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Abstract

We study the Aw-Rascle system in a one-dimensional domain with periodic boundary conditions,
where the offset function is replaced by the gradient of the function p;;, where v — co. The resulting
system resembles the 1D pressureless compressible Navier-Stokes system with a vanishing viscosity coef-
ficient in the momentum equation and can be used to model traffic and suspension flows. We first prove
the existence of a unique global-in-time classical solution for fixed n. Unlike the previous result for this
system, we obtain global existence without needing to add any approximation terms to the system. This
is by virtue of a n—uniform lower bound on the density which is attained by carrying out a maximum-
principle argument on a suitable potential, W, = p;, '0zw,. Then we prove the convergence to a weak
solution of a hybrid free-congested system as n — oo, which is known as the hard-congestion model.
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1 Introduction

1.1 The Aw-Rascle system

This paper aims to study a singular limit pertaining to the following generalisation of the Aw-Rascle B] and
Zhang [22] system:

Ao + O (pnun) = 0, in Q x [0, 00), (1a)
O (pnwn) + Oz (prwpu,) =0, in Q x [0,00). (1b)

We take 2 = T to be the one-dimensional torus, which we identify with [0, 1]. This system is to be solved for
pn and wu,, which represent the density and the (actual) velocity respectively. The quantity w,, that appears
in the above system is known as the desired velocity and differs from the actual velocity u,, by a cost (or
offset) function C,,, which typically depends on the density p,,. More precisely, w, is defined by the relation

Wy, = Un + Chr(pn)- (1c)

The cost function may be interpreted as a quantity which measures the difficulty of moving in a certain
direction. In this paper, we consider the case where our cost function is the gradient of a function p,(p,),
ie.
Crn(pn) = Ozpn(pn),

where

pnlpn) = P (2)
Here, {7,},—, is a sequence of positive real numbers satisfying v, — oo as n — co. We note that the
singularity of this function only appears when considering the limit as n — oo; in the region where p,, > 1,
we have p,(pn) — +00 as n — oo. Our goal is to determine the existence of a solution to the above system
for n fixed before investigating the limiting behaviour of the solution as n — oo.
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1.2 Background and motivation

The derivation and mathematical analysis of traffic flow models has been an active area of research over the
past hundred years, with some notable early works devoted to hydrodynamic models being [17, 111, |22, [13].
The Aw-Rascle model, which is given by ([Tal)-([Id) with a scalar offset C'(p) = p?, v > 1, is one of the most
famous examples of such models. The derivation of this model from the ‘Follow-The-Leader’ microscopic
model for one-lane traffic can be seen in [2]. Much analysis has been devoted to the Aw-Rascle model with
different choices of offset functions and domains over the past twenty years. We refer to [7, 16, 12, I8, [16]
for some recent examples. It is known that although the model proposed by Aw and Rascle in |3] was an
improvement upon previous iterations of traffic flow models, the system still exhibits some non-physical
behaviour. For instance, solutions are assumed to adhere to the maximal density constraint p < p initially
but proceed to violate it in finite time. In order to overcome these unrealistic behaviours, Berthelin et al
|4] suggested to study the asymptotic limit of the system (Tal)-(Ib) accompanied by a singular scalar offset
function p,(p,) instead of p7. A recent paper by Chaudhuri et al [7] followed this suggestion and studied
the case where the offset function is equal to the gradient of a singular function, i.e.

oY
We = Ue + awpe(pe)u pe(pe) = emu

in a one-dimensional domain with periodic boundary conditions. With this choice, the density is now
prevented from surpassing a maximal threshold p = 1. The authors go on to study the asymptotic limit
€ — 0 which is known as the ’hard-congestion limit’, and establish the existence of solutions (p,u, ) to the
limiting system

Op + 0z (pu) = 0, (3a)
O(pu + Ogm) + Op((pu + Opm)u) = 0, (3b)
0<p<1, (1—p)r=0, 720, (3¢)

where 7 is the limit of some singular function of p.. This is known as the hard congestion model. The
interest in this system, which is an example of a free-congested system, emerges from the observation that
it repairs the aforementioned issues with the classical Aw-Rascle model. In particular, from (Bd) we notice
that the potential 7 obtained in the singular limit is zero except when the density is maximal, where it acts
similar to a Dirac measure. This reflects an important characteristic of traffic flow, which is that drivers do
not typically slow down unless there is congestion. The authors of [7] prove two main results for their system;
the existence of a unique global strong solution for € fixed, and the existence of a subsequence converging to
a solution of the hard-congestion model as € — 0.

Our paper builds upon the work of Chaudhuri et al |7] and attempts to prove analogous results for the
case where the singular offset function is of the form py(pn) = pJ~. One particular piece of motivation for
this problem is that our form of offset function makes it easier to perform numerical simulations (such as in
[20, 11, [21])) and investigate the behaviour of solutions than the model in [7], for example. Additionally, our
results could be used in conjunction with those in |7] in order to analyse the Aw-Rascle system with a more
complex offset function and/or in the multi-dimensional case. One example of a multi-dimensional study of
the Aw-Rascle system can be seen in a recent paper by Chaudhuri, Gwiazda and Zatorska [6].

For our analysis it will be useful to note that if we fix n with this choice of cost function, the system
(Ta)-({I1) can be formally rewritten as the one-dimensional compressible pressureless Navier-Stokes equations

Otpn + Oz (prun) =0, in T x [0, 00), (4a)
Ot (pntin) 4 0n(ppt2) — 0x (A (pn)Opun) =0, in T x [0,00), (4b)
where pp, u, : T x [0,00) = R are to be found and
Mpn) = Pipn(pn)s Pulpn) = P37, Yn € (0,00).

The systems (Ia)-(ID) and (@al)-(@D) are equivalent for sufficiently regular solutions, and in particular for
the class of regular solutions which we will consider. Interestingly, a similar approximation of a two-phase



system was carried out by Lions and Masmoudi [19], where the authors consider a compressible Navier-Stokes
system with a pressure m = p” and study the limit v — oo. The presence of a constant viscosity coefficient
allows the authors of |[19] to control the gradient of the velocity Vu which gives way to a crucial uniform
bound on the singular pressure. Although our system is pressureless, we note that the potential 7,, which is
defined through the relation

T, (Pn) = pupy(pn) = TP, (5)
plays a similar role to the pressure in the classical compressible Navier-Stokes model. We need to control
this term in order to obtain the switching relation (Bd) in the limit system. However, the presence of a
degenerate viscosity coefficient in our system means that we cannot bound the potential in the same way
that the pressure was bounded by the authors of |[19]. For this reason, we need to carry out an improved
potential estimate.

1.3 Main results

In this paper we adopt the Bochner space notation X;Y, := X (0,T;Y(T)) for appropriate function spaces
X and Y. We first provide a precise definition of regular solutions to the system (@al)-(4hl), which are also
classical.

Definition 1.1 (Global regular solution). Suppose n € Z* is fized, T > 0 and p, is given by [@)). Assume
further that (p2,u0) € HY(T) x H*(T) and 0 < p2(-). The pair (pn,un) is called a regular solution to
(@)_@) on [OvT] Zf

pn € C(0,T; HX(T)), u, € C(0,T; H*(T)) N L*(0,T; H*(T)),

and (pn, un) satisfy (@)-@R) in Tx[0,T]. The pair (pn,un) is known as a global regular solution to (4al)-(4Dhl)
if it is a regular solution on [0,T] for any T > 0.

We will prove two main results. Firstly, we will assert the existence of a unique global regular solution
in the following result:

Theorem 1.2 (Global existence of a unique regular solution for fixed n). Assume (p2,u) € H*(T)x H*(T)
and that n € Z" is fized. Further assume that 0 < p2(x) for x € T. Then there exists a unique pair (pn,un)
with initial data (p,ul) which is a global regular solution to ([Fal)-(@D) in the sense of Definition 11l

n
Remark 1.3. The H* regularity on the initial data mentioned in Definition[I1l and Theorem [T is required
in order for us to obtain a lower bound on the density. Our strategy demands that on the level of local-in-time
solutions the desired velocity w,, € CtHf;’, which itself requires pyn, u, € CtH;L. To work with such solutions
using Theorem [2] (local existence of solutions), we must take (p2,u®) € H*(T) x H*(T).

