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Abstract

We study the Aw-Rascle system in a one-dimensional domain with periodic boundary conditions,

where the offset function is replaced by the gradient of the function ργ

n, where γ → ∞. The resulting

system resembles the 1D pressureless compressible Navier-Stokes system with a vanishing viscosity coef-

ficient in the momentum equation and can be used to model traffic and suspension flows. We first prove

the existence of a unique global-in-time classical solution for fixed n. Unlike the previous result for this

system, we obtain global existence without needing to add any approximation terms to the system. This

is by virtue of a n−uniform lower bound on the density which is attained by carrying out a maximum-

principle argument on a suitable potential, Wn = ρ−1

n ∂xwn. Then we prove the convergence to a weak

solution of a hybrid free-congested system as n → ∞, which is known as the hard-congestion model.

Keywords: Aw-Rascle system, maximal packing, weak solutions, hard-congestion.
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1 Introduction

1.1 The Aw-Rascle system

This paper aims to study a singular limit pertaining to the following generalisation of the Aw-Rascle [3] and
Zhang [22] system:

{
∂tρn + ∂x(ρnun) = 0, in Ω × [0,∞), (1a)

∂t(ρnwn) + ∂x(ρnwnun) = 0, in Ω × [0,∞). (1b)

We take Ω = T to be the one-dimensional torus, which we identify with [0, 1]. This system is to be solved for
ρn and un which represent the density and the (actual) velocity respectively. The quantity wn that appears
in the above system is known as the desired velocity and differs from the actual velocity un by a cost (or
offset) function Cn, which typically depends on the density ρn. More precisely, wn is defined by the relation

wn = un + Cn(ρn). (1c)

The cost function may be interpreted as a quantity which measures the difficulty of moving in a certain
direction. In this paper, we consider the case where our cost function is the gradient of a function pn(ρn),
i.e.

Cn(ρn) = ∂xpn(ρn),

where
pn(ρn) = ργn

n . (2)

Here, {γn}∞
n=1 is a sequence of positive real numbers satisfying γn → ∞ as n → ∞. We note that the

singularity of this function only appears when considering the limit as n → ∞; in the region where ρn > 1,
we have pn(ρn) → +∞ as n → ∞. Our goal is to determine the existence of a solution to the above system
for n fixed before investigating the limiting behaviour of the solution as n → ∞.
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1.2 Background and motivation

The derivation and mathematical analysis of traffic flow models has been an active area of research over the
past hundred years, with some notable early works devoted to hydrodynamic models being [17, 11, 22, 13].
The Aw-Rascle model, which is given by (1a)-(1c) with a scalar offset C(ρ) = ργ , γ > 1, is one of the most
famous examples of such models. The derivation of this model from the ‘Follow-The-Leader’ microscopic
model for one-lane traffic can be seen in [2]. Much analysis has been devoted to the Aw-Rascle model with
different choices of offset functions and domains over the past twenty years. We refer to [7, 6, 12, 8, 16]
for some recent examples. It is known that although the model proposed by Aw and Rascle in [3] was an
improvement upon previous iterations of traffic flow models, the system still exhibits some non-physical
behaviour. For instance, solutions are assumed to adhere to the maximal density constraint ρ < ρ initially
but proceed to violate it in finite time. In order to overcome these unrealistic behaviours, Berthelin et al
[4] suggested to study the asymptotic limit of the system (1a)-(1b) accompanied by a singular scalar offset
function pn(ρn) instead of ργ . A recent paper by Chaudhuri et al [7] followed this suggestion and studied
the case where the offset function is equal to the gradient of a singular function, i.e.

wǫ = uǫ + ∂xpǫ(ρǫ), pǫ(ρǫ) = ǫ
ργ

ǫ

(1 − ρǫ)β
,

in a one-dimensional domain with periodic boundary conditions. With this choice, the density is now
prevented from surpassing a maximal threshold ρ ≡ 1. The authors go on to study the asymptotic limit
ǫ → 0 which is known as the ’hard-congestion limit’, and establish the existence of solutions (ρ, u, π) to the
limiting system







∂tρ+ ∂x(ρu) = 0, (3a)

∂t(ρu+ ∂xπ) + ∂x((ρu + ∂xπ)u) = 0, (3b)

0 ≤ ρ ≤ 1, (1 − ρ)π = 0, π ≥ 0, (3c)

where π is the limit of some singular function of ρǫ. This is known as the hard congestion model. The
interest in this system, which is an example of a free-congested system, emerges from the observation that
it repairs the aforementioned issues with the classical Aw-Rascle model. In particular, from (3c) we notice
that the potential π obtained in the singular limit is zero except when the density is maximal, where it acts
similar to a Dirac measure. This reflects an important characteristic of traffic flow, which is that drivers do
not typically slow down unless there is congestion. The authors of [7] prove two main results for their system;
the existence of a unique global strong solution for ǫ fixed, and the existence of a subsequence converging to
a solution of the hard-congestion model as ǫ → 0.

Our paper builds upon the work of Chaudhuri et al [7] and attempts to prove analogous results for the
case where the singular offset function is of the form pn(ρn) = ργn

n . One particular piece of motivation for
this problem is that our form of offset function makes it easier to perform numerical simulations (such as in
[20, 1, 21]) and investigate the behaviour of solutions than the model in [7], for example. Additionally, our
results could be used in conjunction with those in [7] in order to analyse the Aw-Rascle system with a more
complex offset function and/or in the multi-dimensional case. One example of a multi-dimensional study of
the Aw-Rascle system can be seen in a recent paper by Chaudhuri, Gwiazda and Zatorska [6].

For our analysis it will be useful to note that if we fix n with this choice of cost function, the system
(1a)-(1b) can be formally rewritten as the one-dimensional compressible pressureless Navier-Stokes equations

{
∂tρn + ∂x(ρnun) = 0, in T × [0,∞), (4a)

∂t(ρnun) + ∂x(ρnu
2
n) − ∂x(λn(ρn)∂xun) = 0, in T × [0,∞), (4b)

where ρn, un : T × [0,∞) → R are to be found and

λn(ρn) = ρ2
np

′
n(ρn), pn(ρn) = ργn

n , γn ∈ (0,∞).

The systems (1a)-(1b) and (4a)-(4b) are equivalent for sufficiently regular solutions, and in particular for
the class of regular solutions which we will consider. Interestingly, a similar approximation of a two-phase
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system was carried out by Lions and Masmoudi [19], where the authors consider a compressible Navier-Stokes
system with a pressure π = ργ and study the limit γ → ∞. The presence of a constant viscosity coefficient
allows the authors of [19] to control the gradient of the velocity ∇u which gives way to a crucial uniform
bound on the singular pressure. Although our system is pressureless, we note that the potential πn which is
defined through the relation

π′
n(ρn) := ρnp

′
n(ρn) = γnρ

γn
n , (5)

plays a similar role to the pressure in the classical compressible Navier-Stokes model. We need to control
this term in order to obtain the switching relation (3c) in the limit system. However, the presence of a
degenerate viscosity coefficient in our system means that we cannot bound the potential in the same way
that the pressure was bounded by the authors of [19]. For this reason, we need to carry out an improved
potential estimate.

1.3 Main results

In this paper we adopt the Bochner space notation XtYx := X(0, T ;Y (T)) for appropriate function spaces
X and Y . We first provide a precise definition of regular solutions to the system (4a)-(4b), which are also
classical.

Definition 1.1 (Global regular solution). Suppose n ∈ Z
+ is fixed, T > 0 and pn is given by (2). Assume

further that (ρ0
n, u

0
n) ∈ H4(T) × H4(T) and 0 < ρ0

n(·). The pair (ρn, un) is called a regular solution to
(4a)-(4b) on [0, T ] if

ρn ∈ C(0, T ;H4(T)), un ∈ C(0, T ;H4(T)) ∩ L2(0, T ;H5(T)),

and (ρn, un) satisfy (4a)-(4b) in T×[0, T ]. The pair (ρn, un) is known as a global regular solution to (4a)-(4b)
if it is a regular solution on [0, T ] for any T > 0.

We will prove two main results. Firstly, we will assert the existence of a unique global regular solution
in the following result:

Theorem 1.2 (Global existence of a unique regular solution for fixed n). Assume (ρ0
n, u

0
n) ∈ H4(T)×H4(T)

and that n ∈ Z
+ is fixed. Further assume that 0 < ρ0

n(x) for x ∈ T. Then there exists a unique pair (ρn, un)
with initial data (ρ0

n, u
0
n) which is a global regular solution to (4a)-(4b) in the sense of Definition 1.1.

Remark 1.3. The H4 regularity on the initial data mentioned in Definition 1.1 and Theorem 1.2 is required
in order for us to obtain a lower bound on the density. Our strategy demands that on the level of local-in-time
solutions the desired velocity wn ∈ CtH

3
x, which itself requires ρn, un ∈ CtH

4
x. To work with such solutions

using Theorem 2.1 (local existence of solutions), we must take (ρ0
n, u

0
n) ∈ H4(T) ×H4(T).

We then assert the existence of weak solutions to the limiting system in the following theorem:

Theorem 1.4 (Global existence of a weak solution to the hard-congestion model). Assume (ρ0
n, u

0
n) ∈

H4(T) ×H4(T) and the existence of constants C,α, ρ̂ > 0 independent of n such that

0 < ρ0
n(x) ≤ 1 +

1

γn
, ∀x ∈ T, (6)

0 < α ≤ |T|−1

∫

T

ρ0
n(x) dx ≤ ρ̂ < 1, (7)

‖
√

ρ0
nw

0
n‖L2

x
+

∥
∥
∥
∥
∥

∂xw
0
n

√

ρ0
n

∥
∥
∥
∥
∥

L2
x

≤ C. (8)

Then, the solution (ρn, un) established in Theorem 1.2 satisfies the following uniform bounds for γn > 1 and
τ ∈ (0, T ]:

‖wn‖
L∞

t W
1, 4

3
x

≤ C, (9)

‖πn‖L1
t,x

+ ‖∂xπn‖L2
t,x

≤ C, (10)

‖πn‖L∞([τ,T ];L1(T)) ≤ C. (11)
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where C > 0 is independent of n. Suppose additionally that

ρ0
n ⇀ ρ0 weakly in L2(T), (12)

ρ0
nw

0
n ⇀ ρ0w0 weakly in L2(T). (13)

Then there exists a subsequence (ρn, wn, πn) of solutions to (4a)-(4b) with initial data (ρ0
n, w

0
n) which con-

verges to (ρ, w, π) solving:







−
∫ t

0

∫

T

ρ∂tφ dxds+

∫

T

ρ(x, t)φ(x, t) − ρ0(x)φ(x, 0) dx+

∫ t

0

∫

T

∂xπ∂xφ dxds =

∫ t

0

∫

T

ρw∂xφ dxds, (14a)

−
∫ t

0

∫

T

ρw∂tφ dxds +

∫

T

ρwφ(x, t) − ρ0w0(x)φ(x, 0) dx+

∫ t

0

∫

T

(w∂xπ − ρw2)∂xφ dxds = 0. (14b)

0 ≤ ρ ≤ 1, (1 − ρ)π = 0, π ≥ 0. (14c)

with initial data (ρ0, w0). Additionally, our solution possesses the following regularity for p ∈ [1,∞) and
τ ∈ (0, T ):

ρ ∈ Cweak(0, T ;Lp(T)) ∩ L∞((0, T ) × T), (15)

w ∈ C(0, T ;W 1, 4
3 (T)), (16)

π ∈ M((0, T ) × T) ∩ L∞([τ, T ];L1(T)) ∩ L2([τ, T ];L2(T)). (17)

Remark 1.5. The upper bound in assumption (6) and the bound on
√

ρ0
nw

0
n in (8) are required to obtain

important uniform bounds from the additional energy estimate (Lemma 2.4), and also to obtain the bound
(11). The second bound appearing in (8) is a crucial part of our argument since it allows us to uniformly
bound ∂xwn and even ∂twn in Lp

t,x spaces. The lower bound on the mean value in (7) is used to apply the
Poincare inequality which gives us a uniform L∞

t L
1
x bound on wn. Lastly, the upper bound assumption in

(7) is used to derive the bound (11).

