Solving NP-hard Problems on GaTEx Graphs: Linear-Time Algorithms for Perfect Orderings, Cliques, Colorings, and Independent Sets*

Marc Hellmuth ${ }^{1}$ and Guillaume E. Scholz ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Stockholm University, SE-10691 Stockholm, Sweden
marc.hellmuth@math.su.se
${ }^{2}$ Bioinformatics Group, Department of Computer Science \& Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16-18, D-04107 Leipzig, Germany.

Abstract

The class of GAlled-Tree Explainable (GATEX) graphs has recently been discovered as a natural generalization of cographs. Cographs are precisely those graphs that can be uniquely represented by a rooted tree where the leaves correspond to the vertices of the graph. As a generalization, GATEX graphs are precisely those that can be uniquely represented by a particular rooted acyclic network, called a galled-tree.

This paper explores the use of galled-trees to solve combinatorial problems on GATEX graphs that are, in general, NP-hard. We demonstrate that finding a maximum clique, an optimal vertex coloring, a perfect order, as well as a maximum independent set in GaTEx graphs can be efficiently done in linear time. The key idea behind the lineartime algorithms is to utilize the galled-trees that explain the GATEX graphs as a guide for computing the respective cliques, colorings, perfect orders, or independent sets.

Keywords: modular decomposition galled-tree cograph NP-hard problems linear-time algorithms

1 Introduction

Modular decomposition is a general technique to display nested "substructures" (modules) of a given graph in the form of a rooted tree (the modular decomposition tree of G) whose inner vertices are labeled with " 0 ", " 1 ", and "prime". Cographs are precisely those graphs for which the modular decomposition tree has no prime vertices. In this case, complete structural information of the underlying cograph, i.e., the knowledge of whether two vertices are linked by an edge or not, is provided by the modular decomposition tree. As a consequence, these modular decomposition trees serve as a perfect guide for algorithms to efficiently solve many computationally hard problems on cographs (e.g., the graph-isomorphism problem or classical NP-hard problems like "minimum independent set", "maximum clique", or "minimum vertex coloring") [5,6]. However, when encountering prime vertices, conventional modular decomposition trees do not provide full structural information about the underlying graphs and become less useful for algorithmic solutions to hard problems. To circumvent this issue, we aim at using modular decomposition networks instead of trees. In [15], we focused on particular networks, called galled-trees, that are obtained from the modular decomposition tree by replacing prime vertices by rooted $0 / 1$-labeled cycles. A graph $G=(X, E)$ is GAlled-Tree Explainable (GATEX) if there is a 0/1-labeled galled-tree (N, t) such that $x, y \in E$ if and only if the label $t\left(\operatorname{lca}_{N}(x, y)\right)$ of the unique least-common ancestor of x and y in N is " 1 ". GATEX graphs, thus, naturally generalize the concept of cographs. Further exploration of the class of GATEX graphs in [17] shows that these graphs are characterized by the absence of 25 forbidden subgraphs. This, in turn, implies that GATEX graphs are closely linked to other famous graph classes such as weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs, murky graphs as well as interval graphs, Meyniel graphs, or very strongly-perfect and brittle graphs. In addition, every GATEX graph has twin-width at most 1.

Cotrees serve as a guide for algorithms on cographs to solve many combinatorial problems that are classified as "hard". In this contribution, we ask whether the galled-trees that explain GATEX graphs can be used in a similar manner. In particular, we are interested in the following classical NP-hard problems [11]: Determining the size $\omega(G)$

[^0]of a maximum clique and finding such a clique, the size $\chi(G)$ of an optimal vertex-coloring and finding such a coloring, the size $\alpha(G)$ of a maximum independent set of a given graph G and finding such an independent set. In general, determining the invariants $\omega(G), \chi(G)$, and $\alpha(G)$ for arbitrary graphs G, as well as finding the underlying optimal cliques, colorings, and independent sets, is an NP-hard task [11]. All these invariants are not only of interest from a theoretical point of view but also have many practical applications in case the underlying graph models realworld structures, e.g., social networks [20], gene/protein-interaction networks [1, 25], job/time-slots assignments in scheduling problems [21], and many more. In addition, we consider the problem of determining a perfect ordering of GATEX graphs, i.e., an ordering of the vertices of G such that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of G. As shown by Middendorf and Pfeiffer [23], the problem of deciding whether a graph is perfectly orderable is NP-complete. As we will argue below, the problem of finding a perfect ordering remains NP-hard even for perfectly orderable graphs.

We show here that $\omega(G), \chi(G), \alpha(G)$ as well as a perfect ordering can be computed in linear time for GATEX graphs G. The crucial idea for the linear-time algorithms is to avoid working directly on the GaTEx graphs G but rather to utilize the galled-trees that explain G as a guide for the algorithms to compute these invariants. In particular, we show first how to employ the galled-tree structure to compute a perfect ordering of GATEX graphs. This result is then used to determine $\omega(G), \chi(G), \alpha(G)$. In addition, we provide algorithms to find a maximum clique, an optimal vertex coloring as well as a maximum independent set in GATEX graphs in linear-time.

2 Preliminaries

Graphs. We consider graphs $G=(V, E)$ with vertex set $V(G):=V \neq \emptyset$ and edge set $E(G):=E$. A graph G is undirected if E is a subset of the set of two-element subsets of V and G is directed if $E \subseteq V \times V \backslash\{(v, v) \mid v \in V\}$ Thus, edges $e \in E$ in an undirected graph G are of the form $e=\{x, y\}$ and in directed graphs of the form $e=(x, y)$ with $x, y \in V$ being distinct. We write $H \subseteq G$ if H is a subgraph of G and $G[W]$ for the subgraph in G that is induced by some subset $W \subseteq V$. A P_{4} denotes an induced undirected path on four vertices. We often write $a-b-c-d$ for an induced P_{4} with vertices a, b, c, d and edges $\{a, b\},\{b, c\},\{c, d\}$. An undirected graph is connected if, for every two vertices $u, v \in V$, there is a path connecting u and v. A directed graph is connected if its underlying undirected graph is connected. A (directed or undirected) graph G is biconnected if it contains no vertex whose removal disconnects G A biconnected component of a G is an inclusion-maximal biconnected subgraph. If such a biconnected component is not a single vertex or an edge, then it is called non-trivial.

Remark 2.1. From here on, we will call an undirected graph simply graph.
For two graphs G and H we put $G-H:=(V(G) \backslash V(H), E(G) \backslash F)$ with $F \subseteq E(G)$ being the collection of all edges incident to vertices in $V(H)$, and $G \cap H:=(V(G) \cap V(H), E(G) \cap E(H))$. For two vertex-disjoint graphs G and H, their disjoint union is defined as $G \cup H:=(V(G) \cup V(H), E(G) \cup E(H))$ while their join union is defined as $G \otimes H:=(V(G) \uplus V(H), E(G) \cup E(H) \uplus\{\{x, y\} \mid x \in V(G), y \in V(H)\})$.

A clique of a graph G is an inclusion-maximal complete subgraph G. The size of a maximum clique of G is called the clique number and denoted by $\omega(G)$. A coloring of a graph G is a map $\sigma: V(G) \rightarrow S$, where S denotes a set of colors, such that $\sigma(u) \neq \sigma(v)$ for all $\{u, v\} \in E(G)$. The minimum number of colors needed for a coloring of G is called the chromatic number of G and denoted by $\chi(G)$. A subset $W \subseteq V(G)$ of pairwise non-adjacent vertices is called independent set. The size of a maximum independent set in G is called the independence number of G and denoted by $\alpha(G)$. In general, determining the invariants $\omega(G), \chi(G)$ and $\alpha(G)$ for arbitrary graphs is an NP-hard task [11].

A graph G is perfect, if the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. We consider total orders $\zeta=v_{1} \ldots v_{|V|}$ defined on the vertex set V of graphs $G=(V, E)$ and assume that $v_{i}<v_{j}$ precisely if v_{i} is left of v_{j} in this sequence ζ (or equivalently, if $i<j$ in case indices are provided). We denote with $\zeta_{\mid H}$ the order ζ that is restricted to $V(H)$. Let X and Y be two disjoint subsets of $V(G)$. If $\zeta_{1}=x_{1}, x_{2}, \ldots x_{l}$ and $\zeta_{2}=y_{1}, y_{2}, \ldots y_{m}$ are two total orderings on X and Y, respectively, then we denote with $\zeta_{1} \zeta_{2}$ the total ordering on $X \cup Y$ given by concatenating ζ_{1} and ζ_{2}, i.e., $\zeta_{1} \zeta_{2}=x_{1}, x_{2}, \ldots x_{l} y_{1}, y_{2}, \ldots y_{m}$.

For a given total order ζ of G, a greedy coloring algorithm scans the vertices in order ζ and assigns to each vertex v the smallest positive integer (color) assigned to none of the vertices $w<v$ that are adjacent to v. A coloring of G obtained with such an algorithm is called greedy coloring. A total order ζ of G is perfect if, for all induced subgraphs H of G, a greedy coloring algorithm that scans the vertices in order $\zeta_{\mid H}$ uses the minimum number of colors to color H. A graph G is perfectly orderable if it admits a perfect order ζ. A total order ζ on G contains an obstruction (w.r.t. $G)$ if there is an induced $P_{4} a-b-c-d$ in G such that $a<b$ and $c>d$ w.r.t. this order ζ. Every perfectly orderable graph is a perfect graph [4].
Proposition 2.2 ([4]). A total order ζ on a graph G is a perfect order if and only if ζ does not contain any obstructions.
Perfectly orderable graphs are NP-complete to recognize [23]. By Prop. 2.2, one can test in polynomial-time as whether a given order is perfect: simply check as whether one of the $O\left(|V|^{4}\right)$ induced P_{4} s yields an obstruction. This, in particular, implies that the problem to find a perfect ordering of a graph remains NP-hard, even if the graph is already known to be perfectly orderable.

Trees, Galled-trees and GATEX graphs. (Phylogenetic) trees and galled-trees are particular directed acyclic graphs (DAGs). To be more precise, a galled-tree $N=(V, E)$ on X is a DAG such that either
(NO) $V=X=\{x\}$ and, thus, $E=\emptyset$.
or N satisfies the following four properties
(N1) There is a unique root ρ_{N} with indegree 0 and outdegree at least 2 ; and
(N2) $x \in X$ if and only if x has outdegree 0 and indegree 1 ; and
(N3) Every vertex $v \in V^{0}:=V \backslash X$ with $v \neq \rho_{N}$ has
(i) indegree 1 and outdegree at least 2 (tree-vertex) or
(ii) indegree 2 and outdegree at least 1 (hybrid-vertex).
(N4) Each biconnected component C contains at most one hybrid-vertex v for which the two vertices v_{1}, v_{2} with $\left(v_{1}, v\right),\left(v_{2}, v\right) \in E$ belong to C.
We note that in [15] galled-trees have been called level-1 networks. By definition, every non-trivial biconnected component in a galled-tree N forms an (rooted) "cycle" C in $N[3,19]$ that is composed of two directed paths $P^{1}(C)$ and $P^{2}(C)$ in N (called sides of C) with the same start-vertex ρ_{C} (the root of C) and end-vertex η_{C} (the hybrid-vertex of C) and whose internal vertices, i.e., vertices in C that are distinct from ρ_{C} and η_{C}, are pairwise distinct. Trees are galled-trees without hybrid-vertices. The leaf set $L(N)$ of a galled-tree N is X, i.e., the set of all vertices satisfying ($N 2$),

Let $N=(V, E)$ be a galled-tree on X. A vertex $u \in V$ is called an ancestor of $v \in V$ and v a descendant of u, in symbols $v \preceq_{N} u$, if there is a directed path (possibly reduced to a single vertex) in N from u to v. We write $v \prec_{N} u$ if $v \preceq_{N} u$ and $u \neq v$. If $(u, v) \in E$, then the vertex v is a child of u and u is a parent of v. The set of children, resp., parents of a vertex w in N is denoted by $\operatorname{child}_{N}(w)$, resp., $\operatorname{par}_{N}(w)$. For a non-empty subset of leaves $A \subseteq X$, we define $\operatorname{lca}_{N}(A)$, or a lowest common ancestor of A, to be a \preceq_{N}-minimal vertex of N that is an ancestor of every vertex in A. For simplicity we put $1 \mathrm{la}_{N}(x, y):=\operatorname{lca}_{N}(\{x, y\})$. By Lemma 49 and 67 in [14], galled-trees N are "lca-networks", i.e., $\operatorname{lca}_{N}(A)$ is uniquely determined for all $A \subseteq L(N)$.

We define $N(w)$ as the subgraph of N rooted at w, i.e., the DAG induced by w and all its descendants. Morever, if the context is clear, we often write $L_{w}=L(N(w))$ for $w \in V(N)$.

A galled-tree N on X is elementary if it contains a single rooted cycle C of length $|X|+1$ with root $\rho_{C}=\rho_{N}$ and single hybrid-vertex $\eta_{C} \in V(C)$ and additional edges $\left\{v_{i}, x_{i}\right\}$ such that every vertex $v_{i} \in V(C) \backslash\left\{\rho_{C}\right\}$ is adjacent to a unique vertex $x_{i} \in X$. A galled-tree is strong if it does not contain cycles of the following form: (i) $P^{1}(C)$ or $P^{2}(C)$ consist of ρ_{C} and η_{C} only or (ii) both $P^{1}(C)$ and $P^{2}(C)$ contain only one vertex distinct from ρ_{C} and η_{C}.

The tuple (N, t) denotes a galled-tree $N=(V, E)$ on X that is equipped with a (vertex-)labeling t i.e., a map $t: V \rightarrow$ $\{0,1, \odot\}$ such that $t(x)=\odot$ if and only if $x \in X$. The graph $\mathcal{G}(N, t)=(X, E)$ with vertex set X and edges $\{x, y\} \in E$ precisely if $t\left(\operatorname{lca}_{N}(x, y)\right)=1$ is said to be explained by (N, t). A graph $G=(X, E)$ is Galled-Tree Explainable (GATEX)) if there is a labeled galled-tree (N, t) such that $G \simeq \mathcal{G}(N, t)$. A labeling t (or equivalently (N, t)) is quasidiscriminating if $t(u) \neq t(v)$ for all $(u, v) \in E$ with v not being a hybrid-vertex. We note in passing, that quasidiscriminating labelings form a natural generalization of discriminating labelings t that require $t(u) \neq t(v)$ for all $(u, v) \in E[2]$.
Proposition 2.3 ([15]). GATEX graphs can be recognized in linear-time and a galled-tree (N, t) that explains a GATEX graphs can be constructed in linear-time as well.

Moreover, GatEx graphs are characterized by a finite set of forbidden subgraphs [17]. GaTEx graphs that are explained by labeled trees (T, t) are precisely the cographs and, therefore, those graphs that do not contain induced $P_{4} \mathrm{~s}$ [5].

Modular Decomposition (MD). A module M of a graph $G=(X, E)$ is a subset $M \subseteq V(G)=X$ such that for all $x, y \in M$ it holds that $N_{G}(x) \backslash M=N_{G}(y) \backslash M$, where $N_{G}(x)$ is the set of all vertices of X that are adjacent to x in G. A module M of G is strong if M does not overlap with any other module of G, that is, $M \cap M^{\prime} \in\left\{M, M^{\prime}, \emptyset\right\}$ for all modules M^{\prime} of G. The set of strong modules $\mathbb{M}_{\text {str }}(G) \subseteq \mathbb{M}(G)$ is uniquely determined $[10,18]$ and forms a hierarchy which gives rise to a unique tree representation \mathcal{T}_{G} of G, known as the modular decomposition tree (MDT) of G. Uniqueness and the hierarchical structure of $\mathbb{M}_{\text {str }}(G)$ implies that there is a unique partition $\mathbb{M}_{\max }(G)=\left\{M_{1}, \ldots, M_{k}\right\}$ of X into inclusion-maximal strong modules $M_{j} \neq X$ of $G[8,9]$.

Similar as for galled-trees, one can equip \mathcal{T}_{G} with a vertex-labeling t_{G} such that, for $M \in \mathbb{M}_{\text {str }}(G)=V\left(\mathcal{T}_{G}\right)$, we have $t_{G}(M)=\odot$ if $|M|=1 ; t_{G}(M)=0$ if $|M|>1$ and $G[M]$ is disconnected; $t_{G}(M)=1$ if $|M|>1$ and $G[M]$ is connected but $\bar{G}[M]$ is disconnected; $t_{G}(M)=$ prime in all other cases. Strong modules of G are called series, parallel and prime if $t_{G}(M)=1, t_{G}(M)=0$ and $t_{G}(M)=$ prime, respectively. Efficient linear algorithms to compute $\left(\mathcal{T}_{G}, t\right)$ have been proposed e.g. in $[7,22,26]$. The quotient graph $G / \mathbb{M}_{\max }(G)$ has $\mathbb{M}_{\max }(G)$ as its vertex set and edges $\left\{M_{i}, M_{j}\right\} \in E\left(G / \mathbb{M}_{\max }(G)\right)$ if and only if there are $x \in M_{i}$ and $y \in M_{j}$ that are adjacent in G. As argued in [12], this quotient graph is well-defined.