We then assert the existence of weak solutions to the limiting system in the following theorem:

Theorem 1.4 (Global existence of a weak solution to the hard-congestion model). Assume (p2,ud) €
H*(T) x H*(T) and the existence of constants C,a, p > 0 independent of n such that

1
0<pl(z)<1+—, VreT, (6)
Tn
0<a< |1r|-1/p2<x> do<p<l, (1)
T

0
Oyw,,

Ve
Then, the solution (pn,un) established in Theorem[1.F satisfies the following uniform bounds for ~, > 1 and
7€ (0,71]:

<C. (8)

LZ

I/ pwp Lz +

IIwnIILth;,% <C, (9)
||7T71||L,{,m + ”aaﬂTnHLjm <C, (10)
70l Loo (1320 (T)) < C. (11)



where C' > 0 is independent of n. Suppose additionally that
P2 — p° weakly in L*(T), (12)
p2w? — p%w® weakly in L*(T). (13)

Then there exists a subsequence (pn,wn,T,) of solutions to (@al)-(dR) with initial data (pO,w?) which con-

verges to (p,w, ) solving:

t t t
—/0 /Tpam d:vds—l—Ap(x,t)qS(;v,t) — p°(z)¢(x,0) d:v—l—/o /Tamwam dxds:/o /pram(b dxds, (14a)

t t
—/ /pw(?t(b dxds + / pwé(z,t) — pPw’(z)(x,0) dr +/ /(w@mﬂ' — pw?)dy ¢ dxds = 0. (14b)
o Jr T o Jr
0<p<1, 1—-pm=0, #>0. (14c)

with initial data (p°,w®). Additionally, our solution possesses the following regularity for p € [1,00) and
T€(0,T):

0 € Cuear(0,T; LP(T)) N L°°((0,T) x T), (15)
w e C(0,T;WhH3(T)), (16)
€ M((0,T) x T) N L>([r, T]; L*(T)) N L*([r, T}; L*(T)). (17)

Remark 1.5. The upper bound in assumption @) and the bound on \/pOw® in @) are required to obtain
important uniform bounds from the additional energy estimate (Lemma[24), and also to obtain the bound
). The second bound appearing in @) is a crucial part of our argument since it allows us to uniformly
bound O, w, and even Oyw, n Lf)m spaces. The lower bound on the mean value in (@) is used to apply the
Poincare inequality which gives us a uniform L°LL bound on w,. Lastly, the upper bound assumption in

@) is used to derive the bound (IIJ).

Remark 1.6. If we additionally assume that there exist constants ¢,C > 0 independent of n such that

Opw?
0<ce< infp?” ess sup IO" <C,
T T
n
then as a consequence of the proof of Theorem[L.2 we can show that the sequence of densities p, is uniformly
bounded away from zero, i.e. 0 < ¢ < pn. As a result the density for the limiting system inherits the same
lower bound.

Remark 1.7. Note that the limiting system ([4al)-(I4d) is slightly different in appearance to that of [4],
since our system is written in terms of the desired velocity w rather than the actual velocity u. One can
also notice the assumptions on the initial data [@)-@) are weaker than those appearing in [1], in the sense
that we do not assume any control over 9,70 or the singular quantity M\, (p2)0,ul. This is made possible
through our decision to work with the w—formulation rather than the u—formulation. It is also worthwhile
to mention that if we define the function u = w — p=10,7 where p~10,m is the weak limit of p,, 0,7, the
limiting system is equivalent to (I&)-{D) (without the index n) in the distributional sense, accompanied by
the condition (I4d).

The global existence result given by Theorem is an improvement upon the work of [7] where the
authors added an approximation term to the system in order to derive an (e dependent) lower bound on the
density. Our derivation of the lower bound involves identifying a suitable potential for the Aw-Rascle system
W, := Oywy/pn and carrying out a maximum-principle argument to deduce that the maximum of W, is a
decreasing function over time. This approach takes inspiration from [9], [5] and shows that an approximation
term is not necessary in order to obtain a (uniform) lower bound on the density for a generalised Aw-Rascle
system. In fact, this argument also gives us control over the quantity d,w, which is essential for the proof



of Theorem [[4l Another difference between our paper and previous works on the Aw-Rascle system [, l6]
is that we pass to the limit in the so-called *w—formulation’

atpn + 6m(pnwn - amﬂ-n) =0, (183)
Ot (prwn) + g (pnw?) — Oy (wndpmy) = 0, (18b)

rather than the 'u—formulation’ seen in (@al)-(4b)). The existence of a lower bound on the density (obtained
in the proof of Theorem [[.2) makes this formulation more convenient, since we may divide by p, in the
momentum equation (I8H) and directly obtain energy estimates on d,wy,. In |7] where the u—formulation
was used instead, the authors were required to assume that the singular quantity A,0,u, is uniformly
bounded at time t = 0 to complete the limit passage. We do not need to make such an assumption by
working with w,,. It is worthwhile to note that in the distributional sense, our limiting system in w—form is

(compare this with ([Ba)-(3d)):

Op + Oz (pw — 9, ) = 0, (19a)
Ot (pw) + 0 (pw?) — O (wdym) = 0, (19b)
0<p<1l, (1=pr=0, 7>0. (19¢)

1.4 Overview of the paper

The paper is comprised as follows. In Sections 2.1/2.2 we make note of a local existence result and three key
energy estimates. These allow us to obtain an upper bound of the density after which we prove a 'blow-up’
lemma in Section 2.4, which is analogous to what can be seen in Theorem 1.1 of [9]. The blow-up lemma
tells us that provided the density is positive on a domain T x [0,T), our local solution can be extended
past time T'. In Section 2.5 we use this result to carry out a maximum-principle argument on the potential
W, := 0wy / pr in order to show that the density p,, is bounded from below on T x [0, T]. This implies that
our solution exists globally, thanks to the blow-up lemma.

The second half of the paper (Sections 3 and 4) is dedicated towards the limit passage. We take advantage
of the transport equation satisfied by w,, and W,, to uniformly bound w,, in LW 2P, which eventually leads
to strong convergence on w,. This is particularly useful when passing to the limit in the non-linear terms
appearing in (I8H). A key obstacle standing in our way at this point is acquiring a bound on m,, and 9,m,.
Using the same strategy as the authors of [7] which is to test the momentum equation with an antiderivative
of the density will not work for us, since our assumptions on the initial data are considerably weaker, and so
we have access to fewer uniform bounds. In particular, we have no LY estimates on the momentum p,,u,,
at this stage. This prevents us from bounding many of the terms which would appear in the momentum
equation after testing. To overcome this, we take a very intricate choice of test function in the continuity
equation which gives us a L%@ bound on m,. This delicate estimate is what allows us to converge towards
a weak solution even with our relatively weak assumptions on the initial data. The last uniform bound
we collect is a slightly stronger local-in-time estimate for 7, that is needed to derive the switching relation
(1 — p)m = 0 for the limiting system. The uniform bounds which we obtain for 7, are weaker than those
appearing in [7], which is to be expected. Nonetheless we show that it is still possible to obtain a weak
solution to the limiting system.

2 Existence of a unique global regular solution for fixed n

2.1 Local existence

The existence of a unique local regular solution for fixed n can be shown in a very similar way to Proposition
B.1in [9]. The full details of the proof are omitted from this paper.

Theorem 2.1 (Existence of a unique local regular solution). Assume (po,uo) € H*(T) x H*(T), k > 1 and
that ro = mi%rl po > 0. Then there exists Ty > 0 (depending solely on ro and the initial data) and a unique
TE

solution (p,u) to @) for t € [0, To] with initial data (po,uo) such that
pEe O(Oa TO; Hk(T))a u € C(Ov TO; Hk(T)) n LQ(Oa TO; HkJrl(T))



Additionally, we have that p(x,t) > % for each (x,t) € T x [0, Tp].

Starting with some initial data (p%,u%) € H*(T) x H*(T), we may take k = 4 in Theorem 1] to obtain
the existence of a solution (p,,, u,) to (@a)-([Lh) on [0, To] for some Ty > 0, where n € Z* is fixed. Let us now
denote by T* the maximal time of existence of our solution (p,,u,). The purpose of this section is show
that our solution can be extended to one that is defined globally in time.

2.2 Energy estimates

In this subsection, we assume that (p,,u,) is a regular solution to (@) on some time interval [0, 7] and that
pn > 0o0n T x [0,T]. Our aim is to establish three uniform in time energy estimates which we will need in
order to extend our solution to one that is defined globally in time. Our first two estimates are classical; the
first is a consequence of the conservation of mass.

Lemma 2.2 (Conservation of mass). Assume that (pn,un) is a regular solution to ([@a))-{@L) on the time
interval [0,T] and additionally that p,(-,t) > 0 on this interval. Then,

lon (@)L = P52, (20)
——
=:E9
for allt €10,T].
The next energy estimate is derived from the momentum equation upon multiplying by w,, and integrating
by parts.