Remark 1.6. If we additionally assume that there exist constants c, C > 0 independent of n such that

0 < c ≤ inf
T

ρ0
n, ess sup

T

∂xw
0
n

ρ0
n

≤ C,

then as a consequence of the proof of Theorem 1.2 we can show that the sequence of densities ρn is uniformly
bounded away from zero, i.e. 0 < c ≤ ρn. As a result the density for the limiting system inherits the same
lower bound.

Remark 1.7. Note that the limiting system (14a)-(14c) is slightly different in appearance to that of [7],
since our system is written in terms of the desired velocity w rather than the actual velocity u. One can
also notice the assumptions on the initial data (6)-(8) are weaker than those appearing in [7], in the sense
that we do not assume any control over ∂xπ

0
n or the singular quantity λn(ρ0

n)∂xu
0
n. This is made possible

through our decision to work with the w−formulation rather than the u−formulation. It is also worthwhile
to mention that if we define the function u := w − ρ−1∂xπ where ρ−1∂xπ is the weak limit of ρ−1

n ∂xπn, the
limiting system is equivalent to (1a)-(1b) (without the index n) in the distributional sense, accompanied by
the condition (14c).

The global existence result given by Theorem 1.2 is an improvement upon the work of [7] where the
authors added an approximation term to the system in order to derive an (ǫ dependent) lower bound on the
density. Our derivation of the lower bound involves identifying a suitable potential for the Aw-Rascle system
Wn := ∂xwn/ρn and carrying out a maximum-principle argument to deduce that the maximum of Wn is a
decreasing function over time. This approach takes inspiration from [9], [5] and shows that an approximation
term is not necessary in order to obtain a (uniform) lower bound on the density for a generalised Aw-Rascle
system. In fact, this argument also gives us control over the quantity ∂xwn which is essential for the proof
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of Theorem 1.4. Another difference between our paper and previous works on the Aw-Rascle system [7, 6]
is that we pass to the limit in the so-called ’w−formulation’

{
∂tρn + ∂x(ρnwn − ∂xπn) = 0, (18a)

∂t(ρnwn) + ∂x(ρnw
2
n) − ∂x(wn∂xπn) = 0, (18b)

rather than the ’u−formulation’ seen in (4a)-(4b). The existence of a lower bound on the density (obtained
in the proof of Theorem 1.2) makes this formulation more convenient, since we may divide by ρn in the
momentum equation (18b) and directly obtain energy estimates on ∂xwn. In [7] where the u−formulation
was used instead, the authors were required to assume that the singular quantity λn∂xun is uniformly
bounded at time t = 0 to complete the limit passage. We do not need to make such an assumption by
working with wn. It is worthwhile to note that in the distributional sense, our limiting system in w−form is
(compare this with (3a)-(3c)):







∂tρ+ ∂x(ρw − ∂xπ) = 0, (19a)

∂t(ρw) + ∂x(ρw2) − ∂x(w∂xπ) = 0, (19b)

0 ≤ ρ ≤ 1, (1 − ρ)π = 0, π ≥ 0. (19c)

1.4 Overview of the paper

The paper is comprised as follows. In Sections 2.1/2.2 we make note of a local existence result and three key
energy estimates. These allow us to obtain an upper bound of the density after which we prove a ’blow-up’
lemma in Section 2.4, which is analogous to what can be seen in Theorem 1.1 of [9]. The blow-up lemma
tells us that provided the density is positive on a domain T × [0, T ), our local solution can be extended
past time T . In Section 2.5 we use this result to carry out a maximum-principle argument on the potential
Wn := ∂xwn/ρn in order to show that the density ρn is bounded from below on T× [0, T ]. This implies that
our solution exists globally, thanks to the blow-up lemma.

The second half of the paper (Sections 3 and 4) is dedicated towards the limit passage. We take advantage
of the transport equation satisfied by wn and Wn to uniformly bound wn in L∞

t W
1,p
x , which eventually leads

to strong convergence on wn. This is particularly useful when passing to the limit in the non-linear terms
appearing in (18b). A key obstacle standing in our way at this point is acquiring a bound on πn and ∂xπn.
Using the same strategy as the authors of [7] which is to test the momentum equation with an antiderivative
of the density will not work for us, since our assumptions on the initial data are considerably weaker, and so
we have access to fewer uniform bounds. In particular, we have no Lp

t,x estimates on the momentum ρnun

at this stage. This prevents us from bounding many of the terms which would appear in the momentum
equation after testing. To overcome this, we take a very intricate choice of test function in the continuity
equation which gives us a L1

t,x bound on πn. This delicate estimate is what allows us to converge towards
a weak solution even with our relatively weak assumptions on the initial data. The last uniform bound
we collect is a slightly stronger local-in-time estimate for πn that is needed to derive the switching relation
(1 − ρ)π = 0 for the limiting system. The uniform bounds which we obtain for πn are weaker than those
appearing in [7], which is to be expected. Nonetheless we show that it is still possible to obtain a weak
solution to the limiting system.

2 Existence of a unique global regular solution for fixed n

2.1 Local existence

The existence of a unique local regular solution for fixed n can be shown in a very similar way to Proposition
B.1 in [9]. The full details of the proof are omitted from this paper.

Theorem 2.1 (Existence of a unique local regular solution). Assume (ρ0, u0) ∈ Hk(T) ×Hk(T), k ≥ 1 and
that r0 := min

x∈T

ρ0 > 0. Then there exists T0 > 0 (depending solely on r0 and the initial data) and a unique

solution (ρ, u) to (4) for t ∈ [0, T0] with initial data (ρ0, u0) such that

ρ ∈ C(0, T0;Hk(T)), u ∈ C(0, T0;Hk(T)) ∩ L2(0, T0;Hk+1(T)).
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Additionally, we have that ρ(x, t) ≥ r0

2 for each (x, t) ∈ T × [0, T0].

Starting with some initial data (ρ0
n, u

0
n) ∈ H4(T) ×H4(T), we may take k = 4 in Theorem 2.1 to obtain

the existence of a solution (ρn, un) to (4a)-(4b) on [0, T0] for some T0 > 0, where n ∈ Z
+ is fixed. Let us now

denote by T ∗ the maximal time of existence of our solution (ρn, un). The purpose of this section is show
that our solution can be extended to one that is defined globally in time.

2.2 Energy estimates

In this subsection, we assume that (ρn, un) is a regular solution to (4) on some time interval [0, T ] and that
ρn ≥ 0 on T × [0, T ]. Our aim is to establish three uniform in time energy estimates which we will need in
order to extend our solution to one that is defined globally in time. Our first two estimates are classical; the
first is a consequence of the conservation of mass.

Lemma 2.2 (Conservation of mass). Assume that (ρn, un) is a regular solution to (4a)-(4b) on the time
interval [0, T ] and additionally that ρn(·, t) ≥ 0 on this interval. Then,

‖ρn(t)‖L1
x

= ‖ρ0
n‖L1

x
︸ ︷︷ ︸

=:E0
n

, (20)

for all t ∈ [0, T ].

The next energy estimate is derived from the momentum equation upon multiplying by un and integrating
by parts.

Lemma 2.3 (Basic energy). Assume that (ρn, un) is a regular solution to (4) on the time interval [0, T ] and
additionally that ρn(·, t) ≥ 0 on this interval. Then,

‖√
ρnun‖2

L∞

t L2
x

+ 2‖
√

λn(ρn)∂xun‖2
L2

t L2
x

= ‖
√

ρ0
nu

0
n‖2

L2
x

︸ ︷︷ ︸

=:E1
n

(21)

for all t ∈ [0, T ].

The final estimate in this section provides us with a bound on ∂xpn(ρn). Here, it is convenient to introduce
the notation

Hn(ρn) :=
1

γn + 1
ργn+1

n . (22)

Lemma 2.4 (Additional energy). Assume that (ρn, un) is a regular solution to (4) on the time interval [0, T ]
and additionally that ρn(·, t) ≥ 0 on this interval. Then,

‖√
ρnwn‖2

L∞

t L2
x

+ ‖Hn(ρn)‖L∞

t L1
x

+
1

2
‖√

ρn∂xpn(ρn)‖2
L2

t L2
x

≤ (T + 2)
(

‖
√

ρ0
nw

0
n‖2

L2
x

+ ‖Hn(ρ0
n)‖L1

x

)

︸ ︷︷ ︸

=:E2
n

. (23)

Proof. For regular solutions in the sense of Definition 1.1, (4b) is equivalent to

∂t(ρnwn) + ∂x(ρnwnun) = 0, in T × [0, T ].

Multiplying this equation by wn and integrating by parts, it is straightforward to show that

‖√
ρnwn‖L∞

t L2
x

≤ ‖
√

ρ0
nw

0
n‖L2

x
. (24)

Substituting wn = un + ∂xpn(ρn) into the mass equation, we get

∂tρn + ∂x(ρnwn) − ∂x (ρn∂xpn(ρn)) = 0,

in T × [0, T ]. Multiplying this equation by H ′
n(ρn) = pn(ρn), integrating over T × [0, t] where t ∈ [0, T ] and

using integration by parts leads to

∫

T

Hn(ρn(t)) −Hn(ρ0
n) dx+ ‖√

ρn∂xpn(ρn)‖2
L2

t L2
x

=

∫ t

0

∫

T

(∂xpn(ρn))ρnwn dxds. (25)
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Using Young’s inequality,

∫ t

0

∫

T

(∂xpn(ρn))ρnwn dxds ≤ 1

2
‖√

ρn∂xpn(ρn)‖2
L2

t L2
x

+
1

2
‖√

ρnwn‖2
L2

t L2
x
.

Thus, returning to (25) and taking the essential supremum over all t ∈ [0, T ], we have

‖Hn(ρn)‖L∞

t L1
x

+
1

2
‖√

ρn∂xpn(ρn)‖2
L2

t L2
x

≤ ‖Hn(ρ0
n)‖L1

x
+

1

2
‖√

ρnwn‖2
L2

t L2
x
.

Adding (24) to both sides of this inequality and using the estimate ‖√
ρnwn‖L2

t,x
≤ T ‖√

ρnwn‖L∞

t L2
x

gives

us the final result.

2.3 Estimating the density from above

We now obtain an upper bound for the density.

Lemma 2.5. Suppose (ρn, un) is a regular solution to (4a)-(4b) on [0, T ] and additionally that ρn ≥ 0 on
[0, T ]. Then,

ρn(t, x) ≤ (C(γn + 1)(T + 5)En)
1

γn+1 =: ρn, in T × [0, T ],

where C > 0 is independent of n and

En := E0
n + E1

n + E2
n = ‖ρ0

n‖L1
x

+ ‖
√

ρ0
nu

0
n‖2

L2
x

+ (‖
√

ρ0
nw

0
n‖2

L2
x

+ ‖Hn(ρ0
n)‖L1

x
).

