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Twisted bilayer graphene (TBG) is a recently discovered two-dimensional superlattice structure
which exhibits strongly-correlated quantum many-body physics, including strange metallic behav-
ior and unconventional superconductivity. Most of TBG exotic properties are connected to the
emergence of a pair of isolated and topological flat electronic bands at the so-called magic angle,
θ ≈ 1.05◦, which are nevertheless very fragile. In this work, we show that, by employing chiral op-
tical cavities, the topological flat bands can be stabilized away from the magic angle in an interval
of approximately 0.8◦ < θ < 1.3◦. As highlighted by a simplified theoretical model, time reversal
symmetry breaking (TRSB), induced by the chiral nature of the cavity, plays a fundamental role
in flattening the isolated bands and gapping out the rest of the spectrum. Additionally, TRSB
suppresses the Berry curvature and induces a topological phase transition, with a gap closing at
the Γ point, towards a band structure with two isolated flat bands with Chern number equal to
0. The efficiency of the cavity is discussed as a function of the twisting angle, the light-matter
coupling and the optical cavity characteristic frequency. Our results demonstrate the possibility
of engineering flat bands in TBG using optical devices, extending the onset of strongly-correlated
topological electronic phases in moiré superlattices to a wider range in the twisting angle.

Introduction– Controlling and engineering quantum
phases of matter is a central task in condensed mat-
ter physics. Inspired by the original discovery of single-
layer graphene [1], two-dimensional (2D) materials have
emerged as a versatile platform to realize strongly-
correlated physics in quantum many body systems [2].
Recently, unconventional superconductivity was discov-
ered in twisted bilayer graphene (TBG), a two dimen-
sional superlattice where one layer of graphene is stacked
on top of another at a special magic twisting angle, i.e.,
θ ≈ 1.05◦ [3–6]. Galvanized by this breakthrough, several
other stacked two-dimensional systems that host exotic
superconductivity, such as twisted multilayer graphene,
have been revealed [7–11]. While the underneath phys-
ical mechanism of superconductivity in twisted 2D sys-
tems is still under debate [12–19], it is clear that the
isolated electronic flat bands appearing at the magical
angle play an essential role. Besides superconductiv-
ity, flat bands are also indispensable for the emergence
of strongly-correlated insulating states and the strange-
metal phase near the superconducting dome in the phase
diagram of TBG, which closely mimics that of cuprate
superconductors [20–28].

However, despite being a promising platform for study-
ing strongly correlated physics, the unavoidable and un-
controllable non-uniformity of the twist angle across the
sample, and the consequent difficulty in keeping the twist
angle at its magic value, prevented a wide realization
of these phenomena [29, 30]. More precisely, since the
magical-angle configuration is unstable, a little offset

(around ±0.1◦) of the twisting angle easily destroys most
of the emergent exotic properties of TBG. In this regard,
one of the most important challenges in the field is there-
fore to achieve superconductivity at non-magic values of
the twisting angle. To achieve this final goal, it is de-
sirable to realize a primary step, namely to create and
stabilize electronic flat bands in a wider range of the
twisting angle [31–35]. This will be the main purpose
of our work.

In this Letter, we propose a new method to engi-
neer stable flat bands at non-magic angles by embedding
twisted-bilayer graphene in a vacuum chiral cavity (see
top panel in Figure 1 for a cartoon of the setup). Using
vacuum cavities to control materials and molecules has
emerged as a fruitful playground connecting quantum op-
tics to condensed matter and chemistry [36–42]. Floquet
methods have also been proposed to engineer electronic
properties in TBG [43, 44] and have been experimentally
applied in different contexts, e.g. [45]. However, because
of the external electromagnetic radiation which drives the
system out of equilibrium, this second route inevitably
heats up the system, destroying quantum coherence and
inducing transient phenomena away from thermal equi-
librium states. Therefore, it is unclear whether a stabi-
lization of the flat bands in TBG using Floquet methods
would preserve the related superconductivity properties.
In this sense, at least in the case of TBG, optical meth-
ods might be superior. In the past, the usage of vacuum
cavities has been proposed to design material conduc-
tivity [46, 47], unconventional superconductivity [48–51],
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FIG. 1: Top panel. A cartoon of the optical setup consid-
ered in this work. Two skewed sheets of graphene are stacked
on top of each other with a twisting angle θ creating a charac-
teristic moiré pattern. They are then put inside a chiral opti-
cal cavity with a light-matter coupling g and a characteristic
frequency ωc. Bottom panel. The dominant Feynman dia-
gram describing light-matter interactions in the optical chiral
cavity and giving rise to the self-energy Σ0(ϵ,q).

topological properties [52–55], and even chemical reactiv-
ity [56, 57]. Some of these proposals have been already
successfully realized experimentally.

