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Abstract  

 In a field representation, the main symmetry of the electromagnetic response of 

complementary metal film structures is described by the Babinet principle, expected to be obeyed 

by structures in vanishingly thin films of a perfect electric conductor. A softer transmittance 

Babinet principle (TBP) is not so restrictive. The goal of this work is to study how severely this 

broken symmetry affects the optical response of such structures. We consider two geometrically 

distinct series of planar complementary structures from the checkerboard family: regular and 

bowtie. The self-complementary structure of these series is very singular and breaks even the 

rigorous Babinet principle. We study complete simulated transmittance spectral maps (T-Maps) 

that accumulate the whole spectral response of an entire series of structures in a single plot. The 

ab initio T-Maps of these 2D photonic crystals were simulated for linearly polarized waves 

propagating perpendicular to the planar structures, made in a vanishingly thin film of a perfect 

electric conductor. While confirming the expected long wavelength validity of the TBP, we show 

that in the frequency range where diffraction effects dominate, the standard derivation of the TBP 

no longer applies, and with the help of our T-Maps, we demonstrate a total collapse of the TBP in 

the structures considered. This broken symmetry practically eliminates all but one transmission 

band on the hole side of the T-Maps, the remaining strong band being a “spoof” plasmon, free of 

multiple frequency replicas, an important feature for filter applications. By symmetry arguments 

and simulations, we discovered that the T-Maps for bowtie and doubled-period regular structures 

are identical. We discuss how this hidden symmetry can benefit applications by providing a 

convenient scaling, whereby simplified structures can deliver a tailored response. 
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 Regular complementary structures [1] can originate from the familiar checkerboard pattern 

(Fig. 1, central pattern), consisting of a planar arrangement of squares (black, representing a metal 

in the physical analysis further below), point-touching at each corner. A series of related structures 

is obtained by uniformly scaling the dimensions of the black squares, while keeping the square-to-

square center distance constant (equal to a). These structures consist of a square periodic 

arrangement of square islands of size 𝑙௜ ൌ 𝑠𝑎/2  for scaling factors s < 1 (left panel of Fig. 1), and 

complementary arrays of square holes of size 𝑙௛ ൌ ሺ2 െ 𝑠ሻ 𝑎/2 for s > 1 (right panel of Fig. 1). 

For the self-complementary checkerboard structure (center panel), 𝑠 ൌ 1, and so 𝑙௜ ൌ 𝑙௛ ൌ 𝑎/2. 

Note that the scaling factors of the corresponding complementary structures add up to 2.  

 
 

Fig. 1. The regular checkerboard series of structures: the perfect checkerboard (center panel), and it’s complementary 

pairs (side panels). Green squares in each panel show the corresponding unit cells. The series is generated by uniformly 

scaling the island sizes while keeping their centers fixed.  

 

Another important checkerboard series also originates from the familiar checkerboard, and is 

generated also by uniformly scaling the square sizes, but this time their central touching points are 

preserved. This is called a bowtie series, because the appearance of the resulting complementary 

structures.   
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Fig. 2. The bowtie checkerboard series of structures: the perfect checkerboard (center panel), and its complementary 

pairs (side panels). Green squares in each panel show corresponding unit cells. The series is generated by uniformly 

scaling the island sizes while preserving their central touching point in each unit cell.  

 

 The electromagnetic response of both series of structures (for 𝑠 ് 1ሻ made of vanishingly 

thin perfect electrical conductors (PEC) obeys the Babinet principle (BP), which has a rigorous 

form in the field representation [2-5] (see also Eq. 2, below). A more practical transmission 

representation of the BP, hereafter the TBP, commonly used in metamaterial optics, is [6,7] 

     𝑇ଵ ൅ 𝑇ଶ ൌ 1      (1) 

where 𝑇ଵ  is the transmittance of a structure and 𝑇ଶ  that of the corresponding complementary 

structure. The standard derivation of Eq. (1) in our context goes as follows.  A structure for 𝑠 ൏ 1 