Lemma 2.3 (Basic energy). Assume that (pn,un) s a regular solution to {@) on the time interval [0, T] and
additionally that p,(-,t) > 0 on this interval. Then,

||\/pnun||2Lt°°L§ +2v )‘n(pn)awunH%ng =l pgu%”%i (21)
Bl
for all t € [0,T). o

The final estimate in this section provides us with a bound on 9, p,, (p» ). Here, it is convenient to introduce
the notation

1
Hy,(pp) = ———ppntt. 22
(pn) P L (22)

Lemma 2.4 (Additional energy). Assume that (pn,un) is a reqular solution to @) on the time interval [0, T)
and additionally that p,(-,t) > 0 on this interval. Then,

1
IAmwal sz + 1 Halon) ey + 5 IVAn0epn(on) 2302 < (T +2) (VoS35 + 1Ha(6)l122 ) - (23)

=:E2

Proof. For regular solutions in the sense of Definition [1] (@) is equivalent to
O (prwn) + Ox(pnwpuy,) =0, in T x [0, T].
Multiplying this equation by w, and integrating by parts, it is straightforward to show that
IvPrwn |z < IV phwpllze- (24)
Substituting wy,, = u, + 0zpn(prn) into the mass equation, we get
O + Ox(pnwn) — Oz (PnOzpn(pn)) = 0,

in T x [0, T]. Multiplying this equation by H},(pn) = pn(pn), integrating over T x [0, ¢] where ¢ € [0,T] and
using integration by parts leads to

[ Hon(®) = Ho(o?) do - VFapa0) sz = [ [ @apalpn))pu dos. (25)
T 0 T



Using Young’s inequality,

t
1 1
| [@patonpen deds < S1VE0pu oz + 51 Vw0

Thus, returning to (28) and taking the essential supremum over all ¢ € [0, T], we have

1 1
[ Hn(pn)llzgers + §||vpnazpn(Pn)||%gL§ < [ Ha(on)llzs + EHVinnH%fLi'

Adding (22) to both sides of this inequality and using the estimate ||\/ppwyllrz < T||\/prwnllLerz gives
us the final result. O

2.3 Estimating the density from above

We now obtain an upper bound for the density.

Lemma 2.5. Suppose (pn,uy) is a reqular solution to {#al)-@L) on [0,T] and additionally that p, > 0 on
[0,T]. Then,

pu(t;2) < (C(m + 1)(T +5)En) 77 =, in T x [0,T),

where C' > 0 is independent of n and
By = Ep + Ey + Ep = [Ip0 |2 + 1Ve0up 22 + (1 p%wn 22 + [1Ha(p5) £2)-
Proof. Tt follows from the energy estimates ([2I)), ([23) and the triangle inequality that

IVPrOepapn)l 12 = I1VPn(wn = un)liz 12 < (IvBmwnllip 2 + lvonunliperz)

< (T +3)E,,

(26)

where C' > 0 denotes an arbitrary constant independent of n and 7. Using the definition of p,,, we infer that

aacHn = (Vn)_lpnampn(pn)

and so by virtue of Young’s inequality and (26]),

||8mHn||Lr°°L}v < (2'771)71 €ss sup </ pn dx + / pn(ampn(pn))z dCC)
T T

t€[0,T]

= @)™ (Ileallzzry + 1VPrOapnon) 3012

_ (T +49E,

S . <(T+4)E, (27)

for n sufficiently large such that v, > 1/2. We also know from Lemma 24l that ||Hy| =1 < E, and so one
can deduce from (Z7) and the embedding W' — L that
|Hollz, < C(T +5)E,,

where C' > 0 arises due to the aforementioned embedding and is a constant independent of n and T'. Recalling
the form of H,, from (22]), this implies

1
mp?{ﬁl <C(T+5)E,,

from which the result follows. O



2.4 A blow-up lemma

We wish to prove the following result:

Lemma 2.6 (Criteria for blow-up of regular solutions). Suppose (pn,un) is a reqular solution to (4al) - ([@D)
on [0,T*) with initial data (p2,u0) € H¥(T) x H*(T) where k > 2. Then provided that

= inf  minp,(t,z) > 0, 28
Pn tefg}T*)glelgrlp( x) (28)

we have that

sup ||pnllLoc(0,6,m%) +  Sup
te[0,T*

lunllLoo 0,60y + SUD  |[un || L2 0,401y < +00, (29)
te[0,T*) te[0,T*)

)

and therefore the solution can be extended to a larger time interval [0,T), where T > T*. In other words,
the solution does not lose regularity unless the density reaches 0 somewhere in the domain.

Remark 2.7. The extension of the solution past T* can be justified as follows. Thanks to 29)), the pair
(Pn,un) admits a limit as t /T and the left-sided derivatives satisfy the system at t = T*. Since we
have pp(T*,-) > 0, we can use the local existence result from Theorem [Z] to obtain a unique solution on

[T*,T* +¢€) for some € > 0. The extension is then given by the concatenation of the solutions on [0,T*] and
[T*,T* +¢).

Our proof is done by induction with respect to the regularity parameter k. The base step corresponds to
showing that

sup |lpnllzec(o,.:52) + Sup  |unllpoe(o.:52) + SUp  |unllz2(0,4,m53) < 400
te[0,T) te[0,T*) te[0,T*)

provided (p2,u2) € H?(T) x H?(T). This is the goal of the current subsection. We remark that this
assumption on the initial data allows us to deduce from Theorem 2] (existence of local solutions) that our
solution satisfies

pn € C(0,T*; H*(T)), u, € C(0,T*; H*(T)) N L*(0, T*; H*(T)),

which allows us to justify the computations which will follow. The inductive part of the proof is deferred to
Appendix A.

2.4.1 Analysis of the singular diffusion V,,

We first define the function

and establish some basic properties in the form of the next two propositions. The function V,, corresponds
to the ’active potential’ which was first introduced in [|9]. The authors of [9] used the active potential to
prove higher order regularity estimates for strong solutions to their system, which shares similarities with the
system we are considering for n fixed. The authors of 7] also made use of this function to prove higher-order
regularity estimates for strong solutions for the Aw-Rascle system with a singular pressure. We follow a
similar procedure. Firstly, let us find the equation satisfied by V,.

Proposition 2.8 (Equation for the singular diffusion). Let n € NT. Suppose that (pn,uy) is a regqular
solution with k = 2 (in the sense of Definition (1)) to @al)-{@h) on T x [0,T] with initial data (p°,u%) €
H?(T) x H*(T) and p, > 0 on [0,T]. Then, V, := Ap(pn)Osun satisfies the following equation almost
everywhere in T x [0, T]:

)\n n )\n n )\I n )Pn )\n n
Pn Pn (An(pn))
Proof. For the sake of brevity we refer the reader to Lemma 3.7 of [7] for a complete proof. O



We now prove a first regularity estimate for V,,. In what follows ¢; > 0 will be used to denote the
constants arising from an application of Young’s inequality where the index i is used to distinguish between

the different applications of Young’s inequality. We also recall the Sobolev inequality
1 1
lallzoery < lealZagry 10wl Faqry + Nl zcry, ¥ u € HY(T).
Under the assumptions of Proposition 2.8 we have the following result.
Proposition 2.9. V,, satisfies
(AR ATRA

ngﬂmﬁ€WpQQT+xmmM§)(QT+Oﬁmwm%):vl

and )
Vallez | < (9a(@a)" T En)?,

where C'3 is a positive constant depending on n and
Gy = Cl('}/n,p_n, ||R||L,°°L§7En)a Cs = O2('Yn,p_n)7 Cs = O(Fynap_n)

Proof. Multiplying B0) by V,, and integrating by parts leads to

/|V | da +/ n(/n )(a V)2 d —/VnﬁmVnM d:c—/unVn[)an dx
2dt T Pn T
A, (pn)pn + A (Pn 3.4
- v I
/qr (Cin(pn)? Z :
Defining R := p,, 0, \n(pn), a direct computation reveals that R = v, (v, + 1)0:pn(pn), and so by (Z6)
[Rllpserz < 1 1) )(T—i— 3)En,,

13
where E,, ;== EQ + E! + E2. We now estimate I; — I3. Using the Holder and Sobolev inequalities,
1 1
L < Rl 0aVall 2 Vall e < 10aVallea (IVallZ3 192Vl 7 + 1Vallzz ) IRl 2.
Applying Young’s inequality twice then gives us
2 1 2 3 3 2
I < a9 Vall7s + ZHRHLZ (||vn|| 2 10:VallF + Va2 )

