and details of flux calculation. Without pinning and for strong
NN repression, the preferred pathway to destruction is the one in which the A domains are destroyed first,
while for weaker coupling (large κ) destruction begins via annihilation of the C domain. Interestingly, in both
cases the flux through the C-destruction pathway is minimal at κ ≃ 31.6. However, in the system without
pinning this value falls into the regime in which the flux through the A-pathway markedly increases. Pinning
forbids destruction via the A pathway and thus dramatically reduces the overall destruction flux for low κ in
the system with pinning, giving rise to the additional enhancement of optimal stability at κ ≃ 31.6.
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Quantity Symbol Value Unit
Geometry
Nuclear radius rN 2.5 µm
Nuclear volume VN 65.4 µm3

No. of nuclei in axial direction Nz 40
- resulting system length L 340 µm
No. of nuclei in circumferential direction Nϕ 8
Production / degradation
Protein production rate β 0.20 s−1

Monomer degradation rate µM 0.05 s−1

Dimer degradation rate µD 0.005 s−1

- resulting effective degr. rate µeff 0.0095 s−1

Binding / unbinding
Intranuclear diffusion const. DN 3.2 µm2/s
Repressor target site radius σR 0.5 µm
- resulting (diff. ltd.) repressor on-rate kRon 20.1 µm3/s
Standard (strong) repressor off-rate koffs 0.06 s−1

Weak repressor off-rate koffw varied ≥ kR,s
off

Monomer protein radius σM 0.05 µm
- resulting (diff. ltd.) dimerization forward rate kDon 4.0 µm3/s
Dimerization backward rate kDoff 0.062 µm3/s
Internuclear diffusion
Standard internuclear diffusion const. D 1.0 µm2/s
Internuclear lattice distance l 8.5 µm

Table S1. The standard parameters of the simulated model of four
mutually repressing genes prearranged in the “alternating cush-
ions” pattern on a cylindrical lattice of expressing nuclei.
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Figure S9. Reaction network. This schematic shows the set of reactions that affect production and
degradation of a single gap gene species A. The strong repressor of A is denoted by B, the weak interaction
partners by C and D. For each species, X denotes the monomer, X2 the dimer. For easy readability here
we abbreviate: α ≡ kRon = diffusion limited repressor binding rate; σ ≡ koffs = next-nearest neighbor /
strong repressor unbinding rate; ω ≡ koffw = nearest-neighbor / weak repressor unbinding rate; δ ≡ kDon =
dimerization forward rate; ϵ ≡ kDoff = dimerization backward rate. The schematic shows the reactions for the
promoter of species A and its protein products, which we denote by (A||B,C,D), but holds similarly for all
other combinations of regulated and regulating species, (B||A,C,D), (C||A,B,D) and (D||A,B,C).


