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Abstract

Access to pre-trained models has recently
emerged as a standard across numerous ma-
chine learning domains. Unfortunately, ac-
cess to the original data the models were
trained on may not equally be granted. This
makes it tremendously challenging to fine-
tune, compress models, adapt continually, or
to do any other type of data-driven update.
We posit that original data access may how-
ever not be required. Specifically, we pro-
pose Contrastive Abductive Knowledge Ex-
traction (CAKE), a model-agnostic knowl-
edge distillation procedure that mimics deep
classifiers without access to the original data.
To this end, CAKE generates pairs of noisy
synthetic samples and diffuses them con-
trastively toward a model’s decision bound-
ary. We empirically corroborate CAKE’s ef-
fectiveness using several benchmark datasets
and various architectural choices, paving the
way for broad application.

1 INTRODUCTION

In the contemporary machine learning landscape, the
rise in availability of pre-trained models has signifi-
cantly facilitated development of downstream appli-
cations. In conjunction with prominent underlying
techniques, ranging from parameter pruning and shar-
ing (Han et al., 2015; Wang et al., 2016), low-rank
factorization (Yu et al., 2017; Denton et al., 2014),
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to knowledge distillation (Hinton et al., 2015), these
pre-trained models can now be efficiently fine-tuned,
compressed, or even adapted continually. Enabling
all the latter through a single mechanism, knowledge
distillation seems to be a particularly promising con-
tender from the plethora of available options. At its
core, it aims to transfer the knowledge from a (typi-
cally larger, more complex) teacher model to a (typi-
cally smaller, simpler) student model by training the
student to mimic the teacher’s predictions, feature re-
sponses, or other inferrable quantities from the learned
function. Such mimicry then enables the student to
reach similar performance levels, at reduced compu-
tational cost and memory usage or allow a model to
continue learning, if the student is the same model
that retains knowledge from a prior time step (Li and
Hoiem, 2016). However, the knowledge distillation op-
timization procedure traditionally requires access to
original data. Unfortunately, a provided model state
may not be accompanied with all its training data or
access to the latter may deliberately not be granted.

Despite an impressive amount of ensuing applications
in natural language processing (Tang et al., 2019; Mou
et al., 2016; Jiao et al., 2020), computer vision (Liu
et al., 2017; Zhou et al., 2018; Yim et al., 2017),
and speech recognition (Hinton et al., 2015; Lu et al.,
2017; Ramsay et al., 2019), the majority of approaches
is thus still limited by a host of assumptions. In
most works, students train on the original training
data (Hinton et al., 2015; Chen et al., 2019; Han et al.,
2021) or additional generative auxiliary models are
used to approximate the data distribution (Chen et al.,
2019; Han et al., 2021). Alternatively, the necessity of
data can be alleviated by imposing heavy constraints
on architectures (Chen et al., 2019; Han et al., 2021;
Yin et al., 2020; Nayak et al., 2019). These depen-
dencies limit the applicability of knowledge distilla-
tion when the original training data is not available,
the teacher and student model architectures mismatch,
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or training additional generative models is infeasible.
However, a crucial realization is that a majority of
these tasks may not even require strong assumptions
if one accounts for the task’s nature.

Specifically, we posit that supervised scenarios and
classification, in particular, do not require all knowl-
edge to be distilled. On the contrary, it is the decision
boundary that needs to be closely mimicked by a stu-
dent. We refer to respective distillation as abductive
knowledge extraction.

Based on this realization, we lift prior works’ as-
sumptions and propose the first knowledge distillation
method that is truly model-agnostic, i.e. operating
effectively without reliance on any specific architec-
tural features, components, or configurations of the
teacher (or the student) model, while not requiring
access to any original training data. To this end, our
introduced Contrastive Abductive Knowledge Extrac-
tion (CAKE) generates synthetic data pairs via a con-
trastive diffusion process, which are directed toward
opposing sides of a teacher model’s decision boundary.
In symbiosis, a contrastive pull ensures that a prospec-
tive student trains on samples that closely support
the teacher’s decision, whereas induced noise scatters
samples to sweep relevant regions along the boundary.
Fig. 1 shows an intuitive “two-moons” example, where
CAKE is compared to naive synthetic samples based
on gradient descent alone and a generative model. As
detailed later, CAKE succeeds where competitors fail
at data-free model-agnostic knowledge distillation due
to collapse to trivial solutions or failure to cover a
broad spectrum close enough to the relevant decision
boundary.

• We introduce Contrastive Abductive Knowledge
Extraction (CAKE), a model-agnostic knowledge
distillation procedure without access to original
data. Instead, a contrastive diffusion process gen-
erates synthetic samples that border a teacher’s
decision boundary.

• We empirically highlight the contribution of
CAKE’s components, showcase how teacher and
student neural networks can differ in depth and
capacity, and analyze CAKE’s effectiveness when
teacher and student models differ (MLP, CNN,
ResNet, and ViT).

• We corroborate that CAKE’s classification accu-
racy is competitive with a variety of “state-of-the-
art” methods that require data access or heavy
model assumptions.

We provide open-source code for CAKE at https://
github.com/ml-research/CAKE.

2 KNOWLEDGE DISTILLATION
AND THE CHALLENGE OF
DATA AVAILABILITY

In this section, we will discuss the key concepts behind
knowledge distillation, briefly explore the different
types of distilled knowledge and distillation schemes,
and summarize limitations with respect to data avail-
ability commonly found in the literature and respective
surveys (Gou et al., 2021; Liu et al., 2021).

2.1 Distillation in Supervised Classification

The original variant of knowledge distillation intro-
duced by Hinton et al. (2015) uses a softened ver-
sion of the teacher’s (logit) output to train a stu-
dent model to mimic the teacher. At the example
of supervised classification, given a training dataset
with N input-target pairs (xi, yi), a student fS, and
a teacher fT, we denote zS

i = fS(xi) and zT
i =

fT(xi) as the student and teacher logits respectively.
The student is trained by minimizing a loss function
L that balances the prediction of ground truth la-
bels and matches the softened output of the teacher
p(zi, τ) =

(
exp

(
z1i /τ

)
/Zi, . . . , exp

(
zCi /τ

)
/Zi

)
, where

Zi =
∑

j exp(z
j
i /τ) is the normalization constant and

τ is a temperature parameter that controls the softness
of the output distribution. The full student training
objective thus becomes a conjunction of true labels
and the teacher’s “soft labels”:

L (xi, yi) = λ1CE
(
yi, p

(
zS
i , 1

))
+ λ2CE

(
p
(
zT
i , τ

)
, p
(
zS
i , τ

))
, (1)

where λ1 and λ2 are hyperparameters that control the
trade-off between the two terms and CE is the cross-
entropy loss. The first term (LNLL) in the loss function
encourages the student to predict the ground truth
labels, while the second term (LKD) tries to match the
softened output of the teacher.

