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FORMULA, AND CARLESON’S ε2 CONJECTURE IN HIGHER

DIMENSIONS

IAN FLESCHLER, XAVIER TOLSA, AND MICHELE VILLA

Abstract. The main aim of this article is to prove quantitative spectral inequalities for the
Laplacian with Dirichlet boundary conditions. More specifically, we prove sharp quantitative
stability for the Faber-Krahn inequality in terms of Newtonian capacities and Hausdorff contents
of positive codimension, thus providing an answer to a question posed by De Philippis and Brasco.

One of our results asserts that for any bounded domain Ω ⊂ R
n, n ≥ 3, with Lebesgue measure

equal to that of the unit ball and whose first eigenvalue is λΩ, denoting by λB the first eigenvalue
for the unit ball, for any a ∈ (0, 1) it holds

λΩ − λB ≥ C(a) inf
B

(

sup
t∈(0,1)

−

ˆ

∂((1−t)B)

Capn−2(B(x, atrB) \ Ω)

(t rB)n−3
dHn−1(x)

)2

,

where the infimum is taken over all balls B with the same Lebesgue measure as Ω and Capn−2 is
the Newtonian capacity of homogeneity n− 2. In fact, this holds for bounded subdomains of the
sphere and the hyperbolic space, as well.

In a second result, we also apply the new Faber-Krahn type inequalities to quantify the Hayman-
Friedland inequality about the characteristics of disjoint domains in the unit sphere. Thirdly, we
propose a natural extension of Carleson’s ε2-conjecture to higher dimensions in terms of a square
function involving the characteristics of certain spherical domains, and we prove the necessity
of the finiteness of such square function in the tangent points via the Alt-Caffarelli-Friedman
monotonicity formula. Finally, we answer in the negative a question posed by Allen, Kriventsov
and Neumayer in connection to rectifiability and the positivity set of the ACF monotonicity
formula.
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1. Introduction

The main aim of this article is to prove quantitative spectral inequalities for the Laplacian
with Dirichlet boundary conditions. More specifically, we show that the Faber-Krahn inequality
is stable, where stability is quantified in terms of Newtonian capacities and Hausdorff contents of
positive codimension. Our results hold for subdomains of the Euclidean space, the unit sphere
and the hyperbolic space, and they are sharp up to a constant factor. We remark that Theorem
A, our main result (see below), can be seen as a geometric solution of an issue raised by Brasco
and De Philippis ([BD, Open Problem 7.23]), and it foundamentally rests on the analytic solution
of the same problem by Allen, Kriventsov and Neumayer [AKN1]. Our interest in these versions
of the Faber-Krahn inequality arise also from applications in connection with the Alt-Caffarelli-
Friedman monotonicity formula and with the Carleson ε2-conjecture about tangent points for
Jordan domains in the plane. Indeed, in this paper we also propose a natural extension of Carleson
ε2-conjecture to higher dimensions in terms of a square function involving the characteristics of
certain spherical domains, and we prove the necessity of the finiteness of such square function at
almost every tangent point. Sufficiency is shown in the companion paper [FTV].

1.1. Quantitative Faber-Krahn inequalities. Given a bounded open set Ω ⊂ R
n, we say that

u ∈W 1,2
0 (Ω) is a Dirichlet eigenfunction of Ω (for the Laplacian) if u 6≡ 0 and

−∆u = λu,

for some λ ∈ R \ {0}. The number λ is the eigenvalue associated with u. It is well known that
all the eigenvalues of the Laplacian are positive and the smallest one, i.e., the first eigenvalue λ1,
satisfies

λ1 = inf
u∈W 1,2

0 (Ω)

´

Ω |∇u|2 dx
´

Ω |u|2 dx
.
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Further the infimum is attained by an eigenfunction u0 which does not change sign, and so which
can be assumed to be non-negative. We will denote by λΩ (or λ(Ω)) the first eigenvalue of Ω and
by uΩ the associated non-negative eigenfunction, normalized so that ‖uΩ‖L2(Ω) = 1.

The classical Faber-Krahn inequality asserts that among all bounded open sets with a fixed vol-
ume, a ball minimizes the first eigenvalue. Following many previous works (see, for example, [HN]
and [Me]), Brasco, De Philippis, and Velichkov proved in [BDV] the following sharp quantitative
version of the Faber-Krahn inequality.

Theorem 1.1. For n ≥ 2, let Ω ⊂ R
n be a bounded open set with Hn(Ω) = 1. Then

(1.1) λΩ − λB ≥ c inf
B

Hn(Ω△B)2,

where c is a positive absolute constant and the infimum is taken over all balls B with Hn(B) = 1.

The inequality above is sharp in the sense that the power 2 on the right hand side cannot be
lowered.

The classical Faber-Krahn inequality also holds for subdomains of the sphere S
n or the hyper-

bolic space H
n. In this context one should take the Laplacian with respect to the Riemannian

metric of the space (i.e., the Laplace-Beltrami operator) and one should consider geodesic balls.
That is, for subdomains Ω of Sn or Hn with a given volume, the minimal value of λΩ is attained
again by a geodesic ball among all open bounded domains of the same volume. Further, recently
Allen, Kriventsov, and Neumayer [AKN1] have obtained the following quantitative form.

Theorem 1.2. For n ≥ 2, let Mn be either R
n, Sn, or H

n, and let β > 0. Let Ω be a relatively
open subset of Mn and let B be a geodesic ball in M

n such that Hn(B) = Hn(Ω). In the case
M

n = S
n, suppose also that β ≤ Hn(Ω) ≤ Hn(Sn) − β, and in the case M

n = R
n or M

n = H
n

just that Hn(Ω) ≤ β. Denote by λΩ and λB the respective first Dirichlet eigenvalues of −∆Mn

in Ω and B, and let uΩ and uB be the corresponding eigenfunctions normalized so that they are
positive and ‖uΩ‖L2(Mn) = ‖uB‖L2(Mn) = 1. Then

(1.2) λΩ − λB ≥ c(β) inf
x∈Mn

(
Hn(Ω△Bx)

2 +

ˆ

Mn

|uΩ − uBx |
2 dHn

)
,

where c(β) > 0 and Bx denotes a geodesic ball centered at x with the same Hn measure as B. In
the case M

n = S
n, (1.2) also holds with the infimum over S

n replaced by the evaluation at x equal
to S

n-barycenter of Ω (possibly with a different constant c(β)).

In the theorem we have denoted by ∆Mn the Laplace-Beltrami operator on M
n. For the defi-

nition of Sn-barycenter of a ball in S
n, see Section 2.1. The assumption involving the parameter

β is necessary to prevent the domain from being too big and, in the case M
n = S

n, also too
small. Remark that in the case M

n = R
n one can get an appropriate scaling invariant statement

by renormalising. This is not case for S
n or H

n. Notice the presence of the additional term
´

Mn |uΩ − uB|
2 dHn in the inequality (1.2) when compared to (1.1). In this term we assume that

the functions uΩ and uB vanish outside of Ω and B respectively.

To state our results we need to introduce some additional notation and terminology. For
M

n = R
n or M

n = S
n. We denote by distMn the geodesic distance in M

n and by ∂MnA the
boundary of any set A ⊂ M

n. We also write BMn(x, r) to denote an open ball in M
n centered

in x, with radius r. Given B = BMn(x, r) and ρ > 0, we set ρB = BMn(x, ρr) and we denote
δB(x) = distMn(x, ∂MnB),
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We denote by Capn−2 the Newtonian capacity of homogeneity n − 2, and by CapL the loga-
rithmic capacity (see Section 2.2 for the precise definitions).

Our first main result in this paper is the following.

Theorem A. Given n ≥ 2, let Mn be either R
n, Sn or H

n, and let β > 0, a ∈ (0, 1). Let Ω be
a relatively open subset of Mn and let B be a geodesic ball in M

n such that Hn(B) = Hn(Ω) with
radius rB. In the case M

n = S
n, suppose also that β ≤ Hn(Ω) ≤ Hn(Sn) − β, while in the case

M
n = R

n and M
n = H

n only assume that Hn(Ω) ≤ β. Denote by λΩ and λB the first Dirichlet
eigenvalues of −∆Mn in Ω and B, respectively. Then, there is some constant C(a, β) > 0 such
that in the case n ≥ 3 we have

(1.3) λΩ − λB ≥ C(a, β) inf
x∈Mn

(
sup

t∈(0,1)
−

ˆ

∂Mn ((1−t)Bx)

Capn−2(BMn(x, atrB) \Ω)

(t rB)n−3
dHn−1(x)

)2

,

where Bx denotes a ball centered in x with radius rB. In the case n = 2 we have

(1.4) λΩ − λB ≥ C(a, β) inf
x∈Mn

(
sup

t∈(0,1)
−

ˆ

∂
M2 ((1−t)Bx)

t rB

log 2tarB
CapL(BM2 (x,atrB)\Ω)

dH1(x)

)2

.

In the case Mn = S
n, (1.3) and (1.4) also hold with the infimum over Mn replaced by the evaluation

at x equal to S
n-barycenter of Ω (possibly with a different constant C(a, β)).

In the theorem we used the standard notation −
´

A f dµ = 1
µ(A)

´

A f dµ. Notice that in (1.3) we

have
Capn−2(BMn(x, atrB) \ Ω)

(t rB)n−3
. t rB ,

because of the (n− 2)-homogeneity of Capn−2. Remark also that, for all a, a′ ∈ (0, 1), we have

sup
t∈(0,1)

−

ˆ

∂Mn((1−t)B)

Capn−2(BMn(x, atrB) \ Ω)

(t rB)n−3
dHn−1(x)

≈a,a′ sup
t∈(0,1)

−

ˆ

∂Mn ((1−t)B)

Capn−2(BMn(x, a′trB) \Ω)

(t rB)n−3
dHn−1(x).

The same happens in the case n = 2 concerning the integral on the right hand side of (1.4). See
Lemmas 2.4 and 2.5.

The estimates in Theorem are sharp up to a constant factor. Indeed, as in [BDV] and [AKN2],
we can consider ellipsoidal perturbations of the unit ball, such as

Ωε = {x ∈ R
n : (1 + ε)x21 + (1− ε)x22 + x23 + . . . + x2n ≤ 1},

with ε→ 0. As remarked in [BDV] and [BD], letting Bε be a ball such that Hn(Bε) = Hn(Ωε), it
holds λΩε − λBε ≈ ε2, uniformly as ε → 0. On the other hand, it is easy to check that the right
hand side terms of (1.3) and (1.4) are also comparable to ε2, also uniformly as ε→ 0.

As far as we know, Theorem A provides the first sharp quantitative Faber-Krahn inequality
stated in terms of the capacity of (subsets of) B \Ω. As remarked above, Theorem A is related to
the open problem 7.23 from [BD], which asks to prove a sharp quantitative Faber-Krahn inequality
with a suitable a capacitary asymmetry of B and Ω. Notice however that Theorem A only involves
the capacity of subsets of B \Ω, and not of Ω\B. This is a natural fact because there are domains
such that Capn−2(Ω \B) is large while λΩ − λB is as small as wished. Indeed, for 0 < ε ≤ 1/10,
consider an ε-neighborhood Uε of the planar set B(0, 1)∪ [1, 2] and contract it by a suitable factor
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so that the resulting domain Ωε has the same area as B = B(0, 1). It is easy to check that
λΩε → λB as ε→ 0, but Capn−2(Ωε \B

′) is large for any given ball B′ with the same area as Ωε,
due to the fact that [−1, 2] ⊂ Ωε, for example.

Using the connection between Hausdorff contents and capacities (see Lemma 2.1 below), we
deduce the following corollary from the preceding theorem.

Corollary 1.3. Under the assumptions and notation of Theorem A, for any s > n − 2 there is
some constant C(s, a, β) > 0 such that, in the case n ≥ 3, we have
(1.5)

λΩ − λB ≥ C(s, a, β) inf
x∈Mn

(
sup

t∈(0,1)
−

ˆ

∂Mn ((1−t)Bx)

(
Hs

∞(BMn(x, atrB) \Ω)

(t rB)s

)n−2
s

t rB dH
n−1(x)

)2

.

In the case n = 2, for any s > 0 we have

(1.6) λΩ − λB ≥ C(s, a, β) inf
x∈Mn

(
sup

t∈(0,1)
−

ˆ

∂
M2 ((1−t)Bx)

t rB

log
(

(2atrB)s

Hs
∞
(BMn (x,atrB)\Ω)

) dH1(x)

)2

.

In the case Mn = S
n, (1.5) and (1.6) also hold with the infimum over Mn replaced by the evaluation

at x equal to S
n-barycenter of Ω (possibly with a different constant C(s, a, β)).

In the case when we just quantify λΩ − λB in terms of some integral over a suitable family of
“thick points” we get a somewhat sharper result. To state it, we need some additional notation.
For given c0 > 0 and a ∈ (0, 1), in the case n ≥ 3, we denote

(1.7) Tc0(Ω, B, a) =
{
x ∈ B \ Ω : Capn−2(BMn(x, a δB(x)) \ Ω) ≥ c0 δB(x)

n−2
}
,

and, in the case n = 2,

(1.8) Tc0(Ω, B, a) =
{
x ∈ B \ Ω : CapL(BMn(x, a δB(x)) \ Ω) ≥ c0 δB(x)

}
.

We should understand the condition in the definition of Tc0(Ω, B, a) as a thickness type condition.
In particular, if Ω satisfies the capacity density condition or CDC (see Section 2.2), or ∂Ω is lower
s-content regular for some s > n− 2, then Tc0(Ω, B, a) = B \Ω, for c0 small enough.

Theorem B. Given n ≥ 2 and 0 < s ≤ n, let Mn be either R
n, Sn or H

n, and let c0, β > 0,
a ∈ (0, 1). Let Ω be a relatively open bounded subset of Mn and let B be a geodesic ball in M

n such
that Hn(B) = Hn(Ω). For M

n = S
n, suppose that β ≤ Hn(Ω) ≤ Hn(Sn)− β, while for M

n = R
n

and M
n = R

n assume only that Hn(Ω) ≤ β. Denote by λΩ and λB the first Dirichlet eigenvalues
of −∆Mn in Ω and B, respectively. Then,

(1.9) λΩ − λB ≥ C(a, s, β, c0) inf
x∈Mn

(
ˆ

Tc0 (Ω,Bx,a)
δB(x)

n−s dHs
∞(x)

)2

,

where Bx denotes a ball centered in x with radius rB. In the case M
n = S

n, (1.9) also holds with
the infimum over M

n replaced by the evaluation at x equal to S
n-barycenter of Ω (possibly with a

different constant C(a, s, β, c0)).

Remark that the integral of a function f : Mn → [0,∞) with respect to the Hausdorff content
Hs

∞ is given by
ˆ

Mn

f dHs
∞ =

ˆ ∞

0
Hs

∞({x ∈ M
n : f(t) > t}) dt.



6 IAN FLESCHLER, XAVIER TOLSA, AND MICHELE VILLA

Observe also that in the case when Ω satisfies the CDC, from (1.9) we deduce that, for 0 < s ≤ n,

λΩ − λB &

(
ˆ

B\Ω
δB(x)

n−s dHs
∞(x)

)2

≥

(
ˆ

B∩∂Ω
δB(x)

n−s dHs
∞(x)

)2

.

The example given by the ellipsoidal perturbations of the unit ball mentioned above shows that
this estimate is also sharp. For 0 < s < n, the domain of integration in the middle term cannot
be augmented to B△Ω, and the one in the last term to the full ∂Ω because of the same discussion
after the statement of Theorem A.

A basic ingredient for the proof of Theorems A and B is Theorem 1.2 from [AKN1]. The very
rough strategy of the proof of both results is the following. We consider M

n embedded in R
n+1

and we consider suitable extensions ũB and ũΩ of the eigenfunctions uB and uΩ appearing in (1.2),

respectively, to some open subsets B̃, Ω̃ ⊂ R
n+1, so that ũB is harmonic in B̃ and ũΩ is “almost

harmonic” in Ω̃ (i.e., ∆ũΩ is very small). Then we apply apply (1.2) by estimating ũB − ũΩ from

below in terms of the harmonic measure for Ω̃, using the fact that ũB(x) ≈ dist(x, ∂B̃) while

ũΩ(x) = 0 in a large part of B̃∩∂Ω̃. To relate this estimate to the terms on the right hand side of

(1.3), (1.4), and (1.9), we consider an auxiliary Lipschitz domain Ω̃Γ and we relate the harmonic

measure for Ω̃ to the one for Ω̃Γ using the maximum principle. Lastly we take advantage of the
fact that the behavior of harmonic measure is well understood on Lipschitz domains.

1.2. The Alt-Caffarelli-Friedman monotonicity formula and the Friedland-Hayman

inequality. Given a domain in the unit sphere, Ω ⊂ S
n ⊂ R

n+1 whose first Dirichlet eigenvalue
is λΩ, the characteristic constant of Ω is the positive number αΩ such that λΩ = αΩ(n− 1 + αΩ).

Recall that the Alt-Caffarelli-Friedman (ACF) monotonicity formula asserts the following:

Theorem 1.4. Let x ∈ R
n+1 and R > 0. Let u1, u2 ∈W 1,2(B(x,R))∩C(B(x,R)) be nonnegative

subharmonic functions such that u1(x) = u2(x) = 0 and u1 · u2 ≡ 0. Set

(1.10) J(x, r) =

(
1

r2

ˆ

B(x,r)

|∇u1(y)|
2

|y − x|n−1
dy

)
·

(
1

r2

ˆ

B(x,r)

|∇u2(y)|
2

|y − x|n−1
dy

)

Then J(x, r) is an absolutely continuous function of r ∈ (0, R) and

(1.11)
∂rJ(x, r)

J(x, r)
≥

2

r

(
α1 + α2 − 2

)
.

where αi is the characteristic constant of the open subset Ωi ⊂ S
n given by

Ωi =
{
r−1(y − x) : y ∈ ∂B(x, r), ui(y) > 0

}
.

Further, for r ∈ (0, R/2) and i = 1, 2, we have

(1.12)
1

r2

ˆ

B(x,r)

|∇ui(y)|
2

|y − x|n−1
dy .

1

rn+1
‖∇ui‖

2
L2(B(x,2r)).

The Friedland-Hayman [FH] inequality ensures that, for any two disjoint open subsets Ω1,Ω2 ⊂
S
n,

α1 + α2 − 2 ≥ 0,

so that J(x, r) is non-decreasing on r, by (1.11). In fact, more is known. By Sperner’s inequality
[Sp], among all the open subsets with a fixed measure Hn on S

n, the one that minimizes the



FABER-KRAHN INEQUALITIES, THE ACF FORMULA, AND CARLESON’S CONJECTURE 7

characteristic constant is a spherical ball with the same measure Hn. That is to say, if Bi is a
spherical ball such that Hn(Bi) = Hn(Ωi) and ᾱi denotes its characteristic constant, then

αi ≥ ᾱi.

Further, if one of the sets Ωi differs from a hemisphere by a surface measure h, that is,
∣∣∣Hn(Ωi)−

1

2
Hn(Sn)

∣∣∣ ≥ h,

then

α1 + α2 − 2 ≥ c h2.

In this paper we will deduce other more precise estimates for α1 +α2− 2 using Theorem B and
Theorem 1.2. To state the precise result, we need some additional notation. Let Ω1,Ω2 ⊂ S

n be
open and disjoint and let H ⊂ R

n+1 be half-space such that 0 ∈ ∂H. Denote

SH,1 = S
n ∩H, SH,2 = S

n \H.

We denote

Vc0(Ω1,Ω2,H, a) = Tc0(Ω1, SH,1, a) ∪ Tc0(Ω2, SH,2, a).

Notice that if both Ω1,Ω2 satisfy the the CDC and c0 is small enough, then Vc0 = (Ω1,Ω2,H, a) =
Tc0(SH,1 \ Ω1) ∪ Tc0(SH,2 \ Ω2).

For fixed c0 > 0 and a ∈ (0, 1), we denote for 0 < s < n,

εs(Ω1,Ω2) = inf
H

ˆ

Vc0 (Ω1,Ω2,H,a)
dist(y, ∂H)n−s dHs

∞(y),

with the infimum taken over all half-space H such that 0 ∈ ∂H. On the other hand, for s = n,
we set

εn(Ω1,Ω2) = inf
H

Hn
(
(SH,1 \ Ω1) ∪ (SH,2 \ Ω2)

)
.

