
Solving NP-hard Problems on GATEX Graphs: Linear-Time
Algorithms for Perfect Orderings, Cliques, Colorings, and

Independent Sets*

Marc Hellmuth1 and Guillaume E. Scholz2

1Department of Mathematics, Faculty of Science, Stockholm University, SE-10691 Stockholm, Sweden
marc.hellmuth@math.su.se

2Bioinformatics Group, Department of Computer Science & Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16–18, D-04107 Leipzig, Germany.

Abstract

The class of GAlled-Tree EXplainable (GATEX) graphs has recently been discovered as a natural generalization
of cographs. Cographs are precisely those graphs that can be uniquely represented by a rooted tree where the leaves
correspond to the vertices of the graph. As a generalization, GATEX graphs are precisely those that can be uniquely
represented by a particular rooted acyclic network, called a galled-tree.

This paper explores the use of galled-trees to solve combinatorial problems on GATEX graphs that are, in general,
NP-hard. We demonstrate that finding a maximum clique, an optimal vertex coloring, a perfect order, as well as a
maximum independent set in GATEX graphs can be efficiently done in linear time. The key idea behind the linear-
time algorithms is to utilize the galled-trees that explain the GATEX graphs as a guide for computing the respective
cliques, colorings, perfect orders, or independent sets.

Keywords: modular decomposition galled-tree cograph NP-hard problems linear-time algorithms

1 Introduction
Modular decomposition is a general technique to display nested “substructures” (modules) of a given graph in the form
of a rooted tree (the modular decomposition tree of G) whose inner vertices are labeled with “0”, “1”, and “prime”.
Cographs are precisely those graphs for which the modular decomposition tree has no prime vertices. In this case,
complete structural information of the underlying cograph, i.e., the knowledge of whether two vertices are linked by
an edge or not, is provided by the modular decomposition tree. As a consequence, these modular decomposition
trees serve as a perfect guide for algorithms to efficiently solve many computationally hard problems on cographs
(e.g., the graph-isomorphism problem or classical NP-hard problems like “minimum independent set”, “maximum
clique”, or “minimum vertex coloring”) [5, 6]. However, when encountering prime vertices, conventional modular
decomposition trees do not provide full structural information about the underlying graphs and become less useful for
algorithmic solutions to hard problems. To circumvent this issue, we aim at using modular decomposition networks
instead of trees. In [15], we focused on particular networks, called galled-trees, that are obtained from the modular
decomposition tree by replacing prime vertices by rooted 0/1-labeled cycles. A graph G = (X ,E) is GAlled-Tree
EXplainable (GATEX) if there is a 0/1-labeled galled-tree (N, t) such that x,y ∈ E if and only if the label t(lcaN(x,y))
of the unique least-common ancestor of x and y in N is “1”. GATEX graphs, thus, naturally generalize the concept
of cographs. Further exploration of the class of GATEX graphs in [17] shows that these graphs are characterized by
the absence of 25 forbidden subgraphs. This, in turn, implies that GATEX graphs are closely linked to other famous
graph classes such as weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs,
murky graphs as well as interval graphs, Meyniel graphs, or very strongly-perfect and brittle graphs. In addition, every
GATEX graph has twin-width at most 1.

Cotrees serve as a guide for algorithms on cographs to solve many combinatorial problems that are classified as
“hard”. In this contribution, we ask whether the galled-trees that explain GATEX graphs can be used in a similar
manner. In particular, we are interested in the following classical NP-hard problems [11]: Determining the size ω(G)

*This contribution is an extended version of the COCOON’23 paper [16].

1

ar
X

iv
:2

30
6.

04
36

7v
2

 [
cs

.D
M

]
 2

6
A

pr
 2

02
4

of a maximum clique and finding such a clique, the size χ(G) of an optimal vertex-coloring and finding such a
coloring, the size α(G) of a maximum independent set of a given graph G and finding such an independent set. In
general, determining the invariants ω(G), χ(G), and α(G) for arbitrary graphs G, as well as finding the underlying
optimal cliques, colorings, and independent sets, is an NP-hard task [11]. All these invariants are not only of interest
from a theoretical point of view but also have many practical applications in case the underlying graph models real-
world structures, e.g., social networks [20], gene/protein-interaction networks [1, 25], job/time-slots assignments in
scheduling problems [21], and many more. In addition, we consider the problem of determining a perfect ordering of
GATEX graphs, i.e., an ordering of the vertices of G such that a greedy coloring algorithm with that ordering optimally
colors every induced subgraph of G. As shown by Middendorf and Pfeiffer [23], the problem of deciding whether
a graph is perfectly orderable is NP-complete. As we will argue below, the problem of finding a perfect ordering
remains NP-hard even for perfectly orderable graphs.

We show here that ω(G), χ(G), α(G) as well as a perfect ordering can be computed in linear time for GATEX

graphs G. The crucial idea for the linear-time algorithms is to avoid working directly on the GATEX graphs G but
rather to utilize the galled-trees that explain G as a guide for the algorithms to compute these invariants. In particular,
we show first how to employ the galled-tree structure to compute a perfect ordering of GATEX graphs. This result is
then used to determine ω(G), χ(G), α(G). In addition, we provide algorithms to find a maximum clique, an optimal
vertex coloring as well as a maximum independent set in GATEX graphs in linear-time.

2 Preliminaries
Graphs. We consider graphs G = (V,E) with vertex set V (G) := V ̸= /0 and edge set E(G) := E. A graph G is
undirected if E is a subset of the set of two-element subsets of V and G is directed if E ⊆ V ×V \ {(v,v) | v ∈ V}.
Thus, edges e ∈ E in an undirected graph G are of the form e = {x,y} and in directed graphs of the form e = (x,y)
with x,y ∈V being distinct. We write H ⊆ G if H is a subgraph of G and G[W] for the subgraph in G that is induced
by some subset W ⊆V . A P4 denotes an induced undirected path on four vertices. We often write a−b− c−d for an
induced P4 with vertices a,b,c,d and edges {a,b},{b,c},{c,d}. An undirected graph is connected if, for every two
vertices u,v ∈V , there is a path connecting u and v. A directed graph is connected if its underlying undirected graph
is connected. A (directed or undirected) graph G is biconnected if it contains no vertex whose removal disconnects G.
A biconnected component of a G is an inclusion-maximal biconnected subgraph. If such a biconnected component is
not a single vertex or an edge, then it is called non-trivial.

Remark 2.1. From here on, we will call an undirected graph simply graph.

For two graphs G and H we put G−H := (V (G) \V (H),E(G) \F) with F ⊆ E(G) being the collection of all
edges incident to vertices in V (H), and G∩H := (V (G)∩V (H),E(G)∩E(H)). For two vertex-disjoint graphs G
and H, their disjoint union is defined as G∪· H := (V (G)∪· V (H),E(G)∪· E(H)) while their join union is defined as
G∪×H := (V (G)∪· V (H),E(G)∪· E(H)∪· {{x,y} | x ∈V (G),y ∈V (H)}).

A clique of a graph G is an inclusion-maximal complete subgraph G. The size of a maximum clique of G is called
the clique number and denoted by ω(G). A coloring of a graph G is a map σ : V (G)→ S, where S denotes a set of
colors, such that σ(u) ̸= σ(v) for all {u,v} ∈ E(G). The minimum number of colors needed for a coloring of G is
called the chromatic number of G and denoted by χ(G). A subset W ⊆ V (G) of pairwise non-adjacent vertices is
called independent set. The size of a maximum independent set in G is called the independence number of G and
denoted by α(G). In general, determining the invariants ω(G), χ(G) and α(G) for arbitrary graphs is an NP-hard task
[11].

A graph G is perfect, if the chromatic number of every induced subgraph equals the size of the largest clique of
that subgraph. We consider total orders ζ = v1 . . .v|V | defined on the vertex set V of graphs G = (V,E) and assume
that vi < v j precisely if vi is left of v j in this sequence ζ (or equivalently, if i < j in case indices are provided). We
denote with ζ|H the order ζ that is restricted to V (H). Let X and Y be two disjoint subsets of V (G). If ζ1 = x1,x2, . . .xl
and ζ2 = y1,y2, . . .ym are two total orderings on X and Y , respectively, then we denote with ζ1ζ2 the total ordering on
X ∪Y given by concatenating ζ1 and ζ2, i.e., ζ1ζ2 = x1,x2, . . .xly1,y2, . . .ym.

For a given total order ζ of G, a greedy coloring algorithm scans the vertices in order ζ and assigns to each vertex
v the smallest positive integer (color) assigned to none of the vertices w < v that are adjacent to v. A coloring of G
obtained with such an algorithm is called greedy coloring. A total order ζ of G is perfect if, for all induced subgraphs
H of G, a greedy coloring algorithm that scans the vertices in order ζ|H uses the minimum number of colors to color
H. A graph G is perfectly orderable if it admits a perfect order ζ . A total order ζ on G contains an obstruction (w.r.t.
G) if there is an induced P4 a−b− c−d in G such that a < b and c > d w.r.t. this order ζ . Every perfectly orderable
graph is a perfect graph [4].

Proposition 2.2 ([4]). A total order ζ on a graph G is a perfect order if and only if ζ does not contain any obstructions.

Perfectly orderable graphs are NP-complete to recognize [23]. By Prop. 2.2, one can test in polynomial-time as
whether a given order is perfect: simply check as whether one of the O(|V |4) induced P4s yields an obstruction. This,
in particular, implies that the problem to find a perfect ordering of a graph remains NP-hard, even if the graph is
already known to be perfectly orderable.

2

Trees, Galled-trees and GATEX graphs. (Phylogenetic) trees and galled-trees are particular directed acyclic
graphs (DAGs). To be more precise, a galled-tree N = (V,E) on X is a DAG such that either

(N0) V = X = {x} and, thus, E = /0.

or N satisfies the following four properties

(N1) There is a unique root ρN with indegree 0 and outdegree at least 2; and

(N2) x ∈ X if and only if x has outdegree 0 and indegree 1; and

(N3) Every vertex v ∈V 0 :=V \X with v ̸= ρN has

(i) indegree 1 and outdegree at least 2 (tree-vertex) or
(ii) indegree 2 and outdegree at least 1 (hybrid-vertex).

(N4) Each biconnected component C contains at most one hybrid-vertex v for which the two vertices v1,v2 with
(v1,v),(v2,v) ∈ E belong to C.

We note that in [15] galled-trees have been called level-1 networks. By definition, every non-trivial biconnected
component in a galled-tree N forms an (rooted) “cycle” C in N [3, 19] that is composed of two directed paths P1(C)
and P2(C) in N (called sides of C) with the same start-vertex ρC (the root of C) and end-vertex ηC (the hybrid-vertex
of C) and whose internal vertices, i.e., vertices in C that are distinct from ρC and ηC, are pairwise distinct. Trees are
galled-trees without hybrid-vertices. The leaf set L(N) of a galled-tree N is X , i.e., the set of all vertices satisfying
(N2),

Let N = (V,E) be a galled-tree on X . A vertex u ∈ V is called an ancestor of v ∈ V and v a descendant of u, in
symbols v ⪯N u, if there is a directed path (possibly reduced to a single vertex) in N from u to v. We write v ≺N u
if v ⪯N u and u ̸= v. If (u,v) ∈ E, then the vertex v is a child of u and u is a parent of v. The set of children, resp.,
parents of a vertex w in N is denoted by childN(w), resp., parN(w). For a non-empty subset of leaves A ⊆ X , we define
lcaN(A), or a lowest common ancestor of A, to be a ⪯N -minimal vertex of N that is an ancestor of every vertex in A.
For simplicity we put lcaN(x,y) := lcaN({x,y}). By Lemma 49 and 67 in [14], galled-trees N are “lca-networks”, i.e.,
lcaN(A) is uniquely determined for all A ⊆ L(N).

We define N(w) as the subgraph of N rooted at w, i.e., the DAG induced by w and all its descendants. Morever, if
the context is clear, we often write Lw = L(N(w)) for w ∈V (N).

A galled-tree N on X is elementary if it contains a single rooted cycle C of length |X |+1 with root ρC = ρN and
single hybrid-vertex ηC ∈ V (C) and additional edges {vi,xi} such that every vertex vi ∈ V (C)\{ρC} is adjacent to a
unique vertex xi ∈ X . A galled-tree is strong if it does not contain cycles of the following form: (i) P1(C) or P2(C)
consist of ρC and ηC only or (ii) both P1(C) and P2(C) contain only one vertex distinct from ρC and ηC.