Proof. It follows from the energy estimates (21), (23) and the triangle inequality that

‖√
ρn∂xpn(ρn)‖2

L∞

t L2
x

= ‖√
ρn(wn − un)‖2

L∞

t L2
x

≤
(

‖√
ρnwn‖2

L∞

t L2
x

+ ‖√
ρnun‖2

L∞

t L2
x

)

≤ (T + 3)En,

(26)

where C > 0 denotes an arbitrary constant independent of n and T . Using the definition of pn, we infer that

∂xHn = (γn)−1ρn∂xpn(ρn)

and so by virtue of Young’s inequality and (26),

‖∂xHn‖L∞

t L1
x

≤ (2γn)−1 ess sup
t∈[0,T ]

(∫

T

ρn dx +

∫

T

ρn(∂xpn(ρn))2 dx

)

= (2γn)−1
(

‖ρn‖L∞

t L1
x

+ ‖√
ρn∂xpn(ρn)‖2

L∞

t L2
x

)

≤ (T + 4)En

2γn
≤ (T + 4)En (27)

for n sufficiently large such that γn > 1/2. We also know from Lemma 2.4 that ‖Hn‖L∞

t L1
x

≤ En and so one

can deduce from (27) and the embedding W 1,1
x →֒ L∞

x that

‖Hn‖L∞

t,x
≤ C(T + 5)En,

where C > 0 arises due to the aforementioned embedding and is a constant independent of n and T . Recalling
the form of Hn from (22), this implies

1

γn + 1
ργn+1

n ≤ C(T + 5)En,

from which the result follows.
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2.4 A blow-up lemma

We wish to prove the following result:

Lemma 2.6 (Criteria for blow-up of regular solutions). Suppose (ρn, un) is a regular solution to (4a) - (4b)
on [0, T ∗) with initial data (ρ0

n, u
0
n) ∈ Hk(T) ×Hk(T) where k ≥ 2. Then provided that

ρn := inf
t∈[0,T ∗)

min
x∈T

ρn(t, x) > 0, (28)

we have that

sup
t∈[0,T ∗)

‖ρn‖L∞(0,t;Hk) + sup
t∈[0,T ∗)

‖un‖L∞(0,t;Hk) + sup
t∈[0,T ∗)

‖un‖L2(0,t;Hk+1) < +∞, (29)

and therefore the solution can be extended to a larger time interval [0, T ), where T > T ∗. In other words,
the solution does not lose regularity unless the density reaches 0 somewhere in the domain.

Remark 2.7. The extension of the solution past T ∗ can be justified as follows. Thanks to (29), the pair
(ρn, un) admits a limit as t ր T ∗ and the left-sided derivatives satisfy the system at t = T ∗. Since we
have ρn(T ⋆, ·) > 0, we can use the local existence result from Theorem 2.1 to obtain a unique solution on
[T ∗, T ∗ + ǫ) for some ǫ > 0. The extension is then given by the concatenation of the solutions on [0, T ∗] and
[T ∗, T ∗ + ǫ).

Our proof is done by induction with respect to the regularity parameter k. The base step corresponds to
showing that

sup
t∈[0,T ∗)

‖ρn‖L∞(0,t;H2) + sup
t∈[0,T ∗)

‖un‖L∞(0,t;H2) + sup
t∈[0,T ∗)

‖un‖L2(0,t;H3) < +∞

provided (ρ0
n, u

0
n) ∈ H2(T) × H2(T). This is the goal of the current subsection. We remark that this

assumption on the initial data allows us to deduce from Theorem 2.1 (existence of local solutions) that our
solution satisfies

ρn ∈ C(0, T ∗;H2(T)), un ∈ C(0, T ∗;H2(T)) ∩ L2(0, T ∗;H3(T)),

which allows us to justify the computations which will follow. The inductive part of the proof is deferred to
Appendix A.

2.4.1 Analysis of the singular diffusion Vn

We first define the function
Vn := λn(ρn)∂xun

and establish some basic properties in the form of the next two propositions. The function Vn corresponds
to the ’active potential’ which was first introduced in [9]. The authors of [9] used the active potential to
prove higher order regularity estimates for strong solutions to their system, which shares similarities with the
system we are considering for n fixed. The authors of [7] also made use of this function to prove higher-order
regularity estimates for strong solutions for the Aw-Rascle system with a singular pressure. We follow a
similar procedure. Firstly, let us find the equation satisfied by Vn.

Proposition 2.8 (Equation for the singular diffusion). Let n ∈ N
+. Suppose that (ρn, un) is a regular

solution with k = 2 (in the sense of Definition (1.1)) to (4a)-(4b) on T × [0, T ] with initial data (ρ0
n, u

0
n) ∈

H2(T) × H2(T) and ρn > 0 on [0, T ]. Then, Vn := λn(ρn)∂xun satisfies the following equation almost
everywhere in T × [0, T ]:

∂tVn +

(

un +
λn(ρn)

ρ2
n

∂xρn

)

∂xVn − λn(ρn)

ρn
∂2

xVn = − (λ′
n(ρn)ρn + λn(ρn))

(λn(ρn))2
V 2

n . (30)

Proof. For the sake of brevity we refer the reader to Lemma 3.7 of [7] for a complete proof.

8



We now prove a first regularity estimate for Vn. In what follows ǫi > 0 will be used to denote the
constants arising from an application of Young’s inequality where the index i is used to distinguish between
the different applications of Young’s inequality. We also recall the Sobolev inequality

‖u‖L∞(T) ≤ ‖u‖
1
2

L2(T)‖∂xu‖
1
2

L2(T) + ‖u‖L2(T), ∀ u ∈ H1(T). (31)

Under the assumptions of Proposition 2.8, we have the following result.

Proposition 2.9. Vn satisfies

‖Vn‖2
L∞

t L2
x

+ C3 ‖∂xVn‖2
L2

t,x

≤ T ‖Vn(0)‖2
L2

x
exp

(

2C1T + 2C2‖Vn‖2
L2

t,x

) (

C1T + C2‖Vn(0)‖2
L2

x

)

=: V1 (32)

and
‖Vn‖L2

t,x
≤ (γn(ρn)γn+1En)

1
2 , (33)

where C3 is a positive constant depending on n and

C1 ≡ C1(γn, ρn, ‖R‖L∞

t L2
x
, En), C2 ≡ C2(γn, ρn), C3 ≡ C(γn, ρn).

Proof. Multiplying (30) by Vn and integrating by parts leads to

1

2

d

dt

∫

T

|Vn|2 dx+

∫

T

λn(ρn)

ρn
(∂xVn)2 dx = −

∫

T

Vn∂xVn
∂xλn(ρn)

ρn
dx−

∫

T

unVn∂xVn dx

−
∫

T

λ′
n(ρn)ρn + λn(ρn)

(λn(ρn))2
V 3

n dx =:

3∑

i=1

I1.

Defining R := ρ−1
n ∂xλn(ρn), a direct computation reveals that R = γn(γn + 1)∂xpn(ρn), and so by (26)

‖R‖L∞

t L2
x

≤ γn(γn + 1)
√
ρn

(T + 3)En,

where En := E0
n + E1

n + E2
n. We now estimate I1 − I3. Using the Holder and Sobolev inequalities,

I1 ≤ ‖R‖L2
x
‖∂xVn‖L2

x
‖Vn‖L∞

x
≤ ‖∂xVn‖L2

x

(

‖Vn‖
1
2

L2
x
‖∂xVn‖

1
2

L2
x

+ ‖Vn‖L2
x

)

‖R‖L2
x
.

Applying Young’s inequality twice then gives us

I1 ≤ ǫ1‖∂xVn‖2
L2

x
+

1

4ǫ1
‖R‖2

L2
x

(

‖Vn‖
1
2

L2
x
‖∂xVn‖

1
2

L2
x

+ ‖Vn‖L2
x

)2

≤ (ǫ1 + ǫ2)‖∂xVn‖2
L2

x
+

1

16ǫ2
1ǫ2

‖R‖4
L2

x
‖Vn‖2

L2
x

+
1

2ǫ1
‖Vn‖2

L2
x
‖R‖2

L2
x
.

Next,

I2 ≤
∣
∣
∣
∣

∫

T

unVn∂xVn

∣
∣
∣
∣

≤ ‖un‖L∞

x
‖Vn‖L2

x
‖∂xVn‖L2

x
≤ ǫ3‖∂xVn‖2

L2
x

+
1

4ǫ3
‖un‖2

L∞

x
‖Vn‖2

L2
x
.

Due to the Sobolev inequality (31),

‖un‖2
L∞

x
≤ ‖un‖L2

x
‖∂xun‖L2

x
+ ‖un‖2

L2
x

≤ 3

2
‖un‖2

L2
x

+
1

2
‖∂xun‖2

L2
x

≤ 3

2ρn
‖√

ρnun‖2
L2

x
+

1

2

∥
∥
∥
∥

1

λn(ρn)

∥
∥
∥
∥

2

L∞

t,x

‖Vn‖2
L2

x
(34)

≤ 3

2ρn
‖√

ρnun‖2
L2

x
+ γ−2

n ρn
−2−2γn‖Vn‖2

L2
x
. (35)
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Therefore,

I2 ≤ ǫ3‖∂xVn‖2
L2

x
+ (ǫ3ρn)−1En‖Vn‖2

L2
x

+ (4γ−1
n ǫ3ρn

−1−γn)−1‖Vn‖4
L2

x
.

Moving onto I3, we first remark that

λ′
n(ρn)ρn + λn(ρn)

(λn(ρn))2
=

γn + 2

γnρ
γn+1
n

.

Then using the Holder, Sobolev (31) and Young’s inequalities,

I3 ≤ γn + 2

γnρn
γn+1

‖Vn‖L∞

x
‖Vn‖2

L2
x

≤ γn + 2

γnρn
γn+1

(

‖Vn‖
5
2

L2
x
‖∂xVn‖

1
2

L2
x

+ ‖Vn‖3
L2

x

)

≤ γn + 2

γnρn
γn+1

(

ǫ
− 4

3

4 ‖Vn‖
10
3

L2
x

+ ǫ4
4‖∂xVn‖2

L2
x

+ ‖Vn‖3
L2

x

)

.

By two further applications of Young’s inequality,

I3 ≤ γn + 2

γnρn
γn+1

(

ǫ
− 4

3

4 ‖Vn‖2
L2

x
+ ǫ4

4‖∂xVn‖2
L2

x
+ (ǫ4)− 16

3 ‖Vn‖4
L2

x

)

,

where we have used the following observation due to Young’s inequality:

‖Vn‖ 10
3 = ‖Vn‖2‖Vn‖ 4

3 ≤ 2

3
‖Vn‖3 +

1

3
‖Vn‖4 ≤ 1

3
‖Vn‖2 +

2

3
‖Vn‖4.

Assembling our estimates for I1 − I3, we have

1

2

d

dt
‖Vn‖2

L2
x

+

∫

T

λn(ρn)

ρn
(∂xVn)2 dx ≤ (ǫ1 + ǫ2 + ǫ3 + ǫ4

4)‖∂xVn‖2
L2

x
+

1

16ǫ2
1ǫ2

‖R‖4
L2

x
‖Vn‖2

L2
x

+
1

2ǫ1
‖Vn‖2

L2
x
‖R‖2

L2
x

+ (ǫ3ρn)−1En‖Vn‖2
L2

x
+ (4γ2

nǫ3ρn
−1−γn)−1‖Vn‖4

L2
x

+
γn + 2

γnρn
γn+1

(

‖Vn‖2
L2

x
+ ǫ4

4‖∂xVn‖2
L2

x
+ (ǫ4)− 16

3 ‖Vn‖4
L2

x

)

.

Observing that ρ−1
n λn(ρn) = γnρ

γn
n ≥ γnρn

γn and simplifying the RHS of the above inequality, we have

1

2

d

dt
‖Vn‖2

L2
x

+
(
γnρn

γn − ǫ1 − ǫ2 − ǫ3 − ǫ4
4

)
‖∂xVn‖2

L2
x

≤ ‖Vn‖2
L2

x

{
‖R‖4

L∞

t L2
x

16ǫ2
1ǫ2

+
‖R‖2

L∞

t L2
x

2ǫ1
+

En

ǫ3ρn
+

γn + 2

γnρn
γn+1

+

[

(γn + 2)ǫ
− 16

3

4

γnρn
γn+1

+
En

4γnǫ3ρn
γn−1

]

‖Vn‖2
L2

x

}

.

Choosing ǫi > 0 small enough (possibly dependent on n), we have

1

2

d

dt
‖Vn‖2

L2
x

+ C3 ‖∂xVn‖2
L2

x
≤ ‖Vn‖2

L2
x

{

C1 + C2‖Vn‖2
L2

x

}

, (36)

where

C1 :=
‖R‖4

L∞

t L2
x

16ǫ2
1ǫ2

+
‖R‖2

L∞

t L2
x

2ǫ1
+

En

ǫ3ρn
+

γn + 2

γnρn
γn+1

, C2 :=
(γn + 2)ǫ

− 16
3

4

γnρn
γn+1

+
En

4γnǫ3ρn
γn−1

, C3 :=
1

5
γnρn

γn .