We will prove the following:

Theorem C. Let n ≥ 2 and 0 < s ≤ n. Let Ω1,Ω2 ⊂ S
n be open and disjoint. For any c0 > 0

and a ∈ (0, 1) we have

εs(Ω1,Ω2)
2 .s,c0,a min(1, α1 + α2 − 2).

Remark that when Hn(Ωi) → 0, we have αi → ∞, and thus α1+α2−2 → ∞ too. On the other
hand, we always have εs(Ω1,Ω2) . 1 by definition. This is the reason for writing min(1, α1+α2−2)
instead of α1 + α2 − 2 on the right hand side of the inequality in Theorem C.

1.3. Carleson’s conjecture. Next we introduce the precise notion of a tangent point for a pair
of disjoint open sets in R

n+1. For a point x ∈ R
n+1, a unit vector u, and an aperture parameter

a ∈ (0, 1) we consider the two sided cone with axis in the direction of u defined by

Xa(x, u) =
{
y ∈ R

n+1 : |(y − x) · u| > a|y − x|
}
.

Given disjoint open sets Ω1,Ω2 ⊂ R
n+1 and x ∈ ∂Ω1 ∩ ∂Ω2, we say that x is a tangent point for

the pair Ω1,Ω2 if x ∈ ∂Ω1∩∂Ω2 and there exists a unit vector u such that, for all a ∈ (0, 1), there
exists some r > 0 such that

(∂Ω1 ∪ ∂Ω2) ∩Xa(x, u) ∩B(x, r) = ∅,
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and moreover, one component of Xa(x, u) ∩ B(x, r) is contained in Ω1 and the other in Ω2.
The hyperplane L orthogonal to u through x is called a tangent hyperplane at x. In case that
Ω2 = R

n+1 \Ω1, we say that x is a tangent point for Ω1.
Let Ω1 be a Jordan domain in R

2, and set Γ = ∂Ω1 and Ω2 = R
2 \ Ω1. For x ∈ R

2 and r > 0,
denote by I1(x, r) and I2(x, r) the longest open arcs of the circumference ∂B(x, r) contained in
Ω1 and Ω2, respectively (they may be empty). Then we define

(1.13) ε(x, r) =
1

r
max

(∣∣πr −H1(I1(x, r))
∣∣,
∣∣πr −H1(I2(x, r))

∣∣).

The Carleson ε2-square function is given by

(1.14) E(x)2 :=

ˆ 1

0
ε(x, r)2

dr

r
.

Carleson’s conjecture, now a theorem, asserts the following.

Theorem 1.5. Let Ω1 ⊂ R
2 be a Jordan domain, let Γ = ∂Ω1, and let E be the associated square

function defined in (1.14). Then the set of tangent points for Ω1 coincides with the subset of
those points x ∈ Γ such that E(x) < ∞, up to a set of zero measure H1. In particular, the set
G = {x ∈ Γ : E(x) <∞} is 1-rectifiable.

Recall here that a set E ⊂ R
n+1 is called d-rectifiable if there are Lipschitz maps fi : R

d → R
n+1,

i ∈ N, such that

(1.15) Hd
(
E \

⋃∞
i=1 fi(R

d)
)
= 0.

The fact that E(x) < ∞ for H1-a.e. tangent point in a Jordan curve was proved by Bishop in
[Bi1] (see also [BCGJ]). The most difficult implication of Theorem 1.5, i.e, the fact that the set G
is 1-rectifiable and tangents to Γ exist for H1-a.e. x ∈ G, was proved more recently by Ben Jaye
and the last two authors of this paper [JTV].

It is natural to wonder about the existence of a suitable version of Carleson’s conjecture in higher
dimensions. There are two natural questions: which coefficients should replace the coefficients
ε(x, r) defined in (1.13)? and second, for which open sets Ω1 ⊂ R

n+1 should we expect to obtain
a characterization such as the one in Theorem 1.5? In this theorem, the fact that Ω1 is a Jordan
domain ensures that its boundary is connected, which plays an essential role in the proof. Indeed,
the arguments in [JTV] are based on the connectivity of the boundary and they do not extend
to higher dimensions (this should not be a surprise, since typically the role of connectivity in the
plane is much more relevant than in higher dimensions for many geometric problems).

Regarding the coefficients ε(x, r), in [AKN2] the authors show a very interesting connection with
the characteristic constants of spherical domains and the Friedland-Hayman inequality, which we
proceed to describe. Given two disjoint open sets Ω1,Ω2 ⊂ R

n+1, consider the open subsets
Σ1,Σ2 ⊂ S

n defined by

(1.16) Σi =
{
r−1(y − x) : y ∈ Ωi ∩ ∂B(x, r)

}
,

and let αi(x, r) = αΣi , the characteristic constant of Σi. Analogously, set λi(x, r) = λΣi . In
[AKN2] it is remarked that, in the planar case n = 1,

(1.17) α1(x, r) + α2(x, r)− 2 & ε(x, r)2.

This is easy to check. Indeed, without loss of generality, assume x = 0, r = 1. Taking into
account that the characteristic of a domain decreases as its size increases, we have αIi = αΣi and



FABER-KRAHN INEQUALITIES, THE ACF FORMULA, AND CARLESON’S CONJECTURE 9

also λIi = λΣi , for Ii := Ii(x, r) as in (1.13). Let γi = H1(Ii)/(2π). Since the first eigenfunction
for Ii is the function ui(θ) = sin((2γi)

−1θ) (modulo a translation in the torus), we have αi =

λ
1/2
i = (2γi)

−1. Suppose, for example, that ε(x, r) =
∣∣π−H1(I1)

∣∣ and write αi = αi(x, r). Let α̃2

the characteristic of S1 \ I1. Since I2 ⊂ S
1 \ I1, we have α2 ≥ α̃2. Thus,

α1 + α2 − 2 ≥ α1 + α̃2 − 2 =
1

2γ1
+

1

2(1 − γ1)
− 2 =

1− 4γ1(1− γ1)

2γ1(1− γ1)
=

2(12 − γ1)
2

γ1(1− γ1)
≈

ε(x, r)2

γ1(1− γ1)
,

which completes the proof of (1.17), since γ1 ∈ (0, 1). Further, in case that I1(x, r) and I2(x, r)
are complementary arcs, arguing as above, one can deduce

min
(
1, α1(x, r) + α2(x, r)− 2

)
≈ ε(x, r)2.

See also [Bi2] for a very related discussion.
In view of the preceding discussion, a possible generalization of Carleson’s conjecture to higher

dimensions may consist in showing that, for a suitable domain Ω1 ⊂ R
n+1 and Ω2 = R

n+1 \Ω1, it
holds

(1.18)

ˆ 1

0

min(1, α1(x, r) + α2(x, r)− 2)

r
dr <∞ ⇔ x is a tangent point of Ω1,

for every x ∈ ∂Ω1, up to a set of zero measure Hn.
In this paper we prove the implication ⇒ in the above equivalence (1.18) for a very large class

of domains. Further, we do not ask the domains Ω1,Ω2 to be complementary. The precise result
is the following.

Theorem D. Let Ω1,Ω2 ⊂ R
n+1 be disjoint Wiener regular domains in R

n+1. Then, for Hn-a.e.
tangent point x for the pair Ω1,Ω2, it holds

(1.19)

ˆ 1

0

min(1, α1(x, r) + α2(x, r)− 2)

r
dr <∞.

Recall that a domain is called Wiener regular if the Dirichlet problem for the Laplacian with
continuous data is solvable in that domain. This is a property which is implied by the CDC,
which is a strictly stronger condition (see Section 2.3). We will prove Theorem D by integrating
the Alt-Caffarelli-Friedman inequality (1.11) applied to the Green functions ui of Ωi and using
the fact that the harmonic measure of Ωi satisfies ωΩi(B(x, r)) & rn as r → 0 at Hn-a.e. tangent
point x ∈ ∂Ωi, which in turn implies that J(x, 0) > 0:

ˆ r0

0

2

r

(
α1(x, r) + α2(x, r)− 2

)
dr ≤

ˆ r0

0

∂rJ(x, r)

J(x, r)
dr = log

J(x, r0)

J(x, 0)
<∞.

Putting together Theorem C and Theorem D, for Ω1,Ω2 as above and for 0 < s ≤ n, denoting
εs(x, r) = εs(Σ1,Σ2), with Σi as in (1.16), we deduce that

ˆ 1

0
εs(x, r)

2 dr

r
<∞

for Hn-a.e. tangent point x for the pair Ω1,Ω2.
Finally, we remark that in the companion paper [FTV] we will prove the converse implication

in (1.18) when Ω1 ∪Ω2 satisfies the CDC. The precise result is the following.



10 IAN FLESCHLER, XAVIER TOLSA, AND MICHELE VILLA

Theorem E. For n ≥ 1, let Ω1,Ω2 ⊂ R
n+1 be disjoint open sets. The set of points x ∈ R

n+1

such that
ˆ 1

0
εn(x, r)

2 dr

r
<∞

is n-rectifiable. In case that the set Ω1 ∪Ω2 satisfies the CDC, then Hn-a.e. x ∈ R
n+1 such that

ˆ 1

0

min(1, α1(x, r) + α2(x, r)− 2)

r
dr <∞

is a tangent point for the pair Ω1,Ω2.

We insist on the fact that the CDC for Ω1 ∪ Ω2 is a quite mild lower regularity condition. For
example, it holds if1 there exist s ∈ (n − 1, n + 1] and c > 0 such that

Hs
∞(B(x, r) ∩ (∂Ω1 ∪ ∂Ω2)) ≥ c rs for all x ∈ ∂Ω1 ∪ ∂Ω2, 0 < r ≤ 1.

Because of the discussion above, we think that this result can be considered as a natural
extension of Carleson’s conjecture to higher dimensions. Observe that a pair Ω1,Ω2 consisting of
a Jordan domain in the plane and its complementary, as in [JTV], satisfies the assumptions in
Theorem E. In fact, in the case of the plane, the above theorem applies to domains much more
general than Jordan domains and so it is also new.

We remark that in [AKN2] the authors propose another possible extension of Carleson’s con-
jecture to higher dimensions. Let

a(x, r)2 := |λ1(x, r)− n|2 + |λ2(x, r)− n|2.

Assuming that Ω2 = R
n+1 \Ω1, they ask under what minimal assumptions on ∂Ω1 the set of those

points x ∈ ∂Ω1 such that

(1.20)

ˆ 1

0

a(x, r)2

r
dr <∞

coincides with the rectifiable part of ∂Ω1, up to a set of Hn measure zero. As shown in [AKN1],
one has

(1.21) min(1, a(x, r))2 . min(1, α1(x, r) + α2(x, r)− 2).

Thus the condition (1.19) implies that

(1.22)

ˆ 1

0

min(1, a(x, r))2

r
dr <∞,

which is equivalent to (1.20) for “reasonable” domains, for example when both Ω1 and R
n+1 \Ω1

are connected and have diameter larger than 1. By (1.21) and Theorem D, the condition (1.22)
holds for tangent points x ∈ ∂Ω1 in the case when both Ω1 and R

n+1 \ Ω1 are Wiener regular.
However, the inequality converse to the one in (1.21) does not hold in general, and so it is not
clear to us if the condition (1.22) implies the existence of tangents for domains Ω1,Ω2 such as the
ones in Theorem E.

1In fact, in [Le] it is shown that this is also a necessary condition for the CDC.
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1.4. A counterexample. For n ≥ 2, let u, v : B(0, 10) → R be two nonnegative continuous
functions satisfying

−∆u ≤ 0 in {u > 0}, −∆v ≤ 0 in {v > 0} and uv = 0 in B(0, 10).

Define Γ∗ := {x : J(x, 0+) > 0}, where J(0+) := limr→0+ J(x, r) and J(x, r) is the ACF mono-
tonicity formula defined in (1.10) relative to u, v. In [AKN2], Allen, Kriventsov ans Neumayer
prove the following theorem.

Theorem 1.6 ([AKN2, Theorem 1.2]). For n ≥ 2, let u, v as above. Then Γ∗∩B(0, 1) is (n− 1)-
rectifiable.

In the same work, see [AKN2, Problem 2.8], the authors pose the converse question: suppose
that E = ∂{u > 0} ∩ ∂{v > 0} is (n − 1)-rectifiable. Is it true, then, that J(x, 0+) > 0 for
Hn−1-almost every x ∈ E (under some minimal assumptions on E and u, v)? In the last section
of this paper, we provide an example which shows that, without further structural assumptions
on the domains, the natural converse to Theorem 1.6 is false. More precisely we construct two
Wiener regular domains Ω1,Ω2 in R

2 with 1-rectifiable boundary and such that, if E = ∂Ω1∩∂Ω2,
then H1(E) > 0 and the limit J(x, 0+) of the ACF functional associated to the Green functions of
Ω1,Ω2 equals to 0 for H1-almost every point x ∈ E. See Section 9 for the detailed construction.
On the other hand, it is implicit in the proof of Theorem D that J(x, 0+) > 0 whenever x is a
(true) tangent point of E and u and v are the Green functions of disjoint Wiener regular domains
(up to a set of Hn−1 measure zero).

Acknowledgements. This work was initiated while the authors were in residence at the
Hausdorff Institute of Mathematics in Spring 2022 during the program “Interactions between
geometric measure theory, singular integrals, and PDEs”. Other parts of this work took place
during a two weeks visit of M. Villa to Princeton University and during another one month visit
of I. Fleschler to the Universitat Autònoma de Barcelona. I. Fleschler and M. Villa would like
to thank G. De Philippis for some inspiring conversations in some early stages of this work. We
also thank G. David for providing us some information in connection with the Friedland-Hayman
inequality.

2. Preliminaries

2.1. Miscellaneous notation. In the paper, constants denoted by C or c depend just on the
dimension and perhaps other fixed parameters, such as a, β in Theorem A, for example. We will
write a . b if there is C > 0 such that a ≤ Cb . We write a ≈ b if a . b . a.

Open balls in R
n+1 centered in x with radius r > 0 are denoted by B(x, r), and closed balls

by B̄(x, r). For an open or closed ball B ⊂ R
n+1 with radius r, we write rad(B) = r. Similarly,

open and closed balls in M
n are denoted by BMn(x, r) and B̄Mn(x, r) respectively. For an open or

closed ball B ⊂ M
n with radius r, we write radMn(B) = r. An open annulus in R

n+1 centered in
x with inner radius r1 and outer radius r2 is denoted by A(x, r1, r2), and the corresponding closed
annulus by Ā(x, r1, r2). Similarly, the analogous annuli in M

n are denoted by AMn(x, r1, r2) and
ĀMn(x, r1, r2), respectively.

We use the two notations S(x, r) ≡ ∂B(x, r) for spheres in R
n+1 centered in x with radius r,

so that Sn = S(0, 1).
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We call open sets in S
n spherical domains, and the geodesic distance in M

n is written as distMn .
Notice that, assuming S

n to be embedded in R
n+1, the geodesic distance distSn is comparable to

the Euclidean distance in the ambient space R
n+1.

Given a set F ⊂ R
n+1, the notation M+(F ) stands for the set of (positive) Radon measures

supported on F . For s > 0, the s-dimensional Hausdorff measure is denoted by Hs, and the
s-dimensional Hausdorff content by Hs

∞. Recall that, for any set E ⊂ R
n+1,

Hs
∞(E) = inf

{∑

i

diam(Ai)
s : E ⊂

⋃

i

Ai

}
.

We say that E is lower s-content regular if there exists some constant c > 0 such that

Hs
∞(B(x, r) ∩ E) ≥ c rs for all x ∈ E and 0 < r ≤ diam(E).

The barycenter of a set E ⊂ R
n is defined by

xE =

ˆ

E
x dHn(x).

On the other hand, the Sn-barycenter of E ⊂ S
n is defined by xE/|xE |, with xE as above. So this

belongs to S
n and it is defined only when xE 6= 0.

2.2. Capacities. The fundamental solution of the minus Laplacian in R
n, for n ≥ 3, equals

En(x) =
cn

|x|n−2
,

where cn = (n− 2)Hn−1(Sn−1). In the plane, the fundamental solution is

E2(x) =
1

2π
log

1

|x|
.

For a Radon measure µ, we consider the potential defined by

Un−2µ(x) = En ∗ µ(x).

Given a set F ⊂ R
n (or, more generally, F ⊂ R

m) we define the capacity Capn−2(F ) by the
identity

(2.1) Capn−2(F ) =
1

infµ∈M1(F ) In−2(µ)
,

where the infimum is taken over all probability measures µ supported on F and In−2(µ) is the
energy

(2.2) In−2(µ) =

¨

En(x− y) dµ(x) dµ(y) =

ˆ

Un−2µ(x) dµ(x).

For n ≥ 3 and F ⊂ R
n, Capn−2(F ) is the Newtonian capacity of F , and for n = 2 and F ⊂ R

2,
Cap0(F ) is the Wiener capacity of F . Remark that for n ≥ 3, one also has

(2.3) Capn−2(F ) = sup
{
µ(F ) : µ ∈M+(F ), ‖Un−2µ‖∞,F ≤ 1

}
,

where M+(F ) is the family of all Radon measures supported in F . In the plane, the analogous
identity with n = 2 holds when diamF < 1.
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It is easy to check that the Newtonian capacity Capn−2 is homogeneous of degree n− 2 when
n ≥ 3. The Wiener capacity is not homogeneous. However, the logarithmic capacity CapL, defined
by

CapL(F ) = e
− 2π

Cap0(F ) ,

is 1-homogeneous.
For n ≥ 2, let Ω ⊂ Rn be an open set. We say that Ω satisfies the n-dimensional capacity

density condition (CDC) if there exists some constant c > 0 such that, for every x ∈ ∂Ω and
r ∈ (0,diam(Ω)),

Capn−2(B(x, r) \ Ω) ≥ c rn−2 in the case n ≥ 3,

and
CapL(B(x, r) \ Ω) ≥ c r in the case n = 2.

For subsets F ⊂ S
n and domains Ω ⊂ S

n, we define Capn−2(F ) in the same way as for F ⊂ R
n

and domains Ω ⊂ R
n (using the fundamental solution of the Laplacian in R

n). We define the
n-dimensional CDC in S

n by asking the following condition for every x ∈ ∂Ω and r ∈ (0,diam(Ω)):

Capn−2(BSn(x, r) \ Ω) ≥ c rn−2 in the case n ≥ 3,

and
CapL(BSn(x, r) \ Ω) ≥ c r in the case n = 2.

We will need the following auxiliary results.

Lemma 2.1. Let E ⊂ R
n or E ⊂ S

n be compact and n− 2 < s ≤ n. In the case n > 2, we have

Capn−2(E) &s,n Hs
∞(E)

n−2
s .

In the case n = 2, we have

CapL(E) &s H
s
∞(E)

1
s .

The proof of this result is an immediate consequence of Frostman’s Lemma. See [Ma, Chapter
8] for the case n > 2, and [CTV, Lemma 4] for the case n = 2, for example.

Lemma 2.2. Let ℓ > 0, consider a compact set F ⊂ R
n, and denote F̃ = F × [0, ℓ] ⊂ R

n+1. In
the case n ≥ 3, we have

Capn−1(F̃ ) & ℓ Capn−2(F ).

In the case n = 2, given C1 ≥ 1, if diam(F ) ≤ C1 ℓ, we have

Cap1(F̃ ) &
ℓ

log
2C1ℓ

CapL(F )

,

with the implicit constant depending on C1.

