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NOISE SENSITIVITY OF THE MINIMUM SPANNING TREE OF

THE COMPLETE GRAPH

OMER ISRAELI AND YUVAL PELED

Abstract. We study the noise sensitivity of the minimum spanning tree
(MST) of the n-vertex complete graph when edges are assigned independent

random weights. It is known that when the graph distance is rescaled by n
1/3

and vertices are given a uniform measure, the MST converges in distribution
in the Gromov-Hausdorff-Prokhorov (GHP) topology [4]. We prove that if the

weight of each edge is resampled independently with probability ε ≫ n
−1/3,

then the pair of rescaled minimum spanning trees — before and after the
noise — converges in distribution to independent random spaces. Conversely,
if ε ≪ n

−1/3, the GHP distance between the rescaled trees goes to 0 in prob-
ability. This implies the noise sensitivity and stability for every property of
the MST that corresponds to a continuity set of the random limit. The noise
threshold of n−1/3 coincides with the critical window of the Erdős-Rényi ran-
dom graphs. In fact, these results follow from an analog theorem we prove
regarding the minimum spanning forest of critical random graphs.

1. Introduction

The minimum spanning tree (MST) of a weighted graph is a classical object in
discrete mathematics, whose research goes back to Bor̊uvka’s Algorithm from 1926
(see [22]). Denote by Mn the MST of the n-vertex complete graph Kn assigned
with independent U[0, 1]-distributed edge weights Wn = (we)e∈Kn

. Frieze [10]
famously showed that the expected total weight of Mn converges to ζ(3), initiating
an extensive study of the distribution of the total weight (e.g., [14, 16]). From a
purely graph-theoretic perspective, a decade old fundamental work on the metric
structure of Mn by Addario-Berry, Broutin, Goldschmidt, and Miermont [4], which
plays a key role in this paper, discovered the existence of a scaling limit of Mn as a
measured metric space. An explicit construction of the limit was recently obtained
in [9]. In addition, the local weak limit of Mn was studied in [1, 6].

The notion of noise sensitivity of Boolean functions, that was introduced by
Benjamini, Kalai, and Schramm in [7], can be directly applied to the random MST.
Namely, let ε = εn be a noise parameter, and W ε

n = (wε
e)e∈Kn

be obtained from
Wn by resampling each we independently with probability ε. The MST of Kn with
respect to the new weights W ε

n is denoted by Mε
n. Suppose fn is a sequence of

Boolean functions defined on n-vertex trees, such that E[fn(Mn)] is bounded away
from 0 and 1 as n → ∞. We say that the sequence fn is ε-noise sensitive (resp.
stable) if Cov(fn(Mn), fn(Mε

n)) → 0 (resp. 1) as n → ∞. This paper deals with the
noise sensitivity and stability of (functions that depend on) the scaled measured
metric structure of Mn.

1.1. The metric structure of the random MST. The tree Mn is closely related
to the Erdős-Rényi random graph. Kruskal’s algorithm [17] computes the tree Mn
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by starting from an empty n-vertex graph and adding edges according to their
(uniformly random) increasing weight order, unless the addition of an edge forms
a cycle. Therefore, the minimum spanning forest (MSF) M(n, p) of the random
graph G(n, p) := {e ∈ Kn : we ≤ p} (endowed with the random weights from Wn)
is a subgraph of Mn. Indeed, M(n, p) is one of the forests en route Mn in Kruskal’s
algorithm. In addition, M(n, p) can be obtained from G(n, p) using a cycle-breaking
algorithm, i.e., by repeatedly deleting the heaviest edge participating in a cycle until
the graph becomes acyclic (see §2).

Fix λ ∈ R and let p(n, λ) = 1/n + λ/n4/3. We denote the critical random graph
Gn,λ := G(n, p(n, λ)) and its MSF Mn,λ := M(n, p(n, λ)). These graphs play a key
role in the study of the MST. It is shown in [4] (in a sense we precisely specify below),
that for a large constant λ, ”most” of the global metric structure of Mn is present in
its subgraph Mn,λ. The size and structure of the connected components of Gn,λ have
been studied extensively [20]. In his work on multiplicative coalescence, Aldous [5]
determined the limit law of the random sequence of the sizes of the connected
components of Gn,λ, given in decreasing order and rescaled by n−2/3. The limit
law is beautifully expressed via a reflected Brownian motion with a parabolic drift.
A breakthrough result of Addario-Berry, Broutin and Goldschmidt [2] discovered
the scaling limit in Gromov–Hausdorff distance of the connected components of
Gn,λ viewed as metric spaces.

In [4], these authors and Miermont extended this result to measured metric spaces
in the Gromov–Hausdorff–Prokhorov (GHP) distance. In addition, by applying a
continuous cycle-breaking algorithm on the scaling limit of the components, they
discovered the scaling limit of Mn. More formally, let M be the space of isometry-
equivalence classes of compact measured metric spaces endowed with the GHP
distance. Denote by Mn ∈ M the measured metric space obtained from Mn by
rescaling graph distances by n−1/3 and assigning a uniform measure on the vertices.
The main theorem in [4] asserts that there exists a random compact measured

metric space M such that Mn
d
−→ M in the space (M, dghp) as n → ∞. The limit

M is an R-tree that, remarkably, differs from the well-studied CRT [12].

1.2. Noise sensitivity and stability. Noise sensitivity of Boolean functions cap-
tures whether resampling only a small, ε-fraction, of the input bits of a function
leads to an almost independent output. Since its introduction in [7], this concept
has found various applications in theoretical computer science [21] and probability
theory [13]. Lubetzky and Steif [19] initiated the study of the noise-sensitivity of
critical random graphs. Denote by Gε

n,λ the graph that is obtained by indepen-

dently resampling each edge according to its original Ber(p(n, λ)) distribution with
probability ε. They proved that the property that the graph contains a cycle of
length in (an1/3, bn1/3) is noise sensitive provided that ε ≫ n−1/3. Heuristically,
a threshold of n−1/3 for noise-sensitivity of such “global” graph properties seems
plausible. Indeed, if ε ≫ n−1/3, then the edges that are not resampled, and appear
in the graph both before and after the noise operation, form a subcritical random
graph in which the property in question is degenerate.