G

$G / \mathbb{M}_{\text {max }}(G)$

$$
\{\dot{b}\} \quad\{\dot{a}\} \quad\{\dot{c}\} \quad\{d, e, f, g, h\}
$$

$$
\begin{aligned}
& G\left[M_{1}\right] / \mathbb{M}_{\max }\left(G\left[M_{1}\right]\right) \\
& \quad \begin{array}{llll}
\dot{d}\} & \{g, h\} & \{\dot{e}\} & \{f\}
\end{array}
\end{aligned}
$$

$\left(\mathcal{T}_{G}, t_{G}\right)$

Figure 1: Shown is a GATEX graph $G=(V, E)$ (top left) together with its modular decomposition tree $\left(\mathcal{T}_{G}, t_{G}\right)$ (top right) and a pvr-network (N, t) (bottom right) that explains G. The graph G has as strong modules the singletons $\{x\}, x \in V=\{a, b, c, \ldots, g\}$, the entire vertex set V and the sets $M_{1}=\{d, e, f, g, h\}$ and $M_{2}=\{g, h\}$. Each vertex w in \mathcal{T}_{G} represent the strong module $L\left(\mathcal{T}_{G}(w)\right)$. The graph G has two prime modules, namely $M_{1}=L\left(\mathcal{T}_{G}\left(v_{2}\right)\right)$ and $V=L\left(\mathcal{T}_{G}\left(v_{1}\right)\right)$. The respective quotient graphs $H_{1}:=G / \mathbb{M}_{\max }(G)$ and $H_{2}:=G\left[M_{1}\right] / \mathbb{M}_{\max }\left(G\left[M_{1}\right]\right)$ are shown bottom left. The pvr-network (N, t) is a galled-tree that is obtained from $\left(\mathcal{T}_{G}, t_{G}\right)$ by locally replacing the vertex v_{i} by the strong quasi-discriminating elementary galled-tree $\left(N_{v_{i}}, t_{v_{i}}\right)$ that explains $H_{i}, i \in\{1,2\}$ (cf. Def. 2.4).

From Modular Decomposition Trees to Galled-trees. Galled-trees that explain a given GATEX graph G can be obtained from the modular decomposition trees $\left(\mathcal{T}_{G}, t_{G}\right)$ by replacing its prime vertices locally by simple rooted cycles. To this end, we first compute for prime vertices v and the corresponding prime modules $M=L\left(\mathcal{T}_{G}(v)\right)$ the quotient $H=G[M] / \mathbb{M}_{\max }(G[M])$ which can be explained by a strong elementary quasi-discriminating galled-tree $\left(N_{v}, t_{v}\right)$ (cf. [15, Thm. 6.10]). We then use the rooted cycles in $\left(N_{v}, t_{v}\right)$ to replace v in $\left(\mathcal{T}_{G}, t_{G}\right)$, see Figure 2 for an illustrative example. The latter is formalized as follows.
Definition 2.4 (prime-vertex replacement (pvr) networks). Let G be a GATEx graph and \mathscr{P} be the set of all prime vertices in $\left(\mathcal{T}_{G}, t_{G}\right)$. A prime-vertex replacement (pvr) networks (N, t) of G (or equivalently, of $\left(\mathcal{T}_{G}, t_{G}\right)$) is obtained by the following procedure:

1. For all $v \in \mathscr{P}$, let $\left(N_{v}, t_{v}\right)$ be a strong quasi-discriminating elementary galled-tree with root v that explains $G[M] / \mathbb{M}_{\max }(G[M])$ with $M=L\left(\mathcal{T}_{G}(v)\right)$.
2. For all $v \in \mathscr{P}$, remove all edges (v, u) with $u \in \operatorname{child}_{\mathcal{T}_{G}}(v)$ from \mathcal{T}_{G} to obtain the forest $\left(T^{\prime}, t_{G}\right)$ and add N_{v} to T^{\prime} by identifying the root of N_{v} with v in T^{\prime} and each leaf M^{\prime} of N_{v} with the corresponding child $u \in \operatorname{child}_{\mathcal{T}_{G}}(v)$ for which $M^{\prime}=L\left(\mathcal{T}_{G}(u)\right)$.

This results in the pvr-network N of G.
3. Define the labeling $t: V(N) \rightarrow\{0,1, \odot\}$ by putting, for all $w \in V(N)$,

$$
t(w)= \begin{cases}t_{G}(v) & \text { if } v \in V\left(\mathcal{T}_{G}\right) \backslash \mathscr{P} \\ t_{v}(w) & \text { if } w \in V\left(N_{v}\right) \backslash X \text { for some } v \in \mathscr{P}\end{cases}
$$

Note that the leaves of the pvr-network N of G are the singletons $\{x\}, x \in V(G)$. In the remainder of this paper, we will always implicitly identify each singleton with its unique elements. In other words, we will always assume that the leaf set of \mathcal{T}_{G} as well as of pvr-network N of G is $V(G)$. By construction, we have $V\left(\mathcal{T}_{G}\right) \subseteq V(N)$ given that N is the pvr-network of G. More precisely, $V\left(\mathcal{T}_{G}\right)$ is precisely the set of vertices v of N such that either v does not belong to a cycle C of N, or $v=\rho_{C}$ for some cycle C of N. In addition, we have

Observation 2.5. For a vertex v in in the pvr-network N of G, the following holds:
(i) If v does not belong to any cycle in N, then all children of v in N are children of v in \mathcal{T}_{G}.
(ii) If there exists a cycle C of N such that $v \in V(C) \backslash\left\{\rho_{C}\right\}$, then v has a unique child w in $V(N) \backslash V(C)$, and w is a child of ρ_{C} in \mathcal{T}_{C}.
The construction of a pvr-network for a GATEX graph is well-defined and can be done in linear-time, cf. [15, Alg. 4 \& Thm. 9.4]. By [15, Prop. $7.4 \& 8.3$], a pvr-network (N, t) of a GATEx graph G is a galled-tree that explains G. Moreover, there is a 1:1 correspondence between cycles C in N and prime modules M of G. By the latter result, we can define C_{M} as the unique cycle in N corresponding to prime module M. For later reference, we summarize now a couple of results that are easy to verify or that have been established in [15].
Observation 2.6. Let (N, t) be a pvr-network of a GATEX graph G. Then,

- (N, t) is a galled-tree that explains G [15, Prop. 7.4].
- There is a 1:1 correspondence between the cycle C in N and prime modules M of G [15, Prop. 8.3]. Hence, we can define C_{M} as the unique cycle in N corresponding to prime module M.
Moreover, $G_{1}(M), G_{2}(M) \subseteq G[M]$ will denote the subgraphs induced by leaf-descendants of the vertices in $P^{1}\left(C_{M}\right)-\rho_{C_{M}}$ and $P^{2}\left(C_{M}\right)-\rho_{C_{M}}$, respectively.
Moreover, let v be a prime vertex associated with the prime module $M_{v}=L\left(\mathcal{T}_{G}(v)\right)$ module and let $C:=C_{M_{v}}$. Since we used strong elementary networks for the replacement of v, one easily verifies that:
- C has a unique root ρ_{C} and a unique hybrid-vertex η_{C}.
- η_{C} has precisely one child and precisely two parents.
- All vertices $v \neq \eta_{C}$ have two children and one parent.

In particular, all vertices $v \neq \eta_{C}, \rho_{C}$ have one child u^{\prime} located in C and one child $u^{\prime \prime}$ that is not located in C and these children satisfy $L\left(N\left(u^{\prime}\right)\right) \cap L\left(N\left(u^{\prime \prime}\right)\right)=\emptyset$ and it holds that $\operatorname{lca}_{N}(x, y)=w$ for all $x \in L\left(N\left(u^{\prime}\right)\right)$ and $y \in L\left(N\left(u^{\prime \prime}\right)\right)$.
Both children u^{\prime} and $u^{\prime \prime}$ of ρ_{C} are located in C and satisfy $L\left(N\left(u^{\prime}\right)\right) \cap L\left(N\left(u^{\prime \prime}\right)\right)=L\left(N\left(\eta_{C}\right)\right)$. Moreover, $L\left(N\left(\eta_{C}\right)\right) \cap L\left(N\left(v_{2}\right)\right)=\emptyset$ for the child v_{2} of $v \neq \eta_{C}, \rho_{C}$ that is not located in C.

3 Perfect orderings and optimal colorings

In this section, we provide linear-time algorithms to compute the chromatic number $\chi(G)$ and an optimal coloring of a given GaTEx graph G. For this purpose, we show first how to employ the structure of labeled galled-trees (N, t) to determine a perfect ordering of GATEX graphs in linear time (cf. Alg. 1). To this end, we provide the following result for later reference.
Lemma 3.1. Let $P=a-b-c-d$ be an induced P_{4} in a GATEX graph G and (N, t) a pvr-network that explains G. Moreover, let M be the inclusion-minimal strong module of G that contains $V(P)$, i.e., $V(P) \subseteq M$ and there is no strong module M^{\prime} of G that satisfies $V(P) \subseteq M^{\prime} \subsetneq M$. Then, M is a prime module of G. Moreover, in the unique cycle C_{M} in N that corresponds to M, there are vertices $u_{a}, u_{b}, u_{c}, u_{d} \in V\left(C_{M}\right)$ that satisfy the following conditions:

1. For $x \in\{a, b, c, d\}$ it holds that $x \in L\left(N\left(u_{x}^{\prime}\right)\right)$ where u_{x}^{\prime} is the unique child of u_{x} that is not located in C_{M}.
2. The vertices $u_{a}, u_{b}, u_{c}, u_{d}$ are pairwise distinct.
3. The vertices $u_{a}, u_{b}, u_{c}, u_{d}$ do not all belong to the same side of C_{M}.
4. One of $u_{a}, u_{b}, u_{c}, u_{d}$ coincides with the unique hybrid $\eta_{C_{M}}$ of C_{M}.

Proof. Let $P=a-b-c-d$ be an induced P_{4} in a GatEx graph G and (N, t) a pvr-network that explains G. Put $Y:=\{a, b, c, d\}$. Moreover, let M be the inclusion-minimal strong module of G that contains $V(P)$.

We show first that M is a prime module of G. By definition, we must show that $G[M]$ and $\bar{G}[M]$ are connected. Assume that $P=a-b-c-d$ and put $Y:=V(P)$. Observe first that $G[Y]=P$ and $\bar{G}[Y]=c-a-d-b$. Hence, both $G[Y]$ and $\bar{G}[Y]$ are connected. Assume, for contradiction, that $G[M]$ is disconnected. In this case, P belongs to some connected component H of $G[M]$. We show that, in this case, $V(H)$ must be a strong module of $G[M]$. Clearly, $V(H)$ is a module of M. Assume, for contradiction, that $V(H)$ is not strong. Hence, it overlaps with some module M^{\prime} of $G[M]$ and, therefore, $V(H) \cap M^{\prime} \neq \emptyset, V(H) \backslash M^{\prime} \neq \emptyset$ and $M^{\prime} \backslash V(H) \neq \emptyset$. In particular, since H is connected, there is a vertex $x \in V(H) \cap M^{\prime}$ that is adjacent to some vertex $y \in V(H) \backslash M^{\prime}$. However, since H is a connected component, none of the vertices $z \in M^{\prime} \backslash V(H)$ can be adjacent to y. Hence, M^{\prime} is a not a module; a contradiction. Thus, $V(H)$ is a strong module of $G[M]$ and, by [13, Lemma 3.1], $V(H)$ is a strong module of G; a contradiction to the choice of M. Thus, $G[M]$ is connected. By similar arguments and since $\bar{G}[Y]=c-a-d-b, \bar{G}[M]$ must be connected as well. Consequently, M is a prime module of G.

Since M is a prime module of G, there is a unique cycle C_{M} in N corresponding to M. To recall, $L_{w}=L(N(w))$ for $w \in V(N)$. For a vertex $w \in V\left(\mathcal{T}_{G}\right)$, we denote with $M_{w}:=L\left(\mathcal{T}_{G}(w)\right)$ the module of G "associated" with w. For all

```
Algorithm 1 Perfect ordering of GaTEx graphs \(G\)
Input: A GATEX graph \(G=(V, E)\)
Output: A perfect ordering \(\zeta\) of the vertices of \(V(G)\)
    Construct \(\left(\mathcal{T}_{G}, t_{G}\right)\) and pvr-network \((N, t)\) of \(G\)
    Initialize \(\zeta(v):=v\) for all leaves \(v\) in \(\mathcal{T}_{G}\)
    for all \(v \in V\left(\mathcal{T}_{G}\right) \backslash L\left(\mathcal{T}_{G}\right)\) in postorder do
        if \(t_{G}(v) \in\{0,1\}\) then
            Put \(\zeta(v):=\zeta\left(v_{1}\right) \ldots \zeta\left(v_{k}\right)\) arbitrarily for the \(k=\left|\operatorname{child}_{\mathcal{T}_{G}}(v)\right|\) children \(v_{1}, \ldots, v_{k}\) of \(v\) in \(\mathcal{T}_{G}\)
        Letse \(C\) be the unique cycle in \(N\) with root \(\rho_{C}=v\).
            For all vertices \(w \in V(C) \backslash\left\{\rho_{C}\right\}\), put \(\zeta(w):=\zeta\left(w^{\prime}\right)\), where \(w^{\prime}\) is the unique child of \(w\) in \(N\) that is not a vertex of \(C\).
            Put \(\zeta^{*}(v):=\zeta\left(v_{1}\right) \ldots \zeta\left(v_{k}\right)\) arbitrarily for the \(k=|V(C)|-2\) vertices \(v_{1}, \ldots, v_{k}\) in \(V(C) \backslash\left\{\rho_{C}, \eta_{C}\right\}\)
            if \(t\left(\rho_{C}\right)=0\) then
                \(\zeta(v):=\zeta\left(\eta_{C}\right) \zeta^{*}(v)\)
            \({ }^{\text {else }} \zeta(v):=\zeta^{*}(v) \zeta\left(\eta_{C}\right)\)
    return \(\zeta(v)\)
```

vertices $u \in V(C) \backslash\left\{\rho_{C}\right\}$, we put $L_{u}^{\prime}=L_{u^{\prime}}$, where u^{\prime} is the unique child of u that is not in $V(C)$. By Obs. 2.6, the sets $L_{u}^{\prime}, u \in V(C) \backslash\left\{\rho_{C}\right\}$ are pairwise disjoint strong modules of G. In particular, for all $x \in M$, there exists a unique vertex $u_{x} \in V(C) \backslash\left\{\rho_{C}\right\}$ such that $x \in L_{u_{x}}^{\prime}$. Consequently, Condition (1) is satisfied.

We show now that the vertices u_{a}, u_{b}, u_{c} and u_{d} are pairwise distinct. If $u_{a}=u_{b}=u_{c}=u_{d}$, then $Y \subseteq L_{u_{a}}^{\prime}$. Since $L_{u_{a}}^{\prime}$ is a strong module of G satisfying $L_{u_{a}}^{\prime} \subsetneq M$, this contradicts the choice of M. If exactly three of $u_{a}, u_{b}, u_{c}, u_{d}$ are equal, then there exists $u \in V(C) \backslash\left\{\rho_{C}\right\}$ and $x \in Y$ such that $Y \backslash\{x\} \subseteq L_{u}^{\prime}$ and $x \notin L_{u}^{\prime}$. This and the fact that L_{u}^{\prime} is a module of G implies that either all or none of of the vertices in L_{u}^{\prime} (and thus, of $Y \backslash\{x\}$) are adjacent to x. Consequently, x has degree 0 or 3 in $G[Y]$, a contradiction since $G[Y]=P$. Finally, if two of $u_{a}, u_{b}, u_{c}, u_{d}$ are equal and distinct from the other two, then there exists $u \in V(C) \backslash\left\{\rho_{C}\right\}$ and $x, y \in Y$ distinct such that $Y \cap L_{u}^{\prime}=\{x, y\}$. Since L_{u}^{\prime} is a module, then for all $z \in Y \backslash\{x, y\},\{x, z\}$ is an edge of $G[Y]$ if and only if $\{y, z\}$ is an edge of $G[Y]$. However, since $G[Y]=P$, there is no pair $\{x, y\}$ of elements of Y satisfying this property. Therefore, the vertices u_{a}, u_{b}, u_{c} and u_{d} are pairwise distinct and Condition (2) is satisfied.

This in particular implies that, for $x, y \in Y$ distinct, $\operatorname{lca}_{N}(x, y) \in\left\{u_{x}, u_{y}, \rho_{C}\right\}$. More specifically, we $\operatorname{lca}_{N}(x, y)=$ u_{x} if $u_{y} \prec_{N} u_{x}$, lca $(x, y)=u_{y}$ if $u_{x} \prec_{N} u_{y}$, and $\operatorname{lca}_{N}(x, y)=\rho_{C}$ if u_{x} and u_{y} are \preceq_{N}-incomparable. Assume, for contradiction, that the vertices u_{a}, u_{b}, u_{c} and u_{d} all belong to the same side of C. In this case, there is a vertex $x \in Y$ such that u_{x} is an ancestor of u_{a}, u_{b}, u_{c} and u_{d} in N. In view of the above, lca ${ }_{N}(x, y)=u_{x}$ for all $y \in Y \backslash\{x\}$. Hence, x has degree 0 in $G[Y]$ if $t\left(u_{x}\right)=0$, and degree 3 if $t\left(u_{x}\right)=1$. Since $G[Y]=P$, none of these cases can occur. Hence, Condition (3) is satisfied.

