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Abstract

We consider a single genetic locus with two alleles A1 and A2 in a large haploid population. The
locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies
follow a Wright-Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors
of the conditional gene genealogy and the latent mutations of a sample with known allele counts,
when the count n1 of allele A1 is fixed, and when either or both the sample size n and the selection
strength |α| tend to infinity. Our study extends previous work under neutrality to the case of
non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size,
even if it is strongly positive or strongly negative in the usual sense (α → −∞ or α → +∞), the
number of latent mutations of the n1 copies of allele A1 follows the same distribution as the number
of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative
to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also
demonstrate robustness of our asymptotic results against changing population sizes, when one of |α|
or n is large.

Keywords: Recurrent mutation, selection, Ewens sampling formula, coalescent, Wright-Fisher
diffusion

1. Introduction

The observed copies of a particular allele in a sample descend from an unknown number of
distinct mutations. If k1 is the number of these ‘latent’ mutations for allele A1 when it is observed
n1 times in a sample, then k1 ∈ {1, 2, . . . , n1}. Although latent mutations are not observed directly,
they can be modeled as outcomes of the stochastic ancestral process of a sample and inferred from
patterns of variation in DNA data (Harpak et al., 2016; Seplyarskiy et al., 2021; Johnson et al.,
2022). Analytical results on the distribution and timing of latent mutations of rare neutral alleles
are given in Wakeley et al. (2023). Here we consider non-neutral alleles which may be under strong
selection and which may or may not be rare. We take two different approaches to modeling latent
mutations under selection and recurrent mutation. The first approach uses the idea of coalescence
in a random background of allele frequencies in the population (Barton et al., 2004). The second
uses the conditional ancestral selection graph (Slade, 2000a) and demonstrates results consistent
with those from the first approach.
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Wakeley et al. (2023) also contains an application to the frequencies of single-nucleotide sites with
counts n1 ∈ {1, 2, . . . , 40} of synonymous mutations in a subsample of 57K non-Finnish European
individuals (n = 114K) from the gnomAD database (Karczewski et al., 2020). Dramatic differences
in sample frequency distributions of rare alleles with different mutation rates, categorized by the
‘Roulette’ method of Seplyarskiy et al. (2023), were well explained by an empirical demographic
model with recurrent mutation but no selection. Seplyarskiy et al. (2023, Fig. 3a) showed using
simulations that a neutral, parametric demographic model fitted to these data also explained the
frequencies of mutation in counts n1 ≤ 104. Polymorphic sites with small mutation counts comprise
the bulk of variation in humans. They represent a rich source of information about demographic
history and possibly selection. Sites with n1 ∈ {1, 2, . . . , 40} make up about 95% of all polymorphic
sites in the gnomAD data used in Wakeley et al. (2023).

At present humans are the only species with sufficient genomic data to apply such models of rare
variants which rely on limiting approximations for large sample sizes. Whereas the neutral models in
Wakeley et al. (2023) and Seplyarskiy et al. (2023) also account for the extreme population growth
of humans (Keinan and Clark, 2012; Gazave et al., 2014; Gao and Keinan, 2016), in considering
selection here we focus on populations of constant size. Previous theoretical work on populations of
constant size has shown that distributions of rare alleles are in fact unaffected even by moderately
strong selection (Joyce and Tavaré, 1995; Joyce, 1995). Specifically, the counts of latent mutations
obey the independent Poisson statistics of rare alleles in the Ewens sampling formula (Ewens, 1972;
Arratia et al., 1992, 2003). This is also the case in Wakeley et al. (2023) when the population
size is constant. In the present work we investigate the robustness of these results to very strong
selection. Theory also predicts that rare alleles tend to be young (Kimura and Ohta, 1973; Watterson,
1976). Mathieson and McVean (2014) and Platt et al. (2019) have demonstrated empirically that
rare non-synonymous or otherwise functional alleles in the human genome are even younger than
non-functional rare alleles. In the present work we also investigate how strong selection and rarity
affect the ages of latent mutations.

We assume there are two possible alleles, A1 and A2, at a single genetic locus in a large haploid
population. We begin by assuming that the population size N is constant over time. In Section 3.4
we consider time-varying population size. One allele or the other is favored by directional selection.
Mutation is recurrent and happens in both directions. In the diffusion approximation, time is
measured in proportion to Ne generations where Ne is the effective population size (Ewens, 2004).
Under the Wright-Fisher model of reproduction, Ne = N . Under the Moran model of reproduction
(Moran, 1958, 1962), Ne = N/2. With these assumptions, the frequency of A1 alleles is well
approximated by a process X that solves (1) below and has parameters θ1, θ2 and α as N → ∞. For
a haploid population, θi = 2Neui and α = 2Nes, in which ui is the per-generation rate of A3−i → Ai
mutations and s is the selection coefficient. If there is no dominance, these results can be extended
to diploids, in which case θi = 4Neui and α = 4Nes.

Thus, we assume that allele-frequency dynamics in the population obey the Wright-Fisher
diffusion (Fisher, 1930; Wright, 1931; Ewens, 2004) with parameters θ1 and θ2 for mutations
A2 → A1 and A1 → A2, respectively, and α for the selective advantage (if α > 0) or disadvantage
(if α < 0) of allele A1. That is, we let X(t) be the relative frequency of A1 in the population at time
t, and assume that its forward-time dynamics is described by the stochastic differential equation

dX(t) =

[
θ1
2
(1−X(t))− θ2

2
X(t) +

α

2
X(t)(1−X(t))

]
dt+

√
X(t)(1−X(t)) dWt, t > 0 (1)

in which Wt is the Wiener process, also called the standard Brownian motion.
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Both of the approaches (random background and ancestral selection graph) we take to modeling
latent mutations rely on the assumption that the population has reached equilibrium, which occurs
in the limit t→ ∞. The stationary probability density of X is

ϕα(x) = Cxθ1−1(1− x)θ2−1eαx, 0 < x < 1 (2)

(Wright, 1931; Ewens, 2004). We explicitly denote the dependence on α because this parameter
plays a key role in what follows. The normalizing constant C guarantees that

∫ 1
0 ϕα(x)dx = 1. It is

given by

C =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)1F1(θ1; θ1 + θ2;α)
(3)

in which Γ(a) is the gamma function and 1F1(a; b; z) is the confluent hypergeometric function, or
Kummer’s function; see Abramowitz and Stegun (1964) and Slater (1960).

By definition, latent mutations occur in the ancestry of a sample. When a sample of total size n
is taken from a population with stationary density (2), it will contain a random number N1 of copies
of allele A1 and N2 = n−N1 copies of allele A2. The probability that N1 is equal to n1 is equal to

q(n1, n2) := P(N1 = n1;n, α, θ1, θ2)

=

∫ 1

0

(
n

n1

)
xn1(1− x)n−n1ϕα(x)dx

= C

(
n1 + n2
n1

)
Γ(θ1 + n1)Γ(θ2 + n2)

Γ(θ1 + θ2 + n1 + n2)
1F1(θ1 + n1; θ1 + θ2 + n1 + n2;α) (4)

for n1 ∈ {0, 1, . . . , n} and n2 = n− n1, and with C again given by (3). The notation q(·) is from
Slade (2000a,b) and is convenient for the ancestral selection graph.

Suppose now we are given the sample count, that is, we know that among the n uniformly
sampled haploid individuals, n1 of them are of type 1 and the remaining n2 = n− n1 are of type 2.
Then the posterior density of the population frequency of A1 conditional on the sample is

ϕ(n1,n2)
α (x) =

(
n1+n2

n1

)
xn1(1− x)n2ϕα(x)

q(n1, n2)
(5)

=
Γ(θ1 + θ2 + n1 + n2)x

θ1+n1−1(1− x)θ2+n2−1eαx

Γ(θ1 + n1)Γ(θ2 + n2)1F1(θ1 + n1; θ1 + θ2 + n1 + n2;α)
(6)

from Bayes’ theorem with prior density ϕα.

The sampling probability q(n1, n2) in (4) and the resulting posterior density ϕ
(n1,n2)
α play major

roles in the two approaches we take to modeling latent mutations. Specifically, transition probabilities
in the conditional ancestral selection graph depend on ratios of sampling probabilities (Slade, 2000b)

and the allele frequency in the ancestral process of Barton et al. (2004) has initial density ϕ
(n1,n2)
α (x)

when conditioned on the sample.
We describe the occurrence of latent mutations in the ancestry of allele A1 conditional on the

sample count n1. We say that A1 is rare when the sample size n is much larger than n1. We enforce
this rarity of A1 by letting n2 ∼ n tend to infinity with n1 fixed, or finite. We present some results
for cases in which A1 is not rare in this sense, that is when neither n1 nor n2 is large. In this case
we also describe the conditional ancestry of A2, but overall our focus is on large samples and rare
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A1. This is the same, sample-based concept of rarity that was used in Wakeley et al. (2023) and
previously considered by Joyce and Tavaré (1995) and Joyce (1995). It may be distinguished from
rarity in the population, though of course finding A1 rare in a large sample is most likely when the
population frequency x is small.

By strong selection we mean large |α|. We model rarity and strong selection together under the
assumption that α = α̃n2 for some constant α̃ ∈ R. We study latent mutations and the ancestral
processes which generate them under three scenarios: (i) |α| large with n2 fixed, (ii) n2 large with α
fixed, and (iii) both |α| and n2 large with α̃ = α/n2 fixed. In making approximations for large n2
and/or large |α|, we make extensive use of asymptotic results for ratios of gamma functions and for
the confluent hypergeometric function which are presented in Appendix A.

The parameters θ1 and θ2 are fixed constants throughout, with θ1, θ2 > 0. For single nucleotide
sites, these population-scaled mutation rates have been estimated for many species, using average
pairwise sequence differences and assuming constant population size, and are typically about 0.01
with a range of about 0.0001 to 0.1 (Leffler et al., 2012). Values for humans are smaller but they
vary almost as widely among sites in the genome, with a mean of about 0.0008 and a range of about
0.0001 to 0.02 (Seplyarskiy et al., 2021, 2023; Wakeley et al., 2023). In contrast, there is no reason
to suppose that the selection parameter |α| is small (Eyre-Walker and Keightley, 2007; Chen et al.,
2020; Agarwal et al., 2023). Note that our introduction of a constant α̃ = α/n2 is simply a device to
specify the relative importance of rarity as opposed strong selection, not a hypothesis about biology.

The case of a rare neutral allele was considered in Wakeley et al. (2023) where it was shown
that the number of latent mutations in the ancestry of the n1 copies of allele A1 follows the same
distribution as the number of alleles in the Ewens sampling formula (Ewens, 1972) with sample size
n1 and mutation parameter θ1. Let K1 be the random number of these latent mutations for allele
A1 in the ancestry of the sample. Further, let ξj be a Bernoulli random variable with probability of
success

P(ξj = 1) =
θ1

θ1 + j − 1
, j = 1, 2, . . . (7)

Under neutrality for large sample size and conditional on N1 = n1,

K1
d
= ξn1 + ξn1−1 + · · ·+ ξ2 + ξ1 (8)

which gives the stated Ewens sampling result (Arratia et al., 1992). In (8) and below,
d
= denotes

equal in distribution. Note that, because coalescence is among exchangeable lineages, the full Ewens
sampling formula should apply if we were to keep track of the sizes of latent mutations; see Crane
(2016) and Tavaré (2021) for recent reviews.

Here we apply the model of coalescence in a random background described by Barton et al.
(2004) to prove these results (7) and (8) for rare alleles in large samples and especially to extend the
analysis of latent mutations to scenarios which include selection. We investigate both the number of
latent mutations and their timing in the ancestry of the sample, and we allow that selection may
be strong. We also show how the same scenarios can be treated using the conditional ancestral
selection graph (Slade, 2000a), giving the same limiting results for all three scenarios.

Briefly, we find that positive selection does not in general lead to (7) and (8), that very strong
positive selection (relative to the sample size) leads to neutral gene genealogies with a single ancient
latent mutation for the favored allele. This is described in Section 3 for scenario (i) and for the case
α̃ ∈ (1,∞) in scenario (iii). On other hand, when selection is not too strong relative to the sample
size, then extreme rarity of A1 in the sample can effectively override strong positive selection and
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retrieve (7) and (8). This is described in Section 3 for scenario (ii) and for the case α̃ ∈ (−∞, 1) in
scenario (iii). Figures 1, 2 and 3 illustrate our results in the three scenarios.

We note that Favero and Jenkins (2024) have recently performed detailed analysis of a d-allele
diffusion model, where the selective advantage of one allele grows to infinity and the other parameters
remain fixed. Their findings confirm and extend what we establish for scenario (i) in the two-allele
model in Sections 3.1 and 4.1. In addition, Favero and Jenkins (2024) prove the duality of the
strong-selection limit of the diffusion and the corresponding ancestral selection graph.