The tuple (N, t) denotes a galled-tree N = (V,E) on X that is equipped with a (vertex-)labeling t i.e., a map t : V →
{0,1,⊙} such that t(x) = ⊙ if and only if x ∈ X . The graph G(N, t) = (X ,E) with vertex set X and edges {x,y} ∈ E
precisely if t(lcaN(x,y)) = 1 is said to be explained by (N, t). A graph G = (X ,E) is GAlled-Tree EXplainable
(GATEX)) if there is a labeled galled-tree (N, t) such that G ≃ G(N, t). A labeling t (or equivalently (N, t)) is quasi-
discriminating if t(u) ̸= t(v) for all (u,v) ∈ E with v not being a hybrid-vertex. We note in passing, that quasi-
discriminating labelings form a natural generalization of discriminating labelings t that require t(u) ̸= t(v) for all
(u,v) ∈ E [2].

Proposition 2.3 ([15]). GATEX graphs can be recognized in linear-time and a galled-tree (N, t) that explains a
GATEX graphs can be constructed in linear-time as well.

Moreover, GATEX graphs are characterized by a finite set of forbidden subgraphs [17]. GATEX graphs that are
explained by labeled trees (T, t) are precisely the cographs and, therefore, those graphs that do not contain induced
P4s [5].

Modular Decomposition (MD). A module M of a graph G = (X ,E) is a subset M ⊆V (G) = X such that for all
x,y ∈ M it holds that NG(x) \M = NG(y) \M, where NG(x) is the set of all vertices of X that are adjacent to x in G.
A module M of G is strong if M does not overlap with any other module of G, that is, M ∩M′ ∈ {M,M′, /0} for all
modules M′ of G. The set of strong modules Mstr(G)⊆M(G) is uniquely determined [10, 18] and forms a hierarchy
which gives rise to a unique tree representation TG of G, known as the modular decomposition tree (MDT) of G.
Uniqueness and the hierarchical structure of Mstr(G) implies that there is a unique partition Mmax(G) = {M1, . . . ,Mk}
of X into inclusion-maximal strong modules M j ̸= X of G [8, 9].

Similar as for galled-trees, one can equip TG with a vertex-labeling tG such that, for M ∈Mstr(G) = V (TG), we
have tG(M) = ⊙ if |M| = 1; tG(M) = 0 if |M| > 1 and G[M] is disconnected; tG(M) = 1 if |M| > 1 and G[M] is
connected but G[M] is disconnected; tG(M) = prime in all other cases. Strong modules of G are called series, parallel
and prime if tG(M) = 1, tG(M) = 0 and tG(M) = prime, respectively. Efficient linear algorithms to compute (TG, t)
have been proposed e.g. in [7, 22, 26]. The quotient graph G/Mmax(G) has Mmax(G) as its vertex set and edges
{Mi,M j} ∈ E(G/Mmax(G)) if and only if there are x ∈ Mi and y ∈ M j that are adjacent in G. As argued in [12], this
quotient graph is well-defined.

3

1

P

P

1 1

1

1

1

1

0

0

0

0

0

Figure 1: Shown is a GATEX graph G= (V,E) (top left) together with its modular decomposition tree (TG, tG) (top
right) and a pvr-network (N, t) (bottom right) that explains G. The graph G has as strong modules the singletons
{x}, x ∈ V = {a,b,c, . . . ,g}, the entire vertex set V and the sets M1 = {d,e, f ,g,h} and M2 = {g,h}. Each vertex
w in TG represent the strong module L(TG(w)). The graph G has two prime modules, namely M1 = L(TG(v2))
and V = L(TG(v1)). The respective quotient graphs H1 := G/Mmax(G) and H2 := G[M1]/Mmax(G[M1]) are shown
bottom left. The pvr-network (N, t) is a galled-tree that is obtained from (TG, tG) by locally replacing the vertex vi
by the strong quasi-discriminating elementary galled-tree (Nvi , tvi) that explains Hi, i ∈ {1,2} (cf. Def. 2.4).

From Modular Decomposition Trees to Galled-trees. Galled-trees that explain a given GATEX graph G can
be obtained from the modular decomposition trees (TG, tG) by replacing its prime vertices locally by simple rooted
cycles. To this end, we first compute for prime vertices v and the corresponding prime modules M = L(TG(v)) the
quotient H = G[M]/Mmax(G[M]) which can be explained by a strong elementary quasi-discriminating galled-tree
(Nv, tv) (cf. [15, Thm. 6.10]). We then use the rooted cycles in (Nv, tv) to replace v in (TG, tG), see Figure 2 for an
illustrative example. The latter is formalized as follows.

Definition 2.4 (prime-vertex replacement (pvr) networks). Let G be a GATEX graph and P be the set of all prime
vertices in (TG, tG). A prime-vertex replacement (pvr) networks (N, t) of G (or equivalently, of (TG, tG)) is obtained
by the following procedure:

1. For all v ∈ P , let (Nv, tv) be a strong quasi-discriminating elementary galled-tree with root v that explains
G[M]/Mmax(G[M]) with M = L(TG(v)).

2. For all v ∈P , remove all edges (v,u) with u ∈ childTG(v) from TG to obtain the forest (T ′, tG) and add Nv to T ′

by identifying the root of Nv with v in T ′ and each leaf M′ of Nv with the corresponding child u ∈ childTG(v) for
which M′ = L(TG(u)).

This results in the pvr-network N of G.

3. Define the labeling t : V (N)→{0,1,⊙} by putting, for all w ∈V (N),

t(w) =

{
tG(v) if v ∈V (TG)\P

tv(w) if w ∈V (Nv)\X for some v ∈ P

Note that the leaves of the pvr-network N of G are the singletons {x}, x ∈ V (G). In the remainder of this paper,
we will always implicitly identify each singleton with its unique elements. In other words, we will always assume that
the leaf set of TG as well as of pvr-network N of G is V (G). By construction, we have V (TG)⊆V (N) given that N is
the pvr-network of G. More precisely, V (TG) is precisely the set of vertices v of N such that either v does not belong
to a cycle C of N, or v = ρC for some cycle C of N. In addition, we have

4

Observation 2.5. For a vertex v in in the pvr-network N of G, the following holds:

(i) If v does not belong to any cycle in N, then all children of v in N are children of v in TG.

(ii) If there exists a cycle C of N such that v ∈V (C)\{ρC}, then v has a unique child w in V (N)\V (C), and w is a
child of ρC in TC.

The construction of a pvr-network for a GATEX graph is well-defined and can be done in linear-time, cf. [15, Alg.
4 & Thm. 9.4]. By [15, Prop. 7.4 & 8.3], a pvr-network (N, t) of a GATEX graph G is a galled-tree that explains G.
Moreover, there is a 1:1 correspondence between cycles C in N and prime modules M of G. By the latter result, we
can define CM as the unique cycle in N corresponding to prime module M. For later reference, we summarize now a
couple of results that are easy to verify or that have been established in [15].

Observation 2.6. Let (N, t) be a pvr-network of a GATEX graph G. Then,

• (N, t) is a galled-tree that explains G [15, Prop. 7.4].

• There is a 1:1 correspondence between the cycle C in N and prime modules M of G [15, Prop. 8.3].
Hence, we can define CM as the unique cycle in N corresponding to prime module M.
Moreover, G1(M),G2(M) ⊆ G[M] will denote the subgraphs induced by leaf-descendants of the vertices in
P1(CM)−ρCM and P2(CM)−ρCM , respectively.

Moreover, let v be a prime vertex associated with the prime module Mv = L(TG(v)) module and let C := CMv . Since
we used strong elementary networks for the replacement of v, one easily verifies that:

• C has a unique root ρC and a unique hybrid-vertex ηC.

• ηC has precisely one child and precisely two parents.

• All vertices v ̸= ηC have two children and one parent.
In particular, all vertices v ̸= ηC,ρC have one child u′ located in C and one child u′′ that is not located in C
and these children satisfy L(N(u′))∩ L(N(u′′)) = /0 and it holds that lcaN(x,y) = w for all x ∈ L(N(u′)) and
y ∈ L(N(u′′)).
Both children u′ and u′′ of ρC are located in C and satisfy L(N(u′)) ∩ L(N(u′′)) = L(N(ηC)). Moreover,
L(N(ηC))∩L(N(v2)) = /0 for the child v2 of v ̸= ηC,ρC that is not located in C.

3 Perfect orderings and optimal colorings
In this section, we provide linear-time algorithms to compute the chromatic number χ(G) and an optimal coloring of
a given GATEX graph G. For this purpose, we show first how to employ the structure of labeled galled-trees (N, t) to
determine a perfect ordering of GATEX graphs in linear time (cf. Alg. 1). To this end, we provide the following result
for later reference.

Lemma 3.1. Let P = a− b− c− d be an induced P4 in a GATEX graph G and (N, t) a pvr-network that explains
G. Moreover, let M be the inclusion-minimal strong module of G that contains V (P), i.e., V (P) ⊆ M and there is no
strong module M′ of G that satisfies V (P)⊆ M′ ⊊ M. Then, M is a prime module of G. Moreover, in the unique cycle
CM in N that corresponds to M, there are vertices ua,ub,uc,ud ∈V (CM) that satisfy the following conditions:

1. For x ∈ {a,b,c,d} it holds that x ∈ L(N(u′x)) where u′x is the unique child of ux that is not located in CM .

2. The vertices ua,ub,uc,ud are pairwise distinct.

3. The vertices ua,ub,uc,ud do not all belong to the same side of CM .

4. One of ua,ub,uc,ud coincides with the unique hybrid ηCM of CM .

Proof. Let P = a− b− c− d be an induced P4 in a GATEX graph G and (N, t) a pvr-network that explains G. Put
Y := {a,b,c,d}. Moreover, let M be the inclusion-minimal strong module of G that contains V (P).

We show first that M is a prime module of G. By definition, we must show that G[M] and G[M] are connected.
Assume that P = a−b− c−d and put Y :=V (P). Observe first that G[Y] = P and G[Y] = c−a−d −b. Hence, both
G[Y] and G[Y] are connected. Assume, for contradiction, that G[M] is disconnected. In this case, P belongs to some
connected component H of G[M]. We show that, in this case, V (H) must be a strong module of G[M]. Clearly, V (H)
is a module of M. Assume, for contradiction, that V (H) is not strong. Hence, it overlaps with some module M′ of
G[M] and, therefore, V (H)∩M′ ̸= /0, V (H)\M′ ̸= /0 and M′ \V (H) ̸= /0. In particular, since H is connected, there is
a vertex x ∈ V (H)∩M′ that is adjacent to some vertex y ∈ V (H)\M′. However, since H is a connected component,
none of the vertices z ∈ M′ \V (H) can be adjacent to y. Hence, M′ is a not a module; a contradiction. Thus, V (H)
is a strong module of G[M] and, by [13, Lemma 3.1], V (H) is a strong module of G; a contradiction to the choice of
M. Thus, G[M] is connected. By similar arguments and since G[Y] = c−a−d −b, G[M] must be connected as well.
Consequently, M is a prime module of G.

Since M is a prime module of G, there is a unique cycle CM in N corresponding to M. To recall, Lw = L(N(w))
for w ∈V (N). For a vertex w ∈V (TG), we denote with Mw := L(TG(w)) the module of G “associated” with w. For all

5

Algorithm 1 Perfect ordering of GaTEx graphs G

Input: A GATEX graph G = (V,E)
Output: A perfect ordering ζ of the vertices of V (G)

1: Construct (TG, tG) and pvr-network (N, t) of G
2: Initialize ζ (v) := v for all leaves v in TG
3: for all v ∈V (TG)\L(TG) in postorder do
4: if tG(v) ∈ {0,1} then
5: Put ζ (v) := ζ (v1) . . .ζ (vk) arbitrarily for the k = |childTG(v)| children v1, . . . ,vk of v in TG
6: else ▷ tG(v) = prime
7: Let C be the unique cycle in N with root ρC = v.
8: For all vertices w ∈V (C)\{ρC}, put ζ (w) := ζ (w′), where w′ is the unique child of w in N that is not a vertex of C.
9: Put ζ ∗(v) := ζ (v1) . . .ζ (vk) arbitrarily for the k = |V (C)|−2 vertices v1, . . . ,vk in V (C)\{ρC,ηC}

10: if t(ρC) = 0 then
11: ζ (v) := ζ (ηC)ζ

∗(v)
12: else ▷ t(ρC) = 1
13: ζ (v) := ζ ∗(v)ζ (ηC)
14: return ζ (v)

vertices u ∈V (C)\{ρC}, we put L′
u = Lu′ , where u′ is the unique child of u that is not in V (C). By Obs. 2.6, the sets

L′
u,u ∈V (C)\{ρC} are pairwise disjoint strong modules of G. In particular, for all x ∈ M, there exists a unique vertex

ux ∈V (C)\{ρC} such that x ∈ L′
ux

. Consequently, Condition (1) is satisfied.
We show now that the vertices ua,ub,uc and ud are pairwise distinct. If ua = ub = uc = ud , then Y ⊆ L′

ua
. Since L′

ua

is a strong module of G satisfying L′
ua
⊊ M, this contradicts the choice of M. If exactly three of ua,ub,uc,ud are equal,

then there exists u ∈ V (C)\{ρC} and x ∈ Y such that Y \{x} ⊆ L′
u and x /∈ L′

u. This and the fact that L′
u is a module

of G implies that either all or none of of the vertices in L′
u (and thus, of Y \{x}) are adjacent to x. Consequently, x has

degree 0 or 3 in G[Y], a contradiction since G[Y] = P. Finally, if two of ua,ub,uc,ud are equal and distinct from the
other two, then there exists u ∈V (C)\{ρC} and x,y ∈Y distinct such that Y ∩L′

u = {x,y}. Since L′
u is a module, then

for all z ∈ Y \{x,y}, {x,z} is an edge of G[Y] if and only if {y,z} is an edge of G[Y]. However, since G[Y] = P, there
is no pair {x,y} of elements of Y satisfying this property. Therefore, the vertices ua,ub,uc and ud are pairwise distinct
and Condition (2) is satisfied.