We now show that one of u_{a}, u_{b}, u_{c} and u_{d} coincides with $\eta:=\eta_{C}$. Assume, for contradiction, that this is not the case. Then two situations may occur: exactly three of u_{a}, u_{b}, u_{c} and u_{d} belong to the same side of C, or two of u_{a}, u_{b}, u_{c} and u_{d} belong to one side of C, and the other two belong to the other side. Suppose first that there exists $x \in Y$ such that u_{x} is the only vertex on its side of C. Then we have lca ${ }_{N}(x, y)=\rho_{C}$ for all $y \in Y \backslash\{x\}$. Hence, x has degree 0 in $G[Y]$ if $t\left(\rho_{C}\right)=0$, and degree 3 if $t\left(\rho_{C}\right)=1$. Since $G[Y]=P$, both cases are impossible. Suppose now that there exists $x, y \in Y$ distinct such that u_{x} and u_{y} belong to one side of C. In particular, for all $z \in Y \backslash\{x, y\}$, we have $\operatorname{lca}_{N}(x, z)=\operatorname{lca}_{N}(y, z)=\rho_{C}$. It follows that $G[Y]$ is disconnected if $t\left(\rho_{C}\right)=0$ and $\bar{G}[Y]$ is disconnected if $t\left(\rho_{C}\right)=1$. Since $G[Y]=P$, both cases are impossible. Hence, one of u_{a}, u_{b}, u_{c} and u_{d} coincides with η and Condition (4) is satisfied.

As we shall see, Algorithm 1 can be used to compute a perfect order in GATEX graphs in linear-time. Before studying Algorithm 1 in detail, we illustrate this algorithm on the example shown in Figure 2.
Example 3.2. We exemplify here the main steps of Algorithm 1 using as input the GATEX graph G as shown in Fig. 2. We first compute the modular decomposition tree $\left(\mathcal{T}_{G}, t_{G}\right)$ (as shown in Fig. 1) and the shown pvr-network (N, t) that explains G (Line 1). For all leaves v of \mathcal{T}_{G} (and thus, of N), we initialize the perfect order $\zeta(v)=v$ of the induced subgraph $G[\{v\}]$ (Line 2). We then traverse the vertices \mathfrak{T}_{G} that are not leaves in postorder and thus obtain the order v_{3}, v_{2}, v_{1} in which the vertices are visited (Line 3). Note that postorder-traversal ensures that all children of a given vertex v in \mathfrak{T}_{G} are visited before this vertex v is processed. Since v_{3} is a non-prime vertex of \mathcal{T}_{G} (Line 4), we can choose one of the orders $\zeta(g) \zeta(h)$ or $\zeta(h) \zeta(g)$ (Line 5) and decide, in this example, to put $\zeta\left(v_{3}\right)=\zeta(g) \zeta(h)=g h$. We proceed with vertex v_{2} which is a prime vertex in \mathcal{T}_{G}. We now consider the cycle C with root $\rho_{C}=v_{2}$ (Line 7). This cycle C refers to the subgraph in N induced by $v_{2}, u_{,}, u_{d}, u_{e}, u_{f}$. In Line 8 , we put $\zeta\left(u_{x}\right)=\zeta(x)=x$ for each $x \in\{d, e, f\}$ and $\zeta(u)=\zeta\left(v_{3}\right)=g$. In Line 9 we can choose an arbitrary ordering $\zeta^{*}\left(v_{2}\right)$ and decide, in this example, for $\zeta^{*}\left(v_{2}\right)=\zeta\left(u_{d}\right) \zeta\left(u_{e}\right) \zeta(u)=$ degh. Since $u_{f}=\eta_{C}$ and $t\left(v_{2}\right)=1$, we put $\zeta\left(v_{2}\right)=\zeta^{*}\left(v_{2}\right) \zeta\left(\eta_{C}\right)=\operatorname{deghf}$ (Line 13). Finally, the prime vertex v_{1} is processed. We consider now the cycle C with root $\rho_{C}=v_{1}$ that is induced by $v_{1}, w, w_{a}, w_{b}, w_{c}$. (Line 7). In Line 8 , we put $\zeta\left(w_{x}\right)=\zeta(x)=x$ for each

Figure 2: Left a galled-tree (N, t) that explains the GATEx graph G on the right. In addition, G is equipped with a vertex coloring that is obtained with a greedy coloring based on the perfect order cabdeghf computed with Algorithm 1. Since $G[c, e, g, h]$ is a complete graph on four vertices, this coloring is optimal. see explanations in Example 3.2 for further details.
$x \in\{a, b, c\}$ and $\zeta(w)=\zeta\left(v_{2}\right)=$ deghf. In Line 9 we can choose an arbitrary ordering $\zeta^{*}\left(v_{1}\right)$ in Line 9 and decide, in this example, for $\zeta^{*}\left(v_{1}\right)=\zeta\left(w_{a}\right) \zeta\left(w_{b}\right) \zeta(w)=$ abdeghf. Finally, since $t\left(v_{1}\right)=0$ and $\eta_{C}=w_{c}$, we put $\zeta\left(v_{1}\right)=\zeta\left(\eta_{C}\right) \zeta^{*}\left(v_{1}\right)=$ cabdeghf (Line 11). Since v_{1} is the root of \mathcal{T}_{G}, the algorithm stops there, and returns the ordering $\zeta=\zeta\left(v_{1}\right)=$ cabdeghf. As we shall show in Prop. 3.3, this ordering is a perfect ordering It is now an easy task to verify that the vertex coloring of G as shown in Fig. 2 can be obained by a greedy coloring taking the perfect order $\zeta=$ cabdeghf and the order of colors as shown in Fig. 2 (bottom right) into account.

Proposition 3.3. Algorithm 1 determines a perfect ordering of GATEX graphs.
Proof. Let $G=(V, E)$ be a GATEX graph that serves as input for Alg. 1. We first compute $\left(\mathcal{T}_{G}, t_{G}\right)$ and a pvr-network (N, t) of G (Line 1). In this proof, we put $L_{w}:=L(N(w))$ for $w \in V(N)$. Let $\zeta(w)$ be the ordering computed with Alg. 1 for the subgraph $G\left[L_{w}\right]$ induced by the vertices in L_{w}. We then initialize $\zeta(v)=v$ for all leaves v in \mathcal{T}_{G} (Line 2). Clearly, $\zeta(v)$ is a perfect ordering of $G[\{v\}]$. We then continue to traverse the remaining vertices in \mathcal{T}_{G} in postorder. This ensures that, whenever we reach a vertex v in \mathcal{T}_{G}, all its children have been processed and thus, that $\zeta(v)$ is well-defined in each step.

To verify that the ordering ζ returned by Alg. 1 is a perfect order of G, we must show that ζ does not contain any obstructions w.r.t. G (cf. Prop. 2.2). If G does not contain any induced P_{4}, then any ordering is perfect. Thus, assume that G contains an induced P_{4}, say $P=a-b-c-d$. Put $Y=\{a, b, c, d\}$.

We first remark that Alg. 1 builds ζ by successively concatenating sub-orderings of the form $\zeta(w), w \in V(\mathcal{T}(G))$. In particular $\zeta_{\mid Y}=\zeta(w)_{\mid Y}$ holds for all $w \in V\left(\mathcal{T}_{G}\right)$ for which $Y \subseteq M_{w}$ where $M_{w}:=L\left(\mathcal{T}_{G}(w)\right)$. Let M be the inclusionminimal strong module of G that contains Y. By Lemma 3.1, M is a prime module of G. Hence, there is the unique cycle $C:=C_{M}$ in N corresponding to M. For all vertices $u \in V(C) \backslash\left\{\rho_{C}\right\}$, we denote with u^{\prime} is the unique child of u that is not in $V(C)$. By Lemma 3.1, there are four vertices $u_{a}, u_{b}, u_{c}, u_{c} \in V(C)$ that satisfy the Condition (1) - (4). Hence, for $x \in\{a, b, c, d\}$ it holds that $x \in L_{u_{x}^{\prime}}$. Moreover, the vertices $u_{a}, u_{b}, u_{c}, u_{c}$ are pairwise distinct, do not all belong to the same side of C_{M} and one of $u_{a}, u_{b}, u_{c}, u_{c}$ coincides with the unique hybrid $\eta:=\eta_{C}$ of C. The latter arguments, in particular, allow us to denote by P^{-}(resp., P^{+}) the side of C such that the set $V\left(P^{-}\right) \backslash\{\eta\}$ (resp., $V\left(P^{+}\right) \backslash\{\eta\}$) contains one (resp., two) of u_{a}, u_{b}, u_{c} and u_{d}. In the following, let v be the prime vertex in \mathcal{T}_{G} with $L\left(\mathcal{T}_{G}(v)\right)=M$. We now distinguish between two cases: (1) $t\left(\rho_{C}\right)=0$ and (2) $t\left(\rho_{C}\right)=1$.

Case (1): $t\left(\rho_{C}\right)=0$. Let $x \in Y$ be the vertex such that $u_{x} \in V\left(P^{-}\right) \backslash\{\eta\}$. Then, for all $y \in Y \backslash\{x\}$ with $u_{y} \in$ $V\left(P^{+}\right) \backslash\{\eta\}$, we have lca $_{N}(x, y)=\rho_{C}$ and thus, x and y are not joined by an edge in $G[Y]$. In particular, x has degree at most one in $G[Y]$. Since $G[Y]=P$, it follows that x has degree exactly one in $G[Y]$, and that the unique vertex $z \in Y$ adjacent to x in N satisfies $u_{z}=\eta$. Due to the "symmetry" of $G[Y]=P=a-b-c-d$, we can assume w.l.o.g. that $x=a$ and thus, $z=b$. By construction of $\zeta(v)$ in Line 11, we have $\zeta(v)=\zeta(\eta) \zeta^{*}(v)$. Since vertex b appears in the order $\zeta(\eta)$ and vertex a appears in the order $\zeta^{*}(v)$, we have in the final order ζ of G always $b<a$. In this case, P does not yield an obstruction of ζ.

Case (2): $t\left(\rho_{C}\right)=1$. Let $x \in Y$ be the vertex such that $u_{x} \in V\left(P^{-}\right) \backslash\{\eta\}$. Then for all $y \in Y \backslash\{x\}$ such that $u_{y} \in V\left(P^{+}\right) \backslash\{\eta\}$, we have lca $_{N}(x, y)=\rho_{C}$ and thus, x and y are joined by an edge in $G[Y]$. In particular, x has degree at least two in $G[Y]$. Since $G[Y]=P$, it follows that x has degree exactly two in $G[Y]$, and that the unique vertex $z \in Y$ that is not adjacent to x in N satisfies $u_{z}=\eta$. Again, by "symmetry" of $G[Y]=P=a-b-c-d$, we can assume w.l.o.g. that $x=c$ and thus, $z=a$. Now consider the unique vertex b that is adjacent to a in $G[Y]$. By assumption, $b \in V\left(P^{+}\right) \backslash\{\eta\}$. Furthermore, by construction of $\zeta(v)$ in Line 13, we have $\zeta(v)=\zeta^{*}(v) \zeta(\eta)$. Since vertex a appears in the order $\zeta(\eta)$ and vertex b appears in the order $\zeta^{*}(v)$, we have in the final order ζ of G always $b<a$. In this case, P does not yield an obstruction of ζ.

In summary, the ordering ζ returned by Alg. 1 does not contain any obstructions w.r.t. G. By Prop. 2.2, ζ is a perfect order of G.

Proposition 3.4. Algorithm 1 can be implemented to run in $O(|V|+|E|)$ time where $G=(V, E)$ is the input GATEX graph.
Proof. We show now that Algorithm 1 can be implemented to run in $O(|V|+|E|)$ time for a given GatEx graph $G=(V, E)$. The modular decomposition tree $\left(\mathcal{T}_{G}, t_{G}\right)$ can be computed in $O(|V|+|E|)$ time [12]. By [15, Thm. 9.4 and Alg. 4], the pvr-network (N, t) of G can be computed within the same time complexity. Thus, Line 1 takes $O(|V|+|E|)$ time. Initializing $\zeta(v):=v$ for all leaves v (and thus, the vertices of G) in Line 2 can be done in $O(|V|)$ time.

We then traverse each of the $O(|V|)$ vertices in $\left(\mathcal{T}_{G}, t_{G}\right)$ in postorder. To compute the final perfect order, we consider an auxiliary directed graph H that, initially, just consists of the vertices in V and is edge-less. Whenever, we concatenate ζ^{\prime} and $\zeta^{\prime \prime}$, we simply add an edge (u, v) from the maximal element u in ζ^{\prime} to the minimal element v in $\zeta^{\prime \prime}$ and define the minimal element of this now order $\zeta^{\prime \prime \prime}=\zeta^{\prime} \zeta^{\prime \prime}$ as the minimal element of ζ^{\prime} and the maximal element of $\zeta^{\prime \prime \prime}$ as the maximal element of $\zeta^{\prime \prime}$. Since we can keep track of these maximal and minimal elements (starting with $\zeta(v):=v$ for all leaves v and defining v as the maximal and minimal element of $\zeta(v))$ in each of the steps, the concatenation of two orders ζ^{\prime} and $\zeta^{\prime \prime}$ and updating the maximal and minimal of $\zeta^{\prime \prime \prime}=\zeta^{\prime} \zeta^{\prime \prime}$ can be done in constant time. The final graph H then consists of a single directed path that traverses each vertex in V. If $t_{G}(v) \in\{0,1\}$, then we pick an arbitrary ordering of the children of v and define $\zeta(v)=\zeta\left(v_{1}\right) \ldots \zeta\left(v_{k}\right)$ by concatenating the orderings of its k children v_{1}, \ldots, v_{k} (Line 4-5). By the latter arguments, this task can be done in $O\left(\left|\operatorname{child}_{\mathcal{T}_{G}}(v)\right|\right)$ time for each nonprime vertex v. Otherwise, if $t_{G}(v)=$ prime, we consider the unique cycle C in N that satisfies $L\left(N\left(\rho_{C}\right)\right)=L\left(\mathcal{T}_{G}(v)\right)$ in Line 7. We note that we can keep track of C and its correspondence to v when constructing the pvr-network (N, t) based on $\left(\mathcal{T}_{G}, t_{G}\right)$ and thus have constant-time access to these cycles C in N. The assignment $\zeta(w)=\zeta\left(w^{\prime}\right)$ for all $w \in V(C) \backslash\left\{\rho_{C}\right\}$ can be done in $O(|V(C)|)$ time (Line 8). By the latter arguments, construction of $\zeta^{*}(v)$ in Line 9 can be done in $O(|V(C)|)$ time. Note that $O(|V(C)|)=O\left(\mid\right.$ child $\left._{\mathcal{T}_{G}}(v) \mid\right)$, since the elementary galled-tree N_{v} that is used to replace v and the edges to its children in \mathcal{T}_{G}, contains C and has 2 child $_{\mathcal{T}_{G}}(v)+1$ edges and vertices. The tasks in Line $10-13$ can be done in constant time. Hence, the time-complexity of the Lines 6 to 13 is in $O\left(\left|\operatorname{child}_{\mathcal{T}_{G}}(v)\right|\right)$ for each prime vertex v.

To obtain the overall time complexity of the for loop starting in Line 3, observe that the degrees of vertices in \mathcal{T}_{G} sum up to $2\left|E\left(\mathcal{T}_{G}\right)\right|=2\left(\left|V\left(\mathcal{T}_{G}\right)\right|-1\right)$. By the latter arguments and by iterating over each vertex $v \in V\left(\mathcal{T}_{G}\right) \backslash L\left(\mathcal{T}_{G}\right)$, we obtain $\sum_{v \in V\left(\mathcal{T}_{G}\right) \backslash L\left(\mathcal{T}_{G}\right)} O\left(\left|\operatorname{child}_{\mathcal{T}_{G}}(v)\right|\right)=O\left(\left|V\left(\mathcal{T}_{G}\right)\right|\right)=O(|V|)$.

Hence, the overall time-complexity of Algorithm 1 is dominated by the time-complexity to compute (\mathcal{T}_{G}, t_{G}) and (N, t) in Line 1 and is, therefore, in $O(|V|+|E|)$.

As an immediate consequence of Prop. 3.3 and 3.4, we obtain
Theorem 3.5. Every GATEX graph is perfectly orderable and this ordering can be determined in linear-time.
For a given graph $G=(V, E)$, a greedy coloring algorithm can be implemented to run in $O(|V|+|E|)$ time, see e.g. [27, Sec. 6.4]. This together with Theorem 3.5 implies

Theorem 3.6. The chromatic number $\chi(G)$ and an optimal coloring of a GATEX graph G can be determined in linear-time.

4 Maximum cliques and independent sets

To recall, a clique of a graph G is an inclusion-maximal complete subgraph G and the maximum size of a clique of G is denoted by $\omega(G)$. If G is a GATEx graph, then it is explained by some labeled galled-tree (N, t) whose leaf set is $V(G)$.

Since GATEX graphs G are perfect, their chromatic number $\chi(G)$ and the size $\omega(G)$ of a maximum clique coincide. This together with Theorem 3.6 implies

Theorem 4.1. The clique number $\omega(G)$ of a GATEx graph G can be determined in linear-time.

It is clear that for a given graph G and integer $k=\omega(G)$, one can determine in $O\left(|V(G)|^{k}\right)$ time a maximum clique by examining all $O\left(|V(G)|^{k}\right)$ subgraphs. Since $k=\omega(G)$ can be obtained in linear time for GaTEx graphs, we, therefore, immediately obtain a polynomial-time procedure to find maximum cliques in GATEX graphs. In what follows, we show that maximum cliques in GATEX graphs even can be determined in linear time.