2. Sample frequencies and posterior population frequencies

In this section, we present asymptotic results for the sampling probability q(n1, n2) in (4) and

the posterior density ϕ
(n1,n2)
α (x) in (5) in our three regimes of interest: (i) |α| large with n2 fixed,

(ii) n2 large with α fixed, and (iii) both |α| and n2 large with α̃ = α/n2 fixed.

2.1. Asymptotics for sampling probabilities

In the case of strong selection and moderate sample size, that is |α| large with n2 fixed, applying
(A.4a) and (A.4b) to (4) gives

q(n1, n2) =


(
n

n1

)
Γ(θ1 + n1)

Γ(θ1)
|α|−n1

(
1 +O

(
|α|−1

))
if α < 0, (9a)(

n

n1

)
Γ(θ2 + n− n1)

Γ(θ2)
αn1−n (1 +O

(
α−1

))
if α > 0. (9b)

Here we focus on the leading-order terms but note that the next-order terms are straightforward to
obtain using (A.4a) and (A.4b) and additional higher-order terms could be computed using (4.1.2)
and (4.1.6) in Slater (1960). In (9a), each additional copy of A1 decreases the sampling probability
by a factor of 1/|α| so the most likely sample is one which contains no copies of A1. In (9b), each
additional copy of A1 increases the sampling probability by a factor of α so the most likely sample is
monomorphic for A1. However, these results are perfectly symmetric for the two alleles. Switching
allelic labels and swapping |α| for α changes (9a) into (9b). That is, allele A2 experiences the same
effects of positive/negative selection in (9a)/(9b) as the focal allele A1 does in (9b)/(9a).

In the case of large sample size and moderate selection, that is n2 large with α fixed, applying
(A.5) to (4) gives

q(n1, n2) = C
Γ(θ1 + n1)

n1!
n−θ12

(
1 +O

(
n−1
2

))
. (10)

This has the same form as the neutral result, equation (22) in Wakeley et al. (2023), only with the
additional factor 1F1(θ1; θ1+ θ2;α) in the denominator of the constant C. With respect to the count
of the focal allele A1, the distribution is similar to a (degenerate) negative-binomial distribution
with parameters p = 1/n2 and r = θ1, like the corresponding result in Theorem 2 of Watterson
(1974) for neutral alleles which propagate by a linear birth-death process. The effect of selection is
only to uniformly raise or lower the chances of seeing n1 copies of A1 in a very large sample. The
additional factor 1F1(θ1; θ1 + θ2;α) in the denominator of C is a decreasing function of α, which
is equal to 1 when α = 0 and approaches 0 quickly from there as α increases. Greater selection
against (respectively, for) A1 increases (respectively, decreases) the chance of it being rare but does
not affect the shape of the distribution of n1, at least to leading order in 1/n2.
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In the case of large sample size and strong selection, that is both |α| and n2 large with α̃ = α/n2
fixed, applying (A.4a), (A.4b), (A.6a), (A.6b) to (4) gives

q(n1, n2) =



Γ(θ1 + n1)

n1!Γ(θ1)

(
1

1 + |α̃|

)n1
(

|α̃|
1 + |α̃|

)θ1 (
1 +O

(
n−1
2

))
if α̃ < 0 (11a)

B1
Γ(θ1 + n1)

n1!

(
1

1− α̃

)n1 (
1 +O

(
n−1
2

))
if 0 < α̃ < 1 (11b)

B2
1

n1!

(
α̃− 1

α̃
n2

)n1 (
1 +O

(
n−1
2

))
if α̃ > 1 (11c)

with constants B1 and B2 which are unremarkable except in their dependence on n2:

B1 ∝ nθ2−θ12 e−α̃n2

B2 ∝ n
θ2− 1

2
2 (α̃e)−n2

such that q(n1, n2) becomes tiny as n2 grows. In (11b) and (11c), allele A1 is favored by selection
so it will be unlikely for its sample count to be very small.

To see how (11b) and (11c) compare to (11a), consider how these three sampling probabilities
change as n1 increases:

q(n1 + 1, n2)

q(n1, n2)
≈



θ1 + n1
(1 + |α̃|)(n1 + 1)

if α̃ < 0 (12a)

θ1 + n1
(1− α̃)(n1 + 1)

if 0 < α̃ < 1 (12b)

(α̃− 1)n2
α̃(n1 + 1)

if α̃ > 1 (12c)

where the approximation is for large n2, i.e. omitting the O
(
n−1
2

)
parts of (11a), (11b) and (11c).

The first two differ from the corresponding neutral result (θ1 + n1)/(n1 + 1) by the constant factors
1/(1 + |α̃|) < 1 in (12a) and 1/(1− α̃) > 1 in (12b). Note that (10) gives the neutral result, as do
(12a) and (12b) as α̃→ 0. Relative to this, negative selection in (12a) makes additional copies of A1

less probable whereas positive selection in (12b) makes them more probable. But (12a) and (12b)
differ from the neutral result only by these constant factors. Equation (12c) is quite different. With
α̃ > 1, each additional copy of A1 increases the sampling probability by a large factor, proportional
to n2, making this case similar to the case of strong positive selection in (9b). This is as expected.
What is surprising is (12b), namely that strong selection (α→ ∞) in favor of A1 can be made to
resemble neutrality simply by increasing the sample size relative to n1.

2.1.1. Comparison to discrete Moran and Wright-Fisher models

We emphasize that our analyses in this work are of the Wright-Fisher diffusion model, given
here as the SDE (1) with stationary density (2). It is of interest to know how well our results hold
for discrete, exact models such as the Moran model and the Wright-Fisher model, especially as
|α| → ∞ or n→ ∞ for finite n1, in which cases we might expect the diffusion to be a relatively poor
description of the dynamics. In this section, we focus on (11a) and show that it can be obtained in
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a different way from a discrete-time Moran model, without first passing to the diffusion limit, but
that this cannot be done in general starting from the discrete-time Wright-Fisher model.

To leading order in 1/n2, (11a) is identical to the probability mass function of a negative binomial
distribution with parameters p = |α̃|/(1 + |α̃|) and r = θ1. Charlesworth and Hill (2019) found this
same result starting from the strong-selection approximation which Nei (1968) had obtained for
the diffusion model of Wright (1937). Here selection against A1 is so strong that it never reaches
appreciable frequency in the population. In the limit, or ignoring the O

(
n−1
2

)
part in (11a), this

distribution sums to one over all n1 ∈ {0, 1, 2, . . .}. The corresponding sum for the degenerate
distribution in (10) diverges, because under neutrality there is a non-trivial chance that A1 reaches
appreciable frequency in the population.

Consider a discrete-time haploid Moran model with population size N , in which allele A2 is
favored by selection. Specifically, A1 and A2 have equal chances of being chosen to reproduce but
different chances of being chosen to die: each A1 has an increased chance 1 + s compared to each
A2. Upon reproduction, the offspring of an Ai, i ∈ {1, 2}, has type Ai with probability 1− u3−i and
the other type A3−i with probability u3−i. If there are currently ℓ copies of A1 and N − ℓ copies of
A2, then in the next time step there will ℓ+ 1 copies of A1 with probability

N − ℓ

N − ℓ+ ℓ(1 + s)

ℓ

N
(1− u2) +

N − ℓ

N − ℓ+ ℓ(1 + s)

N − ℓ

N
u1 (13)

and ℓ− 1 copies of A1 with probability

ℓ(1 + s)

N − ℓ+ ℓ(1 + s)

N − ℓ

N
(1− u1) +

ℓ(1 + s)

N − ℓ+ ℓ(1 + s)

ℓ

N
u2. (14)

The fraction of A1 converges to the Wright-Fisher diffusion process (1) as N → ∞ if time is measured
in units of N(N − 1)/2 discrete steps, i.e. dt = 2/N(N − 1), with u1 = θ1/N , u2 = θ2/N and
s = −α/N .

As another way of obtaining (11a), we assume that s ≫ u1, u2. In particular, let Nu1 → θ1
and Nu2 → θ2 as N → ∞ just as in the diffusion model, but let s be a constant. Then we may
appeal to the analogous model and limit process (iii) of Karlin and McGregor (1964) which had no
selection but instead assumed that u2 ≫ u1. Similarly here we expect that allele A1 will be held in
negligible relative frequency in the population and instead be present in a finite number of copies as
N → ∞, only here due to strong selection rather than strong mutation.

In view of this scaling of the mutation rates by N and for comparison with the Wright-Fisher
model below, we rescale time so that it is measured in unit of generations, or N time steps. Then
with dt = 1/N , we can rewrite (13) and (14) as(

ℓ
N − ℓ

N − ℓ+ ℓ(1 + s)
(1− u2) +

N − ℓ

N − ℓ+ ℓ(1 + s)
(N − ℓ)u1

)
dt,

and (
ℓ(1 + s)

N − ℓ

N − ℓ+ ℓ(1 + s)
(1− u1) +

ℓ(1 + s)

N − ℓ+ ℓ(1 + s)
ℓu2

)
dt.

Then in the limit N → ∞, (13) and (14) describe to a continuous-time process in which

ℓ→

 ℓ+ 1 at rate (ℓ+ θ1)

ℓ− 1 at rate ℓ(1 + s).
(15)
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In other words, the number of copies of A1 in the population evolves according to a birth-death
process with immigration where the birth rate is λ = 1, the death rate is µ = 1 + s and the
immigration rate is κ = θ1. From (52) in Kendall (1949), the distribution of the number of copies of
A1 in the population at stationarity will be negative binomial with parameters 1− λ/µ = s/(1 + s)
and κ/λ = θ1, or

p(ℓ) =

(
ℓ+ θ1 − 1

ℓ

)(
1

1 + s

)ℓ( s

1 + s

)θ1
, ℓ ∈ Z+. (16)

In getting to (11a) above, which we note is for α < 0, we first applied the diffusion limit then let
the selection parameter |α| be large, specifically proportional to the number n2 of copies of A2 in a
sample of large size n for a given fixed number n1 of copies of A1. In the current haploid Moran
model with selection against A1, |α| = Ns, and the scalar |α̃| = |α|/n2 = Ns/n2. Define a := n2/N .
Then |α̃| = s/a and we may think of a as (close to) the proportion of the population sampled,
because n2/N ∼ n/N .

If the number of copies of A1 in the population is ℓ, then the probability there are n1 copies in
a sample of size n taken without replacement from the total population of size N is given by the
hypergeometric distribution

p(n1|ℓ;N) =

(
ℓ
n1

)(
N−ℓ
n−n1

)(
N
n

) , n1 = 0, 1, 2, . . . , ℓ. (17)

Since n− n1 = n2 = aN and taking N → ∞, (17) converges to the binomial distribution

p(n1|ℓ) =
(
ℓ

n1

)
an1(1− a)ℓ−n1 , n1 = 0, 1, 2, . . . , ℓ. (18)

This gives another route to (11a), namely using (16) and (18), and setting y = ℓ− n1,

p(n1) =

∞∑
ℓ=n1

p(n1|ℓ)p(ℓ)

=
∞∑
ℓ=n1

(
ℓ

n1

)
an1(1− a)ℓ−n1

(
ℓ+ θ1 − 1

ℓ

)(
1

1 + s

)ℓ( s

1 + s

)θ1

=
1

n1!

(
a

1 + s

)n1
(

s

a+ s

)θ1 ∞∑
y=0

Γ(y + n1 + θ1)

Γ(y + θ1)

(
y + θ1 − 1

y

)(
1− a

1 + s

)y(a+ s

1 + s

)θ1

=
Γ(n1 + θ1)

n1!Γ(θ1)

(
a

a+ s

)n1
(

s

a+ s

)θ1
. (19)

The end result (19) is equal to the leading order part of (11a) since |α̃| = s/a.
We can contrast this with a discrete-time haploid Wright-Fisher model with population size

N , in which time is already measured in generations. Under the same assumptions that gave (15),
namely s constant and u1, u2 ∝ 1/N as N → ∞, we can use equation (33) in Nagylaki (1990) which
specifies that, conditional on the number ℓg of copies of A1 in generation g, the number ℓg+1 has
the Poisson distribution

ℓg+1|ℓg ∼ Poisson

(
θ1
2

+ ℓg

(
1− s

2

))
(20)
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with θ1 := 2Nu1. Now ℓ evolves by a Poisson branching process with Poisson immigration rather
than by the birth-death process with immigration in (15). Although here too the number of copies
of A1 in the population will converge to a stationary distribution (Heathcote, 1965), it will not
in general be a negative binomial distribution. Thus (11a) is consistent with the per-generation
dynamics of rare alleles in the Moran model but not in the Wright-Fisher model.

2.2. Asymptotics for population frequencies conditional on the sample

Next, we obtain asymptotics for the posterior probability density ϕ
(n1,n2)
α in (6). Let P([0, 1])

be the space of probability measures on [0, 1] endowed with the weak convergence topology (i.e with
test functions in the space Cb([0, 1]) of bounded continuous functions on [0, 1]).

Lemma 1. Let n1 ∈ N be fixed. The following convergences in P([0, 1]) hold.

(i) Suppose n2 ∈ N is fixed and α→ ∞. Then ϕ
(n1,n2)
α (x) dx→ δ1.