Roberts and Şengül [23] established the noise sensitivity of properties related
to the size of the largest component of Gn,λ, under the stronger assumption that

ε ≫ n−1/6. Afterwards, the above heuristic was made rigor in [18] by Lubetzky and
the second author, establishing that if ε ≫ n−1/3 both (i) the rescaled sizes and
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(ii) the rescaled measured metric spaces, obtained from the components of Gn,λ

and Gε
n,λ, are asymptotically independent (where the entire sensitivity regime was

completed in [11]). On the other hand, if ε ≪ n−1/3 the effect of the noise was shown
to be negligible. Rossignol identified non-trivial correlations when ε = tn−1/3 [24].

In the same manner the measured metric space Mn ∈ M is obtained from Mn,
let M ε

n ∈ M denote the measured metric space obtained from Mε
n by rescaling the

graph distances by n−1/3 and assigning a uniform measure on the vertices. Our
main theorem establishes a noise threshold of n−1/3 for any sequence of functions
that depend on the scaled measured metric space. This threshold coincides with
the noise threshold for critical random graphs and, accordingly, with the width of
the critical window in the Erdős-Rényi phase transition.

Theorem 1.1. Let ε = εn > 0. Then, as n → ∞,

(1) If ε3n → ∞ then the pair (Mn,M
ε
n) converges in distribution to a pair of

independent copies of M in (M, dghp).

(2) If ε3n → 0 then dghp(Mn,M
ε
n)

p
→ 0.

For any sequence fn(Mn) := 1Mn∈S of Boolean functions, where S is a continuity
set of the limit space M , our theorem implies ε-noise sensitivity if ε ≫ n−1/3 in Part
(1), and ε-noise stability if ε ≪ n−1/3 in Part (2). For concrete examples, indicator
functions of properties such as “the diameter of the tree is at most b · n1/3,” or
“the average distance between a pair of vertices is greater than a · n1/3” naturally
arise. However, we leave the verification that these examples indeed correspond to
continuity sets of M for future work (see Section 5), noting that it appears to follow
from the recent explicit construction of M as the Brownian parabolic tree [9].

1.3. The random minimum spanning forest. Following [4], our approach for
Theorem 1.1 starts by investigating the effect of the noise operator on the metric
structure of Mn,λ. The forest Mε

n,λ denotes the MSF of the graph Gε
n,λ := {e ∈

Kn : wε
e ≤ p(n, λ)} endowed with weights from W ε

n .
For an n-vertex graph G and an integer j ≥ 1, let Sj(G) be obtained from the

j-th largest connected component of G by rescaling the graph distances by n−1/3

and assigning each vertex a measure of n−2/3. We denote by S(G) the sequence
S(G) = (Sj(G))j≥1 of elements in M. We consider the two sequences of scaled
measured metric spaces, given by Mn,λ := S(Mn,λ) and M ε

n,λ := S(Mε
n,λ). For

every two sequences S, S′ of elements in M, let d4ghp(S, S′) = (
∑

j dghp(Sj , S
′
j)

4)
1

4

and set L4 = {S ∈ MN :
∑

j dghp(Sj ,Z)4 < ∞} where Z is the zero metric space.

It is shown in [4] that there exists a sequence Mλ := (Mλ,j)j≥1 of random
compact measured metric spaces such that Mn,λ → Mλ as n → ∞ in distribution
in (L4, d

4
ghp). The connection between Mn and Mn,λ from [4, Theorem 1.2] that was

mentioned above can be now stated precisely. That is, if we let M̂λ,1 be obtained

from Mλ,1 by renormalizing its measure to a probability measure, then M̂λ,1
d
−→ M

in dghp as λ → ∞. Hence, Theorem 1.1 is derived from the following theorem.

Theorem 1.2. Let λ ∈ R and ε = εn > 0.

(1) If ε3n → ∞ as n → ∞, then the pair
(

Mn,λ,M
ε
n,λ

)

converges in distribu-

tion to a pair of independent copies of Mλ in (L4, d
4
ghp).

(2) If ε3n → 0 as n → ∞, then d4ghp(Mn,λ,M
ε
n,λ)

p
→ 0.
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The noise sensitivity of critical random graphs from [18] and [11] establishes
that if ε3n → ∞ then the scaled measure metric spaces of the components of
Gn,λ and Gε

n,λ are asymptotically independent. This fact seemingly excludes any
non-negligible correlation between the scaled measure metric spaces of Mn,λ and
Mε

n,λ, which are obtained from Gn,λ and Gε
n,λ respectively by the cycle-breaking

algorithm. However, the existence of “bad” edges that participate in cycles in both
graphs, and with the same (not resampled) weight, may correlate the two runs of
the cycle-breaking algorithm. We analyze the joint cycle-breaking algorithm and
prove that if ε3n → ∞ then, with high probability, the number of such “bad” edges
is too small to generate a non-negligible correlation. For the stability part, we show
that if ε3n → 0 then, typically, the two runs of the cycle-breaking algorithm are
identical.

The remainder of the paper is organized as follows. Section 2 contains some
preliminaries and additional background material needed for the proof of the main
results. In Section 3 we prove both parts of Theorem 1.2, and in Section 4 we
complete the proof of Theorem 1.1. We conclude with some open problems in
Section 5.

2. Preliminaries

2.1. Notations. For clarity, we briefly recall the notations that were interspersed
within the introduction and present some additional concepts needed in the proofs.
Let n be an integer and Kn the complete n-vertex graph. The edges of Kn are
assigned independent and U[0, 1]-distributed weights Wn := (we)e∈Kn

. Given a
noise-parameter ε = εn, we define the weights W ε

n := (wε
e)e∈Kn

by

wε
e :=

{

we be = 0

w′
e be = 1

,

where be is an independent Ber(ε) random variable and w′
e is an independent U[0, 1]-

distributed weight. In words, we independently, with probability ε, resample the
weight of each edge.

All the random graphs we study are measurable with respect to Wn,W
ε
n . Namely,

Mn,M
ε
n are the minimum spanning trees (MST) of Kn under the weights Wn,W

ε
n

respectively. In addition, we always refer to p as p := p(n, λ) = 1/n+λ/n4/3, where
λ ∈ R, and denote the random graphs

Gn,λ := {e ∈ Kn : we ≤ p}, and G
ε
n,λ := {e ∈ Kn : wε

e ≤ p} .