Proof. By the n − 1 homogeneity of Capn+1(F ) and of the inequalities stated in the lemma we
can assume diam(F ) < 1, so that (2.3) also holds in the case n = 2. Let µ ∈M+(F ) be such that
Un−2µ(x) ≤ 1 for all x ∈ F and µ(F ) = Capn−2(F ) (it is well known that such measure, called
equilibrium measure, exists for any compact set F ). Denote Iℓ = [0, ℓ]. Consider the product

measure µ̃ = µ×H1|Iℓ, which is supported on F̃ . For x′ = (x, xn+1) ∈ F̃ , we have
(2.4)

Un−1µ̃(x
′) =

ˆ

cn
|x′ − y′|n−1

dµ̃(y′) ≈

ˆ

yn+1∈Iℓ

ˆ

y∈F

1

|x− y|n−1 + |xn+1 − yn+1|n−1
dH1(yn+1)dµ(y).
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For each x, y ∈ F , we have
ˆ

yn+1∈Iℓ

1

|x− y|n−1 + |xn+1 − yn+1|n−1
dH1(yn+1)

=

ˆ

|xn+1−yn+1|≤|x−y|
· · · dH1|Iℓ(yn+1)+

ˆ

|x−y|<|xn+1−yn+1|≤ℓ
· · · dH1|Iℓ(yn+1) =: T1(x, y)+T2(x, y).

Concerning T1(x, y), we have

T1(x, y) ≤

ˆ

|xn+1−yn+1|≤|x−y|

1

|x− y|n−1
dH1|Iℓ(yn+1) ≤

1

|x− y|n−2
.

Also,

T2(x, y) ≤

ˆ

|x−y|<|xn+1−yn+1|≤ℓ

1

|xn+1 − yn+1|n−1
dH1|Iℓ(yn+1).

In the case n ≥ 3, it easily follows also that

T2(x, y) .
1

|x− y|n−2
.

Thus,

Un−1µ̃(x
′) .

ˆ

y∈F

1

|x− y|n−2
dµ(y) ≈ Un−2µ(x) ≤ 1.

Consequently,

Capn−1(F̃ ) ≥
µ̃(F )

‖Un−1µ̃‖∞,F̃

& µ̃(F̃ ) = ℓ µ(F ) ≈ ℓ Capn−2(F ) for n ≥ 3.

In the case n = 2, if T2(x, y) 6= 0, we have

T2(x, y) ≤ log
ℓ

|x− y|
.

Since |x− y| ≤ C1ℓ for any x, y ∈ F , we can always write T2(x, y) ≤ log C1ℓ
|x−y| , and so

T1(x, y) + T2(x, y) ≤ 1 + log
C1ℓ

|x− y|
. log

2C1ℓ

|x− y|
.

Thus,

U1µ̃(x
′) .

ˆ

y∈F
log

2C1ℓ

|x− y|
dµ(y) = log(2C1ℓ)µ(F ) +

ˆ

y∈F
log

1

|x− y|
dµ(y)

= log(2C1ℓ)µ(F ) + 2π U0µ(x) ≤ log(2C1ℓ)µ(F ) + 2π.

Therefore,

Cap1(F ) ≥
µ̃(F )

‖U1µ̃‖∞,F̃

&
ℓ µ(F )

log(2C1ℓ)µ(F ) + 2π
=

ℓ

log(2C1ℓ) +
2π

µ(F )

.

Writing
2π

µ(F )
=

2π

Cap0(F )
= log

1

CapL(F )
,

we obtain

Cap1(F ) &
ℓ

log(2C1ℓ) + log 1
CapL(F )

=
ℓ

log 2C1ℓ
CapL(F )

.



FABER-KRAHN INEQUALITIES, THE ACF FORMULA, AND CARLESON’S CONJECTURE 15

�

Lemma 2.3. Let ℓ > 0, F ⊂ S
n compact, and let Iℓ be an interval of length ℓ contained in [1/4, 2].

Denote

F̃ = {x′ ∈ R
n+1 : x′ = tx for some x ∈ F and t ∈ Iℓ}.

Then we have

Capn−1(F̃ ) & ℓ Capn−2(F ) in the case n ≥ 3,

and, in the case n = 2, if diam(F ) ≤ C1 ℓ,

Cap1(F̃ ) &
ℓ

log 2C1ℓ
CapL(F )

.

Proof. The proof is very similar to the one of Lemma 2.2. We assume diam(F ) < 1, so that (2.3)
holds in the case n = 2. We take µ ∈ M+(F ) be such that Un−2µ(x) ≤ 1 for all x ∈ F and
µ(F ) = Capn−2(F ). Then we consider the “product measure” µ̃ defined by

ˆ

f dµ̃ =

ˆ

t∈Iℓ

ˆ

x∈F
f(tx) dµ(x) dt, for f ∈ C(Rn+1).

Notice that µ̃ is supported on F̃ .

For x′ = sx ∈ F̃ , with x ∈ F , s ∈ Iℓ, we have

Un−1µ̃(x
′) =

ˆ

cn
|x′ − y′|n−1

dµ̃(y′) =

ˆ

t∈Iℓ

ˆ

y∈F

cn
|sx− ty|n−1

dµ(y) dt

Now we claim that

|sx− ty| & |x− y|+ |s− t|.

Indeed, we have

|s− t| = ||sx| − |ty|| ≤ |sx− ty|.

Also,

|x− y| =
1

s
|sx− sy| ≤

1

s

(
|sx− ty|+ |ty − sy|

)
≈ |sx− ty|+ |t− s| . |sx− ty|.

Adding the last two inequalities, the claim follows. Then we deduce

Un−1µ̃(x
′) .

ˆ

t∈Iℓ

ˆ

y∈F

1

|x− y|n−1 + |s− t|n−1
dµ(y)dt

Notice now the similarity between this inequality and (2.4). Then by the same arguments following
(2.4) in the proof of Lemma 2.2 we obtain the desired estimates. �

In the next lemma we show the equivalence of the statement of Theorem A with different values
of the parameter a in the case n ≥ 3.

Lemma 2.4. Given n ≥ 3, let Mn be either R
n or S

n and let β > 0. Let Ω be a relatively open
subset of Mn and let B be a geodesic ball in M

n such that Hn(B) = Hn(Ω) with radius rB. In the
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case M
n = S

n, suppose also that β ≤ Hn(Ω) ≤ Hn(Sn) − β, and in the case M
n = R

n just that
Hn(Ω) ≤ β. For a, a′ ∈ (0, 1), we have

sup
t∈(0,1)

−

ˆ

∂Mn((1−t)B)

Capn−2(BMn(x, atrB) \ Ω)

(t rB)n−3
dHn−1(x)

≈a,a′ sup
t∈(0,1)

−

ˆ

∂Mn ((1−t)B)

Capn−2(BMn(x, a′trB) \Ω)

(t rB)n−3
dHn−1(x).

Proof. To shorten notation, for any a, t ∈ (0, 1), write

Ia,t := −

ˆ

∂Mn ((1−t)B)

Capn−2(BMn(x, atrB) \ Ω)

(t rB)n−3
dHn−1(x).

Assume a > a′. Then it is clear that, for every t ∈ (0, 1), Ia,t ≥ Ia′,t since Capn−2(BMn(x, atrB) \
Ω) ≥ Capn−2(BMn(x, a′trB) \ Ω). So is suffices to show that Ia,t .a,a′ sups∈(0,1) Ia′,s.

Denote by xB the center of B. For a given t ∈ (0, 1) and r = (1− t)rB, we consider a covering
of ∂MnBMn(xB , r) by a family of Mn-balls {Bi}i∈Ir (where Ir is just a suitable set of indices)
centered in ∂MnBMn(xB , r) with radius b(rB − r) = btrB , with b≪ a′ to be chosen below, so that
the family {Bi}i∈Ir has bounded overlap. Then, denoting by xi the center of Bi, we split

ˆ

∂Mn ((1−t)B)
Capn−2(BMn(x, atrB) \ Ω) dH

n−1(x)

≤
∑

i∈Ir

ˆ

∂Mn ((1−t)B)∩Bi

Capn−2(BMn(x, atrB) \Ω) dH
n−1(x)

.
∑

i∈Ir

sup
x∈Bi

Capn−2(BMn(x, atrB) \ Ω) radMn(Bi)
n−1

≤
∑

i∈Ir

Capn−2(BMn(xi, (a+ b)trB) \Ω) (trB)
n−1.

Next we wish to cover the annulus Ar = AMn(xB , r−atrB, r+atrB) by another suitable family
of balls. First we let N be the least integer such that N ≥ 2a/b, and then we consider the radii

rk = r + k
atrB
N

for −N ≤ k ≤ N .

So we have [r − atrB , r + atrB ] =
⋃N−1

k=−N [rk, rk+1], and rk+1 − rk = atrB
N ≤ btrB

2 . It is easy to
check that there exist covering of Ar by a family of Mn-balls ∆j, j ∈ Jr, with radMn(∆j) = btrB,

which are centered in
⋃N

k=−N ∂MnB(xB , rk), and have bounded overlap. We write j ∈ Jr,k if ∆j is

centered in ∂MnB(xB, rk). For i ∈ Ir, we also write B̃i = BMn(xi, (a+ b)trB) to shorten notation.
By the subadditivity of Capn−2, then we have

∑

i∈Ir

Capn−2(B̃i \ Ω) (trB)
n−1 ≤

∑

i∈Ir

∑

j:∆j∩B̃i 6=∅

Capn−2(∆j \ Ω) (trB)
n−1(2.5)

≤ C(a, b)
∑

j∈Jr

Capn−2(∆j \Ω) (trB)
n−1,
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taking into account that for each ∆j there is a bounded number (depending on a and b) of balls

B̃i which intersect it. Using also that, for any x ∈ ∆j, ∆j ⊂ BMn(x, 2btrB), we get

∑

j∈Jr

Capn−2(∆j \ Ω) (trB)
n−1 ≈b

N∑

k=−N

∑

j∈Jr,k

Capn−2(∆j \ Ω) radMn(∆j)
n−1

.

N∑

k=−N

∑

j∈Jr,k

ˆ

∂MnB(xB ,rk)∩∆j

Capn−2(BMn(x, 2btrB) \Ω) dH
n−1(x)

.

N∑

k=−N

ˆ

∂MnB(xB ,rk)
Capn−2(BMn(x, 2btrB) \Ω) dH

n−1(x)

Writing tk = rB−rk
rB

and taking into account that tk ≈a t, it easily follows that

Ia,t = −

ˆ

∂Mn ((1−t)B)

Capn−2(BMn(x, atrB) \Ω)

(t rB)n−3
dHn−1(x)

. C(a, b)

N∑

k=−N

−

ˆ

∂Mn ((1−tk)B)

Capn−2(BMn(x,CbtkrB) \ Ω)

(tk rB)n−3
dHn−1(x)

. C ′(a, b) sup
s∈(0,1)

ICb,s.

So choosing b so that Cb ≤ a′, we deduce Ia,t .a,a′ sups∈(0,1) Ia′,s, as wished. �

The following lemma is the analogue of the preceding result for the case n = 2.

Lemma 2.5. Let M2 be either R
2 or S

2, and let β > 0. Let Ω be a relatively open subset of M2

and let B be a geodesic ball in M
2 such that H2(B) = H2(Ω) with radius rB. In the case M

2 = S
2,

suppose also that β ≤ H2(Ω) ≤ H2(S2) − β, and in the case M
2 = R

2 just that H2(Ω) ≤ β. For
a, a′ ∈ (0, 1), we have

sup
t∈(0,1)

−

ˆ

∂
M2 ((1−t)B)

t rB

log 2tarB
CapL(BM2 (x,atrB)\Ω)

dH1(x)

≈ sup
t∈(0,1)

−

ˆ

∂
M2((1−t)B)

t rB

log 2ta′rB
CapL(BM2 (x,a′trB)\Ω)

dH1(x).

Proof. The arguments are very similar to the ones for the preceding lemma with n ≥ 3. The main
change in the proof is that instead of using the subadditivity of Capn−2, we use the fact that, by
Theorem 5.1.4 from [Ra],

1

log 2tarB
CapL(BM2 (x,atrB)\Ω)

≤
∑

j:∆j∩B̃i 6=∅

1

log 2tarB
CapL(∆j\Ω)

≤
∑

j:∆j∩B̃i 6=∅

1

log
2 rad

S2 (∆j)

CapL(∆j\Ω)

.

We leave the details for the reader. �
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2.3. Harmonic measure. A bounded open set Ω ⊂ R
n+1 is Wiener regular if for any continuous

f : ∂Ω → R there exists the solution of the Dirichlet problem for the Laplace equation. The
Wiener criterion characterizes the Wiener regularity of any bounded open. For our purposes, it
suffices to know that, in the case n ≥ 2, if for any x ∈ ∂Ω there exists some rx > 0 and c = c(x) > 0
such that

(2.6) Capn−1(B(x, r) \ Ω) ≥ c rn−1 for 0 < r ≤ rx,

then Ω is Wiener regular. In the case n = 1, instead a sufficient condition for Wiener regularity
is that CapL(B(x, r) \ Ω) ≥ c r for 0 < r ≤ rx, with c = c(x) > 0.

Recall that if Ω ⊂ R
n+1 is a bounded Wiener regular open set and f : Ω → R is continuous and

of class C2 in Ω, then

f(x) =

ˆ

∂Ω
f dωx

Ω −

ˆ

Ω
∆f(y) gΩ(x, y) dy,

where gΩ stands for the Green function for Ω.
The following result is well known2. See Section 2.1 from [To], for example.

Lemma 2.6. For n ≥ 1 there exists c(n) > 0 such that, given an open set Ω ⊂ R
n+1 and a closed

ball B intersecting ∂Ω, it holds

ωx(B) ≥ c(n)
Capn−1(

1
4B \Ω)

rad(B)n−1
for all x ∈ 1

4B ∩ Ω when n ≥ 2,

and

ωx(B) ≥ c(n)
1

log
rad(B)

CapL(
1
4B \Ω)

for all x ∈ 1
4B ∩ Ω when n = 1.

The following two lemmas are valid for the so called NTA domains. However, we only state
them for Lipschitz domains, which suffices for the purposes of this paper. For the proof, see [JK].

Lemma 2.7. Let n ≥ 1 and Ω ⊂ R
n+1 be a Lipschitz domain. Let B be a closed ball centered in

∂Ω. Then

(2.7) ωp(B) ≈ r(B)n−1 gΩ(p, y) for all p ∈ Ω\2B and y ∈ B ∩ Ω,

with the implicit constant just depending on n and the Lipschitz character of Ω.

The following theorem states the so called “change of pole formula”. Again, this holds for NTA
domains (see [JK]) but we only state for Lipschitz domains.

Lemma 2.8 (Change of pole formula). For n ≥ 1, let Ω ⊂ R
n+1 be a Lipschitz domain and let B

be a ball centered in ∂Ω. Let p1, p2 ∈ Ω such that dist(pi, B ∩ ∂Ω) ≥ c−1
1 r(B) for i = 1, 2. Then,

for any Borel set E ⊂ B ∩ ∂Ω,
ωp1(E)

ωp1(B)
≈
ωp2(E)

ωp2(B)
,

with the implicit constant depending only on n, c1, and the Lipschitz character of Ω.

2In some references, it is called “Bourgain’s lemma”.
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3. Proof of Theorem A and beginning of the proof of Theorem B in the Wiener
regular case for M

n = S
n

In this section we assume that we are under the conditions of Theorems A and B and that
M

n = S
n, and we fix β > 0 as in both theorems. In the proof we will allow all the implicit

constants in the notation “.” to depend on β. We may assume that the barycenter of Ω is well
defined, because otherwise, by Theorem 1.2, λΩ − λB & Hn(Ω△S

n)2 & 1 and then Theorems A
and B are trivial. We let B be a ball with the same barycenter as Ω such that Hn(B) = Hn(Ω).

As in Theorem 1.2, we let uΩ and uB be the corresponding eigenfunctions normalized so that
they are positive and ‖uΩ‖L2(Sn) = ‖uB‖L2(Sn) = 1. Let αΩ, αB be the respective characteristic
constants of Ω and B, so that λΩ = αΩ (αΩ + n− 1) and λB = αB (αB + n − 1). Let ũΩ and ũB
be the αB-homogeneous extensions of uΩ and uB , respectively. That is,

ũΩ(y) = |y|αB uΩ(|y|
−1y), ũB(y) = |y|αB uB(|y|

−1y).

Also, denote by Ω̃ and B̃ the following truncated conical domains generated by Ω and B:

Ω̃ = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ Ω}, B̃ = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ B},

and the enlarged versions

Ω̃′ = {y ∈ A(0, 1/8, 2) : |y|−1y ∈ Ω}, B̃′ = {y ∈ A(0, 1/8, 2) : |y|−1y ∈ B}.

We also set

S = ∂A(0, 1/4, 1).

Notice that S contains some part of the boundary of B̃. To prove Theorem B, first we will assume

that Ω̃ and Ω̃′ are Wiener regular domains in R
n+1. Later on we will deduce the general result

from the Wiener regular case.
From the identity in spherical coordinates

∆f = ∂rrf +
n

r
∂rf +

1

r2
∆Snf

for a homogeneous function f defined in R
n+1, it is immediate that ∆ũB = 0 in B̃′, and so in B̃.

On the other hand, ∆ũΩ 6= 0 in Ω̃′ in general, unless αΩ = αB. Instead, we have

∆ũΩ(r, θ) = ∂rrũΩ(r, θ) +
n

r
∂rũΩ(r, θ) +

1

r2
∆SnuΩ(θ)(3.1)

= rαB−2
[(
αB(αB − 1) + nαB

)
uΩ(θ) + ∆Snu(θ)

= rαB−2 (λB − λΩ)uΩ(θ) = r−2 (λB − λΩ)uΩ̃(r, θ).

We will need to use the following auxiliary result below. This may be known to experts but we
provide a detailed proof for completeness.

Lemma 3.1 (Basic estimates). We have

(3.2) ũB(y) ≈ dist(y, ∂B̃′ ∩A(0, 1/8, 2)) for all y ∈ B̃′

and

(3.3) ũΩ(y) . 1 for all y ∈ Ω̃′.
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Further, ω
B̃′ and ωB̃

are mutually absolutely continuous with Hn|
∂B̃′ and Hn|

∂B̃
respectively, and

for x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that |x|−1x ∈ 1
2B, we have

(3.4)
dωx

B̃′

dHn|∂B̃′

. 1 in ∂B̃′

and

(3.5)
dωx

B̃

dHn|∂B̃
≈ 1 in ∂B̃ ∩A(0, 1/3, 4/5).

Remark that the implicit constants involved in the estimates of this lemma depend on the
constant β.

Proof. First we will show that

(3.6) ‖ũB‖∞,B̃′ ≈ 1.

By homogeneity and Cauchy-Schwarz, we have

‖ũB‖∞,B̃′ ≈ ‖uB‖∞,B & ‖uB‖L2(B) = 1.

To prove ‖uB‖∞,B . 1, let y ∈ B, consider the (Euclidean) ball By = B(y, 1/2) and extend ũB
by 0 in R

n+1 \ B̃′. Notice that By may intersect ∂B̃′ ∩A(0, 1/8, 2). It is immediate to check that
ũB is subharmonic in By. Therefore, using also the homogeneity of ũB , we get

uB(y) = ũB(y) ≤ −

ˆ

By

ũB dx ≤

(
−

ˆ

By

|ũB|
2 dx

)1/2

. ‖uB‖L2(B) . 1,

which completes the proof of (3.6).
Remark that essentially the same argument used to prove that ‖uB‖∞,B . 1 shows that

‖ũΩ‖∞,Ω̃′ . 1,

proving (3.3) (in this case we have to argue with the αΩ-homogeneous extension of uΩ in place of
ũΩ).

Next we deal with (3.2). Again by homogeneity it suffices to show that

(3.7) uB(y) ≈ dist(y, ∂SnB) for all y ∈ B.

First we will prove that uB(y) . dist(y, ∂SnB). Since ‖uB‖∞,B . 1, we can assume that

dist(y, ∂SnB) ≤ 1
10 radSn(B). For a fixed y0 ∈ B satisfying this condition, let ξ ∈ ∂SnB be

such that dist(y0, ∂SnB) = dist(y0, ξ) and consider a ball Vξ ⊂ R
n+1 \ B̃′ such that ξ ∈ ∂Vξ with

c ≤ rad(Vξ) ≤ 1/10, so that Vξ is outer tangent to B̃′ in ξ. Let gV be the Green function of the

open set Rn+1 \ Vξ. Notice that the functions ũB and gV (xB , ·) are both harmonic in the domain

B̃0 = B̃′ \ B(xB ,
1
10radSn(B)). It is easy to check that gV (xB, y) ≈ 1 for y ∈ ∂B̃0 ∩ ∂A(0, 1/8, 2)

and y ∈ ∂B(xB ,
1
10 radSn(B)). So using also (3.6) we deduce that

ũB(y) . gV (xB , y) ‖ũB‖∞,B̃′ . gV (xB , y) for all y ∈ ∂B̃0.