(left panel in Fig. 1 or 2) lies in x-y plane. An initial transverse harmonic plane wave is propagating 

along z, and its fields are 𝐄ଵ
௜ ൌ ሺ𝐸ଵ

௜ , 0,0ሻ and 𝐇ଵ
௜ ൌ ሺ0, 𝐻ଵ

௜ , 0ሻ. We assume no diffraction, and 

therefore a transmitted wave, sufficiently far from z = 0, also propagates along z, and has fields 

𝐄ଵ ൌ ሺ𝐸ଵ, 0,0ሻ and 𝐇ଵ ൌ ሺ0, 𝐻ଵ, 0ሻ.  After replacing this structure with the complementary 

structure for 𝑠 → 2 െ 𝑠, for which the complementary s > 1 (right panel in Fig. 1 or 2), the 90o 

rotation can be compensated by rotation of the initial wave, with fields 𝐄ଶ
௜ ൌ 𝜂𝐇ଵ

௜  and 𝐇ଶ
௜ ൌ
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െ𝐄ଵ
௜ /𝜂, where 𝜂 is the wave impedance [3]. The fields of the transmitted wave from the rigorous 

BP in the field representation are [3] 

     𝐄ଶ ൌ 𝜂ሺ𝐇ଵ
௜ െ 𝐄ଵሻ     (2a) 

     𝐇ଶ ൌ ሺ𝐄ଵ െ 𝐄ଵ
௜ ሻ/𝜂      (2b) 

and the corresponding Poynting vector is  𝐒ଶ ൌ 𝐄ଶ ൈ 𝐇ଶ ൌ ൫𝐇ଵ
௜ െ 𝐇ଵ൯ ൈ ൫𝐄ଵ െ 𝐄ଵ

௜ ൯ . For 

𝑡 ൌ 𝐄ଵ/𝐄ଵ
௜ ൌ 𝐇ଵ/𝐇ଵ

௜ , and 𝐒ଵ
𝒊 ൌ 𝐄ଵ

௜ ൈ 𝐇ଵ
௜ ൌ 𝐄ଶ

௜ ൈ 𝐇ଶ
௜ ൌ 𝐒ଶ

𝒊 , the transmittance 𝑇ଶ ൌ 𝐒ଶ/𝐒ଶ
௜ ൌ ሺ1 െ

𝑡ሻଶ ൌ 𝑟ଶ ൌ 𝑅ଵ ൌ ሺ1 െ 𝑇ଵሻ, which completes the proof of Eq. (1). Because of the no-diffraction 

assumption used in this derivation, Eq. (1), and therefore the TBP, has limited validity.  

 To study the structures from both regular and bowtie series, we performed numerical 

simulations of the transmittance. Our main simulations were implemented via the finite integration 

technique (FIT) algorithm on the CST Studio Suite commercial EM solver [8]. Since all of our 

structures are made of vanishingly thin PECs, these are essentially ab initio simulations, as only 

geometry enters the simulations of the Maxwell’s equations, with the PEC entering for boundary 

conditions. Checkerboard structures were modeled to be periodic arrays from a single unit cell of 

PEC and vacuum geometries, under boundary conditions enforcing normal incidence of a TEM 

mode, with fields along square sides. Figure 3(b) shows a color-coded plot of the so-simulated T 

as a function of s and f (frequency), the T-Map, done here for a transverse, linearly polarized wave 

propagating perpendicular to structures from the regular checkerboard series, with period a = 4 𝜇𝑚.  
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Fig. 3. (a) Sketch of the selected (dominant) 2D photonic bands on the island side of the regular checkerboard structure 

with a = 4 𝜇𝑚 and 𝑠 → 0. The lowest three, energy-momentum conserving excitations occur in our case at the 

frequencies mark with circles. (b) T vs. s and frequency f (the T-Map) simulated for the regular checkerboard series 

of structures with period a = 4 𝜇𝑚. All structures are made of an infinitely thin PEC, exposed to an electromagnetic 

wave at normal incidence, with electric field linearly polarized parallel to the square edges.  