This in particular implies that, for x,y ∈ Y distinct, lcaN(x,y) ∈ {ux,uy,ρC}. More specifically, we lcaN(x,y) =
ux if uy ≺N ux, lcaN(x,y) = uy if ux ≺N uy, and lcaN(x,y) = ρC if ux and uy are ⪯N -incomparable. Assume, for
contradiction, that the vertices ua,ub,uc and ud all belong to the same side of C. In this case, there is a vertex x ∈ Y
such that ux is an ancestor of ua,ub,uc and ud in N. In view of the above, lcaN(x,y) = ux for all y ∈ Y \{x}. Hence,
x has degree 0 in G[Y] if t(ux) = 0, and degree 3 if t(ux) = 1. Since G[Y] = P, none of these cases can occur. Hence,
Condition (3) is satisfied.

We now show that one of ua,ub,uc and ud coincides with η := ηC. Assume, for contradiction, that this is not
the case. Then two situations may occur: exactly three of ua,ub,uc and ud belong to the same side of C, or two of
ua,ub,uc and ud belong to one side of C, and the other two belong to the other side. Suppose first that there exists
x ∈ Y such that ux is the only vertex on its side of C. Then we have lcaN(x,y) = ρC for all y ∈ Y \{x}. Hence, x has
degree 0 in G[Y] if t(ρC) = 0, and degree 3 if t(ρC) = 1. Since G[Y] = P, both cases are impossible. Suppose now that
there exists x,y ∈ Y distinct such that ux and uy belong to one side of C. In particular, for all z ∈ Y \ {x,y}, we have
lcaN(x,z) = lcaN(y,z) = ρC. It follows that G[Y] is disconnected if t(ρC) = 0 and G[Y] is disconnected if t(ρC) = 1.
Since G[Y] = P, both cases are impossible. Hence, one of ua,ub,uc and ud coincides with η and Condition (4) is
satisfied.

As we shall see, Algorithm 1 can be used to compute a perfect order in GATEX graphs in linear-time. Before
studying Algorithm 1 in detail, we illustrate this algorithm on the example shown in Figure 2.

Example 3.2. We exemplify here the main steps of Algorithm 1 using as input the GATEX graph G as shown in
Fig. 2. We first compute the modular decomposition tree (TG, tG) (as shown in Fig. 1) and the shown pvr-network
(N, t) that explains G (Line 1). For all leaves v of TG (and thus, of N), we initialize the perfect order ζ (v) = v of
the induced subgraph G[{v}] (Line 2). We then traverse the vertices TG that are not leaves in postorder and thus
obtain the order v3,v2,v1 in which the vertices are visited (Line 3). Note that postorder-traversal ensures that all
children of a given vertex v in TG are visited before this vertex v is processed. Since v3 is a non-prime vertex of
TG (Line 4), we can choose one of the orders ζ (g)ζ (h) or ζ (h)ζ (g) (Line 5) and decide, in this example, to put
ζ (v3) = ζ (g)ζ (h) = gh. We proceed with vertex v2 which is a prime vertex in TG. We now consider the cycle C
with root ρC = v2 (Line 7). This cycle C refers to the subgraph in N induced by v2,u,ud ,ue,u f . In Line 8, we put
ζ (ux) = ζ (x) = x for each x ∈ {d,e, f} and ζ (u) = ζ (v3) = gh. In Line 9 we can choose an arbitrary ordering
ζ ∗(v2) and decide, in this example, for ζ ∗(v2) = ζ (ud)ζ (ue)ζ (u) = degh. Since u f = ηC and t(v2) = 1, we put
ζ (v2) = ζ ∗(v2)ζ (ηC) = degh f (Line 13). Finally, the prime vertex v1 is processed. We consider now the cycle
C with root ρC = v1 that is induced by v1,w,wa,wb,wc. (Line 7). In Line 8, we put ζ (wx) = ζ (x) = x for each

6

1 1

1

1

1

1

0

0

0

0

0

1 2 3 4order

Figure 2: Left a galled-tree (N, t) that explains the GATEX graph G on the right. In addition, G is equipped
with a vertex coloring that is obtained with a greedy coloring based on the perfect order cabdegh f computed with
Algorithm 1. Since G[c,e,g,h] is a complete graph on four vertices, this coloring is optimal. see explanations in
Example 3.2 for further details.

x ∈ {a,b,c} and ζ (w) = ζ (v2) = degh f . In Line 9 we can choose an arbitrary ordering ζ ∗(v1) in Line 9 and
decide, in this example, for ζ ∗(v1) = ζ (wa)ζ (wb)ζ (w) = abdegh f . Finally, since t(v1) = 0 and ηC = wc, we put
ζ (v1) = ζ (ηC)ζ

∗(v1) = cabdegh f (Line 11). Since v1 is the root of TG, the algorithm stops there, and returns the
ordering ζ = ζ (v1) = cabdegh f . As we shall show in Prop. 3.3, this ordering is a perfect ordering It is now an easy
task to verify that the vertex coloring of G as shown in Fig. 2 can be obained by a greedy coloring taking the perfect
order ζ = cabdegh f and the order of colors as shown in Fig. 2 (bottom right) into account.

Proposition 3.3. Algorithm 1 determines a perfect ordering of GATEX graphs.

Proof. Let G = (V,E) be a GATEX graph that serves as input for Alg. 1. We first compute (TG, tG) and a pvr-network
(N, t) of G (Line 1). In this proof, we put Lw := L(N(w)) for w ∈ V (N). Let ζ (w) be the ordering computed with
Alg. 1 for the subgraph G[Lw] induced by the vertices in Lw. We then initialize ζ (v) = v for all leaves v in TG (Line 2).
Clearly, ζ (v) is a perfect ordering of G[{v}]. We then continue to traverse the remaining vertices in TG in postorder.
This ensures that, whenever we reach a vertex v in TG, all its children have been processed and thus, that ζ (v) is
well-defined in each step.

To verify that the ordering ζ returned by Alg. 1 is a perfect order of G, we must show that ζ does not contain any
obstructions w.r.t. G (cf. Prop. 2.2). If G does not contain any induced P4, then any ordering is perfect. Thus, assume
that G contains an induced P4, say P = a−b− c−d. Put Y = {a,b,c,d}.

We first remark that Alg. 1 builds ζ by successively concatenating sub-orderings of the form ζ (w), w ∈V (T(G)).
In particular ζ|Y = ζ (w)|Y holds for all w ∈V (TG) for which Y ⊆ Mw where Mw := L(TG(w)). Let M be the inclusion-
minimal strong module of G that contains Y . By Lemma 3.1, M is a prime module of G. Hence, there is the unique
cycle C :=CM in N corresponding to M. For all vertices u∈V (C)\{ρC}, we denote with u′ is the unique child of u that
is not in V (C). By Lemma 3.1, there are four vertices ua,ub,uc,uc ∈V (C) that satisfy the Condition (1) - (4). Hence,
for x ∈ {a,b,c,d} it holds that x ∈ Lu′x . Moreover, the vertices ua,ub,uc,uc are pairwise distinct, do not all belong to
the same side of CM and one of ua,ub,uc,uc coincides with the unique hybrid η := ηC of C. The latter arguments,
in particular, allow us to denote by P− (resp., P+) the side of C such that the set V (P−) \ {η} (resp., V (P+) \ {η})
contains one (resp., two) of ua,ub,uc and ud . In the following, let v be the prime vertex in TG with L(TG(v)) = M. We
now distinguish between two cases: (1) t(ρC) = 0 and (2) t(ρC) = 1.

Case (1): t(ρC) = 0. Let x ∈ Y be the vertex such that ux ∈ V (P−) \ {η}. Then, for all y ∈ Y \ {x} with uy ∈
V (P+)\{η}, we have lcaN(x,y) = ρC and thus, x and y are not joined by an edge in G[Y]. In particular, x has degree
at most one in G[Y]. Since G[Y] = P, it follows that x has degree exactly one in G[Y], and that the unique vertex z ∈ Y
adjacent to x in N satisfies uz = η . Due to the “symmetry” of G[Y] = P = a−b− c−d, we can assume w.l.o.g. that
x = a and thus, z = b. By construction of ζ (v) in Line 11, we have ζ (v) = ζ (η)ζ ∗(v). Since vertex b appears in the
order ζ (η) and vertex a appears in the order ζ ∗(v), we have in the final order ζ of G always b < a. In this case, P
does not yield an obstruction of ζ .

Case (2): t(ρC) = 1. Let x ∈ Y be the vertex such that ux ∈ V (P−) \ {η}. Then for all y ∈ Y \ {x} such that
uy ∈V (P+)\{η}, we have lcaN(x,y) = ρC and thus, x and y are joined by an edge in G[Y]. In particular, x has degree
at least two in G[Y]. Since G[Y] = P, it follows that x has degree exactly two in G[Y], and that the unique vertex z ∈ Y
that is not adjacent to x in N satisfies uz = η . Again, by “symmetry” of G[Y] = P = a− b− c− d, we can assume
w.l.o.g. that x = c and thus, z = a. Now consider the unique vertex b that is adjacent to a in G[Y]. By assumption,
b ∈V (P+)\{η}. Furthermore, by construction of ζ (v) in Line 13, we have ζ (v) = ζ ∗(v)ζ (η). Since vertex a appears
in the order ζ (η) and vertex b appears in the order ζ ∗(v), we have in the final order ζ of G always b < a. In this case,
P does not yield an obstruction of ζ .

7

In summary, the ordering ζ returned by Alg. 1 does not contain any obstructions w.r.t. G. By Prop. 2.2, ζ is a
perfect order of G.

Proposition 3.4. Algorithm 1 can be implemented to run in O(|V |+ |E|) time where G = (V,E) is the input GATEX

graph.

Proof. We show now that Algorithm 1 can be implemented to run in O(|V |+ |E|) time for a given GATEX graph
G = (V,E). The modular decomposition tree (TG, tG) can be computed in O(|V |+ |E|) time [12]. By [15, Thm.
9.4 and Alg. 4], the pvr-network (N, t) of G can be computed within the same time complexity. Thus, Line 1 takes
O(|V |+ |E|) time. Initializing ζ (v) := v for all leaves v (and thus, the vertices of G) in Line 2 can be done in O(|V |)
time.

We then traverse each of the O(|V |) vertices in (TG, tG) in postorder. To compute the final perfect order, we
consider an auxiliary directed graph H that, initially, just consists of the vertices in V and is edge-less. Whenever, we
concatenate ζ ′ and ζ ′′, we simply add an edge (u,v) from the maximal element u in ζ ′ to the minimal element v in ζ ′′

and define the minimal element of this now order ζ ′′′ = ζ ′ζ ′′ as the minimal element of ζ ′ and the maximal element
of ζ ′′′ as the maximal element of ζ ′′. Since we can keep track of these maximal and minimal elements (starting
with ζ (v) := v for all leaves v and defining v as the maximal and minimal element of ζ (v)) in each of the steps, the
concatenation of two orders ζ ′ and ζ ′′ and updating the maximal and minimal of ζ ′′′ = ζ ′ζ ′′ can be done in constant
time. The final graph H then consists of a single directed path that traverses each vertex in V . If tG(v)∈ {0,1}, then we
pick an arbitrary ordering of the children of v and define ζ (v) = ζ (v1) . . .ζ (vk) by concatenating the orderings of its
k children v1, . . . ,vk (Line 4 - 5). By the latter arguments, this task can be done in O(|childTG(v)|) time for each non-
prime vertex v. Otherwise, if tG(v) = prime, we consider the unique cycle C in N that satisfies L(N(ρC)) = L(TG(v))
in Line 7. We note that we can keep track of C and its correspondence to v when constructing the pvr-network (N, t)
based on (TG, tG) and thus have constant-time access to these cycles C in N. The assignment ζ (w) = ζ (w′) for all
w ∈V (C)\{ρC} can be done in O(|V (C)|) time (Line 8). By the latter arguments, construction of ζ ∗(v) in Line 9 can
be done in O(|V (C)|) time. Note that O(|V (C)|) = O(|childTG(v)|), since the elementary galled-tree Nv that is used
to replace v and the edges to its children in TG, contains C and has 2childTG(v)+1 edges and vertices. The tasks in
Line 10-13 can be done in constant time. Hence, the time-complexity of the Lines 6 to 13 is in O(|childTG(v)|) for
each prime vertex v.