Note that as random (unweighted) graphs, Gε
n,λ is obtained from Gn,λ by applying

the standard ε-noise-operator that independently, with probability ε, resamples
each edge. We denote the intersection of these two graphs by I := Gn,λ∩Gε

n,λ, and
its subgraph

Ǐ = {e ∈ Gn,λ ∩G
ε
n,λ : be = 0},

consisting of the edges that appear in Gn,λ and whose weight was not resampled
— and thus also appear in Gε

n,λ. We denote by Mn,λ (resp. Mε
n,λ) the minimum

spanning forest (MSF) of Gn,λ (resp. Gε
n,λ) when endowed with edge weights from

Wn (resp. W ε
n).

To some of the random graphs above, we associate a scaled measured metric
space in M. Recall that S(G) is a sequence of elements in M that is obtained
from an n-vertex graph G by ordering its components in decreasing size, rescaling
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the graph distances by n−1/3 and assigning each vertex a measure of n−2/3. We
denote Mn,λ = S(Mn,λ), M ε

n,λ = S(Mε
n,λ), Gn,λ = S(Gn,λ) and Gε

n,λ = S(Gε
n,λ).

We sometime refer to specific elements in these sequences, e.g., Mn,λ,j denotes the
measured metric space obtained from the j-th largest component Cj(Gn,λ) of the

graph Gn,λ. In addition, given a connected graph G, let Ŝ(G) be obtained from

G by rescaling the graph distance by n−1/3 and assigning a uniform probability
measure on its vertices. We view Mn = Ŝ(Mn), M ε

n = Ŝ(Mε
n) as elements of M.

2.2. The Joint Cycle Breaking Algorithm. An alternative approach to the
well-known Kruskal’s algorithm for finding the MSF of a weighted graph is the cycle-
breaking algorithm, aka the reverse-delete algorithm, which was also introduced by
Kruskal in [17]. Consider conn(G), the set of edges of G that participate in a
cycle. In other words, e ∈ conn(G) if removing it does not increase the number of
connected components. The algorithm finds the MSF of a given weighted graph G
by sequentially removing the edge with the largest weight from conn(G). Once the
remaining graph is acyclic, its edges form the MSF of G.

For a graph G, let K∞(G) denote the random MSF of G if the edges are given
exchangeable, distinct random weights. In such a case, K∞(G) can be sampled by
running a cycle-breaking algorithm on G that removes a uniformly random edge
from conn(G) in each step. Indeed, the heaviest edge in conn(G) is uniformly
distributed, regardless of which edges were exposed as the heaviest in the previous
steps of the algorithm. For example, conditioned on (the edge set of) Gn,λ, the
forest Mn,λ is K∞(Gn,λ)-distributed.

Given two finite graphs G1, G2 and a common subgraph H ⊂ G1 ∩ G2, let
W i := (wi

e)e∈Gi
, i = 1, 2, be two exchangeable random weights given to the edges

of G1 and G2 that are distinct except that w1
e = w2

e ⇐⇒ e ∈ H. We denote by
K∞

joint(G1, G2, H) the joint distribution of the pair of minimum spanning forests of

G1, G2 under the above random edge weights W 1,W 2.
Clearly, the marginal distributions of K∞

joint(G1, G2, H) are K∞(G1) and K∞(G2).

In addition, if H ∩ conn(G1) ∩ conn(G2) = ∅ then K∞
joint(G1, G2, H) = K∞(G1) ×

K∞(G2), i.e., the joint cycle-breaking algorithm can be carried out by two in-
dependent cycle-breaking algorithms on G1 and G2. On the other extreme, if
conn(G1) = conn(G2) and conn(G1) ⊆ H , then the exact same set of edges is
removed in both graphs during the run of the joint cycle breaking algorithm. In
such a case, if (M1,M2) ∼ K∞

joint(G1, G2, H) then M1 ∼ K∞(G1) and M2 is then

deterministically defined by M2 = G2 \ (G1 \M1).
The example prompting this definition in our study is that, conditioned on (the

edge sets of) Gn,λ,G
ε
n,λ, Ǐ defined in §2.1, the distribution of the pair (Mn,λ,M

ε
n,λ)

is K∞
joint(Gn,λ,G

ε
n,λ, Ǐ). Indeed, among the edges in Gn,λ ∪ Gε

n,λ, only those in Ǐ

have the same weight in Wn and W ε
n , and all the other weights are independent.

Roughly speaking, the two extreme cases for H mentioned above describe what
typically occurs in the noise sensitivity and stability regimes.

2.3. Scaling limits. We conclude this section by briefly reviewing previous works
regarding the scaling limits of the measured metric spaces obtained from the random
graphs that appear in our work. In [4] (building on results from [2]) it is proved
that there exists a sequence Gλ = (Gλ,j)j≥1 of random elements in M such that

Gn,λ
d
−→ Gλ in (L4, d

4
ghp) as n → ∞. Furthermore, by defining a continuous version
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of the cycle-breaking algorithm (whose distribution is also denoted by K∞), they
obtain a sequence Mλ = (Mλ,j)j≥1 of random elements in M which is K∞(Gλ)-

distributed conditioned on Gλ. They prove that Mn,λ
d
−→ Mλ in (L4, d

4
ghp) as

n → ∞ by establishing the continuity of K∞, and that the scaling limit M of Mn

is obtained by renormalizing the measure of Mλ,1 to a probability measure and
taking λ → ∞ (as mentioned in §1).

3. Proof of Theorem 1.2

3.1. Noise Sensitivity of the MSF. We saw that the pair (Mn,λ,M
ε
n,λ) is ob-

tained by a joint cycle-breaking algorithm and that it is K∞
joint(Gn,λ,G

ε
n,λ, Ǐ) - dis-

tributed. Our first goal is to show that, if ε3n → ∞, the joint cycle-breaking is close
to two independent runs of the cycle-breaking algorithm. We start by bounding the
number of edges that participate in a cycle in both graphs, and, as a result, can
potentially correlate the two forests during the joint cycle-breaking.

Lemma 3.1. Fix λ ∈ R and let ε3n → ∞, Gn,λ,G
ε
n,λ as defined in §2, and

J = conn(Gn,λ) ∩ conn(Gε
n,λ). Then,

P(|J| > ωε−1) → 0 ,

as n → ∞ for every diverging sequence ω = ω(n) → ∞.