By the maximum principle, the same estimate holds for all y ∈ B̃0, and so

ũB(y) . gV (xB , y) ≈ |y − ξ| for all y ∈ B̃0,
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by the smoothness of gV in ξ. In particular,

(3.8) ũB(y0) . |y0 − ξ| = dist(y0, ∂SnB).

Now we will show that

(3.9) uB(y) & dist(y, ∂SnB) for all y ∈ B.

To this end, observe first that the condition (3.8) and the fact that ‖uB‖∞,B ≈ 1 imply that
the maxB uB is attained at a point x0 ∈ B such that dist(x0, ∂SnB) ≈ 1. By a Harnack chain
argument, this implies that

(3.10) ũB(y) ≈ 1 for all y ∈ B̃′ such that dist(y, ∂B̃′) ≈ 1.

To prove (3.9), let y0 and ξ be as above, and consider a ball Uξ ⊂ B̃′ such that ξ ∈ ∂Uξ with

c ≤ rad(Uξ) ≤ 1/10, so that Uξ is inner tangent to B̃′ in ξ. Let gU be the Green function of
the ball Uξ and let xU be the center of Uξ. Notice that the functions ũB and gU (xU , ·) are both

harmonic in B̃1 = Uξ \ B̄(xU ,
1
10 rad(Uξ)). It is easy to check that, for y ∈ ∂B(xU ,

1
10 rad(Uξ)),

gU (xU , y) ≈ 1 while ũB(y) ≈ 1, by (3.10). So we deduce that

ũB(y) & gU (xU , y) for all y ∈ ∂B̃1.

By the maximum principle, the same estimate holds for all y ∈ B̃1, and so

ũB(y) & gU (xU , y) ≈ |y − ξ| for all y ∈ B̃1,

by the smoothness of gU in ξ. In particular, ũB(y0) & |y0 − ξ| = dist(y0, ∂SnB), which concludes
the proof of (3.9) and (3.7).

Let us turn our attention to the behavior of the harmonic measures ωB̃′ and ωB̃. The fact that
they are mutually absolutely continuous with Hn|

∂B̃′ and Hn|
∂B̃

, respectively, is due to the fact

that both B̃′ and B̃ are Lipschitz domains, and in fact, piecewise C∞ domains. To prove (3.4) for

x as in the lemma (i.e., x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that |x|−1x ∈ 1
2B), we consider an arbitrary

point ξ ∈ ∂B̃′ and we assume that ∂B̃′ is smooth in a neighborhood of ξ (this happens for Hn-a.e.

ξ ∈ ∂B̃′). As above, let Vξ ⊂ R
n+1 \ B̃′ be a ball such that ξ ∈ ∂Vξ with c ≤ rad(Vξ) ≤ 1/10,

so that Vξ is (outer) tangent to B̃′ in ξ, and let gV be the Green function of Rn+1 \ Vξ. Also, let

gB̃′ be the Green function of B̃′. Then the function gV (x, ·)− gB̃′(x, ·) is harmonic in B̃′ and it is

non-negative in ∂B̃′. So

gB̃′(x, y) ≤ gV (x, y) for all y ∈ B̃′,

by the maximum principle. Consequently,

dωx
B̃′

dHn|∂B̃′

(ξ) = ∂νgB̃′(x, ξ) ≤ ∂νgV (x, ξ) =
dωx

Rn+1\Vξ

dHn|∂Vξ

(ξ) ≈ 1,

where ∂ν stands for the normal derivative in the inner direction.
The same argument as above shows that

dωx
B̃

dHn|∂B̃
. 1 in ∂B̃.

To prove the converse estimate for ξ ∈ ∂B̃ ∩ A(0, 1/3, 4/5), consider again a ball Uξ ⊂ B̃′ such

that ξ ∈ ∂Uξ with c ≤ rad(Uξ) ≤ 1/10, so that Uξ is (inner) tangent to B̃ in ξ. Let g
B̃

be the
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Green function of B̃ and gU be the Green function of Uξ, and xU the center of Uξ. Then the
function gB̃(xU , ·)− gU (xU , ·) is harmonic in Uξ and it is non-negative in ∂Uξ. So

g
B̃
(xU , y) ≥ gU (xU , y) for all y ∈ Uξ,

by the maximum principle. Consequently,

dωxU

B̃

dHn|∂B̃
(ξ) = ∂νgB̃(xU , ξ) ≥ ∂νgU (xU , ξ) =

dωxU
Uξ

dHn|∂Uξ

(ξ) ≈ 1.

By a Harnack chain argument, it follows that

dωxU

B̃

dHn|∂B̃
(ξ) ≈

dωx
B̃

dHn|∂B̃
(ξ),

and so the proof of (3.5) is concluded. �

Claim 1 (Extension of uB and ũB). There exists an extension uexB of uB |B to S
n which belongs to

C2(Sn) and such that ‖∇juexB ‖∞,Sn . 1 for j = 0, 1, 2 and ‖∆ũexB ‖∞,A(0,1/4,2) . 1, where ũexB is the

αB-homogeneous extension of uexB to R
n+1. Further, we may construct uexB so that it is supported

in an S
n-ball B0 concentric with B such that Hn(Sn \B0) ≥ β/2.

Proof. The arguments are quite standard. Since the function ũB is harmonic in B̃′ and it vanishes

identically in ∂B̃′ \ ∂A(0, 1/8, 2), which is a C∞ portion of the boundary, it follows that ũB ∈

C2(V ), for V = B̃′∩A(0, 1/4, 3/2) and that ‖ũB‖C2(V ) . ‖ũB‖
C(B̃′)

. See for example Corollary 6.7

from [GT]. By Lemma 3.1, ‖ũB‖
C(B̃′)

. 1. By a suitable reflection, one can construct a function

f ∈ C2(Ā(0, 1/2, 5/4)) which coincides with ũB in V and satisfies ‖f‖C2(Ā(0,1/2,5/4)) . ‖ũB‖C2(V ).

Multiplying f by a suitable bump C∞ function, we can assume that f |Sn is supported in an S
n-ball

B0 concentric with B such that Hn(Sn \ B0) ≥ β/2. Then we set uexB := f |Sn and we let ũexB be
its αB-homogeneous extension. �

Recall that we assume that uB and uΩ vanish respectively in S
n \ B and S

n \ Ω. Notice that
the estimate (1.2) from Theorem 1.2 may not hold for the extension uexB . Instead, we have

(3.11) λΩ − λB ≥ C(β)
(
Hn(Ω△B)2 +

ˆ

B
|uΩ − uexB |2 dHn

)
.

Consider the function v : Sn → R defined by v = uexB − uΩ and let ṽ be its αB-homogeneous

extension, so that ṽ = ũexB − ũΩ. Notice that in Ω̃′, by (3.1) we have

(3.12) ∆ṽ = ∆ũexB −∆ũΩ = ∆ũexB − (λB − λΩ) |y|
−2 ũΩ.

Notice also that supp∆ũexB ⊂ (B̃′)c.

Recall that S = ∂A(0, 1/4, 1). We can write, for x ∈ Ω̃,

ṽ(x) =

ˆ

∂Ω̃
ṽ dωx

Ω̃
−

ˆ

Ω̃
∆ṽ(y) g

Ω̃
(x, y) dy(3.13)

=

ˆ

∂Ω̃∩B̃\S
ṽ dωx

Ω̃
+

ˆ

∂Ω̃\(B̃∪S)
ṽ dωx

Ω̃
+

ˆ

∂Ω̃∩S
ṽ dωx

Ω̃
−

ˆ

Ω̃
∆ṽ(y) gΩ̃(x, y) dy

=: ṽ1(x) + ṽ2(x) + ṽ3(x) + ṽ4(x),
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where gΩ̃(x, y) is the Green function of Ω̃. For the points x ∈ A(0, 1/2, 3/4)∩ Ω̃ such that |x|−1x ∈
9
10B, we intend to estimate ṽ(x) from below and to relate this to the terms appearing on the right
hand side of the inequalities (1.3), (1.4), and (1.9), so that then we can apply the inequality (3.11)
to prove Theorem A and Theorem B. To this end, we will estimate |ṽ2(x) + ṽ3(x) + ṽ4(x)| from
above and ṽ1(x) from below.

Lemma 3.2. Let x ∈ A(0, 1/2, 3/4) ∩ Ω̃ and also that |x|−1x ∈ 9
10B, and let ṽi, for 1 ≤ i ≤ 4, be

the functions in (3.13). Suppose that |λB − λΩ| ≤ 1. Then we have
∣∣ṽ2(x) + ṽ3(x) + ṽ4(x)

∣∣ . (λΩ − λB)
1/2.

Proof. Estimate of |ṽ3(x)|. By the maximum principle and taking into account that
dωx

A(0,1/4,1)

dHn ≈

1 on S, for any set F ⊂ ∂Ω̃ ∩ S, we have

ωx
Ω̃
(F ) ≤ ωx

A(0,1/4,1)(F ) ≈ Hn(F ).

Therefore, ωx
Ω̃
|S is absolutely continuous with respect to surface measure on S, and

dωx
Ω̃

dHn
(y) . 1 for Hn-a.e. y ∈ ∂Ω̃ ∩ S.

Hence, using also the αB-homogeneity of ṽ,

|ṽ3(x)| .

ˆ

∂Ω̃∩S
|ṽ| dHn .

ˆ

Ω
|uexB − uΩ| dH

n.

Then, by Cauchy-Schwarz and (3.11), we deduce
ˆ

Ω∩B
|uexB − uΩ| dH

n ≤

(
ˆ

Ω∩B
|uB − uΩ|

2 dHn

)1/2

. (λΩ − λB)
1/2.

On the other hand, from (3.2), (3.3), and again (3.11), we have
ˆ

Ω\B
|uexB − uΩ| dH

n ≤
(
‖uexB ‖∞ + ‖uΩ‖∞

)
Hn(Ω \B) . Hn(Ω \B) . (λΩ − λB)

1/2.

Adding the two preceding estimates we derive

|ṽ3(x)| . (λΩ − λB)
1/2.

Estimate of |ṽ4(x)|. To this end, we use the trivial estimate g
Ω̃
(x, y) ≤ |x− y|1−n and the fact

that by (3.1) and Claim 1,

‖∆ũΩ‖∞,Ω̃ . |λΩ − λB | ≤ 1 and ‖∆ũexB ‖∞,Ω̃\B . 1.

Taking also into account that supp∆ũexB ⊂ (B̃)c, we get

|ṽ4(x)| ≤

ˆ

Ω̃∩B̃
|λB − λΩ| |ũΩ(y)|

1

|y|2 |x− y|n−1
dy +

ˆ

Ω̃\B̃

|∆ũexB (y)|+ |∆ũΩ̃(y)|

|x− y|n−1
dy

. |λB − λΩ| ‖ũΩ‖∞

ˆ

Ω̃∩B̃

1

|x− y|n−1
dy +

ˆ

Ω̃\B̃

1

|x− y|n−1
dy.

To estimate the first summand we use the fact that ‖ũΩ‖∞ . 1 and a trivial bound for the integral,

while for second one we take into account that Hn+1(Ω̃ \ B̃) . Hn(Ω \B) . |λB − λΩ|
1/2 and the
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fact that dist(x, B̃c) & 1, since |x|−1x ∈ 9
10B. Using also the assumption that |λB − λΩ| ≤ 1, we

obtain

|ṽ4(x)| . |λB − λΩ|+ |λB − λΩ|
1/2 . |λB − λΩ|

1/2.

Estimate of |ṽ2(x)|. Recall that

ṽ2(x) =

ˆ

∂Ω̃\(B̃∪S)
ṽ dωx

Ω̃
=

ˆ

∂Ω̃\(B̃∪S)
(ũexB − ũΩ) dω

x
Ω̃
.

Since uΩ vanishes on ∂SnΩ, we can write

|ṽ2(x)| ≤

ˆ ∞

0
ωx
Ω̃

({
y ∈ ∂Ω̃ \ (B̃ ∪ S) : |ũexB (y)| > t

})
dt.

Since ‖∇ũexB ‖∞,A(0,1/4,1) ≈ ‖∇uexB ‖∞,Sn + ‖uexB ‖∞,Sn . 1 and ũexB vanishes on ∂B̃ \ S, we have

|ũexB (y)| . dist(y, ∂B̃ \ S) ≈ distSn(|y|
−1y, ∂B) = δB(|y|

−1y).

Therefore, recalling also that ũexB vanishes in S
n \B0 (with B0 defined in Claim 1), for some c > 0

we have

|ṽ2(x)| ≤

ˆ ∞

0
ωx
Ω̃

({
y ∈ ∂Ω̃ ∩ B̃0 \ (B̃ ∪ S) : δB(|y|

−1y) ≥ ct
})
dt

≈

ˆ t0

0
ωx
Ω̃

({
y ∈ ∂Ω̃ \ (B̃ ∪ S) : δB(|y|

−1y) ≥ t
})
dt,

where t0 = distSn(∂B, ∂B0). For each t ∈ (0, t0), take the S
n-ball Bt = {z ∈ S

n : distSn(z,B) < t}
and the associated truncated conical regions

B̃t = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ Bt}, B̃′
t = {y ∈ A(0, 1/8, 2) : |y|−1y ∈ Bt}.

Notice that B ⊂ Bt ⊂ B0 and that
{
y ∈ ∂Ω̃ \ (B̃ ∪ S) : distSn(|y|

−1y, ∂B) ≥ t
}
= ∂Ω̃ \ (B̃t ∪ S).

By the maximum principle, since Ω̃∩ B̃t ⊂ Ω̃ and Ω̃∩∂(Ω̃∩ B̃t) = Ω̃∩∂B̃t, for 0 < t ≤ t0 we have

ωx
Ω̃

(
∂Ω̃ \ (B̃t ∪ S)

)
≤ ωx

Ω̃∩B̃t

(
∂B̃t ∩ Ω̃

)
.

By the maximum principle and standard estimates (taking into account that the ball B0 in Claim 1

does not degenerate) we deduce that, for any set F ⊂ ∂B̃t ∩ Ω̃ \ S,

ωx
Ω̃∩B̃t

(F ) ≤ ωx
B̃′

t
(F ) ≈ Hn(F ).

Therefore, for each t ∈ (0, t0),

ωx
Ω̃

({
y ∈ ∂Ω̃ \ (B̃ ∪ S) : δB(|y|

−1y) ≥ t
})

≤ ωx
Ω̃∩B̃t

(
∂B̃t ∩ Ω̃

)
. Hn

(
∂B̃t ∩ Ω̃

)
.

Consequently, applying Fubini and using the conical property of Ω̃, we obtain

|ṽ2(x)| .

ˆ t0

0
Hn
(
∂B̃t ∩ Ω̃

)
dt ≈ Hn+1(Ω̃ ∩ B̃0 \ B̃) . Hn(Ω \B) . |λB − λΩ|

1/2,

using also (3.11) for the last estimate. �
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Estimate of ṽ1(x). Next we turn our attention to the function ṽ1. Since ũΩ vanishes in ∂Ω̃\S

and ũexB = ũB in B̃, for x ∈ A(0, 1/2, 3/4) ∩ Ω̃ we have

ṽ1(x) =

ˆ

∂Ω̃∩(B̃\S)

(
ũexB − ũΩ) dω

x
Ω̃
=

ˆ

∂Ω̃\S
ũB dω

x
Ω̃
.

Observe first that, by the maximum principle, if we let Ω0 = Ω∩B and Ω̃0 = Ω̃∩ B̃, then it holds

(3.14) ṽ1(x) ≥

ˆ

∂Ω̃0\S
ũB dω

x
Ω̃0

=: f0(x) for all x ∈ Ω̃0.

We extend f0 to the whole B̃ by letting

(3.15) f0(x) = ũB(x) for all x ∈ B̃ \ Ω̃0.

We claim that f0 is superharmonic in B̃0. Indeed, first notice that, by the maximum principle,

f0(x) ≤ ũB(x) for all x ∈ Ω̃0.

So f0 − ũB is continuous in B̃ (although it may happen that f0 does not extend continuously to

∂B̃ ∩ S), it vanishes in B̃ \ Ω̃, and it is harmonic and negative in Ω̃ ∩ B̃ = Ω̃0. This implies that

f0 − ũB is superharmonic in B̃, and so the same happens for f0 = (f0 − ũB) + ũB.

Lemma 3.3. Suppose that |λB − λΩ| ≤ 1 and that Ω̃ is Wiener regular. Denote 9̃
10B = {x ∈ B̃ :

|x|−1x ∈ 9
10B}. Then we have

λΩ − λB ≥ C(β)

(
ˆ

9̃
10

B∩A(0,1/2,3/4)
f0(x) dH

n+1(x)

)2

.

Proof. By the Allen-Kriventsov-Neumayer theorem and the αB-homogeneity of ṽ, we have

λΩ − λB &

ˆ

9
10

B
|uB − uΩ|

2 dHn ≈β

ˆ

9̃
10

B
|ũB − ũΩ|

2 dHn+1,

since αB ≈β 1. By Lemma 3.2 and (3.14), for all x ∈ 9̃
10B ∩A(0, 1/2, 3/4) ∩ Ω̃, we have

ũB(x)− ũΩ(x) = ũexB (x)− ũΩ(x) = ṽ(x)

≥ ṽ1(x)− |ṽ2(x) + ṽ3(x) + ṽ4(x)| ≥ f0(x)− C(λΩ − λB)
1/2.

On the other hand, for x ∈ 9̃
10B ∩A(0, 1/2, 3/4) \ Ω̃, by definition

ũB(x)− ũΩ(x) = ũB(x) = f0(x).

Therefore, by Cauchy-Schwarz,

λΩ − λB &β

ˆ

9̃
10

B∩A(0,1/2,3/4)
|f0(x)− C(λΩ − λB)

1/2|2 dHn+1(x)

&β

(
ˆ

9̃
10

B∩A(0,1/2,3/4)
|f0(x)− C(λΩ − λB)

1/2| dHn+1(x)

)2

≥

(
ˆ

9̃
10

B∩A(0,1/2,3/4)
f0(x) dH

n+1(x)

)2

− C|λΩ − λB|,
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which proves the lemma. �

Lemma 3.4. There exists some constant c2 ∈ (0, 1/4) depending only on n such that the following
holds. Let ∆z be an S

n-ball centered in z ∈ S
n such that ∆z ⊂ B, with distSn(∆z, ∂SnB) ≥ ρ. Let

Bz be an Euclidean ball centered in the segment Lz = [0, z] ∩ A(0, 1/2, 3/4) with 1
8 radSn(∆z) ≤

rad(Bz) ≤ radSn(∆z) such that S ∩Bz 6= ∅. Then, in the case n ≥ 3 we have

(3.16) f0(y) &
ρ Capn−2(c2∆z\ Ω)

radSn(∆z)n−2
for all y ∈ 1

4Bz ∩ Ω̃,

and in the case n = 2,

(3.17) f0(y) &
ρ

log
radSn(∆z)

CapL(c2 ∆z\ Ω)

for all y ∈ c2Bz ∩ Ω̃.

Proof. Suppose n ≥ 3. By Lemma 2.6 and Lemma 2.2, for all y ∈ 1
4Bz ∩ Ω̃0, we have

ωy

Ω̃0
(Bz) &

Capn−1(
1
4Bz \ Ω̃0)

rad(Bz)n−1
&

Capn−2(c2∆z \ Ω0)

rad(Bz)n−2
,

for a suitable constant c2 depending just on n. Then, taking into account that ũB(z) ≈ dist(z, ∂B̃) &
ρ for all z ∈ Bz and that Bz ∩ S = ∅ (recall that S = ∂A(0, 1/4, 1)), from the definition of f0 in
(3.14) we infer

f0(y) ≥

ˆ

∂Ω̃0∩Bz

ũB dω
y

Ω̃0
& ρωy

Ω̃0
(Bz) &

ρ Capn−2(c2∆z \ Ω0)

rad(Bz)n−2
for all y ∈ 1

4Bz ∩ Ω̃0.

