
Computerized Medical Imaging and Graphics (2023)

Contents lists available at ScienceDirect

Computerized Medical Imaging and Graphics

journal homepage: http://www.elsevier.com/locate/compmedimag

Deep Reinforcement Learning Framework for Thoracic Diseases Classification via Prior
Knowledge Guidance

Weizhi Niea, Chen Zhanga, Dan Songa,∗, Lina Zhaob, Yunpeng Baie,f, Keliang Xieb,c,d, Anan Liua

aSchool of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
bDepartment of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
cDepartment of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
dTianjin Institute of Anesthesiology, Tianjin 300052, China
eDepartment of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin 300222, China
fClinical school of Thoracic, Tianjin Medical University, Tianjin 300052, China

A R T I C L E I N F O

Article history:
Received 1 May 2013
Received in final form 10 May 2013
Accepted 13 May 2013
Available online 15 May 2013

Communicated by S. Sarkar

2000 MSC: 41A05, 41A10, 65D05,
65D17

Keywords:
Deep Reinforcement Learning,
Medical Image Processing,
Chest X-ray Images,
Thoracic Diseases Classification

A B S T R A C T

The chest X-ray is often utilized for diagnosing common thoracic diseases. In recent
years, many approaches have been proposed to handle the problem of automatic di-
agnosis based on chest X-rays. However, the scarcity of labeled data for related dis-
eases still poses a huge challenge to an accurate diagnosis. In this paper, we focus on
the thorax disease diagnostic problem and propose a novel deep reinforcement learn-
ing framework, which introduces prior knowledge to direct the learning of diagnos-
tic agents and the model parameters can also be continuously updated as the data in-
creases, like a person’s learning process. Especially, 1) prior knowledge can be learned
from the pre-trained model based on old data or other domains’ similar data, which
can effectively reduce the dependence on target domain data, and 2) the framework
of reinforcement learning can make the diagnostic agent as exploratory as a human
being and improve the accuracy of diagnosis through continuous exploration. The
method can also effectively solve the model learning problem in the case of few-shot
data and improve the generalization ability of the model. Finally, our approach’s per-
formance was demonstrated using the well-known NIH ChestX-ray 14 and CheXpert
datasets, and we achieved competitive results. The source code can be found here:
https://github.com/NeaseZ/MARL.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

The chest X-ray (CXR) is one of the most commonly used
clinical examinations in clinical scenarios. Early screening of
many diseases relies on CXR data, such as heart disease, lung
infection, throat examination, etc. This is because CXR data is
easier to obtain and costs less. Traditional diagnosis and treat-
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ment rely heavily on the experience of full-time doctors. Effec-
tive automated diagnosis and treatment technology can greatly
improve diagnosis and treatment efficiency while also assisting
doctors in improving the accuracy of early patient diagnosis and
treatment. However, the sparsity of medical data and the diver-
sity of patients’ clinical outcomes have been major challenges
in the development of automated diagnosis and treatment tech-
nology.

In recent years, many proposed approaches, like Fu et al.
(2021); Abbas et al. (2021) have handled the CXR image di-
agnosis problem as a multi-label classification problem. Their
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Fig. 1. The motivation of our approach: Each diagnosis can be based on
the doctor’s experience which can be seen as the utilization of the doctor’s
prior knowledge. Meanwhile, the diagnosis can also increase or update
the experience of the doctor, which then helps to make a more accurate
diagnosis in the future.

work relies on the large scale of training data and parameter
selection. These approaches are difficult to improve further
because of the high inner similaritySarvamangala and Kulka-
rni (2021) between classes in CXR, their traditional convolu-
tional network-based methods cannot distinguish well. Further-
more, many medical image datasets are difficult and expensive
to achieve on a large scale, so improving data use efficiency
is critical. In recent years, some researchers have focused on
how to achieve high classification accuracy based on the few-
shot learning technique. Cherti.et al.Cherti and Jitsev (2021)
combined pre-training and transfer learning to large-scale nat-
ural and medical images datasets and verify the effectiveness
of their method by some experiments. Singh.et al.Singh et al.
(2021) formulated a few-shot learning problem and presented
a meta-learning-based model, which can adapt to rare disease
classes with the availability of a few images. Furthermore,
some methods consider utilizing external knowledge as aux-
iliary information to improve the performance of the model.
Chenet al.Chen et al. (2022) proposed a multi-label annotation
framework based on a external medical knowledge graph and
model relevant lesion labels more comprehensively, but the pro-
fessional medical knowledge graph is always hard to obtain and
difficult to generalize to other tasks.

1.1. Motivation

Based on the above analysis, we hope the automatic diagno-
sis model could consider the context of a medical image and
also utilize some additional prior knowledge like that of a pro-
fessor doctor. Meanwhile, we also hope the automatic diagno-
sis model can be updated like the learning process of a doctor
based on the increase in clinic data, like Fig.1. Thus, the learn-
ing process can be divided into two parts: 1) Obtain experience
and update: the experience can be obtained from the other do-
main or the target domain data. The experience can be seen
as the pre-trained module’s output. 2) Make diagnosis: The
module makes the final diagnosis based on the current medical
image and also according to the prior knowledge learned from
old data or other domain’s data.

Here, each diagnosis is influenced by the previous experience
(previous module’s parameter), and each diagnosis can also in-
crease or update the experience, which is very similar to the

human’s knowledge growing process. Obviously, this process
can be seen as a Markov decision process (MDP). Thus, it is
natural that the reinforcement learning (RL) framework can be
used to represent or estimate this process. However, we also
need to solve two questions below:

• How to learn and save the prior knowledge based on lim-
ited image data. The prior knowledge is a very abstract
theory, so we need to define the format of the prior knowl-
edge, which should be represented and utilized for help-
ing to make the diagnosis, then ease the problem of catas-
trophic forgetting.

• How to utilize the prior knowledge to guide the training of
the diagnosis model and inject the knowledge to the model.
We should consider fusing the prior knowledge into the
diagnosis model and make the right diagnosis.

In this paper, we propose a novel multi-agent reinforcement
learning (MARL) framework to solve the common thorax med-
ical image classification problem. We design multiple prior
knowledge agents to obtain the prior knowledge and the diag-
nostic agent to make the final diagnosis based on the actions
of prior knowledge agents. The incremental data in the frame-
work will also be used to update the prior knowledge learning
and extraction module, which can be learned from source or
target domain data and output in the same visual and embed-
ding formats as the prior knowledge. The diagnostic agent can
be seen as the main agent in our proposed framework. It will
be used to handle the diagnostic problem of thoracic diseases
based on prior knowledge and input medical images.