To obtain the overall time complexity of the for loop starting in Line 3, observe that the degrees of vertices in TG
sum up to 2|E(TG)| = 2(|V (TG)|−1). By the latter arguments and by iterating over each vertex v ∈ V (TG)\L(TG),
we obtain ∑v∈V (TG)\L(TG) O(|childTG(v)|) = O(|V (TG)|) = O(|V |).

Hence, the overall time-complexity of Algorithm 1 is dominated by the time-complexity to compute (TG, tG) and
(N, t) in Line 1 and is, therefore, in O(|V |+ |E|).

As an immediate consequence of Prop. 3.3 and 3.4, we obtain

Theorem 3.5. Every GATEX graph is perfectly orderable and this ordering can be determined in linear-time.

For a given graph G = (V,E), a greedy coloring algorithm can be implemented to run in O(|V |+ |E|) time, see
e.g. [27, Sec. 6.4]. This together with Theorem 3.5 implies

Theorem 3.6. The chromatic number χ(G) and an optimal coloring of a GATEX graph G can be determined in
linear-time.

4 Maximum cliques and independent sets
To recall, a clique of a graph G is an inclusion-maximal complete subgraph G and the maximum size of a clique of G
is denoted by ω(G). If G is a GATEX graph, then it is explained by some labeled galled-tree (N, t) whose leaf set is
V (G).

Since GATEX graphs G are perfect, their chromatic number χ(G) and the size ω(G) of a maximum clique coin-
cide. This together with Theorem 3.6 implies

Theorem 4.1. The clique number ω(G) of a GATEX graph G can be determined in linear-time.

It is clear that for a given graph G and integer k = ω(G), one can determine in O(|V (G)|k) time a maximum
clique by examining all O(|V (G)|k) subgraphs. Since k = ω(G) can be obtained in linear time for GATEX graphs,
we, therefore, immediately obtain a polynomial-time procedure to find maximum cliques in GATEX graphs. In what
follows, we show that maximum cliques in GATEX graphs even can be determined in linear time.

To this end, we examine the structure and size of maximum-sized cliques induced by vertex set L(N(v)) in G
where (N, t) is a galled-tree that explains G. In this context, it is important to take the labeling t(v) of v into account.

Lemma 4.2. Let G be a GATEX graph, (N, t) be a labelled galled-tree explaining G and v be a vertex of N that is not
the root ρC of any C of N. Moreover, let Lu = L(N(u)) for u ∈V (N). Then it holds that

1. If t(v) = 0, then ω(G[Lv]) = maxw∈childN(v){ω(G[Lw])} and any maximum clique of G[Lv] is entirely contained
in G[Lw] for some w ∈ childN(v).

8

2. If t(v) = 1, then ω(G[Lv]) = ∑w∈childN(v) ω(G[Lw]) and any maximum clique of G[Lv] is the join union
∪×w∈childN(v)K

w of maximum cliques Kw in G[Lw].

Proof. Since no cycle C of N satisfies ρC = v, one easily verifies that, for all distinct z′,z ∈ childN(v), it holds that
Lz ∩ Lz′ = /0 and that lcaN(x,x′) = v for all x ∈ Lz,x′ ∈ Lz′ (see also [15, Lemma 2.1]). Since (N, t) explains G, it
follows that {x,x′} is an edge of G if and only if t(v) = 1. In particular, the following holds:

Case tG(v) = 0: In this case, G[Lv] is the disjoint union of the graphs G[Lw] with w ∈ childN(v). Hence, every
maximum clique in G[Lv] must be located entirely in one of the subgraphs G[Lw] of G[Lv]. Consequently, ω([G[Lv]) =
maxw∈childN(v){ω(G[Lw])} holds.

Case tG(v)= 1: Suppose that K is a maximum clique in G[Lv]. Since tG(v)= 1, G[Lv] is the join union of the graphs
G[Lw] with w ∈ childN(v). In particular, K can be written as the join union of cliques Kw in G[Lw], w ∈ childN(v).
Note that each of the cliques Kw must be a maximum clique in G[Lw] as otherwise we can replace Kw by a larger
clique in G[Lw] and obtain a clique K′ in G[Lv] that is larger than K. Consequently, ω(G[Lv]) = ∑w∈childN(v) ω(G[Lw])
holds.

We next investigate the case of vertices v of TG with tG(v) = prime. To recall, we denote with P1(C),P2(C) the
sides of cycles C ⊆ N, i.e., the two directed paths C with the same start-vertex ρC and end-vertex ηC, and whose
vertices distinct from ρC and ηC are pairwise distinct. Moreover G1(M),G2(M) ⊆ G[M] will denote the subgraphs
induced by leaf-descendants of the vertices in P1(CM)−ρCM and P2(CM)−ρCM , respectively.

In the upcoming proofs we may need to compute the join H ′∪×H where H is the empty graph. To avoid cumbersome
case studies, we simple assume, in this case, that H ′ := H ′∪×H = H ∪×H ′. In other words, if H is empty and we argue
along H ′∪×H, then all arguments are applied to H ′.

Lemma 4.3. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a
prime module M. Put Lη := L(N(ηCM)) and let H ∈ {G[M],G1(M),G2(M)}. If H contains a maximum clique K with
vertices in Lη , then V (K)∩ Lη induces a maximum clique in G[Lη] and (V (K) \ Lη)∪· V (K′) induces a maximum
clique in H for every maximum clique K′ in G[Lη].

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime
module M. Put Lη := L(N(ηCM)), η := ηCM and p = ρCM . In the following, let H ∈ {G[M],G1(M),G2(M)}.

Suppose that H contains a maximum clique K that contains vertices in Lη . Since K is a clique in H, it must hold that
t(lcaN(x,z))= 1 for all x∈V (K)∩Lη and z∈V (K)\Lη ⊆V (H)\Lη . By definition of pvr-networks, Lη is a module of
G and, therefore, t(lcaN(x,z)) = 1 with x ∈V (K)∩Lη and z ∈V (K)\Lη implies that t(lcaN(x′,z)) = 1 for all x′ ∈ Lη .
By construction, we have V (K) = (V (K) \Lη)∪· (V (K)∩Lη). Assume, for contradiction, that V (K)∩Lη does not
induce a maximum clique in G[Lη]. In this case, there is a clique K′ in G[Lη] such that |V (K′)|> |V (K)∩Lη |. By the
previous arguments, t(lcaN(x′,z)) = 1 for all x′ ∈V (K′) and z ∈V (K)\Lη . This together with G[Lη]⊆ H implies that
(V (K)\Lη)∪· V (K′) induces a complete graph in H. However, |(V (K)\Lη)∪· V (K′)|> |(V (K)\Lη)∪· (V (K)∩Lη)|=
|V (K)|; a contradiction to K being a maximum clique in H. Therefore, V (K)∩Lη induces a maximum clique in G[Lη].

Finally, let K′ be some maximum clique in G[Lη] and thus, |V (K) ∩ Lη | = |V (K′)|. As argued before,
t(lcaN(x′,z))= 1 for all x′ ∈V (K′) and z∈V (K)\Lη which implies that (V (K)\Lη)∪· V (K′) induces a complete graph
K′′ in H of size |V (K′′)| = |V (K) \Lη |+ |V (K′)| = |V (K) \Lη |+ |V (K)∩Lη | = |V (K)|. Hence, K′′ is a maximum
clique in H.

Lemma 4.4. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a
prime module M such that t(ρCM) = 1. If G[M] contains a maximum clique that contains vertices in L(N(ηCM)), then
G1(M) and G2(M) have both a maximum clique that contains vertices in L(N(ηCM)).

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime
module M such that t(ρCM) = 1. Furthermore, put G1 := G1(M), G2 := G2(M), Lη := L(N(ηCM)) and Gη := G[Lη].
For a subgraph H ⊆ G we define |H| := |V (H)|. Let K be a maximum clique in G[M] that contains vertices in Lη and
put K1 := (G1 −Gη)∩K, K2 := (G2 −Gη)∩K and Kη := K ∩Gη . Thus, V (K) =V (K1)∪· V (Kη)∪· V (K2).

Assume, for contradiction, that every maximum clique in G1 does not contain vertices in Lη . Let K′ be a maximum
clique in G1. Since V (K1)∪· V (Kη) ⊆ V (G1) and V (K1)∪· V (Kη) induce a complete graph with vertices in Lη , we
can conclude that |V (K1)∪· V (Kη)|= |K1|+ |Kη |< |K′|. Note that lcaN(x,y) = ρC has label 1 for all x ∈V (K′) and
y ∈V (K2) and thus, K′′ := K′∪×K2 forms a complete graph in G[M] and thus, |K′|+ |K2|= |K′′| ≤ |K|. This together
with |K1|+ |Kη |< |K′| yields the following contradiction:

|K′|+ |K2|= |K′′| ≤ |K|= |K1|+ |Kη |+ |K2|< |K′|+ |K2|.

Hence, G1 must contain a maximum clique with vertices in Lη . By similar arguments, G2 must contain a maximum
clique with vertices in Lη .

Lemma 4.5. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a
prime module M such that t(ρCM) = 1. Put Lη := L(N(ηC)) and Gη = G[Lη]. Furthermore, suppose that G1(M),
resp., G2(M) have a maximum clique K′, resp., K′′ with vertices in Lη and such that V (K′)∩Lη = V (K′′)∩Lη . If
V (K′)∪V (K′′) does not induce a maximum clique in G[M], then none of the maximum cliques in G[M] can have
vertices in Lη .

9

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime
module M such that t(ρCM) = 1. Furthermore, put G1 := G1(M), G2 := G2(M), Lη := L(N(ηCM)) and Gη := G[Lη].
For a subgraph H ⊆ G we define |H| := |V (H)|. Suppose that G1, resp., G2 contains a maximum clique K′, resp., K′′

that contains vertices in Lη . Assume first that V (K′)∩Lη ̸=V (K′′)∩Lη . By Lemma 4.3, V (K′)∩Lη and V (K′′)∩Lη

induce a maximum clique in G[Lη] and (V (K′) \ Lη)∪· (V (K′′)∩ Lη) induces a maximum clique K′′′ in G1 with
vertices in Lη . In particular, V (K′′′)∩Lη =V (K′′)∩Lη is satisfied.

Hence, we can assume in the following w.l.o.g. that V (K′)∩Lη = V (K′′)∩Lη . By Lemma 4.3, V (K′)∩Lη =
V (K′′)∩Lη induces a maximum clique Kη in G[Lη].

We show first that V (K′)∪V (K′′) induces a complete graph in G[M]. Let K1, resp., K2 be the complete subgraph
of K′, resp., K′′ that is induced by V (K′) \Lη , resp., V (K′′) \Lη . Since t(p) = 1, all vertices in V (K1) are adjacent
to all vertices in V (K2) and thus, the subgraph induced by V (K1)∪· V (K2) coincides with K1 ∪× K2. Since Kη is a
complete graph, we have K′ = K1 ∪×Kη and K′′ = K2 ∪×Kη , The latter two arguments imply that K′′′ := K1 ∪×Kη ∪×K2

is a complete graph in G[M] that is induced by V (K′)∪V (K′′).
Suppose now that K′′′ is not a maximum clique in G[M]. Let K̂ be a maximum clique in G[M] and thus, |K̂|> |K′′′|.

Assume, for contradiction, that K̂ contains vertices in Lη . Thus, we can apply Lemma 4.3 and assume w.l.o.g. that
V (K̂)∩Lη =V (Kη) induces the maximum clique Kη in G[Lη]. Let K̂i be the complete subgraph of K̂ induced by the
vertices (V (Gi)∩V (K̂))\Lη , i ∈ {1,2}. By construction, V (K′′′) = V (K1)∪· V (Kη)∪· V (K2) and, V (K̂) = V (K̂1)∪·
V (Kη)∪· V (K̂2). If |K̂1| ≤ |K1| and |K̂2| ≤ |K2|, then |K̂|= |K̂1|+ |Kη |+ |K̂2| ≤ |K1|+ |Kη |+ |K2|= |K′′′|, which is
impossible as, by assumption, |K̂|> |K′′′|. Thus, |K̂1|> |K1| or |K̂2|> |K2| must hold. W.l.o.g. we may assume that
|K̂1|> |K1|. But then, |V (K̂1)∪· V (Kη)|> |V (K1)∪· V (Kη)| which together with the fact that V (K̂1)∪· V (Kη)⊆V (K̂)
induce a complete graph in G1 implies that V (K1)∪· V (Kη) = V (K′) cannot induce a maximum clique in G1; a
contradiction. Thus, K̂ cannot contain vertices in Lη .