An application of Gronwall’s inequality yields

1

2
‖Vn(t)‖2

L∞

t L2
x

≤ ‖Vn(0)‖2
L2

x
exp

(

C1T + C2‖Vn‖2
L2

t,x

)

.
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Exploiting this inequality in (36) leads to

1

2

d

dt
‖Vn‖2

L2
x

+ C3 ‖∂xVn‖2
L2

x

≤ ‖Vn(0)‖2
L2

x
exp

(

C1T + C2‖Vn‖2
L2

t,x

) {

C1T + C2‖Vn(0)‖2
L2

x
exp

(

C1T + C2‖Vn‖2
L2

t,x

)}

.

Integrating in time and simplifying leads to (32). To finish, we notice that due to (21),

‖Vn‖2
L2

t,x
= ‖λn(ρn)2(∂xun)2‖L1

t,x
≤ γnρn

γn+1‖λn(ρn)(∂xun)2‖L1
t,x

≤ γnρn
γn+1En.

The previous result allows us to deduce some regularity estimates on un and ρn. In the remainder of this
section we denote by Mn

k an arbitrary function which satisfies

Mn
k ≡ Mn

k (t, ‖ρn‖L∞

t Hk
x
, ‖un‖L∞

t Hk
x
, ‖un‖L2

t Hk+1
x

, γn, En, ρn, (ρn)−1), sup
t∈[0,T ∗)

Mn
k < +∞.

Corollary 2.10. We have that

1. ∂xun is bounded in L2
tL

2
x with

‖∂xun‖2
L2

t L2
x

≤ En

γnρn
γn+1

. (37)

2. ∂xun is bounded in L∞
t L

2
x with

‖∂xun‖L∞

t L2
x

≤ V1

γnρn
γn+1

≤ Mn
0 . (38)

3. ∂xρn is bounded in L∞
t L

2
x with

‖∂xρn‖L∞

t L2
x

≤ γ−1
n ρn

1
2

−γnEn ≤ Mn
0 . (39)

4. ∂2
xun is bounded in L2

tL
2
x with

‖∂2
xun‖L2

t L2
x

≤ 1

γnρn
γn+1

(

‖∂xVn‖L2
t L2

x
+ ‖∂xλn(ρn)‖L∞

t L2
x
‖∂xun‖

1
2

L2
t L2

x

(

‖∂2
xun‖

1
2

L2
t L2

x
+ ‖∂xVn‖L2

t L2
x

))

≤ Mn
0

(40)

Proof. The first bound follows from (21). For the second bound, we use the relationship Vn = λn(ρn)∂xun

to estimate

‖∂xun‖L∞

t L2
x

≤
∥
∥
∥
∥

1

λn(ρn)

∥
∥
∥
∥

L∞

t,x

‖Vn‖L∞

t L2
x

≤ 1

γnρn
γn+1

‖Vn‖L∞

t L2
x

≤ V1

γnρn
γn+1

.

For the third estimate, we first note that from (21) and (23), we have

‖√
ρn∂xpn(ρn)‖L∞

t L2
x

= ‖√
ρn(wn − un)‖L∞

t L2
x

≤ ‖√
ρnwn‖L∞

t L2
x

+ ‖√
ρnun‖L∞

t L2
x

≤ ‖
√

ρ0
nu

0
n‖2

L2
x

+ ‖
√

ρ0
nw

0
n‖2

L2
x

≤ En.
(41)

On the other hand,

‖√
ρn∂xpn(ρn)‖L∞

t L2
x

= ‖γnρ
γn− 1

2
n ∂xρn‖L∞

t L2
x

≥ γnρn
γn− 1

2 ‖∂xρn‖L∞

t L2
x
. (42)
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The result follows directly from (41) and (42). In order to deduce the fourth bound, we differentiate
Vn = λn(ρn)∂xun to find

∂2
xun =

∂xVn − ∂xλn(ρn)∂xun

λn(ρn)
.

Thus, we have

‖∂2
xun‖L2

t L2
x

≤
∥
∥
∥
∥

1

λn(ρn)

∥
∥
∥
∥

L∞

t,x

(

‖∂xVn‖L2
t L2

x
+ ‖∂xλn∂xun‖L2

t L2
x

)

.

Noticing that ‖∂xλn∂xun‖L2
t L2

x
≤ ‖∂xλn(ρn)‖L∞

t L2
x
‖∂xun‖L2

t L∞

x
allows us to further deduce using the Sobolev

inequality (31) that

‖∂2
xun‖L2

t L2
x

≤ 1

γnρn
γn+1

(

‖∂xVn‖L2
t L2

x
+ ‖∂xλn(ρn)‖L∞

t L2
x
(‖∂xun‖

1
2

L2
t L2

x
+ ‖∂2

xun‖
1
2

L2
t L2

x
+ ‖∂xun‖L2

t L2
x
)
)

.

A Gronwall argument can then be used to bound this quantity by Mn
0 .

Remark 2.11. It follows from the energy estimates (20), (21) and (23) and the upper/lower bounds on the
density that ‖ρn‖L∞

t L2
x

+ ‖un‖L∞

t L2
x

+ ‖un‖L2
t H1

x
≤ C, where C is independent of time. Combining this with

Corollary 2.10, the estimates we have acquired up to this point can be summarised as:

‖ρn‖L∞

t H1
x

+ ‖un‖L∞

t H1
x

+ ‖un‖L2
t H2

x
≤ Mn

0 . (43)

2.4.2 Completing the base step of induction

To complete the base step we need to show that

‖∂2
xρn‖L∞

t L2
x

+ ‖∂2
xun‖L∞

t L2
x

+ ‖∂3
xun‖L2

t,x
< Mn

1 . (44)

We now make note of a result which will allow us to deduce the remaining higher-order regularity estimates.
We assume ρn, un are smooth for the sake of convenience.

Proposition 2.12. (Higher order regularity formulae) Let k ≥ 2, ρn ∈ C1(0, T ;Ck(T)), un ∈ C(0, T ;Ck+1(T))
satisfy (4a). Then,

1

2

d

dt
‖∂k

xρn‖2
L2

x
≤ C

(

‖∂k
xun‖L2

x
‖∂k

xρn‖2
L2

x
+ ‖ρn‖L∞

x
‖∂k

xρn‖L2
x
‖∂k+1

x un‖L2
x

)

(45)

Additionally, for l ≥ 1 and ρn ∈ C(0, T ;Cl+1(T)), un ∈ C(0, T ;Cl(T)), Vn ∈ C1(0, T ;Cl+1(T)) satisfying
(30), we have

1

2

d

dt

∫

T

|∂l
xVn|2 dx = −

∫

T

∂l
x

(

(un +
λn(ρn)

ρ2
n

∂xρn)∂xVn

)

∂l
xVn dx+

∫

T

∂l
x

(
λn(ρn)

ρn
∂2

xVn

)

∂l
xVn

−
∫

T

∂l
x

(
λ′

n(ρn)ρn + λn(ρn)

(λn(ρn))2
V 2

n

)

∂l
xVn dx.

(46)

Proof. The proof is identical to that of Lemma 3.10 in [7].

Taking l = 1 in (46), one can integrate by parts to obtain

1

2

d

dt

∫

T

|∂xVn|2 dx+

∫

T

λn(ρn)

ρn
|∂2

xVn|2 dx

=

∫

T

(

un +
λn(ρn)

ρ2
n

∂xρn

)

∂xVn∂
2
xVn dx+

∫

T

λ′
n(ρn)ρn + λn(ρn)

(λn(ρn))2
V 2

n ∂
2
xVn dx =: J1 + J2.
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Due to (43), we have

J1 ≤ ‖un + ρ−2
n λn(ρn)∂xρn‖L2

x
‖∂xVn‖L∞

x
‖∂2

xVn‖L2
x

≤ Mn
1 ‖∂xVn‖L∞

x
‖∂2

xVn‖L2
x
.

Using the Sobolev inequality (31) and Young’s inequality, we arrive at

J1 ≤ ǫ‖∂2
xVn‖2

L2
x

+Mn
1 ‖∂xVn‖2

L2
x

≤ ǫ‖∂2
xVn‖2

L2
x

+Mn
1 .

Meanwhile,

J2 ≤ Mn
1 ‖Vn‖2

L4
x
‖∂2

xVn‖L2
x

≤ Mn
1 + ǫ‖∂2

xVn‖2
L2

x
,

using Young’s inequality and Proposition 2.9. Therefore we have

1

2

d

dt

∫

T

|∂xVn|2 dx+

∫

T

λn(ρn)

ρn
|∂2

xVn|2 dx ≤ 2ǫ‖∂2
xVn‖2

L2
x

+Mn
1

Using the observation ρ−1
n λn(ρn) = γnρ

γn
n ≥ γnρn

γn and choosing ǫ small enough (depending on n), we have

1

2

d

dt

∫

T

|∂xVn|2 dx+ C‖∂2
xVn‖2

L2
x

≤ Mn
1 , (47)

where C > 0 is a constant depending on n. Integrating in time gives us

‖∂xVn‖L∞

t L2
x

+ ‖∂2
xVn‖L2

t,x
≤ Mn

1 . (48)

Next, from the relationship Vn = λn∂xun, we infer that

∂2
xun = λ−1

n ∂xVn + Vn∂x(λ−1
n ) (49)

and so

‖∂2
xun‖L∞

t L2
x

≤ ‖λ−1
n ‖L∞

t,x
‖∂xVn‖L∞

t L2
x

+ ‖Vn‖L∞

t,x
‖∂x(λ−1

n )‖L∞

t L2
x

≤ Mn
1 . (50)

Differentiating (49) once more,

∂3
xun = ∂2

xVnλ
−1
n + 2∂xVn∂xλ

−1
n + Vn∂

2
xλ

−1
n

and again we estimate

‖∂3
xun‖L2

t,x
≤ ‖∂2

xVn‖L2
t,x

‖λ−1
n ‖L∞

t,x
+ 2‖∂xVn‖L∞

t L2
x
‖∂xλ

−1
n ‖L2

t L∞

x
+ ‖Vn‖L∞

t,x
‖∂2

xλ
−1
n ‖L2

t,x
. (51)

Note that ∂xλ
−1
n = −(1 + γ−1

n )ρ−γn−2
n ∂xρn and so ‖∂xλ

−1
n ‖L2

t L∞

x
≤ Mn

1 ‖∂xρn‖L2
t L∞

x
. Using the Sobolev

inequality (31) we can show that

‖∂xρn‖L2
t L∞

x
≤ Mn

1 +Mn
1 ‖∂2

xρn‖L2
t,x
.

By computing ∂2
xλ

−1
n explicitly one can also show that ‖∂2

xλ
−1
n ‖L2

t,x
≤ Mn

1 + Mn
1 ‖∂2

xρn‖L2
t,x

. Returning to

(51), we have
‖∂3

xun‖L2
t,x

≤ Mn
1 +Mn

1 ‖∂2
xρn‖L2

t,x
. (52)

Taking k = 2 in (45), we have

1

2

d

dt
‖∂2

xρn‖2
L2

x
≤ C

(

‖∂2
xun‖L2

x
‖∂2

xρn‖2
L2

x
+ ‖ρn‖L∞

x
‖∂2

xρn‖L2
x
‖∂3

xun‖L2
x

)

≤ Mn
1 ‖∂2

xρn‖L2
x
,

using (52) and the bounds previously obtained. An application of Gronwall’s inequality grants us ‖∂2
xρn‖L∞

t L2
x

≤
Mn

1 . In light of this, the inequality (52) finally gives us ‖∂3
xun‖L2

t,x
≤ Mn

1 . Additionally recalling the bound

(50), we have shown that (44) holds true. Thus we have

‖ρn‖L∞

t H2
x

+ ‖un‖L∞

t H2
x

+ ‖un‖L2
t H3

x
≤ Mn

1 , (53)

where Mn
1 satisfies sup

t∈[0,T ∗)

Mn
1 < +∞. Thus the base step is complete. The inductive step is deferred to the

Appendix. With this, we conclude the proof of Lemma 2.6.
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2.5 Completing the proof of global existence

We are now ready to complete the proof of Theorem 1.2 and obtain the existence of a global unique regular
solution.