(ii) Suppose α ∈ R is fixed and n2 → ∞. Then ϕ
(n1,n2)
α (x) dx→ δ0.

(iii) Suppose α = α̃n2 + c where α̃, c ∈ R are fixed and n2 → ∞. Then

ϕ(n1,n2)
α (x) dx→

{
δ0 when α̃ ∈ (−∞, 1]

δ1−1/α̃ when α̃ ∈ (1,∞)
(21)

where δx is the Dirac delta measure.

The proof of Lemma 1 is given in Appendix B.

3. Conditional coalescence in a random background

In this section, we extend the approach of coalescence in a random background in Barton et al.
(2004) to study the number and timing of latent mutations and other asymptotic properties of the
conditional gene genealogy given the sample frequencies of A1 and A2. We also extend our results
to time-varying populations in Section 3.4. While the setting of Barton et al. (2004) covers the case
of a neutral locus linked to the selected locus, here we focus on the selected locus.

Suppose we are given a sample from the selected locus at the present time t = 0, and that we
know the allelic types of the sample but we do not know how the sample was produced. What is
the genealogy of the sample? This question was answered by Barton et al. (2004), who modeled
the ancestral process using the structured coalescent with allelic types as subpopulations. The
structured coalescent can be a model of subdivision with migration between local populations
(Takahata, 1988; Notohara, 1990; Herbots, 1997) or a model of selection with mutation between
allelic types (Kaplan et al., 1988; Darden et al., 1989). For samples from a population at stationarity
as in Section 1, Barton et al. (2004) proved that this could be done rigorously starting with a Moran
model with finite N then passing to the diffusion limit. Barton and Etheridge (2004) explored some
properties of gene genealogies under this model, and Etheridge et al. (2006) used the same idea to
describe genetic ancestries following a selective sweep.

Even if the sample frequencies are known, the allele frequencies in the population are unknown.
A key feature of this method is to model allele-frequency trajectories backward in time. As pointed
out by Barton et al. (2004), the Moran model with finite N is reversible, meaning that at stationarity
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the time-reversed process is the same (in distribution) as the forward-time Moran process. This is
not a property of the Wright-Fisher model with finite N but does hold for their shared diffusion
limit (1) with stationary density (2); see for instance Millet et al. (1989) for why this holds. Figure 1
gives an illustration of a genealogy with mutations and allele frequencies varying backward in time.

Looking backward in time, let p
(N)
t be the fraction of type 1 in the population and n

(N)
i (t) be

the number of ancestral lineages of type i ∈ {1, 2} at time t. From Barton et al. (2004, Lemma

2.4), under the Moran model with stationary distribution, (p
(N)
t , n

(N)
1 (t), n

(N)
2 (t))t∈R+ is a Markov

process for each fixed N . Furthermore, Barton et al. (2004, Theorem 5.1) describes the joint

convergence of the processes (p(N), n
(N)
1 , n

(N)
2 ) as N → ∞.

Lemma 2 (Lemma 2.4 and Theorem 5.1 of Barton et al. (2004)). Let p
(N)
t and n

(N)
i (t) be the

fraction of type 1 in the population and the number of ancestral lineages of type i respectively,

at time t backward, under the stationary Moran model. Then (p(N), n
(N)
1 , n

(N)
2 ) is a Markov

process for each N ∈ N. As N → ∞, this process converges in distribution in the Skorohod space
D(R+, [0, 1]× Z+ × Z+) to a Markov process (pt, n1(t), n2(t))t∈R+ described as follows:

(i) (pt)t∈R+ is a solution to equation (1) with stationary initial density ϕα. In particular, it does
not depend on (n1(t), n2(t))t∈R+.

(ii) Suppose the current state is (p,m1,m2). Then (n1(t), n2(t))t∈R+ evolves as

(m1,m2) →



(m1 − 1,m2) at rate 1
p

(
m1

2

)
coalescence of type 1

(m1 − 1,m2 + 1) at rate 1−p
p m1

θ1
2 mutation of 1 to 2

(m1,m2 − 1) at rate 1
1−p
(
m2

2

)
coalescence of type 2

(m1 + 1,m2 − 1) at rate p
1−p m2

θ2
2 mutation of 2 to 1

(22)

We compare the notation here with that of Barton et al. (2004) and Etheridge (2011). Type 1
here is their type P, type 2 here is their type Q. So, θ22 (resp. θ1

2 ) here is µ1 (resp. µ2) in Barton
et al. (2004), and is v1 (resp. v2) in Etheridge (2011, eqn. (2.11)). The rescaled selection coefficient
α
2 here is s in Barton et al. (2004). The Moran model in Barton et al. (2004) has population size
2N and each of the (2N)(2N − 1)/2 unordered pairs is picked to interact (one dies and immediately
the other reproduces) at rate 1/2. Therefore, the diffusion limit in Barton et al. (2004, Lemma 3.1)
is slower by a factor of 1/2 than the limit we consider here in this paper.

The proof of Barton et al. (2004, Theorem 5.1) leads to more information for the limiting process.

Let n
(N),obs
i (t) be the number of type i lineages at backward time t which are ancestral to the

n
(N)
i (0) observed in the sample. Thus n

(N),obs
i (t) is non-increasing in t, but n

(N)
i (t) can increase as

t increases due to mutations from type 3 − i to type i. Clearly, n
(N),obs
i (0) = n

(N)
i (0). Note that

a mutation from type 3− i to type i backward in time corresponds to a mutation from type i to
type 3− i forward in time. To keep track of the number of mutation events versus the number of

coalescent events, we let L
(N)
i (t) be the total number of latent mutations for type i during [0, t]

backward in time. We have the following generalization of Lemma 2.

Lemma 3 (Joint convergence). Under the stationary Moran model, the backward process

(p(N); n
(N)
1 , n

(N),obs
1 , L

(N)
1 ; n

(N)
2 , n

(N),obs
2 , L

(N)
2 )
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is a Markov process for each fixed N ∈ N. As N → ∞, this process converges in distribution in the
Skorohod space D(R+, [0, 1]× Z6

+) to a continuous-time Markov process

(pt; n1(t), n
obs
1 (t), L1(t); n2(t), n

obs
2 (t), L2(t))t∈R+

such that

(i) (pt)t∈R+ is a solution to equation (1) with stationary initial density ϕα. In particular, it does
not depend on (n1(t), n

obs
1 (t), L1(t); n2(t), n

obs
2 (t), L2(t))t∈R+ .

(ii) At state (p; m1, a1, ℓ1; m2, a2, ℓ2), the process (n1(t), n
obs
1 (t), L1(t); n2(t), n

obs
2 (t), L2(t))t∈R+

evolves as (m1, a1, ℓ1; m2, a2, ℓ2) →

(m1 − 1, a1 − 1, ℓ1; m2, a2, ℓ2) at rate 1
p

(
a1
2

)
coalescence of two type 1obs

(m1 − 1, a1, ℓ1; m2, a2, ℓ2) at rate 1
p

[(
m1

2

)
−
(
a1
2

)]
other coalescence of type 1

(m1 − 1, a1 − 1, ℓ1 + 1; m2 + 1, a2, ℓ2) at rate 1−p
p a1

θ1
2 mutation of 1obs

(m1 − 1, a1, ℓ1; m2 + 1, a2, ℓ2) at rate 1−p
p (m1 − a1)

θ1
2 mutation of other type 1

and, similarly,

(m1, a1, ℓ1; m2 − 1, a2 − 1, ℓ2) at rate 1
1−p
(
a2
2

)
coalescence of two type 2obs

(m1, a1, ℓ1; m2 − 1, a2, ℓ2) at rate 1
1−p

[(
m2

2

)
−
(
a2
2

)]
other coalescence of type 2

(m1 + 1, a1, ℓ1; m2 − 1, a2 − 1, ℓ2 + 1) at rate p
1−p a2

θ2
2 mutation of type 2obs

(m1 + 1, a1, ℓ1; m2 − 1, a2, ℓ2) at rate p
1−p (m2 − a2)

θ2
2 mutation of other type 2

Now suppose that in addition to knowing the sample counts n1 and n2, we also know that these are
the outcome of uniform random sampling, as in (4). Let Pn be the conditional probability measure of
the ancestral process in Lemma 3 including both pt and the lineage dynamics, given that a uniformly
picked sample has allelic counts n = (n1, n2). Under Pn, the limiting process in Lemma 3 has

initial frequency p0 ∼ ϕ
(n1,n2)
α (x) dx given by (6), and (n1(0), n

obs
1 (0), L1(0); n2(0), n

obs
2 (0), L2(0)) =

(n1, n1, 0; n2, n2, 0). This follows from Bayes’ theorem, because by part (i) of Lemmas 2 and 3, the
initial frequency has prior density given by (2).

Focus on type 1 for now. We care about the sequence of events (coalescence and mutation)
backward in time for type 1, and the timing of these events. At each of these events, the number of
type 1 lineages decreases by 1, either by coalescence or by mutation from type 1 to type 2. Hence
nobs1 (t) is non-increasing, but n1(t) can increase over time (backward) due to mutations from type 2
to type 1 (see Figure 1 for an illustration). Furthermore, the difference n1(t)−nobs1 (t) is the number
of type 1 at time t that came from lineages that are of type 2 in the sample (at t = 0). We do not
care about these n1(t)− nobs1 (t) lineages, nor the mutation events from type 2 to type 1. Analogous
considerations hold for type 2.

From Lemma 3, we immediately obtain the following simplified description for the conditional
ancestral process in the limit N → ∞ for the two types. This description is the starting point of
our analysis for constant population size; later in Proposition 2 we also obtain the analogous result
for time-varying population size.
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Proposition 1 (Conditional ancestral process). The process (pt, n
obs
1 (t), L1(t), n

obs
2 (t), L2(t))t∈R+

under Pn is a Markov process with state space [0, 1]× {0, 1, · · · , n1}2 × {0, 1, · · · , n2}2 described as
follows:

(i) (pt)t∈R+ is a solution to (1) with initial density ϕ
(n1,n2)
α . In particular, it does not depend on

the process (nobs1 , L1, n
obs
2 , L2).

(ii) The process (nobs1 , L1, n
obs
2 , L2) starts at (n1, 0, n2, 0). When the current state is (p, a1, ℓ1, a2, ℓ2),

this process evolves as

(a1, ℓ1) →


(a1 − 1, ℓ1) at rate

1

p

(
a1
2

)
coalescence of type 1obs

(a1 − 1, ℓ1 + 1) at rate
1− p

p
a1
θ1
2

mutation of 1obs to 2

(23)

and, independently,

(a2, ℓ2) →


(a2 − 1, ℓ2) at rate

1

1− p

(
a2
2

)
coalescence of type 2obs

(a2 − 1, ℓ2 + 1) at rate
p

1− p
a2
θ2
2

mutation of 2obs to 1

(24)

The total rate in (23), at which a1 decreases by 1, is

a1
2p

(
(1− p)θ1 + a1 − 1

)
=: λa1(p), (25)

and the one-step transition probabilities are

(a1, ℓ1) →


(a1 − 1, ℓ1) with probability

a1 − 1

(1− p)θ1 + a1 − 1

(a1 − 1, ℓ1 + 1) with probability
(1− p)θ1

(1− p)θ1 + a1 − 1
=: ha1(p)

(26)

As t increases from 0 to ∞, the process (nobs1 (t))t∈R+ decreases from n1 to 0, and the process
(L1(t))t∈R+ increases from 0 to a random number K1 := limt→∞ L1(t) ∈ N which is the total number
of latent mutations for type 1. Similarly, the total number of latent mutations for type 2 is defined
by K2 := limt→∞ L2(t) ∈ N.

We now give a more explicit description of (K1,K2) using the frequency process p and independent
Bernoulli random variables. Note these are conditional on the sample counts (N1 = n1,N2 = n2) as
in (8).

Let τ1 < τ2 < · · · < τn1 be the jump times of the process nobs1 . At time τ1, the process nobs1

decreases from n1 to n1−1, etc., until finally at τn1 , n
obs
1 decreases from 1 to 0. It can be checked that

τn1 <∞ almost surely under Pn using the ergodicity of the process p and (25). Thus (nobs1 (t))t∈R+
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will indeed decrease to 0 eventually under Pn. The allele frequencies at these random times are
pτ1 , pτ2 , . . . , pτn1

. By Proposition 1, under Pn, we have

K1
d
= ξn1(pτ1) + ξn1−1(pτ2) + ξn1−2(pτ3) + · · ·+ ξ2(pτn1−1) + 1, (27)

where {ξk(·)}n1
k=2 is a family of independent random processes such that, for a constant p ∈ [0, 1],

ξk(p) =


0 with probability

k − 1

(1− p)θ1 + k − 1

1 with probability
(1− p)θ1

(1− p)θ1 + k − 1

(28)

which is a generalization of ξk in (7) and (8), where ξk ≡ ξk(0).
Similarly, if we let s1 < s2 < · · · < sn2 be the jump times of the process nobs2 , then

K2
d
= ζn2(ps1) + ζn2−1(ps2) + ζn2−2(ps3) + · · ·+ ζ2(psn2−1) + 1, (29)

where {ζk(·)}n2
k=2 is a family of independent random processes such that, for a constant p ∈ [0, 1],

ζk(p) =


0 with probability

k − 1

pθ2 + k − 1

1 with probability
pθ2

pθ2 + k − 1

Analogous to ξk in reference to K1, in what follows we will use the notation

ζk ≡ ζk(1) (30)

in reference to K2.
Having described the ancestral process in Proposition 1 and the latent mutations in (27) and

(29) under the conditional probability Pn, we study their asymptotic properties under 3 scenarios
in the next 3 subsections. These 3 scenarios are a consequence of the asymptotic behaviors of the
initial frequency p0 described in Lemma 4.