On the other hand, for y ∈ 1
4Bz \ Ω̃0, we also have f0(y) = ũB(y) ≈ dist(z, B̃) ≥ ρ.

The arguments for the case n = 2 are analogous. �

Proof of Theorem A assuming Ω̃ to be Wiener regular, for M
n = S

n. Suppose n ≥ 3. We
can assume that |λB − λΩ| ≤ 1, because otherwise the inequality (1.3) is immediate, since the
right hand side of (1.3) is bounded above by some absolute constant. Recall that we denote
rB = radSn(B). We will prove the theorem with a = c2/4, with c2 as in (3.16) and (3.17).

We will show first that

(3.18) λΩ − λB ≥ C(β)

(
sup

s∈(0,c2/4)
−

ˆ

∂Sn(sB)
Capn−2(BSn(x,

c2
4 rB) \ Ω) dH

n−1(y)

)2

.

To this end, observe that, from (3.16) in Lemma 3.4 applied to ∆z = 1
2 B and to a ball Bz as in

that lemma (so that rad(Bz) ≈ radSn(∆z) ≈ radSn(B)), we get

f0(y) &
radSn(B) Capn−2(

c2
2 B \ Ω)

radSn(B)n−2
=

Capn−2(
c2
2 B \ Ω)

radSn(B)n−3
for all y ∈ 1

4Bz ∩ Ω̃.

The same inequality holds for y ∈ 1
4Bz\Ω̃, since for these points it holds f0(y) = ũB(y) ≈ radSn(B),

by (3.2). Consequently, by Lemma 3.3, choosing Bz so that Hn+1( 9̃
10B ∩ A(0, 1/2, 3/4) ∩ Bz) ≈
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Hn+1(B̃) ≈ rn+1
B ≈β 1, we deduce

(3.19) λΩ − λB ≥ C(β)

(
ˆ

9̃
10

B∩A(0,1/2,3/4)∩Bz

f0(x) dH
n+1(x)

)2

&
(
r 4
B Capn−2(

c2
2 B \ Ω)

)2
.

Notice that, for any s ∈ (0, c2/4) and y ∈ ∂Sn(sB), it holds Capn−2(
c2
2 B\Ω) ≥ Capn−2(BSn(y,

c2
4 rB)\

Ω). Thus,

Capn−2(
c2
2 B \Ω) ≥ −

ˆ

∂Sn (sB)
Capn−2(BSn(y,

c2
4 rB) \ Ω) dH

n−1(y).

Together with (3.19), this gives (3.18).
We consider now the case s = 1− t ∈ (c2/4, 1) (here t is the parameter appearing in (1.3) and

(1.4)). Let Bs = sB and

B̃s = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ sB}

and denote

Γs = ∂B̃s ∩A(0, 1/4, 1).

Notice that B̃s is a Lipschitz domain with Lipschitz character depending at most on n and β,
since s ≥ c2/4.

Let ϕ0 be a smooth bump function which equals 1 in A(0, 1/3, 4/5) is supported on A(0, 1/4, 1).

We define f1 : B̃s → R by

(3.20) f1(x) =

ˆ

∂B̃s\S
ϕ0 f0 dω

x
B̃s

=

ˆ

Γs

f0 dω
x
B̃s
.

Since the boundary data ϕ0f0 is continuous in ∂B̃s, the function f1 is harmonic in B̃s and con-

tinuous in B̃s. These are the advantages of f1 over f0. Moreover, since f0 is superharmonic in B̃s

and f1 harmonic in B̃s, f0 ≥ f1 in Γs, and

lim inf
y→z

(f0 − f1)(z) = lim inf
y→z

f0(z) ≥ 0 for all z ∈ ∂B̃s \ Γs,

by the maximum principle then it follows that f0(x) ≥ f1(x) for all x ∈ B̃s (see Theorem 3.1.5
from [AG], for example).

By the same arguments as the ones for (3.5), we deduce that for x ∈ A(0, 1/2, 3/4) ∩ B̃s/2

dωx
B̃s

dHn|
∂B̃s

≈ 1 in ∂B̃s ∩A(0, 1/3, 4/5).

Therefore, by (3.20), for these points x,

f1(x) &

ˆ

∂B̃s∩A(0,1/3,4/5)
f0(y) dH

n(y).

On the other hand, for every y ∈ ∂B̃s ∩ A(0, 1/3, 4/5), by Lemma 3.4 applied to an S
n-ball ∆z

centered in z = |y|−1y with geodesic radius 1
2δB(z) =

1−s
2 rB = ρ , we have

f0(y) &
ρ Capn−2(c2∆z\Ω)

radSn(∆z)n−2
≈

Capn−2(c2∆z\ Ω)

((1− s)rB)n−3
=

Capn−2(BSn(|y|
−1y, c2(1− s)rB) \Ω)

((1− s)rB)n−3
.
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Thus,
ˆ

∂B̃s∩A(0,1/3,4/5)
f0(y) dH

n(y) &

ˆ

∂B̃s∩A(0,1/3,4/5)

Capn−2(BSn(|y|
−1y, c2(1− s)rB) \Ω)

((1− s)rB)n−3
dHn(y)

≈

ˆ

∂Sn (sB)

Capn−2(BSn(y, c2(1− s)rB) \ Ω)

((1− s)rB)n−3
dHn−1(y).

So, for all x ∈ A(0, 1/2, 3/4) ∩ B̃s/2,

f0(x) ≥ f1(x) &

ˆ

∂Sn (sB)

Capn−2(BSn(y, c2(1− s)rB) \ Ω)

((1− s)rB)n−3
dHn−1(y).

By Lemma 3.3, this implies

λΩ − λB & C(β)

(
ˆ

∂Sn(sB)

Capn−2(BSn(y, c2(1− s)rB) \Ω)

((1 − s)rB)n−3
dHn−1(y)

)2

,

for all s ≥ c2/4. Together with (3.18), this proves the theorem with a = c2/4 and n ≥ 3. The
arguments for the case n = 2 are almost the same. The only essential change is that above we
have to use the estimate (3.17) instead of (3.16). Thanks to Lemmas 2.4 and 2.5, this implies that
the theorem is valid for any a ∈ (0, 1). �

4. End of the proof of Theorem B in the Wiener regular case for M
n = S

n

Notice that the case s = n in Theorem B is an immediate consequence of Theorem 1.2. So we
assume that 0 < s < n. Recall that, for n ≥ 3,

Tc0(Ω, B, a) =
{
x ∈ B \ Ω : Capn−2(BMn(x, a δB(x)) \ Ω) ≥ c0 δB(x)

n−2
}
,

and, in the case n = 2,

Tc0(Ω, B, a) =
{
x ∈ B \ Ω : CapL(BMn(x, a δB(x)) \ Ω) ≥ c0 δB(x)

}
.

To shorten notation we write

Tc0 = Tc0(Ω, B, a).

We will assume a = 1/2, but all the arguments below work with arbitrary a ∈ (0, 1). We denote

γs(Ω) =

ˆ

Tc0

δB(y)
n−s dHs

∞(y).

So to prove Theorem B we have to show that, for 0 < s ≤ n,

(4.1) λΩ − λB ≥ C(a, s, β, c0) γs(Ω)
2.

To this end, we distinguish two cases:

• Case 1. There exists some point y0 ∈ Tc0 such that δB(y0) ≥
1
4 radSn(B).

• Case 2. Such point y0 does not exist.
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4.1. Case 1. Let y0 ∈ Tc0 be as described above. By covering BSn(y0,
1
2δB(y0)) with a finite

number of Sn-balls with radius 1
2c2
δB(y0), we find an S

n-ball ∆z = BSn(z,
1
2c2
δB(y0)) such that

Capn−2(∆z \Ω) ≈ radSn(∆z)
n−2 in the case n ≥ 3 and CapL(∆z \Ω) ≈ radSn(∆z)

n−2 in the case
n = 2. Then, by Lemma 3.4, in the case n ≥ 3 the function f0 (defined in (3.14) and (3.15))
satisfies

f0(y) &
radSn(∆z) Capn−2(c2∆z\Ω)

radSn(∆z)n−2
& c0 for all y ∈ 1

4Bz ∩ Ω̃,

for an Euclidean ball Bz ⊂ 9̃
10B centered in the segment Lz = [0, z] ∩ A(0, 1/2, 3/4) with ≈

rad(Bz) ≈ radSn(∆z) ≈ 1. The same estimate holds in the case n = 2, using that CapL(∆z \Ω) ≈
radSn(∆z). Then, by Lemma 3.3, we deduce that either |λB − λΩ| > 1 or

λΩ − λB ≥ C(β)

(
ˆ

9̃
10

B∩A(0,1/2,3/4)
f0(x) dH

n+1(x)

)2

≥ C ′(β)

(
ˆ

Bz

c0 dH
n+1(x)

)2

&β c
2
0,

which implies (4.1) in any case, as γs(Ω) . 1.

4.2. Case 2. From now on we will assume that x ∈ A(0, 1/2, 3/4)∩ Ω̃ and also that |x|−1x ∈ 1
2B.

The two conditions and the fact we are in Case 2 ensure that

dist(x,Rn+1 \ B̃) & 1 and dist(x, T̃c0) & 1,

where

T̃c0 = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ Tc0}.

Main Lemma 4.1. Under the assumptions of Case 2, for all x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that
|x|−1x ∈ 1

2B, we have

f0(x) & γs(Ω).

By Lemma 3.3 and the preceding result, then we deduce that (4.1) also holds in Case 2 and The-
orem B follows. So to conclude the proof of Theorem B it just remains to prove Main Lemma 4.1.

Let M ≥ 10 be some constant to be fixed below. For each y ∈ Tc0 , let y′ ∈ ∂B be such
that δB(y) = distSn(y, y

′) and let ∆y be an S
n-ball centered in y′ with S

n-radius 2MδB(y) (in
case that 2MδB(y) > π, then ∆y = S

n). By Vitali’s covering theorem, there exists a subfamily
{∆′

i}i∈I0 ⊂ {∆y}y∈Tc0
such that Tc0 ⊂

⋃
i∈I0

5∆′
i and the balls ∆′

i, i ∈ I0, are pairwise disjoint.

We denote ∆i =
1
M∆′

i. Notice that the S
n-balls ∆i, i ∈ I0, satisfy M∆i ∩M∆j = ∅ for all i 6= j.

Moreover, for each ball ∆i there exists some yi ∈ Tc0 ∩
1
2∆i such that δB(yi) =

1
2radSn(∆i).

Lemma 4.2. For 0 < s < n, we have

γs(Ω) .M

∑

i∈I0

radSn(∆i)
n.

Proof. Changing variables, we get

γs(Ω) =

ˆ

Tc0

δB(y)
n−s dHs

∞(y) =

ˆ ∞

0
Hs

∞({y ∈ Tc0 : δB(y) > t
1

n−s }) dt(4.2)

= (n− s)

ˆ ∞

0
tn−s−1Hs

∞({y ∈ Tc0 : δB(y) > t}) dt.
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Since the balls 5∆′
i are centered in ∂B and they cover Tc0 , the condition δB(y) > t for y ∈ Tc0

implies that y belongs to some ball 5∆′
i with radSn(5∆

′
i) > t. Therefore,

Hs
∞({y ∈ Tc0 : δB(y) > t}) .

∑

i∈I0:radSn(5∆
′

i)>t

radSn(5∆
′
i)
s.

Thus, by Fubini,

γs(Ω) .

ˆ ∞

0
tn−s−1

∑

i∈I0:radSn(5∆
′

i)>t

radSn(5∆
′
i)
s dt

=
∑

i∈I0

radSn(5∆
′
i)
s

ˆ

t<radSn(5∆
′

i)
tn−s−1 dt ≈

∑

i∈I0

radSn(5∆
′
i)
n ≈M

∑

i∈I0

radSn(∆i)
n.

�

Now we need to define a family of separated balls centered in

L := ∂B̃ \ S.

For each i ∈ I0, let zi ∈ S
n be the center of ∆i and consider the segment

Li = [0, zi] ∩A(0, 1/2, 3/4).

Next we choose a maximal family of points zi,j ∈ Li, j ∈ Ji, which are (MradSn(∆i))-separated,
so that #Ji ≈ (MradSn(∆i))

−1 for each i ∈ I0. It is easy to check that the balls Bi,j :=
B(zi,j , radSn(∆i)), with i ∈ I0, j ∈ Ji, satisfy c3MBi,j ∩ c3MBi′,j′ = ∅ for a suitable absolute
constant c3 > 0 if (i, j) 6= (i′, j′). Notice that

(4.3)
∑

i∈I0,j∈Ji

rad(Bi,j)
n+1 =

∑

i∈I0

#Ji radSn(∆i)
n+1 ≈M

∑

i∈I0

radSn(∆i)
n &M γs(Ω),

by Lemma 4.2.
To simplify notation, we denote

{Bk}k∈K = {Bi,j}i∈I0,j∈Ji.

We need now to construct an auxiliary Lipschitz graph Γ which will play an important role in the
proof of Main Lemma 4.1. First observe that, from the fact that Capn−2(B(yi,

1
2δB(yi))∩S

n\Ω) ≥

c0r
n−2 for each i ∈ I0 in the case n ≥ 3 and the analogous estimate for the logarithmic capacity

in the case n = 2 (since yi ∈ Tc0), by Lemma 2.3 we deduce that, for all k ∈ K,

Capn−1({y ∈ Bk \ Ω̃ : dist(y, ∂B̃) ≥ c4 rad(Bk)}
)
& rad(Bk)

n−1,

for a suitable constant c4 ∈ (0, 1/4). By covering {y ∈ ∂Ω̃ ∩ Bk : dist(y, ∂B̃) ≥ c4 rad(Bk)}

with balls with radius c4 rad(Bk)/10, we infer that there exists some point zk ∈ Bk \ Ω̃ such that

dist(zk, ∂B̃) ≥ c4 rad(Bk) and so that the ball B′
k := B(zk, c4rad(Bk)/4) satisfies

(4.4) 4B′
k ⊂ B̃ and Capn−1

(
1
4B

′
k \ Ω̃

)
& rad(Bk)

n−1.

For each k ∈ K, we consider a Lipschitz function ϕk : L→ B̃ supported in 1
2c2MBk such that

Lip(ϕk) . (M rad(Bk))
−1 and so that zk belongs to the graph of ϕk. It is easy to check that such
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a function exists. Then we define ϕ : L → B̃ as follows:

ϕ(y) =





ϕk(y) if y ∈ c2MBk ∩ L fo some k ∈ K,

0 otherwise.

We assume that the balls c2MBk, k ∈ K, are pairwise disjoint (otherwise we could replace c2 by
a smaller constant in the construction above), and then it is clear that the definition is correct.

It is also clear that ϕ is a Lipschitz function whose graph is contained in B̃. Further, because the
functions ϕk are cM -Lipschitz and because of the smoothness of L, it follows easily that

(4.5) ϕ|F is c′M−1-Lipschitz for any set F ⊂ L with diam(F ) small enough (depending on M).

We denote by Γ the graph of ϕ, and we let FΓ be the closed set comprised between L and Γ.
Next we consider the domain

Ω̃Γ = B̃ \ FΓ.

Notice that Ω̃Γ is a Lipschitz domain contained in B̃ whose boundary equals Γ ∪ (S ∩ ∂B̃).
Recall that

f0(y) =

ˆ

∂Ω̃0\S
ũB dω

y

Ω̃0
for all y ∈ Ω̃0

and
f0(x) = ũB(x) for all x ∈ B̃ \ Ω̃0,

where Ω0 = Ω ∩B and Ω̃0 = Ω̃ ∩ B̃. Now we define f1 : Ω̃Γ → R by

(4.6) f1(x) =

ˆ

∂Ω̃Γ\S
f0 dω

x
Ω̃Γ

=

ˆ

Γ
f0 dω

x
Ω̃Γ
.

Remark that f1 is harmonic in Ω̃Γ and continuous in Ω̃Γ, except perhaps in Γ ∩ S, because the

boundary data f0 χΓ is continuous in ∂Ω̃Γ. Since f0 is superharmonic in Ω̃Γ and f1 harmonic in

Ω̃Γ, f0 and f1 have the same boundary values in Γ, and

lim inf
y→z

(f0 − f1)(z) = lim inf
y→z

f0(z) ≥ 0 for all z ∈ ∂Ω̃Γ \ Γ,

by the maximum principle then it follows that

(4.7) f0(x) ≥ f1(x) for all x ∈ Ω̃Γ

(see Theorem 3.1.5 from [AG]).

Lemma 4.3. For each k ∈ K, let Γk be the following subset of Γ:

Γk =
{
y ∈ ϕk(c2MBk ∩ L) : dist(y, L) ≥

1
10rad(Bk)

}
.

Then
f0(y) = f1(y) & rad(Bk) for all y ∈ Γ ∩ 1

4B
′
k.

Proof. The fact that f0(y) = f1(y) for y ∈ Γ ∩ 1
4B

′
k is an immediate consequence of the definition

of f1(y).

By (4.4) and Lemma 2.6, for all y ∈ 1
4B

′
k ∩ Ω̃0, we have

ωy

Ω̃0
(2B′

k) &
Capn−1(

1
4B

′
k \ Ω̃0)

rad(B′
k)

n−1
& 1.
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Then, taking into account that ũB(z) ≈ dist(z, ∂B̃) ≈ rad(B′
k) ≈ rad(Bk) for all z ∈ 2B′

k, we infer

f0(y) ≥

ˆ

∂Ω̃0∩2B′

k

ũB dω
y

Ω̃0
& rad(B′

k)ω
y

Ω̃0
(2B′

k) & rad(Bk) for all y ∈ 1
4B

′
k ∩ Ω̃0.

On the other hand, for y ∈ 1
4B

′
k \ Ω̃0, we also have f0(y) = ũB(y) ≈ dist(z, B̃) ≈ rad(Bk). �

From (4.7), the definition of f1 in (4.6), the preceding lemma, and the doubling property of

ωΩ̃Γ
(since Ω̃Γ is a Lipschitz domain) we deduce that

f0(x) ≥ f1(x) &
∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(14B
′
k) ≈

∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(Bk ∩ Γ) for all x ∈ Ω̃Γ.

Hence the Main Lemma 4.1 is a consequence of the following result and (4.3).

Lemma 4.4. For all x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that |x|−1x ∈ 1
2B, we have

∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(Bk ∩ Γ) &M

∑

k∈K

rad(Bk)
n+1.

To prove this, we will need the following auxiliary lemma.

Lemma 4.5. Given any α ∈ (0, 1/2), suppose that the constant M above is chosen large enough,

depending on α. Then there exists some constant C = C(α) such that, for all x ∈ A(0, 1/2, 3/4)∩Ω̃
such that |x|−1x ∈ 1

2B, all y ∈ Γ ∩A(0, 1/3, 4/5), and 0 < r ≤ R ≤ 2, we have

(4.8) C−1

(
R

r

)n−α

≤
ωΩ̃x

Γ
(B(y,R))

ω
Ω̃x

Γ
(B(y, r))

≤ C

(
R

r

)n+α

.

This lemma follows from the local Reifenberg flatness of ∂Ω̃Γ far away from S, by (4.5) and
taking M large enough. The arguments are essentially the same as the ones for Theorem 4.1 from
[KT] and Lemma 3.7 from [PT1], and so we omit the proof. From now on, we assume M large
enough so that we can take a = 1/4 in (4.8).

Proof of Lemma 4.4. Consider the function h0 : ∂B̃ → R given by

h0(y) =
∑

k∈K

rad(Bk)χBk∩L(y)

and let h : B̃ → R be its harmonic extension to B̃:

h(y) =

ˆ

h0(z) dω
y

B̃
(z) =

∑

k∈K

rad(Bk)ω
y

B̃
(Bk).