In the proof below, we denote by G − e the subgraph of G on the same vertex
set with the edge set E(G) \ {e}, and by G \ A the subgraph of G induced by the
vertices that are not in the vertex subset A.

Proof. Recall that I denotes the intersection Gn,λ ∩Gε
n,λ. The graph I is a G(n, θ)

random graph, where

θ := p(1 − ε + εp) =
1 − ε(1 + o(1))

n
.

Fix some edge e = {u, v} in Kn. We consider two disjoint possibilities for the
occurrence of the event e ∈ J:

(1) The event A = Ae = {e ∈ conn(I)} where e belongs to a cycle that is
contained in both graphs, or

(2) the event B = Be = {e ∈ J \ conn(I)} where there are two distinct cycles
in Gn,λ and Gε

n,λ both containing e, and there is no cycle in I containing e.

We bound the probability of A by observing it occurs if and only if e ∈ I and
there is a path in the graph I− e from v to u. By enumerating all the paths from
v to u with k ≥ 1 additional vertices we find that

P(A) ≤ θ
∑

k≥1

nkθk+1 ≤
θ3n

1 − θn
=

1 + o(1)

εn2
, (3.1)

where the last inequality follows from the relations θ ≤ 1/n and 1−θn = ε(1+o(1)).
Next, we turn to bound the probability of B. Let Cx, for x ∈ {u, v}, denote

the component of the vertex x in the graph I − e. We further denote K1 :=
Gn,λ \ (Cu ∪ Cv) and K2 := Gε

n,λ \ (Cu ∪Cv).
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uv
e

Cv Cu

(a) Two internal paths

vu
e

Cv Cu

C1(K2)

C2(K2)

C3(K2)

· · ·

K2

(b) Internal and external paths

vu
e

Cv Cu

C1(K1)

C2(K1)

C3(K1)

· · ·

K1
C1(K2)

C2(K2)

C3(K2)

· · ·

K2

(c) Two external paths

Figure 1. The three combinations of internal and external paths
between u and v that can cause the occurrence of B.

Claim 3.2. For every Cu, Cv,K1,K2 as above there holds

P(B | Cu, Cv,K1,K2) ≤ 1Cu 6=Cv
· θ · (|Cu||Cv|)

2 ·
2
∏

i=1



ρ + ρ2
∑

j≥1

|Cj(Ki)|
2



 ,

where ρ := pε(1 − p)/(1 − θ).

Proof. We first note that Cu is either equal or disjoint to Cv, and that in the former
case there exists a path from v to u in I − e. We observe that if Cu = Cv then
the event B does not occur, hence both sides in the claimed inequality are equal
to 0. Indeed, this is derived directly by combining the facts B ⊆ {e ∈ I} ∩ Ac and
A = {e ∈ I} ∩ {Cu = Cv}.

Suppose that Cu ∩ Cv = ∅, and consider the edge sets

F0 := {{a, b} : a ∈ Cu, b ∈ Cv} \ {e},

and
F1 := {{a, b} : a ∈ Cu ∪ Cv, b /∈ Cu ∪ Cv}.

Note that for every f ∈ F0 ∪ F1, the only information that is exposed by our
conditioning is that f /∈ I. Therefore, for every two edge subsets L1, L2 ⊂ F0 ∪ F1

there holds
P(L1 ⊆ Gn,λ, L2 ⊆ G

ε
n,λ | Cu, Cv) ≤ ρ|L1|+|L2| (3.2)
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Indeed, if L1∩L2 6= ∅ then this conditional probability is 0 since no edge of F0∪F1

is in I. Otherwise, by the independence between the different edges, (3.2) follows
from the fact that, for every edge f , P(f ∈ Gn,λ | f /∈ I) = P(f ∈ Gε

n,λ | f /∈ I) = ρ.
We consider two different partitions of F1 given by

F1 =
⋃

j≥1,x∈{u,v}

Fx,j,i, i = 1, 2 ,

where Fx,j,i consists of all the edges between Cx and the j-th largest connected
component Cj(Ki) of the graph Ki. A path from v to u in Gn,λ − e can either
be internal and involve an edge from F0, or be external and involve one edge from
Fv,j,1 and one from Fu,j,1 for some j ≥ 1, using the edges from Cj(K1) to complete
the path. Clearly, a similar statement holds for Gε

n,λ where Fx,j,1 is replaced by

Fx,j,2 for both x ∈ {u, v} (See Figure 1). Therefore, we claim that

P(B | Cv, Cu,K1,K2) ≤

≤ 1Cu 6=Cv
· θ ·



ρ2|F0|
2 + ρ3|F0|

2
∑

i=1

∑

j≥1

|Fv,j,i||Fu,j,i| + ρ4
2
∏

i=1

∑

j≥1

|Fu,j,i||Fv,j,i|





= 1Cu 6=Cv
· θ ·

2
∏

i=1



ρ|F0| + ρ2
∑

j≥1

|Fu,j,i||Fv,j,i|



 . (3.3)

Indeed, every term in the second line corresponds to a different combination of
internal and external paths. The first term corresponds to having two internal
paths so we have |F0|2 choices for having an edge from F0 in both graphs, and the
probability that the two edges actually appear is at most ρ2 by (3.2). Similarly,
the second term accounts for having one internal and one external path, where for
the external path, say in Gn,λ, we need to choose the component Cj(K1) we use,
as well as an edge from Fu,j,1 and an edge from Fv,j,1. We multiply by ρ3 · |F0|,
since in addition to having these two edges appear in Gn,λ, we also choose an
edge from F0 to appear in Gε

n,λ. The last term is derived by considering the case
of two external paths, as we need to choose, for both graphs Ki, a component
Cj(Ki), and edges from Fv,j,i and Fu,j,i. To conclude, note the multiplicative term
θ accounting for the event e ∈ I. Alternatively, (3.3) can be understood as letting
each of the graphs Gn,λ,G

ε
n,λ either choose an internal path with a cost of ρ or an

external path with a cost of ρ2. The product of these two terms appears due to
the negative correlations from (3.2). The claim is derived from (3.3) by noting that
|F0| < |Cu||Cv|, |Fx,j,i| = |Cx||Cj(Ki)| for every x, j and i, and a straightforward
manipulation. �

We proceed by observing that
∑

j≥1

|Cj(K1)|2 ≤
∑

j≥1

|Cj(Gn,λ)|2 and
∑

j≥1

|Cj(K2)|2 ≤
∑

j≥1

|Cj(G
ε
n,λ)|2 , (3.4)

since K1,K2 are subgraphs of Gn,λ,G
ε
n,λ respectively.