A fundamental property of vacuum chiral cavities is
that time-reversal symmetry is broken without the need
of an external driving [36, 37]. The same effect can be
achieved using hBN encapsulation (e.g., [58]). Time-
reversal symmetry breaking is essential since, as we will
see, quantum fluctuations alone can not significantly
influence the electronic bands in TBG. In single-layer
graphene, a band gap can be induced by quantum fluctu-
ations in a chiral cavity as well [54]. However, the effect
is too small to be directly observed due to the large band-
width. As we will demonstrate, the situation is different
in TBG near the magic angle, where the small bandwidth
enables time-reversal symmetry-broken quantum fluctu-
ations to play a significant role.

In recent years, a number of works have realized
the vital impact of symmetry breaking on quantum-
fluctuations-related phenomena, such as anomalous
Casimir effects [59, 60], topological gap generation [53,
54], angular-momentum-dependent spectral shift [61],
and selection of chiral molecules in chemical reactions
[62–64]. A recent work by one of us [65] highlighted the
combined power of symmetry breaking and quantum fluc-
tuations, proving that symmetry breaking effects can be
transmitted from a material to its vicinity by vacuum
quantum fluctuations. In this scenario, the vacuum in

proximity of a material with broken symmetries is re-
ferred to as its “quantum atmosphere”.

In this Letter, we investigate the band renormaliza-
tion of TBG due to the time-reversal symmetry bro-
ken quantum fluctuations in a chiral cavity. We start
from a faithful tight-binding model of TBG and calcu-
late the one-loop self-energy induced by the light-matter
coupling. The bottom panel of Figure 1 displays the
specific Feynman diagram considered. We find that, for
experimentally realizable values of the light-matter cou-
pling and cavity frequency, the topological flat bands in
TBG can be stabilized away from the magic angle in an
interval of approximately 0.8◦ < θ < 1.3◦. Our deriva-
tion and calculations can be directly generalized to other
twisted 2D systems.

Setup and methods– To set the stage, we model the
Hamiltonian of the combined system, TBG and cavity,
as follows:

Ĥ = ĤTBG(q− eÂ) + ℏωcâ
†â, (1)

where HTBG(q) represents the TBG Hamiltonian in re-
ciprocal space, and ωc is the cavity photonic mode fre-
quency. TBG and cavity photonic modes are coupled
through Peierls substitution q 7→ q − eÂ, where Â can
be expressed in terms of photonic creation and annihi-
lation operators, i.e., Â = A0

(
ε∗â† + εâ

)
. Here, ε is

the polarization tensor of the cavity photonic modes and

A0 =
√

ℏ
2ϵ0V ωc

is the mode amplitude in terms of the

cavity volume V . We focus on chiral cavities where the
photonic polarization is given by ε = 1√

2
(ex + iey), with

ex(y) the unit vector in the x(y)-direction. Our setup can
be straightforwardly generalized to the multi-mode case.

To be concrete, let us consider the effective tight-
binding Hamiltonian HTBG(q) [66]:

H1(q) Tqb
Tqtr Tqtl

· · ·
T †
qb

H2(q− qb) 0 0 · · ·
T †
qtr

0 H2(q− qtr) 0 · · ·
T †
qtl

0 0 H2(q− qtl) · · ·
...

...
...

...
. . .


(2)

where q is the wave-vector, and H1,2(q) indicate the
Hamiltonian of the top/bottom layer respectively. More-
over, we have defined:

qb =
1

3
(bm

1 − bm
2 ), qtr =

1

3
(bm

1 + 2bm
2 ),

qtl =
1

3
(−2bm

1 − bm
2 ), (3)

where bm
1 and bm

2 are moiré reciprocal vectors. The
twisting angle θ is hidden in these vectors; see Fig.6.11 in
Ref.[66] for more details. The hopping matrix elements
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are given by,

Tqb
= t

(
u u′

u′ u

)
, Tqtr

= t

(
ueiϕ u′

u′e−iϕ ueiϕ

)
,

Tqtl
= t

(
ue−iϕ u′

u′eiϕ ue−iϕ

)
, (4)

where the various parameters have been fixed to u =
0.817, u′ = 1, ϕ = 2π/3 and t = 0.11 is the hopping
parameter. This choice takes into account the different
interlayer coupling strength of AA and AB stacked re-
gions [24] due to the surface relaxation effects and the
consequent atomic corrugation [67, 68]. For more details
about the TBG Hamiltonian we refer to the Supplemen-
tary Information (SI). Once the effective Hamiltonian is
known, the bare electron propagator can be obtained us-
ing [54]

G−1
0 (ϵ,q) =

[(
ϵ+ i0+

)
I−HTBG(q)