Proof of Theorem 1.2. We have previously asserted the existence of a unique global regular solution (ρn, un)
to (4a)-(4b) on [0, T0], for some T0 > 0 in Theorem 2.1. The blow-up result we obtained in the previous
subsection (Lemma 2.6) also tells us that our solution can in fact be extended past T0 provided the density
ρn does not hit 0 anywhere in T× [0, T0]. Since we know that ρn ≥ r0

2 > 0 on T× [0, T0], we can extend this
solution and declare that (ρn, un) will possess a maximal interval of existence [0, T ∗), where T ∗ > T0. For
the sake of a contradiction, let us assume that T ∗ is finite. Two particular implications of this statement are
that

ρn(·, t) > 0 for each t ∈ [0, T ∗), (54)

and
inf

t∈[0,T ∗)
min
x∈T

ρn(t, x) = 0. (55)

Let us now recall the original form of the Aw-Rascle system on our maximal interval of existence

{
∂tρn + ∂x(ρnun) = 0, in T × [0, T ∗), (56a)

∂t(ρnwn) + ∂x(ρnwnun) = 0, in T × [0, T ∗). (56b)

Since we know that (ρn, un) possesses the same regularity as given in the statement of this theorem, we can
proceed in a similar way to [5] and [9] and define

Wn =
∂xwn

ρn
. (57)

We wish to show that Wn is bounded from above uniformly in time. It will be seen that this is sufficient
to obtain a lower bound on ρn, which will become clear when we derive the evolution equation for 1/ρn

and apply a maximum-principle argument. Our Wn corresponds to the so-called ‘effective pressure’ used by
Burtea and Haspot in [5] and the function ‘X ’ by Constantin et al in Theorem 1.5, [9]. A straightforward
computation reveals that

ρ2
n∂tWn = ρn∂t∂xwn − ∂xwn∂tρn. (58)

Exploiting (56a), dividing by ρn > 0 and differentiating in space, one can show that (56b) is equivalent to

∂t∂xwn = −∂xun∂xwn − un∂
2
xwn. (59)

Substituting (59) and (56a) into (58) and dividing by ρn > 0 gives

ρn∂tWn = −ρnWn∂xun − un∂
2
xwn − ∂xwn∂tρn

ρn

= −ρn∂xwnWn − un∂xρnWn − unρn∂xWn +Wn(ρn∂xun + un∂xρn)

= −unρn∂xWn. (60)

where we have used the facts that ∂xwn = Wnρn and ∂2
xwn = Wn∂xρn + ρn∂xWn, which both follow from

(57). Dividing by ρn leaves us with
∂tWn + un∂xWn = 0. (61)

It is clear that wn and Wn satisfy the same transport equation. Now, we note that wn ∈ C(0, T ;H3) due
to the relation wn = un + ∂xpn(ρn) and the regularity ρn, un ∈ C(0, T ;H4) for all T < T ∗. This allows
us to deduce that Wn ∈ C(0, T ;H2) ⊂ C([0, T ] × T) for all T < T ∗. The equation (61) then implies that
∂tWn ∈ C(0, T ;H1) ⊂ C([0, T ] × T) and so Wn ∈ C1([0, T ] × T) for all T < T ∗. We now introduce a
maximum function WM

n : R+ → R associated to Wn. For each t ∈ [0, T ∗), it is true that Wn(·, t) attains a
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maximum at some point xt ∈ T, thanks to the regularity of Wn on T × [0, T ∗). Thus, the map t → xt is
well-defined on [0, T ∗) and the function

WM
n (t) := Wn(xt, t) ≡ max

x∈T

Wn(x, t) (62)

is also well-defined and Lipschitz continuous. The Rademacher theorem implies that WM
n is differentiable

almost everywhere on [0, T ∗). We now wish to prove that

(
WM

n

)′
(t) = ∂tWn(xt, t) (63)

for all t ∈ [0, T ∗) where WM
n is differentiable. Using the classical definition of the derivative, we have for all

t where WM
n is differentiable,

(
WM

n

)′
(t) = lim

hց0

[
WM

n (t+ h) −WM
n (t)

h

]

= lim
hց0

[
Wn(xt+h, t+ h) −Wn(xt, t))

h

]

≥ lim
hց0

[
Wn(xt, t+ h) −Wn(xt, t)

h

]

= ∂tWn(xt, t).

On the other hand, using an alternative definition of the derivative, we have

(
WM

n

)′
(t) = lim

hց0

[
WM

n (t) − WM
n (t− h)

h

]

= lim
hց0

[
Wn(xt, t) −Wn(xt−h, t− h)

h

]

≤ lim
hց0

[
Wn(xt, t) −Wn(xt, t− h)

h

]

= ∂tWn(xt, t),

and so (63) holds true. Evaluating (61) along the points (xt, t) which correspond to the maximum points of
Wn, we have

∂tW
M
n (t) = −un(xt, t) ∂xWn(xt, t)

︸ ︷︷ ︸
=0

= 0, (64)

for all t ∈ [0, T ∗) where WM
n is differentiable, since xt is a maximum point of Wn(·, t). This tells us that

max
x∈T

∂xwn

ρn
(x, t) = max

x∈T

∂xw
0
n

ρ0
n

(x)

for any t ∈ [0, T ∗), and as a consequence

(
∂xwn

ρn

)

(x, t) ≤ max
T

∂xw
0
n

ρ0
n

=: M0
n, ∀ (x, t) ∈ T × [0, T ∗). (65)

We note that since we are working with periodic boundary conditions, the quantity maxT ∂xw
0
n is non-

negative and therefore so is M0
n due to our assumption ρ0

n > 0 on the initial data. Next, we turn to the
evolution equation satisfied by 1/ρn on T× [0, T ∗). Since ρn 6= 0 on this domain, the function 1/ρn possesses
the same regularity as ρn and it is straightforward to verify using the continuity equation that

∂t

(
1

ρn

)

+ un∂x

(
1

ρn

)

=
1

ρn
∂xun. (66)

Using the definition of wn, namely that wn = un + ∂xpn(ρn), this becomes

∂t

(
1

ρn

)

= −un∂x

(
1

ρn

)

+
1

ρn
∂xwn − 1

ρn

[
p′′

n(ρn)|∂xρn|2 + p′
n(ρn)∂2

xρn

]

= −un∂x

(
1

ρn

)

+
1

ρn
∂xwn − p′′

n(ρn)

ρn
|∂xρn|2 + p′

n(ρn)

[

−2ρ2
n∂x

(
1

ρn

)2

+ ρn∂
2
x

(
1

ρn

)]

, (67)

15



where we have used the relations

∂xρn = −ρ2
n∂x

(
1

ρn

)

, ∂2
xρn = 2ρ3

n∂x

(
1

ρn

)2

− ρ2
n∂

2
x

(
1

ρn

)

.

In a similar way to the previous argument involving Wn, we can define Pn(x, t) := 1
ρn(x,t) and the corre-

sponding maximum function

PM
n (t) := max

x∈T

1

ρn(x, t)
on [0, T ∗).

One can repeat the argument for WM
n to conclude that PM

n is differentiable a.e. on [0, T ∗). We then have
from equation (67) that for all t ∈ [0, T ∗) where PM

n is differentiable,

∂tP
M
n = −un∂xP

M
n + ρ−1

n ∂xwn − PM
n p′′

n(ρn)|ρ2
n∂xP

M
n |2 − 2p′

n(ρn)ρ2
n

(
∂xP

M
n

)2
+ ρnp

′
n(ρn)∂2

xP
M
n . (68)

Using the facts that ρn(·, t) > 0 on [0, T ∗), ∂xP
M
n (t) = 0 and ∂2

xP
M
n ≤ 0, this equation implies the inequality

(∂tP
M
n )(t) ≤ ∂xwn

ρn
(x, t) ≤ M0

n, for a.e. t ∈ [0, T ∗), (69)

where we have made use of (65). Integrating in time gives us

ρn(x, t) ≥ 1

M0
nt+ (inf

T

ρ0
n)−1 . (70)

This lower bound contradicts our assumption (55) which was that

inf
t∈[0,T ∗)

min
x∈T

ρn(t, x) = 0.

We conclude that T ∗ = +∞ and thus our solution is global in time. The uniqueness follows from the fact
that our local solution was shown to be unique. Indeed, suppose that we have two global regular solutions
(ρ1

n, u
1
n) and (ρ2

n, u
2
n) coinciding on [0, T1] and further assume that they differ almost everywhere on some

interval [T1, T2], i.e. that ‖ρ1
n − ρ2

n‖L∞(T1,T ;L∞) > 0 for all T ∈ (T1, T2] (and analogously for ui
n). Then

taking the initial data (ρ0
n, u

0
n) := (ρ1

n(T1), u1
n(T1)), we deduce from Theorem 2.1 that (ρ1

n, u
1
n) = (ρ2

n, u
2
n) on

an interval [T1, T1 + ǫ] for some ǫ > 0, which contradicts our assumption.

Remark 2.13. If we assume the existence of positive constants C, ρ0 independent of n such that

ess sup
T

∂xw0
n

ρ0
n

≤ C and ρ0
n ≥ ρ0 > 0, then the bound (70) gives us the uniform (in n) estimate

ρn(x, t) ≥ 1

Ct+ (ρ0)−1
.

Remark 2.14. Our proof does not rely on the precise form of the offset function pn, but it does require that
pn(r) is increasing for r ∈ [0, ρn]. Thus we expect this result to hold for a wide class of offset functions. In
particular, our argument works for the choice pǫ(ρǫ) = ǫργ

ǫ (1 − ρǫ)
−β taken by Chaudhuri et al in [7].

3 Uniform in n estimates

In this section we obtain uniform estimates on the global regular solution (ρn, un), whose existence was
asserted in the previous section.

3.1 Bounds from the energy estimates

Assuming the condition (6) and the first bound of (8) on the initial data, we have the following uniform
estimate by virtue of our energy estimates.

‖ρn‖L∞

t L1
x

+ ‖√
ρnwn‖L∞

t L2
x

+ ‖Hn(ρn)‖L∞

t L1
x

+ ‖√
ρn∂xpn(ρn)‖L2

t L2
x

≤ C. (71)

Note that the assumption (6) implies that ‖Hn(ρ0
n)‖L1

x
is uniformly bounded in n. Thus the estimate from

Lemma 2.4 is also independent of n.
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3.2 Bounding the desired velocity

The goal of this section is to obtain the uniform bound (9) on the sequence of desired velocities, wn. In the
remainder of the paper we assume the hypotheses (6)-(8) and denote by C a positive constant independent
of n. Our first result is a bound on the spatial derivative of wn.

Proposition 3.1. Provided γn ≥ 1 we have

‖∂xwn‖
L∞

t L
4/3
x

≤ C. (72)

Proof. It follows from (61) that the potential Wn = ρ−1
n ∂xwn satisfies

∂t(ρnWn) + ∂x(ρnWnun) = 0, (73)

due to the continuity equation. Thus (ρn,Wn, un) satisfies the original momentum equation (1b). Multiplying
by Wn and integrating by parts over space and time leads to

∫

T

(∂xwn)2

ρn
(x, t) dx =

∫

T

(∂xw
0
n)2

ρ0
n

(x) dx =: D0
n. (74)

Noticing that by Young’s inequality

|∂xwn|4/3 =

∣
∣
∣
∣

∂xwn√
ρn

∣
∣
∣
∣

4/3

|√ρn|4/3 ≤ 2

3

∣
∣
∣
∣

∂xwn√
ρn

∣
∣
∣
∣

2

+
1

3
|ρn|2,

we infer from (74) that

‖∂xwn‖3/4

L∞

t L
4/3
x

≤ D0
n + ‖ρn‖2

L∞

t L2
x
. (75)

Next, recall from (71) we have that

‖Hn(ρn)‖L∞

t L1
x

=
1

γn + 1
ess sup
t∈[0,T ]

∫

T

ργn+1
n dx =

1

γn + 1
‖ρn‖γn+1

L∞

t Lγn+1
x

≤ C. (76)

Therefore the assumption γn ≥ 1 guarantees that ‖ρn‖L∞

t L2
x

≤ C (uniformly in n). Returning to (75), we
can obtain the required bound.