 

 The accuracy of our simulations has been established in a series of additional tests, 

involving an alternative code, COMSOL [9].  Figure 4 presents an example of such a comparative 

study, by showing simulations of T spectra for (a) a regular structure with s = 0.6 and period 𝑎,  

and (b) its complement with s = 1.4 and the same period. Solid lines represent simulations via CST, 

and dashed lines via COMSOL, with structures in various polarization configurations. Figure 4 

confirms that the results are not affected by enforcing the TE and/or TM modes of the EM wave 

at almost perpendicular propagation to the plane of the structures, as well as by an in-plane rotation 

of the structures by 𝜋/4 (rotated structure configuration). Additional confirmation of results was 

performed using other solvers available on the CST Studio Suite, including the finite element 
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method (FEM) and the transmission-line matrix (TLM) method. There is overall excellent 

agreement, giving a large degree of confidence to the applied simulation codes.  

 The response of a perfect checkerboard structure (s = 1) has not been simulated, as this a 

very special, and highly singular, case discussed in detail elsewhere [1, 10]. In the long wavelength 

limit, dielectric function analysis leads to the simple result T = 1/2, a constant that is independent 

of frequency and period/square size. Confirming this simple result via simulations or experimental 

has proven to be a challenge [10]. The main reason is the fact that this self-complementary 

structure violates the BP, as demonstrated and discussed in detail in Ref. [10]. In addition, 

numerical simulations typically fail, since these employ iterative algorithms that in the case of this 

very singular structure are exponentially sensitive to initial conditions (Lyapunov exponent), 

which leads to chaos and numerical bifurcations, akin to the classic logistic map problem [1]. A 

truly perfect checkerboard structure is essentially impossible to realize in practice, since the 

slightest imperfection triggers bifurcations. It was demonstrated, however, that a slightly modified 

checkerboard with resistive (lossy) contacts placed between the corners of the touching squares 

removes this singular behavior, at least for sufficiently low frequencies [10]. Such a modified 

structure recovers, at least approximately, the expected nearly constant, broadband response. In 

radio technology, this broadband response has been known for over half a century [11], and 

became a basis for broadband (e.g. bowtie [12]) radio antennas.  
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Fig. 4. Simulations of T and Tc vs. f, for two complementary structures s = 0.6 (a) and s = 1.4 (b). Structures are made 

of PEC with d = 0 and 𝑎 ൌ  2 𝜇𝑚. Solid lines represent simulations via CST, and dashed lines via COMSOL, with 

structures in the normal configuration and polarization (see sketches on the left in both panels). Symbols are for CST 

simulation for 𝜋/4 rotated structures (see sketches on the right): circles are for the TM mode enforcement at near 

vertical propagation, and crosses are for the TEM mode enforcement.  

 

 The color T-Map of Fig. 3(b) reveals the 2D photonic crystal nature [13] of the square 

island arrays of regular structures for s < 1. It consists of bands of transmission gaps (blue) in an 

otherwise highly transmitting background (red). The gaps narrow with reducing s, and for 𝑠 → 0, 

the structures reduce to square arrays of increasingly well-separated and vanishingly small 

conducting square islands. These can be viewed in a 45o rotated frame as arrays of diamond-like 

islands, with lattice period 𝑎ത ൌ 𝑎/√2 (see right inset in left panel of Fig. 4). The zeroth order model 

of such a photonic crystal is a square array of conducting points, and the resulting non-interacting 

2D photonic band structure is sketched in Fig. 3(a). Since the first BZ of such a 2D photonic 

structure is a square of 2𝜋/𝑎ത size (along the edge of the square), the main symmetric directions in 

momentum space, expressed in terms of a, are: 0 ൏ 𝑞 ൏ 𝜋√2/𝑎 ൌ (Γ െ K direction) and 0 ൏ 𝑞 ൏
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2𝜋/𝑎 (Γ െ L direction). Assuming no electromagnetic coupling between the points, the free space 

photon dispersions (light lines) along these lines can be obtained from the free space photon 

dispersion 𝜔 ൌ 𝑞𝑐  along these high symmetry (square island geometry) directions, but 