More generally, knowledge distillation techniques can
be categorized based on the distilled knowledge and
distillation schemes. Distilled knowledge may in-
clude response-based methods focusing on model out-
puts (Hinton et al., 2015), feature-based methods tar-
geting intermediate representations (Zagoruyko and
Komodakis, 2017; Chen et al., 2017), and relation-
based methods capturing pairwise relations between
instances (Yim et al., 2017; You et al., 2017). Dis-
tillation schemes may encompass offline distillation,
which involves pre-trained teacher models, online dis-
tillation where teacher and student models are trained
simultaneously, and self-distillation, where the teacher
and student are the same model (Zhang et al., 2019;
Hou et al., 2019; Yang et al., 2019). The choice of

https://github.com/ml-research/CAKE
https://github.com/ml-research/CAKE
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Figure 1: Comparison of naive, generative, and CAKE methods for knowledge distillation on the two-moons
dataset. The background visualizes teacher (green/purple) and student (blue/red) decision functions, juxtaposed
with original data (◦) and synthesized samples (△). Naive and generative methods often converge to similar
local minima, inducing an ineffective student decision function. In contrast, CAKE generates samples across the
entire decision-relevant region, resulting in a student model that accurately learns the data decision function if
trained exclusively on its synthetic samples.

the distillation scheme depends on an application’s re-
quirements, including computational resources, train-
ing data, and desired accuracy.

2.2 Distillation without Data Access

While the seminal work of Hinton et al. (2015) in-
troduced knowledge distillation with the student hav-
ing access to the original training data and using the
smoothed teacher outputs as additional information,
knowledge distillation can be further lifted to a “data-
free” setting. Here, data-free refers to providing no
access to the data distribution that the teacher was
trained on. The focus is then to construct synthetic
samples from the teacher that serve as exclusive train-
ing data for the student. There are generally two ap-
proaches to achieve such generation of synthetic data.

One angle makes use of generative models to synthe-
size samples that are relevant to the teacher’s objec-
tive, therefore extracting knowledge into an auxiliary
generative model that learns to sample the data distri-
bution. Recent examples are adversarial distillation,
such as DAFL (Chen et al., 2019) and its successor
RDSKD (Han et al., 2021) which employ a generative
adversarial network (GAN) Goodfellow et al. (2014).
However, while students are trained with synthetic
GAN samples, the training procedure of the GAN itself
again requires access to original data to construct the
adversarial objective. Further, an additional model
now needs to be carefully crafted, which may be prone
to issues such as e.g. mode collapse in GANs.

The alternative angle is to leverage the teacher’s pa-

rameters directly to construct a synthetic dataset. The
initial work, DeepDream (Mordvintsev et al., 2015),
uses an image prior and performs gradient descent on
an input image w.r.t. maximizing a specific class prob-
ability. The later DeepInversion (Yin et al., 2020) uses
DeepDream’s total variation and the l2-norm as an im-
age prior and extends the optimization objective by a
feature distribution regularization term. This imper-
ative term measures the l2-distance between convolu-
tion activations and respective BatchNorm (Ioffe and
Szegedy, 2015) statistics, as the latter provides a sim-
ple Gaussian proxy to the encoded distribution. Wang
(2021a) extends this principle by modeling the inter-
mediate feature space with a multivariate normal dis-
tribution. However, methods such as DeepInversion
then entail a restriction on the teacher requiring spe-
cific layers. As such, the approach cannot be applied
if the teacher is either treated as a black box with
no access to intermediate outputs or does not contain
the necessary functions. CAKE follows in these works’
footsteps, but lifts the constraints on model architec-
ture and intermediate value access.

2.3 The Pitfalls when Removing Data Access
without Model Constraints

To contextualize prior works and highlight the chal-
lenge of removing both access to data and intermedi-
ate values of specific model functions, we circle back
to the earlier shown figure Fig. 1. On the basis of the
simple 2-D two-moons example, the top row depicts
original (circles) and synthetic (triangles) data for the
naive DeepDream approach. As the latter optimizes
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initially random inputs solely to maximize the cross-
entropy loss, the first common pitfall ensues. Namely,
samples easily satisfy maximum confidence if they lie
far away from the decision boundary. When a stu-
dent is trained on these samples, the decision bound-
ary is overly simplistic, here leading to a linear decision
that is incorrect for the original task. The second row
shows a respective generative model trained to syn-
thesize data that minimize the teacher’s confidence.
Whereas the first pitfall may also occur, we can condi-
tion samples and contrast pairs (as in the later CAKE
for direct comparison). However, a second caveat now
arises. Namely, parameterized generators may easily
collapse towards trivial solutions or sample select re-
gions. As they collapse to specific modes that do not
cover the distribution necessarily, the student’s solu-
tion may once more be inadequate for the original task.

3 CAKE: CONTRASTIVE
ABDUCTIVE KNOWLEDGE
EXTRACTION

In the previous section, we expounded on the limita-
tions and assumptions associated with existing knowl-
edge distillation techniques when original training data
is unavailable and strict model assumptions cannot be
made. To overcome these challenges, we now introduce
Contrastive Abductive Knowledge Extraction, CAKE
for short. In contrast to prior works, CAKE extracts
the abductive knowledge of a teacher in a fully model-
agnostic way that does not require any original data.