We introduce three agents in this work. 1) Semantic agent:
This agent is used to provide an initial embedding for classifi-
cation and to guide the learning of parameters. 2) Visual agent:
This agent is used to get the coarse region of interest informa-
tion in the image. We hope that it will be able to provide visual
information as a prior knowledge format. 3) Diagnostic agent:
This agent is used to make the final diagnosis by combining the
visual information and the semantic embedding. Meanwhile,
the reinforcement learning framework can make the action se-
lection process more exploratory, so when our proposed frame-
work faces a tough case, i.e., an easily-confused case, it could
make a bolder diagnostic choice and may perform better. The
performance of our technique is demonstrated using the famous
NIH ChestX-ray14 and CheXpert datasets.

1.2. Contribution
The key contributions of our work are followed as:

• We propose a novel multi-agent reinforcement learning
framework that can address the abnormality classification
problem. This universal framework can introduce the prior
knowledge to guide the diagnostic agent to improve the fi-
nal performance of diagnosis;

• We propose a uniform multi-information fusion module
based on a transformer to solve the correlation among
agents. We also propose a exploration-added model to
handle the multi-label classification problem and high
inter-class similarity problem;
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• We validated the effectiveness of our method based on
some popular datasets. Several current efficient methods
are used for comparison, the final experimental findings
show that our method is superior;

The remainder of our paper is outlined below. In Section
2, we present the related work. The proposed solution is pre-
sented in Section 3. In Section 4, we present key experiments.
This section also includes a summary of the experimental re-
sults, and we will demonstrate the effectiveness of our approach
by using it to solve a variety of thorax diseases classification
problems. Implementation details are in Section 4.3. Finally, in
Section 5, we draw a conclusion for this work and outline future
work possibilities. The supplementary materials are attached.

2. Related Works

2.1. CXR Image Classification

The release of some large-scale CXR datasets with more than
one hundred thousand images, like NIH ChestX-ray14Wang
et al. (2017) drives the development of data hungry deep learn-
ing for the task of CXR image analysis. Besides the CXR
dataset we mentioned above, CheXpertIrvin et al. (2019) is an-
other large-scale chest radiograph dataset that is widely used in
CXR image processing. Rocha et al.Rocha et al. (2022) trained
a spatial transformer network on CheXpert, without the need
for localization labels. Liu et al.Liu et al. (2019) argued that
traditional deep learning approaches dealing with the presence
of potentially misaligned or unrelated objects throughout the
CXR image may lead to unnecessary noise, and the restriction
of image resolution may lead to the loss of image details so
it is difficult to detect the pathology with small lesion area, so
they proposed a framework trained with high resolution images
and utilizing domain knowledge at the same time. Saleem et
al.Saleem et al. (2021) used a transfer learning technique to de-
tect tuberculosis and achieved a decent result. Zhu et al.Zhu
et al. (2022) argued that existing deep networks typically use the
global mean pooling layer to generate features for classifiers,
but the relative size, absolute size, and location of occurrence
may limit classification performance. So they proposed a pixel-
wise classification and attention network, which can ameliorate
the above problems. Minaee et al.Minaee et al. (2020) used dif-
ferent types of CNN-based backbones to detecte lung lesions in
COVID-19 patients, while Park et al.Park et al. (2022) utilized
transformer-based method to deal with similar problems. Ke et
al.Ke et al. (2021) investigated different ImageNetDeng et al.
(2009) pretrained architectures’ performance and parameter ef-
ficiency on CheXpert. Paul et al.Paul et al. (2021) proposed
a few-shot CXR diagnostic method and introduced a saliency-
based classifier to extract features from the output of the CNN
and then classify. In this paper, to solve the CXR image classi-
fication task, we hope to propose a model as simple as possible
without degrading the classification performance.

2.2. Multi-label Classification

Multi-label classification is a relatively more challenging
task compared with single-label classification, in which each

sample may have more than one associated label. Recently,
multi-label classification has attracted much research attention.
Zhang et al.Zhang et al. (2020) proposed a unified deep learning
framework for the scenario of multi-label unknown image clas-
sification, whose results are comparable to most relevant meth-
ods. Class imbalance problem is the main challenge of multi-
label classification, which means partly categories occur more
frequently in the data space than othersTarekegn et al. (2021) ,
Jain et al.Jain et al. (2017) noticed that category imbalance is
common in clinic diagnosis and classifier tends to neglect the
important impact of the minority category, therefore they pro-
posed an algorithm to help biased classifier to perform well on
minority class.

How to model relations between labels is another challenge
in the multi-label classification task, as natural images are in-
trinsically and frequently relevant and co-occurrence. The au-
thor, inSun and Lee (2017) proposed a novel framework to ex-
plore the unseen relationship between labels and address the
class imbalance problem at the same time. Wu et al.Wu et al.
(2018) mentioned a cost-sensitive model to tackle the issue
that traditional multi-label classification tasks usually ignore
the label correlations by using binary relevanceBoutell et al.
(2004) to find associations between labels. The cost-sensitive
loss in the model deals with the label imbalance problem at the
same time. Chen et al.Chen et al. (2019b) considered the co-
occurrence of different objects in different images and proposed
a framework to model the label relationship based on Graph
Convolution Network (GCN)Kipf and Welling (2016).

2.3. Transformer In Vision Tasks

TransformerVaswani et al. (2017) was initially applied in nat-
ural language processing(NLP) tasks, Devlin et al.Devlin et al.
(2018) proposed a model named BERT based on Transformer
and obtained a prominent progress on 11 NLP tasks. Kant et
al.Kant et al. (2018) proposed a model to classify the multi-
emotion sentiment by training a Transformer encoder-decoder
architecture, Vila et al.Vila et al. (2018) proposed an attention-
based end-to-end Transformer model to translate Spanish to
English and performed well. Recently, the huge application
prospect of Transformer has been developed for computer vi-
sion tasks. Dosovitskiy et al.Dosovitskiy et al. (2020) proposed
the Vision Transformer (ViT), which is directly applied to im-
age patches to classify the images. Liu et al.Liu et al. (2021b)
proposed a novel hierarchical vision Transformer model named
Swin Transformer, which could be used as an alternative op-
tion when choosing a computer vision task’s backbone. Carion
et al.Carion et al. (2020) proposed an end-to-end object detec-
tion model named DETR based on Transformer and achieve a
prominent detection result.