Remark 3.2. The exponent 4/3 is taken for convenience. A similar argument can be used to show ‖∂xwn‖L∞

t Lp
x

≤
C for any p ∈ [1, 2), assuming γn is sufficiently large.

We now obtain a bound for the sequence of desired velocities wn.

Proposition 3.3. The desired velocity wn satisfies

‖wn‖
L∞

t W
1, 4

3
x

≤ C.

Proof. Taking r = ρn in the generalised Poincare inequality (see Proposition A.2 in the Appendix) gives us

‖wn‖L1
x

≤ C

(

‖∂xwn‖L1
x

+

∫

T

ρnwn dx

)

. (77)

Using Young’s inequality and Proposition 3.4,

‖ρnwn‖L∞

t L1
x

≤ ‖√
ρnwn‖L∞

t L2
x

+ ‖ρn‖L∞

t L1
x

≤ C.

Then taking the supremum over time in (77) and using Proposition 3.1 gives us ‖wn‖L∞

t L1
x

≤ C. Combining
this estimate with Proposition 3.1 leads to the result.

We now make note of some bounds which will be used to prove the remaining estimates in this section.
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Corollary 3.4. Provided γn ≥ 1 we have

‖√
ρnun‖L2

t,x
+ ‖ρn‖L∞

t L2
x

≤ C, (78)

‖wn‖L∞

t,x
+ ‖ρnwn‖L2

t,x
≤ C, (79)

Proof. The first estimate in (78) follows from (71) and the relationship
√
ρnun =

√
ρnwn − √

ρn∂xpn(ρn),
while the second was obtained from (76). The L∞

t,x bound on wn follows from the embedding W 1,1(T) →֒
L∞(T). For the final bound, we have ‖ρnwn‖L2

t,x
≤ t‖wn‖L∞

t,x
‖ρn‖L∞

t L2
x

≤ C, thanks to (78).

3.3 An improved estimate for the potential

We now obtain a uniform bound on the potential πn which is defined by the relation (5). It will be useful
to note that

πn(ρn) =
γn

γn + 1
ργn+1

n . (80)

Lemma 3.5. The potential πn satisfies
‖∂xπn‖L2

t,x
≤ C. (81)

Proof. First note that the continuity equation can be expressed as

∂tρn + ∂x(ρnwn) = ∂2
xπn. (82)

Multiplying by πn and integrating over [0, t] × T and by parts, we find

1

γn + 2

∫

T

−ργn+2
n (x, t) + (ρ0

n)γn+2(x) dx+

∫ t

0

∫

T

ρnwn∂xπn dxds =

∫ t

0

∫

T

|∂xπn|2 dxds.

Since ρn > 0 this reduces to
∫ t

0

∫

T

|∂xπn|2 dxds ≤
∫ t

0

∫

T

ρnwn∂xπn dxds+
1

γn + 2

∫

T

(ρ0
n)γn+2(x) dx. (83)

Note that the assumption (6) implies that the final term on the right hand-side is uniformly bounded in n.
Additionally, using Young’s inequality with the first term on the right hand-side leads to

1

2

∫ t

0

∫

T

|∂xπn|2 dxds ≤ C‖ρnwn‖2
L2

t,x
+ C.

The result follows from (79).

Corollary 3.6. We have

‖ρnun‖L2
t,x

≤ C, (84)

‖σ√
ρnun‖L∞

t L2
x

≤ C, where σ(t) = min(1, t). (85)

Proof. Since ρnun = ρnwn − ∂xπn, (84) follows from (79) and (81). To acquire (85), we multiply the
momentum equation (4b) by σun. Integrating by parts in space and time leads to

∫

T

σρnu
2
n(t, x) − σρnu

2
n(t, 0) dx−

∫ t

0

∫

T

1[0,1](s)ρnu
2
n dxds +

∫ t

0

∫

T

σλn(ρn(∂xun)2 dxds

=

∫ t

0

∫

T

σρnun(∂tun + un∂xun) dxds.

The term on the right hand-side disappears once we integrate by parts and use the continuity equation. Also
notice that σ(0) = 0. Therefore we have

∫

T

σρnu
2
n(t, x) dx ≤ 1

2

∫ t

0

∫

T

1[0,1](s)ρnu
2
n dxds ≤ ‖√

ρnun‖L2
t,x

≤ C,

thanks to (78).

18



Lemma 3.7. Under the assumptions (6)- (8), the potential πn satisfies

‖πn‖L1
t,x

≤ C. (86)

Proof. We begin by defining the function ψn : T × [0, T ] → R given by

ψn(x, t) =

∫ x

0

(
ρ0

n(y) − 〈ρn〉
)
dy −

∫ t

0

ρnun(x, s) ds, (87)

where 〈ρn〉 := |T|−1
∫

T
ρn(t, y) dy. Assuming that T = [0, 1], we can verify some key properties of ψn. Firstly,

we can show that ψn is periodic in space. Indeed, we have ψn(0, t) = −
∫ t

0

ρnun(0, s) ds while

ψn(1, t) =

∫

T

ρ0
n(y) − 〈ρn〉 dy −

∫ t

0

ρnun(1, s) ds = −
∫ t

0

ρnun(1, s) ds

= −
∫ t

0

ρnun(0, s) ds = ψn(0, t).

Next, we can directly compute ∂xψn to find

∂xψn = ρ0
n(x) − 〈ρn〉 −

∫ t

0

∂x(ρnun)(x, s) ds

= ρ0
n(x) − 〈ρn〉 + ρn(x, t) − ρn(x, 0) = ρn − 〈ρn〉,

where we have made use of the continuity equation. Then by virtue of (78) we have ‖∂xψn‖L∞

t L2
x

≤ C. In

order to obtain a bound on ψn, we note that ‖ρ0
n − 〈ρn〉‖L∞

t,x
≤ C from assumption (6) and so

‖ψn(t)‖L2
x

≤ C +

∫

T

(∫ t

0

ρnun(x, s) ds

)2

dx

≤ C + ‖ρnun‖2
L2

t,x
≤ C,

due to Jensen’s inequality and (84). Thus we also have ‖ψn‖L∞

t L2
x

≤ C. From the Sobolev inequality
(31) we can now deduce that ‖ψn‖L∞

t,x
≤ C. We also note that ∂tψn = −ρnun since 〈ρn〉 is constant as a

function of time (and space). Therefore from (84) we have ‖∂tψn‖L2
t,x

≤ C. Next, we define the test function

ζn : T × [0, T ] → R as

ζn(x, t) :=

∫ x

0

(

ψn(y, t) − 1

|T|

∫

T

ψn(z, t) dz

)

dy. (88)

Note that ζn is periodic in space. Using the properties of ψn it is also straightforward to verify that
‖ζn‖L∞

t,x
+ ‖∂xζn‖L∞

t,x
≤ C. We now obtain a bound on ∂tζn. Note that

∂tζn(x, t) =

∫ x

0

(

−ρnun(y, t) + |T|−1

∫

T

ρnun(z, t) dz

)

dy

and so |∂tζn|2 ≤ 2‖ρnun(t)‖2
L2

x
≤ C thanks to Jensen’s inequality and (84). Integrating over space and

time in this inequality gives ‖∂tζn‖L2
t,x

≤ C. Note that ∂2
xζn = ρn − 〈ρn〉 by construction. Multiplying the

continuity equation (82) by ζn and integrating by parts in space and time, we therefore have

−
∫ t

0

∫

T

ρn∂tζn dxds+

∫

T

ζnρn(x, t) − ζnρn(x, 0) dx−
∫ t

0

∫

T

∂xζnρnwn dxds

=

∫ t

0

∫

T

(ρn − 〈ρn〉)πn dxds.
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The absolute value of the left side of the above equation can be bounded independently of n due to the
properties of ζn already established as well as Corollary 3.4. Therefore we find

∣
∣
∣
∣

∫ t

0

∫

T

(ρn − 〈ρn〉)πn dxds

∣
∣
∣
∣

≤ C. (89)

We now wish to extract a bound on the quantity ‖πn‖L1
t,x

. To this end, we define

Sm :=
1 + 〈ρn〉

2

and consider the regions {ρ ≤ Sm} and {ρ > Sm} separately. Firstly, we have that

∣
∣
∣
∣

∫ t

0

∫

T

πn(x, t)1{ρ≤Sm} dxds

∣
∣
∣
∣

≤ C (90)

by the observation that when ρn < Sm < 1, we have πn(ρn) = γn

γn+1ρ
γn+1
n → 0 as n → ∞. This in particular

implies that

∣
∣
∣
∣

∫ t

0

∫

T

(ρn − 〈ρn〉)πn(x, t)1{ρ>Sm} dxds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

0

∫

T

(ρn − 〈ρn〉)πn(x, t)1{ρ≤Sm} dxds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

0

∫

T

(ρn − 〈ρn〉)πn(x, t) dxds

∣
∣
∣
∣

≤ C,

due to (90) and (89). When ρn ≥ Sm, the assumption 〈ρn〉 ≤ ρ̂ < 1 implies that ρn −〈ρn〉 ≥ 1−〈ρn〉
2 ≥ 1−ρ̂

2 >
0. Thus, we have

C ≥
∣
∣
∣
∣

∫ t

0

∫

T

(ρn − 〈ρn〉)πn(x, t)1{ρ>Sm} dxds

∣
∣
∣
∣

≥ 1 − ρ̂

2

∣
∣
∣
∣

∫ t

0

∫

T

πn(x, t)1{ρ>Sm} dxds

∣
∣
∣
∣
,

and so we conclude from this and (90) that for any t ∈ [0, T ],

‖πn‖L1
t,x

=

∫ t

0

∫

T

πn(x, t) dxds ≤ C. (91)

We can improve this bound via a Hoff-type estimate [15, 14], which also takes inspiration from [5].

Corollary 3.8. For any τ ∈ (0, T ), we have

‖πn‖L∞([τ,T ];L1(T)) ≤ C. (92)

Proof. We multiply the momentum equation (4b) by σ(t)ψn, where σ(t) := min(1, t). Integrating by parts
in space and time and simplifying,

−
∫ t

0

∫

T

1[0,1](s)ψnρnun dxds +

∫

T

σ(t)ψnρnun(x, t) dx+ 〈ρn〉
∫ t

0

∫

T

σ(s)ρnu
2
n dxds

= −
∫ t

0

∫

T

σ(s)(ρn − 〈ρn〉)λn(ρn)∂xun dxds.

(93)

Using Corollaries 3.4, 3.6 and the regularity of ψn we obtain

∣
∣
∣
∣

∫ t

0

∫

T

σ(s)(ρn − 〈ρn〉)λn(ρn)∂xun dxds

∣
∣
∣
∣

≤ C. (94)
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Next, we derive the evolution equation for (ρn − 〈ρn〉)πn which reads

∂t [(ρn − 〈ρn〉)πn] + ∂x [(ρn − 〈ρn〉)πnun] + [ρn(ρn − 〈ρn〉)π′
n + 〈ρn〉πn]∂xun = 0. (95)

Multiplying by σ(·) and integrating over space and time,
∫ t

0

∫

T

σ(s)∂s [(ρn − 〈ρn〉)πn] dxds = −
∫ t

0

∫

T

σ(s)(ρn − 〈ρn〉)λn(ρn)∂xun dxds

− 〈ρn〉
∫ t

0

∫

T

πn∂xun dxds.