3.1 Contrasting the Decision Boundary:
Abductive Knowledge Extraction

We propose a conceptual shift in the objective of
the distillation procedure. Contrary to the empha-
sis placed by a significant portion of the knowledge
distillation literature on the visual fidelity and close-
ness to original data, we argue that the ultimate goal
is not to accurately emulate the data-generating dis-
tribution. Instead, it should be to sample effectively
along the decision boundary region, such that a stu-
dent can later mimic it. With this in mind, we propose
to create pairs of noisy synthetic samples and employ
a contrastive approach to diffuse them towards the
decision boundary. Intuitively, think of drawing two
samples for two different classes (or sets in multi-class
scenarios) and pulling both towards each other until
their predicted label gets swapped. To this end, we
employ the squared Euclidean distance between logit
pairs for synthetic samples of different classes:

Lcontr(xi,xj) = 1 [yi ̸= yj ]
∥∥fT(xi)− fT(xj)

∥∥2
2

.
(2)

Note that despite the availability of elaborate con-
trastive formulations (van den Oord et al., 2019; Song
et al., 2016; Frosst et al., 2019), we focus on initial sim-
plicity. To avert the risk of synthetic samples collaps-
ing into a single region that minimizes the objective,
recall the second row of Fig. 1, it becomes necessary
to further disperse these samples along the decision
boundary, as we elaborate in the following subsection.

3.2 Sweeping the Decision Boundary:
Implicit and Explicit Noise

Having developed an objective aimed at generating
samples close to the decision boundary, we must ac-
knowledge that this objective does not yet ensure ex-
tensive coverage along the decision boundary. On the
one hand, abductive knowledge extraction need not
perfectly reflect the data distribution. However, on the
other hand, it is imperative to mimic a wide range of
the decision boundary. We therefore require an addi-
tional mechanism to explore along the decision bound-
ary. We posit that such exploration can be achieved
through the introduction of noise into the sample up-
date. As the contrastive term already acts as a per-
pendicular force, ensuring closeness between sets of
samples between classes, the injection of noise effec-
tively diffuses them in parallel to the decision bound-
ary. In CAKE, we thus inject noise by means of the
well-understood stochasticity of SGD-based optimiza-
tions and common step size schedules. Again for initial
simplicity, we choose a simple linear schedule, but we
note that a plethora of variants for noisy estimates ex-
ist. This effectively causes the optimization to disperse
the synthetic samples along the decision boundary.

While CAKE presents an intuitive, highly empirically
effective, but perhaps somewhat ad-hoc, solution to
the induction of noise, we now also propose a more
principled formulation. Recent advances in generative
modeling have rediscovered the importance of noise
through the integration of diffusion processes. Follow-
ing this spirit, we introduce a CAKE variant termed
Langevin Abductive Knowledge Extraction (LAKE).
In the latter, we incorporate noise into the synthe-
sis procedure with Langevin dynamics based diffusion,
generating samples from noisy gradients of the input:

xt+1
i = xt

i + η(t)∇xL
(
xt
i

)
+
√

2η(t)εti , (3)

with εti ∼ N (0, I) for t = 1, . . . , T . The process will
converge samples according to the true distribution
defined by the loss landscape, as both T → ∞ and
η(t) → 0. The diffusion property of the Langevin up-
date step aids in dispersing samples along the decision
boundary, thus preventing collapse. However, the the-
oretical guarantees only hold for the limit T →∞ and
η(t) → 0 and further empirical findings seem to indi-



Steven Braun, Martin Mundt, Kristian Kersting

cate that the explicit Gaussian noise term in the diffu-
sion process may not be fully necessary (Bansal et al.,
2022; Daras et al., 2022). Ultimately, we emphasize
that the presence of noise seems to be crucial, as also
highlighted by the quantitative results for CAKE and
LAKE in subsequent Section 4, but the choice w.r.t a
potential trade-off between empirical results and rigor
is left to the prospective user.

3.3 Injecting Auxiliary Domain-specific
Knowledge: The Role of Data Priors

In addition to our rigorous premise of no access to
original training data, we acknowledge that informa-
tion about the data domain typically exists. That is,
even when a pre-trained model contains no reference to
real data, its purpose and domain of application is typ-
ically made obvious. There is no conflict in integrat-
ing such auxiliary knowledge into the synthesis process
through data priors. For instance, when the applica-
tion is image-based, we can employ a total-variation
prior, as initially used also by DeepDream for the pur-
pose of “generating beautiful art” from random noise:

LTV(x) =

H∑
i=1

W∑
j=1

∥xi,j − xi−1,j∥+ ∥xi,j − xi,j−1∥ .

(4)
Here, x represents an image of dimensions H×W , and
xi,j corresponds to the pixel at the location (i, j). In-
tuitively, this prior mirrors our expectation that inputs
are images, and we thus expect depicted concepts to be
locally consistent. More generally, such priors enable
injection of potential meta-knowledge we may possess
in the form of constraints that facilitate the synthetic
sample optimization. Whereas our work later show-
cases popular image classification, imagine e.g. a prior
on the range of expected numerical values when con-
fronted with tabular data as a second example.

3.4 The Overall CAKE Algorithm

For completeness, we lay out the full CAKE proce-
dure in Appendix A. Conceptually, all synthetic sam-
ples could be generated in parallel. However, due
to both practical compute and memory constraints,
and to make the injection of noise more intuitive, the
algorithm outlines the generation of M sets of syn-
thetic sample “mini-batches”. For each mini-batch
D̃m, N random synthetic samples and labels (x̃t=0

i , ỹi),
where x̃t=0

i and ỹi are drawn from priors of our choice
p(x) , p(y). Subsequently, the algorithm iterates over
the number of synthetic samples per mini-batch, N

M ,
and for each sample, it performs T iterations. Within
each iteration, the samples x̃t

i are fed through the
teacher fT to obtain logits zT. Then, we compute the

Table 1: Ablation analysis of CAKE & LAKE in dis-
tilling a ResNet-34 to a ResNet-18 on CIFAR-10, high-
lighting that inclusion of each individual component is
meaningful to the overall performance of our method.