Lemma 4 (Asymptotic initial frequency). Let n1 ∈ N be fixed. The initial frequency p0 converges
in probability under Pn to a deterministic constant as follows.

(i) Suppose n2 ∈ N is fixed and α→ ∞. Then p0 → 1.

(ii) Suppose α ∈ R is fixed and n2 → ∞. Then p0 → 0.

(iii) Suppose α = α̃n2 + c where α̃, c ∈ R are fixed and n2 → ∞. Then

p0 →

{
0 when α̃ ∈ (−∞, 1]

1− 1/α̃ when α̃ ∈ (1,∞)
(31)

Furthermore, when α̃ ∈ (−∞, 1), it holds that n2p0 converges in distribution to the Gamma ran-

dom variable Gam(n1+θ1, 1− α̃) with probability density function (1−α̃)(n1+θ1)

Γ(n1+θ1)
yn1+θ1−1 e(α̃−1)y.

The proof of Lemma 4 is given in Appendix B.
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3.1. Scenario (i): strong selection, arbitrary sample size

The first scenario is when |α| large with n2 fixed. We consider the case α→ +∞ only, since the
other case α→ −∞ follows by switching the roles of type 1 and type 2.

The conditional genealogy of the n1 + n2 sampled individuals, under Pn, has three parts with
different timescales. First, the n2 type-2 lineages quickly evolve (coalesce and mutate) as in the

Ewens sampling formula, producing K2 type 1 lineages at a short time sn2 . Thus, K2
d
=
∑n2

k=1 ζk
where {ζk} are independent Bernoulli variables taking values in {0, 1} and having means θ2

θ2+k−1 .
Next, the resulting n1 + K2 type 1 lineages will coalesce according to the Kingman coalescent
without mutation until only one lineage remains. Hence it takes O(1) amount of time for the number
of lineages of type 1 to decrease to 1, as α→ ∞. Finally, it takes a long time, τn1 ≈ 2α

θ1θ2
, for the

single lineage to mutate. In particular, K1 ≈ 1.
This description is justified by Theorems 1 and 2. See Figure 1 for an illustration.

Figure 1: Conditional genealogy of a sample with (n1, n2) = (3, 7) at the present time t = 0. The fluctuating blue curve
shows the process (pt)t∈R+ of the population frequency of type 1 backward in time. In this example, pt approaches 1
from p0 and the 7 type-2 lineages coalesce and mutate, producing an additional K2 = 2 type-1 lineages. The 5 = 3+ 2
type-1 lineages then coalesce without mutating, reaching their common ancestral lineage at time τn1−1 and finally
mutating at time τn1 . Under scenario (i), that is when α is large: p0 will already be close to 1, coalescence and
mutation among the type-2 lineages will occur quickly, with K2 according to the Ewens sampling formula, coalescence
among the type-1 lineages will follow the Kingman coalescent, and τn1 ≈ 2α/(θ1θ2).

Theorem 1. Suppose (n1, n2) ∈ N2 is fixed. Then under Pn, as α→ ∞,

(i) supt∈[0,T ] |1− pt| → 0 in probability, for any T ∈ (0,∞); and

(ii) the triplet (K1, K2, sn2) converges in distribution to
(
1,
∑n2

k=1 ζk, 0
)
, where {ζk} are indepen-

dent Bernoulli variables taking values in {0, 1} and having means θ2
θ2+k−1 .

(iii) lim supα→∞ τn1−1 is stochastically dominated by the height of the Kingman coalescent with
n1 + n2 leaves.

Proof. By (1), the process q := 1− p solves the stochastic differential equation

dqt =
√
qt(1− qt) dWt −

θ1
2
qt +

θ2
2
(1− qt)−

α

2
qt(1− qt), t ≥ 0. (32)

Fix any ϵ ∈ (0, 1). We shall to show that Pn(supt∈[0,T ] qt > 2ϵ) → 0 as α→ ∞.
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By the comparison principle (Karatzas and Shreve, 1991, Proposition 2.18 in Chap. 5), we can
replace the process q by another process q̂ that solves

dq̂t =
√
q̂t(1− q̂t) dWt +

[
θ2
2

− α

2
q̂t(1− q̂t)

]
dt (33)

with an initial condition q̂0 that is equal in distribution to q0. By Girsanov’s theorem, we can further
take away the constant drift θ2

2 dt. That is, it suffices to show that there exists a probability space

(Ω,F ,P) on which P(supt∈[0,T ] Q̂t > 2ϵ) → 0 as α→ ∞, where the process Q̂ solves

dQ̂t =

√
Q̂t(1− Q̂t) dWt −

α

2
Q̂t(1− Q̂t) dt (34)

with an initial condition Q̂0 that is equal in distribution to q0. The initial frequency q0 → 0 in
probability under Pn, by Lemma 1(i). Hence it suffices to show that

P

(
sup
t∈[0,T ]

{∫ t

0

√
Q̂s(1− Q̂s) dWs −

α

2

∫ t

0
Q̂s(1− Q̂s) ds

}
> ϵ

)
→ 0 as α→ ∞. (35)

This is true by the time-change representation of the martingale Mt :=
∫ t
0

√
Q̂s(1− Q̂s) dWs

(Karatzas and Shreve, 1991, Theorem 4.6 in Chap. 3) and the fact that

P

(
sup
t∈[0,T ]

{
B⟨M⟩t −

α

2
⟨M⟩t

}
> ϵ

)

=P

(
sup

r∈[0, ⟨M⟩T ]

{
Br −

α

2
r
}
> ϵ

)

≤P

(
sup

r∈[0, T/4]

{
Br −

α

2
r
}
> ϵ

)

=

∫ T/4

0

1√
2πt3

exp

{−(ϵ+ α
2 t)

2

2t

}
dt→ 0 as α→ ∞,

where in the inequality we used the fact that the quadratic variation ⟨M⟩T ≤ T/4 almost surely
(since qt(1− qt) ≤ 1/4 for all t ∈ R+). Convergence (i) is proved.

Note that the coalescence rate and the mutation rate in (23) converge to a1(a1 − 1)/2 and 0
respectively as p → 1. In (24) both rates converge to infinity but their ratio converges in such a
way that the limiting one-step transition probabilities are

(a2, ℓ2) →


(a2 − 1, ℓ2) with probability a2−1

θ2+a2−1

(a2 − 1, ℓ2 + 1) with probability θ2
θ2+a2−1

(36)

Convergence (ii) then follows from (i) and the representations (27) and (29).
Finally, for part (iii), note that the convergence sn2 → 0 in part (ii) says that the time for type-2

lineages to disappear is negligible. Therefore, it follows from part (i) and (23) that the conditional
distribution of τ ′n1+K2−1, given K2, converges weakly to the height of the Kingman coalescent with
n1 +K2 leaves, where τ ′n1+K2−1 := inf{t ∈ R+ : n1(t) = 1} is the first time when the process n1
decreases to 1. Part (iii) then follows Since τn1−1 ≤ τ ′n1+K2−1 and K2 ≤ n2 by definition.
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In Theorem 2 below, we obtain that the mean of the age τn1 is about 2α
θ1θ2

.

Theorem 2 (Age of the oldest latent mutation of a favorable allele). Suppose (n1, n2) ∈ N2 is fixed.
Then under Pn, as α → ∞,

τn1
α converges in distribution to an exponential random variable with

mean 2
θ1θ2

. That is,

τn1

α

d−→ Exp

(
θ1 θ2
2

)
as α→ ∞.

Proof. By part (iii) of Theorem 1, it takes O(1) amount of time for the number of lineages of type 1
to decrease to 1, as α→ ∞. It remains to consider the time τn1 − τn1−1 for this single lineage to
mutate. Recall the rate of mutation in (23) with a1 = 1 lineage, for any t ∈ R+,

Pn

(τn1

α
> t
)
≈E

[
e

−θ1
2

∫ αt
0

1−ps
ps

ds
]

as α→ ∞. (37)

The exponent inside the expectation is, by the ergodic theorem and using the stationary probability
density (2) and (3),

−θ1αt
2

1

αt

∫ αt

0

1− ps
ps

ds ≈ −θ1αt
2

∫ 1

0

1− x

x
ϕα(x) dx almost surely, as α→ ∞

=
−θ1αt

2

∫ 1

0
C xθ1−2(1− x)θ2eαx dx

=
−θ1αt

2

Γ(θ1 − 1)Γ(θ2 + 1)1F1(θ1 − 1; θ1 + θ2;α)

Γ(θ1)Γ(θ2)1F1(θ1; θ1 + θ2;α)

≈ −θ1αt
2

θ2
α

as α→ ∞, by (A.4b)

=
−θ1θ2t

2
.

Hence, by (37), limα→∞ Pn

( τn1
α > t

)
= e

−θ1θ2t
2 for all t ∈ R+. The proof is complete.

In Theorem 2, (37), as in all proofs in this paper, A ≈ B means that A/B → 1 in the limit
specified, which is either α→ ∞ or n→ ∞. This is equivalent to A = B + o(1) where B converges
and o(1) represents terms which tends to 0 in the limit.

3.2. Scenario (ii): arbitrary selection, large sample size

The second scenario is when n2 large with α fixed. We deal with this briefly because it is
effectively covered by scenario (iii) when α̃ = 0.

The conditional genealogy of the n1 type 1 individuals in the sample can be described as follows.
Events among the type 1 lineages occur quickly under Pn in the sense that τn1 is of order O(1/n).
However, if we measure time in proportion to 1/n coalescent time units and measure frequency on
the scale of numbers of copies of alleles, then the n1 type-1 lineages evolve (coalesce and mutate)
as in the Ewens sampling formula. In particular, K1 ≈ 1 +

∑n1
k=2 ξk, where {ξk} are independent

Bernoulli variables taking values in {0, 1} and having means θ1
θ1+k−1 .

The rescaled frequency process for type 1 can be described precisely under the rescaling above
by the Feller diffusion with drift:

dZt =
√
Zt dWt +

θ1
2
dt, t ∈ R+, (38)
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with the initial distribution being the Gamma random variable Gam(n1 + θ1, 1). See Figure 2 for
an illustration. Remark 1 below explains how this is a special case of scenario (iii), with α̃ = 0.

Equation (38) (also (40) below) is a Cox-Ingersoll-Ross (CIR) model for interest rates in financial
mathematics. It has several other names including the Feller process and the square-root process
(Dufresne, 2001). It has a unique strong solution. This equation is not explicitly solvable, but its
transition density is explicitly known (Vanyolos et al., 2014) and its moments and distributions have
been intensively studied.

3.3. Scenario (iii): strong selection, large sample size

The third scenario is when both |α| and n2 large with α̃ = α/n2 fixed. Lemma 4 implies that

En[p0] ≈

{
θ1+n1
1−α̃

1
n when α̃ ∈ (−∞, 1)

1− 1/α̃ when α̃ ∈ (1,∞)
as n→ ∞. (39)

Therefore, it makes sense under this scenario to consider two cases: α̃ ∈ (−∞, 1) and α̃ ∈ (1,∞).

3.3.1. Case α̃ ∈ (−∞, 1)

In this case, under Pn and as n→ ∞, we have that p0 = O(1/n) by Lemma 4. The genealogy of
the n1 type 1 lineages are the same as that in scenario (ii); see Figure 2. This description is justified
by Theorems 3-4 below.

Figure 2: Conditional genealogy of a sample with observed frequencies (n1, n2) at the present time t = 0, where
n1 = 5 and n2 is large, and α = α̃n2 for a constant α̃ ∈ (−∞, 1). The n2 samples are not shown. In this figure,
K1 = 2 and the two red bullets are mutation events from type 1 to type 2. In scenario (iii), K1 is distributed like the
number of alleles in the Ewens sampling formula, and the timing of the type-1 events are small (of order O(1/n) on
the coalescent time scale). The rescaled process

(
np t

n

)
t∈R+

is well approximated by the diffusion process (40) with

initial distribution Gam(n1 + θ1, 1− α̃).