]−1
. (5)

The full electron propagator, taking into account the in-
teractions with the vacuum cavity, can then be derived
from the Dyson equation

G−1(ϵ,q) = G−1
0 (ϵ,q)− Σ0(ϵ,q), (6)

where Σ0 is the self-energy (see bottom panel of Fig.1)
given by

Σ0(ϵ,q) = −g2

β

∞∑
m=1

G0(ϵ+ iωm,q)D0(ωm). (7)

Here, ωm = 2πmkBT is the mth Matsubara fre-
quency and g = vF eA0 denotes the electron-photon cou-
pling strength with vF the Fermi velocity of monolayer
graphene and e the electromagnetic coupling. For conve-
nience, we define the dimensionless coupling g̃ ≡ g/kBT .
Finally, D0(ωm) is the photon propagator given by

D0(ωm) =


−1

iωm + ωc
0 · · ·

0
1

iωm − ωc
· · ·

...
...

. . .

 , (8)

with ωc the cavity frequency. It should be noticed here
that all quantities G0, G, D0, Σ0 are matrices with the
same dimension of the effective TBG Hamiltonian. With
the full propagator in Eq.(6), the spectral function, giv-
ing the renormalized electronic band structure, can be
calculated from

A(ϵ,q) = − 1

π
ImTrG(ϵ,q). (9)

More details about the TBG Hamiltonian, the structure
in reciprocal space and the numerical methods employed
can be found in the SI.

FIG. 2: The spectral function A(ϵ, q) showing the band struc-
ture of TBG with different light-matter coupling strength g
and twisting angle θ. (a): θ = 0.8◦, g̃ = 0; (b): θ = 0.8◦, g̃ =
2; (c): θ = 1.5◦, g̃ = 0; (d): θ = 1.5◦, g̃ = 2.5. The optical
cavity characteristic frequency is fixed to ωc = 0.3eV.

Electronic spectrum– It is well known that TBG ex-
hibits a pair of topological flat bands at the magic angle,
θ ≈ 1.05◦ [69–71], which play a key role for the under-
lying strongly-correlated physics. In panels (a) and (c)
of Fig.2, we show two examples of the electronic spec-
trum of TBG at respectively θ = 0.8◦ and θ = 1.5◦.
As already mentioned, no isolated flat bands are present
anymore in the electronic spectrum just moving of ±0.3◦

from the magic angle. In other words, the flat bands are
very fragile and sensitive to the twisting angle. In panels
(b) and (d) of Fig.2, we show the same electronic spectra
in presence of the chiral optical cavity, with a coupling
g̃ = 2 and a characteristic frequency ωc = 0.3 eV. The
strength of this coupling corresponds to a micrometer-
sized cavity, well within experimental reach, as demon-
strated by a similar experimental value in [72]. A pair of
nearly-flat bands re-appear away from the magic angle
thanks to the coupling to the chiral cavity. Importantly,
the two bands are not anymore degenerate as their en-
ergy is shifted from the Fermi energy and grows with the
light-matter coupling g̃. This is a direct consequence of
the breaking of time reversal symmetry induced by the
chiral cavity. At the same time, the other bands, simi-
larly to the case of the Dirac cone in monolayer graphene
(see SI), are also gapped away as a result of the same
symmetry breaking pattern.

Theoretical model & topological properties– The emer-
gence of the two isolated quasi-flat bands and their en-
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ergy splitting, shown in Fig.2, are intimately connected
to the chiral nature of the optical cavity, which plays
a fundamental role in this regard. To explicitly prove
this statement, we construct a simplified analytical model
which, as we will see, possesses all the minimal ingredi-
ents to describe our setup. In order to model the effects
of the chiral cavity on TBG, we consider the following
deformed Hamiltonian:

HTBG+τ (q) = HTBG(q)+τ


σz 0 0 0 · · ·
0 σz 0 0 · · ·
0 0 σz 0 · · ·
0 0 0 σz · · ·
...

...
...

...
. . .

 , (10)

where the coupling τ parameterizes the breaking of time-
reversal symmetry on top of the original TBG Hamilto-
nian in Eq.(2). This is unlikely the most general defor-
mation which breaks time-reversal symmetry, but it will
be sufficient to qualitatively reproduce the numerical re-
sults displayed in Fig.2 and identify the main underly-
ing physical principle behind them. By diagonalizing the
above Hamiltonian HTBG+τ (q), the band structure with
broken time reversal symmetry can be obtained. The re-
sults are shown in Fig.3 for different strength of the time-
reversal symmetry breaking τ . As clearly demonstrated,
the effects of τ is to gap away the higher energy bands
and create a pair of isolated quasi-flat bands wth non-
degenerate energy. At least at a qualitative level, these
results are in perfect agreement with the more realistic
scenario of TBG in a chiral cavity shown in Fig.2, where
the light-matter coupling g̃ plays an analogous role of the
phenomenological parameter τ in Eq.(10). This simpli-
fied but tractable analytical model highlights the funda-
mental role of time reversal symmetry breaking, induced
by the chiral cavity, in stabilizing the flat band of TBG.
In order to characterize better the effects of the cavity,
and of time-reversal breaking, on the electronic bands in
TBG, we have computed the Berry curvature and the
corresponding topological Chern number, that are geo-
metrical properties of an energy band connected to how
eigenstates evolve as a local function of parameters [73]
(see SI for details).