To this end, we examine the structure and size of maximum-sized cliques induced by vertex set $L(N(v))$ in G where (N, t) is a galled-tree that explains G. In this context, it is important to take the labeling $t(v)$ of v into account.

Lemma 4.2. Let G be a GATEx graph, (N, t) be a labelled galled-tree explaining G and v be a vertex of N that is not the root ρ_{C} of any C of N. Moreover, let $L_{u}=L(N(u))$ for $u \in V(N)$. Then it holds that

1. If $t(v)=0$, then $\omega\left(G\left[L_{v}\right]\right)=\max _{w \in \operatorname{child}_{N}(v)}\left\{\omega\left(G\left[L_{w}\right]\right)\right\}$ and any maximum clique of $G\left[L_{v}\right]$ is entirely contained in $G\left[L_{w}\right]$ for some $w \in \operatorname{child}_{N}(v)$.
2. If $t(v)=1$, then $\omega\left(G\left[L_{v}\right]\right)=\sum_{w \in \operatorname{child}_{N}(v)} \omega\left(G\left[L_{w}\right]\right)$ and any maximum clique of $G\left[L_{v}\right]$ is the join union $\boxtimes_{w \in \operatorname{child}_{N}(v)} K^{w}$ of maximum cliques K^{w} in $G\left[L_{w}\right]$.
Proof. Since no cycle C of N satisfies $\rho_{C}=v$, one easily verifies that, for all distinct $z^{\prime}, z \in \operatorname{child}_{N}(v)$, it holds that $L_{z} \cap L_{z^{\prime}}=\emptyset$ and that $\operatorname{lca}_{N}\left(x, x^{\prime}\right)=v$ for all $x \in L_{z}, x^{\prime} \in L_{z^{\prime}}$ (see also [15, Lemma 2.1]). Since ($\left.N, t\right)$ explains G, it follows that $\left\{x, x^{\prime}\right\}$ is an edge of G if and only if $t(v)=1$. In particular, the following holds:

Case $t_{G}(v)=0$: In this case, $G\left[L_{v}\right]$ is the disjoint union of the graphs $G\left[L_{w}\right]$ with $w \in \operatorname{child}_{N}(v)$. Hence, every maximum clique in $G\left[L_{v}\right]$ must be located entirely in one of the subgraphs $G\left[L_{w}\right]$ of $G\left[L_{v}\right]$. Consequently, $\omega\left(\left[G\left[L_{v}\right]\right)=\right.$ $\max _{w \in \operatorname{child}_{N}(v)}\left\{\omega\left(G\left[L_{w}\right]\right)\right\}$ holds.

Case $_{G}(v)=1$: Suppose that K is a maximum clique in $G\left[L_{v}\right]$. Since $t_{G}(v)=1, G\left[L_{v}\right]$ is the join union of the graphs $G\left[L_{w}\right]$ with $w \in \operatorname{child}_{N}(v)$. In particular, K can be written as the join union of cliques K^{w} in $G\left[L_{w}\right], w \in \operatorname{child}_{N}(v)$. Note that each of the cliques K^{w} must be a maximum clique in $G\left[L_{w}\right]$ as otherwise we can replace K^{w} by a larger clique in $G\left[L_{w}\right]$ and obtain a clique K^{\prime} in $G\left[L_{v}\right]$ that is larger than K. Consequently, $\omega\left(G\left[L_{v}\right]\right)=\sum_{w \in \operatorname{child}_{N}(v)} \omega\left(G\left[L_{w}\right]\right)$ holds.

We next investigate the case of vertices v of \mathcal{T}_{G} with $t_{G}(v)=$ prime. To recall, we denote with $P^{1}(C), P^{2}(C)$ the sides of cycles $C \subseteq N$, i.e., the two directed paths C with the same start-vertex ρ_{C} and end-vertex η_{C}, and whose vertices distinct from ρ_{C} and η_{C} are pairwise distinct. Moreover $G_{1}(M), G_{2}(M) \subseteq G[M]$ will denote the subgraphs induced by leaf-descendants of the vertices in $P^{1}\left(C_{M}\right)-\rho_{C_{M}}$ and $P^{2}\left(C_{M}\right)-\rho_{C_{M}}$, respectively.

In the upcoming proofs we may need to compute the join $H^{\prime} \otimes H$ where H is the empty graph. To avoid cumbersome case studies, we simple assume, in this case, that $H^{\prime}:=H^{\prime} \boxtimes H=H \boxtimes H^{\prime}$. In other words, if H is empty and we argue along $H^{\prime} \otimes H$, then all arguments are applied to H^{\prime}.
Lemma 4.3. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M. Put $L_{\eta}:=L\left(N\left(\eta_{C_{M}}\right)\right)$ and let $H \in\left\{G[M], G_{1}(M), G_{2}(M)\right\}$. If H contains a maximum clique K with vertices in L_{η}, then $V(K) \cap L_{\eta}$ induces a maximum clique in $G\left[L_{\eta}\right]$ and $\left(V(K) \backslash L_{\eta}\right) \cup V\left(K^{\prime}\right)$ induces a maximum clique in H for every maximum clique K^{\prime} in $G\left[L_{\eta}\right]$.

Proof. Let G be a GATEx graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M. Put $L_{\eta}:=L\left(N\left(\eta_{C_{M}}\right)\right), \eta:=\eta_{C_{M}}$ and $p=\rho_{C_{M}}$. In the following, let $H \in\left\{G[M], G_{1}(M), G_{2}(M)\right\}$.

Suppose that H contains a maximum clique K that contains vertices in L_{η}. Since K is a clique in H, it must hold that $t\left(\operatorname{lca}_{N}(x, z)\right)=1$ for all $x \in V(K) \cap L_{\eta}$ and $z \in V(K) \backslash L_{\eta} \subseteq V(H) \backslash L_{\eta}$. By definition of pvr-networks, L_{η} is a module of G and, therefore, $t\left(\operatorname{lca}_{N}(x, z)\right)=1$ with $x \in V(K) \cap L_{\eta}$ and $z \in V(K) \backslash L_{\eta}$ implies that $t\left(\operatorname{lca}_{N}\left(x^{\prime}, z\right)\right)=1$ for all $x^{\prime} \in L_{\eta}$. By construction, we have $V(K)=\left(V(K) \backslash L_{\eta}\right) \cup\left(V(K) \cap L_{\eta}\right)$. Assume, for contradiction, that $V(K) \cap L_{\eta}$ does not induce a maximum clique in $G\left[L_{\eta}\right]$. In this case, there is a clique K^{\prime} in $G\left[L_{\eta}\right]$ such that $\left|V\left(K^{\prime}\right)\right|>\left|V(K) \cap L_{\eta}\right|$. By the previous arguments, $t\left(\operatorname{lca}_{N}\left(x^{\prime}, z\right)\right)=1$ for all $x^{\prime} \in V\left(K^{\prime}\right)$ and $z \in V(K) \backslash L_{\eta}$. This together with $G\left[L_{\eta}\right] \subseteq H$ implies that $\left(V(K) \backslash L_{\eta}\right) \cup V\left(K^{\prime}\right)$ induces a complete graph in H. However, $\left|\left(V(K) \backslash L_{\eta}\right) \cup V\left(K^{\prime}\right)\right|>\left|\left(V(K) \backslash L_{\eta}\right) \cup\left(V(K) \cap L_{\eta}\right)\right|=$ $|V(K)|$; a contradiction to K being a maximum clique in H. Therefore, $V(K) \cap L_{\eta}$ induces a maximum clique in $G\left[L_{\eta}\right]$.

Finally, let K^{\prime} be some maximum clique in $G\left[L_{\eta}\right]$ and thus, $\left|V(K) \cap L_{\eta}\right|=\left|V\left(K^{\prime}\right)\right|$. As argued before, $t\left(\operatorname{lca}_{N}\left(x^{\prime}, z\right)\right)=1$ for all $x^{\prime} \in V\left(K^{\prime}\right)$ and $z \in V(K) \backslash L_{\eta}$ which implies that $\left(V(K) \backslash L_{\eta}\right) \cup V\left(K^{\prime}\right)$ induces a complete graph $K^{\prime \prime}$ in H of size $\left|V\left(K^{\prime \prime}\right)\right|=\left|V(K) \backslash L_{\eta}\right|+\left|V\left(K^{\prime}\right)\right|=\left|V(K) \backslash L_{\eta}\right|+\left|V(K) \cap L_{\eta}\right|=|V(K)|$. Hence, $K^{\prime \prime}$ is a maximum clique in H.

Lemma 4.4. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M such that $t\left(\rho_{C_{M}}\right)=1$. If $G[M]$ contains a maximum clique that contains vertices in $L\left(N\left(\eta_{C_{M}}\right)\right)$, then $G_{1}(M)$ and $G_{2}(M)$ have both a maximum clique that contains vertices in $L\left(N\left(\eta_{C_{M}}\right)\right)$.

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M such that $t\left(\rho_{C_{M}}\right)=1$. Furthermore, put $G_{1}:=G_{1}(M), G_{2}:=G_{2}(M), L_{\eta}:=L\left(N\left(\eta_{C_{M}}\right)\right)$ and $G_{\eta}:=G\left[L_{\eta}\right]$. For a subgraph $H \subseteq G$ we define $|H|:=|V(H)|$. Let K be a maximum clique in $G[M]$ that contains vertices in L_{η} and put $K^{1}:=\left(G_{1}-G_{\eta}\right) \cap K, K^{2}:=\left(G_{2}-G_{\eta}\right) \cap K$ and $K^{\eta}:=K \cap G_{\eta}$. Thus, $V(K)=V\left(K^{1}\right) \cup V\left(K^{\eta}\right) \cup V\left(K^{2}\right)$.

Assume, for contradiction, that every maximum clique in G_{1} does not contain vertices in L_{η}. Let K^{\prime} be a maximum clique in G_{1}. Since $V\left(K^{1}\right) \cup V\left(K^{\eta}\right) \subseteq V\left(G_{1}\right)$ and $V\left(K^{1}\right) \uplus V\left(K^{\eta}\right)$ induce a complete graph with vertices in L_{η}, we can conclude that $\left|V\left(K^{1}\right) \cup V\left(K^{\eta}\right)\right|=\left|K^{1}\right|+\left|K^{\eta}\right|<\left|K^{\prime}\right|$. Note that lca ${ }_{N}(x, y)=\rho_{C}$ has label 1 for all $x \in V\left(K^{\prime}\right)$ and $y \in V\left(K^{2}\right)$ and thus, $K^{\prime \prime}:=K^{\prime} \otimes K^{2}$ forms a complete graph in $G[M]$ and thus, $\left|K^{\prime}\right|+\left|K^{2}\right|=\left|K^{\prime \prime}\right| \leq|K|$. This together with $\left|K^{1}\right|+\left|K^{\eta}\right|<\left|K^{\prime}\right|$ yields the following contradiction:

$$
\left|K^{\prime}\right|+\left|K^{2}\right|=\left|K^{\prime \prime}\right| \leq|K|=\left|K^{1}\right|+\left|K^{\eta}\right|+\left|K^{2}\right|<\left|K^{\prime}\right|+\left|K^{2}\right| .
$$

Hence, G_{1} must contain a maximum clique with vertices in L_{η}. By similar arguments, G_{2} must contain a maximum clique with vertices in L_{η}.

Lemma 4.5. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M such that $t\left(\rho_{C_{M}}\right)=1$. Put $L_{\eta}:=L\left(N\left(\eta_{C}\right)\right)$ and $G_{\eta}=G\left[L_{\eta}\right]$. Furthermore, suppose that $G_{1}(M)$, resp., $G_{2}(M)$ have a maximum clique K^{\prime}, resp., $K^{\prime \prime}$ with vertices in L_{η} and such that $V\left(K^{\prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta}$. If $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$ does not induce a maximum clique in $G[M]$, then none of the maximum cliques in $G[M]$ can have vertices in L_{η}.

Proof. Let G be a GatEx graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M such that $t\left(\rho_{C_{M}}\right)=1$. Furthermore, put $G_{1}:=G_{1}(M), G_{2}:=G_{2}(M), L_{\eta}:=L\left(N\left(\eta_{C_{M}}\right)\right)$ and $G_{\eta}:=G\left[L_{\eta}\right]$. For a subgraph $H \subseteq G$ we define $|H|:=|V(H)|$. Suppose that G_{1}, resp., G_{2} contains a maximum clique K^{\prime}, resp., $K^{\prime \prime}$ that contains vertices in L_{η}. Assume first that $V\left(K^{\prime}\right) \cap L_{\eta} \neq V\left(K^{\prime \prime}\right) \cap L_{\eta}$. By Lemma 4.3, $V\left(K^{\prime}\right) \cap L_{\eta}$ and $V\left(K^{\prime \prime}\right) \cap L_{\eta}$ induce a maximum clique in $G\left[L_{\eta}\right]$ and $\left(V\left(K^{\prime}\right) \backslash L_{\eta}\right) \cup\left(V\left(K^{\prime \prime}\right) \cap L_{\eta}\right)$ induces a maximum clique $K^{\prime \prime \prime}$ in G_{1} with vertices in L_{η}. In particular, $V\left(K^{\prime \prime \prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta}$ is satisfied.

Hence, we can assume in the following w.l.o.g. that $V\left(K^{\prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta}$. By Lemma 4.3, $V\left(K^{\prime}\right) \cap L_{\eta}=$ $V\left(K^{\prime \prime}\right) \cap L_{\eta}$ induces a maximum clique K^{η} in $G\left[L_{\eta}\right]$.

We show first that $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$ induces a complete graph in $G[M]$. Let K^{1}, resp., K^{2} be the complete subgraph of K^{\prime}, resp., $K^{\prime \prime}$ that is induced by $V\left(K^{\prime}\right) \backslash L_{\eta}$, resp., $V\left(K^{\prime \prime}\right) \backslash L_{\eta}$. Since $t(p)=1$, all vertices in $V\left(K^{1}\right)$ are adjacent to all vertices in $V\left(K^{2}\right)$ and thus, the subgraph induced by $V\left(K^{1}\right) \cup V\left(K^{2}\right)$ coincides with $K^{1} \otimes K^{2}$. Since K^{η} is a complete graph, we have $K^{\prime}=K^{1} \otimes K^{\eta}$ and $K^{\prime \prime}=K^{2} \boxtimes K^{\eta}$, The latter two arguments imply that $K^{\prime \prime \prime}:=K^{1} \otimes K^{\eta} \otimes K^{2}$ is a complete graph in $G[M]$ that is induced by $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$.

Suppose now that $K^{\prime \prime \prime}$ is not a maximum clique in $G[M]$. Let \hat{K} be a maximum clique in $G[M]$ and thus, $|\hat{K}|>\left|K^{\prime \prime \prime}\right|$. Assume, for contradiction, that \hat{K} contains vertices in L_{η}. Thus, we can apply Lemma 4.3 and assume w.l.o.g. that $V(\hat{K}) \cap L_{\eta}=V\left(K^{\eta}\right)$ induces the maximum clique K^{η} in $G\left[L_{\eta}\right]$. Let \hat{K}^{i} be the complete subgraph of \hat{K} induced by the vertices $\left(V\left(G_{i}\right) \cap V(\hat{K})\right) \backslash L_{\eta}, i \in\{1,2\}$. By construction, $V\left(K^{\prime \prime \prime}\right)=V\left(K^{1}\right) \uplus V\left(K^{\eta}\right) \uplus V\left(K^{2}\right)$ and, $V(\hat{K})=V\left(\hat{K}^{1}\right) \uplus$ $V\left(K^{\eta}\right) \cup V\left(\hat{K}^{2}\right)$. If $\left|\hat{K}^{1}\right| \leq\left|K^{1}\right|$ and $\left|\hat{K}^{2}\right| \leq\left|K^{2}\right|$, then $|\hat{K}|=\left|\hat{K}^{1}\right|+\left|K^{\eta}\right|+\left|\hat{K}^{2}\right| \leq\left|K^{1}\right|+\left|K^{\eta}\right|+\left|K^{2}\right|=\left|K^{\prime \prime \prime}\right|$, which is impossible as, by assumption, $|\hat{K}|>\left|K^{\prime \prime \prime}\right|$. Thus, $\left|\hat{K}^{1}\right|>\left|K^{1}\right|$ or $\left|\hat{K}^{2}\right|>\left|K^{2}\right|$ must hold. W.l.o.g. we may assume that $\left|\hat{K}^{1}\right|>\left|K^{1}\right|$. But then, $\left|V\left(\hat{K}^{1}\right) \cup V\left(K^{\eta}\right)\right|>\left|V\left(K^{1}\right) \cup V\left(K^{\eta}\right)\right|$ which together with the fact that $V\left(\hat{K}^{1}\right) \cup V\left(K^{\eta}\right) \subseteq V(\hat{K})$ induce a complete graph in G_{1} implies that $V\left(K^{1}\right) \uplus V\left(K^{\eta}\right)=V\left(K^{\prime}\right)$ cannot induce a maximum clique in G_{1}; a contradiction. Thus, \hat{K} cannot contain vertices in L_{η}.
Proposition 4.6. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M where $t\left(\rho_{C_{M}}\right)=1$. Put $L_{\eta}=L\left(N\left(\eta_{C_{M}}\right)\right), G_{1}=G_{1}(M), G_{2}=G_{2}(M)$ and $G_{\eta}=G\left[L_{\eta}\right]$. Then,

$$
\omega(G[M])=\max \left\{\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right), \omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)\right\} .
$$

In particular, the following statements hold for $\alpha:=\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right)$ and $\beta:=\omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)$:

1. If $\alpha \leq \beta$, then $K=K_{1} \otimes K_{2}$ is a maximum clique in $G[M]$ for every maximum clique K^{1} in $G_{1}-G_{\eta}$ and K^{2} in $G_{2}-G_{\eta}$.
2. If $\alpha>\beta$, then every maximum clique in $G[M]$ contains vertices in L_{η} and $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$ induces a maximum clique in $G[M]$ for every maximum clique K^{\prime} in G_{1} and $K^{\prime \prime}$ in G_{2} that satisfies $V\left(K^{\prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta} \neq \emptyset$.
Proof. Let G be a GaTEx graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M where $t\left(\rho_{C_{M}}\right)=1$. Put $L_{\eta}=L\left(N\left(\eta_{C_{M}}\right)\right), G_{1}=G_{1}(M), G_{2}=G_{2}(M)$ and $G_{\eta}=G\left[L_{\eta}\right]$. Let K be a maximum clique in $G[M]$. For a subgraph $H \subseteq G$ we define $|H|:=|V(H)|$.