Umklapped at each BZ edge. Since our initial wave is assumed to propagate perpendicular to the 

2D photonic crystal surface, the projected (into the 2D crystal plane) component of its wavevector 

is zero. Therefore, only crossings of the q = 0 line in Fig. 3(a) with the Umklapped photon 

dispersions represent scattering which conserves energy and momentum. These are given by 

     𝜆௡
ሺ௜ሻ ൌ 𝑎 𝑓ሺ𝑖ሻ/𝑛     (2) 

where n = 2, 4, ..., 𝑓ሺ1ሻ ൌ √2, and 𝑓ሺ2ሻ ൌ 1. For the three lowest crossings, Eq. (2) gives: 𝜆ସ
ሺଵሻ ൌ

1.41 𝜇m, 𝜆ଶ
ሺଶሻ ൌ 2 𝜇m, and 𝜆ଶ

ሺଵሻ ൌ 2.83 𝜇m. The corresponding frequencies are 𝑓ସ
ሺଵሻ ൌ 213 THz,  

𝑓ଶ
ሺଶሻ ൌ 150 THz, 𝑓ଶ

ሺଵሻ ൌ 106 THz. At these points, the incoming wave couples into a mode of the 

2D photonic crystal, and thus is trapped in the 2D plane and does not contribute to T. As evident 

from Fig. 3, this zeroth order analysis predicts rather well the locations of the first three 

transmittance suppression bands. The observed and expected broadening of these bands for larger 

values of s results from the increasingly important interactions between the islands due to reduced 

inter-island distance.  

 Another feature observed in the T-Map in Fig. 3(b) is the overall failure of the TBP. 

Equation (1) implies that, in order for the TBP to be satisfied, the maps must be antisymmetric to 

a color change about the s = 1 column (from blue to red, and vice versa), i.e.  𝑇ଵሺ𝑠ሻ ൌ 1 െ 𝑇ଶ(2-

s), for 𝑠 ് 1. As expected (see derivation above), this is the case only for sufficiently small 

frequencies, at which no diffraction occurs, indicated by appearance of the photonic bands or gaps. 

In Fig. 3(b), this onset occurs for 𝑓 ൏ 50 THz. Otherwise, the TBP fails completely, with 

suppressed transmission on the hole side, with only one, well defined transmission band 
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dominating the T-Map. This broken TBP symmetry determines the physics of the hole side 

structures.  

 Since the periodic arrangement of holes is a legitimate 2D photonic crystal, one might 

expect to have a similar Umklapp band formation as on the island side. However, the basic mode 

in the vanishing hole size limit is not a free photon, but a photon that “fits” into the hole, i.e. it is 

diffraction limited to wavelengths sufficiently smaller than the hole size. In a simple model, the 

hole side of the complementary pair of the checkerboard structure represents an array of identical, 

vanishingly short square waveguides that cannot support transverse EM (i.e., TEM) modes [3,4]. 

Thus, transmission for the wave propagating perpendicular to the screen must occur above the cut-

off waveguide frequencies 𝑓௛. In the simplest case of a single waveguide, the fundamental TE10 

mode (the lowest frequency) is given by [3] 

     𝜆௛ ൌ 𝑐/𝑓௛ ൌ 2𝑙௛        (8) 