Student Accuracy

Setting LAKE CAKE

baseline 28.0 ± 3.16 15.6 ± 4.15
+LKD 34.8 ± 5.56 19.2 ± 4.91
+Lcontr 24.7 ± 2.32 39.7 ± 7.27
+LKD + Lcontr 36.8 ± 3.02 42.5 ± 8.13
+LKD + Lcontr + LTV 58.6 ± 4.02 71.0 ± 3.75

extraction loss l as a weighted mixture of LKD,Lcontr,
and LTV. An update step with scheduled step size
η(m) is performed on the synthetic sample as specified
in Section 3.2. The algorithm ultimately returns the
union of all synthetic mini-batches, D̃ =

⋃M
m=1 D̃T

m.
We can then proceed and train a student model on
the newly synthesized dataset. In CAKE, we argue
that the necessary noise can be induced intuitively as
a function of the current mini-batch. Respectively, for
LAKE we replace line 8 with earlier Eq. (3).

4 ABLATION STUDIES ON CIFAR

To highlight the contributions of the design elements
introduced in Sections 3.1 to 3.3 and to corrobo-
rate their utility beyond the two-dimensional Fig. 1,
we start with ablation studies on CIFAR-10. Ta-
ble 1 shows respectively obtained student accuracies
for CAKE and the LAKE variant for a ResNet-34 (He
et al., 2016) teacher and smaller ResNet-18 student,
both trained for 30 epochs on batches of size 256
with SGD and a learning rate of 0.5 scheduled with
OneCycleLR (Smith and Topin, 2018). We extract
500 mini-batches of 256 samples with loss weights
λcontr = 1e1, λcls = 1e3, and λTV = 1e5 for 256 it-
erations and an initial step size of 0.1. Further de-
tails follow standard practice and are provided in Ap-
pendix A and Appendix B. As described in earlier sec-
tions, we introduce noise by linearly decaying the step
size across four magnitudes for the sample synthesis in
CAKE and through Langevin diffusion in LAKE.

We can observe that the baseline, where synthetic sam-
ples are generated solely by maximizing cross-entropy,
delivers a student accuracy of only 28.0% for LAKE
and 15.6% for CAKE, demonstrating the necessity of
additional synthetization terms. The addition of the
knowledge distillation loss (LKD) improves the perfor-
mance for both LAKE and CAKE, increasing student
accuracy to 34.8% and 19.2% respectively, indicating,
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that the use of teacher-based soft labels is not as effec-
tive when applied to synthetic data compared to origi-
nal training data. However, the contrastive loss Lcontr

presents a more nuanced scenario. Whereas it signifi-
cantly enhances the performance of CAKE to 39.7%, it
seems to slightly degrade performance for LAKE’s to
24.7% when taken on its own, suggesting that Lcontr is
more beneficial in the absence of noise. However, when
LKD and Lcontr are combined, both LAKE and CAKE
exhibit improved performance, with student accuracy
reaching 36.8% and 42.5% respectively, illustrating the
complementary nature of these two loss components.
The final addition of LTV as a means to induce prior
knowledge about the possible structure of image-based
data leads to large improvements in performance of
both LAKE and CAKE, resulting in student accura-
cies of 58.6% and 71.0%.

5 CAKE ACROSS SCALES

Following the spirit of the original knowledge distil-
lation paper’s experiments and goals (Hinton et al.,
2015), we investigate CAKE’s ability for model com-
pression on CIFAR-10. To this end, we employ the
well-known family of ResNet models with varying
depths as both teachers and students. Specifically,
we consider the following depths, with the number
of parameters denoted in millions in brackets: 152
(58.2M), 101 (43.5M), 50 (23.5M), 34 (21.3M), 18
(11.2M), and 4 (1.2M). Fig. 2 shows respective groups
of bars for achieved test accuracy for each teacher
depth on the x-axis, where the hatched bars (with fur-
ther explicit “teacher” bar label) show the respectively
sized teacher’s performance. All other bars quantify
students of varying depths. For convenience, stu-
dent depth is provided explicitly as the bar label and
an applied shading further highlights smaller models
through lighter shading.

From the obtained accuracies, it becomes evident
that CAKE displays stable performance across various
teacher-student model capacities. Most importantly,
even smaller student models (ResNet-18, ResNet-
34) exhibit competitive performance when distilled
from deeper teachers, indicating the effectiveness of
CAKE in compressing knowledge of previously over-
parametrized models. As such, if the teacher model’s
complexity decreases too much, here in the case of
ResNet-4, the student models also feature a significant
drop in accuracy, irrespective of their depth. Nat-
urally, this suggests that the lower capacity of the
teacher model limits the quality of knowledge it can
provide, which the student cannot recover at any ca-
pacity. Not surprisingly, a student model with very
limited capacity suffers from bottlenecked information
and amplifies performance degradation when knowl-

edge is distilled, resulting in expected inferior perfor-
mance across all examined teacher model capacities.

6 CAKE ACROSS MODEL TYPES

A key advantage of CAKE does not only lie in its effec-
tiveness without access to original data but also in the
fact that there are no imposed constraints on model ar-
chitectures or required intermediate model values for
distillation. Much in contrast to the earlier mentioned
prior works that require models to be of the same type
or functioning on the premise of batch normalization
layers, we are thus free to distill knowledge between a
teacher and student model of different types. In fact,
our sole requirement is that a model API implements a
black box differentiable “forward” and a “backward”
pass, where it is sufficient to simply obtain the final
input gradient without any in-between states.

In the following, we thus investigate the performance
of CAKE between four popular neural network types:
1) Multi-layer Perceptrons (MLP), 2) Convolutional
Neural Networks (CNN), 3) ResNet-4, and 4) Vision
Transformer (ViT) (Dosovitskiy et al., 2021). For fair
comparison, we have matched the models’ parameter
amounts, see appendix for details. Fig. 3 shows the re-
sult for across-model type distillation on MNIST (Le-
Cun et al., 1998a), combining every model type with
every other. Each group on the x-axis describes a set
of experiments with a specific teacher type, where the
teacher’s accuracy is hatched. The intra-group bars
represent student results when trained on the synthetic
samples of the particular teacher.