We start with showing that $\omega(G[M])=\max \left\{\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right), \omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)\right\}$. Since $\operatorname{lca}(x, y)=\rho_{C_{M}}$ and $t\left(\rho_{C_{M}}\right)=1$ for all $x \in V\left(G_{1}-G_{\eta}\right)$ and $y \in V\left(G_{2}-G_{\eta}\right)$, every complete subgraph K^{1} in $G_{1}-G_{\eta}$ and K^{2} in $G_{2}-G_{\eta}$ yields a complete subgraph $K^{1} \otimes K^{2}$ in $G[M]$. Consider two maximum cliques K^{1} in $G_{1}-G_{\eta}$ and K^{2} in $G_{2}-G_{\eta}$. Hence, $\omega\left(G_{1}-G_{\eta}\right)=\left|K^{1}\right|$ and $\omega\left(G_{2}-G_{\eta}\right)=\left|K^{2}\right|$. Moreover, $\tilde{K}:=K^{1} \otimes K^{2}$ forms a complete graph in $G\left[M \backslash L_{\eta}\right] \subseteq G[M]$. Therefore, $|K| \geq|\tilde{K}|=\left|K_{1}\right|+\left|K_{2}\right|$ and, thus, $\omega(G[M]) \geq \omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)$. Hence, if $\omega(G[M])=\omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)$ we are done. Assume that $\omega(G[M])>\omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)$. Let \tilde{K} be a maximum clique in $G\left[M \backslash L_{\eta}\right]$ and assume, for contradiction, that \tilde{K} is a maximum clique in $G[M]$. By similar arguments as before, we can write $\tilde{K}=\tilde{K}^{1} \otimes \tilde{K}^{2}$ where $\tilde{K}^{1}=\tilde{K} \cap\left(G_{1}-G_{\eta}\right)$ and $\tilde{K}^{2}=\tilde{K} \cap\left(G_{2}-G_{\eta}\right)$. In particular \tilde{K}^{1} must be a maximum clique in $G_{1}-G_{\eta}$ since, otherwise, there is a larger clique \tilde{K}^{\prime} in $G_{1}-G_{\eta}$ and, thus, $\tilde{K}^{\prime} \otimes K_{2}$ would be larger than $\tilde{K}=\tilde{K}^{1} \otimes \tilde{K}^{2}$; a contradiction. Similarily, \tilde{K}^{2} must be a maximum clique in $G_{2}-G_{\eta}$. Hence, $\omega(G[M])=|\tilde{K}|=\left|\tilde{K}^{1}\right|+\left|\tilde{K}^{2}\right|=\omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)<\omega(G[M])$; a contradiction. Hence, none of the complete graphs in $G\left[M \backslash L_{\eta}\right]$ are maximum cliques in $G[M]$. This and the fact that $M=V\left(G_{1}-G_{\eta}\right) \cup V\left(G_{2}-G_{\eta}\right) \cup V\left(G_{\eta}\right)$ implies that maximum cliques in $G[M]$ and, therefore, K must contain vertices in L_{η}. By Lemma 4.4, G_{1} and G_{2} have both a maximum clique with vertices in L_{η}. Let K^{\prime}, resp., $K^{\prime \prime}$ be a maximum clique in G_{1}, resp., G_{2}. Let K^{1}, resp., K^{2} be the complete subgraph of K^{\prime}, resp., $K^{\prime \prime}$ that is induced by $V\left(K^{\prime}\right) \backslash L_{\eta}$, resp., $V\left(K^{\prime \prime}\right) \backslash L_{\eta}$. By Lemma 4.3, we can assume w.l.o.g. that $V\left(K^{\prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta}$ induce a maximum clique K^{η} in $G\left[L_{\eta}\right]$. Hence, $K^{\prime \prime \prime}=K^{1} \otimes K^{\eta} \otimes K^{2}$ is a complete subgraph of $G[M]$. In particular, $K^{\prime \prime \prime}$ is induced by $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$. Thus, if $K^{\prime \prime \prime}$ is not a maximum clique in $G[M]$, then Lemma 4.5 implies that none of the maximum cliques in $G[M]$ can have vertices in L_{η}; a contradiction. Hence, $K^{\prime \prime \prime}$ is a maximum clique in $G[M]$. Since $V\left(K^{\prime \prime \prime}\right)=V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$ and $V\left(K^{\prime}\right) \cap V\left(K^{\prime \prime}\right)=V\left(K^{\eta}\right)$, we obtain $\omega(G)=\left|K^{\prime \prime \prime}\right|=\left|K^{\prime}\right|+\left|K^{\prime \prime}\right|-\left|K^{\eta}\right|=\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right)$. In summary, $\omega(G[M])=\max \left\{\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right), \omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)\right\}$.

We now verify the Conditions (1) and (2) in the second statement. Consider first Condition (1) and assume that $\alpha:=\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-\omega\left(G_{\eta}\right) \leq \omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)=: \beta$. By the previous arguments, $\omega(G[M])=\beta$. Let K^{1} be a maximum clique in $G_{1}(M)-G_{\eta}$ and K^{2} be a maximum clique in $G_{2}(M)-G_{\eta}$ and thus, $\omega\left(G_{1}-G_{\eta}\right)=\left|K^{1}\right|$ and $\omega\left(G_{2}-G_{\eta}\right)=\left|K^{2}\right|$. By the arguments above, $K=K^{1} \otimes K^{2}$ is a complete subgraph in $G[M]$. In particular, $|K|=\left|K^{1}\right|+\left|K^{2}\right|=\omega\left(G_{1}-G_{\eta}\right)+\omega\left(G_{2}-G_{\eta}\right)=\beta=\omega(G[M])$. Consequently, K is a maximum clique in $G[M]$. Thus, Condition (1) is satisfied.

```
Algorithm 2 Computation of a maximum clique and \(\omega(G)\) of GATEx graphs \(G\)
Input: A GATEX graph \(G=(V, E)\)
Output: maximum clique \(K\) in \(G\) and its size \(\omega(G)\)
    Compute \(\left(\mathcal{T}_{G}, t_{G}\right)\) and pvr-network \((N, t)\) of \(G\)
    put \(\omega(v):=1\) for all leaves \(v\) in \(L(N)=V\)
    for all \(v \in V\left(\mathcal{T}_{G}\right) \backslash L\left(\mathcal{T}_{G}\right)\) in postorder do
        if \(t_{G}(v)=0\) then
            Put \(\omega(v):=\max _{w \in \operatorname{child}_{\mathcal{J}_{G}}(v)}\{\omega(w)\}\)
            Mark \(w\) as active for precisely one \(w \in \arg \max _{z \in \operatorname{child} \mathcal{J}_{G}(v)}\{\omega(z)\}\)
        else if \(t_{G}(v)=1\) then
            Put \(\omega(v):=\sum_{w \in \operatorname{child}_{\mathcal{J}_{G}}(v)} \omega(w)\)
            Mark all \(w \in \operatorname{child}_{\mathcal{T}_{G}}(v)\) as active
        else
                                    \(\triangleright t_{G}(v)=\) prime
            Let \(C\) be the unique cycle in \(N\) with root \(\rho_{C}=v\)
            \(\triangleright\) Although \(\rho_{C}=v\), we distinguish between them to make it clearer if we are working in \(\mathcal{T}_{G}\) or \(N \quad \triangleleft\)
            Let \(\eta\) be the unique hybrid in \(C\) and \(u\) be the unique child of \(\eta\) in \(N\)
            Put \(\omega(\eta):=\omega(u)\) and \(\omega_{\neg \eta}(\eta):=0\)
            \(\triangleright\) Init \(\omega(w)\) and \(\omega_{\neg \eta}(w)\) for the vertices \(w \neq \rho_{c}, \eta\) along the sides of C bottom-up
            Let \(P^{1}\) and \(P^{2}\) be the two sides of \(C\)
            for all \(w \in V\left(P^{i}\right) \backslash\left\{\rho_{C}, \eta\right\}\) in postorder, \(i \in\{1,2\}\) do
                Put \(u^{\prime}:=\operatorname{child}_{N}(w) \cap V(C)\) and \(u^{\prime \prime}:=\operatorname{child}_{N}(w) \backslash V(C) \quad \triangleright\) Note, \(\operatorname{child}_{N}(w)=\left\{u^{\prime}, u^{\prime \prime}\right\}\) for \(w \neq \eta\)
                if \(t(w)=0\) then Put \(\omega(w):=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\) and \(\omega_{\neg \eta}(w):=\max \left\{\omega_{\neg \eta}\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\)
            else Put \(\omega(w):=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)\) and \(\omega_{\neg \eta}(w):=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right) \quad \triangleright t(w)=1\)
            \(\triangleright\) Init \(\omega(v)\). Note, \(\rho_{C}\) corresponds to \(v\) in \(\mathcal{T}_{G}\)
            Let \(u^{\prime}\) and \(u^{\prime \prime}\) be the two children of \(\rho_{C}\)
            if \(t\left(\rho_{C}\right)=0\) then
                Put \(\omega(v):=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\)
                Choose one \(w \in \arg \max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\)
                Mark \(w\) as active
                Let \(P \in\left\{P^{1}, P^{2}\right\}\) be such that \(w \in V(P)\).
                \(\operatorname{Activate}\left((N, t),\{P\}, \omega, \omega_{\neg \eta}, 0,0,0\right)\)
            else \(\quad \triangleright t\left(\rho_{C}\right)=1\)
            Put \(\alpha:=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)-\omega(\eta)\) and \(\beta:=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega_{\neg \eta}\left(u^{\prime \prime}\right)\)
            Put \(\omega(v):=\max \{\alpha, \beta\}\)
            \(\operatorname{Activate}\left((N, t),\left\{P^{1}, P^{2}\right\}, \omega, \omega_{\neg \eta}, \alpha, \beta, 1\right)\)
    \(\Omega:=\) set of all leaves \(x \in L(N)\) for which there is a path \(P\) from \(\rho_{N}\) to \(x\) where all vertices \(v \neq \rho_{N}\) in \(P\) are active
    return \(G[\Omega]\) and \(\omega\left(\rho_{N}\right)\)
```

For Condition (2), suppose that $\alpha>\beta$ and, therefore, $\omega(G[M])=\alpha$. As argued above, $\omega(G[M])>\omega\left(G_{1}-G_{\eta}\right)+$ $\omega\left(G_{2}-G_{\eta}\right)$ implies that every maximum clique in $G[M]$ must contain vertices in L_{η}. This and Lemma 4.4 implies that G_{1} and G_{2} have both a maximum clique that contains vertices in L_{η}. Let K^{\prime} be an arbitrary maximum clique in G_{1} and $K^{\prime \prime}$ be an arbitrary maximum clique in G_{2} such that $V\left(K^{\prime}\right) \cap L_{\eta}=V\left(K^{\prime \prime}\right) \cap L_{\eta} \neq \emptyset$ holds. By Lemma 4.3, such cliques K^{\prime} and $K^{\prime \prime}$ exist. Since every maximum clique in $G[M]$ must contain vertices in L_{η}, contraposition of Lemma 4.5 implies that $V\left(K^{\prime}\right) \cup V\left(K^{\prime \prime}\right)$ induce a maximum clique in $G[M]$. Thus, Condition (2) is satisfied.

Proposition 4.7. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M. If $t\left(\rho_{C_{M}}\right)=0$, then $\omega(G[M])=\max \left\{\omega\left(G_{1}(M)\right), \omega\left(G_{2}(M)\right)\right\}$ of GATEX graphs

Proof. Let G be a GATEX graph that is explained by the pvr-network (N, t) and suppose that G contains a prime module M such that that $t\left(\rho_{C_{M}}\right)=0$. Furthermore, put $L_{\eta}:=L\left(N\left(\eta_{C_{M}}\right)\right)$ and $G_{\eta}:=G\left[L_{\eta}\right]$. Let K be a maximum clique in $G[M]$. Note first that K cannot contain vertices x and y such that $x \in V\left(G_{1}(M)-G_{\eta}\right)$ and $y \in V\left(G_{2}(M)-G_{\eta}\right)$ since, in this case, lca $(x, y)=\rho_{C_{M}}$ and $t\left(\rho_{C_{M}}\right)=0$ imply that $\{x, y\} \notin E(G[M])$. Hence, K must be entirely contained in either $G_{1}(M)$ or $G_{2}(M)$. Moreover, any maximum clique in $G_{1}(M)$ and $G_{2}(M)$ provide a complete subgraph of $G[M]$. Taken the latter two arguments together, $\omega(G[M])=\max \left\{\omega\left(G_{1}(M)\right), \omega\left(G_{2}(M)\right)\right\}$.

Remark 4.8. For the sake of simplicity, we often put $\omega(w):=\omega\left(G\left[L_{w}\right]\right)$ for the size of a maximum clique in the subgraph of G induced by $L_{w}=L(N(w)) \subseteq V(G)$. where (N, t) is a galled-tree that explains G.

As we shall see, Algorithm 2 can be used to compute maximum cliques in GATEx graphs in linear-time. Before studying Algorithm 2 in detail, we illustrate this algorithm on the examples as shown in Figure 3.

```
Procedure \(\operatorname{ACTIVATE}\left((N, t), \mathscr{P}, \omega, \omega_{\neg \eta}, \alpha, \beta\right.\), label_ \(\left.\rho_{C}\right)\)
    if label_ \(\rho_{C}=0\) then
        for \(w^{\prime} \in V(P) \backslash\left\{\rho_{C}\right\}\) in postorder where \(P \in \mathscr{P}\) do
            Put \(u^{\prime}:=\operatorname{child}_{N}\left(w^{\prime}\right) \cap V(C)\) and \(u^{\prime \prime}:=\operatorname{child}_{N}\left(w^{\prime}\right) \backslash V(C)\)
            if \(t\left(w^{\prime}\right)=0\) then Mark precisely one \(u \in \arg \max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\) as active
            else Mark all \(u \in \operatorname{child}_{N}\left(w^{\prime}\right)\) as active
    else Mark both children of \(\rho_{C}\) as active
        if \(\alpha \leq \beta\) then
            Let \(w_{1}\) and \(w_{2}\) be the unique parents of \(\eta\)
            Mark \(u \in \operatorname{child}\left(w_{i}\right) \backslash\{\eta\}\) as active for \(i \in\{1,2\}\)
            for all \(P \in \mathscr{P}\) and \(w^{\prime} \in V(P) \backslash\left\{\rho_{C}, \eta, w_{1}, w_{2}\right\}\) in postorder do
                    Put \(u^{\prime}:=\operatorname{child}_{N}\left(w^{\prime}\right) \cap V(C)\) and \(u^{\prime \prime}:=\operatorname{child}_{N}\left(w^{\prime}\right) \backslash V(C)\)
                    if \(t\left(w^{\prime}\right)=0\) then Mark exactly one \(u \in \arg \max \left\{\omega_{\neg \eta}\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}\) as active
                    else Mark both children \(u^{\prime}, u^{\prime \prime}\) of \(w^{\prime}\) as active \(\quad \triangleright t(w)=1\)
        else
    \(\triangleright \alpha>\beta\)
            Mark \(\eta_{C}\) and its child as active
            for all \(P \in \mathscr{P}\) and \(w \in V(P) \backslash\left\{\rho_{C}, \eta_{C}\right\}\) in postorder do
                Mark \(w\) as active
                if \(t(w)=1\) then mark also the child of \(w\) not in \(P\) as active
```


Figure 3: Left a galled-tree (N, t) that explains the GatEx graph G on the right. Algorithm 2 returns the induced subgraph $G[g, h, d, c]$ (highlighted in blue) which is a maximum clique of G. All vertices marked as active are highlighted with \star. Paths P from ρ_{N} to leaves x in N where all vertices $v \neq \rho_{N}$ in P are active are highlighted in blue; see explanations in Example 4.9 for further details.

Example 4.9. We exemplify here the main steps of Algorithm 2 using the GATEx graph G as shown in Fig. 3. We first compute the modular decomposition tree $\left(\mathcal{T}_{G}, t_{G}\right)$ (as shown in Fig. 1) and the shown pvr-network (N, t) that explains G (Line 1). For all leaves v of \mathcal{T}_{G} (and thus, of N), we have $L_{v}=\{v\}$ and, thus, the size of a maximum clique in $G[v]$ is one and we put $\omega(v):=1$ (Line 2). We then traverse the vertices \mathcal{T}_{G} that are not leaves in postorder and thus obtain the order v_{3}, v_{2}, v_{1} in which the vertices are visited (Line 3). Note that postorder-traversal ensures that all children of a given vertex v in \mathcal{T}_{G} are visited before this vertex v is processed. In what follows, we denote with $\omega_{\neg \eta}(v)$ the size of a maximum clique in $G\left[L_{v} \backslash L_{\eta_{C}}\right]$ given that v is part of a cycle C with hybrid η_{C}.