By Lemma 3.1, we have
dωx

B̃
dHn ≈ 1 on B̃ ∩ Bk for each k and for x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that

|x|−1x ∈ 1
2B. Using also the fact that h is harmonic in B̃, that x ∈ B̃ ∩ Ω̃Γ, and that h vanishes
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in L \
⋃

k∈K
1
2c2Bk = Γ \

⋃
k∈K

1
2c2Bk, we derive

∑

k∈K

rad(Bk)
n+1 ≈

∑

k∈K

rad(Bk)ω
x
B̃
(Bk ∩ L) =

ˆ

L
hdωx

B̃
=

ˆ

Γ
hdωx

Ω̃Γ

=
∑

k∈K

ˆ

1
2
c2Bk∩Γ

h(y) dωx
Ω̃Γ

(y) =
∑

j,k∈K

rad(Bj)

ˆ

1
2
c2Bk∩Γ

ωy

B̃
(Bj) dω

x
Ω̃Γ

(y)

.
∑

j,k∈K

rad(Bj) sup
y∈ 1

2
c2Bk∩Γ

ωy

B̃
(Bj) ω

x
Ω̃Γ

(Bk).

For all j, k ∈ K, we denote

D(Bj, Bk) = dist(Bj , Bk) + rad(Bj) + rad(Bk).

Claim 2. For all j, k ∈ K, we have

(4.9) sup
y∈ 1

2
c2Bk∩Γ

ωy

B̃
(Bj) .

rad(Bj)
n rad(Bk)

D(Bj , Bk)n+1
.

We defer the proof of the claim to the end of the proof of the lemma. Assuming this for the
moment, we get

(4.10)
∑

k∈K

rad(Bk)
n+1 .

∑

j,k∈K

rad(Bj)
n+1 rad(Bk)

D(Bj, Bk)n+1
ωx
Ω̃Γ

(Bk) =: S0.

To conclude the proof of the lemma we will bound the sum S0 on right hand side above by
∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(Bk).

To this end, we split the sum S0 as follows:

S0 =

(
∑

j,k∈K:
rad(Bj)≤rad(Bk)

+
∑

j,k∈K:
rad(Bj)>rad(Bk)

)
rad(Bj)

n+1 rad(Bk)

D(Bj , Bk)n+1
ωx
Ω̃Γ

(Bk) =: S0,1 + S0,2.

Estimate of S0,1. Using that rad(Bj) ≤ rad(Bk) in this sum, we write

S0,1 ≤
∑

j,k∈K:
rad(Bj)≤rad(Bk)

rad(Bj)
n rad(Bk)

2

D(Bj , Bk)n+1
ωx
Ω̃Γ

(Bk)

=
∑

k∈K

rad(Bk)
2 ωx

Ω̃Γ
(Bk)

∑

i≥0

∑

j∈K: rad(Bj)≤rad(Bk),

2irad(Bk)≤D(Bj ,Bk)<2i+1rad(Bk)

rad(Bj)
n

D(Bj, Bk)n+1
.
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Notice that, for a fixed i ≥ 0, the conditions rad(Bj) ≤ rad(Bk), 2irad(Bk) ≤ D(Bj , Bk) <
2i+1rad(Bk) imply that Bj ⊂ 2i+2Bk. Then we get

∑

j∈K: rad(Bj)≤rad(Bk),

2irad(Bk)≤D(Bj ,Bk)<2i+1rad(Bk)

rad(Bj)
n

D(Bj, Bk)n+1
.

∑

j∈K:Bj⊂2i+2Bk

Hn(L ∩Bj)

(2irad(Bk))n+1
(4.11)

.
Hn(L ∩ 2i+2Bk)

(2irad(Bk))n+1
≈

1

2irad(Bk)
.

Therefore,

S0,1 .
∑

k∈K

rad(Bk)
2 ωx

Ω̃Γ
(Bk)

∑

i≥0

1

2irad(Bk)
≈
∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(Bk).

Estimate of S0,2. Now we assume that rad(Bj) > rad(Bk). Let A ≥ 1 be the minimal constant
such that Bk ⊂ ABj. Notice that rad(ABj) ≈ D(Bj, Bk). By Lemma 4.5, using also the doubling

property of ωx
Ω̃Γ

(since Ω̃Γ is a Lipschitz domain), we have

ωx
Ω̃Γ

(Bj) &

(
rad(Bj)

rad(ABj)

)n+a

ωx
Ω̃Γ

(ABj)

&

(
rad(Bj)

rad(ABj)

)n+α(rad(ABj)

rad(Bk)

)n−α

ωx
Ω̃Γ

(Bk) ≈
rad(Bj)

n+α

rad(Bk)n−αD(Bj, Bk)2α
ωx
Ω̃Γ

(Bk).

Plugging this estimate into the definition of S0,2, we obtain

S0,2 .
∑

j,k∈K:
rad(Bj )>rad(Bk)

rad(Bj)
n+1 rad(Bk)

D(Bj , Bk)n+1

rad(Bk)
n−αD(Bj , Bk)

2α

rad(Bj)n+α
ωx
Ω̃Γ

(Bj)

≈
∑

j,k∈K:
rad(Bj )>rad(Bk)

rad(Bj)
1−α rad(Bk)

n+1−α

D(Bj, Bk)n+1−2α
ωx
Ω̃Γ

(Bj).

Using that rad(Bk) < rad(Bj), we get

S0,2 .
∑

j∈K

rad(Bj)
2−2α ωx

Ω̃Γ
(Bj)

∑

i≥0

∑

k∈K: rad(Bk)<rad(Bj),

2irad(Bj)≤D(Bj ,Bk)<2i+1rad(Bj)

rad(Bk)
n

D(Bj , Bk)n+1−2α
.

Arguing as in (4.11), we deduce that for each i ≥ 0

∑

k∈K: rad(Bk)<rad(Bj),

2irad(Bj)≤D(Bj ,Bk)<2i+1rad(Bj )

rad(Bk)
n

D(Bj , Bk)n+1−2α
.

1
(
2irad(Bj)

)1−2α .

Thus, since α < 1/2,

S0,2 .
∑

j∈K

rad(Bj)
2−2α ωx

Ω̃Γ
(Bj)

∑

i≥0

1
(
2irad(Bj)

)1−2α ≈
∑

j∈K

rad(Bj)ω
x
Ω̃Γ

(Bj).



FABER-KRAHN INEQUALITIES, THE ACF FORMULA, AND CARLESON’S CONJECTURE 35

Gathering the estimates obtained for S0,1 and S0,2, we obtain

S0 .
∑

k∈K

rad(Bk)ω
x
Ω̃Γ

(Bk),

as wished. Together with (4.10), this concludes the proof of the lemma, modulo Claim 2. �

Proof of Claim 2. In the case j = k, we have

rad(Bj)
n rad(Bk)

D(Bj, Bk)n+1
≈ 1

and so the estimate (4.9) is trivial.

So we assume that j 6= k. Let y ∈ 1
2c2Bk ∩ Γ, and let B̂j be a ball concentric with Bj such

that 2B̂j ∩
1
2c2Bk = ∅ and 3B̂j ∩

1
2c2Bk 6= ∅. Clearly, by construction, we have Bj ⊂ B̂j and

rad(B̂j) ≈ D(Bj , Bk). By Lemma 2.8 and 3.1, we have

(4.12)
ωy

B̃
(Bj)

ωy

B̃
(B̂j)

≈
ωx
B̃
(Bj)

ωx
B̃
(B̂j)

≈
Hn(Bj ∩ B̃)

Hn(B̂j ∩ B̃)
≈

(
rad(Bj)

rad(B̂j)

)n

,

where we took x ∈ A(0, 1/2, 3/4) ∩ Ω̃ such that |x|−1x ∈ 1
2B. On the other hand, by Lemma 2.7,

if we let p ∈ B̃ be a corkscrew point for B̂j (that is, p ∈ B̂j with dist(p, ∂B̃) ≈ rad(B̂j)), we have

ωy

B̃
(B̂j) ≈ gB̃(y, p) rad(B̂j)

n−1 ≈ ωp

B̃
(B(y, 2dist(y, ∂B̃)))

rad(B̂j)
n−1

dist(y, ∂B̃)n−1
.

By Lemmas 2.8 and 3.1, we also have

ωp

B̃
(B(y, 2dist(y, ∂B̃))) ≈

ωx
B̃
(B(y, 2dist(y, ∂B̃)))

ωx
B̃
(B̂j)

≈

(
dist(y, ∂B̃)

rad(B̂j)

)n

.

Therefore,

ωy

B̃
(B̂j) ≈

(
dist(y, ∂B̃)

rad(B̂j)

)n rad(B̂j)
n−1

dist(y, ∂B̃)n−1
=

dist(y, ∂B̃)

rad(B̂j)
.

Plugging this estimate into (4.12), we obtain

ωy

B̃
(Bj) ≈

(
rad(Bj)

rad(B̂j)

)n dist(y, ∂B̃)

rad(B̂j)
≈

rad(Bj)
n dist(y, ∂B̃)

D(Bj, Bk)n+1
.

rad(Bj)
n rad(Bk)

D(Bj , Bk)n+1
.

�

5. The proof of Theorems A and B in the non-Wiener regular case

In Sections 3 and 4 we have proved and Theorem A and Theorem B under the assumption that

Ω̃ and Ω̃′ are Wiener regular open sets in R
n+1. In this section we will prove both theorems in

full generality by an approximating argument. To this end, for each k ≥ 1, we denote

Sk =
{
x ∈ Ω : distSn(x, ∂SnΩ) ≤ 2−k

}
, Ωk = Ω \ Sk.

Clearly, we have Hn(Ω△Ωk) = Hn(Ω \ Ωk) → 0 as k → ∞. Since we are assuming that the
barycenter xΩ of Ω is well defined, it follows easily that the barycenter xΩk

of Ωk is also well
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defined for k large enough and xΩk
→ xΩ as k → ∞. We denote by B and Bk the S

n-balls with
the same barycenter and Hn-measure as Ω and Ωk, respectively, so that Bk → B in Hausdorff
distance as k → ∞. We also set

Ω̃k = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ Ωk}, B̃k = {y ∈ A(0, 1/4, 1) : |y|−1y ∈ Bk},

and
Ω̃′
k = {y ∈ A(0, 1/8, 2) : |y|−1y ∈ Ωk}, B̃′

k = {y ∈ A(0, 1/8, 2) : |y|−1y ∈ Bk}.

Lemma 5.1. For each k ≥ 1, if Ωk 6= ∅, then Ω̃k and Ω̃′
k are Wiener regular.

Proof. We will show that Ω̃k is Wiener regular. The same arguments are valid for Ω̃′
k. By the

discussion at the beginning of Section 2.3 (see (2.6)), it is enough to show that for all x ∈ ∂Ω̃k

and any r > 0 small enough,

(5.1) Capn−1(B(x, r) \ Ω̃k) & rn−1.

Clearly this holds for all x ∈ ∂A(0, 1/4, 1) ∩ ∂Ω̃k because B(0, 1)c ∪ B̄(0, 1/4) ⊂ Ω̃c
k. So consider

the case when x ∈ ∂Ω̃k \ ∂A(0, 1/4, 1) = ∂Ω̃k ∩ A(0, 1/4, 1). Let ξ = |x|−1x, so that ξ ∈ ∂SnΩk.
Take η ∈ ∂SnΩ such that distSn(ξ, η) = distSn(ξ, ∂SnΩ). Notice that distSn(ξ, η) = 2−k, by the
definition of Ωk. In fact, B̄Sn(η, 2

−k) ⊂ Sk ⊂ S
n \ Ωk. Since ξ ∈ ∂SnB̄Sn(η, 2

−k), we deduce that,
for 0 < r < 2−k, BSn(ξ, r)\Ωk contains an S

n-ball with radius comparable to r. From this fact we

deduce that for the same range 0 < r < 2−k, B(x, r) \ Ω̃k contains a ball with radius comparable
to r, which yields (5.1). �

Lemma 5.2. We have

lim
k→∞

λ(Ωk) = λ(Ω) and lim
k→∞

λ(Bk) = λ(B).

Proof. Let U be the connected component of Ω such that λ(Ω) = λ(U), and let Uk = U \ Sk =

U ∩ Ωk. Let uk ∈ W 1,2
0 (Uk) be the Dirichlet eigenfunction associated with λ(Uk), normalized so

that uk ≥ 0 and ‖uk‖L2(Uk) = 1. We assume that uk is extended by 0 to the whole U . For
any subsequence of {uk}k, there exists another subsubsequence {ukj}j which converges weakly in

W 1,2
0 (U) and strongly in L2(U) (by the compact embedding W 1,2(U) ⊂ L2(U)) to some function

u ≥ 0 such that ‖u‖L2(U) = 1. Since {λ(Ukj )}j is a non-increasing sequence and λ(Ukj ) ≥ λ(U)
for any j, it also holds that λ(Ukj ) converges to some α ∈ [λ(U),∞). Passing to the limit the
equation

−∆ukj = λkj ukj ,

it follows that, in the weak sense,
−∆u = αu in U.

Since u is a Dirichlet eigenfunction for U , which is connected, and moreover u ≥ 0, it follows that
u is a Dirichlet eigenfunction corresponding to the first eigenvalue for U and α = λ(U) = λ(Ω).
Consequently,

lim
k→∞

λ(Uk) = λ(Ω).

Since Uk ⊂ Ωk, this implies that

lim sup
k→∞

λ(Ωk) ≤ lim sup
k→∞

λ(Uk) = λ(Ω).
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On the other hand, since Ωk ⊂ Ω, we have λ(Ωk) ≥ λ(Ω) for any k, and thus

lim
k→∞

λ(Ωk) = λ(Ω).

The fact that limk→∞ λ(Bk) = λ(B) can be proved by analogous arguments. Indeed, since
Hn(Bk) = Hn(Ωk) ≤ Hn(Ω) = Hn(B), we can assume that Bk ⊂ B and that they are concentric.
Then the same arguments used for Ωk work in this case. �

Proof of Theorem A for M
n = S

n. Suppose n ≥ 3. We consider Ωk and Bk as above, so that

λ(Ω)− λ(B) = lim
k→∞

(
λ(Ωk)− λ(Bk)

)
.

We have to show that, for a given a ∈ (0, 1), for any t ∈ (0, 1),

(5.2) λ(Ω)− λ(B) ≥ C(a, β)

(
−

ˆ

∂Mn ((1−t)B)

Capn−2(BMn(y, atrB) \ Ω)

(t rB)n−3
dHn−1(y)

)2

.

Choose a′ such that a < a′ < 1 and fix some t ∈ (0, 1). Denote by Tk the translation Tk(y) =
y + (xBk

− xB). Since Hn−1|∂Mn ((1−t)Bk) coincides with the image measure Tk#Hn−1|∂Mn ((1−t)B)

times ck = Hn−1(∂Mn ((1−t)Bk))
Hn−1(∂Mn ((1−t)B))

, we have

−

ˆ

∂Mn ((1−t)B)
Capn−2(BMn(y, atrB) \ Ω) dH

n−1(y)

= −

ˆ

∂Mn ((1−t)Bk)
Capn−2(BMn(y + (xB − xBk

), atrB) \ Ω) dH
n−1(y).

Since Bk tends to B in Hausdorff distance, it also holds that xBk
→ xB and rBk

→ rB . So for k
large enough, BMn(y+(xB −xBk

), atrB) ⊂ BMn(y, a′trBk
). Consequently, using also that Ωk ⊂ Ω,

Capn−2(BMn(y + (xB − xBk
), atrB) \Ω) ≤ Capn−2(BMn(y, a′trBk

) \Ωk).

Therefore, taking into account that rBk
≈ rB for k large enough and applying Theorem A for Ωk

and Bk, we deduce

−

ˆ

∂Mn((1−t)B)

Capn−2(BMn(y, atrB) \Ω)

(t rB)n−3
dHn−1(y)

. −

ˆ

∂Mn ((1−t)Bk)

Capn−2(BMn(y, a′trBk
) \ Ωk)

(t rB)n−3
dHn−1(y) ≤ C(a′, β)

(
λ(Ωk)− λ(Bk)

)

Letting k → ∞, we get (5.2).
The arguments for the case n = 2 are analogous. �

For the proof of Theorem B, we denote

γs,c0(Ω, B, a) =

ˆ

Tc0 (Ω,B,a)
δB(y)

n−s dHs
∞(y).

Lemma 5.3. For d ∈ (0, n) and any a′ ∈ (a, 1) and c′0 ∈ (0, c0), we have

lim inf
k→∞

γs,c′0(Ωk, Bk, a
′) ≥ γs,c0(Ω, B, a).
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Proof. Recall that the condition x ∈ Tc0(Ω, B, a) means that x ∈ B \ Ω and in the case n ≥ 3,
Capn−2(BSn(x, a δB(x))\Ω) ≥ c0 δB(x)

n−2, while in the case n = 2 we ask CapL(BSn(x, a δB(x))\
Ω) ≥ c0 δB(x). Consider an arbitrary constant τ ∈ (1/2, 1), and let τB be the S

n-ball concentric
with B with radius τ radSn(B). Since Bk tends to B in Hausdorff distance (by the arguments
at the beginning of this section), we deduce that τB ⊂ Bk for k large enough (depending on τ).
Therefore,

(5.3) τB \ Ω ⊂ Bk \ Ωk for k ≥ k0(τ).

Let us check that

(5.4) τB ∩ Tc0(Ω, B, a) ⊂ Tc′0(Ωk, Bk, a
′) for k ≥ k0(τ, a, a

′c0, c
′
0).

Indeed, for x ∈ τB \ Ω, we have a δB(x) ≤ a′ δBk
(x) for k large enough depending on τ, a, a′.

Similarly, c0δB(x)
n−2 ≥ c′0 δBk

(x)n−2 in the case n ≥ 3 and c0δB(x) ≥ c′0 δBk
(x) in the case n = 2

for k large enough depending on c0, c
′
0. Consequently, in the case n ≥ 3, for x ∈ τB∩Tc0(Ω, B, a),

Capn−2(B(x, a′ δBk
(x))∩ S

n \Ω) ≥ Capn−2(B(x, a δB(x))∩ S
n \Ω) ≥ c0 δB(x)

n−2 ≥ c′0 δBk
(x)n−2.

An analogous estimate holds in the case n = 2. Together with (5.3), this yields (5.4).
We split, using the identity (4.2),

γs,c0(Ω, B, a) = (n− s)

ˆ ∞

0
tn−s−1Hs

∞

(
{y ∈ Tc0(Ω, B, a) : δB(y) > t}

)
dt

≤ (n− s)

ˆ ∞

0
tn−s−1Hs

∞

(
{y ∈ B \ τB : δB(y) > t}

)
dt

+ (n− s)

ˆ ∞

0
tn−s−1Hs

∞

(
{y ∈ τB ∩ Tc0(Ω, B, a) : δB(y) > t}

)
dt =: I1 + I2.

Concerning the integral I1, all points y ∈ B \ τB satisfy δB(y) ≤ (1− τ) radSn(B). Hence,

I1 ≤ (n − s)

ˆ C(1−τ)

0
tn−s−1Hs

∞(B \ τB) dt . (1− τ)n−s.

Regarding I2, by (5.4) and the fact that δB(y) ≤ a−1a′ δBk
(y) for y ∈ τB\Ω and k ≥ k0(τ, a, a

′c0, c
′
0),

we have

Hs
∞

(
{y ∈ τB ∩ Tc0(Ω, B, a) : δB(y) > t}

)
≤ Hs

∞

(
{y ∈ Tc′0(Ωk, Bk, a

′) : δBk
(y) > (a′)−1at}

)
.

Therefore, changing variables,

I2 ≤ (n− s)

ˆ ∞

0
tn−s−1Hs

∞

(
{y ∈ Tc′0(Ωk, Bk, a

′) : δBk
(y) > (a′)−1at}

)
dt

= (a−1a′)n−s γs,c′0(Ωk, Bk, a
′).

So

γs,c0(Ω, B, a) ≤ C(1− τ) + (a−1a′)n−s γs,c′0(Ωk, Bk, a
′) for k ≥ k0(τ, a, a

′c0, c
′
0).

Since we can take τ ∈ (1/2, 1) arbitrarily close to 1 and a′ > a as close to a as wished, the lemma
follows. �



FABER-KRAHN INEQUALITIES, THE ACF FORMULA, AND CARLESON’S CONJECTURE 39

Proof of Theorem B for M
n = S

n. From the preceding lemmas and the validity of Theorem B
for the sets Ωk, we deduce

γs,c0(Ω, B, a) ≤ lim inf
k→∞

γs,c′0(Ωk, Bk, a
′) .β,c′0,a

′ lim inf
k→∞

(
λ(Ωk)− λ(Bk)

)
= λ(Ω)− λ(B),

for any a′ ∈ (a, 1) and c′0 ∈ (0, c0), so that Theorem B holds for Ω. �

6. The proof of Theorem A and Theorem B for M
n = R

n and M
n = H

n.