Proposition 4.6. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a
prime module M where t(ρCM) = 1. Put Lη = L(N(ηCM)), G1 = G1(M), G2 = G2(M) and Gη = G[Lη]. Then,

ω(G[M]) = max{ω(G1)+ω(G2)−ω(Gη),ω(G1 −Gη)+ω(G2 −Gη)}.

In particular, the following statements hold for α := ω(G1)+ω(G2)−ω(Gη) and β := ω(G1 −Gη)+ω(G2 −Gη):

1. If α ≤ β , then K = K1 ∪×K2 is a maximum clique in G[M] for every maximum clique K1 in G1 −Gη and K2 in
G2 −Gη .

2. If α > β , then every maximum clique in G[M] contains vertices in Lη and V (K′)∪V (K′′) induces a maximum
clique in G[M] for every maximum clique K′ in G1 and K′′ in G2 that satisfies V (K′)∩Lη =V (K′′)∩Lη ̸= /0.

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime
module M where t(ρCM) = 1. Put Lη = L(N(ηCM)), G1 = G1(M), G2 = G2(M) and Gη = G[Lη]. Let K be a
maximum clique in G[M]. For a subgraph H ⊆ G we define |H| := |V (H)|.

We start with showing that ω(G[M]) = max{ω(G1) + ω(G2)− ω(Gη),ω(G1 − Gη) + ω(G2 − Gη)}. Since
lca(x,y) = ρCM and t(ρCM) = 1 for all x ∈V (G1 −Gη) and y ∈V (G2 −Gη), every complete subgraph K1 in G1 −Gη

and K2 in G2 −Gη yields a complete subgraph K1 ∪×K2 in G[M]. Consider two maximum cliques K1 in G1 −Gη and
K2 in G2−Gη . Hence, ω(G1−Gη) = |K1| and ω(G2−Gη) = |K2|. Moreover, K̃ := K1∪×K2 forms a complete graph
in G[M \Lη]⊆ G[M]. Therefore, |K| ≥ |K̃|= |K1|+ |K2| and, thus, ω(G[M])≥ ω(G1 −Gη)+ω(G2 −Gη). Hence,
if ω(G[M]) = ω(G1 −Gη)+ω(G2 −Gη) we are done. Assume that ω(G[M])> ω(G1 −Gη)+ω(G2 −Gη). Let K̃
be a maximum clique in G[M \Lη] and assume, for contradiction, that K̃ is a maximum clique in G[M]. By similar
arguments as before, we can write K̃ = K̃1 ∪× K̃2 where K̃1 = K̃ ∩ (G1 −Gη) and K̃2 = K̃ ∩ (G2 −Gη). In particular,
K̃1 must be a maximum clique in G1 −Gη since, otherwise, there is a larger clique K̃′ in G1 −Gη and, thus, K̃′ ∪×K2
would be larger than K̃ = K̃1 ∪× K̃2; a contradiction. Similarily, K̃2 must be a maximum clique in G2 −Gη . Hence,
ω(G[M]) = |K̃|= |K̃1|+ |K̃2|=ω(G1−Gη)+ω(G2−Gη)<ω(G[M]); a contradiction. Hence, none of the complete
graphs in G[M \Lη] are maximum cliques in G[M]. This and the fact that M = V (G1 −Gη)∪· V (G2 −Gη)∪· V (Gη)
implies that maximum cliques in G[M] and, therefore, K must contain vertices in Lη . By Lemma 4.4, G1 and G2
have both a maximum clique with vertices in Lη . Let K′, resp., K′′ be a maximum clique in G1, resp., G2. Let
K1, resp., K2 be the complete subgraph of K′, resp., K′′ that is induced by V (K′) \ Lη , resp., V (K′′) \ Lη . By
Lemma 4.3, we can assume w.l.o.g. that V (K′)∩Lη = V (K′′)∩Lη induce a maximum clique Kη in G[Lη]. Hence,
K′′′ = K1 ∪×Kη ∪×K2 is a complete subgraph of G[M]. In particular, K′′′ is induced by V (K′)∪V (K′′). Thus, if K′′′

is not a maximum clique in G[M], then Lemma 4.5 implies that none of the maximum cliques in G[M] can have
vertices in Lη ; a contradiction. Hence, K′′′ is a maximum clique in G[M]. Since V (K′′′) = V (K′)∪V (K′′) and
V (K′)∩V (K′′) = V (Kη), we obtain ω(G) = |K′′′| = |K′|+ |K′′| − |Kη | = ω(G1)+ω(G2)−ω(Gη). In summary,
ω(G[M]) = max{ω(G1)+ω(G2)−ω(Gη),ω(G1 −Gη)+ω(G2 −Gη)}.

We now verify the Conditions (1) and (2) in the second statement. Consider first Condition (1) and assume that
α := ω(G1)+ω(G2)−ω(Gη) ≤ ω(G1 −Gη)+ω(G2 −Gη) =: β . By the previous arguments, ω(G[M]) = β . Let
K1 be a maximum clique in G1(M)−Gη and K2 be a maximum clique in G2(M)−Gη and thus, ω(G1 −Gη) = |K1|
and ω(G2 −Gη) = |K2|. By the arguments above, K = K1 ∪× K2 is a complete subgraph in G[M]. In particular,
|K| = |K1|+ |K2| = ω(G1 −Gη)+ω(G2 −Gη) = β = ω(G[M]). Consequently, K is a maximum clique in G[M].
Thus, Condition (1) is satisfied.

10

Algorithm 2 Computation of a maximum clique and ω(G) of GaTEx graphs G

Input: A GATEX graph G = (V,E)
Output: maximum clique K in G and its size ω(G)

1: Compute (TG, tG) and pvr-network (N, t) of G
2: put ω(v) := 1 for all leaves v in L(N) =V
3: for all v ∈V (TG)\L(TG) in postorder do
4: if tG(v) = 0 then
5: Put ω(v) := maxw∈childTG (v)

{ω(w)}
6: Mark w as active for precisely one w ∈ argmaxz∈childTG (v)

{ω(z)}
7: else if tG(v) = 1 then
8: Put ω(v) := ∑w∈childTG (v)

ω(w)
9: Mark all w ∈ childTG(v) as active

10: else ▷ tG(v) = prime
11: Let C be the unique cycle in N with root ρC = v
12: ▷ Although ρC = v, we distinguish between them to make it clearer if we are working in TG or N ◁
13: Let η be the unique hybrid in C and u be the unique child of η in N
14: Put ω(η) := ω(u) and ω¬η (η) := 0

15: ▷ Init ω(w) and ω¬η (w) for the vertices w ̸= ρc,η along the sides of C bottom-up ◁
16: Let P1 and P2 be the two sides of C
17: for all w ∈V (Pi)\{ρC,η} in postorder, i ∈ {1,2} do
18: Put u′ := childN(w)∩V (C) and u′′ := childN(w)\V (C) ▷ Note, childN(w) = {u′,u′′} for w ̸= η

19: if t(w) = 0 then Put ω(w) := max{ω(u′),ω(u′′)} and ω¬η (w) := max{ω¬η (u′),ω(u′′)}
20: else Put ω(w) := ω(u′)+ω(u′′) and ω¬η (w) := ω¬η (u′)+ω(u′′) ▷ t(w) = 1

21: ▷ Init ω(v). Note, ρC corresponds to v in TG ◁
22: Let u′ and u′′ be the two children of ρC
23: if t(ρC) = 0 then
24: Put ω(v) := max{ω(u′),ω(u′′)}
25: Choose one w ∈ argmax{ω(u′),ω(u′′)}
26: Mark w as active
27: Let P ∈ {P1,P2} be such that w ∈V (P).
28: ACTIVATE((N, t),{P}, ω , ω¬η , 0, 0, 0)
29: else ▷ t(ρC) = 1
30: Put α := ω(u′)+ω(u′′)−ω(η) and β := ω¬η (u′)+ω¬η (u′′)
31: Put ω(v) := max{α,β}
32: ACTIVATE((N, t),{P1,P2}, ω , ω¬η , α , β , 1)

33: Ω := set of all leaves x ∈ L(N) for which there is a path P from ρN to x where all vertices v ̸= ρN in P are active
34: return G[Ω] and ω(ρN)

For Condition (2), suppose that α > β and, therefore, ω(G[M]) = α . As argued above, ω(G[M])> ω(G1−Gη)+
ω(G2 −Gη) implies that every maximum clique in G[M] must contain vertices in Lη . This and Lemma 4.4 implies
that G1 and G2 have both a maximum clique that contains vertices in Lη . Let K′ be an arbitrary maximum clique in
G1 and K′′ be an arbitrary maximum clique in G2 such that V (K′)∩Lη =V (K′′)∩Lη ̸= /0 holds. By Lemma 4.3, such
cliques K′ and K′′ exist. Since every maximum clique in G[M] must contain vertices in Lη , contraposition of Lemma
4.5 implies that V (K′)∪V (K′′) induce a maximum clique in G[M]. Thus, Condition (2) is satisfied.

Proposition 4.7. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a
prime module M. If t(ρCM) = 0, then ω(G[M]) = max{ω(G1(M)),ω(G2(M))} of GATEX graphs

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime
module M such that that t(ρCM) = 0. Furthermore, put Lη := L(N(ηCM)) and Gη := G[Lη]. Let K be a maximum
clique in G[M]. Note first that K cannot contain vertices x and y such that x ∈V (G1(M)−Gη) and y∈V (G2(M)−Gη)
since, in this case, lca(x,y) = ρCM and t(ρCM) = 0 imply that {x,y} /∈ E(G[M]). Hence, K must be entirely contained
in either G1(M) or G2(M). Moreover, any maximum clique in G1(M) and G2(M) provide a complete subgraph of
G[M]. Taken the latter two arguments together, ω(G[M]) = max{ω(G1(M)),ω(G2(M))}.

Remark 4.8. For the sake of simplicity, we often put ω(w) := ω(G[Lw]) for the size of a maximum clique in the
subgraph of G induced by Lw = L(N(w))⊆V (G). where (N, t) is a galled-tree that explains G.

As we shall see, Algorithm 2 can be used to compute maximum cliques in GATEX graphs in linear-time. Before
studying Algorithm 2 in detail, we illustrate this algorithm on the examples as shown in Figure 3.

11

Procedure ACTIVATE((N, t),P,ω,ω¬η ,α,β , label ρC)

1: if label ρC = 0 then
2: for w′ ∈V (P)\{ρC} in postorder where P ∈ P do
3: Put u′ := childN(w′)∩V (C) and u′′ := childN(w′)\V (C)
4: if t(w′) = 0 then Mark precisely one u ∈ argmax{ω(u′),ω(u′′)} as active
5: else Mark all u ∈ childN(w′) as active
6: else Mark both children of ρC as active
7: if α ≤ β then
8: Let w1 and w2 be the unique parents of η

9: Mark u ∈ child(wi)\{η} as active for i ∈ {1,2}
10: for all P ∈ P and w′ ∈V (P)\{ρC,η ,w1,w2} in postorder do
11: Put u′ := childN(w′)∩V (C) and u′′ := childN(w′)\V (C)
12: if t(w′) = 0 then Mark exactly one u ∈ argmax{ω¬η (u′),ω(u′′)} as active
13: else Mark both children u′,u′′ of w′ as active ▷ t(w) = 1
14: else ▷ α > β

15: Mark ηC and its child as active
16: for all P ∈ P and w ∈V (P)\{ρC,ηC} in postorder do
17: Mark w as active
18: if t(w) = 1 then mark also the child of w not in P as active

1 1

1

1

1

1

0

0

0

0

0

Figure 3: Left a galled-tree (N, t) that explains the GATEX graph G on the right. Algorithm 2 returns the induced
subgraph G[g,h,d,c] (highlighted in blue) which is a maximum clique of G. All vertices marked as active are
highlighted with ⋆. Paths P from ρN to leaves x in N where all vertices v ̸= ρN in P are active are highlighted in
blue; see explanations in Example 4.9 for further details.

Example 4.9. We exemplify here the main steps of Algorithm 2 using the GATEX graph G as shown in Fig. 3. We first
compute the modular decomposition tree (TG, tG) (as shown in Fig. 1) and the shown pvr-network (N, t) that explains
G (Line 1). For all leaves v of TG (and thus, of N), we have Lv = {v} and, thus, the size of a maximum clique in G[v]
is one and we put ω(v) := 1 (Line 2). We then traverse the vertices TG that are not leaves in postorder and thus obtain
the order v3,v2,v1 in which the vertices are visited (Line 3). Note that postorder-traversal ensures that all children of
a given vertex v in TG are visited before this vertex v is processed. In what follows, we denote with ω¬η (v) the size of
a maximum clique in G[Lv \LηC] given that v is part of a cycle C with hybrid ηC.