Consider now the processed vertex v_{3}. Since $t\left(v_{3}\right)=1$, we define $\omega\left(v_{3}\right)=\omega(g)+\omega(h)=2$ (Line 8). The latter is in accordance with Lemma 4.2 and refers to the fact that the maximum clique in $G\left[L_{v_{3}}\right]$ is precisely the edge connecting g and h, i.e, the join union of two single vertex graphs. In addition, we mark both g and h as active (Line 9).

We have $\eta_{C}=u_{f}$, so we put $\omega\left(u_{f}\right)=\omega(f)=1$ and $\omega_{\neg \eta}\left(u_{f}\right)=0$ (Line 14). The latter refers to the fact that, in this example, any maximum clique in $G\left[L_{\eta}\right]$ is of size one, while any clique in $G\left[L_{\eta} \backslash L_{\eta}\right]$ is of size 0 . The two sides of C are $P^{1}=\left\{v_{2}, u, u_{f}\right\}$ and $P^{2}=\left\{v_{2}, u_{d}, u_{e}, u_{f}\right\}$. We first consider the unique vertex u of $P^{1} \backslash\left\{\rho_{C}, \eta_{C}\right\}$. We have $t(u)=1$, so we put $\omega(u)=\omega\left(u_{f}\right)+\omega\left(v_{3}\right)=3$, and $\omega_{\neg \eta}(u)=\omega_{\neg \eta}\left(u_{f}\right)+\omega\left(v_{3}\right)=2$ (Line 20). Next, we consider the vertices of $P^{2} \backslash\left\{\rho_{C}, \eta_{C}\right\}=\left\{u_{e}, u_{d}\right\}$ in postorder, that is, u_{e} first and u_{d} second. We have $t\left(u_{e}\right)=1$, so we put $\omega\left(u_{e}\right)=\omega\left(u_{f}\right)+\omega(e)=2$, and $\omega_{\neg \eta}\left(u_{e}\right)=\omega_{\neg \eta}\left(u_{f}\right)+\omega(e)=1$ (Line 20). Since $t\left(u_{d}\right)=0$, we put $\omega\left(u_{d}\right)=\max \left\{\omega\left(u_{e}\right), \omega(d)\right\}=2$, and $\omega_{\neg \eta}\left(u_{e}\right)=\max \left\{\omega_{\neg \eta}\left(u_{e}\right), \omega(d)\right\}=1$ (Line 19). Afterwards, we consider the vertex $\rho_{C}=v_{2}$. We have $t\left(v_{2}\right)=1$, so we go to Line 29. We first define $\alpha=\omega\left(u_{d}\right)+\omega(u)-\omega\left(u_{f}\right)=3, \beta=$ $\omega_{\neg \eta}\left(u_{d}\right)+\omega_{\neg \eta}(u)=3$ (Line 30), and $\omega\left(v_{2}\right)=\max \{\alpha, \beta\}=3$ (Line 31). The latter is in accordance with Prop. 4.6. In Line 32, we then call the procedure $\operatorname{Activate}\left((N, t),\left\{P^{1}, P^{2}\right\}, \omega, \omega_{\neg \eta}, 3,3,1\right)$. This precedure is used to "activate" the right vertices in such a way that, after termination of Algorithm 2, the set Ω consisting of all leaves
$x \in L(N)$ for which there is a path P from ρ_{N} to x in N with all vertices $v \neq \rho_{N}$ in P marked as active determines the vertex set of a maximum clique in G.

We are now in the procedure Activate. Since label_ $\rho_{C}=1$, we mark both children u and u_{d} of $\rho_{C}=v_{2}$ as active (Line 9). Since $\alpha \leq \beta$, we continue with Line 7. In Line 9, we mark v_{3} and e as active. In the forloop at Line 10, we consider the two sides $P^{1}, P^{2} \in \mathscr{P}$ of C. In particular, we have $V\left(P^{1}\right) \backslash\left\{\rho_{C}, \eta_{C}, u, u_{e}\right\}=\emptyset$ and $V\left(P^{2}\right) \backslash\left\{\rho_{C}, \eta_{C}, u, u_{e}\right\}=\left\{u_{d}\right\}$. Thus, we only have to consider, in this run of the for-loop, the vertex $w^{\prime}=u_{d}$. In this case, $u^{\prime}=u_{e}$ and $u^{\prime \prime}=d$. Since $t\left(u_{d}\right)=0, \omega_{\neg \eta}\left(u_{e}\right)=1$, and $\omega(d)=1$, we choose one of u_{e} or d to be marked mark as active (Line 12) In this example, we decide to mark d active. After this, we exit the procedure Activate.

We are now back in Algorithm 2 proceed with the prime vertex v_{1} and consider the cycle C with root $\rho_{C}=v_{1}$ (Line 11). We have $\eta_{C}=w_{c}$, so we put $\omega\left(w_{c}\right)=\omega(c)=1$ and $\omega_{\neg \eta}\left(w_{c}\right)=0$ (Line 14). The two sides of C are $P^{1}=\left\{v_{1}, w, w_{c}\right\}$ and $P^{2}=\left\{v_{1}, w_{a}, w_{b}, w_{c}\right\}$. We first consider the unique vertex w of $P^{1} \backslash\left\{\rho_{C}, \eta_{C}\right\}$. We have $t(w)=1$, so we put $\omega(w)=\omega\left(w_{c}\right)+\omega\left(v_{2}\right)=4$, and $\omega_{\neg \eta}(w)=\omega_{\neg \eta}\left(w_{c}\right)+\omega\left(v_{2}\right)=3$ (Line 20). Next, we consider the vertices of $P^{2} \backslash\left\{\rho_{C}, \eta_{C}\right\}=\left\{w_{a}, w_{b}\right\}$ in postorder, that is, w_{b} first and w_{a} second. We have $t\left(w_{b}\right)=0$, so we put $\omega\left(w_{b}\right)=\max \left\{\omega\left(w_{c}\right), \omega(b)\right\}=1$, and $\omega_{\neg \eta}\left(w_{b}\right)=\max \left\{\omega_{\neg \eta}\left(w_{c}\right), \omega(b)\right\}=1$ (Line 19). Since $t\left(w_{a}\right)=1$, we put $\omega\left(w_{a}\right)=\omega\left(w_{b}\right)+\omega(a)=2$, and $\omega_{\neg \eta}\left(w_{a}\right)=\omega_{\neg \eta}\left(w_{b}\right)+\omega(a)=2$ (Line 20). Finally, we consider the vertex $\rho_{C}=v_{1}$. We have $t\left(v_{1}\right)=0$, so we go to Line 23. We first define $\omega\left(v_{1}\right)=\max \left\{\omega\left(w_{a}\right), \omega(w)\right\}=4$ (Line 24). Since $\arg \max \left\{\omega(w), \omega\left(w_{a}\right)\right\}=w$ and $w \in P^{1}$, we mark w as active (Line 26), and we call the procedure $\operatorname{Activate}\left((N, t),\left\{P^{1}\right\}, \omega, \omega_{\neg \eta}, 0,0,0\right)$ (Line 28).

We are now in the procedure Activate. We have label $\rho_{C}=0$ and thus, go to the for-loop in Line 2. Here, we consider the elements of $V\left(P^{1}\right) \backslash\left\{\rho_{C}\right\}=\left\{w, w_{c}\right\}$ in postorder, that is w_{c} first and w second. We have $t\left(w_{c}\right)=0$ and w_{c} does not have a child in C, so we mark c as active (Line 4). Since $t(w)=1$, we mark both v_{2} and w_{c} as active (Line 5). After this, we exit the procedure.

We are now back in Algorithm 2. Since all vertices of $V\left(\mathcal{T}_{G}\right) \backslash L\left(\mathcal{T}_{G}\right)$ have now been processed, we are in Line 33 and ready to compute the set Ω. The vertices marked as active are $g, h, u, u_{d}, v_{3}, e, d, w, c, v_{2}$ and w_{c}. Therefore, the set Ω computed at Line 33 is $\{g, h, d, c\}$. Note that although e is also marked as active, its parent u_{e} is not, so e is not added to Ω. The algorithm stops here and returns $G[\Omega]=G[\{g, h, d, c\}]$ and $\omega\left(\rho_{N}\right)=\omega\left(v_{1}\right)=4$. One can verify that $G[\{g, h, d, c\}]$ is indeed a maximum clique of G. In particular, $\omega\left(v_{1}\right)$ corresponds to the size of a maximum clique in G.
Proposition 4.10. Algorithm 2 correctly computes the clique number $\omega(G)$ of GATEX graphs G. In particular, if (N, t) is a pvr-network of G used in Algorithm 2, then $\omega(v)=\omega(G[L(N(v))])$ for all $v \in V(N)$. In addition, if v is contained in a cycle C of N and $v \neq \rho_{C}$, then $\omega_{\neg \eta}(v)=\omega\left(G\left[L(N(v)) \backslash L\left(N\left(\eta_{C}\right)\right]\right)\right.$.
Proof. Let $G=(V, E)$ be the input GaTEx graph for Algorithm 2. In order to show that $\omega(G)$ is correctly computed, we can ignore all Lines in Algorithm 2 where vertices are marked as active and where the procedure Activate is called. We start in Line 1 with computing $\left(\mathcal{T}_{G}, t_{G}\right)$ and a pvr-network (N, t) of G. In what follows, let $L_{w}:=L(N(w))$ for $w \in V(N)$. Furthermore, for a vertex $w \in V\left(\mathcal{T}_{G}\right)$, let $M_{w}:=L\left(\mathcal{T}_{G}(w)\right)$ denote the module of G "associated" with w. To recall, $V\left(\mathcal{T}_{G}\right) \subseteq V(N)$.

In Line 2, we initialize $\omega(v)=1$ for all leaves $v \in L\left(\mathcal{T}_{G}\right)=L(N)=V$ and, thus, correctly capture the size $\omega\left(G\left[L_{v}\right]\right)=\omega(v)$ of a maximum clique in $G\left[L_{v}\right] \simeq K_{1}$. We then continue to traverse the remaining vertices in \mathcal{T}_{G} in postorder. This ensures that whenever we reach a vertex v in \mathcal{T}_{G}, all its children have been processed. We show now that $\omega(v):=\omega\left(G\left[M_{v}\right]\right)$ is correctly computed for all $v \in V\left(\mathcal{T}_{G}\right)$. Let v be the currently processed vertex in Line 3. By induction, we can assume that the children u of v in \mathcal{T}_{G} satisfy $\omega(u)=\omega\left(G\left[M_{u}\right]\right)$. We consider now the cases for $t(v) \in\{0,1$, prime $\}$.

Case $t_{G}(v)=0$: In this case, $\omega(v)$ is defined as $\max _{w \in \operatorname{child}_{\tau_{G}}(v)}\{\omega(w)\}$ in Line 5. Lemma 4.2, together with the fact that the children of v is \mathcal{T}_{G} are precisely the children of v in N (Observation 2.5), implies that $\omega\left(G\left[M_{v}\right]\right)=$ $\max _{w \in \operatorname{child}_{\mathcal{J}_{G}}(v)}\left\{\omega\left(G\left[M_{w}\right]\right)\right\}$. Therefore, $\omega(v)=\max _{w \in \operatorname{child}_{\mathcal{J}_{G}}(v)}\{\omega(w)\}=\max _{w \in \operatorname{child}_{\mathcal{J}_{G}}(v)}\left\{\omega\left(G\left[M_{w}\right]\right)\right\}=\omega\left(G\left[M_{v}\right]\right)$ follows.

Case $t_{G}(v)=1$: In this case, $\omega(v)$ is defined as $\sum_{w \in \operatorname{child}_{\tau_{G}}(v)} \omega(w)$ in Line 8. Lemma 4.2, together with the fact that the children of v is \mathcal{T}_{G} are precisely the children of v in N (Observation 2.5), implies that we have $\omega\left(G\left[M_{v}\right]\right)=$ $\sum_{w \in \text { child }_{\tau_{G}}(v)}\left\{\omega\left(G\left[M_{w}\right]\right)\right\}$. Therefore, $\omega(v)=\sum_{w \in \text { child }_{\tau_{G}}(v)} \omega(w)=\sum_{w \in \text { child }_{\tau_{G}}(v)} \omega\left(G\left[M_{w}\right]\right)=\omega\left(G\left[M_{v}\right]\right)$ follows.

Case $t_{G}(v)=$ prime: In this case, $M:=M_{v}$ is a prime module of G and v is locally replaced by a cycle $C:=C_{M}$ with root $\rho_{C}=v$ according to Def. 2.4 and we have $M=L\left(\mathcal{T}_{G}(v)\right)=L_{\rho_{C}}$ (cf. Obs. 2.6). Although $\rho_{C}=v$, we will distinguish between them to better keep track as whether we are working in \mathcal{T}_{G} or N. Let P^{1} and P^{2} be the two sides of C. By Obs. 2.6, all vertices $w \neq \rho_{C}$ in C have exactly one child $u^{\prime \prime}$ that is not in C. By construction of (N, t), each of those childs $u^{\prime \prime}$ is a child of v in \mathcal{T}_{G}. By induction assumption, we can assume that $\omega\left(u^{\prime \prime}\right)$ correctly captures the size of $\omega\left(\left[G\left[M_{u^{\prime \prime}}\right]\right)=\omega\left(\left[G\left[L_{u^{\prime \prime}}\right]\right)\right.\right.$. Out task is now to determine the clique number $\omega(v):=\omega(G[M])$ of $G[M]$. In the following, we will record two values $\omega(w)$ and $\omega_{\neg \eta}(w)$ for the vertices $w \neq \rho_{C}$ in C to capture the size $\omega(w)$ of a maximum clique in $G\left[L_{w}\right]$ and the size $\omega_{\neg \eta}(w)$ of a maximum clique in $G\left[L_{w} \backslash L_{\eta}\right]$.

We start in Line 13 with the the unique hybrid-vertex $\eta=\eta_{C}$ of C. By Obs. $2.6, \eta$ has precisely one child u and, therefore, $L_{\eta}=L_{u}$. Hence, $\omega(\eta):=\omega(u)=\omega\left(G\left[L_{u}\right]\right)$ and, since $G\left[L_{u}\right]=G\left[L_{\eta}\right], \omega(\eta)=\omega\left(G\left[L_{\eta}\right]\right)$ is correctly determined in Line 14. Moreover, $\omega_{\neg \eta}(\eta):=0$ is correctly determined as there is no clique in $G\left[L_{\eta} \backslash L_{\eta}\right]$.

In Line 17-20, we consider all vertices $w \in V(C) \backslash\left\{\rho_{C}, \eta\right\}$ in a bottom-up order. By Obs. 2.6, w has precisely two children u^{\prime} and $u^{\prime \prime}$ where u^{\prime} is located on C while $u^{\prime \prime}$ is not and it holds that $L_{u^{\prime}} \cap L_{u^{\prime \prime}}=\emptyset$. By the post-ordering, we start with one of the parents of η located in C.

Let w be a parent of η that is located in P^{i} for some $i \in\{1,2\}$ for which $u^{\prime}=\eta$. Since w is a parent of η in C it holds that $L_{w}=L_{\eta} \cup L_{u^{\prime \prime}}$ and $L_{w} \backslash L_{\eta}=L_{u^{\prime \prime}}$ and thus, in particular, $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$. Assume that $t(w)=0$ (Line 19). In this case, we put $\omega(w)=\max \left\{\omega(\eta), \omega\left(u^{\prime \prime}\right)\right\}$ and $\omega_{\neg \eta}(w)=\max \left\{\omega_{\neg \eta}(\right.$ eta $\left.), \omega\left(u^{\prime \prime}\right)\right\}=\max \left\{0, \omega\left(u^{\prime \prime}\right)\right\}=$ $\omega\left(u^{\prime \prime}\right)$. By our induction hypothesis, $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, so since $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right), \omega_{\neg \eta}(w)=\omega\left(G\left[L_{w} \backslash\right.\right.$ $\left.L_{\eta}\right]$) follows. Moreover, since $t(w)=0$, Lemma 4.2 implies that $\omega\left(G\left[L_{w}\right]\right)=\max \left\{\omega\left(G\left[L_{\eta}\right]\right), \omega\left(G\left[L_{u^{\prime \prime}}\right]\right)\right\}$. By our induction hypothesis, $\omega(\eta)=\omega\left(G\left[L_{\eta}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, so $\omega(w)=\omega(G[w])$ follows. Assume now that $t(w)=1$ (Line 20). In this case, we have we put $\omega(w)=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)$ and $\omega_{\neg \eta}(w)=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)=0+\omega\left(u^{\prime \prime}\right)$. As in the previous case, $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, together with $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, implies that $\omega_{\neg \eta}(w)=$ $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)$. Moreover, since $t(w)=1$, Lemma 4.2 implies that $\omega\left(G\left[L_{w}\right]\right)=\omega\left(G\left[L_{\eta}\right]\right)+\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$. By our induction hypothesis, $\omega(\eta)=\omega\left(G\left[L_{\eta}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, so $\omega(w)=\omega(G[w])$ follows.