Overall, we find that distillation from an MLP to any
other model is effective across the board, while the dis-
tillation performance from a ResNet to other models
is generally poor. Importantly, the distillation perfor-
mance is notably robust when both the teacher and
student models share the same model type. Following
these results, we first emphasize that our chosen mod-
els have all been roughly matched in terms of over-
all parameter amount and achieve negligibly similar
teacher test accuracies. Thus, we hypothesize that
when teacher and student models have similar induc-
tive biases, the distillation process tends to be most
effective. In addition, as observable in the case of
MLPs that have less inductive biases than the other
contenders, it seems that the majority of students can
also excel as they are unrestricted in forming their own
auxiliary assumptions. Here, the only exception is the
ViT, for which distillation results are mixed and con-
sistently underperform, unless the teacher is also a
ViT. We further conjecture that this outcome could
be attributed to the fundamentally distinct manner in
which inputs are fed into the model, specifically, the
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Figure 2: Student model accuracy on CIFAR-10 (y-axis) when trained on synthetic data distilled from ResNet
teacher models of different depths. Each group of bars corresponds to a ResNet teacher model of a particular
depth (x-axis), and each bar within a group shows the accuracy of the student model distilled from that teacher
model, along with its standard deviation as error bars. As desired, CAKE can compress models at a stable
accuracy until capacity is too heavily constrained.
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Figure 3: Performance of different student models distilled from teacher models of various model types trained
on MNIST: CNNs, MLPs, ResNets, and ViTs (parameter amounts are set to be similar). Each group of bars
corresponds to a particular teacher type and each bar within a group shows the accuracy of a particular type
of distilled student model, along with its standard deviation as error bars (5 trials). Overall, matching model
types consistently provides good results, whereas distillation across types seems to work if the teacher has less
inductive bias than the student.

tokenization into sequences in ViTs. However, most
importantly, as we track Fig. 3 to the right, our analy-
sis thus suggests a rather simple rule of thumb. When
in doubt of the teacher’s type, choosing a ResNet model
appears to be a safe choice, as it provides stable per-
formance independently of the source model.

7 CAKE VS. TAILORED METHODS

Having evaluated the key factors contributing to
CAKE’s performance, its efficacy in model compres-
sion, and its ability to distill across diverse model
types, we now position CAKE within the larger con-
text of existing techniques. As discussed in Section 2,
these methods often require access to original data, are
tailored to specific models, or impose both conditions.

We include a wide set of techniques, their assumptions,
and performances on MNIST (LeCun et al., 1998a),
FMNIST (Xiao et al., 2017), SVHN (Netzer et al.,
2011), and CIFAR (Krizhevsky, 2009) in Table 2 (see
Appendix D for an extended table). Despite all other
techniques imposing strict requirements on model type
and data availability, our results show compelling evi-
dence that CAKE can effectively lift assumptions with
little to no performance detriment.

For both MNIST (LeNet-5 to LeNet-5-Half) and
SVHN (ResNet-34 to ResNet-18) settings, CAKE
achieves comparable student accuracy to other tech-
niques, despite the latter requiring data access and/or
being model-specific. In the CIFAR-10 scenario
(ResNet-34 to ResNet-18), we attain a student accu-
racy of 78.9%, almost matching techniques with data
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Table 2: Comparison of knowledge distillation techniques, presenting teacher and student model accuracies, to
highlight that CAKE is effective despite lifting typical model constraints (MA: model-agnostic) and requiring
no data access (DF: data-free). Note that standard deviations are typically not reported in the literature,
obfuscating potential volatility in reproduction. See Appendix D for further details on the compared methods.

Method DFMADataset Teacher Acc. Student Acc.

KD ✗ ✓
MNIST LeNet-5 99.3 LeNet-5-Half 98.8
FMNIST LeNet-5 90.8 LeNet-5-Half 89.7
CIFAR-10 ResNet-34 95.6 ResNet-18 94.3

DAFL ✓ ✗
MNIST LeNet-5 97.9 LeNet-5-Half 97.6
CIFAR-10 ResNet-34 93.7 ResNet18 90.4

DI ✓ ✗ CIFAR-10 ResNet-34 95.4 ResNet-18 91.4
ADI ✓ ✗ CIFAR-10 ResNet-34 95.4 ResNet-18 93.3
DD ✓ ✓ CIFAR-10 ResNet-34 95.4 ResNet-18 30.0

ZSDB3KD ✓ ✓
MNIST LeNet-5 99.3 LeNet-5-Half 96.5
FMNIST LeNet-5 91.6 LeNet-5-Half 72.3
CIFAR-10 AlexNet 79.3 AlexNet-Half 59.5

CAKE ✓ ✓

MNIST LeNet-5 99.3 ± 0.12 LeNet-5-Half 98.4 ± 0.18
FMNIST LeNet-5 91.0 ± 0.12 LeNet-5-Half 76.5 ± 1.01
SVHN LeNet-5 89.8 ± 0.38 LeNet-5-Half 62.9 ± 4.17
SVHN ViT-8 94.4 ± 0.13 ViT-4 83.7 ± 4.77
SVHN ResNet-34 96.1 ± 0.08 ResNet-18 94.2 ± 0.54
CIFAR-10 ViT-8 73.2 ± 0.76 ViT-4 53.8 ± 5.63
CIFAR-10 ResNet-34 91.8 ± 0.11 ResNet-18 78.9 ± 2.59

access and additional model assumptions with a mere
10%-15% gap. Remarkably, on CIFAR-10, CAKE out-
performs DeepDream (30.0% for ResNet-34 to ResNet-
18), the only other truly data-free and model-agnostic
technique, by a factor of two. While ZSDB3KD is
data-free and model-agnostic as well, its focus is on
model decision outputs and is thus not directly com-
parable against DD and CAKE.

8 DISCUSSION

We have shown that CAKE can effectively transfer
abductive knowledge between models of various ca-
pacities as well as models of entirely different types,
despite the fact that CAKE lifts previous standard
assumptions on models and requirements on original
data access. In light of these results, we challenge the
current de facto standard of requiring original training
data or making model assumptions. Already now, this
entails a host of highly interesting future applications
of societal significance, as well as an even greater set
of prospects once remaining limitations are lifted.

