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Recent experiments have realized a twisted bilayer-like optical potential for ultra-cold atoms,
which in contrast to solid-state set ups may allow for an arbitrary ratio between the inter- and
intra-layer couplings. For commensurate Moiré twistings a large-enough inter-layer coupling results
in particle transport dominated by channel formation. For incommensurate twistings, the interlayer
coupling acts as an effective disorder strength. Whereas for weak couplings the whole spectrum
remains ergodic, at a critical value part of the eigen-spectrum transitions into multifractal states.
A similar transition may be observed as well as a function of an energy bias between the two layers.
Our theoretical study reveals atoms in a twisted-bilayer system of square optical lattices as an
interesting new platform for the study of ergodicity breaking and multifractality.

I. INTRODUCTION

Twisted bilayer graphene [1-5] has attracted broad at-
tention owing to the observation of unconventional super-
conducting [6-9] and correlated insulating behaviour [10-
13]. A small rotation of one of the layers leads to the
vanishing of Fermi velocity around the Dirac point giving
rise to an almost flat band [1, 2, 14, 15]. These quasi-flat
bands, ideal to observe strongly correlated phenomena,
are obtained only for very small twist angles < 1° in solid
state systems, as the inter-layer coupling is much smaller
than the intra-layer one [16-18].

Ultra cold gases in optical potentials may provide an
interesting highly-controllable platform for the study of
the physics of twisted-bilayer lattices. These systems
allow for a basically arbitrary ratio between inter-layer
and intra-layer couplings. In addition, ultra-cold gases
are in principle defect-free, although suitable impurities
can be added in a controllable way, making this plat-
form ideal for understanding the effects of disorder. Dif-
ferent proposals have been recently put forward [19-22]
to simulate twisted-bilayer-like potentials using ultracold
atoms. In particular, Ref. [19] has proposed the use of
two internal states that (in a synthetic dimension) play
the role of the two layers. The twisted lattices result from
a state-dependent optical potential, such that one state
experiences an optical lattice tilted at an angle from the
lattice experienced by the other state. A microwave or
two-photon Raman coupling induces an effective inter-
layer hopping. An alternative proposal was introduced
in Ref. [20], also using a synthetic dimension for the bi-
layer geometry, with lattices without twisting but with
a spatially-dependent inter-layer hopping. Very recently,
similar ideas as those of Ref. [19], have been employed to
realize experimentally for the first time a twisted-bilayer
optical potential [23], in which a Bose-Einstein conden-
sate was loaded, opening an interesting novel platform
for the study of superfluids in twisted-bilayer lattices.

In recent years, atoms in optical lattices have been
shown to provide a suitable platform to study experi-
mentally both single- and many-body localization. In

particular, the use of bichromatic lattices has allowed for
the realization of the one-dimensional quasi-disordered
(Aubry-André) model [24-26] , characterized by a phase
transition at a critical quasi-disorder strength between a
fully localized and a fully ergodic eigenstate spectrum.
Recent experiments have also realized two-dimensional
optical quasi-crystals [27]. An alternative, also highly
controllable set-up for the study of localization, is pro-
vided by photonic lattices, in which a spatial direction
plays the role of an effective time dimension. Interest-
ingly, in addition to one-dimensional geometries [28], very
recent experiments have analyzed the wave dynamics
in two-dimensional (monolayer) photonic moiré-like lat-
tices [29], revealing a localization-to-delocalization tran-
sition [30].

The above-mentioned realization of twisted-bilayer-
like optical lattices opens intriguing questions concerning
particle dynamics and ergodicity breaking in these po-
tentials, which we theoretically address in this paper
for the case of coupled square lattices. Whereas in
solid-state set-ups the interlayer coupling is very small
compared to the intra-layer one (typically 5 to 10 times
smaller), it may be potentially dominant in optical
lattice platforms, resulting for commensurate twistings
in particle transport dominated by the formation of
channels. Moreover, for incommensurate twistings and
due to the finite spatial range of the inter-layer coupling,
this coupling acts as an effective quasi-disorder strength.
Whereas below a given coupling threshold the whole
eigenspectrum remains ergodic, at a critical coupling
part of the spectrum experiences a transition into
non-ergodic extended (multi-fractal) states. A similar
transition may be observed, alternatively, by employing
an energy bias between the two layers. Our results
show hence that the combination of moderately strong
interlayer coupling and incommensurate twist angles
makes twisted-bilayer optical lattices a new suitable
platform for the study of multifractality.