2.4. Reinforcement Learning for Medical Image Processing

Reinforcement Learning simply means that agents choose the
appropriate behavior in order to maximize the reward in a spe-
cific dynamic environment which can naturally be applied in
games such as atariMnih et al. (2013). Besides, reinforcement
learning for medical image processing has developed rapidly
in recent years, Dou et al.Dou et al. (2019) proposed a RL
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based framework to deal with the fetal brain tissue location task,
Liao et al.Liao et al. (2020) proposed a relative model with
cross-entropy gain based reward to realise 3D medical image
segmentation task by treating each voxel as an agent, making
it a MARL problem naturally. Considered that the process-
ing of medical images might require large number of labeled
images, Stember et al.Stember and Shalu (2020) proposed a
RL based method by training a deep Q network(DQN)Mnih
et al. (2013) to detect brain lesions on MRI. Ghesu et al.Ghesu
et al. (2016) proposed an agent learning model based on RL for
anatomical landmark detection in medical images by consider-
ing image parsing as a policy encoding problem. Hou et al.Hou
et al. (2021) proposed a CXR report-generation framework us-
ing cascaded encoders, decoders, and a reward module. The
proposed method combined adversarial training with RL and
considered both results and literature fluency. In order to over-
come the obstacles of traditional machine learning methods in
dealing with anatomy detection, such as the use of computa-
tionally sub-optimal search schemes, Ghesu et al.Ghesu et al.
(2017) proposed a RL-based framework combined with multi-
scale analysis that considered the 3D detection task as a behav-
ior learning task, training a well-designed agent to detect the
abnormal area in CT images.

3. Our Approach

In this section, we first introduce the problem definition and
illustrate the details of our approach in the next subsections.

3.1. Problem Definition
In this study, the diagnostic process can be seen as MDP then

handled using the RL framework. In each stage of diagnosis,
the doctor should make an accurate diagnosis based on the med-
ical image and the doctor’s prior knowledge like Fig.1. Based
on this analysis, we apply the multi-agent reinforcement learn-
ing framework, which includes multiple prior agents and one
main agent. The framework is shown in Fig.2. The prior agents
are used to extract the prior knowledge and the main agent make
the final diagnosis based on prior agents’ actions. The details
of definitions are followed as:

• Agent: We propose a prior knowledge agent set, Qp =

{Q1
p,Q

2
p, ...,Q

n
p}. They can provide different formats of

prior knowledge to help the main agent make an accurate
diagnosis. The main agent is used to judge the disease cat-
egories; Qd is defined as the diagnostic agent (main agent).
In this work, we define two prior knowledge agents, Qs

p
and Qv

p, which represent semantic agent and visual agent,
respectively. We will detail these agents in the next few
subsections.

• Action: According to prior agents Qv
p and Qs

p, we define
the av

p and as
p as their action respectively. For the main

agent, we define ad as the final diagnostic action selection.
The visual agent Qv

p is utilized to locate the area of disease
in the medical image I. The action av

p is the coarse se-
mantic segmentation image. The actions as

p is the prelim-
inary classification representation, which can be obtained
by pre-trained modal.

• Environment: The environment E provides the influence
based on the action of agents, the influence will also be
used to update the visual agent and the semantic agent.
The prior knowledge agents Qp utilize the input query
CXR images I and its associated label as its environment,
the label embeddings inside Qd are initialized by the prior
knowledge of Qp. Moreover, when we get the TD target, it
also interacts with the prior agents and diagnostic agents,
so the environment is dynamically interactive in our set-
ting.

• State: The state is the feature vector s of input CXR image
in each stage. Here, we apply the classic CNN model to
extract s, which is trained by old data or other domain’s
similar data.

• Reward: We define the rd as the reward of main agent
Qd and rp

i as the reward of prior agent Qi
p. Discount re-

turn is discount accumulative reward. The discount return
of main agent is Ut=

∑∞
j=0 γ

j · rd
t+ j, where γ∈ [0, 1) is the

discount factor, t is the index of training episode. The dis-
count return of prior agent is U pi

t =
∑∞

j=0 γ
j ·rpi

t+ j, For Qd and
Qp, we define that when a specific pathology is correctly
classified, rd and rq

i equal to 1 else −1.

Based on these definitions, our goal is to seek a target
Q∗d(st, av

t , a
s
t ) function, which can provide the final accurate di-

agnosis, where av
t and as

t are the action of prior agents in time t.
We also need to optimize the agent Q∗v(st) and Q∗s(st). Thus, the
goal of RL is to maximize the expected cumulative reward:

maxws,wv,wdE[Ut |st, av
t , a

s
t ] +

n∑
i=0

E[U pi
t |st], (1)

where wd denotes parameters of Qd function, ws and wv denote
the parameters of Qp, t denotes the index of learning episode,
U denotes the expectation of reward. n denotes the number of
prior agents. In this paper, n = 2.

In our framework, we extract the feature as the state st when
we input the medical image I. Then, the prior agents Qp can
select a set of action av and as. The main agent Qd outputs the
action at based on st, av and as. Here, we use vanilla temporal
difference(TD) algorithmWatkins (1989) to train the DQN and
define the loss LT D for the RL part based on the one-step TD
error.

Based on feedback of the environment, we can expect achiev-
ing the related true label. These label can also be used to fine-
tune the prior agents via the classic cross-entropy loss. The
optimization function 1 can be rewritten as:

maxws,wv,wdE[Ut |st, av
t , a

s
t ] +

n∑
i=0

E[U pi
t |st]+

E[yt |st, av
t , a

s
t ] +

n∑
i=0

E[yt |st],

(2)

where yt is the true label of input image I. Here, E[Ut |st, av
t , a

s
t ]

and E[U pi
t |st] can apply the TD loss to optimization the model

parameters. E[yt |st, av
t , a

s
t ] and E[yt |st] can apply the classic
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Fig. 2. The framework of our approach. The input is medical image I. This framework includes two prior knowledge agents Qv
prior , Qs

prior and a diagnostic
agent Qd . The related actions are av

prior , as
prior and ad . The environment provides the ground truth yt . Given a quadruple notation (st , at , rt , st+1), the

prediction value of DQN is q̂t , TD target is ŷt , then update the parameters in DQN via TD algorithm and loss function.

cross-entropy loss to solve the optimization problem. Thus, the
final object can be written as:

L =

n∑
i=0

Lp +

n∑
i=0

L
p
T D +LT D +Ld, (3)

where Lp and Ld denotes the cross-entropy losses of prior
agents and main agent, Lp

T D denotes the TD loss of prior agent
and LT D denotes the TD loss of main agents. n denotes the
number of prior agents. We will details these losses in the later
implementation stage.