(96)

The first term on the RHS is bounded independently of n thanks to (94). To bound the final term, we can
integrate by parts to see that

∫ t

0

∫

T

πn∂xun dxds = −
∫ t

0

∫

T

un∂xπn dxds = −
∫ t

0

∫

T

un(ρnwn − ρnun) dxds ≤ C,

thanks to Corollaries 3.4 and 3.6. Therefore returning to (96) we find
∫ t

0

∫

T

σ(s)∂s [(ρn − 〈ρn〉)πn] dxds ≤ C.

Integrating by parts,

σ(t)

∫

T

(ρn − 〈ρn〉)πn(x, t) dx ≤ C +

∫ t

0

∫

T

1[0,1](s)(ρn − 〈ρn〉)πn(x, s) dxds.

Recalling the bound (89) we have for all t ∈ [0, T ]

σ(t)

∫

T

(ρn − 〈ρn〉)πn(x, t) dx ≤ C.

Considering the regions {ρ ≤ Sm} and {ρ > Sm} separately and repeating the same argument which was
seen in the proof of Lemma 3.7, we get

σ(t)

∫

T

πn(x, t) dx ≤ C, (97)

from which the bound follows.

4 The limit passage

The aim of this section is to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. For n fixed, we have proved the existence of a unique regular solution (ρn, wn) to the
system (18a)-(18b) on T × [0, T ] with wn = un + ∂xpn. Multiplying (18a)-(18b) by φ ∈ C∞

c ([0, T ] × T) and
integrating by parts, an integral formulation for the above system is given by






−
∫ t

0

∫

T

ρn∂tφ dxds+

∫

T

ρnφ(x, t) − ρ0
nφ(x, 0) dx +

∫ t

0

∫

T

∂xπn∂xφ dxds =

∫ t

0

∫

T

ρnwn∂xφ dxds, (98a)

−
∫ t

0

∫

T

ρnwn∂tφ dxds +

∫

T

ρnwnφ(x, t) − ρ0
nw

0
nφ(x, 0) dx+

∫ t

0

∫

T

(wn∂xπn − ρnw
2
n)∂xφ dxds = 0. (98b)

The estimates obtained in the previous section imply that there exists a triple (ρ, w, π) such that, up to the
extraction of a subsequence, we have

ρn ⇀
∗ ρ weakly-* in L∞(0, T ;L2(T)), (99)

wn ⇀
∗ w weakly-* in L∞((0, T ) × T), (100)

πn ⇀
∗ π weakly-* in M((0, T ) × T), (101)

∂xπn ⇀
∗ ∂xπ weakly in L2(0, T ;L2(T)), (102)
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Thanks to the estimate (97), the bound ‖∂x(σπn)‖L2
t,x

≤ C and the embedding W 1,2(T) →֒ L∞(T), we also

have
σπn ⇀ σπ weakly-* in L2(0, T ;L∞(T)), (103)

where again σ(t) = min(1, t). The key tool we will need in order to complete the limit passage is the strong

convergence of wn. Since ‖un∂xwn‖L1
t,x

≤ ‖√
ρnun‖L2

t,x
‖ρ−1/2

n ∂xwn‖L2
t,x

≤ C, the momentum equation

∂twn + un∂xwn = 0 implies that ‖∂twn‖L1
t,x

≤ C. This observation along with the chain of embeddings

W 1, 4
3 →֒→֒ L∞ →֒ L1 allows us to use the Aubin-Lions lemma to deduce that

wn → w strongly in L∞((0, T ) × T). (104)

Consequently, the following convergences hold:

ρnwn ⇀
∗ ρw weakly-* in L∞(0, T ;L2(T)), (105)

ρnw
2
n ⇀

∗ ρw2 weakly-* in L∞(0, T ;L2(T)), (106)

thanks to (99). Due to the hypotheses (12) and (13), we have ρ0
n ⇀ ρ0 and ρ0

nw
0
n ⇀ ρ0w0 weakly in L1(T).

Therefore as n → ∞ we have for all t ∈ [0, T ],

∫

T

ρnφ(x, t) − ρ0
nφ(x, 0) dx →

∫

T

ρφ(x, t) − ρ0φ(x, 0) dx, (107)

∫

T

ρnwnφ(x, t) − ρ0
nw

0
nφ(x, 0) dx →

∫

T

ρwφ(x, t) − ρ0w0φ(x, 0) dx. (108)

The convergences (99)-(108) are sufficient to pass to the limit in (98a) and (98b) to obtain (14a) and (14b)
respectively. It remains to verify (14c). Due to the assumption (6) it is easy to see that the limit ρ satisfies
0 ≤ ρ. To show ρ ≤ 1, we proceed in a similar way to that which can be seen in Theorem 4.1. of [19].

Proposition 4.1. The density ρ satisfies 0 ≤ ρ ≤ 1.

Proof. For 1 < p < ∞ such that γn > p, the embedding of Lp spaces implies that

‖ρn‖L∞

t Lp
x

≤ ‖ρn‖
an
p

L∞

t L1
x
‖ρn‖

1−an
p

L∞

t Lγn+1
x

where an = p−γn

1−γn
→ 1 as n → ∞. We now recall the bound

‖ρn‖L∞

t Lγn+1
x

≤ (C(γn + 1))
1

γn+1

which follows from (76). Thus, we have

‖ρn‖L∞

t Lp
x

≤ C
an
p (C(γn + 1))

1−an
γn+1 =: C

an
p C̃n,

and it is easy to see that C̃n → 1 as n → ∞. Using Fatou’s lemma,

‖ρ‖L∞

t Lp
x

≤ lim inf
n→∞

‖ρn‖L∞

t Lp
x

≤ C
1
p .

Taking p → ∞ in this inequality rewards us with

‖ρ‖L∞

t,x
≤ lim inf

p→∞
‖ρ‖L∞

t Lp
x

≤ 1.
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Next, we estimate ∂tρn and adopt the notation for the duality bracket 〈·, ·〉∗ := 〈·, ·〉(W 1,2

0
)∗×W 1,2

0

. For an

arbitrary f ∈ W 1,2
0 (T), we have

〈∂tρn(t), f〉∗ = 〈−∂x(ρn(t)un(t)), f〉∗ = (ρn(t)un(t), ∂xf)L2
x

≤ ‖ρnun(t)‖L2
x
‖f‖W 1,2

0

.

It follows from this that
‖∂tρn‖L2

t W −1,2
x

≤ ‖ρnun‖L2
t,x

≤ C. (109)

We also know ‖∂x(σπn)‖L2
t,x

≤ C and that σπn, ρn converge weakly in L2
t,x to σπ, ρ respectively. We can

therefore invoke a standard compensated compactness argument (see Lemma 5.1 of [18]) to get

(1 − ρn)σπn −→ (1 − ρ)σπ, in D′((0, T ) × T). (110)

On the other hand, we have

(1 − ρn)σπn =
γn

γn + 1
(1 − ρn)σργn+1

n

=
γn

γn + 1

(
(1 − ρn)σργn+1

n 1{(x,t) : 0<ρn(t,x)≤1} + (1 − ρn)σργn+1
n 1{(x,t) : ρn(t,x)>1}

)

=: An +Bn.

It is straightforward to see that An → 0 a.e. as n → ∞. Thanks to Lemma 3.7, we can justify that

‖Bn‖L1
t,x

=

∫ T

0

∫

T

|(1 − ρn)σπn|1{(x,t) : ρn(t,x)>1} dxds

≤ ‖1 − ρn‖L∞

t L1
x
‖πn‖L1

t L∞

x
· µ ({ρn > 1})

≤ C · µ ({ρn > 1}) −→ 0,

as n → ∞, where µ represents the Lebesgue measure. Note that ‖πn‖L1
t L∞

x
≤ C follows from Lemmas 3.5,

3.7 and the embedding W 1,1(T) →֒ L∞(T). Therefore we have that

(1 − ρn)σπn → 0 strongly in L1(0, T ;L1(T)). (111)

Together with (110), this allows us to deduce that

(1 − ρ)σπ = 0 a.e. in T × [0, T ]. (112)

Since σ(t) = min(1, t) vanishes only on a set of measure zero (i.e. on {t = 0} × T), we in fact have

(1 − ρ)π = 0 a.e. in T × [0, T ]. (113)

To conclude the proof of Theorem 1.4, we need to verify that our solution possesses the regularity specified
in (15)-(17). We now check that for any φ ∈ D(T), the function

t 7→
∫

T

ρ(x, t)φ(x) dx

is absolutely continuous on [0, T ]. From (109) and the weak formulation of the continuity equation we have

d

dt

∫

T

ρφ dx =

∫

T

ρuφ′ dx ∈ L1(0, T ).

Therefore we are able to say that

ρ ∈ Cweak(0, T ;Lp(T))

for p ∈ [1,∞). We finally observe that since ‖∂twn‖L1
t,x

+‖wn‖
L∞

t W
1, 4

3
x

≤ C we indeed have w ∈ C(0, T ;W 1, 4
3 (T)) →֒

C([0, T ] × T). This completes the proof.
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A Completing the blow-up lemma

In Section 2, we showed that

sup
t∈[0,T ∗)

‖ρn‖L∞(0,t;H2) + sup
t∈[0,T ∗)

‖un‖L∞(0,t;H2) + sup
t∈[0,T ∗)

‖un‖L2(0,t;H3) < +∞. (114)

In other words, we completed the base step of induction for Lemma 2.6. Recall that for a given integer k ≥ 0
we also introduced the notation

Mn
k ≡ Mn

k (t, ‖ρn‖L∞

t Hk
x
, ‖un‖L∞

t Hk
x
, ‖un‖L2

t Hk+1
x

, γn, En, ρn, (ρn)−1),

to denote an arbitrary function that is increasing with respect to the specified arguments, and which also
satisfies supt∈[0,T ∗) M

n
k < +∞. The inductive step corresponds to the following proposition:

Proposition A.1. Suppose (ρn, un) is a regular solution to (4a)-(4b) on [0, T ∗) with initial data (ρ0
n, u

0
n) ∈

Hk(T) ×Hk(T), where n ∈ N
+ is fixed and k > 2. We assume that

‖ρn‖L∞

t Hk−1
x

+ ‖un‖L∞

t Hk−1
x

+ ‖un‖L2
t Hk

x
≤ Mn

k−2, (115)

Then,
‖ρn‖L∞

t Hk
x

+ ‖un‖L∞

t Hk
x

+ ‖un‖L2
t Hk+1

x
≤ Mn

k−1. (116)

Proof. Taking l = k − 1 in (46), we have

1

2

d

dt

∫

T

|∂k−1
x Vn|2 dx = −

∫

T

∂k−1
x

(

(un +
λn(ρn)

ρ2
n

∂xρn)∂xVn

)

∂k−1
x Vn dx+

∫

T

∂k−1
x

(
λn(ρn)

ρn
∂2

xVn

)

∂k−1
x Vn dx

−
∫

T

∂k−1
x

(
λ′

n(ρn)ρn + λn(ρn)

(λn(ρn))2
V 2

n

)

∂k−1
x Vn dx.

Integrating by parts and introducing commutator notation,

1

2

d

dt

∫

T

|∂k−1
x Vn|2 dx+

∫

T

λn(ρn)

ρn
|∂k

xVn|2 dx

=

∫

T

(

un +
λn(ρn)

ρ2
n

∂xρn

)

∂k
xVn ∂k−1

x Vn dx+

∫

T

[

∂k−2
x , un +

λn(ρn)

ρ2
n

∂xρn

]

∂xVn ∂k
xVn dx

−
∫

T

[

∂k−2
x ,

λn(ρn)

ρn

]

∂2
xVn ∂k

xVn dx−
∫

T

(
λ′

n(ρn)ρn + λn(ρn)

(λn(ρn))2
Vn

)

|∂k−1
x Vn|2 dx

−
∫

T

[

∂k−1
x ,

λ′
n(ρn)ρn + λn(ρn)

(λn(ρn))2
Vn

]

Vn∂
k−1
x Vn dx =:

5∑

n=1

In. (117)

We now estimate I1 − I5. Integrating by parts,

I1 ≤
∣
∣
∣
∣

∫

T

(∂k−1
x Vn)2(∂xun + ∂x(

λ(ρn)

ρ2
n

∂xρn)) dx

∣
∣
∣
∣

≤ ‖∂k−1
x Vn‖2

L2
x

{
‖∂xun‖L∞

x
+ ‖∂x(ρ−2

n λn(ρn))∂xρn‖L∞

x
+ ‖ρ−2

n λ(ρn)∂2
xρn‖L∞

x

}

≤ Mn
k−1‖∂k−1

x Vn‖2
L2

x
.