At τ = 0, all the bands are topologically trivial be-
cause of symmetry constraints. By introducing time-
reversal symmetry breaking, a gap at the K points opens
between the two lowest bands and at the Γ point be-
tween the two consecutive ones. Qualitatively, for the
two lowest bands, this mechanism is very similar to what
is observed in single-layer graphene [44]. The bands be-
comes topological, with a finite ±1 Chern number and a
non-trivial Berry curvature exhibiting dipolar structure
(Berry curvature dipole) [74]. By increasing τ further,
the gap at the Γ point closes and the system undergoes a
topological phase transition towards a topologically triv-
ial state in which all electronic bands display a vanish-
ing Chern number, as for τ = 0. Despite the state is

FIG. 3: The band structure of TBG at θ = 1.5◦ obtained from
the deformed Hamiltonian in Eq.(10). Panels (a), (b), (c),
(d) respectively correspond to an increasing value for the time
reversal breaking parameter τ = 0, 0.05, 0.15, 0.2. The color
scheme on top of the electronic bands in panels indicates the
value of the reduced Berry curvature, and the integer numbers
the Chern number of the lowest bands.

topologically trivial, the Berry curvature does not vanish
identically in the whole Brillouin zone but displays an
interesting dipolar structure. To the best of our knowl-
edge, this topological phase transition in TBG induced
by time reversal symmetry breaking was not discussed
before. Importantly, the same behavior is also directly
observed when TBG is coupled to the optical cavity (see
SI), and it potentially represents a universal feature of
TBG with broken time reversal symmetry that deserves
further investigation.
Phase diagram and quasi-flat bands– In order to ex-

plore the effects of the chiral cavity in more detail, we
have performed an extensive analysis of the band struc-
ture for different values of θ and g̃ covering a wide range
of the phase diagram around the magic-angle value. To
give a quantitative estimate of the flatness of the bands,
we define the energy bandwidth parameter

∆ϵ(g, θ) ≡ ϵmax
b (g, θ)− ϵmin

b (g, θ) (11)

which quantifies the variation of the energy along the
isolated nearly-flat bands. As a reference, a completely
flat band would correspond to ∆ϵ(g, θ) = 0. Our results
are shown in Fig.4 in the interval 0.8◦ < θ < 1.5◦ and
0 < g̃ < 2.5 for a fixed and reasonable value of the cavity
characteristic frequency ωc = 0.3 eV. By increasing the
value of the dimensionless coupling g̃, the energy band-
width becomes smaller and therefore the isolated bands
can be flattened away from the magic angle. As expected
from simple intuition, the isolated bands can be flattened
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FIG. 4: The value of the energy bandwidth ∆ϵ(g̃, θ) for dif-
ferent g̃ and θ. Darker color corresponds to a flatter band.
The black solid lines indicates a few constant ∆ϵ values as
reference. The optical cavity frequency is set to ωc = 0.3eV.

more efficiently for angles which are closer to the magic
value. Interestingly, we find that it is easier to flatten the
bands for angles smaller than the magic one compared to
angles larger than the latter.

In general, we observe that “quasi-flat” bands, with
a variation of the energy within 0.01eV, can be eas-
ily tuned using reasonable values of the light-matter
coupling g̃ ∼ O(1) for angles of ±0.3◦ away from the
magic value ≈ 1.05◦. Notice that, using the definition

g =
√

ℏv2
F e2

2ϵ0V ωc
and considering an optical cavity of volume

V = (1 µm)3, frequency of the order ωc ≈ 10−1 eV, and
at a temperature of ≈ 1K, this corresponds to a dimen-
sionful light-matter coupling g of the order of ≈ 10−4eV,
which is certainly within experimental reach, as corrob-
orated by existing literature [72, 75, 76]. Further elabo-
ration on the experimental feasibility is provided in the
SI, which includes Refs. [77–79].