The remainder of the paper is organized as follows.
In Sec. II, we describe the twisted-bilayer model. Sec-
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FIG. 1. (a) Twisted-bilayer structure for a twisting angle
0 = 60(2,1). Red (blue) sites correspond to layer 1 (2). The
elementary cell is indicated by a black square. (b) Band struc-
ture along the high-symmetry line I' = X — M —T" for the same
lattice with ¢, /t = 10, lo/a = 0.15, and A = 0. The quasi-
flat bands are indicated in blue.

tion IIT is devoted to the particle dynamics in the case of
commensurate twistings, while the dynamics in incom-
mensurately twisted bilayers is presented in Sec. IV. The
impact of inter-layer bias is discussed in Sec. V. Finally,
we summarize our results in Sec. VI.

II. OPTICAL TWISTED BILAYERS

In the following, we consider two layers of square op-
tical lattices (see Fig. 1(a)), where one layer is twisted
by an angle  with respect to the other. A possible way
of implementing such an optical potential, recently pro-
posed in Ref. [19] and realized experimentally in Ref. [23],
employs an atom in two different internal states. In this
scenario, which we assume below, the bilayer structure
is provided by the synthetic dimension given by the two
internal states, whereas a state-dependent potential re-
sults in the twisted-bilayer geometry. For a square lat-
tice, a moiré pattern is achieved for § = (m,n) where
f(m,n) = arccos(m%ﬁ’;z) (n,m € Z).

We are interested in the dynamics of a single particle,
and hence we do not account for interaction terms. The

results should remain, however, valid as long as the lat-
tice filling is sparse-enough. The system is characterized

by the Hamiltonian:
) e i) el =t > D e i) e 7]

= *AZ
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- Ztl(j,j)[ll,ﬁ@,j | +Hel, (1)
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where |a, j) is the state in which the particle is in layer
« in site j = (jz, jy). The site in layer 1 (2) is located
at the position R, j = Ja€a —l—jyé'y (EQ j = Ja€w + Jy€y),
with €, = cosfé, + sinfé,, €, = —sinfe, + cosbe,.
The first term of Eq. (1) denotes an uniform bias be-
tween the layers, characterized by the bias strength A,
which in the synthetic dimension scenario amounts for a
level-dependent shift (e.g. using a magnetic field or an
optically-imposed Stark-shift). The intra-layer hopping,
given by the rate t, occurs only to nearest neighbors, de-
noted by (j,7').

The rate t, (j,j') characterizes the hopping between
a site j in layer 1 and site 7 in layer 2. In the consid-
ered scenario, such a coupling occurs between different
internal states, and it is given either by a microwave or
two-photon optical Raman coupling. In stark contrast to
regular cubic lattices, the sites in both layers are gener-
ally not on top of each other. For a sufficiently strong
lattice, we may approximate the on-site Wannier func-
tions in each layer as a Gaussian of with lo = —%7, with
a the lattice spacing characterizing the square Tattice in
both layers, and s the lattice depth in recoil units. As a
result, the inter-layer hopping acquires the form [19]:

. . _ >3 L = ., 2 2
tJ—(]v.]/) = tj_e [R5 RZ,J | /(410). (2)

Reference [19] considered for simplicity the case of Iy = 0,
in which only sites exactly on top of each other may un-
dergo inter-layer coupling with a rate t; . We show below
that the finite Gaussian width Iy plays a crucial role in
the actual particle dynamics in the bilayer-like optical
potential. Note as well, that in contrast to solid-state
scenarios where typically ¢, /t < 1 and hardly tunable,
in the optical lattice platform ¢, is easily tunable and
may be much larger than the intra-layer hopping ¢. As
shown below, this opens interesting possibilities for the
dynamics for both commensurate and incommensurate
twisting angles.