Let (Zt)t∈R+ be the R+-valued process that has initial state Z0 ∼ Gamma(n1 + θ1, 1− α̃) and
solves the stochastic differential equation

dZt =
√
Zt dWt +

1

2
(θ1 + α̃ Zt) dt, t ∈ R+, (40)

where W is the Wiener process.
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Theorem 3 (Convergence of rescaled genealogy). Suppose α̃ = α/n2 ∈ (−∞, 1) is fixed. As

n→ ∞, the process
(
np t

n
, nobs1 ( tn), L1(

t
n)
)
t∈R+

converges in distribution under Pn, in the Skorohod

space D(R+, R+ × Z+ × Z+), to a Markov process
(
Zt, ñ1(t), L̃1(t)

)
t∈R+

with state space R+ ×

{0, 1, · · · , n1} × {0, 1, · · · , n1} described as follows:

(i) (Zt)t∈R+ is a solution to (40) with initial state Z0 ∼ Gamma(n1 + θ1, 1− α̃). In particular,

its transition kernel does not depend on (ñ1, L̃1).

(ii) Suppose the current state is (z, a1, ℓ1). Then (ñ1, L̃1) evolves as

(a1, ℓ1) →


(a1 − 1, ℓ1) at rate 1

z

(
a1
2

)
coalescence of type 1

(a1 − 1, ℓ1 + 1) at rate 1
z a1

θ1
2 mutation of 1 to 2

(41)

Proof. Let Yt := npt/n. By Lemma 4, under Pn we have Y0 = np0 → Gam(n1 + θ1, 1− α̃). By (1),

Yt − Y0 =n (pt/n − p0)

=n

∫ t/n

0

√
ps(1− ps) dWs +

n

2

∫ t/n

0
θ1(1− ps)− θ2ps + αps(1− ps) ds

d
=

n√
n

∫ t

0

√
pr/n(1− pr/n) dWr +

n

2

∫ t

0
θ1(1− pr/n)− θ2pr/n + αpr/n(1− pr/n)

dr

n

=
√
n

∫ t

0

√
Yr
n

(
1− Yr

n

)
dWr +

1

2

∫ t

0
θ1

(
1− Yr

n

)
− θ2

Yr
n

+ α
Yr
n

(
1− Yr

n

)
dr

=

∫ t

0

√
Yr

(
1− Yr

n

)
dWr +

1

2

∫ t

0
θ1

(
1− Yr

n

)
− θ2

Yr
n

+
α

n
Yr

(
1− Yr

n

)
dr, (42)

where in the third line above we used the fact that the processes
(∫ t/n

0 f(s) dWs

)
t∈R+

and(
1√
n

∫ t
0 f(r/n)dWr

)
t∈R+

are equal in distribution, where f(s) =
√
ps(1− ps).

Using (42), the fact supn E[Y 2
0 ] <∞ and the assumption α̃ = α/n2 ∈ R is fixed, we can check

by Gronwall’s inequality that lim supn→∞ En[supt∈[0,T ] Yt] < ∞ for all T > 0. Now, note that

equation (40) is the same as (42) after we get rid of the terms Yr
n and replace α

n by α̃. As n→ ∞,
the process (Yt)t∈[0,T ] converges in distribution under Pn to a process (Zt)t∈[0,T ] with initial state
Z0 ∼ Gam(n1 + θ1, 1− α̃) and solving (40).

Using (23), the desired weak convergence in the Skorohod space D(R+, R+ × Z+ × Z+) can be
checked using a standard compactness argument as in Billingsley (1999, Chap. 2) or Ethier and
Kurtz (2005, Chap. 3). That is, we first show that the family is relatively compact: any subsequence
has a further subsequence that converges in distribution as n → ∞. This can be done using the
Prohorov’s theorem. Next, we identify that any subsequential limit is equal in distribution to the
process (Z, ñ1, L̃1), by showing that they solve the same martingale problem.

By Theorem 3, the jump times of the process
(
nobs1 ( tn)

)
t∈R+

converge to those of the process

ñ1 as n→ ∞. See, for instance, Proposition 5.3 in Ethier and Kurtz (2005, Chap. 3). We give a
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stronger statement and an explicit proof in Theorem 4 below. Theorem 4 also implies that when
α̃ ∈ (−∞, 1), the total number of latent mutations for type 1 is predicted by the Ewens sampling
formula, as n→ ∞. Let τ̃1 < τ̃2 < · · · < τ̃n1 be the jump times of the process ñ1 in Theorem 3, at
each of which the process decreases by 1.

Theorem 4 (Timing of events and number of mutations). Suppose α̃ = α/n2 ∈ (−∞, 1) fixed.
Then as n→ ∞,

(i) the random vector (n2 τi, n2 pτi)
n1
i=1 under Pn converges in distribution to (τ̃i, Zτ̃i)

n1

i=1.

(ii) K1 converges in distribution under Pn to 1 +
∑n1

k=2 ξk, where {ξk} are independent Bernoulli
variables taking values in {0, 1} and having means θ1

θ1+k−1 .

Proof. For part (i), we first give a more explicit description of the jump times τ̃1 < τ̃2 < · · · < τ̃n1 ,
in terms of the function

λ̃a1(z) :=
a1
2z

(θ1 + a1 − 1)

that comes from (41) in Theorem 3. At the first jump time τ̃1, the process ñ1 decreases from
n1 to n1 − 1. Thus τ̃1 is the first jump time of a Poisson process with time inhomogeneous rate(
λ̃n1(Zt)

)
t∈R+

, given the trajectory (Zt)t∈R+ . Hence,

P(τ̃1 > t) = E
[
e−

∫ t
0 λ̃n1 (Zs) ds

]
, t ∈ R+. (43)

Given (τ̃1, Zτ̃1), the difference τ̃2 − τ̃1 is the first jump time of an independent Poisson process with

time inhomogeneous rate
(
λ̃n1−1(Zt+τ̃1)

)
t∈R+

. Given (τ̃2, Zτ̃2), the difference τ̃3 − τ̃2 is the first

jump time of an independent Poisson process with time inhomogeneous rate
(
λ̃n1−2(Zt+τ̃2)

)
t∈R+

;

and so on. Finally, given (τ̃n1−1, Zτ̃n1−1
), the difference τ̃n1 − τ̃n1−1 is the first jump time of an

independent Poisson process with time inhomogeneous rate
(
λ̃1(Zt+τ̃n1−1

)
)
t∈R+

.

Using the total rate of type-1 events, λa1(p) defined in (25), and Theorem 3, as n→ ∞ we have∫ t/n

0
λa1(ps) ds =

∫ t

0

λa1(ps/n)

n
ds =

∫ t

0

a1
n 2ps/n

(
a1 − 1 + (1− ps/n)θ1

)
ds

→
∫ t

0

a1
2Zs

(θ1 + a1 − 1) ds =

∫ t

0
λ̃a1(Zs) ds.

Hence Pn(n2τ1 > t) → P(τ̃1 > t) for all t ≥ 0, by (43). Combining with Theorem 3, we have that
n2 (τ1, pτ1) under Pn converges in distribution to (τ̃1, Zτ̃1) as n2 → ∞.

Applying the strong Markov property of the process Z at τ̃1 and that of the process p at τ1, we can
similarly show that n2 (τ1, τ2 − τ1, pτ1 , pτ2 − pτ1) under Pn converges to (τ̃1, τ̃2 − τ̃1, Zτ̃1 , Zτ̃2 − Zτ̃1)
in distribution. Continuing in the same way, we obtain that n2

(
τi − τi−1, pτi − pτi−1

)n1

i=1
under Pn

converges in distribution to
(
τ̃i − τ̃i−1, Zτ̃i − Zτ̃i−1

)n1

i=1
, where τ0 = τ̃0 = 0. The desired convergence

in part (i) then follows.
We now prove part (ii). the vector (pτi)

n1−1
i=1 converges in probability to the zero vector in Rn1−1

as n→ ∞, by Theorem 3. This implies that(
hk(pτn1−k+1

)
)n1

k=2
→
(

θ1
θ1 + k − 1

)n1

k=2

∈ Rn1−1,
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where we recall hk(p) :=
(1−p)θ1

(1−p)θ1+k−1 defined in (26). Hence the following weak convergence in Rn1−1

holds: (
ξk(pτn1−k+1

)
)n1

k=2

d−→ (ξk)
n1
k=2 .

The proof of part (ii) is complete by (27).

In Wakeley et al. (2023, Appendix), we showed that for the case α = 0 (no selection) and
n1 > 1, the jump times τ1 < τ2 < · · · < τn1 of nobs1 are of order 1/n and the re-scaled vector (nτi)

n1
i=1

converges in distribution. Theorem 4 therefore generalizes the latter convergence in the presence
of selection, in scenario (ii) and in the case α̃ ∈ (−∞, 1) within scenario (iii). This can further be
generalized to time-varying populations, as we shall show below. By equation (18) in Wakeley et al.
(2023), En[τ1] ≈ 2 logn2

n2
and En[τ̃1] = ∞ when n1 = 1 and α = 0.

Remark 1. Theorems 3-4 remain valid if “α̃ = α/n2 ∈ (−∞, 1) is fixed” is replaced by “α = α̃n2+c
where α̃, c ∈ R are fixed”. In particular, these results hold for scenario (ii).

3.3.2. Case α̃ ∈ (1,∞)

In this case, under Pn and as n → ∞, we have that p0 → 1 − 1/α̃ > 0 by (31). The process
(pt)t∈R+ increases very quickly and stays close to 1. As a result, the conditional ancestral process
for the n1 type 1 samples has two parts with different timescales. First it coalesces only as the
Kingman coalescent (without mutation) until there is only one lineage. Then it takes a very long
time (about n 2 α̃

θ1θ2
≈ 2α

θ1θ2
) for the single latent mutation to occur. In particular, K1 ≈ 1.

This description is justified by Theorems 5-6. See Figure 3 for an illustration.

Figure 3: Conditional genealogy of a sample with observed frequencies (n1, n2) at the present time t = 0, where
n1 = 4 and n2 is large, and α = α̃n2 for a constant α̃ ∈ (1,∞). The n2 samples are not shown. This scenario is
reminiscent of scenario (i) if we focus on the genealogy of only the A1 lineages. These lineages first coalesce as the
Kingman coalescent (without mutation) until there is only one lineage, which take O(1) amount of time. Then it
takes O(n2) amount of time for the single latent mutation to occur at time τn1 .

Theorem 5. Suppose α̃ = α/n2 ∈ (1,∞) is fixed. As n→ ∞, under Pn,

(i) supt∈[S,T ] |1− pt| → 0 in probability, for any 0 < S < T <∞; and

(ii) For any T > 0, the process (nobs1 (t), L1(t))t∈[0,T ] converges in distribution to a process

(ñobs(t), 0)t∈[0,T ], where ñobs is a pure death process with jump rate
(
k
2

)
= k(k−1)

2 from k
to k − 1.
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(iii) K1 → 1 in probability.

Proof. We first observe that the process p gets close to 1 quickly, when α̃ ∈ (1,∞), in the sense that
for any ϵ ∈ (0, 1),

lim
n→∞

Pn (τ1−ϵ > S) = lim
n→∞

Pn

(
sup
t∈[0,S]

pt < 1− ϵ

)
= 0,

where τ1−ϵ := inf{t ∈ R+ : pt > 1 − ϵ} is the first time p hits a value above 1 − ϵ. This is true
because p0 → 1− 1/α̃ ∈ (0, 1) in probability, so that the growth term α̃n2 pt(1− pt) is large at least
when t > 0 is small. Next, suppose the process p starts at 1− ϵ (i.e. the process q = 1− p starts
at ϵ), we show that the exit time of the process q out of the interval [0, 2ϵ) is longer than T with
probability tending to 1, as n→ ∞. More precisely,

P1−ϵ

(
inf

t∈[0, T ]
pt < 1− 2ϵ

)
= Pϵ

(
sup
t∈[0,T ]

qt > 2ϵ

)
which tends to 0 as n2 → ∞, as in the proof of Theorem 1(i).

From these two estimates and the strong Markov property of the process p, we have that for
any ϵ ∈ (0, 1),

Pn

(
sup
t∈[S,T ]

|1− pt| > 2ϵ

)

≤Pn

(
sup
t∈[S,T ]

|1− pt| > 2ϵ, τ1−ϵ ≤ S

)
+ Pn (τ1−ϵ > S)

=En

[
1{τ1−ϵ≤S} P1−ϵ

(
inf

t∈[S− τ1−ϵ, T− τ1−ϵ]
pt < 1− 2ϵ

)]
+ Pn (τ1−ϵ > S)

≤P1−ϵ

(
inf

t∈[0, T ]
pt < 1− 2ϵ

)
+ Pn (τ1−ϵ > S) → 0 as n→ ∞.

The proof of part (i) is complete.
By part (i) and (25), the times for the type 1 events are of order O(1) and hk(pt) → 0 where

hk(p) is defined in (26). Hence parts (ii) and (iii) follow.

Now we consider the second part of the genealogy, when there is a single lineage left (i.e. during
τn1−1 and τn1).