Conclusions– In this Letter, we have revealed the pos-
sibility of extending the onset of topological flat-bands
in twisted bilayer graphene away from the magic angle
by using optical chiral cavities. We have demonstrated
that the effects of light-matter coupling can stabilize and
flatten the topological flat bands for a large range of the
twisting angle without the need of fine-tuning. Using
physical values for the optical cavity frequency and the
strength of the light-matter coupling, we have estimated
that quasi-flat bands can be achieved at least in an in-
terval of 0.8◦ < θ < 1.3◦. From a theoretical point of
view, taking advantage of a simplified analytical model,
we have identified the breaking of time-reversal symme-
try as the fundamental ingredient behind the achieved

flattening, and the responsible of a previously overlooked
topological phase transition.

One immediate future task is to verify whether all
the interesting strongly-correlated physics related to the
topological flat bands survive in presence of the chiral
cavity or how that is modified. For example, it would
be interesting to understand further the effects of time-
reversal symmetry breaking on the emergent exotic su-
perconductivity of TBG. Additionally, several works have
emphasized the importance of quantum geometry in de-
termining light-matter coupling strength in TBG. There-
fore, a second task is to explore the role of quantum ge-
ometry in cavity-induced band renormalization in TBG
[44, 80, 81]. The last and more pressing point is to verify
our theoretical predictions within an experimental setup.
Following our preliminary estimates (see more details in
the SI), we conclude that the results shown in this Letter
might already be within experimental reach.

In general, we expect the combination of twistronics
and photonics engineering to become a powerful plat-
form to study strongly-correlated electronic systems and
topological matter beyond the case of twisted bilayer
graphene.
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mayer, C. Genet, G. Pupillo, et al., arXiv preprint
arXiv:1911.01459 (2019).

[52] C. Ciuti, Phys. Rev. B 104, 155307 (2021).
[53] T. Espinosa-Ortega, O. Kyriienko, O. Kibis, and I. She-

lykh, Physical Review A 89, 062115 (2014).
[54] X. Wang, E. Ronca, and M. A. Sentef, Phys. Rev. B 99,

235156 (2019).
[55] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani,

M. Beck, C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti,
and J. Faist, Science 375, 1030 (2022).

[56] J. Galego, C. Climent, F. J. Garcia-Vidal, and J. Feist,
Physical Review X 9, 021057 (2019).

[57] J. Galego, F. J. Garcia-Vidal, and J. Feist, Physical
Review X 5, 041022 (2015).

[58] M. Long, P. A. Pantaleón, Z. Zhan, F. Guinea, J. Á.
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[70] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco,
and Z. Barticevic, Phys. Rev. B 82, 121407 (2010).

[71] E. Y. Andrei and A. H. MacDonald, Nature Materials
19, 1265 (2020).

[72] B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nature
Materials 4, 207 (2005).

[73] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,
1959 (2010).

[74] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806
(2015).

[75] C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist,
S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and
W. Wegscheider, Phys. Rev. B 90, 205309 (2014).

[76] A. Frisk Kockum, A. Miranowicz, S. De Liberato,
S. Savasta, and F. Nori, Nature Reviews Physics 1, 19
(2019).

[77] G. Scalari, C. Maissen, D. Hagenmüller, S. De Liberato,
C. Ciuti, C. Reichl, W. Wegscheider, D. Schuh, M. Beck,
and J. Faist, Journal of Applied Physics 113 (2013).

[78] L. Mauro, J. Fregoni, J. Feist, and R. Avriller, Phys.
Rev. A 107, L021501 (2023).

[79] G. Jarc, S. Y. Mathengattil, A. Montanaro, F. Giusti,
E. M. Rigoni, R. Sergo, F. Fassioli, S. Winnerl,
S. Dal Zilio, D. Mihailovic, et al., Nature 622, 487 (2023).

[80] G. E. Topp, C. J. Eckhardt, D. M. Kennes, M. A. Sentef,
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Supplementary Information

In this Supplementary Information (SI), we provide further details about the numerical and analytical computations
presented in the main text. Moreover, we show further analysis to corroborate our findings.
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Theoretical setup and numerical methods

The Hamiltonian of monolayer graphene can be obtained by considering the hopping of electrons from one carbon
atom to its three nearest neighboring atoms. The electronic band structure shows a characteristic linear dispersion
relation around the Fermi energy. The low energy Hamiltonian reads [66]

H1(q) = vF

(
0 qx − iqy

qx + iqy 0

)
, (S1)

where vF is the Fermi velocity which is around vF ≈ 5.944eV · Å.
On the other hand, twisted bilayer graphene (TBG) is more complicated because the unit cell of the moiré pattern

is much larger than that of graphene. Hence, the moiré Brillouin zone is quite small in reciprocal space and one
should consider many hopping channels between a group of moiré Brillouin zones in the two layers. More details on
this point can be found in [66]. In this manuscript, we use the following effective Hamiltonian for TBG,

HTBG(q) =


H1(q) Tqb

Tqtr Tqtl
· · ·

T †
qb

H2(q− qb) 0 0 · · ·
T †
qtr

0 H2(q− qtr) 0 · · ·
T †
qtl

0 0 H2(q− qtl)
...