The proofs of Theorems A and B for Euclidean and hyperbolic domains are very similar to the
one for spherical domains. For this reason, we just sketch the main ideas of the proofs.

6.1. Domains in Euclidean space. Remark that in this case, i.e. Mn = R
n, one can state scale

invariant versions of Theorem A and Theorem B, and so we may assume that B = B(0, 1) in the
proofs, with B attaining the infimum in (1.3), (1.4), or (1.9) modulo a factor of 1/2.

For Ω, B ⊂ R
n+1 as in Theorems A and B, we let αΩ = λ

1/2
Ω , αB = λ

1/2
B . We also let ũB and

ũΩ be the respective extensions of uB and uΩ defined by

ũB(x, t) = uB(x) e
αB t, ũΩ(x, t) = uΩ(x) e

αB t,

for (x, t) ∈ R
n+1. This type of extension replaces the αB-homogeneous extension used for the case

of spherical domains. We consider the cylindrical domains Ω̃, Ω̃′, B̃, B̃′ in R
n+1 defined by:

B̃ = B × (0, 1), B̃′ = B × (−1, 2), Ω̃ = Ω× (0, 1), Ω̃′ = Ω× (−1, 2).

It is immediate to check that ∆ũB = 0 in B̃′, while in Ω̃′ we have

∆ũΩ(x, t) = eαB t∆RnuΩ(x) + λB e
αB t uΩ(x) = (λB − λΩ) ũΩ(x, t).

We should compare this identity with (3.1).
As in Claim 1, there exists an extension uexB of uB |B to R

n which belongs to C2(Rn) and such
that ‖∇juexB ‖∞,Rn . 1 for j = 0, 1, 2 so that it is supported in the R

n-ball B0 = 2B. Then we
consider the function v : Rn → R defined by v = uexB − uΩ and we let

ṽ(x, t) = v(x) eαB t,

so that ṽ = ũexB − ũΩ. As in (3.13), denoting S = R
n × {0, 1}, we write, for x ∈ Ω̃,

ṽ(x) =

ˆ

∂Ω̃
ṽ dωx

Ω̃
−

ˆ

Ω̃
∆ṽ(y) g

Ω̃
(x, y) dy

=

ˆ

∂Ω̃∩B̃\S
ṽ dωx

Ω̃
+

ˆ

∂Ω̃\(B̃∪S)
ṽ dωx

Ω̃
+

ˆ

∂Ω̃∩S
ṽ dωx

Ω̃
−

ˆ

Ω̃
∆ṽ(y) gΩ̃(x, y) dy

=: ṽ1(x) + ṽ2(x) + ṽ3(x) + ṽ4(x),

where gΩ̃(x, y) is the Green function of Ω̃. Then we continue in the same way as in the proof of
Theorem A and Theorem B. We estimate |ṽ2(x)+ ṽ3(x)+ ṽ4(x)| from above as in Lemma 3.2 and
ṽ1(x) from below following arguments very similar to the ones for Mn = S

n, first considering the
Wiener regular case, and later deducing the general result from the Wiener regular one. We leave
the details for the reader.
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6.2. Domains in hyperbolic space. As for the Euclidean space, the proof of Theorems A and
B when M

n = H
n is very similar to the case M

n = S
n. For this reason, we only sketch the

arguments and highlight the main modifications required.
Before getting started, some preliminary remarks: we consider the half-space model of the

hyperbolic space H
n, which is the upper half space R

n
+ with the metric

dx2
1+···dx2

n

x2
n

. Unlike the

Euclidean case, and similarly to the spherical one, Theorems A and B are not scale invariant in
this geometry. Hence the constants in the estimates naturally depend on the volume of Ω. On
this, see also [AKN1, Remark 1.5].

Let Ω, B ⊂ H
n be as in Theorems A and B (so in particular, Hn(Ω) = Hn(B) < β), with Hn

computed in the hyperbolic metric. We assume that B = Bx attains the infimum in (1.3), (1.4),
or (1.9) modulo a factor of 1/2. Since the Laplace-Beltrami operator is invariant by isometries, by
applying a suitable isometry to Ω we can assume that B is centered at the point (0, . . . , 0, 1) ∈ R

n
+.

From the fact that Hn(B) = vol(B) < β, it follows that 4B is far away from ∂Rn
+ in the Euclidean

metric. So inside 4B the Euclidean metric and the hyperbolic metric are comparable, and the
Hausdorff measures Hs are comparable when computed with both metrics (with the comparability
constant depending on β in both cases).

Let λΩ, λB be the respective first Dirichlet eigenvalues of Ω and B, let uΩ, uB be the corre-

sponding eigenfunctions, and put αΩ = λ
1/2
Ω and αB = λ

1/2
B . For (x, t) ∈ H

n × R, we set

ũΩ(x, t) := uΩ(x)e
tαB and ũB(x, t) := uB(x)e

tαB .

These are the extensions of uΩ and uB, respectively, analogous to the ones defined at the beginning
of Section 3 for the spherical case.

We also consider the cylindrical domains in H
n × R given by

B̃ = B × (0, 1), B̃′ = B × (−1, 2), Ω̃ = Ω× (0, 1) and Ω̃′ = Ω× (−1, 2).

It is easy to check that ∆Hn×RũB = 0, where ∆Hn×R is the Laplace-Beltrami operator in H
n ×R.

In local coordinates, this is equivalent to saying that

LũB = 0 in B̃′,

where L is a uniformly elliptic second order operator in divergence form given by Lu = −div(A∇u),
where A is the diagonal matrix with smooth coefficients defined by

(6.1) aij = x2−n
n δi,j if 1 ≤ i, j ≤ n, and aij = x−n

n δij otherwise.

Moreover, note that

LũΩ(x, t) = x−n
n

(
∆HnũΩ(x, t) + (∂2t uΩ(x)e

tαB )
)
= x−n

n (−λΩ + λB) ũΩ(x, t),(6.2)

which is the analog of (3.1) for the current setting. Remark that the multiplicative term x−n
n is

bounded in 4B and so L is uniformly elliptic on 4B.
The proof continues very similarly to the spherical case. We just highlight some of the differ-

ences.

• As far as the definition of Newtonian capacity is concerned, no changes is needed since
the fundamental solution to L is comparable to that of −∆ in 4B. See equation (2.14) in
[AGMT]. In particular, an open set is Wiener regular for the Laplacian if and only if it is
Wiener regular for uniformly elliptic operator such as L (see [PT2, Theorem 6.21]).
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• Lemmas from Section 2.3: Lemma 2.6 for elliptic uniformly elliptic operators can be found
in [HKM, Lemma 11.21]. For Lemma 2.7 see [AGMT, Lemma 2.8]. Finally, we couldn’t
find a reference for Lemma 2.8, but the proof in the elliptic case is essentially the same to
that for harmonic measure. A key point for these estimates is that we only need to apply

them for subdomains of B̃′′ := 4B × [−4, 4], where L is uniformly elliptic. Further, we

can redefine the matrix A away from B̃′′ so that it becomes uniformly elliptic in the whole
space if necessary.

• About Lemma 3.1: the bounds ‖ũB‖∞,B̃′ , ‖ũΩ‖∞,Ω̃′∩B̃′′ . 1 follows from the fact that

αB ≈β 1 and the mean value property on balls for subsolutions, see [GT, Theorem 8.17]).
The argument to prove estimate (3.2) relies on a) estimates on the Green functions, b)
the maximum principle and c) Harnack inequality. All these are available: see [AGMT,
Lemma 2.6] for the properties of the Green function associated to the operator L; see
[GT, Theorem 8.16] for b) and [GT, Section 8.8] for c). As far as the behaviour of elliptic
measures ωL,B̃′ , ωL,B̃ is concerned, that is, the second part of Lemma 3.1, it follows again

from the estimates on the Green functions connected to L. See [AGMT, Section 2.4] for
more information on this.

• Claim 1 in Section 3 also holds in this case. More specifically, there exists an extension
uexB of uB |B to H

n which belongs to C2(Hn) and such that ‖∇juexB ‖∞,Hn . 1 for j = 0, 1, 2
and so that it is supported on an H

n-ball B0 = 2B. The implicit constant in the previous
bound might depend on β.

• The representation formula used in the important decomposition (3.13) in the current

case, and assuming Wiener regularity of Ω and so of Ω̃, reads as

ϕ(x) =

ˆ

∂Ω̃
ϕdωx

L +

ˆ

Ω̃
A∗(y)∇ygΩ̃(x, y) · ∇yϕ(y) dy

See [AGMT], equation (2.6). In our case, the matrix A is symmetric, and thus A∗ = A.

Here gΩ̃(·, ·) is the Green function of Ω̃ associated to L. We consider a smooth function

ψ : Rn+1 → R which equals 1 on B̃′ and is supported on B̃′′. Defining v = uexB − uΩ, and

extending it to H
n ×R by ṽ(x, t) := v(x) etαB , we write, for x ∈ Ω̃,

(6.3) (ψ ṽ)(x) =

ˆ

∂Ω̃
ψṽ dωx

L,Ω̃
−

ˆ

Ω̃
A(y)∇ygΩ̃(x, y) · ∇y(ψṽ)(y) dy.

Denoting S = H
n × {0, 1} we split (6.3) as

(ψ ṽ)(x) =

ˆ

∂Ω̃∩B̃\S
ψ ṽ dωx

L,Ω̃
+

ˆ

∂Ω\(B̃∪S)
ψ ṽ dωx

L,Ω̃
+

ˆ

∂Ω̃∩S
ψ ṽ dωx

L,Ω̃

+

ˆ

Ω̃
A(y)∇ygΩ̃(x, y) · ∇y(ψ ṽ)(y) dy

=: ṽ1(x) + ṽ2(x) + ṽ3(x) + ṽ4(x).

• The bounds for the analogous functions ṽi, i = 2, 3, 4, in Lemma 3.2, rest on the behaviour
of harmonic measure, the maximum principle and (3.1). Notice that the multiplication by

ψ ensures that the integrands above are supported in B̃′′, where L is uniformly elliptic.
Then the estimates for ṽ2 and ṽ3 are similar to the ones in Lemma 3.2. Regarding ṽ4, this
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can be written as

ṽ4(x) =

ˆ

A∇y(ψ gΩ̃)(x, y) · ∇ṽ dy +

ˆ

A∇ψ ·
(
v∇ygΩ̃)(x, y) − g(x, y)∇ṽ

)
dy.

The first integral on the right hand side equals −
´

L(ṽ)ψ gΩ̃)(x, y) dy and this is estimated
in the same ways as ṽ4 in Lemma 3.2. For the second integral on the right hand side above
we use the fact that suppψ ∩ supp ṽ ⊂ (Ω \ B) × (−4, 4). Then we obtain the same
conclusion as in Lemma 3.2. The same can be said about the lower bound for ṽ1. The
proofs of Theorem A and B, then, continue in the same way, modulo technical adjustments
which we omit. The extension to the non Wiener regular case is also very similar and we
leave the details to the reader.

7. Proof of Theorem C

Without loss of generality, we assume that Hn(Ω1) ≤ Hn(Ω2). For simplicity, we assume that
a = 1/2 in the definition of εs(Ω1,Ω2), but minor modifications yield the result for any a ∈ (0, 1).
Let ᾱi be the characteristic of the spherical cap Bi ⊂ S

n with the same Hn measure as Ωi. The
Friedland-Hayman [FH] inequality ensures that α1 + α2 − 2 ≥ 0. Then we write

(7.1) α1 + α2 − 2 = (α1 − ᾱ1) + (α2 − ᾱ2) + (ᾱ1 + ᾱ2 − 2) ≥ 0.

By Sperner’s inequality [Sp], among all the open subsets with a fixed measure Hn on S
n, the one

that minimizes the characteristic constant is a spherical cap with that measure Hn. Hence,

αi ≥ ᾱi.

So the three summands on the right hand side of (7.1) are non-negative. Further, if one of the
caps Bi differs from a hemisphere by a surface measure h0, that is,

h0 = max
i

∣∣∣Hn(Bi)−
1

2
Hn(Sn)

∣∣∣,

then

(7.2) ᾱ1 + ᾱ2 − 2 ≥ c h20.

See Corollary 12.4 from [CS], for example. So to prove Theorem C we can assume that, for i = 1, 2,

(7.3)
∣∣∣Hn(Bi)−

1

2
Hn(Sn)

∣∣∣ ≤ 1

100
Hn(Sn),

because otherwise
α1 + α2 − 2 & 1

and the statement in the theorem is trivial. Observe that (7.3) implies that

(7.4) β ≤ Hn(Ωi) = Hn(Bi) ≤ Hn(Sn)− β

for a suitable absolute constant β. From this estimate it follows that ᾱi ≈ 1 for i = 1, 2. So we
can assume that |αi − ᾱi| ≤

1
2 ᾱi because otherwise the theorem follows trivially from (7.1). So

αi ≈ ᾱi ≈ 1. Then from the identity λi = αi(αi + n− 1) (where λi ≡ λΩi) it follows immediately
that

(7.5) αi − ᾱi ≈ λi − λBi .

For i = 1, 2, let xi ∈ S
n be the barycenter of Ωi. We assume that the barycenter exists because

otherwise this means that
´

Ωi
y dHn(y) = 0, while

∣∣∣
´

Bi
y dHn(y)

∣∣∣ & 1 for the spherical cap Bi
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because of (7.4) (independently of the choice of its center in S
n). Hence, by the Allen-Kriventsov-

Neumayer theorem, using (7.4) and (7.5), we would obtain

αi − ᾱi ≈ λi − λBi & Hn(Ωi△Bi)
2 ≥

∣∣∣∣
ˆ

Ωi

y dHn(y)−

ˆ

Bi

y dHn(y)

∣∣∣∣
2

& 1,

which would yield the conclusion of the theorem. The same argument shows that, in fact, we have∣∣∣∣
ˆ

Ωi

y dHn(y)

∣∣∣∣ ≈ 1.

From now on we assume that the spherical caps Bi, i = 1, 2, are centered in the barycenters xi
of the Ωi’s. In the case when Hn(Ωi) +Hn(Ω2) = Hn(Sn) it follows easily that the barycenters of
Ω1 and Ω2 are opposite points in S

n, and B1 and B2 are complementary balls in S
n. When the

preceding condition does not hold, we need to be a little more careful.
Let

θ0 = Hn(Sn)−Hn(Ω1)−Hn(Ω2),

and suppose that θ0 > 0. For i = 1, 2,

yi =
1

Hn(Ωi)

ˆ

Ωi

y dHn(y),

so that xi = yi/|yi|. Also, let

y∗2 =
1

Hn(Sn \Ω1)

ˆ

Sn\Ω1

y dHn(y).

Notice that y∗2 = y2 if θ0 = 0 and that

Hn(Ω1) y1 +Hn(Sn \ Ω1) y
∗
2 =

ˆ

Sn

y dHn(y) = 0.

So the barycenter x1 and the point x∗2 = y∗2/|y
∗
2 | are antipodal points in S

n. We also have

|y2 − y∗2 | ≤

∣∣∣∣
1

Hn(Ω2)
−

1

Hn(Sn \ Ω1)

∣∣∣∣
ˆ

Sn\Ω1

|y| dHn(y)

+
1

Hn(Sn \Ω1)

∣∣∣∣
ˆ

Ω2

y dHn(y)−

ˆ

Sn\Ω1

y dHn(y)

∣∣∣∣ . θ0 + θ0 ≈ θ0.

Also, let B∗
2 be a spherical cap centered in x∗2 with measure Hn(B∗

2) = Hn(Sn \ Ω1). Since

|radSn(B2)− radSn(B
∗
2)| ≈ |Hn(B2)−Hn(B∗

2)| . θ0,

using also (7.4), we infer that

(7.6) distH(∂SnB2, ∂SnB1) = distH(∂SnB2, ∂SnB
∗
2) . θ0.

On the other hand, from the definition of θ0, it follows that

h0 = max
i

∣∣Hn(Ωi)−
1

2
Hn(Sn)

∣∣ ≥ 1

2
θ0.

Then, by (7.2),

(7.7) ᾱ1 + ᾱ2 − 2 & θ20 & distH(∂SnB2, ∂SnB1)
2.

To estimate εs(Ω1,Ω2) we denote by L1 be the n-plane that contains ∂SnB1, and we let L0

be the n-plane through the origin parallel to L1. Then we choose H to be the half-space that
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contains B1 and whose boundary is L0 (notice that B1 is contained in a hemisphere because of
the assumption Hn(Ω1) ≤ Hn(Ω2)). First we consider the case 0 < s < n. In this case, we have

εs(Ω1,Ω2) ≤

ˆ

Vc0(0,1,H,a)
dist(y, L0)

n−s dHs
∞(y)

(7.8)

≤

2∑

i=1

ˆ

Vc0 (0,1,H,a)∩Bi

dist(y, L0)
n−s dHs

∞(y) +

ˆ

Sn\(B1∪B2)
dist(y, L0)

n−s dHs
∞(y).

First we deal with the last integral on the right hand side:
ˆ

Sn\(B1∪B2)
dist(y, L0)

n−s dHs
∞(y) ≤ max

Sn\(B1∪B2)
dist(y, L0)

n−sHs
∞(Sn \ (B1 ∪B2))(7.9)

. max
i=1,2

distH(∂SnBi,S
n ∩ L0)

n−sHs
∞(Sn \ (B1 ∪B2)).

Regarding distH(∂SnBi,S
n ∩ L0), for i = 1, since L0 is parallel to L1 and L0 splits S

n in two
hemispheres, we have

(7.10) distH(∂SnB1,S
n ∩ L0) . |Hn(B1)−

1
2H

n(Sn)| ≤ h0.

Also, for i = 2,

distH(∂SnB2,S
n ∩ L0) ≤ distH(∂SnB2, ∂SnB

∗
2) + distH(∂SnB

∗
2 ,S

n ∩ L0).

Since ∂SnB
∗
2 = ∂SnB1, from (7.6) and (7.10) we get

distH(∂SnB2,S
n ∩ L0) . θ0 + distH(∂SnB1,S

n ∩ L0) . θ0 + h0 . h0.

So, for a suitable C2 > 0,

(7.11) distH(∂SnBi,S
n ∩ L0) ≤ C2 h0 for both i = 1, 2.

Plugging this estimate into (7.9), we obtain

(7.12)

ˆ

Sn\(B1∪B2)
dist(y, L0)

n−s dHs
∞(y) . hn−s

0 Hs
∞(Sn \ (B1 ∪B2)).

To estimate Hs
∞(Sn \ (B1 ∪ B2)), notice that by (7.11), S

n \ (B1 ∪ B2) ⊂ UC2h0(S
n ∩ L0). So

S
n \ (B1 ∪B2) can be covered by a family I of of Sn-balls of radius 2C2h0 with bounded overlap,

centered in S
n∩L0. Using thatH

n−1(Sn∩L0) = Hn−1(Sn−1) ≈ 1, it follows easily that #I . h1−n
0 .

Hence,

(7.13) Hs
∞(Sn \ (B1 ∪B2)) ≤ Hs

∞(UCh0(S
n ∩ L0)) . hs0 #I . hs+1−n

0 .

Thus, plugging this estimate into (7.12), we obtain

(7.14)

ˆ

Sn\(B1∪B2)
dist(y, L0)

n−s dHs
∞(y) . hn−s

0 hs+1−n
0 = h0.

We turn our attention to the first summands on the right hand side of (7.8). We denote

δH(y) = distSn(y,S
n ∩ L0)

and

Vi = {y ∈ Vc0(0, 1,H, a) ∩Bi : δH(y) > 10C2h0}.
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Recall we are assuming a = 1/2. Then we split
ˆ

Vc0(0,1,H,a)∩Bi

dist(y, L0)
n−s dHs

∞(y) .