To estimate the age τn1 of the single latent mutation, we can ignore the n1− 1 jump times of the
process ñobs (since they are of order 1 by Theorem 5). The frequency of type 1 is tightly regulated
in the sense that it is close to 1 in the sense of Theorem 5(i). However, we need to know “how close
it is to 1” in order to get an estimate of τn1 , because simply setting p = 1 in 1−p

2p θ1 will give us zero.
Theorem 6 below is analogous to Theorem 2. We obtain that the mean of the age τn1 is about

n 2 α̃
θ1θ2

≈ 2α
θ1θ2

when it is larger than 2n
θ1θ2

and n is large.

Theorem 6 (Age of the unique latent mutation). Suppose α̃ = α/n2 ∈ (1,∞) is fixed. As n→ ∞,
τn1
n converges in distribution under Pn to an exponential random variable with mean 2 α̃

θ1θ2
. That is,

τn1

n

d−→ Exp

(
θ1 θ2
2 α̃

)
as n→ ∞.
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Proof. By Theorem 5 (ii), for any t ∈ R+,

Pn

(τn1

n
> t
)
≈E

[
exp

{
−θ1 t
2n2t

∫ n2t

0

n(1− pr/n)

pr/n
dr

}]
as n→ ∞.

The rest follows exactly as the proof of Theorem 2.

3.4. Time-varying population size

For a population with time-varying size ρ(t)N at forward time t where ρ is a non-constant
function, neither the Moran process nor its diffusion approximation possess a stationary distribution.
However, the random background approach of Barton et al. (2004) can be generalized to this setting
by considering the time-reversed frequency process.

Our main message in this section is that the limiting results in scenarios (i) and (ii) are robust
against continuously-changing population sizes and the initial distribution µ0 of the initial (ancient)
frequency X0. Roughly speaking, in scenario (ii) as n2 ∼ n→ ∞, events among the finite-count A1

alleles in the sample are so sped up that the population size will have hardly changed by the time
all their coalescent and latent mutation events have occurred. The same is true for events among
the finite-count A2 alleles in scenario (i) as α→ ∞. Events among the finite-count A1 alleles occur
more slowly in scenario (i), but the rate of latent mutations among them remains exceedingly small.
The limiting result for scenario (iii) is more subtle. It depends on the large deviation behavior of
the present day frequency as n2 → ∞.

Let T > 0 be the present. For comparison with our results for constant population size, we keep
the same definitions of θ1, θ2 and α and we set ρ(T ) = 1. Thus, N is the population size at the
present time T , and θ1, θ2 and α are the present-day values of these variables. The corresponding
values at some other time t are Nρ(t), θ1ρ(t), θ2ρ(t) and αρ(t). The demographic function ρ could
for example represent exponential population growth, in which case ρ(t) = ρ(0)eβt for some positive
constant β. This model was used in Wakeley et al. (2023) to illustrate the effects of rapid growth on
neutral rare variation in humans. Here we allow that ρ(t) is piecewise continuous. As will become
clear, the key feature of ρ for our results is that it is continuous at T .

Since the random background approach of Barton et al. (2004) was formulated based on the
lineage dynamics of the Moran model, we begin by describing the diffusion process arising from a
Moran model with time-varying population size.

Lemma 5 (Diffusion limit for time-varying Moran model). Let ρ : R+ → (0,∞) be a piecewise
continous function with finitely many jumps, and N be a positive integer. Consider the discrete-time
Moran process in which, at step k = [N(N − 1)t/2], the total population size is [ρ(t)N ] and N is
replaced by ρ(t)N in the one-step transition probabilities (13)-(14). Suppose u1 = θ1/N , u2 = θ2/N
and s = −α/N . Then as N → ∞, the relative frequency of A1 at step [N(N − 1)t/2] converges in
distribution to Xt solving

dXt =

[
θ1

2ρ(t)
(1−Xt)−

θ2
2ρ(t)

Xt +
α

2ρ(t)
Xt(1−Xt)

]
dt+

√
Xt(1−Xt)

ρ2(t)
dWt, (44)

where Wt is the Wiener process, provided that the initial relative frequency converges to X(0).

Setting ρ(t) ≡ 1 for all t ∈ R+, or β = 0 in the exponential growth model, makes (44)
identical to (1). The term ρ2(t) in the denominator inside the square root comes from the diffusion
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timescale of the Moran model: for a population of constant size, one unit of time in the diffusion
is N(N − 1)/2 ∝ N2 time steps in the discrete model. To explain the term α

2ρ(t) =
−sρ(t)N
2ρ2(t)

, note

that the rate of change of Xt due to selection is proportional to the product of the total size ρ(t)N
and the parameter s, which is then multiplied by 1/ρ2(t) because the timescale in (44) is defined in
terms of the present-day population size N . The proof of Lemma 5 is given in Appendix B.

Remark 2 (Wright-Fisher model with varying size). The analogous diffusion process XWF for the
discrete Wright-Fisher model with total size [ρ(t)N ] in generation [Nt] is different from the process
X in (44), except in the case ρ(t) ≡ 1 for all t ∈ R+. This diffusion solves the SDE

dXWF
t =

[
θ1
2
(1−XWF

t )− θ2
2
XWF
t +

α

2
XWF
t (1−XWF

t )

]
dt+

√
XWF
t (1−XWF

t )

ρ(t)
dWt,

which is the adaptation of equation (1) in Schraiber et al. (2016) to our haploid model of selection
and recurrent mutation; see also equation (21) in Evans et al. (2007). The generators of XWF and
X are related by AWF

t = ρ(t)At for all t ∈ R+. In other words, the diffusion XWF from the discrete
Wright-Fisher model is sped up by the factor ρ(t) at time t.

To compare X and XWF, we can perform deterministic time-changes to normalize their diffusion
coefficients to be the same. In general, suppose X satisfies the SDE dXt = b(t,Xt)dt+ σ(t,Xt) dWt

and Y is a time-change of X defined by Yr := Xψ(r), where ψ is any fixed continuous and strictly
increasing function, then

dYr = b(ψ(r), Yr)ψ
′(r) dr + σ(ψ(r), Yr)

√
ψ′(r) dWr.

Hence, when X is a (weak) solution to (44) and ψ = g−1 where g is the unique continuous function
such that g(t) =

∫ t
0

1
ρ2(s)

ds, we obtain that Yr := Xg−1(r) solves

dYr = ρ(g−1(r)) b(Yr) dr +
√
Yr(1− Yr) dWr, (45)

where b(y) = θ1
2 (1 − y) − θ2

2 y +
α
2 y(1 − y). Analogously, following Schraiber et al. (2016)—see

their equation (6) and the SDE below it—and taking f such that f(t) =
∫ t
0

1
ρ(s)ds, we find that

YWF
r := XWF

f−1(r) solves

dYWF
r = ρ(f−1(r)) b(YWF

r ) dr +
√
YWF
r (1− YWF

r ) dWr. (46)

Since f ̸= g unless ρ(t) ≡ 1 for all t ∈ R+, we have that Y ̸= YWF, i.e. Xg−1(r) ≠ XWF
f−1(r) in general.

Nonetheless, (45) and (46) have the same form, the only difference being the way time r in these
diffusions is related back to time t in the discrete models.

Note that the law of the present-time frequency of A1 in the model of Lemma 5 depends on the
distribution µ0 of the initial frequency X(0). This law is denoted by Pµ0(XT ∈ dy).

Suppose a sample of n individuals are picked uniformly at random at the present time T > 0,
i.e. when the frequency of A1 is XT , and we know that n1 of them are of type 1 (and n − n1
are of type 2). Let Pn = Pn,µ0 be the conditional probability measure given the sample count
n = (n1, n2). We also denote the conditional law of the present frequency p0 = XT , under Pn, by
Ln := Pn(XT ∈ dy) = Pµ0(XT ∈ dy |n). Then

Ln = CT y
n1(1− y)n2 Pµ0(XT ∈ dy), (47)
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where CT =
(∫ 1

0 y
n1(1− y)n2Pµ0(XT ∈ dy)

)−1
is a normalizing constant. This follows from Bayes’

theorem, just like (5) did, but with prior distribution Pµ0(XT ∈ dy).
Similar to Proposition 1, the conditional ancestral process in the diffusion limit can be described

as follows. This description involves the backward frequency process

pt := XT−t for t ∈ [0, T ] (48)

which is by definition the time-reversal of the process X.

Proposition 2 (Conditional ancestral process). Let T > 0 and µ0 ∈ P([0, 1]) be fixed, and the
demographic function ρ be as in Lemma 5. The process (pt, n

obs
1 (t), L1(t), n

obs
2 (t), L2(t))t∈[0,T ] under

Pn is a time-inhomogeneous Markov process with state space [0, 1]×{0, 1, · · · , n1}2 ×{0, 1, · · · , n2}2
described as follows:

(i) (pt)t∈[0,T ], defined by (48), has the law of (XT−t)t∈[0,T ] under Pn. In particular, it has initial

distribution Ln in (47) and it does not depend on the process (nobs1 , L1, n
obs
2 , L2).

(ii) The process (nobs1 , L1, n
obs
2 , L2) starts at (n1, 0, n2, 0). When this process is at time t and the

current state is (p, a1, ℓ1, a2, ℓ2), this process evolves as

(a1, ℓ1) →


(a1 − 1, ℓ1) at rate

1

p

(
a1
2

)
1

ρ2(T − t)
coalescence of type 1obs

(a1 − 1, ℓ1 + 1) at rate
1− p

p
a1

θ1
2ρ(T − t)

mutation of 1obs to 2

(49)

and, independently,

(a2, ℓ2) →


(a2 − 1, ℓ2) at rate

1

1− p

(
a2
2

)
1

ρ2(T − t)
coalescence of type 2obs

(a2 − 1, ℓ2 + 1) at rate
p

1− p
a2

θ2
2ρ(T − t)

mutation of 2obs to 1

(50)

Note the term ρ(T − t) in (49)-(50) indicates the dependence of the conditional ancestral process
on the demographic function. Nonetheless, Proposition 2 still gives a description for K1 and K2

in terms of Bernoulli random variables, like (27) and (29) respectively. For example, under Pn,
(27) still holds but (28) needs to be modified. Indeed, given {(τi, pτi)}

n1−1
i=1 , the random variables

{ξk(·)}n1
k=2 are independent and

ξn1−i+1(pτi) =


0 with probability

n1 − i

(1− pτi)θ1ρ(T − τi) + n1 − i

1 with probability
(1− pτi)θ1ρ(T − τi)

(1− pτi)θ1ρ(T − τi) + n1 − i

(51)

which further generalizes ξk(p) in (28) to include ρ(t). An analogous description holds for K2.
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Remark 3. A more explicit description for the process (Xt)t∈[0,T ] under Pn, hence also that for its
time-reversal (pt)t∈[0,T ], can be obtained by Doob’s h-transform (Doob, 1957, 2001). More precisely,
we define the function

h(t, x) := P(n |Xt = x) = E
[(

n

n1

)
Xn1
T (1−XT )

n2

∣∣∣Xt = x

]
.

Then (Xt)t∈[0,T ] under the conditional probability Pn solves the SDE

dXt =
[
b(t,Xt) + σ2(t,Xt) ∂x log h(t,Xt)

]
dt+ σ(t,Xt) dW̃t,

where b(t, x) := θ1
2ρ(t)(1 − x) − θ2

2ρ(t)x+ α
2ρ(t)x(1 − x) and σ(t, x) =

√
x(1−x)
ρ2(t)

are the coefficients in

(44), and W̃ is a Brownian motion. Sufficient conditions on the function ρ for which the process
(pt)t∈[0,T ] satisfies a stochastic differential equation may be deduced from an integration by parts
argument as in Millet et al. (1989).

Next, we look at asymptotics. The following analogue of Lemma 1 holds for any initial distribution
µ0 of X(0) and any demographic function ρ that is bounded and positive. Note that in Lemma 1,
µ0 = ϕα depends on α, but here µ0 is fixed.

Proposition 3. Let T > 0 and µ0 ∈ P([0, 1]) be fixed, and the demographic function ρ be as in
Lemma 5. The following convergences in P([0, 1]) hold.

(i) Suppose n2 is fixed and α→ ∞. Then Ln → δ1.

(ii) Suppose α is fixed and n2 → ∞. Then Ln → δ0.

(iii) Suppose α̃, c ∈ R are fixed and α = α̃n2 + c → ∞. Suppose Pµ0(XT ∈ dy) has a density
p(T, µ0, y) dy and there exists a large deviation rate function I : [0, 1] → [0,∞] such that for
each y ∈ [0, 1],

log p(T, µ0, y)

n2
→ I(y) as n→ ∞.

Suppose also that (1 − y) eI(y) has a unique maximum at y∗ ∈ [0, 1]. Then Ln → δy∗, and
I(y∗) = 1

1−y∗ .

Remark 4. The assumptions in (iii) hold when ρ(t) ≡ 1 and µ0 = ϕα in (2), i.e. constant population

size with stationary initial condition. In this case, I(y) = α̃ y is the linear function, and Ln = ϕ
(n1,n2)
α

in (6). The rate function has a phase transition at α̃ = 1, as shown in Lemma 1. Namely, y∗ = 0
when α̃ ∈ (−∞, 1) and y∗ = 1− 1/α̃ when α̃ ∈ (1,∞).