In the following, we consider for simplicity, unless oth-
erwise indicated, a twist angle 6 in the vicinity of the
magic angle 6(2,1) = 36.87°, although our conclusions
are general for the dynamics in the vicinity of any com-
mensurate twist angle. The choice of 6(2,1) is justified
by the small number of sites (5 in each layer) per Moiré
unit cell, which greatly simplifies the analysis of the sys-
tem, compared to solid-state platforms, where due to the
very small twisting angle, a Moiré cell may contain tens
of thousands of sites [31]. For § = 6(2,1), only 2 of the 10
sites are on top of each other (directly-connected sites),
see Fig. 1(a).
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FIG. 2. Commensurate twisting. Panels (a) and (b) show the probability density at time 7 = 2/¢ for § = 6(2,1), ¢, /t = 100,
and lp = 0 and lo/a = 0.15, respectively, for a particle initially at site j = (1,0) of layer 1. In panel (a), green lines indicate
the effective lattice with out-projected sites mentioned in the text. Panel (c) depicts the probability density at 7 = 6/t for
0 = 0(4,3) for lp/a = 0.15, and t; = 50¢, for a particle initially in j = (2,2) of layer 1. Panel (d) shows, at 7 = 10/¢, the

particles distribution for an initial Gaussian wavepacket in layer 1,
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Nerrel , of width o/a = 1, centered at site

jo = (0,0), in a lattice with ¢, = 10¢, and 6(4, 3). In all the figures, the x and y axes are in units of the lattice spacing a.

PARTICLE DYNAMICS IN MOIRE
LATTICES

III1.

Figure 1(b) shows the corresponding band structure
for 6 =0(2,1), A =0 and t, = 10¢, along the symmetry
line ' = X — M — T, with I' = (0,0), X = 2£(3,1),
and M = 2X(—1 2). As shown in Fig. 1(b), when
t;/t > 1, the spectrum presents an uppest and a low-
est band (in blue), with an energy ~ =+t , which origi-
nate from directly-connected sites. The large inter-layer
coupling projects out those sites, which build a separate
grid. Since directly-connected sites are far apart, hopping
between them only occurs in high-order in perturbation
theory, resulting in almost flat bands. Particles initially
placed in those sites remain hence basically localized.

The rest of the not-directly connected sites form sep-
arated bands around zero energy. For [y = 0, they
cannot participate directly in the inter-layer hopping.
For t; — oo, a particle starting in one of those sites
in the upper (lower) layer would be disconnected from
the lower (upper) layer. The particle would experience
an effective square lattice with out-projected sites (the
directly-connected ones), characterized by four sites in
the elementary cell (see Fig. 2(a)). As a result, the
band spectrum would present two degenerate sets of four
bands. This degeneracy is lifted, even for Iy = 0, at fi-
nite ¢ /t > 1 due to processes of order O(t?/t, ) induced
by virtual couplings between directly- and non-directly-
connected sites.

A single particle in the twisted optical lattice is de-
scribed by the state , ; ca;(t) |, j), with the probabil-
ity amplitudes given by the Schrédinger equations:

., 0cq
ih 87-] = t<z Ca,j’

Ji’)

- ZtL(jaj,)c&,j’a (3)
j/

with @ = 2 (1) for @ = 1 (2). We solved these equa-
tions by standard Runge-Kutta methods, using absorp-
tive boundary conditions, which allow for the analysis of

the particle expansion and eventual localization without
the need of very large lattices.

We consider the evolution of a particle initially placed
in a not-directly connected site. As mentioned above,
if Iy = 0, a sufficiently large ¢, /¢ results in the motion
of the particle in an effective square lattice with out-
projected sites, see Fig. 2(a) for ¢, /t = 50. The situ-
ation is radically different for a finite [y = 0.15a, cor-
responding to a lattice depth s = 20. For 6§ = 6(2,1),
due to the particularly simple elementary cell, parti-
cles move amongst all the non-directly connected sites
of both layers (see Fig. 2(b)), and the expansion dy-
namics is independent of the chosen initial not directly-
connected site. For smaller Moiré angles, the dynamics
for ¢, /t > 1 strongly depends on the initial site, because
the central bands break into separate sub-bands charac-
terized by very different transport properties. Whereas
some sites form quasi-isolated islands, other sites con-
nect efficiently to a net of sites building transport chan-
nels (see Fig. 2(c)). Hence, for finite times, of practical
relevance in typical experiments, the formation of chan-
nels dominates particle transport in the moiré lattice. As
a result, a particle initially distributed amongst various
sites, generally undergoes a bimodal expansion dynam-
ics, characterized by partial channel-like expansion and
partial quasi-localization in poorly-connected sites, see
Fig. 2 (d).