This formula must be taken with a grain of salt, since the waveguides are vanishingly short. Note 

that this formula is strongly violated in the observed strong transmission band. Since our structures 

are made of PEC, no plasmonic effects can explain this unexpected transmission band. However, 

this mode can be explained by the “spoof” plasmon concept of Pendry [14], developed to explain 

the extraordinary optical transmission (EOT) [15] of light through subwavelength holes in 

structures similar to ours. By employing a similar, local waveguide approach, this theory [14] 

demonstrates that the photon field in such arrays “spoofs” plasmon-like behavior. The in-plane 

dielectric function of the effective uniform film (PEC + holes) can be defined in the long 

wavelength limit, and it acquires a Drude form 𝜀 ~ 1 െ
ఠ೛

మ

ఠమ, with the “spoofed” plasmon frequency 

given by 𝜔௣ ൌ 2𝜋𝑓௛ , and 𝑓௛  given by Eq. (8). The corresponding dispersion of the spoofed 

plasmon is similar to surface plasmons, with the main branch dispersing along the light line for 
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small 𝑘|| (in-plane wavevector) and then asymptotically approaching 𝑓௛ for increasing 𝑘||. Thus, 

the spoof plasmon, which enables transmission through the effective film, has its frequency always 

smaller (red-shifted). 

To investigate this effect in our structures, we simulated a modified T-Map, showing T vs. 

a and f for the hole structures with fixed 𝑙௛ ൌ 1 𝜇𝑚, made of PEC of vanishing thickness. Again, 

the spectrum is dominated by a strong transmission band near 120 THz. This strong “spoof” 

plasmon resonance is essentially independent of a for large a.  However, its frequency is red-

shifted (by ~ 20%) below the value expected from Eq. (8), 𝑓௛ ൌ 150 THz, in agreement with the 

“spoof” theory of Pendry [14]. 

 

Fig. 5. Modified T-Map of T vs a and f for the hole-side checkerboard structures with fixed 𝑙௛ ൌ 1 𝜇𝑚, made of PEC 

of vanishing thickness. 

 

 The most dramatic, hidden	symmetry in the family of the checkerboard structures can 

be identified by comparing regular to bowtie versions of these structures. Fig. 6 illustrates 

this by comparing side-by-side T-maps for a regular checkerboard series (with a = 4 𝜇𝑚ሻ, and 
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for a bowtie series (with a period of a = 2 𝜇𝑚ሻ. Striking, and unexpected, is the fact that these T-

Maps are identical, apart from barely visible numerical inaccuracies.  

 

Fig. 5. T-maps for: (a) regular structure series with a = 4 𝜇𝑚, and (b) bowtie series with a = 2 𝜇𝑚. In (c – d) 

modifications of the bowtie structures into the regular structures of double period. Details in text.  

 

 To justify this result, recall that our structures are 2D photonic crystals made of PEC 

elements, and as such, they can be broken down conceptually into elemental units of perfectly 

lossless point dipoles. In addition, the excitation of the structures is by a linearly polarized plane 

wave propagating perpendicular to the surface of the structures, i.e. all elemental point dipoles are 

excited in-phase. Also, we are interested in total transmittance that is normalized in-plane and time 

averages of the Pointing vector. Keeping these facts in mind, we begin by analyzing the geometric 

relations between regular and bowtie structures (on the island side, s < 1) shown in Fig. 5(c-g). 
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While the bowtie structure of period a (Fig. 5c) is marked 𝑆௕௧, the 90o rotated bowtie structure of 

the same period is 𝑅ଽ଴𝑆௕௧ (Fig. 5d), where 𝑅ଽ଴ is the rotation operator. Clearly, by adding the two 

bowtie structures, we arrive at Fig. 5(e), which in turn is simply a sum of two regular checkerboard 

structures (Fig. 5(f) and 5(g), the last one 90o rotated), but with doubled period 2a (see Fig. 5). 