Future Work As CAKE’s design lifts the require-
ment of original data access and simultaneously re-
moves unnecessary model constraints, it now opens
up a plethora of future applications and research di-
rections. On the one hand, these lie in performance

improvements to our initial intuitive approach. For in-
stance, we can now further make use of the wide array
of improved contrastive formulations (van den Oord
et al., 2019; Song et al., 2016; Frosst et al., 2019), im-
provements for diffusion processes, or leverage adap-
tive signals similar to ADI (Yin et al., 2020) to dy-
namically steer the distillation process based on the
student’s performance in the spirit of curriculum learn-
ing (Wang et al., 2021). On the other, even more excit-
ing, hand, CAKE’s main premise of extracting abduc-
tive knowledge also entails that the data distribution
is not closely mimicked. This implies that generated
synthetic samples do not resemble original data. Fig. 4
showcases synthetic samples generated from a ResNet
teacher using CAKE across three datasets: MNIST,
SVHN, and CIFAR. A crucial observation from the
depicted samples is their lack of visual resemblance to
the original training data from the respective datasets.
Intuitively, they seem to look more like commonly
found adversarial attacks (Ilyas et al., 2019), but note
that our synthetic data doesn’t serve the same purpose
to trick a classifier towards misclassification by per-
turbing original data. This characteristic might offer
a foundational premise for robust privacy-preserving
methodologies. In light of these findings, future re-
search could probe the potential of these synthetic
samples from a privacy perspective. One avenue to
explore is the application of differential privacy, which
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Figure 4: Synthetic samples generated from a ResNet
teacher by CAKE on the MNIST, SVHN, and CIFAR
datasets, demonstrating no visual resemblance with
original training data.

offer rigorous privacy guarantees by ensuring that the
release of statistical information doesn’t compromise
the privacy of individual data entries. The intersection
of synthetic data generation and differential privacy
could open up possibilities to ascertain: (1) Whether
these synthetic samples meet differential privacy cri-
teria, (2) the potential trade-offs between data utility
and privacy when generating such samples, and (3)
the robustness of models trained on these synthetic
datasets against privacy attacks. In general, CAKE’s
ability to distill knowledge without data resemblance
could be invaluable for applications where data privacy
and confidentiality are paramount.

Limitations Although CAKE already yields
promising results without common assumptions, we
see two remaining limitations to be lifted in the future.
First, as highlighted in the previous paragraph, our
current distillation process operates independently of
the student model. This results in a lack of direct
measures to estimate the quality of the synthetic
dataset during the distillation phase, potentially
limiting the effectiveness of the distillation and the
resulting student model’s performance. Second,
although we assume no access to original data, model
constraints, and require no access to intermediate
model values, we do nevertheless still require a callable
backward function. This does not yet allow CAKE
to be used in scenarios where a model is hosted with
an API that only allows forward evaluation calls,
a limitation we foresee to be overcome through a
transition to e.g. the very recent and concurrently
proposed forward-forward algorithm (Hinton, 2022).

Societal Impact We raise awareness that model-
agnostic abductive knowledge extraction without
training data access may be misused to inappropri-
ately extract knowledge from proprietary or confiden-

tial models, thereby leading to potential violations of
privacy or intellectual property theft. While amicable
use cases for e.g. continual or federated learning ex-
ist, this also simultaneously highlights the importance
of conducting further research into securing our pub-
lic models. In particular, we foresee that the above-
mentioned final limitation of requiring a backward API
call may be lifted in the foreseeable future, exposing a
crucial issue with current models. Finally, distillation
methods will inadvertently mimic existing biases in the
teacher model, perpetuating or even exacerbating un-
fairness or discrimination, potentially making efforts
towards data transparency even more challenging.
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A THE CAKE ALGORITHM

Algorithm 1 Contrastive Abductive Knowledge Extraction

Require: teacher fT, iterations T , #mini-batches M of N samples, step-size schedule η, priors p(x) , p(y)
1: procedure CAKE(fT, T,M,N, η, p(x) , p(y))
2: for m = 1 to M do ▷ Number of mini-batches
3: Initialize D̃t=0

m ←
{(

x̃t=0
1 , ỹ1

)
, . . . ,

(
x̃t=0
N , ỹN

)}
, where x̃t=0

i ∼ p(x) and ỹi ∼ p(y)

4: for i = 1 to N do ▷ Number of synthetic samples per mini-batch
5: for t = 1 to T do ▷ Number of iterations
6: zT ← fT

(
x̃t
i

)
▷ Forward pass through teacher

7: l← L
(
x̃t
i, z

T, ỹi, D̃t
m

)
▷ Compute extraction loss

8: x̃t+1
i ← x̃t

i − η(m)∇xl ▷ Update synthetic samples

9: return D̃ =
⋃M

m=1 D̃T
m

In Algorithm 1 we present the CAKE algorithm. The aim is to extract knowledge from a given teacher model
fT. The algorithm requires a teacher model, the number of iterations T , the number of mini-batches M of N
samples, a learning rate schedule η, and data and label priors p(x) and p(y). The main procedure starts with a
loop generating M mini-batches of size N (Line 2). For every mini-batch, synthetic samples are initialized (Line
3). These synthetic samples (x̃t=0

i , ỹi) are sampled from the priors with x̃t=0
i ∼ p(x) and ỹ ∼ p(y). Formally,

the algorithm then optimizes each of the N sample within the mini-batch (Line 4). Implementation wise, this
for-loop can be implemented in a vectorized fashion by parallelizing the computations over the mini-batch axis.
For each sample, an inner loop iterates for T iterations (Line 5). In this loop, a forward pass through the
teacher model is conducted to compute zT (Line 6). Following this, the objective loss l is computed, contrasting
the synthetic sample with other samples in the batch and using the teacher’s output (Line 7). The synthetic
sample is then updated based on this loss (Line 8). To implement LAKE as outlined in Section 3.2, this line
can be replace with the langevin dynamics update step from Eq. (3). Finally, after processing all samples and
mini-batches, we return the joint set of synthetic mini-batches D (Line 9).