...
...

...
. . .

 . (S2)

Here, H1,2(q) indicate the Hamiltonian of the top/bottom layers. Moreover,

qb =
1

3
(bm

1 − bm
2 ), qtr =

1

3
(bm

1 + 2bm
2 ), qtl =

1

3
(−2bm

1 − bm
2 ), (S3)

where bm
1 and bm

2 are the moirè reciprocal vectors containing the information about the twisting angle θ. The hopping
matrix elements are given by,

Tqb
= t

(
u u′

u′ u

)
, Tqtr

= t

(
ueiϕ u′

u′e−iϕ ueiϕ

)
, Tqtl

= t

(
ue−iϕ u′

u′eiϕ ue−iϕ

)
, (S4)

with u = 0.817, u′ = 1, ϕ = 2π/3 and t = 0.11 is the hopping parameter. This Hamiltonian takes into account
that the AA and AB stacking regions have a different interlayer distance due to presence of corrugation [67, 68] and
therefore different coupling strength [24].
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FIG. S1: The results for the self-energy Eq.(S6) using different values of the cutoff N . From left to right, N = 50, N = 100,
N = 150 while θ = 1.5◦, g = 2. This figure emphasizes the stability of our numerical routine and its convergence as a function
of the cutoff N .

As outlined in the main text, the self-energy is given by an infinite sum over the Matsubara frequencies as

Σ0(ϵ,q) = −g2

β

∞∑
m=1

G0(ϵ+ iωm,q)D0(ωm), (S5)

where ωm = 2πmkBT is the Matsubara frequency and g the coupling parameter between photon and electron.
Nevertheless, from a computational perspective, the Matsubara frequency summation in Eq.(S5) is performed by
introducing a finite UV cutoff N

Σ0(ϵ,q) = −g2

β

N∑
m=1

G0(ϵ+ iωm,q)D0(ωm). (S6)

The computations shown in the main text are for N = 100. To make sure that the sum converged for the value of
the cutoff used in the main text, we have computed the same spectral function with different cutoffs as shown in
Fig.S1. The results show only little difference upon changing the cutoff from N = 50 to N = 150 confirming that the
numerical method is reliable.

For completeness, in Fig.S2 we show the moiré Brillouin zone in reciprocal space where the high-symmetry points
and q-path used in our computations are emphasized.

FIG. S2: The moiré Brillouin zone with the high-symmetry points and the q-path indicated.
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The simpler case of graphene

In this section, as a warp-up exercise, we revisit the effects of a chiral optical cavity on monolayer graphene (see
[54] for the original results). As for the case of twisted-bilayer graphene (TBG) presented in the main text, a simple
theoretical model based on the breaking of time reversal symmetry will play an important role in understanding the
outcomes of our computations.

For monolayer graphene, near the Dirac point, the effective Hamiltonian can be expressed as,

H(q) = vF (σxqx + σyqy), (S7)

where σ are the Pauli matrices. The Hamiltonian gives a linear dispersion relation ϵ(q) = ±vF
√

q2x + q2y as shown

in the left panel of Fig.S3. Time reversal symmetry breaking can be modelled by allowing for a new term in the
Hamiltonian whose strength is parameterized by an effective parameter τ ,

H(q) = vF (σxqx + σyqy) + τσz. (S8)

Solving the eigenvalue problem for the above Hamiltonian, the dispersion relation under broken time reversal symmetry

reads ϵ(q) = ±vF
√
q2x + q2y + τ2. The resulting band structure acquire a band gap ∆ = 2vF τ at the Dirac point, as

shown in the right panel of Fig.S3.
In Fig.S3 we show the band structure of graphene obtained using the effective model based on Eq.(S3) and the one

obtained numerically by coupling graphene to a chiral cavity, as explained in the main text for TBG. The two results
match very well and show that the chiral cavity opens a gap at the Dirac point as well, as a natural consequence of
time reversal symmetry breaking.

FIG. S3: The band structure near the Dirac point for monolayer graphene with time reversal symmetry (left panel) and
broken time reversal symmetry (right panel). Units are arbitrary. The orange solid line is the result given by the simple
theoretical model based on Eq.(S3). The color map represents the result of coupling monolayer graphene to a chiral optical
cavity and computing numerically the spectral function A(ϵ,q) as outlined in the main text for TBG.