IV. DYNAMICS IN INCOMMENSURATE
BILAYERS

As shown above, for general § = 6(m,n), the particle
dynamics is characterized by the splitting of the spectrum
into separate bands, and the corresponding formation for
large t, /t of quasi-isolated regions and effective lattice
channels that dominate the (partial) particle expansion.
This picture is distorted when the tilting angle departs
from commensurability. We introduce at this point the
departure angle ¢, such that § = 8(m, n)+¢. This incom-



mensurability, together with the finite Gaussian range l,
results in a spatial quasi-disorder of the inter-layer cou-
pling, which may severely affect the particle dynamics,
resulting in ergodicity breaking and eventually localiza-
tion. In this section, we analyze in detail the role played
by the inter-layer coupling, whereas Sec. V is devoted to
the effect of the bias A.

A. Eigenstates

We first focus on the localization properties of the lat-
tice eigenstates, |¢)) = >, ; ¢a,j(¥)[, j), which are well
characterized by the moments

Li(y) = ) leaj(#)Pt oc N=Paa=D 0 (q)
a.j

where N is the total number of sites in each layer, and
D,() are the fractal dimensions. In particular, the in-
verse participation ratio (IPR) [32-34], I2(%), is given by
the inverse of the number of sites in which the eigenstate
|1} has a significant support. Localized (ergodic) states
are characterized by Dy(v) = 0 (D4(¢)) = 1), whereas
intermediate g-dependent 0 < Dy (1) < 1 implies an ex-
tended but non-ergodic character, and a multifractal ge-
ometry [35-43].

In the following, we focus our analysis on the IPR,
determining for a lattice with N sites, up to 80 x 80,
and open boundary conditions, the fractal dimension of
each eigenstate Dy(N;1) = logIz(¢)/log(N). In order
to provide a global characterization of the system, we
evaluate the averaged value of the fractal dimension over
all eigenstates, D(N) = + >y D2(N39).

Figure 3(a) shows D(N) for N = 80 x 80 sites, as a
function of the interlayer hopping ¢, /t and the departure
angle ¢ (note that we limit to 0 < ¢ < 4° in order to avoid
nearby commensurate tilting angles; the results for ¢ < 0
are very similar). For t; = 0, each layer constitutes an
independent disorder-free square lattice, characterized by
ergodic eigenstates, and correspondingly band expansion.
The eigenstates are also strictly speaking ergodic for a
Moiré lattice (¢ = 0) irrespective of the value of ¢, /t.
However, as mentioned above, the corresponding bands
may be significantly flat, leading to potentially very long
time scales for the band-expansion dynamics. Note as
well, that the formation of separated bands characteristic
of large-enough t, /t values reduces the lattice support
of the eigenstates, resulting for large ¢, /¢ in a finite-size-
induced deviation from the expected value D = 1. We
discuss this finite-size effects below.

For a non-zero tilting deviation ¢, a finite ¢, results
in an effective two-dimensional quasi-disordered spatial
dependence of the inter-layer hopping amplitude. Note
that this is so, crucially, because Iy > 0. A vanishing ly/a
would result for a finite ¢ in the almost complete decou-
pling of the layers, and hence on ergodic, basically mono-
layer, dynamics. As a result, ¢, /¢ would not play the
role of quasi-disordered strength discussed below. Note

as well, that the quasi-disorder is in principle established
even for very small angle deviations. However, a lattice
with a very small ¢ < 1° is barely distinguishable from
a Moiré lattice for the system sizes considered in our nu-
merics (and for typical experimental sizes), resulting in
the enhancement of the value of D observed in Fig. 3(a).
For large ¢ > 1° values, the results are approximately ¢
independent. As seen in Fig. 3(a), the ergodic character
of the whole eigenspectrum is maintained at low-enough
inter-layer couplings, with D(N) > 0.85 for ¢, /t < 4.
Beyond that value, D decays markedly reaching values
D(N) < 0.3 already for ¢, /t ~ 25.