Next, for a positive c ∈ R, denote by Ec the event that

max







∑

j≥1

|Cj(Gn,λ)|2,
∑

j≥1

|Cj(G
ε
n,λ)|2







≤ cn4/3,
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and recall that [18, Theorem 1],[11] establish that if ε3n → ∞ then the pair

n−2/3 ·
(

(|Cj(Gn,λ)|)j≥1, (|Cj(G
ε
n,λ)|)j≥1

)

weakly converges in ℓ2 to a pair of independent copies of a random sequence whose
law was identified by Aldous [5]. Therefore,

lim
c→∞

lim
n→∞

P(Ec) = 1. (3.5)

By combining (3.4) and Claim 3.2 we find that

P (B,Ec | Cv, Cu) ≤ 1Cu 6=Cv
· θ · (|Cu||Cv|)

2 ·
(

ρ + c · ρ2n4/3
)2

. (3.6)

Let Y denote the size of the connected component of a fixed vertex in a G(n, θ)
random graph. Note that for every choice of Cu, the random variable 1Cu 6=Cv

|Cv|2

is stochastically bounded from above by Y 2. Indeed, If v ∈ Cu then 1Cu 6=Cv
= 0.

Otherwise, Cv is the component of v in the G(n− |Cu|, θ) random graph I \Cu. As
a result, |Cv| is indeed dominated by Y . Therefore,

E[1Cu 6=Cv
(|Cu||Cv|)

2] = E
[

|Cu|
2 · E

[

1Cu 6=Cv
|Cv|

2
∣

∣ Cu

]]

≤ E
[

|Cu|
2
]

E[Y 2]

≤ E[Y 2]2. (3.7)

In addition,

E[Y 2] =
1

n
EG∼G(n,θ)





∑

j≥1

|Cj(G)|3



 ≤
1

(1 − nθ)3
=

1 + o(1)

ε3
, (3.8)

where the first equality is derived by averaging over the vertices and accounting for
the contribution of each connected component, the inequality follows from the work
of Janson and  Luczak on subcritical random graphs [15], and the second equality
by 1 − nθ = (1 − o(1))ε. By assigning (3.7), (3.8), and the relations θ < 1/n and
ρ = (1 + o(1))ε/n in (3.6), we find that

P(B,Ec) ≤
1 + o(1)

ε6n
·

(

ε

n
+

cε2

n2/3

)2

=
1 + o(1)

εn2

(

(ε3n)−1/2 + c(ε3n)−1/6
)2

. (3.9)

Therefore, we derive from (3.1), (3.9) and ε3n → ∞ that

E[|J| · 1Ec
] =

(

n

2

)

P(e ∈ J, Ec) ≤
n2

2
(P(A) + P(B,Ec)) ≤

1 + o(1)

2ε
.

Finally, note that by Markov’s inequality,

P(|J| > ωε−1) ≤ P(Ec
c) + P(|J| · 1Ec

> ωε−1)

≤ 1 − P(Ec) +
1 + o(1)

2ω
.

This concludes the proof using (3.5) and the assumption that ω → ∞ as n → ∞. �

We now apply Lemma 3.1 to show that the K∞
joint(Gn,λ,G

ε
n,λ, Ǐ)-distributed pair

(Mn,λ,M
ε
n,λ) is close to (Fn,λ,F

ε
n,λ), a pair of random forests that, conditioned

on Gn,λ,G
ε
n,λ, is K∞(Gn,λ) × K∞(Gε

n,λ)-distributed. In other words, to sample

(Fn,λ,F
ε
n,λ), we first sample the pair (Gn,λ,G

ε
n,λ) and then apply two independent

runs of the cycle-breaking algorithm. We stress that, unconditionally, Fn,λ and
Fε
n,λ are not independent, due to the dependence between Gn,λ and Gε

n,λ. To
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state this claim accurately, we consider the scaled versions Fn,λ := S(Fn,λ) and
F ε
n,λ := S(Fn,λ).

Lemma 3.3. Fix λ ∈ R and let ε3n → ∞. There exists a coupling of (Mn,λ,M
ε
n,λ)

and (Fn,λ,F
ε
n,λ) such that Mn,λ = Fn,λ and

d4ghp(M ε
n,λ, F

ε
n,λ)

p
−→ 0 , (3.10)

as n → ∞.

Proof. Recall that J = conn(Gn,λ)∩conn(Gε
n,λ), and Ǐ = {e ∈ Kn : we ≤ p, be = 0}

is the random graph consists of the edges in Gn,λ∩Gε
n,λ whose weight had not been

resampled. We sample the graphs Gn,λ,G
ε
n,λ,Mn,λ,M

ε
n,λ using Wn,W

ε
n (See §2),

and set Fn,λ := Mn,λ. In addition, let Fε
n,λ be the MSF of Gε

n,λ endowed with the
following edge weights:

w̃e =

{

wε
e e ∈ Gε

n,λ \ (̌I ∩ J),

p · w′
e e ∈ Ǐ ∩ J,

where w′
e is an independent U[0, 1] variable. First, we claim that the forests

Fn,λ,F
ε
n,λ are retained respectively from Gn,λ,G

ε
n,λ by independent cycle breaking

algorithms. Namely, conditioned on Gn,λ,G
ε
n,λ,the pair (Fn,λ,F

ε
n,λ) is K∞(Gn,λ)×

K∞(Gε
n,λ)-distributed. This follows from the fact that conditioned on Gn,λ,G

ε
n,λ

and Ǐ, the weights

(we)e∈conn(Gn,λ) and (w̃e)e∈conn(Gε
n,λ

),

which determine the edges that are removed in the cycle breaking algorithms, are
i.i.d. Indeed, the only dependency between weights can occur via an edge from J

but for every such an edge e, the weights in both graphs are independent either due
to resampling (if e /∈ Ǐ) or by the definition of w̃e (if e ∈ Ǐ).