< (61 +62)||(9 Vi ||L2 + —

/ Uy, Vi Ox Vi,
T

Due to the Sobolev inequality (3T),

1
T6e ||R||L2||V iz + 5 5, IVallZz 1 RIZ: -

Next

)

1

I, < -
2= 463

< NunllzelVallz2ll0:Vall e < eslloaValZs + —llunlZee IVallZs-

3
lualld < oz 9otz + unliZs < SlunlEs + 3 1000nl2s
< 2\l +1H L e
R
< g VPl ¥ 3 | gl 1722

IN

3 o o
o IVPntnlZz + 75 %o =" [VallZz-
n

(31)



Therefore,
I < 3]10:Vall7z + (e3pn) ™ EnlVallzz + 4y espn ™ ) 7 I Vall 22
Moving onto I3, we first remark that

/\;z(pn)pn + /\n(pn) _ In Tt 2
(An(pn))? oyt

Then using the Holder, Sobolev (BIl) and Young’s inequalities,

Yn + 2 2 Yn +2 2 i 3
I3 < WHVnHL?HVnHLg < TP (||Vn|\ig”5zvn||ig + ||Vn|\Lg)
+2 _4 10
< S (P IVAE + clloavalts +1Valhs).
nrFn

By two further applications of Young’s inequality,

Yn t+2

I3 < —
fynp_n’Yn'i‘l

IN

_4 _ 16
(2 WVali3s + €d10aVallZe + (e0)~ ¥ IVallde )
where we have used the following observation due to Young’s inequality:
10 a2 1 2
IVl = IValPIVall® < SIVall® + —HV I < IVall® + gIIVnH4-

Assembling our estimates for I; — I3, we have

An(pn
|VHL§+/ p(p)(ﬁmV) d$<(€1+62+63+64)”8V||L2+162
T n

IRIZ: Va2 Sy HV 72 IRIZ:
+ (e3pn) T Enl[VallZz + (4rmespn ™ ) 7 | Vallza

Yn +2 16
2 (ki + ellaVals + () ¥ IValls)

Observing that p; ' X (pn) = Ynpl™ > Ynpn ™™ and simplifying the RHS of the above inequality, we have

1d
2dt”v HL2 + (npn" — €1 — €2 — €3 — 1) 10V, HLz
_18
< Va2 ”R“%;’OLg HRH%goLg n E, " Yn + 2 (Yn +2)e, ® E, Va2
< L2 16632 2€1 €300 Yapn Tt Y Y Aypeap ] nllzz -
Choosing ¢; > 0 small enough (possibly dependent on n), we have
1d )
s ZVallta + Cl0:Vall3: < IVallZz {C1 + CallValZ2 } (36)
where
|z | MBIz | B Yn +2 (1 +2); * E 1
C:_ ~ n O:: n 4 n O::_nn'}’n
1 16€2e, 2¢1 + €3Pn + VnpnIn T 2 V1 Aynespn =1 3= gInPn

An application of Gronwall’s inequality yields

1
SVl 1z < IVa O3z ex0 (O + CallVal3; ).

10



Exploiting this inequality in (B8] leads to

L L Vallzs + G 10Vl
< Va2 exp (AT + CalVall2 ) {7 + CallVaO) 7 exp (1T + CollVal2 ) }
Integrating in time and simplifying leads to [32]). To finish, we notice that due to (21,
IVals = 1o @etunlzy . <702 [ An (o) @stun) 1y < up B
O

The previous result allows us to deduce some regularity estimates on wu,, and p,. In the remainder of this
section we denote by M}’ an arbitrary function which satisfies

My = M]?(t, ||pn||Lf°H’;v ||un||Lf°H§7 ||un||Lng’j+1a7n7 Envp_na (p_n)_l)a s[up )MI? < +o0.
te[0,T

Corollary 2.10. We have that

1. Ozuy, is bounded in LIL% with

I0sualltns < —=2 . (37)

2. Ogpuy, is bounded in L3 L2 with
[0ztin|lLsorz < # < Mgy (38)

3. Oppn is bounded in L L2 with
10upnllLoerz < Vi tpn® 7" En < M. (39)

4. 0%uy, is bounded in LZL2 with
l2ualzez < ——z (10:Vallzzzs + 10w 22 00rnly (W02l + 10 Vil 1222))

< My

(40)

Proof. The first bound follows from (ZII). For the second bound, we use the relationship V;, = Ay, (pr )0z un
to estimate

1 Vi
Vallzoore < AR [Vallpgerz <
nHFn

1
1stinll sz < HA—

(pn)
For the third estimate, we first note that from (2I)) and (23], we have
vPrOepn(pr)ll Loz = [[VPn(wn — un)lzeorz < [[VPnwnllLserz + [[vPnunl Lsor2

< IVehupllZz + IV ehwnlliz < B

Le® Y
t,x rn

On the other hand,
w—% 1
||\/pn5'mpn(0n)||Lt°°Lg = |Ynpn 2azpn||Lt°°L§ 2 P2 ||5'mpn||L§°L3- (42)

11



The result follows directly from ([@I) and ([@2). In order to deduce the fourth bound, we differentiate
Voo = An(pn) 0z, to find

An(pn)
Thus, we have
102unlzeee < || s || (10:Vallzzsz + 10 AnBounlizns ) -
z tHx T An(pn) tHx tax

co
Lt,z

Noticing that |0z AnOzun|[ 2212 < [|0zAn(pn)llLse£2[|0ztin | L2 Lo allows us to further deduce using the Sobolev
inequality (3I)) that

1 1
||a§un||L$Lg < ”aﬂaVnHLELg + ||6w)‘n(Pn)||Lt°°L§(Hamun”z?[,i + ||6£un||[2,f[,§ + ||6wun||L§L§)) .

'-)/np_n’)’n+1 (

A Gronwall argument can then be used to bound this quantity by M{'. O

Remark 2.11. It follows from the energy estimates 20)), 1) and [23) and the upper/lower bounds on the
density that | pnllLeerz + lunllpser2 + ||unllL2m < O, where C s independent of time. Combining this with
Corollary [210, the estimates we have acquired up to this point can be summarised as:

lpnllceemr + lunllzoema + [lunllp2mz < Mg (43)

2.4.2 Completing the base step of induction
To complete the base step we need to show that

102pnll oz + 102Ul Leerz + |05unll 2 < M7 (44)
We now make note of a result which will allow us to deduce the remaining higher-order regularity estimates.
We assume p,,, u, are smooth for the sake of convenience.

Proposition 2.12. (Higher order regularity formulae) Letk > 2, p, € C*(0,T;C*(T)), u, € C(0,T; C*¥T1(T))
satisfy (@al). Then,

1d

2dt
Additionally, for 1 > 1 and p, € C(0,T;C*Y(T)), u, € C(0,T;CYT)), V,, € C*0,T;C!*YT)) satisfying
B0), we have

li/ 0LV, |? da = —/a; ((un + A"(f")ampn)amvn) LV, dx + / o (Maivn) oLV,
2dt Jy T p. T

105pnl3: < C (I05unllzz 108on 3 + lonll e 105 pallz2 105+ iz ) (45)

n Pn
X (Pn)pn + An(pn) o
_/a;< nnlPn T Zniln Vn?) oLV, da.
T (An(pn))
Proof. The proof is identical to that of Lemma 3.10 in [7]. O

Taking [ = 1 in (46), one can integrate by parts to obtain

s (1ol o [ 202 gy g
2dt T T n

!
- / (un n A"(g’")ampn> 8, V, 02V, dz +/ An(Pn)pn + A;(”’JX/,?()&;V” dz =: Ji + Ja.
T P T (An(pn))

n

12



Due to ([@3), we have
J1 < lun + 05, * X (0n) 0 pn| 221102 Vi | e 102 V| 2
< M{Y|0x Vil £oe 07Vl 2 -
Using the Sobolev inequality (BI]) and Young’s inequality, we arrive at
Ty < OVl + M0, Va3 < |92Vl + My
Meanwhile,
Jo < MYVl 02Vl < M+ ell92Va 3.
using Young’s inequality and Proposition Therefore we have

2dt/|a Vo|? dx +/ n(Pn )|82V ? de < 2€[|07Val|72 + MY

Using the observation p,, '\, (pn) = Ynupl > Ynpn"™ and choosing € small enough (depending on n), we have

5 [0Vl do - CloVAI < vy, (a7)
where C' > 0 is a constant depending on n. Integrating in time gives us
10:Vallzgors + 102Vall s, < M. (48)
Next, from the relationship V,, = \,,d,u,, we infer that
Oy = N, 0, Ve + Vi 0p (A1) (49)
and so
107 unllpgerz < AT Lge 10:Vall Lo ra + IVallzge, 105 (A5 )l go 2 < MY (50)