Finite-size effects pose a major difficulty when study-
ing the localization properties and in particular the frac-
tal dimension. These effects may be to a large ex-
tent mitigated using the following argument. Note that
for a given eigenstate |¢)) in a system with N sites,
L) = v(1)/NP2¥). Hence the evaluated fractal di-

mension Dy (N;¢) = Do(vh)+ lolig#. Assuming that the

deviation averaged over all eigenstates % Zw logv(v) is
approximately N independent, we may then employ the
following ansatz for the relation between the averaged
fractal dimension D(N) for the case of N sites and the
value D, expected for an infinitely large system:

D(N) = Do + a/log(N), (5)

where D,, and « are determined by fitting our results
for different system sizes, up to 80 x 80 sites. Figure 3(b)
shows our results for Dy, for ¢, /t =10, ly/a = 0.15, and
a deviation ¢ = 3° from the Moiré¢ angle 6(2,1).

The extrapolated results confirm the qualitative pic-
ture observed in Fig. 3(a). The spectrum shows a clear
change of character at ¢, /t ~ 3. For weaker inter-layer
coupling Do, ~ 1, and hence the whole spectrum is er-
godic. Figure 3(c) shows the distribution of Da(N;1))
for N = 80 x 80 sites, with the expected peak at large D
values (only limited by finite size effects). At ¢, /t ~ 3,
whereas part of the spectrum remains ergodic, the rest
undergoes an ergodic-to-non-ergodic transition, resulting
in intermediate D, values. These intermediate values
are not a finite-size effect. Note in this sense, that for
t;/t ~ 6, the D(N) curves with different N cross, in-
dicating that around that value the spectrum is N in-
dependent (o ~ 0 in the expression above). Note as
well that the non-ergodic eigenstates have not a local-
ized, but rather an extended nature. This is evident from
Fig. 3(d), where we depict the distribution of Dy (NV; )
for t; /t = 12. This distribution shows in addition to ba-
sically ergodic states, a large number of states well within
the intermediate regime of Ds values. Further increas-
ing t; /t (see Fig. 3(e) for t, /t = 100) results in a the
displacement of the bulk of the spectrum to low D5 in-
dicating localization (although part of the states remain
with a clear non-ergodic extended character even for such
a strong inter-layer coupling). While the behavior of D
around the twist angle 6(2, 1) is presented in Figure 3(a),
we have verified that the physics is very similar for other
twist angles.
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FIG. 3. Eigenstate properties for incommensurate twisting angles. (a) Averaged fractal dimension D(N) for N = 80 x 80 sites,
as a function of t; /t and ¢. (b) D(N) for ¢ = 3°, and a lattice with NV = 50 x 50 (red dashed) and 80 x 80 (blue dotted) sites.
The black solid curve depicts Do (see text). (c-e) Histogram of the distribution of Dz (1)) values for ¢, /t = 3 (c), 12 (d) and
100 (e). In all the figures we consider 8 = 0(2,1) + ¢, lo/a = 0.15 and A = 0.

B. Expansion dynamics

The change in the nature of the eigenstates when in-
creasing ¢, /t and ¢ translates into a marked modifica-
tion of the expansion dynamics of an initially localized
wavepacket (at 7 = 0). We characterize the particle ex-
pansion at a given time 7 > 0 by means of the average
distance 7, from the initial central position ﬁm of the
particle wavepacket:

T(1)? = Y D |Ray— Bl leag()>. (6)

a=1,2 j

In order to assess the effect of twisting incommensurabil-
ity we compare this radius with the one, 7o(7), expected
for ¢ = 0, defining R(7) = 7(7)/To(7). This normaliza-
tion is necessary, since, as mentioned above, the dynamics
in a Moiré lattice may slow down very significantly with
t, /t due to the appearance of quasi-flat bands. Figure 4
shows for different values of ¢ and ¢, /¢, the normalized
radius R(7 = 16/t), for an initial wavepacket centered at
(0,0) with width o /a = 1. The qualitative behavior of R
mirrors that of the fractal dimension D in Fig. 3(a). For
t, /t < 4 the expansion dynamics is basically identical to
that of the commensurate case. In the vicinity of ¢ = 0,
we observe again that due to finite-size (and also finite-
time) limitations, a small ¢ is almost indistinguishable
from a Moiré bilayer. In contrast, the results are only
weakly dependent on ¢ for ¢ > 1°. In that regime, R(7)
decreases very markedly with growing ¢, /t, indicating
the onset of non-ergodic dynamics, and eventually local-
ization.
3

V. INTER-LAYER BIAS

The previous section has shown that the inter-layer
coupling acts as an effective quasi-disorder strength that

controls the degree of ergodicity-breaking in the system.
As discussed in this section, a similar role may be played
as well by the bias A, i.e. by the energy off-set between
the two layers in Eq. (1). Figure 5 (a) depicts the aver-
aged fractal dimension D as a function of ¢ and A/t ,
for an 80 x 80 lattice, with 0 = 6(2,1) + ¢, lp/a = 0.15
and ¢t /t = 10.