B CAKE HYPERPARAMETERS

In our experiments, we defined a set of default hyperparameters for CAKE that we used across all runs unless
stated otherwise. This setup involved extracting 500 mini-batches of 256 samples each, with the loss weights
λcontr = 1e1, λcls = 1e3, and λTV = 1e5 respectively. A mini-batch was generated over 256 update iterations
with an initial step size of 0.1 and a linearly decaying step schedule over four magnitudes. As priors in the sample
generation process we use a Gaussian distribution x̃t=0

i ∼ N (0, I) as data prior p(x) and a uniformly distributed
categorical distribution over the number of classes yi ∼ Cat

(
1
C , . . . , 1

C

)
as label prior p(y). Furthermore, in the

experiments discussed in Section 5, we reduced the number of mini-batches to 250 to reduce the computational
load. Conversely, for the experiments in Section 7, the number of mini-batches was increased to 2000 to test
the limits of CAKE. One finding from our intermediate experiments was the noticeable improvement in student
accuracy as we increased the number of mini-batches. This observation aligns with our intuitive understanding
that a higher number of mini-batches allows us to sample the data-relevant decision boundary regions more
thoroughly and in a fine-grained manner.

C NETWORK ARCHITECTURES, TRAINING, AND IMPLEMENTATION
DETAILS

Architectures. Below we outline the specific network architectures details utilized in our experiments. For
each model type, we provide information regarding their architectural configurations, such as the number of
layers and their dimensions, as well as the total number of parameters involved. Each of these models has been
selected based on its relevance to the data sets used in our experiments, and they represent a variety of model
complexities and capabilities. Detailed descriptions for each of these network architectures are provided below.
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• Multi-layer Perceptron (MLP): An architecture consisting of four hidden layers, each having a hidden
size of 100, amounting to a total of 118K parameters.

• Convolutional Neural Network (CNN): The architecture of this model featured four convolutional
layers. The number of channels for each layer was 32, 64, 64, and 64, respectively, with corresponding kernel
sizes of 3, 4, 3, and 3. We employed ReLU activation after each convolution operation, and max pooling
was introduced after the second, third, and fourth convolutions. The architecture concluded with a fully
connected layer, totaling 107K parameters.

• LeNet-5 & LeNet-5-Half: The LeNet-5 model adhered to the architecture proposed by LeCun et al.
(1998b), possessing 61.7K parameters. In contrast, the LeNet-5-Half model was a modification of LeNet-5,
with the number of filters in each convolution layer reduced by half, resulting in a compact model with
15.7K parameters.

• Residual Network (ResNet): The ResNet architectures with depths of 152, 101, 50, 34, and 18 were
utilized as described in He et al. (2016). Furthermore, a modified ResNet with a depth of 4 was introduced,
where the repetition factor of the layers conv2 to conv5 was set to 1. The number of filters in these
convolution layers was configured based on the dataset, with 16, 32, 32, and 64 filters for MNIST and 32,
64, 128, and 256 filters for CIFAR-10. The ResNet models accounted for 58M, 43M, 24M, 21M, 11M, 1.2M,
and 98K parameters correspondingly.

• Vision Transformer (ViT): We employed the ViT architecture for small datasets as suggested by Lee
et al. (2021). We had models with depths of 8 (ViT-8) and 4 (ViT-4) with 8 heads, intermediate and MLP
dimensions of 64, and a patch size of 4, resulting in 1.1M and 580K parameters respectively. For MNIST
experiments, we further reduced model capacity by using a model with a depth of 3 (ViT-3), 4 heads, and
intermediate and MLP dimensions of 32, resulting in a compact model with 110K parameters.

Training. In our experiments, both the teacher and student models were trained using the following configu-
rations. The training process was carried out over 30 epochs, utilizing a batch size of 256 for each iteration. The
models were optimized using Stochastic Gradient Descent (SGD) with an initial learning rate of 0.5 and weight
decay of 1e−4. This learning rate was scheduled using the OneCycleLr Smith and Topin (2018) learning rate
scheduler with an initial division factor of 25 and a final division factor of 1e4. For each experiment result we
report the mean and standard deviation over five runs with seeds {0, . . . , 4}.

Software and Hardware. All of our experiments were implemented in PyTorch (v2.0.0) for model implemen-
tation and autograd and the Lightning framework (v2.0.0) for structuring the training pipeline and facilitating
model evaluation (see requirements.txt for a full list of dependencies and their versions). Experiments were
run on A100 GPUs utilizing bfloat16 precision. The sample generation procedure on a ResNet-34 with a mini-
batch size of 250 for 500 batches and 256 update steps per mini-batch takes 40 minutes with an average GPU
utilization of 96% occupying 3.725GB of VRAM. All of our code is provided in the supplementary material for
full reproducibility and insights.

D DETAILS ON COMPARED METHODS

In this section, we will provide further information on the in Section 7 presented comparison against other
relevant KD methods. We further extend Table 2 with more related work in Table 3. For each compared
methods, we will reason on the distinctions we made in Table 2, in particular their attributes of being data-free
and model-agnostic.

• Knowledge Distillation (KD) (Hinton et al., 2015): The seminal work introduced concept of extracting
“soft targets” from a teacher model to train a student model. The results from Hinton et al. (2015) were
obtained with access to the original training data to fine-tune the student model, thereby inheriting the
data-dependency from its teacher model. Hence, it is not data-free. KD has no further assumptions on the
teacher or student model architecture making it model-agnostic.

• Data-Free Learning of Student Networks (DAFL) (Chen et al., 2019): Utilizes Generative Adversarial
Networks (GANs) to train a compact student model without requiring access to the original training data.
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The teacher network acts as a fixed discriminator, and a generator produces synthetic samples for student
training, making the method data-free. However, DAFL incorporates an architecture-specific activation loss
term La = − 1

n

∑
i ||f i

T ||1 to guide the learning. This loss term is designed to extract intrinsic patterns from
the teacher model’s convolutional filters. Thus, DAFL’s method is not model-agnostic as it is (a) utilizes a
GAN to synthesize samples and (b) closely ties the GAN samples to the architecture of the teacher model
due to the architecture-specific activation loss.

• Robustness and Diversity Seeking Data-free Knowledge Distillation (RDSKD) (Han et al., 2021):
This method addresses the limitations of existing data-free KD techniques by incorporating a specialized
loss function that focuses on sample authenticity, class diversity, and inter-sample diversity. It mitigates the
conflicting goals of high sample authenticity and class diversity by exponentially penalizing loss increments.
Similar to DAFL, RDSK trains a generator to synthesize samples

• Zero-Shot Knowledge Distillation (ZSKD) (Nayak et al., 2019): This approach offers a data-free method
for knowledge distillation, bypassing the need for original training data or even meta-data. It synthesizes
“Data Impressions” from the teacher model, using them as surrogate data for transferring learning to the
student model. ZSKD constructs a class similarity matrix and therefore constrains the model to have a
fully-connected ultimate layer with a soft-max non-linearity making it model-specific.