Remark 5. The large deviation principle for Pµ0(XT ∈ dy) as n2 → ∞ can be checked using the
Gärtner-Ellis theorem (Dembo and Zeitouni, 2009, Theorem 2.3.6). When it holds, the rate function
I is equal to the Legendre transform of the function

Λ(γ) := lim
n2→∞

1

n2
logEµ0 [eγ n2XT ].
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Proof. A proof follows from that of Lemma 1. Let f ∈ Cb([0, 1]), a bounded continuous function on
[0, 1]. Then

En[f(p0)] =

∫ 1

0
f(y)Ln(dy) =

Eµ0 [f(XT )X
n1
T (1−XT )

n2 ]

Eµ0 [X
n1
T (1−XT )n2 ]

. (52)

For part (i), note that if (n1, n2) is fixed and α→ ∞, then Pµ0(XT < 1− ϵ) → 0 for any ϵ > 0
as in the proof of Theorem 5(i). Hence Eµ0 [|f(XT )− f(1)|] → 0 for any f ∈ Cb([0, 1]). In particular,
Pµ0(XT ∈ dy) → δ1. Hence Ln tends to δ1 in P([0, 1]), as α→ ∞.

For part (ii), note that (1− y)n2 has maximum at y = 0, and yn1 Pµ0(XT ∈ dy) does not depend
on n2. Hence Ln tends to δ0 in P([0, 1]), as n2 → ∞.

For part (iii), the numerator of (52) is

Eµ0 [f(XT )X
n1
T (1−XT )

n2 ] =

∫ 1

0
f(y) yn1(1− y)n2 Pµ0(XT ∈ dy)

≈
∫ 1

0
f(y) yn1 [(1− y) eI(y)]n2 φ(y) dy,

for some function φ such that lnφ(y)
n2

→ 0, by assumptions of part (iii). Since (1 − y) eI(y) has a
unique maximum at y∗, limn→∞ En[f(p0)] = f(y∗) by (52) and a standard argument as in the proof
of Lemma 1.

By Proposition 2 and Proposition 3, similar limiting results for the conditional coalescent process
for scenarios (i) and (ii) hold for any positive function ρ : [0, T ] → (0,∞) that is continuous near
the current time T . Note that ρ is bounded away from zero on any compact time interval [0, T ] and
therefore analogous approximations for the frequency process (pt)t∈[0,T ] under Pn still hold, where
the new approximating functions now involve the h function in Remark 3.

More precisely, in scenario (i), Theorem 1 still holds, and Theorem 2 still holds but with a
possibly different limiting random variable. Hence sn2 ∼ O(1/α) is very small and pτi ∼ 1, so
K1 → 1 by (51), and the single latent mutation for type 1 is very old.

In scenario (ii), τn1 ∼ O(1/n) is very small, and recalling that ρ(T ) = 1, we haveK1 ≈ 1+
∑n1

k=2 ξk
by (51), where {ξk} are independent Bernoulli variables taking values in {0, 1} and having means

θ1
θ1+k−1 . Theorem 3 with α ∈ R fixed still holds, but the statement needs to be modified because
the approximating process Z in (40) will be replaced by another one that involves the h function in
Remark 3.

Scenario (iii) is harder to analyze and we leave it for future work. We conjecture that if y∗ = 0,
then the conditional genealogy behaves like scenario (ii); and if y∗ ∈ (0, 1], then the conditional
genealogy behaves like scenario (i).

4. Conditional ancestral selection graph

Our aim in this section is to see how the results of the previous section can be obtained from a
different model: the ancestral selection graph. We concentrate on the ancestry of focal allele A1

and on constant population size, and proceed more heuristically than in the previous section.
The ancestral selection graph is an augmented coalescent model for the joint distribution of the

gene genealogy and the allelic states of the sample (Krone and Neuhauser, 1997; Neuhauser and
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Krone, 1997). It includes the usual coalescent rate 1 per pair of lineages and mutation rate θ/2
per lineage. Additionally, under the stationary model of Section 1, it includes a branching rate of
|α|/2 per lineage. When a branching event occurs, the lineage splits into an incoming lineage and a
continuing lineage. One of these is real, meaning it is included in the gene genealogy. The other
is virtual, meaning it is there only to model the gene genealogy correctly with selection. Which is
which could be resolved if their allelic states were known: the incoming lineage is real if its allelic
type is the one favored by selection, otherwise the continuing lineage is real. But the allelic states
are not known in the construction of the ancestral selection graph.

The conditional ancestral selection graph models gene genealogies given a sample with allelic
states specified (Slade, 2000a,b; Fearnhead, 2001, 2002; Stephens and Donnelly, 2003; Baake and
Bialowons, 2008). In this case it is known which lineages are real and which are virtual. This
allows a simplification in which there is a reduced rate of branching and only virtual lineages of
the disfavored type are produced (Slade, 2000a). A second simplification is possible if mutation is
parent-independent: then any lineage which mutates may be discarded (Fearnhead, 2002).

We assume parent-independent mutation, specifically θ1 = θπ1 and θ2 = θπ2, with π1 + π2 = 1.
Any two-allele mutation model can be restated in this way, leaving the stationary probability density
(2) and the sampling probability (4) unchanged. But doing so introduces “spurious mutations to
one’s own type” (Donnelly, 1986) or “empty mutations” (Baake and Bialowons, 2008) which occur
only in the model and do not correspond to a biological process. These are not latent mutations.
Including them allows us to discard real A2 lineages and any virtual lineage once these mutate, but
we must distinguish between empty and actual mutations in the ancestry of A1.

The resulting conditional process tracks the numbers of real and virtual ancestral lineages from
the present time t = 0 back into the past. Let r1(t), r2(t) and vi(t), where i = 1 if α < 0 or i = 2 if
α > 0, be the numbers of real type-1, real type-2 and virtual type-i lineages at past time t. The
process begins in state r1(0) = n1, r2(0) = n2, vi(0) = 0 and stops when r1(t) + r2(t) = 1. We
suppress t in what follows, and focus on the instantaneous transition rates of the process.

The conditional ancestral process is obtained by considering rates of events in the unconditional
process, which has total rate (r1+ r2+vi)(θ+ |α|+ r1+ r2+vi−1)/2, then weighting rates of events
depending on how likely they are to produce the sample. Rates of some events are down-weighted
to zero. For instance, the sample could not have been obtained if there were a coalescent event
between lineages with different allelic types, whereas in the unconditional process these happen with
rate r1r2 plus either r2v1 or r1v2, depending on whether α < 0 or α > 0.

Rates of events for which the sample has a non-zero chance of being observed are up-weighted or
down-weighted by ratios of sampling probabilities like (4). This method of conditioning a Markov
process on its eventual outcome is stated simply in Kemeny and Snell (1960, p. 64), a familiar
example being the Wright-Fisher diffusion conditioned on eventual fixation (Ewens, 2004, p. 89),
and is characterized more generally by Doob’s h-transform (Doob, 1957, 2001). In the conditional
ancestral selection graph, the Markov process is the (unconditional) ancestral process of Krone and
Neuhauser (1997) and the eventual outcome is the sample with allelic states specified.

In our formulation, the samples and their ancestral lineages all are distinguishable, which we
denote with a subscript “o” for ordered as in Wakeley et al. (2023). The probability of any particular
allelic configuration in the ancestry of the sample, in which there are r1 lineages of type 1, r2 lineages
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of type 2 and vi lineages of type i ∈ {1, 2}, is

qo(r1, r2, v1) =

∫ 1

0
xr1+v1(1− x)r2ϕα(x)dx if α < 0 (53)

qo(r1, r2, v2) =

∫ 1

0
xr1(1− x)r2+v2ϕα(x)dx if α > 0 (54)

with ϕα(x) as in (2). Note, the additional binomial coefficient in the sampling probability (4) is the
number of possible orderings of a sample containing n1 and n2 copies of A1 and A2.

The rate of any particular event with non-zero probability in the conditional process is the
product of its rate in the unconditional process and a ratio of sampling probabilities from either
(53) or (54). For event (r1, r2, vi) → (r′1, r

′
2, v

′
i), the required ratio is qo(r

′
1, r

′
2, v

′
i)/qo(r1, r2, vi). The

denominator qo(r1, r2, vi) is the probability of the sample given all events so far in the conditional
ancestral process, which have led to the current state (r1, r2, vi), and the numerator qo(r

′
1, r

′
2, v

′
i) is

the probability of the sample given these events and the event (r1, r2, vi) → (r′1, r
′
2, v

′
i). Appendix

C provides the details of how the minimal ancestral process we use here to model latent mutations
in the ancestry of the sampled copies of allele A1 is obtained from the full conditional ancestral
process, using the simplifications of Slade (2000a) and Fearnhead (2002).

The resulting conditional ancestral process differs depending on whether α < 0 or α > 0 but in
either case it includes five possible transitions from state (r1, r2, vi). If α < 0,

(r1, r2, v1) →



(r1 − 1, r2 + 1, v1) at rate r1
θπ1
2

qo(r1−1,r2+1,v1)
qo(r1,r2,v1)

(r1 − 1, r2, v1) at rate
(
r1
2

) qo(r1−1,r2,v1)
qo(r1,r2,v1)

(r1, r2, v1 + 1) at rate (r1 + r2 + v1)
|α|
2
qo(r1,r2,v1+1)
qo(r1,r2,v1)

(r1, r2, v1 − 1) at rate
(
v1

θπ1
2 + r1v1 +

(
v1
2

)) qo(r1,r2,v1−1)
qo(r1,r2,v1)

(r1, r2 − 1, v1) at rate
(
r2
θπ2
2 +

(
r2
2

)) qo(r1,r2−1,v1)
qo(r1,r2,v1)

(55)

whereas if α > 0,

(r1, r2, v2) →



(r1 − 1, r2 + 1, v2) at rate r1θπ1
2

qo(r1−1,r2+1,v2)
qo(r1,r2,v2)

(r1 − 1, r2, v2) at rate
(
r1
2

) qo(r1−1,r2,v2)
qo(r1,r2,v2)

(r1, r2, v2 + 1) at rate (r1 + r2 + v2)
α
2
qo(r1,r2,v2+1)
qo(r1,r2,v2)

(r1, r2, v2 − 1) at rate
(
v2

θπ2
2 + r2v2 +

(
v2
2

)) qo(r1,r2,v2−1)
qo(r1,r2,v2)

(r1, r2 − 1, v2) at rate
(
r2
θπ2
2 +

(
r2
2

)) qo(r1,r2−1,v2)
qo(r1,r2,v2)

(56)

which differ owing to the different resolutions of branching events when α < 0 versus α > 0. We
may note that the total rates of events in (55) and (56) are less than in the unconditional ancestral
process because the conditional process has a reduced rate of branching (Slade, 2000a) and because
empty mutations do not change the number or types of ancestral lineages. If α < 0, the total rate is
r1θπ1/2 + r2|α|/2 less, whereas if α > 0, it is r1θπ1/2 + r1α/2 less.
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Asymptotic approximations for the ratios qo(r
′
1, r

′
2, v

′
i)/qo(r1, r2, vi) in these rates of events

can be obtained using the results in Appendix A. In the following three subsections we present
approximations to the conditional ancestral process for our three scenarios of interest: (i) |α| large
with n2 fixed, (ii) n2 large with α fixed, and (iii) both |α| and n2 large with α̃ = α/n2 fixed.
Because initially r2 = n2, we consider r2 large in the scenarios with n2 large. For each scenario, we
compute the transition rates up to leading order in |α| or r2, then consider how these conform to
the corresponding results of Section 3.

4.1. Scenario (i): strong selection, arbitrary sample size

Here |α| is large with n2 fixed, along with n1 and θ. In Section 3.1, Theorem 1, we treated the
ancestries of A1 and A2 simultaneously as α→ +∞, so that A1 was favored and A2 was disfavored.
Here we cover these same two possibilities by modeling the ancestry of A1, using (55) when A1 is
disfavored (α < 0) and (56) when A1 is favored (α > 0). We disregard the ancestry of the non-focal
allele A2 except insofar as it is needed to model events in the ancestry of A1.

When α < 0, using (A.4a) in (55) gives

(r1, r2, v1) →



(r1 − 1, r2 + 1, v1) at rate r1
|α|
2

θπ1
θπ1+r1+v1−1 + O(1)

(r1 − 1, r2, v1) at rate r1
|α|
2

r1−1
θπ1+r1+v1−1 + O(1)

(r1, r2, v1 + 1) at rate (r1+r2+v1)(θπ1+r1+v1)
2 + O

(
|α|−1

)
(r1, r2, v1 − 1) at rate v1

|α|
2
θπ1+2r1+v1−1
θπ1+r1+v1−1 + O(1)

(r1, r2 − 1, v1) at rate r2
θπ2
2 +

(
r2
2

)
+ O

(
|α|−1

)
(57)

for the ancestry of a disfavored allele under strong selection (as α→ −∞). Latent mutations and
coalescent events occur with rates proportional to |α|. Virtual lineages are removed similarly quickly
but are produced at a much lower rate. So v1 will stay zero during the O(1/|α|) time it takes for
the requisite n1 latent mutations or coalescent events to occur. Then the analogous result to (36),
namely (7) and (8), follows from the first two lines of (57). Coalescence and mutation among the
copies of A2 occur at the slower rate, so none of these should occur before all the type-1 lineages
disappear. These results were first suggested in Wakeley (2008).