Consider now the processed vertex v3. Since t(v3) = 1, we define ω(v3) = ω(g)+ω(h) = 2 (Line 8). The latter is
in accordance with Lemma 4.2 and refers to the fact that the maximum clique in G[Lv3] is precisely the edge connecting
g and h, i.e, the join union of two single vertex graphs. In addition, we mark both g and h as active (Line 9).

We have ηC = u f , so we put ω(u f) = ω(f) = 1 and ω¬η (u f) = 0 (Line 14). The latter refers to the fact that,
in this example, any maximum clique in G[Lη] is of size one, while any clique in G[Lη \ Lη] is of size 0. The two
sides of C are P1 = {v2,u,u f } and P2 = {v2,ud ,ue,u f }. We first consider the unique vertex u of P1 \ {ρC,ηC}.
We have t(u) = 1, so we put ω(u) = ω(u f)+ω(v3) = 3, and ω¬η (u) = ω¬η (u f)+ω(v3) = 2 (Line 20). Next, we
consider the vertices of P2 \ {ρC,ηC} = {ue,ud} in postorder, that is, ue first and ud second. We have t(ue) = 1,
so we put ω(ue) = ω(u f) + ω(e) = 2, and ω¬η (ue) = ω¬η (u f) + ω(e) = 1 (Line 20). Since t(ud) = 0, we put
ω(ud) = max{ω(ue),ω(d)} = 2, and ω¬η (ue) = max{ω¬η (ue),ω(d)} = 1 (Line 19). Afterwards, we consider the
vertex ρC = v2. We have t(v2) = 1, so we go to Line 29. We first define α = ω(ud) +ω(u)−ω(u f) = 3, β =
ω¬η (ud)+ω¬η (u) = 3 (Line 30), and ω(v2) = max{α,β} = 3 (Line 31). The latter is in accordance with Prop.
4.6. In Line 32, we then call the procedure ACTIVATE

(
(N, t),{P1,P2},ω,ω¬η ,3,3,1

)
. This precedure is used to

“activate” the right vertices in such a way that, after termination of Algorithm 2, the set Ω consisting of all leaves

12

x ∈ L(N) for which there is a path P from ρN to x in N with all vertices v ̸= ρN in P marked as active determines the
vertex set of a maximum clique in G.

We are now in the procedure ACTIVATE. Since label ρC = 1, we mark both children u and ud of ρC = v2 as
active (Line 9). Since α ≤ β , we continue with Line 7. In Line 9, we mark v3 and e as active. In the for-
loop at Line 10, we consider the two sides P1,P2 ∈ P of C. In particular, we have V (P1) \ {ρC,ηC,u,ue} = /0 and
V (P2)\{ρC,ηC,u,ue}= {ud}. Thus, we only have to consider, in this run of the for-loop, the vertex w′ = ud . In this
case, u′ = ue and u′′ = d. Since t(ud) = 0, ω¬η (ue) = 1, and ω(d) = 1, we choose one of ue or d to be marked mark
as active (Line 12) In this example, we decide to mark d active. After this, we exit the procedure ACTIVATE.

We are now back in Algorithm 2 proceed with the prime vertex v1 and consider the cycle C with root ρC = v1
(Line 11). We have ηC = wc, so we put ω(wc) = ω(c) = 1 and ω¬η (wc) = 0 (Line 14). The two sides of C
are P1 = {v1,w,wc} and P2 = {v1,wa,wb,wc}. We first consider the unique vertex w of P1 \ {ρC,ηC}. We have
t(w) = 1, so we put ω(w) = ω(wc) +ω(v2) = 4, and ω¬η (w) = ω¬η (wc) +ω(v2) = 3 (Line 20). Next, we con-
sider the vertices of P2 \ {ρC,ηC} = {wa,wb} in postorder, that is, wb first and wa second. We have t(wb) = 0, so
we put ω(wb) = max{ω(wc),ω(b)} = 1, and ω¬η (wb) = max{ω¬η (wc),ω(b)} = 1 (Line 19). Since t(wa) = 1,
we put ω(wa) = ω(wb) + ω(a) = 2, and ω¬η (wa) = ω¬η (wb) + ω(a) = 2 (Line 20). Finally, we consider the
vertex ρC = v1. We have t(v1) = 0, so we go to Line 23. We first define ω(v1) = max{ω(wa),ω(w)} = 4
(Line 24). Since argmax{ω(w),ω(wa)} = w and w ∈ P1, we mark w as active (Line 26), and we call the pro-
cedure ACTIVATE

(
(N, t),{P1},ω,ω¬η ,0,0,0

)
(Line 28).

We are now in the procedure ACTIVATE. We have labelρC = 0 and thus, go to the for-loop in Line 2. Here, we
consider the elements of V (P1) \ {ρC} = {w,wc} in postorder, that is wc first and w second. We have t(wc) = 0 and
wc does not have a child in C, so we mark c as active (Line 4). Since t(w) = 1, we mark both v2 and wc as active
(Line 5). After this, we exit the procedure.

We are now back in Algorithm 2. Since all vertices of V (TG)\L(TG) have now been processed, we are in Line 33
and ready to compute the set Ω. The vertices marked as active are g,h,u,ud ,v3,e,d,w,c,v2 and wc. Therefore, the
set Ω computed at Line 33 is {g,h,d,c}. Note that although e is also marked as active, its parent ue is not, so e is
not added to Ω. The algorithm stops here and returns G[Ω] = G[{g,h,d,c}] and ω(ρN) = ω(v1) = 4. One can verify
that G[{g,h,d,c}] is indeed a maximum clique of G. In particular, ω(v1) corresponds to the size of a maximum clique
in G.

Proposition 4.10. Algorithm 2 correctly computes the clique number ω(G) of GATEX graphs G. In particular, if
(N, t) is a pvr-network of G used in Algorithm 2, then ω(v) = ω(G[L(N(v))]) for all v ∈ V (N). In addition, if v is
contained in a cycle C of N and v ̸= ρC, then ω¬η (v) = ω(G[L(N(v))\L(N(ηC)]).

Proof. Let G = (V,E) be the input GATEX graph for Algorithm 2. In order to show that ω(G) is correctly computed,
we can ignore all Lines in Algorithm 2 where vertices are marked as active and where the procedure ACTIVATE is
called. We start in Line 1 with computing (TG, tG) and a pvr-network (N, t) of G. In what follows, let Lw := L(N(w))
for w ∈ V (N). Furthermore, for a vertex w ∈ V (TG), let Mw := L(TG(w)) denote the module of G “associated” with
w. To recall, V (TG)⊆V (N).

In Line 2, we initialize ω(v) = 1 for all leaves v ∈ L(TG) = L(N) = V and, thus, correctly capture the size
ω(G[Lv]) = ω(v) of a maximum clique in G[Lv] ≃ K1. We then continue to traverse the remaining vertices in TG
in postorder. This ensures that whenever we reach a vertex v in TG, all its children have been processed. We show
now that ω(v) := ω(G[Mv]) is correctly computed for all v ∈ V (TG). Let v be the currently processed vertex in Line
3. By induction, we can assume that the children u of v in TG satisfy ω(u) = ω(G[Mu]). We consider now the cases
for t(v) ∈ {0,1,prime}.

Case tG(v) = 0: In this case, ω(v) is defined as maxw∈childTG (v)
{ω(w)} in Line 5. Lemma 4.2, together with

the fact that the children of v is TG are precisely the children of v in N (Observation 2.5), implies that ω(G[Mv]) =
maxw∈childTG (v)

{ω(G[Mw])}. Therefore, ω(v)=maxw∈childTG (v)
{ω(w)}=maxw∈childTG (v)

{ω(G[Mw])}=ω(G[Mv])

follows.
Case tG(v) = 1: In this case, ω(v) is defined as ∑w∈childTG (v)

ω(w) in Line 8. Lemma 4.2, together with the fact
that the children of v is TG are precisely the children of v in N (Observation 2.5), implies that we have ω(G[Mv]) =

∑w∈childTG (v)
{ω(G[Mw])}. Therefore, ω(v) = ∑w∈childTG (v)

ω(w) = ∑w∈childTG (v)
ω(G[Mw]) = ω(G[Mv]) follows.

Case tG(v) = prime: In this case, M := Mv is a prime module of G and v is locally replaced by a cycle C := CM
with root ρC = v according to Def. 2.4 and we have M = L(TG(v)) = LρC (cf. Obs. 2.6). Although ρC = v, we will
distinguish between them to better keep track as whether we are working in TG or N. Let P1 and P2 be the two sides
of C. By Obs. 2.6, all vertices w ̸= ρC in C have exactly one child u′′ that is not in C. By construction of (N, t), each
of those childs u′′ is a child of v in TG. By induction assumption, we can assume that ω(u′′) correctly captures the
size of ω([G[Mu′′]) = ω([G[Lu′′]). Out task is now to determine the clique number ω(v) := ω(G[M]) of G[M]. In the
following, we will record two values ω(w) and ω¬η (w) for the vertices w ̸= ρC in C to capture the size ω(w) of a
maximum clique in G[Lw] and the size ω¬η (w) of a maximum clique in G[Lw \Lη].

We start in Line 13 with the the unique hybrid-vertex η = ηC of C. By Obs. 2.6, η has precisely one child u
and, therefore, Lη = Lu. Hence, ω(η) := ω(u) = ω(G[Lu]) and, since G[Lu] = G[Lη], ω(η) = ω(G[Lη]) is correctly
determined in Line 14. Moreover, ω¬η (η) := 0 is correctly determined as there is no clique in G[Lη \Lη].

13

In Line 17 - 20, we consider all vertices w ∈ V (C) \ {ρC,η} in a bottom-up order. By Obs. 2.6, w has precisely
two children u′ and u′′ where u′ is located on C while u′′ is not and it holds that Lu′ ∩Lu′′ = /0. By the post-ordering,
we start with one of the parents of η located in C.

Let w be a parent of η that is located in Pi for some i∈ {1,2} for which u′ =η . Since w is a parent of η in C it holds
that Lw = Lη ∪Lu′′ and Lw \Lη = Lu′′ and thus, in particular, ω(G[Lw \Lη]) = ω(G[Lu′′]). Assume that t(w) = 0 (Line
19). In this case, we put ω(w) = max{ω(η),ω(u′′)} and ω¬η (w) = max{ω¬η (eta),ω(u′′)} = max{0,ω(u′′)} =
ω(u′′). By our induction hypothesis, ω(u′′) = ω(G[Lu′′]), so since ω(G[Lw \Lη]) = ω(G[Lu′′]), ω¬η (w) = ω(G[Lw \
Lη]) follows. Moreover, since t(w) = 0, Lemma 4.2 implies that ω(G[Lw]) = max{ω(G[Lη]),ω(G[Lu′′])}. By our
induction hypothesis, ω(η) = ω(G[Lη]) and ω(u′′) = ω(G[Lu′′]), so ω(w) = ω(G[w]) follows. Assume now that
t(w) = 1 (Line 20). In this case, we have we put ω(w) = ω(u′)+ω(u′′) and ω¬η (w) = ω¬η (u′)+ω(u′′) = 0+ω(u′′).
As in the previous case, ω(u′′) = ω(G[Lu′′]), together with ω(G[Lw \ Lη]) = ω(G[Lu′′]), implies that ω¬η (w) =
ω(G[Lw \ Lη]). Moreover, since t(w) = 1, Lemma 4.2 implies that ω(G[Lw]) = ω(G[Lη]) +ω(G[Lu′′]). By our
induction hypothesis, ω(η) = ω(G[Lη]) and ω(u′′) = ω(G[Lu′′]), so ω(w) = ω(G[w]) follows.

Suppose now that w∈V (C)\({ρC,η}∪par(η)) is the currently processed vertex. Note that both children u′ and u′′

of w have already been processed and we can assume by the latter arguments and by induction that ω(u′) = ω(G[Lu′]),
ω¬η (u′) = ω(G[Lu′ \Lη]), and ω(u′′) = ω(G[Lu′′]).