Until now, we design the process of model learning based
on the RL framework. However, in each diagnostic case, the
model only selects the action with the highest value as the fi-
nal diagnosis. This condition loses the human ability to ex-
plore in some tough cases. To handle this problem and make
the diagnostic model smarter and more daring, we applied the
ε-greedyWatkins (1989) algorithm to give our model the abil-
ity to explore. The key idea of this policy is with the proba-
bility ε to explore while with the probability (1-ε) to use the
learned knowledge, which ensures that non-optimal cases can
be chosen. Well in this setting, we want to explore the non-
optimal actions as our choice and make full use of our learned
prior knowledge. In order to deal with the problem of the
exploration-exploitation dilemma, we choose ε-greedy policy
as our behavior policy to control the selection of actions:

• 1 − ε: When the probability is 1 − ε, we chose the action
with the highest score as the diagnostic result. Note that
our target problem is a multi-label classification problem,
so on the premise that the classification threshold is satis-
fied, each agent may choose multiple actions.

• ε: When the probability is ε, we expect the agent can ex-
plore the different diagnosis like human. However, we
do not allow this agent to randomly select the actions as
the diagnosis results, which also should follow some prior
knowledge. Thus, we delete the action with the highest
score, and then select the remainder of the highest scores
from the remaining actions as diagnostic results.

Apparently in the whole training process, ε is decreasing
gradually, exploration at first and exploitation after learning

some useful information. In the training stage, we choose ε =
max{εmin, 1 −

1−εmin∗step
total }. ε equals to 0 when testing the model.

We will detail some key elements in our proposed framework
in the next few subsections.

3.2. Prior Agent
3.2.1. Semantic Agent

The semantic agent (Qs
p) is used to extract and provide prior

knowledge as the semantic format from the query CXR image
I. We design the semantic information extraction network based
on the ResNet structureHe et al. (2016). Here, we construct the
2D network with ResNet-50 and 3 additional convolutional lay-
ers with different kernel sizes, which can effectively extract the
detail information from different scale of medical image. The
action of this agent can be seen as the preliminary delineation of
some pathologies. The initialized parameter of this agent can be
learned by the training data, which can also be learned by other
cross-domain data or other large-scale data as the prior knowl-
edge (experience). We will discuss its different performance in
experiment section.

By the semantic agent, we can obtain the output features f i
s

∈ Rd×C , which represents the extracted feature and mainly con-
tains information about ith category from medical image. We
employ the classifier to process each f i

s into probability value
pi

s, which represents the classification result for f i
s . We take pi

s
as the final confidence of ith category. The output is composed
of all categories confidences, which is denoted as pt ∈ RC . The
loss function Lp can be written:

Lp = −

C∑
i=1

ti
j log(pi

t), (4)

where T j = {t1
j , t

2
j , ...., t

C
j } represents the label of medical image

I j, ti
j is a binary parameter that if the current CXR image I j

belongs to category i, ti
j = 1, otherwise ti

j = 0. In the test phase,
we compare each value in pt, and take the category with highest
value as the classification result.

3.2.2. Visual Agent
This agent is used to extract visual attention area of the query

medical image I as the visual prior knowledge. The action of
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Fig. 3. Foreground Attention Block (FAB). We use the cascaded structure
of channel- and position-wise attention to produce the foreground atten-
tion.

Fig. 4. The structure of the diagnostic agent.

Qv
p is the foreground image feature av

p. The structure of this
agent is shown in Fig.3, visual agent (Qv

p) is used to provide
prior knowledge as visual format. This structure is inspired by
the previous work Ouyang et al. (2020). The foreground atten-
tion block(FAB) applies a self-attention mechanism to learn and
emphasize the coarse foreground attention maps. The channel-
wise attention module is adapted from squeeze-and-excitation
(SE) blockHu et al. (2018) which can focus on helpful channels,
and then the position-wise attention module can use channel-
weighted vectors to give a preliminary and sketchy estimation
of the areas. Note that the visual agent is also trained via the
loss function (4) and the action of the visual agent is the coarse
ROI of an input CXR image.

3.3. Diagnostic Agent

This agent can be seen as the final classification agent. The
classic transformer structure is applied in this agent. The goal
of transformer is used to fuse the output feature of Qs

p and Qv
p.

Then, update the fuse feature based on the inner label embed-
dingLiu et al. (2021a) to achieve the final image feature repre-
sentation. The detail of architecture is shown in Fig.4, which
is similar to the standard Transformer decoder structure with-
out self-attention module. Each Transformer decoder layer l
updates the fused feature Fl−1 from the output of its previous
layers based on the label embedding Ll and spacial feature as
follows:

ql = Ll + pLl , kl = f + p f , vl = f ,

Ḟl = MultiHead(ql, kl, vl) + Ll−1,

Fl = FFN(LN(Ḟl)) + Ḟl,

(5)

where l is the index of transformer layer, f is the image feature
from prior knowledge agent, p ∈ RC×d denotes the learnable
position encoding. In the first layer, the input label embedding
is the initialized Q0 ∈ RC×d, where C is number of categories
and d is the dimension of decoder. The output is the fused fea-
ture Fl ∈RC×d, which is actually ad and represents the extracted
feature for C categories at the last layer.

Transformer decoder have a built-in cross-attention mecha-
nism, we find common multi-label classification losses work
well in dealing with CXR images classification tasks. But as we
mentioned above about the data distribution imbalance prob-
lem, we want to deal with the label imbalance problem fur-
ther via choosing a proper loss, then we choose an efficient
version of focal lossLiu et al. (2021a), where we can choose
different γ values for positive and negative values. Given an
input CXR images I, we can predict its category probabilities
p = [p1, . . . , pC]T ∈ RC using our framework. We leverage the
following asymmetric focal lossRidnik et al. (2021) to imple-
ment Ldiagnostic(yt | fcls(ad)), the second part need to minimize in
the objective function (3) to calculate the loss for each training
CXR image I:

Ld =
1
C

C∑
c=1

(1 − pc)γ+ log(pc), yc = 1,
(pc)γ− log(1 − pc), yc = 0,

(6)

where yc equals to 0 when the processed CXR image has label c
and equals to 1 otherwise. γ+ is set to 0 and γ- is set to 1 in our
experiment. When completely training all the CXR images in
our chosen training data set, we average (6) to calculate the loss
to optimize the module. Furthermore, as we define the Qd as the
main agent and the DQN in our framework, we also optimize
its parameters via the TD algorithm:

LT D =
1
2

[Qd(st, as, av,wd
t ) − ŷt]2, (7)

L
p
T D =

1
2

[Qp(st,w
p
t ) − ŷp

t ]2, (8)

where, wd and wp are the network parameter of main agent and
prior agent. ŷt = rt + γ · max Qd(st+1, a; wt−1) is the TD tar-
get. ŷp

t has the same equation. At this point, the details of each
part of the total loss function (3) have been described. Simi-
lar to the work in Mnih et al. (2013), we store the experiences
et = (st, at, rt, st+1) ∈ D that agents learned at each time-step by
experience reply, then sample the experiences from reply buffer
by Q-learning updates during the inner loop of, after that agents
can choose an action based on the ε-greedy policy. The full al-
gorithm is presented in Algorithm 1.