Based on the analysis above and Figs. 5 (c-g), the following relations are expected for the 

reflectance R: 

   𝑅ሾ𝑆௕௧ሺ𝑎ሻሿ ൌ 𝑅ሾ𝑅ଽ଴𝑆௕௧ሺ𝑎ሻሿ     (3) 

   𝑅ሾ𝑆௖௕ሺ2𝑎ሻሿ ൌ 𝑅ሾ𝑅ଽ଴𝑆௖௕ሺ2𝑎ሻሿ    (4) 

  𝑅ሾ𝑆௕௧ሺ𝑎ሻ ൅ 𝑅ଽ଴𝑆௕௧ሺ𝑎ሻሿ ൌ 𝑅ሾ𝑆௕௧ሺ𝑎ሻሿ ൅ 𝑅ሾ𝑅ଽ଴𝑆௕௧ሺ𝑎ሻሿ  (5) 

Equations (3) and (4) simply reflect the obvious symmetry of the problems, and the linearity of 

the reflective response in Eq. (5) is expected because of the arguments at the beginning of this 

paragraph. Using Eq. (4) and an analog of Eq. (5) for regular checkerboard series structures, we 

can write:  

𝑅ሾ𝑆௖௕ሺ2𝑎ሻ ൅ 𝑅ଽ଴𝑆௖௕ሺ2𝑎ሻሿ ൌ 𝑅ሾ𝑆௖௕ሺ2𝑎ሻሿ ൅ 𝑅ሾ𝑅ଽ଴𝑆௖௕ሺ2𝑎ሻሿ 

  ൌ 2𝑅ሾ𝑆௖௕ሺ2𝑎ሻሿ ൌ 𝑅ሾ𝑆௕௧ሺ𝑎ሻ ൅ 𝑅ଽ଴𝑆௕௧ሺ𝑎ሻሿ ൌ 2𝑅ሾ𝑆௕௧ሺ𝑎ሻሿ  (6) 

Because the structures are lossless, R + T = 1, we finally get the result demonstrated via simulations 

in Fig. 5(a) and 5(b): 

   𝑇ሾ𝑆௖௕ሺ2𝑎ሻሿ ൌ 𝑇ሾ𝑆௕௧ሺ𝑎ሻሿ     (7) 

Similar arguments can be used on the hole side of the T-map (for s > 1), and the same result will 

be obtained. It is clear that our justification of this result relies on the linearity of Eq. (5) and its 

analog for the regular structures. Our conjecture is that such reflectance or transmittance linearity 

is universal, and can be used in the analysis of T-Maps for all checkerboard structures. While this 

analysis is for the selected checkerboard series (bowtie and regular), other checkerboard series, or 
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in general other complementary series, should have a similar hidden symmetries, and the 

discovered linearity of the R (or T) responses might also hold.  

 Finally, we note that both the broken TBP symmetry and the hidden symmetry between 

regular and bowtie structures could be used in applications. The broken TBP symmetry and the 

resulting “spoof” transmission band feature on the hole side of the T-Map can be significant for 

bandpass filter applications that typically suffer from multiple harmonic replicas of the response, 

with multiple pass-bands at higher (and undesirable) frequencies. Clearly, the hole side of our T-

Maps is free of that; there is a negligible transmission activity only at higher frequencies for 

structures with s > 1.4.  Similarly, the unusual hidden symmetry between the checkerboard and 

bowtie structures might also lead to applications, by suggesting various replacement strategies 

between various bowtie and regular structures.  

 In conclusion, ab initio simulated T-Maps for 2D photonic crystals formed by structure 

series belonging to the checkerboard family reveal that the transmission version of the Babinet 

principle is not valid in frequency regions occupied by photonic bands. The immediate 

consequence of this is broken symmetry in the T-Map transmittance spectra representation between 

the island and hole sides, with a dramatic reduction of the number, width and strengths of the 

transmission bands on the hole side. In fact only one, strong “spoof” plasmon band dominates the 

spectrum there, free of harmonic replicas, an important feature for applications. Our systematic 

study of the T-Maps, combined with the symmetry based, comparative analysis of the bowtie vs. 

regular structures, reveals hidden symmetry that leads to the identity of the T-response between a 

bowtie structure and the regular structure of doubled period. We expect this last discovery to lead 

to other hidden symmetries in a broader class of complementary structures.  
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