Differentiating ([@9) once more,
Oy = 2V AL 420,V 0,01 + V, 020,

and again we estimate

10zunllcz , < 102Vallrz 1N g, +200aVall g2 0:A7 2o + IVallzpe 1O2AT g2 - (51)
Note that 9.\, = —(1 + v, Yp, " 20, pn and so ||8w)\;1||L§L;o < M7|[0zpnllz2re- Using the Sobolev
inequality (BI)) we can show that

102pnllL2ree < M7+ M (|0 pnllz -

By computing 921

EI), we have

explicitly one can also show that ||8§/\,‘11||L§’I < MP+ M{l||8§pn||L§’x. Returning to

10%unllca < MP + MP|020l1 12 (52
Taking k = 2 in (@), we have

31020132 < © (102unll 2 002pallE2 + oull e 102023 5 1

< M719%pnll 2,
using (52 and the bounds previously obtained. An application of Gronwall’s inequality grants us ||02p, || Lerz <
M?. In light of this, the inequality (52) finally gives us ||03u,|| 2z, < My Additionally recalling the bound
B0), we have shown that (@) holds true. Thus we have

lonllLe a2 + llunll Lo a2 + [lunl L2 < MY, (53)

where M7 satisfies sup M7 < +oo. Thus the base step is complete. The inductive step is deferred to the
te[0,T*)
Appendix. With this, we conclude the proof of Lemma
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2.5 Completing the proof of global existence

We are now ready to complete the proof of Theorem and obtain the existence of a global unique regular
solution.

Proof of Theorem [L.2. We have previously asserted the existence of a unique global regular solution (p,, u,,)
to  al)-([Dh) on [0,Tp], for some Ty > 0 in Theorem 21l The blow-up result we obtained in the previous
subsection (Lemma [2.6]) also tells us that our solution can in fact be extended past Tj provided the density
pn does not hit 0 anywhere in T x [0, Tp]. Since we know that p, > % > 0 on T x [0, Ty], we can extend this
solution and declare that (py,uy) will possess a maximal interval of existence [0,7*), where T* > Ty. For
the sake of a contradiction, let us assume that T is finite. Two particular implications of this statement are
that

pn(-,t) > 0 for each ¢t € [0,T7), (54)

and
inf  min pn(,z) = 0. 55
reloie) B o 0) (%)

Let us now recall the original form of the Aw-Rascle system on our maximal interval of existence
Otpn + Oz (pnun) =0, in T x [0,T%), (56a)
O (prnwn) + Or(ppwnu,) =0, in T x [0,T7). (56b)

Since we know that (p,,u,) possesses the same regularity as given in the statement of this theorem, we can
proceed in a similar way to [5] and [9] and define

OpWn,
Pn

W, =

(57)

We wish to show that W, is bounded from above uniformly in time. It will be seen that this is sufficient
to obtain a lower bound on p,,, which will become clear when we derive the evolution equation for 1/p,
and apply a maximum-principle argument. Our W,, corresponds to the so-called ‘effective pressure’ used by
Burtea and Haspot in [5] and the function ‘X’ by Constantin et al in Theorem 1.5, |[9]. A straightforward
computation reveals that

Exploiting (G6al), dividing by p, > 0 and differentiating in space, one can show that (B6L) is equivalent to
010wy, = —O0pUy,Opw,, — unaﬁwn. (59)
Substituting (B9) and (G6al) into (B8] and dividing by p, > 0 gives

az Wn, 815 pn

n

= —Up PO Wh. (60)

where we have used the facts that d,w, = W,p, and 02w,, = W,,0.pn + pn0sW,, which both follow from
7). Dividing by p,, leaves us with
oWy + un0, W, = 0. (61)

It is clear that w, and W,, satisfy the same transport equation. Now, we note that w, € C(0,T; H*) due
to the relation w,, = wu, + 0.pn(pn) and the regularity p,,u, € C(0,T; H*) for all T < T*. This allows
us to deduce that W,, € C(0,T; H?) C C([0,T] x T) for all T < T*. The equation (GI)) then implies that
oW, € C(0,T;H'Y) c C([0,T] x T) and so W,, € C1([0,T] x T) for all T < T*. We now introduce a
maximum function WM : Rt — R associated to W,,. For each t € [0,T*), it is true that W, (-,t) attains a
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maximum at some point z; € T, thanks to the regularity of W,, on T x [0,7*). Thus, the map ¢t — z; is
well-defined on [0, 7*) and the function

WM(t) .= W, (2, ) = max Wy (z,t) (62)

is also well-defined and Lipschitz continuous. The Rademacher theorem implies that W is differentiable
almost everywhere on [0,7*). We now wish to prove that

(WMY' (t) = W (4, 8) (63)

for all ¢ € [0,7*) where W is differentiable. Using the classical definition of the derivative, we have for all
t where WM is differentiable,

M _ M _
(W) () = lim [W" (Lt h) = W (t)} = lim [W"(x”’“Hh) W"(xt’t))]
h\0 h h\0 h
s R | ELACAL

On the other hand, using an alternative definition of the derivative, we have

/ (WM - WMt —h) [ Wz, t) — Wo(xi—n,t — h)
) e |
< ,lll\% [Wn(xt;t) — hWn(It,t— h)] — O W (e, 1),

and so (63)) holds true. Evaluating (61)) along the points (z:,t) which correspond to the maximum points of
W.,., we have
8tWéw(t) = _un(xtvt) 890Wn($tvt) =0, (64)
=0

for all ¢ € [0, T*) where WM is differentiable, since x; is a maximum point of W, (-, ¢). This tells us that

OpW, AP

N, TN
for any t € [0,7*), and as a consequence
Du Wy Oaw,
(—w) (2,1) < max In i MO,V (2,1) € T x [0,T7). (65)
Pn pn

We note that since we are working with periodic boundary conditions, the quantity maxy d,w? is non-
negative and therefore so is MY due to our assumption p2 > 0 on the initial data. Next, we turn to the
evolution equation satisfied by 1/p,, on T x [0,T*). Since p,, # 0 on this domain, the function 1/p,, possesses
the same regularity as p, and it is straightforward to verify using the continuity equation that

Oy (i) + Uy, 0% (i) = iazun. (66)
Pn pn)  Pn

Using the definition of w,,, namely that w,, = u, + 0ypn(pn), this becomes

1 1 1 1
Oy (_) = —Up 0Oy (_) + —0,wy P [p;;(pn”awpnﬁ +p;l(pn)6§pn]

n n

Pn n
1" 2
Pn Pn Pn Pn Pn
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where we have used the relations

2 1 2 3 1 2 2 02 1

In a similar way to the previous argument involving W,,, we can define P, (z,t) :=
sponding maximum function

ﬁ and the corre-

PM(t) .=
w () et pn(z,t)

One can repeat the argument for WM to conclude that PM is differentiable a.e. on [0,7*). We then have
from equation (B7) that for all ¢t € [0,7*) where P is differentiable,

on [0,T%).

0P = —un 0, PM + p 0pwn — PMpl () 0202 PM 12 = 200, (pn) 2 (0. PM) + puply (02)O2PM. (68)

n

Using the facts that p,(-,¢) > 0 on [0,T%), 9, PM(t) = 0 and 2P} < 0, this equation implies the inequality

81} n
@, PM)(t) < p“’ (z,t) < MO, forae. tel0,T7), (69)
where we have made use of (GH). Integrating in time gives us
1
pn(2,1) (70)

Z e 0\-1°
MOt + (11%1’ on)
This lower bound contradicts our assumption (G5) which was that

el B e (52 =0
We conclude that T* = +o0o and thus our solution is global in time. The uniqueness follows from the fact
that our local solution was shown to be unique. Indeed, suppose that we have two global regular solutions
(pr ul) and (p2,u2) coinciding on [0,7}] and further assume that they differ almost everywhere on some
interval [T1, T3], ie. that ||p}, — p2|| Lo (1, m5000) > 0 for all T € (T1, T3] (and analogously for uf). Then
taking the initial data (p,u0) = (pL(T1),ul(T1)), we deduce from Theorem Bl that (p},ul) = (p2,u2) on
an interval [T1, T + €] for some € > 0, which contradicts our assumption. (|

Remark 2.13. If we assume the existence of positive constants C,p_o independent of n such that

9
62@”" < C and p) > p° >0, then the bound [T0) gives us the uniform (in n) estimate

€ss supy

>
pn(xvt) = Ct+ (p_O)—l

Remark 2.14. Our proof does not rely on the precise form of the offset function p,, but it does require that
pn(r) is increasing for r € [0,7,]. Thus we expect this result to hold for a wide class of offset functions. In
particular, our argument works for the choice p.(p.) = ep?(1 — p.)~# taken by Chaudhuri et al in [7].