Noticing that λn(ρn)
ρ2

n
∂xρn = ∂xpn(ρn) and using the well-known Kato-Ponce commutator estimates [10],

I2 =

∫

T

[
∂k−2

x , un + ∂xpn(ρn)
]
∂xVn ∂k−1

x Vn dx ≤
∥
∥
[
∂k−2

x , un + ∂xpn(ρn)
]
∂xVn

∥
∥

L2
x

‖∂k
xVn‖L2

x

≤
(

‖∂k−2
x (un + ∂xpn(ρn))‖L2

x
‖∂xVn‖L∞

x
+ ‖∂x(un + ∂xpn(ρn))‖L∞

x

∥
∥∂k−1

x Vn

∥
∥

L2
x

)

‖∂k
xVn‖L2

x

≤ Mn
k−1 +Mn

k−1‖∂k−1
x Vn‖2

L2
x

+Mn
k−1‖∂k−1

x ρn‖2
L2

x
+ ǫ‖∂k

xVn‖2
L2

x

≤ Mn
k−1 +Mn

k−1‖∂k−1
x Vn‖2

L2
x

+ ǫ1‖∂k
xVn‖2

L2
x
.
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Next,

I3 ≤
∣
∣
∣
∣

∫

T

[

∂k−2
x ,

λn(ρn)

ρn

]

∂2
xVn ∂k

xVn dx

∣
∣
∣
∣

≤
∥
∥
∥
∥

[

∂k−2
x ,

λ(ρn)

ρn

]

∂2
xVn

∥
∥
∥
∥

L2
x

‖∂k
xVn‖L2

x

≤
(∥

∥∂k−2
x (ρ−1

n λ(ρn))
∥
∥

L2
x

‖∂2
xVn‖L∞

x
+ ‖∂x(ρ−1

n λ(ρn))‖L∞

x
‖∂k−1

x Vn‖L2
x

)

‖∂k
xVn‖L2

x

≤ Mn
k−1 + ǫ2‖∂k

xVn‖2
L2

x
+Mn

k−1‖∂k−1
x Vn‖2

L2
x
,

It is also straightforward to verify that

I4 ≤
∣
∣
∣
∣

∫

T

(
λ′

n(ρn)ρn + λn(ρn)

(λn(ρn))2
Vn

)

|∂k−1
x Vn|2 dx

∣
∣
∣
∣

≤ Mn
k−1‖∂k−1

x Vn‖2
L2

x
.

Making use of commutator estimates once more, we have

I5 ≤
∣
∣
∣
∣

∫

T

[

∂k−1
x ,

λ′
n(ρn)ρn + λn(ρn)

(λn(ρn))2
Vn

]

Vn∂
k−1
x Vn dx

∣
∣
∣
∣

= (γn + 2)

∣
∣
∣
∣

∫

T

[
∂k−1

x , Vn(λn(ρn))−1
]
Vn∂

k−1
x Vn

∣
∣
∣
∣

≤ (γn + 2)‖
[
∂k−1

x , Vn(λn(ρn))−1
]
Vn‖L2

x
‖∂k−1

x Vn‖L2
x

≤ (γn + 2)
(
‖∂k−1

x (Vn(λn(ρn))−1)‖L2
x
‖Vn‖L∞

x
+ ‖∂x(Vn(λn(ρn))−1)‖L∞

x
‖∂k−2

x Vn‖L2
x

)
‖∂k−1

x Vn‖L2
x
. (118)

We now note that

∂k−1
x (Vn(λn(ρn))−1) =

[
∂k−1

x , Vn

]
(λn(ρn))−1 + ∂k−1

x (λn(ρn)−1)Vn,

and moreover it is straightforward to deduce that

‖
[
∂k−1

x , Vn

]
(λn(ρn))−1‖L2

x
≤ Mn

k−1‖∂k−1
x Vn‖L2

x
+Mn

k−1‖∂k−1
x (λn(ρn))−1‖L2

x

≤ Mn
k−1‖∂k−1

x Vn‖L2
x

+Mn
k−1.

Thus, we have
∥
∥∂k−1

x

(
Vn(λn(ρn))−1)

)∥
∥

L2
x

≤ Mn
k−1 +Mn

k−1‖∂k−1
x Vn‖L2

x
.

Going back to (118), we then have

|I5| ≤ Mn
k−1 +Mn

k−1‖∂k−1
x Vn‖L2

x
+Mn

k−1‖∂k−2
x Vn‖L2

x

≤ Mn
k−1 +Mn

k−1‖∂k−1
x Vn‖2

L2
x
.

Returning to (117) and using our newfound estimates for I1 − I5, we have

1

2

d

dt

∫

T

|∂k−1
x Vn|2 dx +

∫

T

λn(ρn)

ρn
|∂k

xVn|2 dx

≤ Mn
k−1‖∂k−1

x Vn‖2
L2

x
+Mn

k−1‖∂k−1
x Vn‖2

L2
x

+ (ǫ1 + ǫ2)‖∂k
xVn‖2

L2
x

+Mn
k−1‖∂k−1

x Vn‖2
L2

x
+Mn

k−1‖∂k−1
x Vn‖2

L2
x

+Mn
k−1‖∂k−1

x Vn‖2
L2

x
+Mn

k−1

≤ Mn
k−1 + (ǫ1 + ǫ2)‖∂k

xVn‖2
L2

x
+Mn

k−1‖∂k−1
x Vn‖2

L2
x
.

Thanks to the existence of the lower bound for ρn on [0, T ∗), we have that ρ−1
n λn(ρn) = γnρ

γn
n ≥ γnρn

γn

and thus

1

2

d

dt

∫

T

|∂k−1
x Vn|2 dx+ C

∫

T

|∂k
xVn|2 dx ≤ Mn

k−1 +Mn
k−1‖∂k−1

x Vn‖2
L2

x
, (119)
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where ǫi > 0 are chosen so that C > 0. This choice may depend on n. In particular, we have

d

dt
‖∂k−1

x Vn‖2
L2

x
≤ Mn

k−1 +Mn
k−1‖∂k−1

x Vn‖2
L2

x
.

An application of Gronwall’s inequality gives us

‖∂k−1
x Vn‖L∞

t L2
x

+ ‖∂k
xVn‖L2

t,x
≤ Mn

k−1. (120)

Next, we attempt to estimate ∂k
xun and ∂k+1

x un. Using the expression Vn = λn(ρn)∂xun we have

∂k
xun = ∂k−1

x (λ−1
n Vn) = λ−1

n ∂k−1
x Vn +

[
∂k−1

x , λ−1
n

]
Vn.

Then using commutator estimates,

‖∂k
xun‖L2

x
≤ ‖λ−1

n ‖L∞

x
‖∂k−1

x Vn‖L2
x

+ ‖∂k−1
x (λ−1

n )‖L2
x
‖Vn‖L∞

x
+ ‖∂xλ

−1
n ‖L∞

x
‖∂k−2

x Vn‖L2
x
. (121)

It is important to mention that by induction and the Sobolev inequality (31) one can show that for j ≥ 1,

‖∂j
xλn(ρn)‖L∞

t L2
x

+ ‖∂j
xλn(ρn)−1‖L∞

t L2
x

≤ Mn
j−1 +Mn

j−1‖∂j
xρn‖L∞

t L2
x
. (122)

Then going back to (121) and using (120) and the inductive hypothesis (115) ,

‖∂k
xun‖L∞

t L2
x

≤ Mn
k−1 +Mn

k−1‖∂k−1
x ρn‖L∞

t L2
x

≤ Mn
k−1. (123)

Let’s turn our attention to ∂k+1
x un. In a similar fashion,

∂k+1
x un = λ−1

n ∂k
xVn +

[
∂k

x , λ
−1
n

]
Vn (124)

and so repeating the commutator estimates in the previous argument leads to

‖∂k+1
x un‖L2

x
≤ Mn

k−1‖∂k
xVn‖L2

x
+Mn

k−1‖∂k
x(λn)−1‖L2

x
+Mn

k−1‖∂k−1
x Vn‖L2

x
.

Squaring and integrating in time,

‖∂k+1
x un‖2

L2
t,x

≤ Mn
k−1‖∂k

xVn‖L2
t,x

+Mn
k−1‖∂k

xρn‖L2
t L2

x
+Mn

k−1‖∂k−1
x Vn‖L2

t,x

≤ Mn
k−1 +Mn

k−1‖∂k
xρn‖L2

t L2
x
.

(125)

Note that we are not yet able to bound ‖ρn‖L2
t Hk

x
. We now recall (45), which reads:

1

2

d

dt
‖∂k

xρn‖2
L2

x
≤ C

(

‖∂k
xun‖L2

x
‖∂k

xρn‖2
L2

x
+ ‖ρn‖L∞

x
‖∂k

xρn‖L2
x
‖∂k+1

x un‖L2
x

)

. (126)

Thanks to (125) and (123), we have

1

2

d

dt
‖∂k

xρn‖2
L2

x
≤ Mn

k−1‖∂k
xρn‖2

L2
x

and therefore Gronwall’s inequality gives us

‖∂k
xρn‖L∞

t L2
x

≤ Mn
k−1. (127)

Returning to (125) and using this estimate also yields

‖∂k+1
x un‖L2

t,x
≤ Mn

k−1. (128)

Adding (123), (127) and (125),

‖∂k
xun‖L∞

t L2
x

+ ‖∂k
xρn‖L∞

t L2
x

+ ‖∂k+1
x un‖L2

t,x
≤ Mn

k−1.

Combining this with the inductive hypothesis (115), we have shown that

‖ρn‖L∞

t Hk
x

+ ‖un‖L∞

t Hk
x

+ ‖un‖L2
t Hk+1

x
≤ Mn

k−1. (129)

Note that in all of our estimates the notation Mn
k−1 was used to denote a function of time satisfying

supt∈[0,T ∗) M
n
k−1 < +∞. Therefore the right-hand side of (129) also satisfies this condition. The proof

is now complete.
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We conclude with a proof of a generalised Poincare inequality, similar to Proposition 7.2 of [7].

Proposition A.2. There exists C ≡ C(M,K) > 0 such that

‖u‖L1
x

≤ C

(

‖∂xu‖L1
x

+

∫

T

r|u| dx
)

(130)

for any u ∈ W 1,1(T) and any non-negative r ∈ L2(T) satisfying

0 < M ≤
∫

T

r dx < +∞,

∫

T

r2 dx ≤ K, (131)

for some constants M,K > 0.

Proof. We proceed by contradiction. If the proposition is false, then there exist sequences {un}∞
n=1, {rn}∞

n=1

such that ‖un‖L1
x

= 1 (after suitable renormalisation), each rn satisfies (131) and

‖∂xun‖L1
x

+

∫

T

rn|un| dx ≤ 1

n
. (132)

The assumption (131) implies that there exists r ∈ L2(T) such that up to a subsequence, rn ⇀ r weakly in
L2(T). It is also easy to see that ‖un‖W 1,1(T) ≤ 2. Therefore due to the compact embedding W 1,1 →֒→֒ L∞

we have in particular that un → u strongly in L2(T). From (132) we infer that ∂xun → 0 strongly in L1(T).
Thus we may argue that un → u strongly in W 1,1(T) with ∂xu = 0. Passing to the limit in the inequality
appearing in (132) and using the weak and strong L2 convergences of rn and un respectively, we find that

∫

T

r dx = 0, (133)

which contradicts (131).
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