ˆ

Vc0 (0,1,H,a)∩Bi\Vi

dist(y, L0)
n−s dHs

∞(y)

+

ˆ

Vi

dist(y, L0)
n−s dHs

∞(y)

=: I1 + I2.

To deal with I1 we take into account the fact that dist(y, L0) . h0 in the domain of integration,
and thus together with (7.13) this gives

I1 . hn−s
0 Hs

∞(UCh0(S
n ∩ L0)) . h0.

To estimate I2 we take into account that for y ∈ Vi,

dist(y, L0) ≈ δH(y) ≈ dist(y, ∂SnBi).

Thus,

I2 .

ˆ

Vi

dist(y, ∂SnBi)
n−s dHs

∞(y).

Next we plan to apply Theorem B, under the assumption (7.3). Taking into account (7.5), this
implies that, for a given c5 > 0,

(7.15)

(
ˆ

Ti

dist(y, ∂SnBi)
n−s dHs

∞(y)

)2

. λi − λBi ≈ αi − ᾱi,

with Ti defined by

Ti =
{
y ∈ Bi \ Ωi : Capn−2(B(y, 34δBi(y)) ∩ S

n \Ωi) ≥ c5 δBi(y)
n−2
}
,

and, in the case n = 2,

Ti =
{
y ∈ Bi \ Ωi : CapL(B(y, 34δBi(y)) ∩ S

n \Ωi) ≥ c5 δBi(y)
}
.

We claim that, for a suitable constant c5,

Vi ⊂ Ti.

Indeed, for y ∈ Vi ∩Bi, by definition we have δH(y) > 10C2h0 and consequently, by (7.11),

|δBi(y)− δH(y)| ≤ 2 distH(∂SnBi,S
n ∩ L0) ≤ 2C2h0 ≤

1

5
δH(y),

which readily implies that 3
4 δBi(y) ≥ 1

2 δH(y), or equivalently, B(y, 12 δH(y)) ⊂ B(y, 34 δBi(y)).
Then we derive

Capn−2(B(y, 34δBi(y)) ∩ S
n \ Ωi) ≥ Capn−2(B(y, 12δH(y)) ∩ S

n \Ωi) ≥ c0 δH(y)n−1 ≈ δBi(y)
n−1,

as well as the analogous estimate for logarithmic capacity in the case n = 2, which yields our
claim. Then by (7.15), we have

I22 .

(
ˆ

Vi

dist(y, ∂SnBi)
n−s dHs

∞(y)

)2

≤

(
ˆ

Ti

dist(y, ∂SnBi)
n−s dHs

∞(y)

)2

. αi − ᾱi.

This estimate, together with the one obtained for I1, gives
(
ˆ

Vc0(0,1,H,a)∩Bi

dist(y, L0)
n−s dHs

∞(y)

)2

. αi − ᾱi + h20.
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Plugging this inequality into (7.8) and using also (7.9) and (7.2), we obtain

(7.16) εs(Ω1,Ω2)
2 .

2∑

i=1

(αi − ᾱi) + h20 .

2∑

i=1

(αi − ᾱi) + (ᾱ1 + ᾱ2 − 2) = α1 + α2 − 2.

In the case s = n, the arguments are easier. We write S1 = S
n ∩ H, S2 = S

n \H, and then
similarly to (7.8), we write

εn(Ω1,Ω2) ≤ Hn(S1 \Ω1) +Hn(S2 \ Ω2) ≤
2∑

i=1

Hn(Bi \ Ωi) +
2∑

i=1

Hn(Si△Bi).

By the theorem of Allen-Kriventsov-Neumayer, recalling the assumption (7.3),

Hn(Bi \Ωi)
2 . αi − ᾱi.

On the other hand, Hn(Si△Bi) . h0 by (7.11). Thus, again the same estimate as in (7.16) holds,
with s = n. �

8. Existence of tangents implies finiteness of the Carleson square function

In this section we prove Theorem D. Given two disjoint Wiener regular domains Ω1,Ω2 ⊂ R
n+1,

denote by gi the Green function of the domain Ωi, for i = 1, 2. Let p1 ∈ Ω1, p2 ∈ Ω2, and consider
the functions

u1(y) = g1(y, p1), u2(y) = g2(y, p2).

We extend ui by 0 in Ωc
i , and abusing notation we still denote by ui such extension. The Wiener

regularity of Ωi ensures that ui is continuous away from pi.
Let d = 1

6 mini dist(pi, ∂Ω1 ∪ ∂Ω2). For all x ∈ R
n+1 \ (Ω1 ∪Ω2) and all r ∈ (0, d), by the ACF

monotonicity formula, we have

∂rJ(x, r)

J(x, r)
≥

2

r

(
α1(x, r) + α2(x, r)− 2

)
,

with J(x, r) and αi(x, r) = αi as in (1.10) and (1.11). Integrating on r, for any ρ ∈ (0, d) we
derive

ˆ d

ρ

α1(x, r) + α2(x, r)− 2

r
dr ≤ log

J(x, d)

J(x, ρ)
.

Thus,
ˆ d

0

α1(x, r) + α2(x, r)− 2

r
dr ≤ log

J(x, d)

inf0<ρ≤d J(x, ρ)
.

Hence, in order to show that (1.19) holds for x ∈ ∂Ω1 ∩ ∂Ω2, it suffices to show that

J(x, d)

inf0<ρ≤d J(x, ρ)
<∞.

Notice first that, by (1.12),

J(x, d) . −

ˆ

B(x,2d)
|∇u1|

2 dy · −

ˆ

B(x,2d)
|∇u2|

2 dy.
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By the Caccioppoli inequality and the subharmonicity of ui, for each i,

−

ˆ

B(x,2d)
|∇ui|

2 dy .
1

r2
−

ˆ

B(x,3d)
|ui|

2 dy .
1

r2

(
−

ˆ

B(x,4d)
ui dy

)2

.

So the continuity of ui ensures that J(x, d) <∞.
To estimate J(x, ρ) from below, let ϕx,ρ be a C∞ bump function such that χB(x,ρ/2) ≤ ϕx,ρ ≤

χB(x,ρ), with ‖∇ϕx,ρ‖∞ . ρ−1. Then, denoting by ωpi
i the harmonic measure for Ωi with pole at

pi, by the properties of the Green function, it holds

ωpi
i (B(x, ρ/2)) ≤

ˆ

ϕx,ρ dω
pi = −

ˆ

∇ϕx,ρ∇ui dy ≤ ‖∇ϕx,ρ‖2 ‖∇ui‖2,B(x,ρ)

. ρ(n−1)/2

(
ˆ

B(x,ρ)

ρn−1|∇ui|
2

|x− y|n−1
dy

)1/2

= ρn
(

1

ρ2

ˆ

B(x,ρ)

|∇ui|
2

|x− y|n−1
dy

)1/2

.

Therefore,

J(x, ρ)1/2 &
ωp1
1 (B(x, ρ/2))

ρn
·
ωp2
2 (B(x, ρ/2))

ρn
.

Hence, to prove the proposition it suffices to show that

(8.1) lim inf
ρ→0

ωpi
i (B(x, ρ/2))

ρn
> 0 for Hn-a.e. tangent point x ∈ ∂Ω1 ∩ ∂Ω2,

for i = 1, 2. To this end, consider a subset E of the tangent points for the pair Ω1, Ω2 such that
H1(E) <∞. Since the set of tangent points is n-rectifiable, we have

(8.2) lim
ρ→0

Hn(B(x, ρ) ∩ E)

(2ρ)n
= 1 for Hn-a.e. x ∈ E.

By standard arguments, using that the tangent points for the pair Ω1, Ω2 are cone points for
Ωi (for i = 1, 2), it follows that Hn|E is absolutely continuous with respect to ωpi|E for i = 1, 2
(see [AAM, Theorem III], for example3). Then, by the Lebesgue-Radon-Nykodim differentiation
theorem, we have

lim
ρ→0

Hn(B(x, ρ) ∩E)

ωpi
i (B(x, ρ) ∩ E)

<∞ for ωpi-a.e. x ∈ E.

Since null sets for ωpi
i are also null sets for Hn|E , we infer that

(8.3) lim
ρ→0

ωpi
i (B(x, ρ) ∩E)

Hn(B(x, ρ) ∩ E)
> 0 for Hn-a.e. x ∈ E.

Multiplying (8.2) and (8.3), we deduce (8.1) and we complete the proof of the proposition. �

3Actually, in Theorem III from [AAM] it is assumed that ∂Ω is lower n-content regular in order to prove the
mutual absolute continuity of Hn|E and ωpi |E . However, a quick inspection of the arguments shows that for the
absolute continuity Hn|E ≪ ω

pi
i |E one only needs Ωi to be Wiener regular.
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p1

p2

E

Ω1

Ω2

I11

I216

Figure 1. The figure depicts (0, 1)2 \F1∪F2∪F3, and its reflection through the x-
axis. The intuition behind the example is that, while total length of the segments
{Iij} goes to zero, overall ∪iFi is sufficently scattered around so to obstruct the

random walk leaving at pi from reaching E (the segment [0, 1]).

9. A counterexample to a question of Allen, Kriventsov and Neumayer

In this section we show that there are two Wiener regular domains Ω1,Ω2 ⊂ R
2 with rectifiable

boundary such that E := ∂Ω1 ∩ ∂Ω2 satisfies:

(a) H1(E) > 0,
(b) ωp1

1 (E) = ωp2(E) = 0, where ωpi
i stands for the harmonic measure for Ωi with pole at

some point pi ∈ Ωi, and
(c) the Alt-Caffarelli-Friedman functional associated with the respective Green functions g1(·, p1),

g2(·, p2) of Ω1, Ω2 satisfies J(x, 0+) = 0 for H1-a.e. x ∈ E.

The domain Ω1 is defined as follows:

Ω1 = (0, 1)2 \

∞⋃

i=1

Fi,

where each Fi is a union of Ni equispaced closed intervals {Iij}1≤j≤Ni which are contained in the

segment Li := [0, 1] × {2−i}, so that the leftmost point of the leftmost interval Ii1 is (0, 2−i) and
the rightmost point of the rightmost interval IiNi

is (1, 2−i). The intervals Iij have length 1
Ni

2−i,

so that H1(Fi) = 2−i. The numbers Ni tend to ∞ as i→ ∞ and will be chosen below.
We let Ω2 be the domain symmetric to Ω1 with respect to x axis, so that E = [0, 1] × {0}. We

choose p1 = (1/2, 3/4) and p2 = (1/2,−3/4). See Figure 1.
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By Wiener’s criterion, it is immediate to check that Ω1 and Ω2 are Wiener regular. Further,
H1(∂Ω1) = H1(∂Ω2) = 5 and H1(E) = 1, and both ∂Ω1 and ∂Ω2 are rectifiable.

Next we will check that ωp1
1 (E) = 0 (by symmetry, we will have ωp2

2 (E) = 0 too). To this end,
for each i ≥ 1 we consider the auxiliary domain Ui = Ω1 ∩ ((0, 1) × (2−i, 1)). That is, Ui is the
region of Ω1 which is above the segment Li. We denote

u(x) = ωx
1 (E).

Obviously u is harmonic in Ω1 and in each domain Ui. Notice also that it vanishes in ∂Ω1 \E (in
a continuous way in its relative interior with respect to ∂Ω1).

We will prove the following.

Claim 3. There exists some α ∈ (0, 1) such that for all i ≥ 1 we have

sup
x∈Li

u(x) ≤ α sup
x∈Li+1

u(x),

choosing Ni = 22i.

From this claim and the maximum principle (applied to U1) we get, for any m > 1,:

ωp1
1 (E) = u(p1) ≤ sup

x∈L1

u(x) ≤ α sup
x∈L2

u(x) ≤ · · · ≤ αm−1 sup
x∈Lm

u(x) ≤ αm−1.

So letting m→ ∞, we derive ωp1
1 (E) = 0

Proof of Claim 3. For any given i ≥ 1 and all x ∈ Li, we have

u(x) =

ˆ

∂Ui+1

u(ξ) dωx
Ui+1

(ξ) =

ˆ

Li+1

u(ξ) dωx
Ui+1

(ξ),

taking into account that u vanishes in ∂Ui+1 \ Li+1. Thus,

(9.1) u(x) ≤ sup
ξ∈Li+1

u(ξ)ωx
Ui+1

(Li+1) for all x ∈ Li.

We write

ωx
Ui+1

(Li+1) = 1− ωx
Ui+1

(∂Ui+1 \ Li+1).

Since ∂Ui ∩B(x, 2−i−1) ⊂ (Li+1)
c (because x ∈ Li), by Lemmas 2.6 and 2.1, we have

ωx
Ui+1

(∂Ui+1 \ Li+1) ≥ ωx
Ui+1

(∂Ui+1 ∩B(x, 2−i−1))

(9.2)

&
1

log
2−i−1

CapL(∂Ui+1 ∩B(x, 2−i−3))

&
1

log
2−i−1

(H
1/2
∞ (∂Ui+1 ∩B(x, 2−i−3)))2

.

Notice that H
1/2
∞ (∂Ui+1 ∩ B(x, 2−i−3)) ≥ H

1/2
∞ (Fi ∩ B(x, 2−i−3)). Moreover, we will show below

that

(9.3) H1/2
∞ (Fi ∩B(x, 2−i−3)) & 2−i/2.

Assuming this for the moment, plugging this estimate into (9.2), we deduce that

ωx
Ui+1

(∂Ui+1 \ Li+1) & 1,

and thus ωx
Ui+1

(Li+1) ≤ α, for some fixed α ∈ (0, 1). Together with (9.1), this proves the claim.
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Now it remains to prove (9.3). To simplify notation, write r = 2−i−3. By Frostman’s lemma,
it suffices to show that there exists some measure µ supported on Fi ∩ B(x, r) with total mass

‖µ‖ = r1/2 such that µ(B(y, t)) . t1/2 for all y ∈ Fi∩B(x, r), t > 0. To define µ, we let {Iij}j∈Jx,r
be the family of intervals Iij which are contained in B(x, r) and then we set

µ =
r1/2∑

j∈Jx,r
H1(Iij)

∑

j∈Jx,r

H1|Iij
.

Clearly ‖µ‖ = r1/2 and so it remains to check that µ(B(y, t)) . t1/2 for all y ∈ Fi ∩B(x, r), t > 0.
Since the number of segments Iij contained in B(x, r) is comparable to rNi, we have

∑

j∈Jx,r

H1(Iij) ≈ rH1(Fi) = r 2−i

and recall that

H1(Iij) =
1

Ni
H1(Fi) =

1

Ni
2−i.

So we have

µ(Iij) ≈
r1/2

r 2−i

1

Ni
2−i =

1

Ni r1/2
.

Observe first that, by the choice Ni = 22i,

µ(Iij) ≈
1

Ni r1/2
≈

1

Ni 2−i/2
=

(
1

Ni
2−i

)1/2

= H1(Iij)
1/2.

From this estimate, we deduce that, for y ∈ Iij and 0 < t ≤ H1(Iij),

µ(B(y, t)) ≤
µ(Iij)

H1(Iij)
t .

H1(Iij)
1/2

H1(Iij)
t ≤ t1/2.

From the fact that H1(Fi) ≤ 1/4, it easily follows that dist(Iij , I
i
j+1) ≥ 1/(2Ni) (we assume that

Iij and Iij+1 are consecutive intervals in Fi). So for y ∈ Iij and H1(Iij) ≤ t ≤ 1/(2Ni), it follows

that B(y, t) ∩ Fi = B(y, t) ∩ Iij (i.e., B(y, t) does not intersect any interval Iik different from Iij).
Then we have

µ(B(y, t)) ≤ µ(Iij) . H1(Iij)
1/2 ≤ t1/2.

Finally, for 1/(2Ni) < t ≤ 2r,

µ(B(y, t)) .
t

r
‖µ‖ =

t r1/2

r
. t1/2.

So µ satisfies the desired growth condition and then (9.3) holds. �

Next we will show that J(x, 0+) = 0 for H1-a.e. x ∈ E. Recall that, for such x and for

0 < r ≤ 1/4, J(x, r) = J1(x, r)
1/2J2(x, r)

1/2, where

Ji(x, r) =
1

r2

ˆ

B(x,r)
|∇gi(y, pi)|

2 dy.
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We assume that the Green functions gi(·, pi) are extended by 0 away from Ωi. By Caccioppoli’s
inequality, since gi(·, pi) is subharmonic and non-negative in B(x, 8r),

(9.4) Ji(x, r) ≈ −

ˆ

B(x,r)
|∇gi(y, pi)|

2 dy .
1

r2
−

ˆ

B(x,2r)
|gi(y, pi)|

2 dy ≤
1

r2
sup

y∈B(x,2r)
gi(y, pi)

2.

To bound gi(y, pi) in terms of the harmonic measure ωpi
i , we appeal to the following lemma:

Lemma 9.1. Let Ω ⊂ R
2 be a bounded, Wiener regular open set. Let B̄ be a closed ball centered

at ∂Ω. Let ω be the harmonic measure for Ω and g its Green function. Then,

(9.5) g(z, y) . ωz(8B̄)

(
log

CapL(B̄)

CapL(
1
4B̄ \ Ω)

)2

for all z ∈ Ω \ 2B̄ and y ∈ 1
5B̄ ∩Ω.

For the proof of the lemma, see [PT2, Chapter 7]. In the case when Ω is a domain satisfying
the CDC condition, the right hand side of (9.5) is comparable to 1. In this situation, the result
above appears in [AH]. However, in the generality stated above, it is difficult to find the lemma
in the literature.

The domains Ω1, Ω2 above do not satisfy the CDC condition (roughly speaking, because the
holes between the segments Iij are two big). However, any closed ball B̄ with radius at most 1
centered in E satisfies

CapL(
1
4 B̄ \ Ωi) ≥ CapL(

1
4 B̄ ∩E) ≈ rad(B̄) ≈ CapL(B̄).

Thus, applying Lemma 9.5 to Ωi and the ball B̄ = B(x, 10r), we get

gi(pi, y) . ωpi
i (B̄(x, 80r)) for all y ∈ B(x, 2r),

assuming r small enough so that pi 6∈ B(x, 20r). Plugging this estimate into (9.4), we obtain

(9.6) Ji(x, r) .

(
ωpi
i (B̄(x, 80r))

r

)2

for all x ∈ E and r small enough. Consequently, by Fatou’s lemma,
ˆ

E
J(x, 0+)1/4 dH1(x) ≤ lim inf

r→0

ˆ

E
J(x, r)1/4 dH1(x)

≤ lim inf
r→0

[(
ˆ

E
J1(x, r)

1/2 dH1(x)

)1/2 (ˆ

E
J2(x, r)

1/2 dH1(x)

)1/2 ]
.

Observe now that, for i = 1, 2, by (9.6) and Fubini,
ˆ

E
Ji(x, r)

1/2 dH1(x) .

ˆ

E

ωpi
i (B̄(x, 80r))

r
dH1(x)

=

ˆ

y∈∂Ω:dist(y,E)≤80r

1

r

ˆ

x∈E∩B̄(y,80r)
dH1(x) dωpi

i (y)

. ωpi
i (Ū80r(E)),

where Ūt(F ) stands for the closed t-neighborhood of F . So we deduce
ˆ

E
J(x, 0+)1/4 dH1(x) . lim

r→0
ωp1
1 (Ū80r(E)) · lim

r→0
ωp2
2 (Ū80r(E)) = ωp1

1 (E)ωp2
2 (E) = 0,

using the outer regularity of the measures ωpi
i . Thus, J(x, 0+) = 0 for H1-a.e. x ∈ E, as wished.
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Remark 9.2. We already mentioned that the domains Ω1, Ω2 defined above do not satisfy the
CDC. However, they can be modified suitably so that the CDC holds. For example, we could

define Ω̃i = Ωi \K, where K is the union of a countable family of homothetic copies of the 1/3
Cantor set located between all consecutive intervals Iij, I

i
j+1. That is, in the “hole” in Li between

the intervals Iij, I
i
j+1, we put a homothetic copy of the 1/3 Cantor set with diameter comparable

to the size of the hole. We could also replace the 1/3 Cantor set by a suitable approximation by

intervals, in case we wanted the boundary of Ω̃i to be made up of a countable family of intervals.
We leave the details for the reader.
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