3 Uniform in n estimates

In this section we obtain uniform estimates on the global regular solution (py,u,), whose existence was
asserted in the previous section.
3.1 Bounds from the energy estimates

Assuming the condition (@) and the first bound of (8) on the initial data, we have the following uniform
estimate by virtue of our energy estimates.

lonllzgery + IVPnwnllLgorz + | Hn(pn)llLzept + [[V/PnOapn(pn)ll L2212 < C. (71)

Note that the assumption () implies that ||H, (p%)||z: is uniformly bounded in n. Thus the estimate from
Lemma 2.4 is also independent of n.
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3.2 Bounding the desired velocity

The goal of this section is to obtain the uniform bound (@) on the sequence of desired velocities, w,. In the
remainder of the paper we assume the hypotheses (G)-(8) and denote by C a positive constant independent
of n. Our first result is a bound on the spatial derivative of w,,.

Proposition 3.1. Provided v, > 1 we have

|02l 170 < C (72)

Proof. Tt follows from (B1]) that the potential W,, = p. *d,w, satisfies
Ot (pnWhn) + Ox(pnWnun) = 0, (73)

due to the continuity equation. Thus (p,, Wi, u,) satisfies the original momentum equation (Ih). Multiplying
by W, and integrating by parts over space and time leads to

8m n 2 aw 02
Orwn)” oy dp = [ O) 0y gy = 0. (74)
(0] n
T Pn T Fn
Noticing that by Young’s inequality

4/3 2

Ozw 2 |O,w 1
Oy |3 = | Zn —14/3 < 2| Zatln Z1pnl?,
|0z wn| o [Veal 7 < 5 Vo +5lenl
we infer from (7)) that
3/4
10wwall>’2 1ya < DS+ llpnldperz- (75)
Next, recall from (7I]) we have that
1 1
o) lzas = g esssup [ gt do = ol < € (76)
CT e+ 1 e Jr Y+ 1 Lyl

Therefore the assumption v, > 1 guarantees that [|p,|zer2 < C (uniformly in n). Returning to (75), we
can obtain the required bound. O

Remark 3.2. The exponent 4/3 is taken for convenience. A similar argument can be used to show ||Oywn || L rr <
C for any p € [1,2), assuming 7, is sufficiently large.

We now obtain a bound for the sequence of desired velocities wy,.
Proposition 3.3. The desired velocity w, satisfies

||wn||L 14 < C.

oo
W,

Proof. Taking r = p,, in the generalised Poincare inequality (see Proposition[A.2]in the Appendix) gives us

lwnllzs < C (||6mwn|L; —i—/pnwn d:c) . (77)
T
Using Young’s inequality and Proposition [3.4],

||pn’wn||L;>°L; < ||Vpnwn||Lf°L§ + ||pn||Lf°L; <C.

Then taking the supremum over time in (77) and using Proposition 3.1l gives us ||wy | r=z1 < C. Combining
this estimate with Proposition [B1]leads to the result.
O

We now make note of some bounds which will be used to prove the remaining estimates in this section.
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Corollary 3.4. Provided v, > 1 we have
IVpnunl[rz  + llpnllgerz < C, (78)
lwnllzge, + llonwnllzz < C, (79)

Proof. The first estimate in (78] follows from (7I]) and the relationship \/pptn = \/PrnwWn — /PnOzPn(pPn),
while the second was obtained from (76). The L{, bound on w,, follows from the embedding W11(T) —
O

L>(T). For the final bound, we have |[pnwn||z2 < tlwnllzse |pnllLeorz < C, thanks to (Z8).
3.3 An improved estimate for the potential

We now obtain a uniform bound on the potential m,, which is defined by the relation (@). It will be useful
to note that

Tn Yn+1
Tn(pn) pomr L (80)
Lemma 3.5. The potential 7, satisfies
10emnlz, < C. (51)

Proof. First note that the continuity equation can be expressed as
Otpn + Op(ppwy) = 02, (82)
Multiplying by 7, and integrating over [0,¢] X T and by parts, we find

1 t t
/ =2 () + (p) T2 (2) da +/ /pnwnamwn dzds = / / |07 |? dads.
Yo+ 2 Jr 0 Jr oJr

Since p,, > 0 this reduces to

t t 1
/ / |0p 70 |? dads < / /pnwnamwn dxds + /(p?l)""”(x) dx. (83)
o Jr o Jr Yo 2 Jr

Note that the assumption (Bl implies that the final term on the right hand-side is uniformly bounded in n.
Additionally, using Young’s inequality with the first term on the right hand-side leads to

1 t
5/0 /T|8M-n|2 dxds < OHinnH%gI +C.

The result follows from (7). O
Corollary 3.6. We have
lowtinllzz < C, (34)
lov/pntnllLeerz < C, where o(t) = min(1, ). (85)

Proof. Since ppun, = ppwy, — Opmy, (&) follows from ([[3) and ). To acquire (B5), we multiply the
momentum equation (b)) by cu,. Integrating by parts in space and time leads to

t t
/Upnu?l(t,x) — opnu’(t,0) dx —/ / Ljo,11(s)ppus dads —|—/ /o)\n(pn((%un)2 dxds
T 0Jr o Jr

t
:/ /apnun([)tun—kun@zun) dxds.
0o JT

The term on the right hand-side disappears once we integrate by parts and use the continuity equation. Also
notice that ¢(0) = 0. Therefore we have

1 t
[ooittoydo < [ [ Lot dods < | Vomunlsz, < C
T o JT o

thanks to (78]). O
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Lemma 3.7. Under the assumptions [B)- [), the potential m, satisfies
Imallzy, < C. (36)

Proof. We begin by defining the function ), : T x [0,7] — R given by

wnlat) = [ (2 = ) dy= [ puae) ds. (s7)

where (pn) := |T|™" [} pn(t,y) dy. Assuming that T = [0, 1], we can verify some key properties of ¢,,. Firstly,

t
we can show that v, is periodic in space. Indeed, we have ¥, (0,t) = —/ Pntn(0,8) ds while
0

wmw—Aﬂw—@mw—AMMmﬁw——AMM@@M

t
= —/ pnun(O,S) ds = "/’n(ovt)'
0

Next, we can directly compute 9,1, to find

m%_&M%m—Am%%mmw

= P?z(z) = (pn) + pu(x,t) = pu(2,0) = pn — (pn),

where we have made use of the continuity equation. Then by virtue of (8) we have [|0z¢n[|zeer2 < C. In
order to obtain a bound on ¢, we note that ||} — (pn)||r= < C from assumption (@) and so

2

|wmm@gc+A(A%wM@g@)dx

<C+ ”pnunHQsz <C,

due to Jensen’s inequality and (84). Thus we also have [[¢n||L=rz < C. From the Sobolev inequality
@) we can now deduce that H‘/)"”L?f’z < C. We also note that 9,1, = —pnu, since (p,) is constant as a
function of time (and space). Therefore from (84)) we have ||0y), | 13, < C. Next, we define the test function
Cn:Tx[0,T] = R as

lant)i= [ (vnnt) = o [ vtert) ds) (59)

Note that (, is periodic in space. Using the properties of 1, it is also straightforward to verify that
[[Cnllzse. + [|02CnllLee. < C. We now obtain a bound on 9;¢,. Note that

6t<n($u t) = / (_pnun(ya t) + |T|_1 / pnun(za t) dZ) dy
0 T
and so |9;Cn|* < 2|pnun(t)||2: < C thanks to Jensen’s inequality and (84). Integrating over space and

time in this inequality gives [|0;Cn|[2 < C. Note that 03¢, = pn — (pn) by construction. Multiplying the
continuity equation ([82) by ¢, and integrating by parts in space and time, we therefore have

t t
—/ /pn(?tcn dxds + / Cnpn(z,t) — Cupn(z,0) dx —/ /3zCninn dxds
o Jr T o Jr

= [ [on— o s
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The absolute value of the left side of the above equation can be bounded independently of n due to the
properties of ¢, already established as well as Corollary [3.4l Therefore we find

N7y deds| < C. (89)

We now wish to extract a bound on the quantity [|7,[|z: . To this end, we define

1+ <pn>

Sy 1= 5

and consider the regions {p < S,,} and {p > S,,} separately. Firstly, we have that