Next, we bound the distance d4ghp(M ε
n,λ, F

ε
n,λ). Denote by Bj , j ≥ 1, the event

that the trees Cj(M
ε
n,λ) and Cj(F

ε
n,λ) are different. Note that the forests Mε

n,λ and
Fε
n,λ are retained from Gε

n,λ by the cycle-breaking algorithm using, respectively, the

edge weights (wε
e)e∈Gε

n,λ
and (w̃e)e∈Gε

n,λ
, which differ only on Ǐ∩J. Therefore, if Bj

occurs then there exists a cycle γ in Cj(G
ε
n,λ) and an edge f ∈ γ ∩ Ǐ∩ J that is the

heaviest in γ with respect to one of the edge weights. Otherwise, the two runs of
the cycle-breaking algorithms on Cj(G

ε
n,λ) must be identical.

Let S denote the number of distinct simple cycles in Cj(G
ε
n,λ), R the length

of the shortest cycle in Cj(G
ε
n,λ) (or R = ∞ if the component is acyclic), and let

γ be a cycle in Cj(G
ε
n,λ). Conditioned on Gε

n,λ and J, the probability that the

heaviest edge of γ (in each of the weights) belongs to J is bounded from above
by |J|/R, since |γ| is bounded from below by R. Hence, by taking the union
bound over all the cycles in the component and the two edge weights we find that
P(Bj | Gε

n,λ, J) ≤ 2 · S · |J|/R. Therefore, for every ω > 0, the probability of Bj

conditioned on the event C that |J| < ωε−1, S < ω, and R > n1/3ω−1, is bounded
by

P (Bj | C) ≤
2 · ω · (ωε−1)

n1/3ω−1
.
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Consequently,

P(Bj) ≤ P(|J| ≥ ωε−1) + P(S ≥ ω) + P(R ≤ n1/3ω−1) +
2 · ω · (ωε−1)

n1/3ω−1
. (3.11)

Suppose that ω = ω(n) → ∞ as n → ∞. Lemma 3.1 asserts that first term in
(3.11) is negligible. In addition, the second and third terms are also negligible by
known results on critical random graphs. Namely, S converges in distribution to an
almost-surely finite limit by [5,20], and the fact that n−1/3ωR almost surely diverges
follows from [3] for unicyclic components, and from [20] for complex components
(components with more than one cycle). Choosing ω = ω(n) such that ω → ∞ and
ω3/(εn1/3) → 0 as n → ∞ results in P(Bj) → 0, for every j ≥ 1.

To complete the proof, observe that for every η > 0 and N ≥ 1 there holds

P(d4ghp(M ε
n,λ, F

ε
n,λ) > η) ≤

N−1
∑

j=1

P(Bj) + P





∞
∑

j=N

dghp(M ε
n,λ,j, F

ε
n,λ,j)

4 > η



 .

The first sum is negligible as n → ∞ since P(Bj) → 0 for every j ≥ 1. In addition,
by the fact that both M ε

n,λ and F ε
n,λ converge in distribution as n → ∞ in (L4, d

4
ghp)

we have that

lim
N→∞

lim sup
n→∞

P





∞
∑

j=N

dghp(M ε
n,λ,j , F

ε
n,λ,j)

4 > η



 = 0,

which completes the proof of the lemma. �

Next, we turn to derive the asymptotic independence of the rescaled measured
metric spaces Fn,λ and F ε

n,λ.

Lemma 3.4. Fix λ ∈ R and suppose that ε3n → ∞ as n → ∞. Then, the pair
(Fn,λ, F

ε
n,λ) converges in distribution to a pair of independent copies of Mλ in

(L4, d
4
ghp) as n → ∞.

Proof. We start by describing, in very high-level terms, how the the space Mλ is
constructed. Recall the random measured metric space Gλ that was introduced
in [2], [4], and was shown to be the limit of Gn,λ in distribution, as n → ∞, in
(L4, d

4
ghp). The random space Mλ was defined conditioned on Gλ as being K∞(Gλ)-

distributed, where K∞ is the continuous analog of the cycle-breaking algorithm.
Next, denote by (s(Gn,λ,i))i≥1 and (s(Gλ,i))i≥1 the sequence of surpluses of

the components in Gn,λ and Gλ respectively. In addition, let (r(Gn,λ,i))i≥1 and
(r(Gλ,i))i≥1 be the sequence of minimal length of a core edge in each component.
We refer the reader to [4] for precise definitions. The following claim follows from
the proof of [4, Theorem 4.4].

Claim 3.5. Let Ω be a probability space in which Gn,λ,Gλ are commonly defined
such that Ω-almost-surely there holds that

Gn,λ → Gλ in (L4, d
4
ghp),

(s(Gn,λ,i))i≥1 → (s(Gλ,i))i≥1,

(r(Gn,λ,i))i≥1 → (r(Gλ,i))i≥1,

as n → ∞. Then, for every continuity set S of (L4, d
4
ghp) for Mλ, the convergence

P(Mn,λ ∈ S | Gn,λ) → P(Mλ ∈ S | Gλ) , as n → ∞,
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of random variables occurs Ω-almost surely. Here, conditioned on Gn,λ and Gλ,
Mn,λ is K∞(Gn,λ)-distributed, Mn,λ := S(Mn,λ) and Mλ is K∞(Gλ)-distributed.

In fact, it is proved in [4, Theorem 4.4] that under the conditions of Claim 3.5,
the cycle-breaking algorithms carried out on Gn,λ,Gλ can be coupled such that the
convergence of Mn,λ → Mλ in (L4, d

4
ghp) also occurs Ω-almost-surely.

Back to noise-sensitivity, the results in [18, Theorem 2] and [11, Theorem 9.1.1],
establish that if ε3n → ∞ as n → ∞ then

(Gn,λ, G
ε
n,λ)

d
−→ (Gλ,G

′
λ), and (3.12)

(

(s(Gn,λ,i))i≥1, (s(G
ε
n,λ,i))i≥1

) d
−→

(

(s(Gλ,i))i≥1, (s(G
′
λ,i))i≥1

)

, (3.13)

where G ′
λ is an independent copy of Gλ. Here the first convergence is in (L4, d

4
ghp),

and the second in the sense of finite dimensional distributions,
The proof of [4, Theorem 4.1] shows that this convergence can be extended to

the minimal lengths of core edges, implying that
(

(r(Gn,λ,i))i≥1, (r(G
ε
n,λ,i))i≥1

) d
−→

(

(r(Gλ,i))i≥1, (r(G
′
λ,i))i≥1

)

, (3.14)

as n → ∞.
Using Skorohod’s representation theorem, we may work in a probability space Ω

in which the convergences. (3.12),(3.13) and (3.14) occur almost surely. In addition,
we can consider the distributions of Fn,λ, F

ε
n,λ,Mλ and its independent copy M ′

λ

by constructing them via Ω. Namely, conditioned on Gn,λ,G
ε
n,λ,Gλ,G

′
λ sampled in

Ω, we consider the (distributions of the) following random elements:

• The pair (Fn,λ,F
ε
n,λ) is K∞(Gn,λ)×K∞(Gε

n,λ)-distributed, Fn,λ := S(Fn,λ)

and F ε
n,λ = S(Fε

n,λ), and

• The pair (Mλ,M
′
λ) is K∞(Gλ) ×K∞(G ′

λ)-distributed.