Suppose now that $w \in V(C) \backslash\left(\left\{\rho_{C}, \eta\right\} \cup \operatorname{par}(\eta)\right)$ is the currently processed vertex. Note that both children u^{\prime} and $u^{\prime \prime}$ of w have already been processed and we can assume by the latter arguments and by induction that $\omega\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}}\right]\right)$, $\omega_{\neg \eta}\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)$, and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$.

Assume that $t(w)=0$ (Line 19). Then, we put $\omega(w)=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}$ and by similar argument as used in the previous case, $\omega(w)=\omega\left(G\left[L_{w}\right]\right)$ is correctly computed. Consider now $\omega_{\neg \eta}(w)=\max \left\{\omega_{\neg \eta}\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}$. By Obs. 2.6 it holds that $\operatorname{lca}_{N}(x, y)=w$ for all $x \in L_{u^{\prime}} \backslash L_{\eta} \subseteq L_{u^{\prime}}$ and $y \in L_{u^{\prime \prime}}$. This and $t(w)=0$ implies that there are no edges between vertices in $G\left[L_{u^{\prime}} \backslash L_{\eta}\right]$ and $G\left[L_{u^{\prime \prime}}\right]$. Hence, $G\left[L_{w} \backslash L_{\eta}\right]=G\left[L_{u^{\prime}} \backslash L_{\eta}\right] \cup G\left[L_{u^{\prime \prime}}\right]$. This together with $\left(L_{w} \backslash L_{\eta}\right) \cap L_{u^{\prime \prime}}=\emptyset$ implies that $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)=\max \left\{\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right), \omega\left(G\left[L_{u^{\prime \prime}}\right]\right)\right\}$. By our induction hypothesis, $\omega_{\neg \eta}\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, so $\omega_{\neg \eta}(w)=\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)$ follows. Suppose now that $t(w)=1$ (Line 20). Then, we put $\omega(w)=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)$ and by similar argument as used in the previous case (w as a parent of $\eta), \omega(w)=\omega\left(G\left[L_{w}\right]\right)$ is correctly computed. Consider now $\omega_{\neg \eta}(w)=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)$. Since lca ${ }_{N}(x, y)=w$ for all $x \in L_{u^{\prime}} \backslash L_{\eta}$ and $y \in L_{u^{\prime \prime}}$, and $t(w)=1$, all vertices in $G\left[L_{u^{\prime}} \backslash L_{\eta}\right]$ are adjacent to all vertices in $G\left[L_{u^{\prime \prime}}\right]$. Hence, $G\left[L_{w} \backslash L_{\eta}\right]=G\left[L_{u^{\prime}} \backslash L_{\eta}\right] \otimes G\left[L_{u^{\prime \prime}}\right]$ and therefore, $\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)=\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)+\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$. By our induction hypothesis, $\omega_{\neg \eta}\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$, so $\omega_{\neg \eta}(w)=\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)$ follows.

In summary, in Line $17-20$ the values $\omega(w)=\omega\left(G\left[L_{w}\right]\right)$ and $\omega_{\neg \eta}(w)=\omega\left(G\left[L_{w} \backslash L_{\eta}\right]\right)$ have been correctly computed for all $w \in V(C) \backslash\left\{\rho_{C}\right\}$.

In Line 22-32 we finally determine the value $\omega(v)$. To recall, $v=\rho_{C}$ is the vertex in $\left(\mathcal{T}_{G}, t_{G}\right)$ with label $t_{G}(v)=$ prime and $M=L\left(\mathcal{T}_{G}(v)\right)$ is a prime module in G for which $M=L\left(\mathcal{T}_{G}(v)\right)=L_{\rho_{C}}$ holds. Let u^{\prime} and $u^{\prime \prime}$ be the two children of ρ_{C} (cf. Obs. 2.6). It is an easy task to verify that $G\left[L_{u^{\prime}}\right]=G_{i}(M)$ and $G\left[L_{u^{\prime \prime}}\right]=G_{j}(M)$ with $\{i, j\}=\{1,2\}$. W.l.o.g. assume that $i=1$ and $j=2$. By induction, we can assume that $\omega\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$ and, therefore, $\omega\left(u^{\prime}\right)=\omega\left(G_{1}(M)\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G_{2}(M)\right)$. Assume now that $t\left(\rho_{C}\right)=0$. In this case, we put in Line 24, $\omega(v):=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}$. By the latter arguments, $\omega(v)=\max \left\{\omega\left(G_{1}(M)\right), \omega\left(G_{2}(M)\right)\right\}$. By Prop. 4.7, $\omega(G[M])=$ $\max \left\{\omega\left(G_{1}(M)\right), \omega\left(G_{2}(M)\right)\right\}$. Hence, $\omega(v)=\omega(G[M])$ has been correctly determined Assume now that $t\left(\rho_{C}\right)=1$. Put $\alpha:=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)-\omega(\eta)$ and $\beta:=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega_{\neg \eta}\left(u^{\prime \prime}\right)$. By the latter arguments and induction assumption, $\alpha=\omega\left(G_{1}(M)\right)+\omega\left(G_{2}(M)-\omega\left(G\left[L_{\eta}\right]\right)\right.$ and $\beta=\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)+\omega\left(G\left[L_{u^{\prime}} \backslash L_{\eta}\right]\right)=\omega\left(G_{1}(M)-G\left[L_{\eta}\right]\right)+\omega\left(G_{2}(M)-\right.$ $\left.G\left[L_{\eta}\right]\right)$. This together with Prop. 4.6 implies that $\omega(v)=\max \{\alpha, \beta\}=\omega(G[M]$ has been correctly determined in Line 31.

Hence, by induction, $\omega\left(\rho_{\mathcal{T}_{G}}\right)$ captures the size of a maximum clique in $G\left[M_{\rho_{\mathcal{J}_{G}}}\right]$. Since $M_{\rho_{\mathcal{T}_{G}}}=V$, we have $\omega\left(\rho_{\mathcal{J}_{G}}\right)=\omega(G[V])=\omega(G)$, which completes the proof. Even more, the arguments above imply that $\omega(v)=\omega\left(G\left[L_{v}\right]\right)$ holds for all $v \in V(N)$ and, if v is contained in a cycle C of N and $v \neq \rho_{C}$, then $\omega_{\neg \eta}(v)=G\left[L_{v} \backslash L_{\eta}\right]$.
Proposition 4.11. Algorithm 2 correctly computes a maximum clique in GATEX graphs.
Proof. Let $G=(V, E)$ be the input GaTEX graph for Algorithm 2 and (N, t) be the pvr-network that explains G and that is used in Algorithm 2. In what follows, put $L_{w}:=L(N(w))$ for $w \in V(N)$. Furthermore, for a vertex $w \in V\left(\mathcal{T}_{G}\right)$, let $M_{w}:=L\left(\mathcal{T}_{G}(w)\right)$ denote the module of G associated with w. By Prop. 4.10, $\omega(v)=\omega\left(G\left[L_{v}\right]\right)$ for all $v \in V(N)$ and, if v is contained in a cycle C of N and $v \neq \rho_{C}$, then $\omega_{\neg \eta}(v)=G\left[L_{v} \backslash L_{\eta_{C}}\right]$.

In the following, we call a directed path in N from w to some leaf in L_{w} an active w-path if all vertices in P distinct from w are marked as active. Moreover, we say that Property (\star) is satisfied for a vertex $w \in V(N)$ if a maximum clique in $G\left[L_{w}\right]$ is induced by all those leaves in L_{w} that can be reached from active w-paths. We show that all vertices in $V\left(\mathcal{T}_{G}\right) \subseteq V(N)$ satisfy Property (\star). Note that Property (\star) is trivially satisfied for all leaves in $L(N)$. Let v be the currently processed vertex in Line 3. By induction, we can assume that the children u of v in \mathcal{T}_{G} satisfy Property (\star). We consider now the cases for $t_{G}(v) \in\{0,1$, prime $\}$.

Case $t_{G}(v)=0$: In this case, it follows from Observation 2.5 that the children of v in N are precisely the children of v in \mathcal{T}_{G}, that is, $\operatorname{child}_{N}(v)=\operatorname{child}_{\mathcal{T}_{G}}(v)$. By Lemma 4.2, every maximum clique in $G\left[L_{v}\right]$ must be located entirely in one of the subgraphs $G\left[L_{w}\right], w \in \operatorname{child}_{N}(v)$, of $G\left[L_{v}\right]$. In this case, one of the children $w \in \operatorname{child}_{N}(v)$ satisfying $\omega(w)=\max \left\{\omega(z) \mid z \in \operatorname{child}_{N}(v)\right\}$ is marked as active (Line 6). By induction assumption, Property (\star) holds for w and, in particular, w is now active. This and the fact that a maximum clique in $G\left[L_{v}\right]$ is located entirely in $G\left[L_{w}\right]$ implies that Property (\star) holds for v.

Case $t_{G}(v)=1$: In this case, it again follows from Observation 2.5 that the children of v in N are precisely the children of v in \mathcal{T}_{G}, that is, $\operatorname{child}_{N}(v)=\operatorname{child}_{\mathcal{T}_{G}}(v)$. By Lemma 4.2, a maximum clique in $G\left[L_{v}\right]$ is the join union of
the maximum cliques in $G\left[L_{w}\right], w \in \operatorname{child}_{N}(v)$. In this case, all children $w \in \operatorname{child}_{N}(v)$ are marked as active (Line 9). By induction assumption, Property (\star) holds for all $w \in \operatorname{child}_{N}(v)$ and, in particular, all $w \in \operatorname{child}_{N}(v)$ are now active. Taken the latter arguments together, Property (\star) holds for v.

Case $t_{G}(v)=$ prime: In this case, $M:=M_{v}$ is a prime module of G and v is locally replaced by a cycle $C:=C_{M}$ with unique hybrid $\eta:=\eta_{C}$ and root $\rho_{C}=v$ according to Def. 2.4. Let P^{1} and P^{2} be the two sides of C and $u^{\prime} \in P^{1}$ and $u^{\prime \prime} \in P^{2}$ be the two children of ρ_{C} in N. By Prop. 4.10, $\omega\left(u^{\prime}\right)=\omega\left(G\left[L_{u^{\prime}}\right]\right)$ and $\omega\left(u^{\prime \prime}\right)=\omega\left(G\left[L_{u^{\prime \prime}}\right]\right)$. In (N, t), we either have $t\left(\rho_{C}\right)=1$ or $t\left(\rho_{C}\right)=0$.

Assume first that $t\left(\rho_{C}\right)=0$. In Line 24, we put $\omega(v):=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}=\max \left\{\omega\left(G\left[L_{u^{\prime}}\right], \omega\left(G\left[L_{u^{\prime \prime}}\right]\right)\right\}\right.$. By Prop. 4.10, $\omega(v)=\omega\left(G\left[L_{v}\right]\right)$. We then pick in Line 25 one of the vertices $w=u^{\prime}$ or $w=u^{\prime \prime}$ for which $\omega(w)=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}$ is satisfied and determine in Line 27 the side $P \in\left\{P^{1}, P^{2}\right\}$ of C that contains w. Afterwards, the procedure $\operatorname{Activate}\left((N, t),\{P\}, \omega, \omega_{\neg \eta}, 0,0,0\right)$ is called in Line 28 . We are now in the procedure $\operatorname{Activate}\left((N, t), \mathscr{P}, \omega, \omega_{\neg \eta}, \alpha, \beta\right.$, label_$\left.\rho_{C}\right)$. In this case, we have label_ $\rho_{C}=0$ and are therefore in the for-loop in Line 2 of this procedure. Here, $\mathscr{P}=\{P\}$ and we traverse the vertices w^{\prime} in P in postorder. By construction, each w^{\prime} has exactly two children, one of them is located in C and denoted by u^{\prime} while the other one is the one outside of C and is denoted by $u^{\prime \prime}$ (Line 3). By Observation 2.5, the child $u^{\prime \prime}$ of w^{\prime} is always a child of v in \mathcal{T}_{G}. By our induction hypothesis, $u^{\prime \prime}$ satisfies Property (\star). We now show that w^{\prime} satisfies Property (\star). Note that the first vertex considered in the procedure Activate is $w^{\prime}=\eta$. By Obs. 2.6, η has precisely one child. One easily verifies that in both cases, $t(\eta)=0$ or $t(\eta)=1$, the unique child $u^{\prime \prime}$ of η is marked as active. Since $u^{\prime \prime}$ satisfies $\operatorname{Property}(\star)$, and $L_{\eta}=L_{u^{\prime \prime}}, \eta$ satifies Property (\star). Suppose now that w^{\prime} is distinct from η. By induction, we can assume that the child u^{\prime} of w^{\prime} in C satisfies Property (\star). Note that we can use this assumption, since u^{\prime} is processed before w^{\prime} in the procedure ACTIVATE and since η has been processed already. By Lemma 4.2, $t\left(w^{\prime}\right)=0$ implies that every maximum clique in $G\left[L_{w^{\prime}}\right]$ must be located entirely in one of $G\left[L_{u^{\prime}}\right]$ or $G\left[L_{u^{\prime \prime}}\right]$. In the procedure ACTIVATE (Line 4), we mark the child u of w satisfying $\omega(u)=\max \left\{\omega\left(u^{\prime}\right), \omega\left(u^{\prime \prime}\right)\right\}$ as active. By our induction hypothesis, property (\star) holds for u. This and the fact that u is active and that there exists a maximum clique in $G\left[L_{w^{\prime}}\right]$ located entirely in $G\left[L_{u}\right]$ implies that Property (\star) holds for w^{\prime}. If $t\left(w^{\prime}\right)=1$ then, by Lemma 4.2, a maximum clique in $G\left[L_{w^{\prime}}\right]$ is the join union of a maximum cliques in $G\left[L_{u^{\prime}}\right]$ and a maximal clique in $G\left[L_{u^{\prime \prime}}\right]$. In this case, both u^{\prime} and $u^{\prime \prime}$ are marked as active in the procedure ACTIVATE (Line 5). By induction, Property (\star) holds for both u^{\prime} and $u^{\prime \prime}$, and both of them are now active. The latter two arguments imply that Property (\star) holds for w^{\prime}. In particular, Property (\star) holds for the chosen child w of v in N. Note that w was marked as active in Alg. 2 (Line 26), while the other child of v is not. Since by choice of $w, G\left[L_{v}\right]$ admits a maximum clique entirely contained in $G\left[L_{w}\right]$, it follows that v satisfies Property (\star).

Assume now that $t\left(\rho_{C}\right)=1$. In this case, we call $\operatorname{Activate}\left((N, t),\left\{P^{1}, P^{2}\right\}, \omega, \omega_{\neg \eta}, \alpha, \beta, 1\right)$ in Alg. 2 (Line 32) where $\alpha=\omega\left(u^{\prime}\right)+\omega\left(u^{\prime \prime}\right)-\omega(\eta)$ and $\beta=\omega_{\neg \eta}\left(u^{\prime}\right)+\omega_{\neg \eta}\left(u^{\prime \prime}\right)$. To recall, $u^{\prime} \in P^{1}$ and $u^{\prime \prime} \in P^{2}$ are the two children of ρ_{C} in N. As argued in the proof of Prop. 4.10, $\alpha=\omega\left(G_{1}(M)\right)+\omega\left(G_{2}(M)-\omega\left(G\left[L_{\eta}\right]\right)\right.$ and $\beta=\omega\left(G_{1}(M)-G\left[L_{\eta}\right]\right)+$ $\omega\left(G_{2}(M)-G\left[L_{\eta}\right]\right)$. Since $t\left(\rho_{C}\right)=1$, we continue in Line 6 of procedure Activate. There are two cases, either $\alpha \leq \beta$ or $\alpha>\beta$.