(2, 1) 1 p<s,,) dvds| < C (90)
by the observation that when p,, < S,, < 1, we have 7, (pn) = ,YVL pIntl — 0 asn — oo. This in particular

implies that

(o)) T (2, 1)L {p> 5,y drds

(Pn))Tn (2, t) L <5,y dads| + n) )T (2, 1) deds| < C,

due to (@) and (8J). When p,, > Sy, the assumption (p,) < p < 1 implies that p, — (p,) > 2=Lnl > 122
0. Thus, we have

c> (o)) Tn (2, )1 p> s,y dads 7rn z,t) 1,5 5,1 drds|,

and so we conclude from this and (@0) that for any ¢ € [0, T,

t
Il :/ /wn(x,t) dads < C. (91)
o 0 JT

o
We can improve this bound via a Hoff-type estimate |15, [14], which also takes inspiration from [5].
Corollary 3.8. For any 7 € (0,T), we have
17l oo ()20 (1)) < C- (92)

Proof. We multiply the momentum equation (4h]) by o(¢)1,, where o(t) := min(1,t). Integrating by parts
in space and time and simplifying,

t t
_ 2
/0 Aﬂ[o,l}(3)¢npnun dxds + /Ta(t)@[}npnun(;v,t) dx + (pn)/o /Ta(s)pnun dxds

t (93)
~ [ [0 = p)Nalp)00, o
Using Corollaries 3.4, and the regularity of v,, we obtain
—{pn)) A\ (pn) Oy, dads| < C. (94)
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Next, we derive the evolution equation for (p, — {(pn))m, which reads

9 [(pn — (pu)) ] + 0z [(Pn — (pn))Tntin] + [pn(pn — (pn)) T + (Pn) 0] Opuin = 0. (95)

Multiplying by o(-) and integrating over space and time,

[ / (o] dods == [ [ 0(6)on ~ (pu)) M (on)0t s
= (pn) /Ot/Tﬂ'nazun dxds.

The first term on the RHS is bounded independently of n thanks to (@4). To bound the final term, we can
integrate by parts to see that

t t t
/ /ﬂ'namun dxds = —/ /un(?mﬂ'n dxds = —/ /un(pnwn — pnliy) dxds < C,
o Jr 0 JT 0 JT

thanks to Corollaries 3.4] and Therefore returning to (36) we find

t
| [0 100 = pu))ma) deds <.
0 JT
Integrating by parts,

o) [ (b= (pulmaat) do < C + / [ 1006 0n = (o))l o
Recalling the bound (89) we have for all ¢ € [0, T
o) [ (po = p)mlot) do < C.

Considering the regions {p < S,,} and {p > S,,} separately and repeating the same argument which was
seen in the proof of Lemma B.7 we get

(96)

J(t)/Tﬂ'n(:E,t) dx < C, (97)

from which the bound follows. O

4 The limit passage

The aim of this section is to complete the proof of Theorem [T.4]

Proof of Theorem[I-] For n fixed, we have proved the existence of a unique regular solution (py,, w,) to the

system (IRa)-(I80) on T x [0, 7] with w,, = u, + Oxpn. Multiplying (I8al)-(I8H) by ¢ € C°([0,T] x T) and
integrating by parts, an integral formulation for the above system is given by

t t t
[ [on000 dods+ [ puotat) = p20(0.0) dot [ [ 0mi0s0 dods = [ [ puwadso dods. (98)
0 T T 0 T 0 T

t t
—/ /pnwn(?tgb dxds + / prwnd(z,t) — pCwlp(z,0) dr +/ /(wn(?mwn — paw?)0y¢ dxds = 0. (98b)
o Jr T o Jr

The estimates obtained in the previous section imply that there exists a triple (p, w, 7) such that, up to the
extraction of a subsequence, we have

pn —* p weakly-* in L>(0,T; L*(T)), (99)
wy, =% w weakly-* in L*((0,T) x T), (100)
T, =% 7 weakly-* in M((0,T) x T), (101)
OpTp —* Oy weakly in L(0,T; L*(T)), (102)
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Thanks to the estimate ([@7), the bound [|0;(omy)||2 < C and the embedding W12(T) — L*(T), we also

have
o, — om weakly-* in L*(0,T; L>(T)), (103)

where again o(t) = min(1,¢). The key tool we will need in order to complete the limit passage is the strong
convergence of wy,. Since |[unOpwnllpr < ||«/Pnun”ng||P;1/23mwn||sz < C, the momentum equation
Orwy + updywy, = 0 implies that ||Opwy,]| ., < C. This observation along with the chain of embeddings

Whi <y L < L' allows us to use the Aubin-Lions lemma to deduce that
wy, — w strongly in L°°((0,T) x T). (104)
Consequently, the following convergences hold:
Py, —* pw weakly-* in L>(0,T; L*(T)), (105)
pnw? —* pw? weakly-* in L>(0,T; L*(T)), (106)

thanks to ([@J). Due to the hypotheses (I2)) and (I3)), we have p? — p° and pQw?® — p°w® weakly in L'(T).
Therefore as n — oo we have for all ¢ € [0, T,

j/pn¢@aw~—p2¢@a0>dz—+j/p¢cat>—fﬁ¢0a0>dx, (107)
T T
/mw@mﬂ—ﬂﬁw@md%ﬁ/m@@ﬂ—fwdﬁmmh (108)
T T

The convergences ([@9)-(I08) are sufficient to pass to the limit in (8a) and (98L) to obtain (I4al) and (141)
respectively. It remains to verify (IZd). Due to the assumption (6] it is easy to see that the limit p satisfies

0 < p. To show p < 1, we proceed in a similar way to that which can be seen in Theorem 4.1. of [19].

Proposition 4.1. The density p satisfies 0 < p < 1.
Proof. For 1 < p < oo such that v, > p, the embedding of LP spaces implies that
an l—an
lpnllzgecz < Nlonll e pallonll £y

where a,, = % — 1 as n — oo. We now recall the bound

1
||pn||LtooL;n+1 < (C(yn + 1))t
which follows from (f@). Thus, we have
palliery < CF (Clym + 1) 75 = CF G,
lonll g
and it is easy to see that C), — 1 as n — oo. Using Fatou’s lemma,
o 1
ol Lgery < liminf ||pn || Lo < Cv.
n—oo
Taking p — oo in this inequality rewards us with

Iplloge, < liminf [|pf e e < 1.
’ p—r00 7

22



Next, we estimate O;p,, and adopt the notation for the duality bracket (-, -}, := (, ->(W;,2)*XW&,2. For an
arbitrary f € W, *(T), we have

(Ocpn (1), £« = (=02 (pn(t)un(t)), £ = (pn(t)un(t), 0 f) L2

< lpnun (Ol L2 [ 1l

It follows from this that
||6tpn||L§Wz*1’2 < ”pnun”sz <C. (109)

We also know [|0;(om,)||z2 . < C and that o7y, p, converge weakly in L?, to om, p respectively. We can
therefore invoke a standard compensated compactness argument (see Lemma 5.1 of [18]) to get

(1 —pn)om, — (1 —p)omw, inD'((0,T)x T). (110)

On the other hand, we have

Tn 1
1- n n — 1- n ot
(1= pn)om %+1( Pn)opy;
T
b1 (1= pn)op Ui « 0<puitar<ay + (1= p)opl Uiy « po(ta)>1))
— A, + B,

It is straightforward to see that A, — 0 a.e. as n — oo. Thanks to Lemma [3.7], we can justify that

T
1By = [ 10— p)omaltien - paaroay dods

<1 =pallrzertllmnllire - 1 ({pn > 1})
<C-pu({pn>1}) —0,

as n — 0o, where yp represents the Lebesgue measure. Note that [|m,[[ 1. < C follows from Lemmas 3.5
3.7 and the embedding W11(T) < L°(T). Therefore we have that

(1 — pp)om, — 0 strongly in L' (0, T; L'(T)). (111)
Together with (IIT), this allows us to deduce that
(1—p)or =0a.e inTx[0,T]. (112)
Since o (t) = min(1,t) vanishes only on a set of measure zero (i.e. on {t =0} x T), we in fact have
(1—p)r=0ae. inT x [0,7)]. (113)

To conclude the proof of Theorem [L4 we need to verify that our solution possesses the regularity specified
in (IH)-(T7). We now check that for any ¢ € D(T), the function

t»—)/ a:t

is absolutely continuous on [0,T]. From (I09) and the weak formulation of the continuity equation we have

d
p(b dr = /pugb' dx € L'(0,T).
dt T
Therefore we are able to say that
14 S Cweak (07 T; LP(T))

for p € [1,00). We finally observe that since ”atw"HLim—’—Hw"”Llev% < C we indeed have w € C(0, T; W3 (T)) —