The role of the cavity frequency

In order to complete our analysis, we now discuss briefly the role of the characteristic frequency of the chiral optical
cavity ωc. In the main text, we have fixed ωc = 0.3eV, which is a reasonable and experimentally realizable value. In
Fig.S4, we study how the electronic spectrum is modified for larger values of such a frequency. Panels (a) and (b) of
Fig.S4 have to be compared with panel (d) of Fig.2 in the main text, which shows the same results for smaller ωc. We
observe that increasing the cavity frequency the electronic bands becomes broader and the quasi-flat bands get closer
to the other gapped bands at higher energy. Eventually, as a consequence of this strong broadening, the quasi-flat
bands are not isolated anymore. This indicates that a large optical cavity frequency is detrimental in engineering
isolated topological flat bands.
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FIG. S4: The spectral function A(ϵ,q) showing the band structure of TBG in an optical chiral cavity for g = 2 and θ = 1.5◦.
Panels (a) and (b) correspond respectively to ωc = 0.8eV, ωc = 1.5eV. These figures must be compared with panel (d) in Fig.2
which shows the same spectrum for ωc = 0.3eV.

The efficiency of the cavity

In order to discuss the effect of the chiral cavity in more detail, we can define the “flattening-efficiency” as,

η(g, θ) = 1− ∆ϵ(g, θ)

∆ϵ(0, θ)
, (S9)

where ∆ϵ(g, θ) is the bandwidth parameter discussed in the main text. From this definition it can be found that η
takes values in the range from 0 to 1. The minimum value η = 0 means that the chiral cavity has no effect on the
flatness of the isolated bands. On the contrary, the maximum value η = 1 correspond to a perfect flattening of the
band after having introduce the cavity, ∆ϵ(g, θ) = 0. More in general, a large value of η implies that the bands are
strongly flattened by the chiral cavity with respect to their structure at g = 0.

Fig.S5 shows the flattening parameter η as a function of the twisting angle θ and the dimensionless coupling g̃
across the phase diagram, around the magic angle value θ = 1.1◦. We observe that, except for small g̃ or near the
magic angle, the chiral cavity can always greatly improve the flatness of band. The results in Fig.S5 are consistent
with those reported in the main text in Fig.4 .

Berry curvature and Chern number

In order to characterize the topological properties of our system, we resort to the analysis of the Berry curvature
and the Chern number [73].

The Berry curvature describes the geometric curvature in phase space, and is related to the geometric phase
acquired by a quantum state as it evolves adiabatically along a closed path in momentum space. In analogy with
electromagnetism, the Berry curvature plays the role of a magnetic field in momentum space and it is derived from
the curl of the Berry connection, that is the analogous of the gauge field or vector potential. In the two dimensional
case, the Berry curvature has only one non-trivial component in the direction perpendicular to 2D plane.

In wave vector space, the Berry curvature of the nth band at wave-vector q is given by,

Ωn(q) = i[⟨∂qxn(q)|∂qyn(q)⟩ − ⟨∂qy , n(q)|∂qxn(q)⟩], (S10)

where |n(q)⟩ indicates the eigenstate of nth band at wave vector q. Eq.(S10) is nothing else than the curl of the Berry
connection, Ωn(q) = ∇q ×An(q).

Finally, we can define the topological Chern number C,

Cn =
1

2π

∫
BZ

Ωn(q)dq, (S11)
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FIG. S5: The flattening efficiency parameter η as a function of the dimensionless light-matter coupling g̃ and the twisting angle
θ. From blue to red, the efficiency grows larger. Because the band is already flat near the magic angle, the efficiency drops to
zero in there.

where the integration is taken over the whole Brillouin zone (BZ). The Chern number is integer and quantized,
C = 0,±1,±2, . . . , and play a fundamental role for many transport properties of topological materials.

In our numerical computations, we use the method described in https://topocondmat.org/w4_haldane/

ComputingChern.html. Please see Fig.S6 for computational details.
The local loops can be labeled by a pair of integer indexes (i, j). In each local loop, there are 8 q-grid points on the

boundary labeled as |i, j, l⟩ with l = [1, 9] oriented clockwise. Because the local loops have only 8 states, we imposed
periodic boundary conditions |i, j, 1⟩ = |i, j, 9⟩. The states involved and labeled here are only those that appear at
the boundary of local loops. The average Berry curvature within the local loop (i, j) is given by,

Ω̄n(i, j) = Arg

[
8∏

l=1

⟨i, j, l|i, j, l + 1⟩

]
. (S12)

The Chern number of the nth band is then given by,

Cn =
∑
i,j

Ωn(i, j). (S13)

This methods was used to compute all the Chern numbers displayed in the main text and figures therein.

Large versus small twisting angle

The band structure of TBG, and consequently the structure of the Berry flux, are very sensitive to the twisting
angle. In this section, we will investigate this point further by considering a situation with a large twisting angle and
one very close to the magic angle.