Assume first that $\alpha \leq \beta$. In this case, Proposition 4.6 implies that a maximum clique in $G\left[L_{v}\right]$ can be obtained by taking the join union of one maximum clique in $G\left[L_{v_{1}} \backslash L_{\eta}\right]$ and one one maximum clique in $G\left[L_{v_{2}} \backslash L_{\eta}\right]$, where v_{1} and v_{2} are the two children of $\rho_{C}=v$ in N. Hence, a a maximum clique in $G\left[L_{v}\right]$ is, in particular, a maximum clique in $G\left[L_{v} \backslash L_{\eta}\right]$ Since $\alpha \leq \beta$, we are in Line 7 of the procedure ACTIVATE. For all vertices w^{\prime} in P_{1} and P_{2} distinct from ρ_{C} and η, Observation 2.5 implies that the unique child $u^{\prime \prime}$ of w^{\prime} outside of C is a child of v in \mathcal{T}_{G}. In particular, by our induction hypothesis, $u^{\prime \prime}$ satisfies Property (\star). We now proceed with showing that every w^{\prime} in P_{1} and P_{2} distinct from ρ_{C} and η, satisfies the following amended version of Property (\star). Namely, we say that w^{\prime} satisfies Property $(\star \star)$ if a maximum clique in $G\left[L_{w^{\prime}} \backslash L_{\eta}\right]$ is induced by all leaves in $L_{w^{\prime}}$ that can be reached from the active w^{\prime}-paths. If w^{\prime} is a parent of η in N, then $L_{w^{\prime}} \backslash L_{\eta}=L_{u^{\prime \prime}}$, and $u^{\prime \prime}$ is marked as active in . Since $u^{\prime \prime}$ satisfies Property (\star) by our induction hypothesis, it follows that w^{\prime} satisfies Property $(\star \star)$ in Line 9. All remaining vertices w^{\prime} in P_{1} and P_{2}. i.e., those that are distinct from ρ_{C}, η and its two unique parents w_{1} and w_{2} are now traversed in postorder (Line 10). Suppose now that w^{\prime} is one of these vertices and let u^{\prime} be the child of w^{\prime} in C. Since the vertices of P_{1} and P_{2} are processed in postorder in the procedure Activate, we may assume that u^{\prime} satisfies Property ($\star \star$). The latter is justified since the parents of η have been processed and satisfy Property $(\star \star)$. If $t\left(w^{\prime}\right)=0$, then similar arguments as in the proof of Lemma 4.2 imply that a maximum clique in $G\left[L_{w^{\prime}} \backslash L_{\eta}\right]$ is contained either in $G\left[L_{u^{\prime \prime}}\right]$ or in $G\left[L_{u^{\prime}} \backslash L_{\eta}\right]$. In the procedure ACTIVATE (Line 12), we mark u^{\prime} as active if $\omega_{\neg \eta}\left(u^{\prime}\right) \geq \omega\left(u^{\prime \prime}\right)$, and we mark $u^{\prime \prime}$ as active otherwise. By induction, Property (\star) holds for $u^{\prime \prime}$, and Property $(\star \star)$ holds for u^{\prime}. This and the fact that there exists a maximum clique in $G\left[L_{u^{\prime}}\right]$ located entirely in $G\left[L_{u^{\prime}} \backslash L_{\eta}\right]$ (in case $\omega_{\neg \eta}\left(u^{\prime}\right) \geq \omega\left(u^{\prime \prime}\right)$) or in $G\left[L_{u^{\prime \prime}}\right]$ (in case $\omega\left(u^{\prime \prime}\right) \geq \omega_{\neg \eta}\left(u^{\prime}\right)$) implies that Property $(\star \star)$ holds for w^{\prime}. If $t\left(w^{\prime}\right)=1$, then similar arguments as in the proof of Lemma 4.2 imply that a maximum clique in $G\left[L_{w^{\prime}} \backslash L_{\eta}\right]$ is the join union of a maximum clique in $G\left[L_{u^{\prime}} \backslash L_{\eta}\right]$ and a maximum clique in $G\left[L_{u^{\prime \prime}}\right]$. In this case, both u^{\prime} and $u^{\prime \prime}$ are marked as active in the procedure Activate (Line 13). By our induction hypothesis, Property (\star) holds for $u^{\prime \prime}$ and Property $(\star \star)$ holds for u^{\prime}. The latter two arguments imply that Property ($\star \star$) holds for w^{\prime}. In particular, Property $(\star \star)$ holds for the children v_{1} and v_{2} of v in N. Note that both v_{1} and v_{2} are marked as active (Line 6). Moreover, η is not marked as active, so for $i \in\{1,2\}$, all leaves that can be reached from v_{i} via a path of active vertices are not descendants of η. It follows that for all leaves $x_{1} \in L_{v_{1}}, x_{2} \in L_{v_{2}}$ that can be reached by such a path, $\operatorname{lca}_{N}\left(x_{1}, x_{2}\right)=v$. Since $t(v)=1$ and (N, t) explains G, it follows that $\left\{x_{1}, x_{2}\right\}$ is an edge of G. Together with the fact that v_{1} and v_{2} satisfy Property ($\star \star$), this implies that the set of leaves of L_{v} that can be reached from v
via a path of active vertices induces a clique of $G\left[L_{v}\right]$ of size $\omega\left(G\left[L_{v_{1}} \backslash L_{\eta}\right]\right)+\omega\left(G\left[L_{v_{2}} \backslash L_{\eta}\right]\right)$. By Proposition 4.10, $\omega\left(G\left[L_{v_{1}} \backslash L_{\eta}\right]\right)+\omega\left(G\left[L_{v_{2}} \backslash L_{\eta}\right]\right)=\omega_{\neg \eta}\left(v_{1}\right)+\omega_{\neg \eta}\left(v_{2}\right)=\beta$, and since $\beta \geq \alpha$, Proposition 4.6 implies that the latter clique is a maximum clique in L_{v}. Therefore, v satisfies Property ($($).

Assume now that $\alpha>\beta$. In this case, Proposition 4.6 implies that every maximum clique in $G\left[L_{\nu}\right]$ must contain vertices in L_{η}, i.e., we must subsequently build active parts while keeping active paths along η. Since $\alpha>\beta$, we are in Line 14 of the procedure Activate, and we mark η and its unique child as active (Line 15) and proceed with traversing the vertices w in P_{1} and P_{2} distinct from η and ρ_{C} in postorder (Line 16). By Observation 2.5, for all such w^{\prime}, the child $u^{\prime \prime}$ of w^{\prime} outside of C is a child of v in \mathcal{T}_{G}. In particular, by our induction hypothesis, $u^{\prime \prime}$ satisfies Property (\star). We now proceed to show that w^{\prime} satisfies Property (\star). Note that since the only child $u^{\prime \prime}$ if η is active (Line 15), this is true for $w^{\prime}=\eta$. Since the $w^{\prime} \neq \eta$ vertices of P_{1} and P_{2} are processed in postorder, we may therefore assume that the child u^{\prime} of w^{\prime} in C satisfies Property (\star). By Lemma 4.2, $t\left(w^{\prime}\right)=0$ implies that every maximum clique in $G\left[L_{w^{\prime}}\right]$ must be located entirely in one of $G\left[L_{u^{\prime}}\right]$ or $G\left[L_{u^{\prime \prime}}\right]$. Moreover, by Proposition 4.6 , every maximum clique in $G\left[L_{\nu}\right]$ contains vertices in L_{η}. As a consequence, since $L_{\eta} \subseteq L_{w^{\prime}} \subseteq L_{v}$, a maximum clique in $G\left[L_{w^{\prime}}\right]$ contains vertices in L_{η}. Since $L_{u^{\prime \prime}} \cap L_{\eta}=\emptyset$, the latter two arguments imply that every maximum clique in $G\left[L_{w^{\prime}}\right]$ must be located entirely in $G\left[L_{u^{\prime}}\right]$. Since u^{\prime} is marked as active (Line 17), and u^{\prime} satisfies Property (\star), it follows that w^{\prime} satisfies Property $(*)$. If $t\left(w^{\prime}\right)=1$ then, by Lemma 4.2, a maximum clique in $G\left[L_{w^{\prime}}\right]$ is the join union of a maximum clique in $G\left[L_{u^{\prime}}\right]$ and a maximal clique in $G\left[L_{u^{\prime \prime}}\right]$. In this case, both u^{\prime} and $u^{\prime \prime}$ are marked as active in the procedure Activate (Lines 17 and 18). By our induction hypothesis, Property (\star) holds for both u^{\prime} and $u^{\prime \prime}$, and both of them are now active. The latter two arguments imply that Property (\star) holds for w^{\prime}. In particular, Property (\star) holds for the children v_{1} and v_{2} of v in N. Note that both v_{1} and v_{2} are marked as active (Line 17). Note also that for $x \in L_{\eta}, x$ can be reached from v_{1} via a path of active vertices if and only if x can be reached from v_{1} via a path of active vertices. Moreover, for all leaves $x_{1} \in L_{v_{1}} \backslash L_{\eta}, x_{2} \in L_{v_{2}} \backslash L_{\eta}$, we have lca ${ }_{N}\left(x_{1}, x_{2}\right)=v$. Since $t(v)=1$ and (N, t) explains G, it follows that $\left\{x_{1}, x_{2}\right\}$ is an edge of G. Together with the fact that v_{1} and v_{2} satisfy Property (\star), this implies that the set of leaves of L_{v} that can be reached from v via a path of active vertices induces a clique of $G\left[L_{v}\right]$ of size $\omega\left(G\left[L_{v_{1}}\right]\right)+\omega\left(G\left[L_{v_{2}}\right]\right)-\omega\left(G\left[L_{v_{1}} \cap L_{v_{2}}\right]\right)=\omega\left(G\left[L_{v_{1}}\right]\right)+\omega\left(G\left[L_{v_{2}}\right]\right)-\omega\left(G\left[L_{\eta}\right]\right)$. By Proposition 4.10, $\omega\left(G\left[L_{v_{1}}\right]\right)+\omega\left(G\left[L_{v_{2}}\right]\right)-\omega\left(G\left[L_{\eta}\right]\right)=\omega\left(v_{1}\right)+\omega\left(v_{2}\right)-\omega(\eta)=\alpha$, and since $\alpha>\beta$, Proposition 4.6 implies that the latter clique is a maximum clique in L_{v}. Therefore, v satisfies Property ((\star).

Proposition 4.12. Algorithm 2 can be implemented to run in $O(|V|+|E|)$ time with input $G=(V, E)$

Proof. We show now that Algorithm 2 can be implemented to run in $O(|V|+|E|)$ time for a given GaTEx graph $G=(V, E)$. The modular decomposition tree $\left(\mathcal{T}_{G}, t_{G}\right)$ can be computed in $O(|V|+|E|)$ time [12]. By [15, Thm 9.4 and Alg. 4], the pvr-network (N, t) of G can be computed within the same time complexity. Thus, Line 1 takes $O(|V|+|E|)$ time. Initializing $\omega(v):=1$ for all leaves v (and thus, the vertices of G) in Line 2 can be done in $O(|V|)$ time.

Note that V is the leaf set of \mathcal{T}_{G}. We then traverse each of the $O(|V|)$ non-leaf vertices in $\left(\mathcal{T}_{G}, t_{G}\right)$ in postorder starting in Line 3. To simplify the arguments and to establish the runtime, we put $W:=V\left(\mathcal{T}_{G}\right) \backslash V$ and partition the vertices in W into $W_{P} \cup\left(W \backslash W_{P}\right)$ where W_{P} contains all vertices v with $t(v)=$ prime. Moreover, we denote with $\operatorname{deg}_{H}(v)$ the number of edges incident to v in some DAG H.

Note that for $v \in W \backslash W_{P}$ we have $\operatorname{deg}_{N}(v)=\operatorname{deg}_{\mathcal{T}_{G}}(v)$. All vertices $v \in W \backslash W_{P}$ are processed in Line 5 and 6 as well as in Line 8 and 9 . It is an easy task to verify that the respective two steps take $O\left(\operatorname{deg}_{N}(v)\right)=O\left(\operatorname{deg}_{\mathcal{T}_{G}}(v)\right)$ time for each of the vertices in $W \backslash W_{P}$. Hence, processing all vertices in $W \backslash W_{P}$ can be done in $O\left(\sum_{v \in W \backslash W_{P}} \operatorname{deg}_{\mathcal{T}_{G}}(v)\right)=$ $O\left(\left|E\left(\mathcal{T}_{G}\right)\right|\right)=O\left(\left|V\left(\mathcal{T}_{G}\right)\right|=O(|V|)\right.$ time.

Now, consider the vertices in W_{P} which are processed in Line 10-32. Note first that the sides P^{1} and P^{2} of C can be determined in $O(|V(C)|)$ time in Line 16. Moreover, it is easy to verify that, for each $v \in W_{P}$, all other individual steps starting at Line 10 can be done in constant time each processed vertex has precisely two children, except execution of the procedure Activate which takes $O(|V(C)|)$ time for each individual call. For each $v \in W_{P}$, Activate is called once. Each $v \in W_{P}$ is associated with the unique cycle $C^{v}:=C_{M}$ with $M=L\left(\mathcal{T}_{G}(v)\right)$. Taken together the latter arguments, for a given prime vertex v, Line 10-32 have runtime $O\left(\left|V\left(C^{v}\right)\right|+\left|E\left(C^{v}\right)\right|\right)=\left|V\left(C^{v}\right)\right|$. Note that each cycle C has, by definition of pvr-networks, no vertex in common with every other cycles. Hence, processing all vertices in W_{P} can be done in $\sum_{v \in W_{P}} O\left(\left|V\left(C^{v}\right)\right|\right)=O(|V(N)|)$

By [3, Prop. 1], we have $O(|V(N)|)=O(|V|)$. Hence, the overall time-complexity of Algorithm 2 is bounded by the time-complexity to compute ($\left.\mathcal{T}_{G}, t_{G}\right)$ and (N, t) in Line 1 and is, therefore, $O(|V|+|E|)$ time

We consider now the problem of determining the independence number $\alpha(G)$ as well as a maximum independent set of GatEx graphs G. Suppose that a GaTEx graph G is explained by the network (N, t) and let $\bar{t}: V(N) \rightarrow\{0,1$, where $\bar{t}(v)=\odot$ for all leaves v of N and $\bar{t}(v)=1$ if and only if $t(v)=0$. Since $L(N)=V(G)$ and by [3, Prop. 1], we have $O(|V(N)|)=O(|V(G)|)$ and thus, this labeling can be computed in $O(|V(G)|)$ time. It is easy to verify that (N, \bar{t}) explains the complement \bar{G} of G. The latter arguments imply that the complement of every GATEX graph is a GaTEX graph as well. Since maximum cliques in \bar{G} are precisely the maximum independent sets in G, the latter arguments together with Prop. 4.11 and 4.12 imply

Theorem 4.13. A maximum clique and a maximum independent set can be computed in linear-time for GATEX graphs.

References

[1] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal of Computational Biology, 6(3-4):281-297, 1999. PMID: 10582567.
[2] Sebastian Böcker and Andreas W. M. Dress. Recovering symbolically dated, rooted trees from symbolic ultrametrics. Advances in Mathematics, 138(1):105-125, 1998.
[3] G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6:552-569, 2007.
[4] V. Chvátal. Perfectly ordered graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, volume 88 of North-Holland Mathematics Studies, pages 63-65. North-Holland, 1984.
[5] D. G. Corneil, H. Lerchs, and L K Stewart Burlingham. Complement reducible graphs. Discr. Appl. Math., 3:163-174, 1981.
[6] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM Journal on Computing, 14(4):926-934, 1985.
[7] Elias Dahlhaus, Jens Gustedt, and Ross M McConnell. Efficient and practical algorithms for sequential modular decomposition. Journal of Algorithms, 41(2):360-387, 2001.
[8] A Ehrenfeucht and G Rozenberg. Theory of 2-structures, part I: Clans, basic subclasses, and morphisms. Theor. Comp. Sci., 70:277-303, 1990.
[9] A Ehrenfeucht and G Rozenberg. Theory of 2-structures, part II: Representation through labeled tree families. Theor. Comp. Sci., 70:305-342, 1990.
[10] Andrzej Ehrenfeucht, Harold N. Gabow, Ross M. Mcconnell, and Stephen J. Sullivan. An O(n^{2}) Divide-andConquer Algorithm for the Prime Tree Decomposition of Two-Structures and Modular Decomposition of Graphs. Journal of Algorithms, 16(2):283-294, 1994.
[11] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San Francisco, 1979.
[12] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review, 4(1):41-59, 2010.
[13] Marc Hellmuth, Adrian Fritz, Nicolas Wieseke, and Peter F. Stadler. Cograph editing: Merging modules is equivalent to editing P_{4} 's. Art Discr. Appl. Math., 3:\#P2.01, 2020.
[14] Marc Hellmuth, David Schaller, and Peter F. Stadler. Clustering systems of phylogenetic networks. Theory in Biosciences, 142(4):301-358, 2023.
[15] Marc Hellmuth and Guillaume E. Scholz. From modular decomposition trees to level-1 networks: Pseudocographs, polar-cats and prime polar-cats. Discrete Applied Mathematics, 321:179-219, 2022.
[16] Marc Hellmuth and Guillaume E. Scholz. Linear time algorithms for NP-hard problems restricted to GaTEx graphs. In Weili Wu and Guangmo Tong, editors, Computing and Combinatorics, pages 115-126. Springer Nature Switzerland, Cham, 2024.
[17] Marc Hellmuth and Guillaume E. Scholz. Resolving prime modules: The structure of pseudo-cographs and galled-tree explainable graphs. Discrete Applied Mathematics, 343:25-43, 2024.
[18] Marc Hellmuth, Peter F Stadler, and Nicolas Wieseke. The mathematics of xenology: Di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. Journal of Mathematical Biology, 75(1):199-237, 2017.
[19] K. T. Huber and G. E. Scholz. Beyond representing orthology relations with trees. Algorithmica, 80(1):73-103, 2018.
[20] R. Duncan Luce and Albert D. Perry. A method of matrix analysis of group structure. Psychometrika, 14(2):95116, Jun 1949.
[21] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electrical Engineering, 48:11-16, 2004.
[22] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation. Discrete Mathematics, 201(1-3):189-241, 1999.
[23] Matthias Middendorf and Frank Pfeiffer. On the complexity of recognizing perfectly orderable graphs. Discrete Mathematics, 80(3):327-333, 1990.
[24] Ameera Vaheeda Shanavas, Manoj Changat, Marc Hellmuth, and Peter F. Stadler. Unique least common ancestors and clusters in directed acyclic graphs. In Subrahmanyam Kalyanasundaram and Anil Maheshwari, editors, Algorithms and Discrete Applied Mathematics, pages 148-161, Cham, 2024. Springer Nature Switzerland.
[25] Victor Spirin and Leonid A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21):12123-12128, 2003.
[26] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time modular decomposition via recursive factorizing permutations. In Automata, Languages and Programming, volume 5125 of Lecture Notes in Computer Science, pages 634-645. Springer Berlin Heidelberg, 2008.
[27] Volker Turau and Christoph Weyer. Algorithmische Graphentheorie. De Gruyter, Berlin, München, Boston, 2015.

[^0]: *This contribution is an extended version of the COCOON'23 paper [16].