C([0,T] x T). This completes the proof. O
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A Completing the blow-up lemma

In Section 2, we showed that

sup ||pn||Loo(07t;H2) + sup HunHLm(O)t;fp) + sup HunHL2(0,t;H3) < 4o00. (114)
te[0,7%) te[0,7%) te[0,7%)

In other words, we completed the base step of induction for Lemma[2.6]l Recall that for a given integer & > 0
we also introduced the notation

My = M]?(t7 Hpn”Lf"H’;a HunHLf"H7£7 HunHLgH’;Jrlu/}%a Enup_n7 (p_n)_l)u

to denote an arbitrary function that is increasing with respect to the specified arguments, and which also
satisfies Supyepo,r+) My < +oo. T he inductive step corresponds to the following proposition:

Proposition A.1. Suppose (pn,un) is a reqular solution to ([@al)-{@h) on [0,T*) with initial data (p%,ud) €
H*(T) x H*(T), where n € N* is fired and k > 2. We assume that

ol oo i1 + llunll oo g1 + lunllL2me < My, (115)
Then,

Hpn”L;?OHj; + ||“n||Lg°H§ + ||“n||L§H§+1 < My . (116)
Proof. Taking I = k — 1 in (@), we have

li/ |0k =1V, |2 da = —/a;;—l ((un + A"(f")ampn)amvn) Ok, dx + / ok-1 (Magvn> k=1, dx
2dt Jy T P T Pn

1 (A (pn)pn + An(pn) ) _
— [ oF 1( n V2 ok-1v, dx.
/'Jl‘ ()‘n(pn))Q

Integrating by parts and introducing commutator notation,

1d n{Pn
__/ |a§flvn|2 dCC+/ M|(‘9§Vn|2 dx
2dt T T n

:/ (un + A"(Qp")achn) okv, 1V, dx +/ [aj;—?, Uy + A"(f")ampn} 0: Vi, XV, da
T p T p

n n

—/ {a’;—Q,M} 82V, 9V, d:c—/
T

/
()‘n(pn)pn + )‘n(pn)vn> |8§_1Vn|2 da

Pn T (An(pn))?
1 5
T (An(pn)) n=1
We now estimate I; — I5. Integrating by parts,
h< | @ 0+ 02200, o
T Pn

< N0y VallZa {102unll Lo + 102 (07> An(0n))Onpnll Lo + 1902 Apn) 0 pul £2x }
< M |05 Va2
)\n

Noticing that %81 Pn = OzPn(prn) and using the well-known Kato-Ponce commutator estimates [10],

I, = / (0572 tn + Oupn(pn)] 02V 057" Voy da < ||[0572, un + 0apn(pn)] 02 Vi || 1o 105Vl | L2
. 2

< (1052 (un + 0upn(pa))ll 22 10:Va e + 190 (un + Oupn(pa)) e |05Vl 2 ) 105Vallz
< My + M |05 Va3 + My 05 pull3 + ell0EVall3

< My + My 05 VallZe + |05 ValZ:-
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Next,

< H |:ak:—2 )\(pn):| a2V

I < 105 Vall 2
2

n Lz

/ [65—2, A"(p")] 02V, 08V, da
T Pn

< MP @ ORV, 2, + M 0 Va2,

It is also straightforward to verify that

I <

/
[ (Pl t Py, ) oty o] < g oV
T (An(pn)) ’

Making use of commutator estimates once more, we have

k—1 A;z(pn)Pn‘F)‘n(pn)
/Jaw T Do)

< (771 + 2)” [85717 Vn()‘n(pn))il} Vn”Lﬁ”aa]:ian”Lﬁ

< (7 +2) (1057 (Va O ()™ Dllz2 Vil g + 102 (Ve M ()™ |22 105 Val £2) 1105 Va2 (118)

I5 <

Vn] V, 0k, dx

) / 051 V()] Va1,

We now note that
0 (VaQa(pn)) ™) = 0571 Va] o)) ™ + 057 (Anpn) ™) Vi,
and moreover it is straightforward to deduce that
1071 Va] (alpn) ™ llze < ME 1105 Vallzz + My 1105 Aalpn) " 22
< Mﬁ_lllaf_anlng + My,

Thus, we have
10571 (Va Q) ™) [l < My + My 41057 Va2

Going back to ([II8)), we then have
[I5] < M7y + M} (105 Vallze + M7 11052 Vall 2
<My + M0 Va7

Returning to (II7) and using our newfound estimates for Iy — I5, we have

%%/Tw’;*lvnﬁ d:c+/T%|8§Vn|2 do
< MP_ |05 VallZs + M |05 Vall72
+ (e + )05 VallFe + MP 105 Vol 7 + ME_ 1105 VallZa + My 05 Va2 + M,
S MPy + (1 + )05 Vall Tz + M |05 Val|72

Thanks to the existence of the lower bound for p, on [0,7%), we have that p;, ' Xy (pn) = Ynpl"® > Ynpu ™
and thus

1d

24t /T 07 Val? de + C /T |05 Val? do < My + M [0y Vo[, (119)
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where €; > 0 are chosen so that C' > 0. This choice may depend on n. In particular, we have

SNVl < My + ML 05 Vol
An application of Gronwall’s inequality gives us
105 Vallpgerz + 105 Vall 2, < M. (120)
Next, we attempt to estimate O%u,, and 9¥T1u,,. Using the expression V,, = A, (pn)0:u, we have
O = 05 (N V) = AT Vo + [05 0] Vi

Then using commutator estimates,

105l 2 < A N 2ee 105 Vallze + 105 O D 22 IVall e + 118227 | £ee 105 Vaul 2. (121)
It is important to mention that by induction and the Sobolev inequality (3I)) one can show that for j > 1,
18300 (P )l Loz + 1020 (pn) ™l ngors < Mjy + MJ (|00 pnllLge 2 (122)
Then going back to (IZI) and using (I20) and the inductive hypothesis (ITH) ,
105 unll ez < Mi_y + M7 110y pullrgers < M. (123)

Let’s turn our attention to 91w, In a similar fashion,

O, = ALV, + [0F, XM Vs (124)

n
and so repeating the commutator estimates in the previous argument leads to
105 |z < M 195 Vallzz + My 105 ()~ lzz + My (107 Va2
Squaring and integrating in time,

108 uall3s < M [08Villus .+ M 10 pulzce + ME 1105 Vallz

(125)
< My + M} 105 pnll 22
Note that we are not yet able to bound |[pn || p2f7x. We now recall (), which reads:
L2100l < € (Nokunlza 950l + ol N8 pulze 06 unllzz) (126)
Thanks to (I25) and ([I23), we have
S0k pul3s < M 10 pulle
and therefore Gronwall’s inequality gives us
105 pll Loz < M. (127)
Returning to (I28) and using this estimate also yields
10 < M. (128)
Adding (I23), (IZ1) and (I27),
108 unllLeerz + |0FprllLoerz + ||5§+1un||Lf,x < My,.
Combining this with the inductive hypothesis (I15]), we have shown that
lonllge s + Nlunll gy + llunll g2 gres < My (129)

Note that in all of our estimates the notation M;' ; was used to denote a function of time satisfying
supyepo,r+) My < +oo. Therefore the right-hand side of (I2J) also satisfies this condition. The proof
is now complete. O
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We conclude with a proof of a generalised Poincare inequality, similar to Proposition 7.2 of [7].

Proposition A.2. There exists C = C(M,K) > 0 such that

fulles < € (1ol + [ rlul ac) (130)
T

for any uw € WHY(T) and any non-negative r € L*(T) satisfying
0<M§/rdw<+oo, /r2dx§K, (131)
T T

for some constants M, K > 0.

Proof. We proceed by contradiction. If the proposition is false, then there exist sequences {u,}52 1, {r,}52,
such that [lu,|/z1 = 1 (after suitable renormalisation), each r,, satisfies (I31)) and

1
10utin]| 1 —l—/Trn|un| dr< (132)

The assumption ([31) implies that there exists r € L?(T) such that up to a subsequence, r,, — 7 weakly in
L*(T). It is also easy to see that ||uy||w1.1(m)y < 2. Therefore due to the compact embedding W' < L>
we have in particular that u,, — u strongly in L?(T). From (I32)) we infer that d,u, — 0 strongly in L!(T).
Thus we may argue that u, — u strongly in W11(T) with d,u = 0. Passing to the limit in the inequality
appearing in (I32) and using the weak and strong L? convergences of 7, and u, respectively, we find that

/r dx =0, (133)
T

which contradicts (I31]). O
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