We observe that the pair (Fn,λ, F
ε
n,λ) is conditionally independent given Gn,λ,G

ε
n,λ,

and the pair (Mλ,M
′
λ) is independent and identically distributed.

Our goal is to show that for every continuity sets S, S′ of (L4, d
4
ghp) for the

distribution of Mλ there holds

P(Fn,λ ∈ S, F ε
n,λ ∈ S′) → P(Mλ ∈ S)P(M ′

λ ∈ S′)

as n → ∞.
Note that by our assumption on the almost-sure convergences in Ω, we can apply

Claim 3.5 twice and obtain that for every two such continuity sets S, S′ there holds
that both convergences

P(Fn,λ ∈ S | Gn,λ) → P(Mλ ∈ S | Gλ) , as n → ∞, (3.15)

and

P(F ε
n,λ ∈ S′ | Gε

n,λ) → P(M ′
λ ∈ S′ | G

′
λ) , as n → ∞ (3.16)

occur Ω-almost surely. Consequently, the proof is concluded as follows:

P(Fn,λ ∈ S, F ε
n,λ ∈ S′) = E[P(Fn,λ ∈ S, F ε

n,λ ∈ S′ | Gn,λ,G
ε
n,λ)]

= E[P(Fn,λ ∈ S | Gn,λ) · P(F ε
n,λ ∈ S′ | Gε

n,λ)]

→ E[P(Mλ ∈ S | Gλ) · P(M ′
λ ∈ S′ | G

′
λ)]

= E[P(Mλ ∈ S | Gλ)] · E[P(M ′
λ ∈ S′ | G

′
λ)]

= P(Mλ ∈ S) · P(M ′
λ ∈ S′).
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The first equality holds by the law of total expectation, and the second equality
is due to the conditional independence of Fn,λ, F

ε
n,λ given Gn,λ,G

ε
n,λ. The conver-

gence, which occurs as n → ∞, is obtained from the Ω-almost-sure convergences
(3.15), (3.16) and using the dominated convergence theorem. The next equality is
obtained by the independence of Gλ,G ′

λ which is where the noise-sensitivity of the
measured metric structure of Gn,λ,G

ε
n,λ is being used. The last equality follows

from the law of total expectation.
�

We conclude this subsection with a proof of the noise-sensitivity of the MSF of
Gn,λ, which we derive from the following well-known theorem.

Theorem 3.6 ([8, Theorem 3.1]). Let S be a Polish space with metric ρ and

(Xn, Yn) be random elements of S × S. If Yn
d
−→ X and ρ(Xn, Yn)

p
−→ 0 as

n → ∞, then Xn
d
−→ X.

Proof of Theorem 1.2, Part (1). Denote the polish metric space S = (L4, d
4
ghp)2

endowed with some product metric ρ. Suppose that the random elements

((Mn,λ,M
ε
n,λ), (Fn,λ, F

ε
n,λ)) ∈ S × S

are sampled via the coupling from Lemma 3.3. Lemma 3.4 asserts that (Fn,λ, F
ε
n,λ)

converges in distribution to a pair of independent copies of Mλ. In addition, by
Lemma 3.3,

ρ((Mn,λ,M
ε
n,λ), (Fn,λ, F

ε
n,λ))

p
−→ 0 ,

as n → ∞. Consequently, we derive from Theorem 3.6 that (Mn,λ,M
ε
n,λ) converges

in distribution to a pair of independent copies of Mλ, as claimed. �

3.2. Noise Stability of the MSF. We now assume that ε3n → 0 as n → ∞.
In this case, the noise stability of the MSF follows from the similarity between
the cycle breaking algorithms. Namely, the K∞

joint(Gn,λ,G
ε
n,λ, Ǐ)-distributed pair

(Mn,λ,M
ε
n,λ) is obtained by removing the exact same set of edges from both graphs.

We derive this from the following claim which asserts that all the cycles in Gn,λ

and Gε
n,λ appear in their common subgraph Ǐ consisting of the edges whose weight

was not resampled.

Claim 3.7. Let λ ∈ R, j ≥ 1, ε3n → 0, and Gn,λ and Ǐ defined as in §2.1. Let Bj

denote the event that conn(Cj(Gn,λ)) = conn(Cj (̌I)). Then, P(Bj) → 1 as n → ∞.

Proof. We observe that conditioned on Gn,λ, the graph Ǐ is obtained from Gn,λ by
removing each edge independently with probability ε. Therefore, by [18, Lemma 5.4],
the event Aj that Cj (̌I) ⊆ Cj(Gn,λ) occurs with probability tending to 1 as n → ∞.
In addition, under the event Aj , the event Bj does not occur only if there exists an

edge e ∈ conn(Cj(Gn,λ)) that Ǐ did not retain. Therefore, for every ω = ω(n) > 0,