Assume that t(w) = 0 (Line 19). Then, we put ω(w) = max{ω(u′),ω(u′′)} and by similar argument as used in
the previous case, ω(w) = ω(G[Lw]) is correctly computed. Consider now ω¬η (w) = max{ω¬η (u′),ω(u′′)}. By
Obs. 2.6 it holds that lcaN(x,y) = w for all x ∈ Lu′ \Lη ⊆ Lu′ and y ∈ Lu′′ . This and t(w) = 0 implies that there are
no edges between vertices in G[Lu′ \Lη] and G[Lu′′]. Hence, G[Lw \Lη] = G[Lu′ \Lη]∪· G[Lu′′]. This together with
(Lw \ Lη)∩ Lu′′ = /0 implies that ω(G[Lw \ Lη]) = max{ω(G[Lu′ \ Lη]),ω(G[Lu′′])}. By our induction hypothesis,
ω¬η (u′) = ω(G[Lu′ \Lη]) and ω(u′′) = ω(G[Lu′′]), so ω¬η (w) = ω(G[Lw \Lη]) follows. Suppose now that t(w) = 1
(Line 20). Then, we put ω(w) = ω(u′)+ω(u′′) and by similar argument as used in the previous case (w as a parent
of η), ω(w) = ω(G[Lw]) is correctly computed. Consider now ω¬η (w) = ω¬η (u′)+ω(u′′). Since lcaN(x,y) = w for
all x ∈ Lu′ \ Lη and y ∈ Lu′′ , and t(w) = 1, all vertices in G[Lu′ \ Lη] are adjacent to all vertices in G[Lu′′]. Hence,
G[Lw \ Lη] = G[Lu′ \ Lη]∪× G[Lu′′] and therefore, ω(G[Lw \ Lη]) = ω(G[Lu′ \ Lη]) +ω(G[Lu′′]). By our induction
hypothesis, ω¬η (u′) = ω(G[Lu′ \Lη]) and ω(u′′) = ω(G[Lu′′]), so ω¬η (w) = ω(G[Lw \Lη]) follows.

In summary, in Line 17 - 20 the values ω(w) = ω(G[Lw]) and ω¬η (w) = ω(G[Lw \ Lη]) have been correctly
computed for all w ∈V (C)\{ρC}.

In Line 22 - 32 we finally determine the value ω(v). To recall, v = ρC is the vertex in (TG, tG) with label tG(v) =
prime and M = L(TG(v)) is a prime module in G for which M = L(TG(v)) = LρC holds. Let u′ and u′′ be the two
children of ρC (cf. Obs. 2.6). It is an easy task to verify that G[Lu′] = Gi(M) and G[Lu′′] = G j(M) with {i, j}= {1,2}.
W.l.o.g. assume that i= 1 and j = 2. By induction, we can assume that ω(u′)=ω(G[Lu′]) and ω(u′′)=ω(G[Lu′′]) and,
therefore, ω(u′) = ω(G1(M)) and ω(u′′) = ω(G2(M)). Assume now that t(ρC) = 0. In this case, we put in Line 24,
ω(v) :=max{ω(u′),ω(u′′)}. By the latter arguments, ω(v)=max{ω(G1(M)),ω(G2(M))}. By Prop. 4.7, ω(G[M]) =
max{ω(G1(M)),ω(G2(M))}. Hence, ω(v) = ω(G[M]) has been correctly determined Assume now that t(ρC) = 1.
Put α := ω(u′)+ω(u′′)−ω(η) and β := ω¬η (u′)+ω¬η (u′′). By the latter arguments and induction assumption,
α =ω(G1(M))+ω(G2(M)−ω(G[Lη]) and β =ω(G[Lu′ \Lη])+ω(G[Lu′ \Lη]) =ω(G1(M)−G[Lη])+ω(G2(M)−
G[Lη]). This together with Prop. 4.6 implies that ω(v) = max{α,β}= ω(G[M] has been correctly determined in Line
31.

Hence, by induction, ω(ρTG) captures the size of a maximum clique in G[MρTG
]. Since MρTG

= V , we have
ω(ρTG) =ω(G[V]) =ω(G), which completes the proof. Even more, the arguments above imply that ω(v) =ω(G[Lv])
holds for all v ∈V (N) and, if v is contained in a cycle C of N and v ̸= ρC, then ω¬η (v) = G[Lv \Lη].

Proposition 4.11. Algorithm 2 correctly computes a maximum clique in GATEX graphs.

Proof. Let G = (V,E) be the input GATEX graph for Algorithm 2 and (N, t) be the pvr-network that explains G and
that is used in Algorithm 2. In what follows, put Lw := L(N(w)) for w ∈V (N). Furthermore, for a vertex w ∈V (TG),
let Mw := L(TG(w)) denote the module of G associated with w. By Prop. 4.10, ω(v) = ω(G[Lv]) for all v ∈V (N) and,
if v is contained in a cycle C of N and v ̸= ρC, then ω¬η (v) = G[Lv \LηC].

In the following, we call a directed path in N from w to some leaf in Lw an active w-path if all vertices in P
distinct from w are marked as active. Moreover, we say that Property (⋆) is satisfied for a vertex w ∈ V (N) if a
maximum clique in G[Lw] is induced by all those leaves in Lw that can be reached from active w-paths. We show
that all vertices in V (TG) ⊆ V (N) satisfy Property (⋆). Note that Property (⋆) is trivially satisfied for all leaves in
L(N). Let v be the currently processed vertex in Line 3. By induction, we can assume that the children u of v in TG
satisfy Property (⋆). We consider now the cases for tG(v) ∈ {0,1,prime}.

Case tG(v) = 0: In this case, it follows from Observation 2.5 that the children of v in N are precisely the children
of v in TG, that is, childN(v) = childTG(v). By Lemma 4.2, every maximum clique in G[Lv] must be located entirely
in one of the subgraphs G[Lw], w ∈ childN(v), of G[Lv]. In this case, one of the children w ∈ childN(v) satisfying
ω(w) = max{ω(z) | z ∈ childN(v)} is marked as active (Line 6). By induction assumption, Property (⋆) holds for
w and, in particular, w is now active. This and the fact that a maximum clique in G[Lv] is located entirely in G[Lw]
implies that Property (⋆) holds for v.

Case tG(v) = 1: In this case, it again follows from Observation 2.5 that the children of v in N are precisely the
children of v in TG, that is, childN(v) = childTG(v). By Lemma 4.2, a maximum clique in G[Lv] is the join union of

14

the maximum cliques in G[Lw], w ∈ childN(v). In this case, all children w ∈ childN(v) are marked as active (Line
9). By induction assumption, Property (⋆) holds for all w ∈ childN(v) and, in particular, all w ∈ childN(v) are now
active. Taken the latter arguments together, Property (⋆) holds for v.

Case tG(v) = prime: In this case, M := Mv is a prime module of G and v is locally replaced by a cycle C := CM
with unique hybrid η := ηC and root ρC = v according to Def. 2.4. Let P1 and P2 be the two sides of C and u′ ∈ P1

and u′′ ∈ P2 be the two children of ρC in N. By Prop. 4.10, ω(u′) = ω(G[Lu′]) and ω(u′′) = ω(G[Lu′′]). In (N, t), we
either have t(ρC) = 1 or t(ρC) = 0.

Assume first that t(ρC) = 0. In Line 24, we put ω(v) := max{ω(u′),ω(u′′)} = max{ω(G[Lu′],ω(G[Lu′′])}.
By Prop. 4.10, ω(v) = ω(G[Lv]). We then pick in Line 25 one of the vertices w = u′ or w = u′′ for which
ω(w) = max{ω(u′),ω(u′′)} is satisfied and determine in Line 27 the side P ∈ {P1,P2} of C that contains w. Af-
terwards, the procedure ACTIVATE

(
(N, t),{P},ω,ω¬η ,0,0,0

)
is called in Line 28. We are now in the procedure

ACTIVATE
(
(N, t),P,ω,ω¬η ,α,β , label ρC

)
. In this case, we have label ρC = 0 and are therefore in the for-loop in

Line 2 of this procedure. Here, P = {P} and we traverse the vertices w′ in P in postorder. By construction, each w′

has exactly two children, one of them is located in C and denoted by u′ while the other one is the one outside of C
and is denoted by u′′ (Line 3). By Observation 2.5, the child u′′ of w′ is always a child of v in TG. By our induction
hypothesis, u′′ satisfies Property (⋆). We now show that w′ satisfies Property (⋆). Note that the first vertex considered
in the procedure ACTIVATE is w′ = η . By Obs. 2.6, η has precisely one child. One easily verifies that in both cases,
t(η) = 0 or t(η) = 1, the unique child u′′ of η is marked as active. Since u′′ satisfies Property (⋆), and Lη = Lu′′ , η

satifies Property (⋆). Suppose now that w′ is distinct from η . By induction, we can assume that the child u′ of w′ in C
satisfies Property (⋆). Note that we can use this assumption, since u′ is processed before w′ in the procedure ACTIVATE

and since η has been processed already. By Lemma 4.2, t(w′) = 0 implies that every maximum clique in G[Lw′] must
be located entirely in one of G[Lu′] or G[Lu′′]. In the procedure ACTIVATE (Line 4), we mark the child u of w satisfying
ω(u) = max{ω(u′),ω(u′′)} as active. By our induction hypothesis, property (⋆) holds for u. This and the fact that
u is active and that there exists a maximum clique in G[Lw′] located entirely in G[Lu] implies that Property (⋆) holds
for w′. If t(w′) = 1 then, by Lemma 4.2, a maximum clique in G[Lw′] is the join union of a maximum cliques in G[Lu′]
and a maximal clique in G[Lu′′]. In this case, both u′ and u′′ are marked as active in the procedure ACTIVATE (Line
5). By induction, Property (⋆) holds for both u′ and u′′, and both of them are now active. The latter two arguments
imply that Property (⋆) holds for w′. In particular, Property (⋆) holds for the chosen child w of v in N. Note that w
was marked as active in Alg. 2 (Line 26), while the other child of v is not. Since by choice of w, G[Lv] admits a
maximum clique entirely contained in G[Lw], it follows that v satisfies Property (⋆).

Assume now that t(ρC) = 1. In this case, we call ACTIVATE
(
(N, t),{P1,P2},ω,ω¬η ,α,β ,1

)
in Alg. 2 (Line 32)

where α = ω(u′)+ω(u′′)−ω(η) and β = ω¬η (u′)+ω¬η (u′′). To recall, u′ ∈ P1 and u′′ ∈ P2 are the two children of
ρC in N. As argued in the proof of Prop. 4.10, α = ω(G1(M))+ω(G2(M)−ω(G[Lη]) and β = ω(G1(M)−G[Lη])+
ω(G2(M)−G[Lη]). Since t(ρC) = 1, we continue in Line 6 of procedure ACTIVATE. There are two cases, either
α ≤ β or α > β .

Assume first that α ≤ β . In this case, Proposition 4.6 implies that a maximum clique in G[Lv] can be obtained by
taking the join union of one maximum clique in G[Lv1 \Lη] and one one maximum clique in G[Lv2 \Lη], where v1
and v2 are the two children of ρC = v in N. Hence, a a maximum clique in G[Lv] is, in particular, a maximum clique
in G[Lv \Lη] Since α ≤ β , we are in Line 7 of the procedure ACTIVATE. For all vertices w′ in P1 and P2 distinct from
ρC and η , Observation 2.5 implies that the unique child u′′ of w′ outside of C is a child of v in TG. In particular, by
our induction hypothesis, u′′ satisfies Property (⋆). We now proceed with showing that every w′ in P1 and P2 distinct
from ρC and η , satisfies the following amended version of Property (⋆). Namely, we say that w′ satisfies Property
(⋆⋆) if a maximum clique in G[Lw′ \Lη] is induced by all leaves in Lw′ that can be reached from the active w′-paths.
If w′ is a parent of η in N, then Lw′ \ Lη = Lu′′ , and u′′ is marked as active in . Since u′′ satisfies Property (⋆)
by our induction hypothesis, it follows that w′ satisfies Property (⋆⋆) in Line 9. All remaining vertices w′in P1 and
P2. i.e., those that are distinct from ρC,η and its two unique parents w1 and w2 are now traversed in postorder (Line
10). Suppose now that w′ is one of these vertices and let u′ be the child of w′ in C. Since the vertices of P1 and P2
are processed in postorder in the procedure ACTIVATE, we may assume that u′ satisfies Property (⋆⋆). The latter is
justified since the parents of η have been processed and satisfy Property (⋆⋆). If t(w′) = 0, then similar arguments as
in the proof of Lemma 4.2 imply that a maximum clique in G[Lw′ \Lη] is contained either in G[Lu′′] or in G[Lu′ \Lη].
In the procedure ACTIVATE (Line 12), we mark u′ as active if ω¬η (u′)≥ ω(u′′), and we mark u′′ as active otherwise.
By induction, Property (⋆) holds for u′′, and Property (⋆⋆) holds for u′. This and the fact that there exists a maximum
clique in G[Lu′] located entirely in G[Lu′ \ Lη] (in case ω¬η (u′) ≥ ω(u′′)) or in G[Lu′′] (in case ω(u′′) ≥ ω¬η (u′))
implies that Property (⋆⋆) holds for w′. If t(w′) = 1, then similar arguments as in the proof of Lemma 4.2 imply that a
maximum clique in G[Lw′ \Lη] is the join union of a maximum clique in G[Lu′ \Lη] and a maximum clique in G[Lu′′].
In this case, both u′ and u′′ are marked as active in the procedure ACTIVATE (Line 13). By our induction hypothesis,
Property (⋆) holds for u′′ and Property (⋆⋆) holds for u′. The latter two arguments imply that Property (⋆⋆) holds for
w′. In particular, Property (⋆⋆) holds for the children v1 and v2 of v in N. Note that both v1 and v2 are marked as
active (Line 6). Moreover, η is not marked as active, so for i ∈ {1,2}, all leaves that can be reached from vi via a
path of active vertices are not descendants of η . It follows that for all leaves x1 ∈ Lv1 ,x2 ∈ Lv2 that can be reached
by such a path, lcaN(x1,x2) = v. Since t(v) = 1 and (N, t) explains G, it follows that {x1,x2} is an edge of G. Together
with the fact that v1 and v2 satisfy Property (⋆⋆), this implies that the set of leaves of Lv that can be reached from v

15

via a path of active vertices induces a clique of G[Lv] of size ω(G[Lv1 \Lη])+ω(G[Lv2 \Lη]). By Proposition 4.10,
ω(G[Lv1 \Lη])+ω(G[Lv2 \Lη]) = ω¬η (v1)+ω¬η (v2) = β , and since β ≥ α , Proposition 4.6 implies that the latter
clique is a maximum clique in Lv. Therefore, v satisfies Property (⋆).