4. Experiment

4.1. Data Sets

We evaluate our method on the publicly released NIH
ChestX-ray14 and CheXpert datasets. NIH ChestX-ray14 con-
sists of 112,120 frontal-view X-ray images of 30,805 unique
patients, and we report the 14 thorax abnormal diseases clas-
sification performance on the testing set. CheXpert is another
large-scale dataset for chest X-rays released by Stanford Uni-
versity. It contains 224,316 chest radio graphs of 65,240 unique
patients. 14 observations are labeled in radiology reports, cap-
turing uncertainties inherent in radiography interpretation. Part
of the CXR images is a frontal view, and the rest of the data set
is a lateral view.
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Algorithm 1 MARL with DQN
Require: Image data I and corresponding ground truth yt, ini-

tialize learnable parameters ws of semantic agent, wv of vi-
sual agent, wd of diagnostic agent with random weights

Ensure: Initialize reply memoryD to capacity N
1: Prior knowledge agents select actions and update parame-

ters ws and wv by the image data I and its related ground
truth yt based on the loss function (4) and (8)

2: for episode=1, M do
3: Initialise s
4: for t = 1,T do
5: Diagnostic agent select an action ad via ε-greedy
6: Execute action ad and observe reward rd

7: Set st+1 d=st d

8: Store (st d,at d,rt d,st+1 d) as a transition inD
9: Sample random minibatch of transitions

(s j d,a j d,r j d,s j+1 d) fromD
10: Get ŷ j d base on TD target
11: Update wd by (7) and (6)
12: Fine-tune ws and wv

end for
end for
Return: Updated DQN parameters w{s,v,q} via (3)

4.2. Evaluation Metrics

In our study, we chose the area under the receiver operat-
ing characteristic (ROC) curve, namely the AUC to evaluate the
performance of the abnormal thorax disease classification. We
conduct some experiments to test our proposed model’s per-
formance compared with the previous state-of-the-art (SOTA)
framework. The AUC score of each pathology and the average
AUC score over all pathologies are reported, respectively.

4.3. Implementation Details

We use PyTorch for implementation. We adopt vanilla
Resnet-50He et al. (2016) as our backbone. Our experiment
is operated by using NVIDIA GeForce RTX 3090 with 24GB
memory. For training, we perform data augmentation by us-
ing RandAugmentCubuk et al. (2020) and normalizing CXR
images with zero mean and one std rather than mostly used Im-
ageNetDeng et al. (2009) pretrained images’ mean and std ac-
cording to the nature of CXR images. We use the AdamKingma
and Ba (2014) optimizer with True-weight-decayLoshchilov
and Hutter (2017)1e-2 and maximal learning rate is 1e-3, and
we choose initial εmin equals to 0.2 during the training step. At
the same time, we resize the original images to and 512 × 512
and randomly horizontal flipping.

4.4. Comparison with State-of-the-art Methods

4.4.1. NIH ChestX-ray14
We first compared with some SOTA methods on the NIH

ChestX-ray14 dataset. The AUC score of each pathology is
summarized in Table.1. The average AUC score of our baseline
arrives at 0.866 across the 14 thoracic diseases. It is competitive
with or better than the previous works. In this experiment, we

do not apply additional data to train the prior agents in order to
make sure the comparison experiment is fair.

From these results, we have the following observations:

• The results obtained by our method are consistent with
the optimal algorithms for “Cardiomegaly”, “Infiltration”,
“Emphysema”, “Pneumonia” and “Hernia”. The last two
pathologies are the least frequent of all pathologies, they
account for about only 1.1% percent of the total data. All
of the compared methods perform poorly in these two
pathologies, which can be attributed to the long tail dis-
tribution problem. In order to solve above problem, our
method guides the multi-information for the final pathol-
ogy representation with the help of prior agents. The goal
of our approach is the pursuit of optimal overall agents. It
demonstrates the effectiveness of multi-agent framework
indirectly.

• The four diseases, “Cardiomegaly”, “Emphysema”,
“Edema”, and “Fibrosis” account for only 6.6% of total
pathologies, but we achieve SOTA AUC compared with
other previous work. The reason is that we utilize the ex-
ploratory part of our MARL framework to give our model
the opportunity to try some more reasonable choices, then
solve the long tail distribution problem effectively. Mean-
while, the model of prior knowledge can provide effective
auxiliary information and additional experience. Other
comparable methods mostly rely on the quality of train-
ing data, but when they train with fewer samples, they are
often powerless.

4.4.2. CheXpert
We also report the performance of our proposed MARL

framework on the CheXpert data set in this section. We need to
note that the data structure in CheXpert is different from NIH
ChestX-ray14 data set, so we based on the baseline workIrvin
et al. (2019), map the uncertain labels to 1 as it works well
and make the proposed model outputs the maximum probabil-
ity of the observations across the views. Meanwhile, based on
the baseline, we also choose to evaluate 5 classes which called
competition tasks, which selected according to clinical impor-
tance and prevalence. Our results are shown in Table.2 and we
adopt different backbones. Same as the experiment on NIH
ChestX-ray14, when Resnet is used as the backbone we got the
better results. We present the performance obtained by a sin-
gle model rather than the performance of Irvin et al.Irvin et al.
(2019), which is from the ensemble of 30 models. In our pro-
posed framework, the average AUC scores over five pathologies
achieve 0.925.

In this data set, when using our framework and the uncertain
labels are set to “ones”, we get the mean AUC of 0.925, while
when using our framework and the uncertain labels are set to
“zeros”, the AUC of each pathology is 0.831, 0.877, 0.933,
0.902, 0.938, respectively, the average AUC score is 0.8962,
which surpasses the corresponding baseline “U-Zeros”. Here,
we notice that our model shows its superiority for some patholo-
gies except “Edema”, the performance of “Cardiomegaly” and
“Atelectasis” are significantly improved (0.832 vs 0.890, 0.858
vs 0.922), which improved 6.97% and 7.46%, respectively.
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Table 1. Comparation Of AUC Scores with previous SOTA Works on the official split of NIH ChestX-ray14. We report the AUC with 95 % confidence
interval (CI) of our method.The best performance of each pathology is shown in bold.