As in the previous section, the region of small ¢
presents an anomalously large D due to the finite-size
quasi-indistinguishability from the Moiré bilayer case.
Increasing the bias A renders the inter-layer hopping off-
resonant, eventually resulting for a large-enough A/t
in an effective decoupling of the layers. Since a decou-
pled layer is a regular square lattice, a large-enough bias
leads to the retrieval of ergodicity irrespective of ¢. The
extrapolated value D, (see Fig. 5(b)) shows that the
whole spectrum remains ergodic for A/t; > 1.5. Below
that value, part of the spectrum becomes multifractal.
Note that also in this curve we may identify a point, at
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FIG. 4. Expansion dynamics for incommensurate twist an-
gles. Expansion radius R(7 = 16/t) as a function of ¢ and
t. /t for the same case of Fig. 3(a).
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FIG. 5. Effect of the inter-layer bias. (a) Averaged fractal dimension D(N) for N = 80 x 80 sites as a function of A/t and
¢. (b) D(N) for ¢ = 3°, and a lattice with N = 50 x 50 (red dashed) and 80 x 80 (blue dotted) sites. The black solid curve
depicts Do (see text). (c) Expansion radius R(7 = 20/t) as a function of ¢ and ¢, /t for the same case of Fig. (a). In all the

figures, ¢, /t = 10, lp = 0.15a, and 6(2,1) + ¢.

A/ty ~ 0.5 at which the curves D(N) for different N
Cross.

As in the previous section, the time dependence of the
normalized averaged distance, R, mirrors the spectral
properties . Similar to the previous section, we normalize
R to the value expected for ¢ = 0. Figure 5 (c) depicts
R(T = 20/t) as a function of ¢ and A/t, showing a good
qualitative agreement with Fig. 5(a). The average dis-
tance is almost independent of ¢ for large bias implying
an extended phase in the effective single-layer regime. A
smaller bias leads to a markedly non-ergodic dynamics.
Interestingly, the largest deviation from ergodicity occurs
for ¢ > 1° not at A = 0, but rather at a finite A/t ~ 2.

VI. CONCLUSIONS

Particle dynamics in a twisted bilayer optical lattice
presents a non-trivial dependence on the lattice depth
(which controls the hopping ¢ and the width Iy of the
inter-layer Gaussian coupling), the inter-layer coupling
strength t, /t, the inter-layer bias A/¢, and the tilting
angle 6. Crucially, in contrast to solid-state twisted bi-
layer set ups, the inter-layer coupling can be controlled
basically at will, and may be much larger than the intra-
layer one. As a result, the inter-layer coupling may play
a crucial role in the particle dynamics. For commensu-
rate Moiré-like lattices, the eigenstates are in any case

ergodic, but due to the flatness of the Moiré bands, for
relevant experimental time scales transport for ¢, /¢ > 1
is dominated by channel formation. For incommensurate
lattices, and due to the finite range of the inter-layer
coupling, the coupling rate ¢, acts as an effective quasi-
disorder strength. Whereas the spectrum remains fully
ergodic for small ¢t /t < 3 (for A = 0), a larger inter-layer
coupling induces the transition of part of the spectrum
into non-ergodic (but still extended) states. Similarly,
ergodicity is recovered for a sufficiently large inter-layer
bias, whereas reducing the bias induces again a partial
ergodic-to-non-ergodic transition. The spectral proper-
ties may be revealed from the analysis of the expansion
dynamics of an initially localized wavepacket. Our re-
sults hence show that twisted-bilayer optical lattice set
ups provide an interesting controllable platform for the
study of multifractality. Furthermore, multi-layer set-ups
may allow for the study of particle transport in the 2D-
to-3D cross-dimensional regime, an intriguing possibility
for future studies.
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