Assume now that α > β . In this case, Proposition 4.6 implies that every maximum clique in G[Lv] must contain
vertices in Lη , i.e., we must subsequently build active parts while keeping active paths along η . Since α > β , we
are in Line 14 of the procedure ACTIVATE, and we mark η and its unique child as active (Line 15) and proceed
with traversing the vertices w in P1 and P2 distinct from η and ρC in postorder (Line 16). By Observation 2.5, for all
such w′, the child u′′ of w′ outside of C is a child of v in TG. In particular, by our induction hypothesis, u′′ satisfies
Property (⋆). We now proceed to show that w′ satisfies Property (⋆). Note that since the only child u′′ if η is active
(Line 15), this is true for w′ = η . Since the w′ ̸= η vertices of P1 and P2 are processed in postorder, we may therefore
assume that the child u′ of w′ in C satisfies Property (⋆). By Lemma 4.2, t(w′) = 0 implies that every maximum
clique in G[Lw′] must be located entirely in one of G[Lu′] or G[Lu′′]. Moreover, by Proposition 4.6, every maximum
clique in G[Lv] contains vertices in Lη . As a consequence, since Lη ⊆ Lw′ ⊆ Lv, a maximum clique in G[Lw′] contains
vertices in Lη . Since Lu′′ ∩ Lη = /0, the latter two arguments imply that every maximum clique in G[Lw′] must be
located entirely in G[Lu′]. Since u′ is marked as active (Line 17), and u′ satisfies Property (⋆), it follows that w′

satisfies Property (⋆). If t(w′) = 1 then, by Lemma 4.2, a maximum clique in G[Lw′] is the join union of a maximum
clique in G[Lu′] and a maximal clique in G[Lu′′]. In this case, both u′ and u′′ are marked as active in the procedure
ACTIVATE (Lines 17 and 18). By our induction hypothesis, Property (⋆) holds for both u′ and u′′, and both of them
are now active. The latter two arguments imply that Property (⋆) holds for w′. In particular, Property (⋆) holds
for the children v1 and v2 of v in N. Note that both v1 and v2 are marked as active (Line 17). Note also that for
x ∈ Lη , x can be reached from v1 via a path of active vertices if and only if x can be reached from v1 via a path of
active vertices. Moreover, for all leaves x1 ∈ Lv1 \Lη ,x2 ∈ Lv2 \Lη , we have lcaN(x1,x2) = v. Since t(v) = 1 and
(N, t) explains G, it follows that {x1,x2} is an edge of G. Together with the fact that v1 and v2 satisfy Property (⋆),
this implies that the set of leaves of Lv that can be reached from v via a path of active vertices induces a clique of
G[Lv] of size ω(G[Lv1])+ω(G[Lv2])−ω(G[Lv1 ∩Lv2]) = ω(G[Lv1])+ω(G[Lv2])−ω(G[Lη]). By Proposition 4.10,
ω(G[Lv1])+ω(G[Lv2])−ω(G[Lη]) = ω(v1)+ω(v2)−ω(η) = α , and since α > β , Proposition 4.6 implies that the
latter clique is a maximum clique in Lv. Therefore, v satisfies Property (⋆).

Proposition 4.12. Algorithm 2 can be implemented to run in O(|V |+ |E|) time with input G = (V,E)

Proof. We show now that Algorithm 2 can be implemented to run in O(|V |+ |E|) time for a given GATEX graph
G = (V,E). The modular decomposition tree (TG, tG) can be computed in O(|V |+ |E|) time [12]. By [15, Thm.
9.4 and Alg. 4], the pvr-network (N, t) of G can be computed within the same time complexity. Thus, Line 1 takes
O(|V |+ |E|) time. Initializing ω(v) := 1 for all leaves v (and thus, the vertices of G) in Line 2 can be done in O(|V |)
time.

Note that V is the leaf set of TG. We then traverse each of the O(|V |) non-leaf vertices in (TG, tG) in postorder
starting in Line 3. To simplify the arguments and to establish the runtime, we put W := V (TG) \V and partition the
vertices in W into WP ∪· (W \WP) where WP contains all vertices v with t(v) = prime. Moreover, we denote with
degH(v) the number of edges incident to v in some DAG H.

Note that for v ∈W \WP we have degN(v) = degTG
(v). All vertices v ∈W \WP are processed in Line 5 and 6 as

well as in Line 8 and 9. It is an easy task to verify that the respective two steps take O(degN(v)) = O(degTG
(v)) time

for each of the vertices in W \WP. Hence, processing all vertices in W \WP can be done in O(∑v∈W\WP
degTG

(v)) =
O(|E(TG)|) = O(|V (TG)|= O(|V |) time.

Now, consider the vertices in WP which are processed in Line 10-32. Note first that the sides P1 and P2 of C can be
determined in O(|V (C)|) time in Line 16. Moreover, it is easy to verify that, for each v ∈WP, all other individual steps
starting at Line 10 can be done in constant time each processed vertex has precisely two children, except execution
of the procedure ACTIVATE which takes O(|V (C)|) time for each individual call. For each v ∈ WP, ACTIVATE is
called once. Each v ∈WP is associated with the unique cycle Cv :=CM with M = L(TG(v)). Taken together the latter
arguments, for a given prime vertex v, Line 10 - 32 have runtime O(|V (Cv)|+ |E(Cv)|) = |V (Cv)|. Note that each cycle
C has, by definition of pvr-networks, no vertex in common with every other cycles. Hence, processing all vertices in
WP can be done in ∑v∈WP

O(|V (Cv)|) = O(|V (N)|)
By [3, Prop. 1], we have O(|V (N)|) = O(|V |). Hence, the overall time-complexity of Algorithm 2 is bounded by

the time-complexity to compute (TG, tG) and (N, t) in Line 1 and is, therefore, O(|V |+ |E|) time.

We consider now the problem of determining the independence number α(G) as well as a maximum independent
set of GATEX graphs G. Suppose that a GATEX graph G is explained by the network (N, t) and let t : V (N)→{0,1, }̇
where t(v) = ⊙ for all leaves v of N and t(v) = 1 if and only if t(v) = 0. Since L(N) = V (G) and by [3, Prop. 1],
we have O(|V (N)|) = O(|V (G)|) and thus, this labeling can be computed in O(|V (G)|) time. It is easy to verify that
(N, t) explains the complement G of G. The latter arguments imply that the complement of every GATEX graph is
a GATEX graph as well. Since maximum cliques in G are precisely the maximum independent sets in G, the latter
arguments together with Prop. 4.11 and 4.12 imply

Theorem 4.13. A maximum clique and a maximum independent set can be computed in linear-time for GATEX

graphs.

16

References
[1] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal of Computational

Biology, 6(3-4):281–297, 1999. PMID: 10582567.

[2] Sebastian Böcker and Andreas W. M. Dress. Recovering symbolically dated, rooted trees from symbolic ultra-
metrics. Advances in Mathematics, 138(1):105–125, 1998.

[3] G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylogenetic networks. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 6:552–569, 2007.

[4] V. Chvátal. Perfectly ordered graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, volume 88
of North-Holland Mathematics Studies, pages 63–65. North-Holland, 1984.

[5] D. G. Corneil, H. Lerchs, and L K Stewart Burlingham. Complement reducible graphs. Discr. Appl. Math.,
3:163–174, 1981.

[6] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM Journal on
Computing, 14(4):926–934, 1985.

[7] Elias Dahlhaus, Jens Gustedt, and Ross M McConnell. Efficient and practical algorithms for sequential modular
decomposition. Journal of Algorithms, 41(2):360 – 387, 2001.

[8] A Ehrenfeucht and G Rozenberg. Theory of 2-structures, part I: Clans, basic subclasses, and morphisms. Theor.
Comp. Sci., 70:277–303, 1990.

[9] A Ehrenfeucht and G Rozenberg. Theory of 2-structures, part II: Representation through labeled tree families.
Theor. Comp. Sci., 70:305–342, 1990.

[10] Andrzej Ehrenfeucht, Harold N. Gabow, Ross M. Mcconnell, and Stephen J. Sullivan. An O(n2) Divide-and-
Conquer Algorithm for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs.
Journal of Algorithms, 16(2):283–294, 1994.

[11] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San Francisco,
1979.

[12] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review,
4(1):41 – 59, 2010.

[13] Marc Hellmuth, Adrian Fritz, Nicolas Wieseke, and Peter F. Stadler. Cograph editing: Merging modules is
equivalent to editing P4’s. Art Discr. Appl. Math., 3:#P2.01, 2020.

[14] Marc Hellmuth, David Schaller, and Peter F. Stadler. Clustering systems of phylogenetic networks. Theory in
Biosciences, 142(4):301–358, 2023.

[15] Marc Hellmuth and Guillaume E. Scholz. From modular decomposition trees to level-1 networks: Pseudo-
cographs, polar-cats and prime polar-cats. Discrete Applied Mathematics, 321:179–219, 2022.

[16] Marc Hellmuth and Guillaume E. Scholz. Linear time algorithms for NP-hard problems restricted to GaTEx
graphs. In Weili Wu and Guangmo Tong, editors, Computing and Combinatorics, pages 115–126. Springer
Nature Switzerland, Cham, 2024.

[17] Marc Hellmuth and Guillaume E. Scholz. Resolving prime modules: The structure of pseudo-cographs and
galled-tree explainable graphs. Discrete Applied Mathematics, 343:25–43, 2024.

[18] Marc Hellmuth, Peter F Stadler, and Nicolas Wieseke. The mathematics of xenology: Di-cographs, symbolic
ultrametrics, 2-structures and tree-representable systems of binary relations. Journal of Mathematical Biology,
75(1):199–237, 2017.

[19] K. T. Huber and G. E. Scholz. Beyond representing orthology relations with trees. Algorithmica, 80(1):73–103,
2018.

[20] R. Duncan Luce and Albert D. Perry. A method of matrix analysis of group structure. Psychometrika, 14(2):95–
116, Jun 1949.

[21] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electrical
Engineering, 48:11–16, 2004.

17

[22] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathe-
matics, 201(1-3):189 – 241, 1999.

[23] Matthias Middendorf and Frank Pfeiffer. On the complexity of recognizing perfectly orderable graphs. Discrete
Mathematics, 80(3):327–333, 1990.

[24] Ameera Vaheeda Shanavas, Manoj Changat, Marc Hellmuth, and Peter F. Stadler. Unique least common ances-
tors and clusters in directed acyclic graphs. In Subrahmanyam Kalyanasundaram and Anil Maheshwari, editors,
Algorithms and Discrete Applied Mathematics, pages 148–161, Cham, 2024. Springer Nature Switzerland.

[25] Victor Spirin and Leonid A. Mirny. Protein complexes and functional modules in molecular networks. Proceed-
ings of the National Academy of Sciences, 100(21):12123–12128, 2003.

[26] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time modular decomposition
via recursive factorizing permutations. In Automata, Languages and Programming, volume 5125 of Lecture
Notes in Computer Science, pages 634–645. Springer Berlin Heidelberg, 2008.

[27] Volker Turau and Christoph Weyer. Algorithmische Graphentheorie. De Gruyter, Berlin, München, Boston,
2015.

18

	Introduction
	Preliminaries
	Perfect orderings and optimal colorings
	Maximum cliques and independent sets