Abnormality Wang et al.
Wang et al. (2017)

Xi et al.
Ouyang et al. (2020)

ImageGCN
Mao et al. (2022)

DGFN
Gong et al. (2021) Ours

Atelectasis 0.70 0.77 0.80 0.82 0.83 (0.82, 0.84)

Cardiomegaly 0.81 0.87 0.89 0.93 0.93 (0.91, 0.94)

Effusion 0.76 0.83 0.87 0.88 0.90 (0.89, 0.92)

Infiltration 0.66 0.71 0.70 0.75 0.75 (0.74, 0.76)

Mass 0.69 0.83 0.84 0.88 0.89 (0.88, 0.91)

Nodule 0.67 0.79 0.77 0.79 0.81 (0.80, 0.82)

Pneumonia 0.66 0.82 0.72 0.78 0.82 (0.81, 0.83)

Pneumothorax 0.80 0.88 0.90 0.89 0.91 (0.90, 0.93)

Consolidation 0.70 0.74 0.80 0.81 0.82 (0.81, 0.85)

Edema 0.81 0.84 0.88 0.89 0.91 (0.90, 0.92)

Emphysema 0.83 0.94 0.92 0.94 0.94 (0.94, 0.95)

Fibrosis 0.79 0.83 0.83 0.82 0.85 (0.84, 0.86)

Pleural Thickening 0.68 0.79 0.79 0.81 0.83 (0.81, 0.84)

Hernia 0.87 0.91 0.94 0.92 0.94 (0.93, 0.95)

Mean AUC 0.745 0.819 0.832 0.850 0.866 (0.859, 0.873)

Table 2. Comparison of AUC scores with different models on CheXpert validation set. Our approach shows the results under different backbone, DenseNet
and ResNet.

Abnormality U-Zeros
Irvin et al. (2019)

U-Ones
Irvin et al. (2019)

CT+LSR
Pham et al. (2021)

Xi et al.
Ouyang et al. (2020)

Ours
(DenseNet)

Ours
(ResNet)

Atelectasis 0.811 0.858 0.825 0.920 0.916 0.922
Cardiomegaly 0.840 0.832 0.855 0.886 0.879 0.890
Consolidation 0.932 0.899 0.937 0.907 0.936 0.942

Edema 0.929 0.941 0.930 0.937 0.934 0.932
Pleural Effusion 0.931 0.934 0.923 0.933 0.935 0.938

Mean AUC 0.889 0.893 0.894 0.917 0.920 0.925

4.5. Few-shot and Data-efficiency Problem

We conduct an experiment on the NIH ChestX-ray14 data set
to demonstrate that our proposed MARL framework can handle
the data-efficient and few-shot learning problem.

In terms of the few-shot learning problem, we split the NIH
dataset, in which 9 types of pathologies with about 1,100 sam-
ples are chosen as auxiliary set and the remaining 5 types of
samples are taken as the test set. We perform 5-way 1-shot, 5-
way 5-shot, and 5-way 10-shot classification tasks on the NIH
data set. Take 5-way 5-shot as an example: there are 5 different
pathology categories with 5 support images and 10 query im-
ages per category, i.e. 5×5 + 10×5 = 75 images in each episode.
We pre-trained the prior agent using the CheXpert dataset. The
two datasets do not have the same category. As a result, we can
only guarantee dimensionality consistency in the initial guided
learning. Naturally, we then apply fine-tuning at the next time.
To divide the query images into the closest category, we use
a Euclidean and Cosine distance metric, as well as a softmax

function.
Compared with other methods using few-shot learning Jin

et al. (2021); Jiang et al. (2022); Finn et al. (2017); Gordon
et al. (2018) as shown in Table.3, we achieve the acc of 44.26,
49.63, and 52.64 in the 1, 5, and 10-shot scenarios. Experimen-
tal results prove that the prior knowledge learning module and
the reinforcement learning setting in this framework can help to
solve the few-shot learning problem, and the exploration abil-
ity of our method can fit the nature of humans, which helps to
improve model performance. At the same time, when we train
the model with the same scale of data as other few-shot learning
methods, we can also achieve better classification performance.

We also modify the number of training data to further ob-
serve the impact of the number of training data on model per-
formance. The related experimental results are shown in Fig.5,
at the same time, we reproduce two other works Xiao et al.
(2023); Seyyed-Kalantari et al. (2020) to compare with our pro-
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Fig. 5. The process of prior knowledge accumulation and illustration of
data-efficient. The ordinate is AUC scores while the abscissa means the
percentage of total data volume of CXR images a doctor has learned. We
denote CheXNet and M-MAE as the method in Seyyed-Kalantari et al.
(2020); Xiao et al. (2023) respectively.

Table 3. The 3-way, 1, 5, 10-shot classification accuracy(%). The best re-
sults are highlighted.

FSL Methods 1-shot 5-shot 10-shot
MAMLFinn et al. (2017) 39.96 46.83 48.69
VersaGordon et al. (2018) 37.94 45.81 47.13

M-LearnerJiang et al. (2022) 43.37 47.95 50.58
Ours 44.26 49.63 52.64

posed method on the matter of data efficient. From these results,
we can find that we train the diagnostic agent with only about
80% of CXR images, the mean AUC of the framework is com-
parative with previous SOTA work. Besides, we can find that
when selecting the same amount of data for training, our results
always outperform than the other two methods. We think the
reason is that the RL framework allows each training to have
more exploration capabilities, allowing the model to perform
reasoning like a person, thereby amplifying the role of training
data.

4.6. Ablation Study

In this section, we conduct the ablation study to prove the
superiority of our proposed MARL thorax diseases classifica-
tion framework. We run the entire ablation experiment on the
NIH ChestX-ray14 data set to demonstrate the significance of
each agent and the MARL setting. The related experiments
are shown in Table.4. Note that only model 8 remove the RL-
related settings. “+” represents the framework using that ele-
ment, while “-” means the framework removing the element.
Model 9 which contains three “+” is our proposed integrated
MARL framework, while Model 8 is a model based on Model
9 but removes all the MARL-related settings. We can conclude
that the prior knowledge extraction module of our proposed
framework is important to help the diagnostic agent make a de-
cision. We can also confirm the diagnostic agent is good at

decoupling and fusing prior knowledge from the visual and se-
mantic agents. Furthermore, the RL-related setting is key to
making a more accurate diagnosis.