The band structure in the “large angle” regime is reproduced in the top panel of Fig.S7 for θ = 5◦ and it displays
two clear Dirac cones at both K1 and K2, consistent with previous results [69]. This is similar to what found in [44]
for θ = 7.34◦. In this case, the Berry curvature is peaked at both the K points but at the Γ point as well, as checked
explicitly in panel (b) of Fig.S7. In the presence of time-reversal symmetry, the Berry curvature is an odd function

https://topocondmat.org/w4_haldane/ComputingChern.html
https://topocondmat.org/w4_haldane/ComputingChern.html
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FIG. S6: A schematic representation of the algorithm used to compute the Berry curvature and the Chern number. The colored
region represents the whole Brillouin zone. The q-grid, local loops and label scheme are also indicated.

of momentum, i.e., Ω(k) = −Ω(−k), implying that at the Γ point (i.e., k = 0), Ω(k = 0) = 0. Conversely, when a
time-reversal symmetry-breaking factor is introduced, no symmetry principle dictates that the Berry curvature must
vanish at the Γ point.

The situation exhibits significant differences closer to the magic angle, particularly for the specific case of θ = 1.5◦

discussed in the main text and reproduced in the bottom panel of Fig. S7. Under these circumstances, and in line
with previous computations [69], the band structure becomes very flat near K1 and K2, and other bands approach
the lowest-energy flat bands at the Γ point, at which the Berry curvature is peaked. On the contrary, the Berry
curvature at the K points becomes very flat.

The topological phase transition in the TBG-cavity system

In order to make sure that the toy model presented in the main text correctly reflects the behavior of the band
structures obtained for the TBG-cavity system, we computed the spectral function A(ϵ, q) for different light-matter
coupling strengths, playing the role of the time reversal symmetry breaking parameter τ . The results are shown in
Fig.S8 and have to be compared with Fig.3 in the main text. The structure of the electronic bands and its behavior
upon increasing the strength of time reversal symmetry breaking (TRSB) are compatible and indeed very similar.
This analysis further confirms the existence of a topological phase transition induced by TRSB that is accompanied
by a gap closing at the Γ point as shown in panel (c) of Fig.S8. This topological phase transition deserves further
study.

Experimental feasibility of our proposal

The proposed cavity size is quite conservative, with an effective mode volume of approximately (1 µm)3. Notably,
experiments have demonstrated the possibility of building much smaller cavities with an effective mode volume on
the order of Veff ∼ 1×10−5× (λ/2

√
ϵ)3, where λ represents the wavelength of the confined photonic mode [77]. These

cavities have been utilized in experiments to investigate Landau polaritons [75]. Due to their proven experimental
feasibility, these effective parameters were also widely adopted in various theoretical papers [49, 54].

By definition, a chiral cavity breaks time-reversal symmetry, favoring only one handedness of photons. A straight-
forward method for achieving an effective chiral cavity involves utilizing a Faraday rotator (e.g., ferromagnetic layer)
in conjunction with high-quality metallic mirrors to establish the cavity, as illustrated in Figure S9. Such chiral
cavities have already been realized in experiments [36], and a detailed theoretical analysis of these cavities can be
found, for example, in [78].
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FIG. S7: The band structure of TBG at twisting angles θ = 5◦ (top) and θ = 1.05◦ (bottom). The left column shows the results
with τ = 0 (time reversal symmetry unbroken). The right column corresponds to a soft breaking of time reversal symmetry,
τ = 0.05, enough to open a small gap. Our band results are consistent with those reported in [69].

Finally, we remark that our proposed setup does not require a high Q factor, as the mechanism in our proposal
does not depend on resonant light-matter coupling. This significant distinction (compared to quantum optics setups)
enhances the feasibility of utilizing a cavity to control condensed matter systems. Recently, a plethora of experimental
works has emerged to explore cavity many-body systems. Among these experiments, two notable works stand out.
One demonstrates that a vacuum cavity can break down the topological protection of quantum hall systems [55],
while the second illustrates that a cavity can be employed to control the metal-to-insulator transition of transition
metal dichalcogenide material TaS2 [79].
All in all, the existing evidence supports the experimental feasibility of our proposal.
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FIG. S8: The spectral function A(ϵ, q) showing the band structure of TBG at the twisting angle θ = 1.5◦ with light-matter
coupling strength g̃ = 0, g̃ = 1, g̃ = 1.5, g̃ = 2 for panel (a) to (d) respectively. The optical cavity characteristic frequency is
fixed to ωc = 0.3eV.

FIG. S9: A geometrical demonstration of an experimentally realizable chiral Fabry-Pérot cavity with small mode volume and
time-reversal symmetry breaking.
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