P(Bc
j | Aj) ≤ P(| conn(Cj(Gn,λ))| > ωn1/3) + εωn1/3, (3.17)

where the second term bounds the expected number of edges from conn(Gn,λ)

that Ǐ did not retain, conditioned on | conn(Cj(Gn,λ))| ≤ ωn1/3. We derive the
claim by combining P(Aj) → 1 and assigning in (3.17) a sequence ω = ω(n) such

that ω → ∞ and εωn1/3 → 0 as n → ∞. Indeed, in such a case we have that
P(n−1/3| conn(Cj(Gn,λ))| > ω) → 0, since the maximum number of cycles in Gn,λ
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is bounded in probability [20], and so is the length of the largest cycle in Cj(Gn,λ)

divided by n1/3 [3, 20]. �

Note that the assertion in Claim 3.7 also holds for Gε
n,λ since (Gn,λ, Ǐ)

d
= (Gε

n,λ, Ǐ).
We now turn to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 Part 2. Denote by M̌ the MSF of the graph Ǐ endowed with
the edge weights from Wn, and let M̌ := S(M̌). First, we argue that for every fixed
j ≥ 1,

dghp(Mn,λ,j , M̌j)
p
−→ 0 (3.18)

as n → ∞. By Claim 3.7 we can condition on the event Bj . Under this event, the

joint cycle breaking algorithm running on Cj(Gn,λ) and Cj (̌I) removes the same

edges in both graphs. Since Ǐ is a subgraph of Gn,λ, we deduce that Cj(Mn,λ) is

obtained from Cj(M̌) by the addition of the forest Cj(Gn,λ) \ Cj (̌I). We derive
(3.18) by the proof of [18, Theorem 2], which shows that with probability tending
to 1 as n → ∞, the graph Cj(Gn,λ) is contained in a neighborhood of radius o(n1/3)

around Cj (̌I), and that the two graphs differ by o(n2/3) vertices.

Since (Gn,λ, Ǐ,Wn)
d
= (Gε

n,λ, Ǐ,W
ε
n), we can use the same argument for Gε

n,λ

instead of Gn,λ, and find that

dghp(Mn,λ,j,M
ε
n,λ,j)

p
−→ 0,

as n → ∞. To conclude Theorem 1.2 Part 2 we need to extend the component-wise
convergence to

(

L4, d
4
GHP

)

. This is carried out exactly as in the proof of Lemma
3.3, following [4, Theorems 4.1, 4.4]. �

4. Proof of Theorem 1.1

The connection between the scaling limits of the MST Mn and the largest com-
ponent of the MSF Mn,λ was established in [4, Proposition 4.8]. Let Mn = Ŝ(Mn,λ)

and M̂n,λ,1 = Ŝ(Mn,λ,1) (see §2.1). Then, for every η > 0,

lim
λ→∞

lim sup
n→∞

P

(

dghp(Mn, M̂n,λ,1) > η
)

= 0, (4.1)

and a similar statement holds for M ε
n, M̂

ε
n,λ,1.

In addition, let M̂λ,1 be the measured metric space obtained from the scaling
limit Mλ,1 by renormalizing its measure to a probability measure. The so-called

principle of accompanying laws [25, Theorem 9.1.13] yields that Mn
d
−→ M in

(M, dghp), where the random measured metric space M is the limit of M̂λ,1
d
−→ M

in dghp as n → ∞. Given this background, Theorem 1.1 follows directly from
Theorem 1.2.

Proof of Theorem 1.1. For Part 1, we let ρ be some product metric on (M, dghp)2,
and deduce from (4.1) that for every η > 0,

lim
λ→∞

lim sup
n→∞

P

(

ρ((Mn,M
ε
n), (M̂n,λ,1, M̂

ε
n,λ,1)) > η

)

= 0.

In addition, Theorem 1.1 Part 1 implies that
(

M̂n,λ,1, M̂
ε
n,λ,1

)

d
−→

(

M̂λ,1, M̂
′
λ,1

)

,
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in (M, dghp)2, as n → ∞. Let M̂ ′
λ,1 to be an independent copy of M̂λ,1, hence

(

M̂λ,1, M̂
′
λ,1

)

d
−→ (M ,M ′) ,

as λ → ∞ in dghp, where M and M ′ are i.i.d. Therefore, by the principle of

accompanying laws, as n → ∞, the pair (Mn,M
ε
n)

d
−→ (M ,M ′) in dghp.

For Part 2, note that for every η > 0 and every λ ∈ R there holds

P(dghp(Mn,M
ε
n) > η) ≤ P(D1) + P(D2) + P(D3),

where D1, D2 and D3 are the events that the GHP distance between
(

Mn, M̂n,λ,1

)

,
(

M ε
n, M̂

ε
n,λ,1

)

and
(

M̂n,λ,1, M̂
ε
n,λ,1

)

is greater than η/3, respectively.

Part 2 of Theorem 1.2 implies that dghp

(

M̂n,λ,1, M̂
ε
n,λ,1

)

p
−→ 0 as n → ∞,

thereby P(D3) → 0. By applying (4.1) to both
(

Mn, M̂n,λ,1

)

and
(

M ε
n, M̂

ε
n,λ,1

)

,

we find that

lim
λ→∞

lim sup
n→∞

P(D1) + P(D2) = 0,

therefore P(dghp(Mn,M
ε
n) > η) → 0 as n → ∞, as claimed. �

5. Open Problems

We conclude with three open problems that naturally arise from our work. First,
it will be interesting to study the joint limit law of the scaled MSTs (Mn,M

ε
n) and

of the scaled MSFs (Mn,λ,M
ε
n,λ) in the critical noise regime ε = tn−1/3, t ∈ R.

Rossignol [24] identified a non-trivial correlation between Gn,λ and Gε
n,λ, but we

suspect that the correlations between the MSFs are even more involved. Namely, in
this regime the subgraphs conn(Gn,λ) and conn(Gε

n,λ) share a positive fraction of
their weighted edges. Hence, on top of the correlations between Gn,λ and Gε

n,λ, the
joint cycle-breaking algorithm retaining Mn,λ,M

ε
n,λ is also non-trivially correlated.

Second, even though this paper considers U[0, 1]-distributed weights, our setting
can be equivalently described in discrete terms. It is also natural to consider sim-
ilar problems in a continuous noise model, e.g., by letting (we, w

ε
e) be identically

distributed normal variables with covariance ε. We ask: what is the sensitivity-
stability noise threshold of the scaled MST in this model? is it still aligned with
the critical window of the Erdős-Rényi random graphs?

Third, it is interesting to explore for which functions of the MST our theorem
establishes noise sensitivity and stability. This requires a better understanding of
the limit M and its continuity sets. For example, consider the diameter of M

or the distance between two independent random points in it. Are these random
variables continuous? What are their support? It is not entirely clear to us how
to answer these questions using the construction in [4] of M as the limit of Mλ

as λ → ∞. However, it appears that the recent explicit construction of M as the
Brownian parabolic tree [9] can be quite useful here.
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