Table 4. Ablation study. Note that model 8 removes the reinforcement
learning settings, compared with model 9.

Model Visual
Agent

Semantic
Agent

Diagnostic
Agent AUC

1 - + + 0.862
2 - - + 0.856
3 - - - 0.839
4 - + - 0.850
5 + + - 0.838
6 + - + 0.861
7 + - - 0.841
8 + + + 0.837
9 + + + 0.866

Based on this setting, we can achieve the following observa-
tions:

• The visual agent is the only used part in model 7, and we
can find the result is just a little higher than the worst in
model 3, which is easy to understand. If none of the com-
ponents are used, the whole structure is totally not inte-
grated into our proposed model 9. In the case of model
7, we only focus on the foreground information of the in-
put CXR images and ignore the detailed information under
the CXR images, thus the results are not good. But we can
find that the result is still better than part of the previous
work, so the result still demonstrates the performance of
the visual agent.

• The semantic agent brings some performance improve-
ments according to model 5, 7 and 1, 2. The results show
that a strong spatial feature extractor is important and can
get detailed information about the features of CXR images.
According to the results of models 4, 5, and 7, we can find
that when we use both the visual agent and the semantic
agent, the model’s performance is worse than the model
using only the semantic agent. It means the foreground at-
tention block introduces some redundant information and
then impairs the final classification results. Furthermore,
we can see that the model with only a semantic agent out-
performs some previous SOTA works because it validated
the semantic agent’s validity.

• According to the results of models 6 and 7, the diagnostic
(main) agent takes advantage of the transformer decoder
structure and achieves a significant improvement over the
visual and semantic modules. Compared with the other
models, model 9 achieves a new state-of-the-art AUC of
0.866, which represents a 2% improvement and is better
than almost all of the previous works. In this case, the prior
agent, trained with all training data, is crucial to the final
diagnostic result. That seems a little unfair. In order to
reduce this interference, we randomly initialized the prior
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agent and updated it with the new data. It also achieves the
mean AUC of 0.856 and also better than all of the other
baseline models.

• The proposed MARL framework is superior to the tradi-
tional deep learning framework in Model 8. In order to
demonstrate the performance of the MARL framework,
we introduce Model 8, which is the model in which we
remove the multi-agent reinforcement learning related set-
tings such as action, the temporal difference algorithm,
and so on. It means that we only applied the Lp and Ld

losses to optimize the model’s parameters. It achieves
an AUC of 0.837, which is about 3% lower than the in-
tegrated proposed model 9. This result demonstrates the
effectiveness of the RL mechanism in our approach; when
we remove it, the model 8 cannot benefit from the interac-
tion and exploration mechanisms in reinforcement learn-
ing. Besides, the results in model 8 is still competitively
compared to previous methods, it also proves the rational-
ity of our proposed model structure.

In general, our proposed framework includes all modules,
which gives us the best mean AUC of 0.866. The correspond-
ing experiments and analyses demonstrate the performance of
these modules.

4.7. Prior Knowledge from Other Domain

In this paper, we introduce the prior knowledge information
to guide the final diagnosis. The prior agent can be seen as the
Large-scale pre-trained models (PTMs). If this prior knowledge
comes from data in other domains, will it have new effects on
the main agent? This question is somewhat similar. If we find
an orthopedic doctor to see a chest disease, will the orthopedic
experience play a positive role? In order to explore this prob-
lem, we applied the other data set to initialize the parameters of
the visual agent and the semantic agent. Then, we trained the
main agent and fine-tuned the prior agents based on the NIH
ChestX-ray14 data set.

The related experimental results are shown in Fig.6. “NIH”
means that we only use the NIH training data to initialize the
parameters of agents; “NIH-” means that we remove the prior
agents and only apply the main agent to make the final diagno-
sis. “PASCAL+NIH” means that we applied PASCAL data to
train prior agents and NIH data to fine-tune all agents. “CheX-
pert+NIH” means that we applied CheXpert data to train prior
agents. We can achieve the following observations:

• The prior agents can speed up the training of the main
agent compared with that of “NIH-”. “NIH-” achieved the
worst performance. The other three methods introduced
the prior agent. We also find that “CheXpert+NIH” has
the fastest training speed, followed by “PASCAL+NIH”,
and “NIH” is the worst. “CheXpert+NIH” and “PAS-
CAL+NIH” applied the CHeXpert and Pascal data to in-
tilize the parameters of prior agents. This means that the
main agent uses more data, regardless of whether this data
is consistent with the target domain data. It still allows the
diagnostic agent to see more data. More data can provide

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 8 5 6
0 . 8 6 60 . 8 6 30 . 8 6 9

AU
C

E p o c h e s

 N I H -
 N I H
 P A S C A L + N I H
 C h e X p e r t + N I H

Fig. 6. Different experiment setting’s mean AUC with experiment epoch.

better training results, and many deep learning algorithms
have proved this conclusion. In these results, More data
leads to faster convergence and better results. This also
proves the necessity and effectiveness of the prior agents.

• Similar data with target domain can improve the final per-
formance. We can find that “CheXpert+NIH” has the best
results, followed by “NIH”, and “PASCAL+NIH” is the
worst. The reason rely on the quality of prior agent’s pa-
rameter. CheXert data has a similar distribution to tar-
get domain data in NIH. PASCAL data has obviously dif-
ferent with target data. Thus, “CheXpert+NIH” has the
best result. “NIH” has a better result than that of “PAS-
CAL+NIH”. The reason is that the large distribution differ-
ence with the target domain data has had a certain negative
impact. This is also in line with people’s common sense.
After all, an orthopedic doctor needs a certain amount of
study before he can become a chest doctor.

4.8. The Performance of ε-greedy

In the training step, we utilize the ε-greedy algorithm to add
some exploratory and speed up the convergence of the model.
This is like a human being making some tentative decisions on
certain issues without experience. In this section, we adjust the
value of the parameter ε to control the scale of exploration, and
then observe its impact on the final result. The related experi-
ment is shown in Fig.7.