• Gaussian Distillation (GD) (Raikwar and Mishra, 2022): This technique employs samples drawn from a
Gaussian distribution for data-free knowledge distillation. Unlike other attempts at using Gaussian noise,
this method provides a reliable solution by addressing the shift in the distribution of hidden layer activa-
tions. GD addresses the challenge of “covariate shift” in hidden layer activations through a modification in
BatchNorm layers, making the method depend on the presence of such layers in the teacher model.

• DeepInversion (DI) (Yin et al., 2020): Generates class-conditional input images by inverting a trained
teacher network, making it data-free. However, the method uses a feature distribution regularization term
Rfeature that depends on BatchNorm layers in the teacher model to be present, rendering it not model-
agnostic.

• Adversarial DeepInversion (ADI) (Yin et al., 2020): An extension of DeepInversion. ADI additionally
maximizes the Jensen-Shannon divergence between teacher and student network logits to improve synthe-
sized image diversity. Having the same constraints as DI, the adversarial extension now directly creates a
dependency between the teacher and student network.

• DeepDream (DD) (Mordvintsev et al., 2015): Originating as a blog post, DeepDream serves as a technique
for visualizing the learned features of neural networks. It imposes no requirements on the original training
data or the architecture of the teacher model, making it both data-free and model-agnostic. DeepDream
creates enhanced images by iteratively activating neurons in different layers of a pre-trained network, giving
us insights into what the network might ”see” or ”imagine.” This method is thus a fair comparator to CAKE,
as it aligns well with our criteria of being data-free and model-agnostic.

• Zero-Shot Knowledge Distillation from a Decision-Based Black-Box Model (ZSDB3KD) (Wang,
2021b): Focuses on knowledge distillation when the teacher model is a decision-based black-box, providing
only hard labels (class predictions). To overcome this, ZSDB3KD uses the concept of “sample robustness”
— a measure of how far a sample lies from the teacher’s decision boundaries. With accessible training
data, sample robustness helps generate soft labels. When training data is absent (zero-shot), ZSDB3KD
creates robust pseudo-samples mimicking the training data distribution. In both cases, knowledge distillation
proceeds using generated soft labels. Importantly, ZSDB3KD requires neither the original training data nor
specific details of the teacher’s architecture, making it data-free and model-agnostic.
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Table 3: Comparison of knowledge distillation techniques, presenting teacher and student model accuracies, to
highlight that CAKE is effective despite lifting typical model constraints (MA: model-agnostic) and requiring
no data access (DF: data-free). Note that standard deviations are typically not reported in the literature,
obfuscating potential volatility in reproduction.

Method DFMADataset Teacher Acc. Student Acc.

KD ✗ ✓
MNIST LeNet-5 99.3 LeNet-5-Half 98.8
FMNIST LeNet-5 90.8 LeNet-5-Half 89.7
CIFAR-10 ResNet-34 95.6 ResNet-18 94.3

DAFL ✓ ✗

MNIST LeNet-5 97.9 LeNet-5-Half 97.6
MNIST HintonNet 98.4 HintonNet-Half 97.9
SVHN WResNet-40-2 95.9 WResNet-16-1 94.3
CIFAR-10 ResNet-34 93.7 ResNet18 90.4

RDSKD ✓ ✗
MNIST LeNet-5 97.9 LeNet-5-Half 97.6
SVHN WResNet-40-2 95.9 WResNet-16-1 94.6
CIFAR-10 ResNet-34 93.7 ResNet18 90.8

DI ✓ ✗
CIFAR-10 VGG-11 92.3 VGG-11 84.2
CIFAR-10 VGG-11 92.3 ResNet-18 83.8
CIFAR-10 ResNet-34 95.4 ResNet-18 91.4

ADI ✓ ✗
CIFAR-10 VGG-11 92.3 VGG-11 90.8
CIFAR-10 VGG-11 92.3 ResNet-18 90.7
CIFAR-10 ResNet-34 95.4 ResNet-18 93.3

ZSKD ✓ ✗

MNIST LeNet-5 97.9 LeNet-5-Half 92.1
FMNIST LeNet-5 90.8 LeNet-5-Half 79.6
SVHN WResNet-40-2 96.0 WResNet-16-1 14.5
CIFAR-10 AlexNet 83.0 AlexNet-Half 69.6
CIFAR-10 ResNet-34 93.7 ResNet-18 10.5

GD ✓ ✗
SVHN ResNet-18 94.5 MobileNetV2 92.9
CIFAR-10 ResNet-34 93.3 ResNet-18 86.0 ± 0.12
CIFAR-10 ResNet-34 93.3 ResNet-34 87.1 ± 0.23

DD ✓ ✓
CIFAR-10 VGG-11 92.3 VGG-11 36.6
CIFAR-10 VGG-11 92.3 ResNet-18 39.7
CIFAR-10 ResNet-34 95.4 ResNet-18 30.0

ZSDB3KD ✓ ✓
MNIST LeNet-5 99.3 LeNet-5-Half 96.5
FMNIST LeNet-5 91.6 LeNet-5-Half 72.3
CIFAR-10 AlexNet 79.3 AlexNet-Half 59.5

CAKE ✓ ✓

MNIST LeNet-5 99.3 ± 0.12 LeNet-5-Half 98.4 ± 0.18
FMNIST LeNet-5 91.0 ± 0.12 LeNet-5-Half 76.4 ± 1.01
SVHN LeNet-5 89.8 ± 0.38 LeNet-5-Half 62.9 ± 4.17
SVHN ViT-8 94.4 ± 0.13 ViT-4 83.7 ± 4.77
SVHN ResNet-34 96.1 ± 0.08 ResNet-18 94.2 ± 0.54
CIFAR-10 ViT-8 73.2 ± 0.76 ViT-4 53.8 ± 5.63
CIFAR-10 ResNet-34 91.8 ± 0.11 ResNet-18 78.9 ± 2.59
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