The diagnostic result increases with the increase of ε value,
and when ε=0.2, the best result is achieved. But when ε contin-
ued to increase, the diagnostic results showed a rapid decline.
When ε is equal to 0.2, it means that in one-fifth of the cases,
the highest-scoring result was not chosen as the recognition re-
sult. If we continue to increase the value of ε, it means that
we discard the experience and increase the uncertainty of the
diagnosis. This condition will lead to that the model introduces
more wrong results in the training, which also leads to a rapid
decrease in the results. From these results, we can find that
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appropriate exploration is effective and can speed up the con-
vergence and training speed of the model. However, too much
exploration will lose its original meaning, abandon the guiding
significance of the real results, and introduce more uncertain-
ties. In general, this experiment demonstrated the effectiveness
of training mechanism. This idea can be applied to many simi-
lar problems.

4.9. Parameter Selection
The parameters of transformer in diagnostic agents are worth

further discussion. Here, we try to figure out how many decoder
layers and multi-heads are in the inner structure of the Trans-
former in order to test its most important information-splitting
and -combining functions in this vision task. At first, we set
up 2 layers of transformer decoders, each with 4 heads, and got
an average AUC of 0.866. Under the condition of 4 heads, we
achieve a mean AUC of 0.843, 0.866, 0.853, 0.836, 0.829, and
0.825 when we set 1-6 layers, respectively. Under the condition
of 2 layers, we achieve a mean AUC of 0.837, 0.849, 0.866, and
0.826 when we set 1, 2, 4, and 8 heads, respectively.

To further verify the impact of layers and multi-headed trans-
formers, we chose to visualize some attention maps of trans-
former structure. We are also interested in finding out the role
of multi-head attention in this task. We plot the mean of each
head’s cross-attention maps, which represent the similarities of
a given query and extracted spatial features. From Fig.8, we
can see that when the number of heads equals to 4, the attention
maps better identify the lesion of thorax diseases than others, it
testify in this specific task, it is good to use 4 heads. Besides, we
can see that when the multi-heads are not enough, the attention
weights are scattered and not very accurate, and when there are
8 multi-heads, the attention maps are chaotic, which means the
multi-head attention mechanism introduces some redundant in-
formation and adds some interference to the classification task,
which indicates that the redundant heads are not utilized as the
other four heads already collect sufficient information for clas-
sification. Similar to the layer attention map visualization ex-
periment shown in Fig.9, we can find that when the number of

Fig. 8. Visualize results of average the maps of all heads. The leftmost
column is the input CXR image, and disease areas are marked according
to official documents by us, diseases from the top to bottom are “Mass”,
“Pneumonia”, “Mass”, the right 4 columns average the maps of all heads,
1, 2, 4, and 8 heads, respectively. Best view in colors.

Fig. 9. Visualize results of layer attention maps, all pathologies are “Car-
diomegaly”. Best view in colors.

layers of the transformer decoder equals 2, the visualization re-
sult shows better learned information than others, proving that
the layer setting is important in this task.

4.10. Algorithm Complexity
The computational consumption is also a factor that should

be considered for clinical usage. In general, our computational
resource consumption is moderate compared to other methods.

We mostly focus on the model parameters and the size of
the input image that affect how much GPU power our proposed
MARL framework needs. For a certain input CXR image reso-
lution, e.g. 256 × 256, we use Resnet-18 and Resnet-50 in our
framework, and the scale of model parameters in our proposed
framework increases from 39.87M to 175.89M.

Taking a 256 × 256 input image as an example, as shown in
Table.5, the FLOPs (floating point operations) for our proposed
framework are 63.57G MACs (Multiplication and Accumula-
tion) to 42.78G MACs from Resnet-50 to VGGNet, which the
range of change is not small. In practice, training our proposed
framework with 256 × 256 images and Resnet-18 or Resnet-50
on an NVIDIA GeForce RTX 3090 GPU with 24 GB mem-
ory costs nearly 0.033 or 0.145 seconds per image. Large-
resolution images would cost much more time, e.g., when we
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Table 5. Floating point operations with different backbone and resolution

Methods Backbone Resolution FLOPs(GMACs)

Yao et al.Yao et al. (2018) DenseNet 224 13.57
Wang et al.Wang et al. (2017) AlexNet 224 14.54
Wang et al.Wang et al. (2017) VGGNet 224 30.95
LLAGNet Chen et al. (2019a) DenseNet 256 34.96

Ours ResNet 256 63.57
Ours VGGNet 256 42.78
Ours DenseNet 256 52.31
Ours ResNet 512 159.96

use 512 × 512 as the input CXR image resolution with Resnet-
18 or Resnet-50 training on the same GPU, it costs nearly 0.069
or 0.251 seconds per CXR image. By the way, loading data
into memory would take a lot of time compared to a smaller in-
put resolution. The FLOPs increase about 96.39G (63.57G vs.
159.96G) MACs for 512 × 512 with Resnet-18 as our backbone
compared with input resolution 256 × 256, respectively.

Besides, the GPU consumption is extremely different when
loading the training data with different input image sizes or
batch sizes. In our experiment, when we adopt Resnet-18 as
our backbone, training our proposed framework with 16 im-
ages (256 × 256) in a mini-batch costs about 2.4 GB of GPU
memory. When the input is set to 32 images (256 × 256) in
a mini-batch, 3.1 GB of GPU memory is required. While the
input is set to 32 images (512 × 512) in a mini-batch, nearly
5.0 GB of GPU memory is required. In the above experiments,
training with images of a higher resolution leads to better per-
formance, but the amount of GPU memory used also goes up.

5. Conclusion

In this paper, we propose a new multi-agent reinforcement
learning framework to solve the multi-label CXR image classi-
fication problem. This framework uses diagnostic agents’ pre-
vious knowledge to guide their learning, just like how a person
learns. Prior knowledge is learned from the pre-trained model
based on old data or similar data from other domains, which
can effectively reduce the dependence on target domain data
and speed up convergence. 2) The framework of reinforcement
learning can make the diagnostic agent as exploratory as a hu-
man and improve the accuracy of diagnosis through continuous
exploration. This design makes the whole model more intelli-
gent and more in line with human learning rules. Meanwhile,
the method can effectively solve the few-shot model learning
problem and improve the model’s generalization ability. We
evaluated our proposed method on two public data sets, NIH
ChestX-ray14 and CheXpert. The experimental results demon-
strate the performance of our approach.

We next briefly discuss the limitations of our proposed
method and future work possibilities. Firstly, our proposed
MARL framework adopts the simplest form of multi-agent re-
inforcement learning, and more complicated multi-agent rela-
tionships are worth further study. Secondly, as we introduce

reinforcement learning into the traditional classification frame-
work, we will consume more computing resources and train
much more slowly than in the traditional classification format,
we will try to make our models lightweight in the future. We
believe that further research will help us solve these issues.
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