When α > 0, using (A.4b) in (56) gives

(r1, r2, v2) →



(r1 − 1, r2 + 1, v2) at rate r1
1
α
θπ1(θπ2+r2+v2)

2 + O
(
α−2

)
(r1 − 1, r2, v2) at rate

(
r1
2

)
+ O

(
α−1

)
(r1, r2, v2 + 1) at rate (r1+r2+v2)(θπ2+r2+v2)

2 + O
(
α−1

)
(r1, r2, v2 − 1) at rate v2

α
2
θπ2+2r2+v2−1
θπ2+r2+v2−1 + O(1)

(r1, r2 − 1, v2) at rate r2
α
2

θπ2+r2−1
θπ2+r2+v2−1 + O(1)

(58)

for the ancestry of a favored allele under strong selection (as α→ +∞). Now A2 is undergoing the
fast process just described for A1 in (57), so these lineages will disappear quickly. Again the rate of
removal of virtual lineages greatly exceeds their rate of production. In O(1/α) time, the ancestral
state will become (r1, r2, v2) = (n1, 0, 0). But now with A1 favored, the rates of coalescence and
latent mutation differ by a factor of α, so the first n1 − 1 events will be coalescent events, followed
by a long wait for a single latent mutation with rate θ2π1π2/(2α) as in Theorem 2.
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4.2. Scenario (ii): arbitrary selection, large sample size

Here n2 is large with α fixed, along with n1 and θ. Because r2 = n2 at the start of the ancestral
process, we present rates of events to leading order in 1/r2. In Section 3.2 we deferred this scenario
to Section 3.3, because in the limit it is equivalent to α̃ = 0. Of course, there are two ways for α̃
to approach zero, and the sign of α̃ matters in (40) for any α̃ not strictly equal to zero. Here we
consider the two cases, α < 0 and α > 0, separately.

When α < 0, using (A.5) in (55) gives

(r1, r2, v1) →



(r1 − 1, r2 + 1, v1) at rate r1
r2
2

θπ1
θπ1+r1+v1−1 + O(1)

(r1 − 1, r2, v1) at rate r1
r2
2

r1−1
θπ1+r1+v1−1 + O(1)

(r1, r2, v1 + 1) at rate |α|(θπ1+r1+v1)
2 + O

(
r−1
2

)
(r1, r2, v1 − 1) at rate v1

r2
2
θπ1+2r1+v1−1
θπ1+r1+v1−1 + O(1)

(r1, r2 − 1, v1) at rate
r22
2 + O(r2)

(59)

This differs from the neutral case (Wakeley et al., 2023) only by the possibility of virtual lineages.
As in (57), these will be removed quickly if they are produced. The process of latent mutation
and coalescence happens in O(1/r2) time, with relative rates in the first two lines of (59) again
giving (7) and (8). Because r2 → ∞, this approximation will hold long enough for the required
fixed number of events among the A1 lineages to occur, despite the rapid decrease of r2 in the last
line of (59). A proof of this is given in Wakeley et al. (2023, Appendix). Theorem 4 addresses the
corresponding issues for the model of Section 3.

When α > 0, using (A.5) in (56) gives

(r1, r2, v2) →



(r1 − 1, r2 + 1, v2) at rate r1
r2
2

θπ1
θπ1+r1−1 + O(1)

(r1 − 1, r2, v2) at rate r1
r2
2

r1−1
θπ1+r1−1 + O(1)

(r1, r2, v2 + 1) at rate r2|α|
2 + O(1)

(r1, r2, v2 − 1) at rate v2r2 + O(1)

(r1, r2 − 1, v2) at rate
r22
2 + O(r2)

(60)

which differs from (59) in two ways. Now the rate of production of virtual lines is non-negligible.
But here their presence does not affect the rates of latent mutation and coalescence. Again we have
(7) and (8), and the process of latent mutation and coalescence happens in O(1/r2) time.

4.3. Scenario (iii): strong selection, large sample size

Here both |α| and n2 are large with α̃ = α/n2 fixed, along with n1 and θ. Again since the process
begins with r2 = n2, we present rates of events to leading order in 1/r2. Because the conditional
ancestral process differs for α < 0 versus α > 0, i.e. with (55) and (56), and the asymptotic
approximation we use for the hypergeometric function differs for α̃ < 1 versus α̃ > 1, i.e. with (A.6a)
and (A.6b), here we have three cases. Note these are the same three cases in (11a), (11b) and (11c).
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When α̃ < 0, using (A.6a) in (55) gives

(r1, r2, v1) →



(r1 − 1, r2 + 1, v1) at rate r1
r2(1+|α̃|)

2
θπ1

θπ1+r1+v1−1 + O(1)

(r1 − 1, r2, v1) at rate r1
r2(1+|α̃|)

2
r1−1

θπ1+r1+v1−1 + O(1)

(r1, r2, v1 + 1) at rate |α̃|(θπ1+r1+v1)
2(1+|α̃|) + O

(
r−1
2

)
(r1, r2, v1 − 1) at rate v1

r2(1+|α̃|)
2

θπ1+2r1+v1−1
θπ1+r1+v1−1 + O(1)

(r1, r2 − 1, v1) at rate
r22
2 + O(r2)

(61)

which is comparable to (57) and (59). Again we may effectively ignore virtual lineages. The rates
of latent mutation and coalescence in (57) and (59) differ only by the interchange of r2 for |α|. In
(61), the factor r2(1 + |α̃|) encompasses the effects of both. The larger |α̃| is, the more quickly these
events will occur, and again (7) and (8) describe the number of latent mutations.

When 0 < α̃ < 1, using (A.6a) in (56) gives

(r1, r2, v2) →



(r1 − 1, r2 + 1, v2) at rate r1
r2(1−α̃)

2
θπ1

θπ1+r1−1 + O(1)

(r1 − 1, r2, v2) at rate r1
r2(1−α̃)

2
r1−1

θπ1+r1−1 + O(1)

(r1, r2, v2 + 1) at rate r2α̃
2 + O(1)

(r1, r2, v2 − 1) at rate v2r2 + O(1)

(r1, r2 − 1, v2) at rate
r22
2 + O(r2)

(62)

which is comparable to (60). In contrast to (61), now with A1 favored, the larger α̃ is (i.e. the closer
it is to 1) the smaller the rates of latent mutation and coalescence become. Otherwise, for any given
α̃, the same conclusions regarding latent mutations and their timing follow from (62) as from (61),
and these conform to what is stated in Theorem 4.

When α̃ > 1, using (A.6b) in (56) gives

(r1, r2, v2) →



(r1 − 1, r2 + 1, v2) at rate r1
θπ1
2

1
α̃−1 + O

(
r−1
2

)
(r1 − 1, r2, v2) at rate

(
r1
2

)
α̃
α̃−1 + O

(
r−1
2

)
(r1, r2, v2 + 1) at rate r2

2 + O(1)

(r1, r2, v2 − 1) at rate v2r2α̃ + O(1)

(r1, r2 − 1, v2) at rate
r22
2 α̃ + O(r2)

(63)

which paints a very different picture. Whereas (57), (59), (60), (61) and (62) all give the Ewens
sampling result described by (7) and (8) and have these events occurring quickly on the coalescent
time scale, (63) is rather like (58) in that the rates of latent mutation and coalescence are too slow
to register on the time scale of events involving the non-focal allele A2. The overwhelmingly most
frequent events in (63) will be coalescent events between A2 lineages at rate ∝ r22, so an effectively
instantaneous transition will occur from r2 large to r2 comparable to r1. Then this case (63) will
collapse quickly to the corresponding case (58) where coalescence without mutation will happen
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among the A1 followed by a long wait for a single latent mutation. For the model in Section 3.3.2,
this is described by Theorem 5 and Theorem 6. Finally we may note that initially the rates of latent
mutation and coalescence in (63) are precisely those predicted for the model in Section 3.3.2 from
(23) starting at p0 → 1− 1/α̃ as specified for α̃ ∈ (1,∞) in (31).

5. Discussion

In this paper, we have considered a two allele model at a single genetic locus subject to recurrent
mutation and selection in a large haploid population with possibly time-varying size. We assumed
that a sample of size n was drawn uniformly from an infinite population under the diffusion
approximation. By extending the framework of Barton et al. (2004), we described the asymptotic
behaviors of the conditional genealogy and the number of latent mutations of the sample, given
the sample frequencies of the two alleles. This moves beyond what is in Wakeley et al. (2023) by
the inclusion of selection and by the use of an entirely different model, i.e. coalescence in a random
background (Barton et al., 2004). This yields novel results. For example, in the strong selection
case in which the selection strength α is proportional to the sample size n and both go to infinity
(our scenario (iii)), the genealogy of the rare allele can be described in terms of a Cox-Ingersoll-Ross
(CIR) diffusion with an initial Gamma distribution.

The concept of rare alleles in this paper and in Wakeley et al. (2023) is the same as the one
considered by Joyce and Tavaré (1995) and Joyce (1995). It focuses on the counts of the alleles in a
large sample rather than their relative frequencies in the population. In scenarios (ii) and (iii) we
consider a fixed number n1 of the rare type 1 when the sample size n tends to infinity. Joyce and
Tavaré (1995) considered rare alleles in a large sample drawn from the stationary distribution of a
d-dimensional Wright-Fisher diffusion with selection and mutation. They showed that the counts of
rare alleles, from different latent mutations in our terminology, have approximately independent
Poisson distributions with parameters that do not depend on the selection parameters, and that the
Ewens sampling formula describes their distribution. Their model with d = 2 and genic selection
corresponds to our scenario (ii). Our results for very strong selection (α → ∞) in scenario (iii)
differ from those of Joyce and Tavaré (1995) in that the rare-allele sampling probabilities (11a),
(11b) and (11c) do depend on selection. Interestingly, the number of latent mutations given n1
still follows the Ewens sampling formula when limn→∞ α/n ∈ (−∞, 1). But this is not true when
limn→∞ α/n ∈ (1,∞), in which case the number of latent mutations is always k1 ≡ 1.

Some of our results for rare alleles have empirical relevance, specifically those for scenario (ii)
including their robustness to time-varying population size demonstrated in Section 3.4, and those for
scenario (iii) with α̃ < 0. In scenario (ii), as n increases for fixed but arbitrary α, the distributions
of latent mutations and the ages of those latent mutations become identical to those for neutral
alleles described in Wakeley et al. (2023). Our results also show that selection does have an effect in
this case, but it is only to raise or lower the rare-allele sampling probability (10) by the constant
factor C for every value of n1. This relative insensitivity to selection suggests confidence in using
rare alleles for demographic inference and genome-wide association studies (O’Connor et al., 2015;
Nait Saada et al., 2020; Zaidi and Mathieson, 2020). Slatkin and Rannala (1997b), who obtained
the Ewens sampling formula result for rare deleterious alleles by assuming they evolve independently
according to a linear birth-death process, cf. Slatkin and Rannala (1997a), suggested that deviations
from this neutral prediction at two human-disease-associated loci were due to population growth.
Reich and Lander (2001) made a similar argument for a number of other disease-associated loci
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starting from the mutation-selection balance model of Hartl and Campbell (1982) and Sawyer (1983)
which also gives the Ewens sampling formula result for rare disease alleles.

Our exploration of time-varying populations in Section 3.4, namely the robustness of the Ewens
sampling formula result for the number of latent mutations, suggests that rare alleles may not
always be well suited for demographic inference. With only a mild constraint on the trajectory of
population sizes through time, increasing the sample size will eventually make the distribution of
latent mutations of rare alleles look as if the population size has been constant at its current size.
There is no doubt that demographic inferences improve as sample sizes increase. What Section 3.4
implies is that these improvements will not come from focusing exclusively on the lower end of
sample allele frequencies (i.e. any fixed n1 as n→ ∞). How relevant this is for a given sample will
depend on the actual ages of its latent mutations and the degree of population-size change between
those times and the present. To illustrate, consider the O(1/n) ages of latent mutations under
the exponential growth model with rate β. If β/n ≪ 1, the ancestral process of tracing back to
these mutations will be complete before the population has changed much in size and the results of
Section 3.4 will hold. But this is clearly not the case for the gnomAD data in Wakeley et al. (2023)
and Seplyarskiy et al. (2023). The distribution of n1 in the non-Finnish European sample with
n = 114K is well fit by β/n = 3. See for example Fig. 3 in Seplyarskiy et al. (2023). Sample sizes
would need to be orders of magnitude greater for the results in Section 3.4 to hold in this case.

Scenario (iii) with α̃ < 0 is applicable to strongly deleterious alleles. An appreciable fraction
of new mutations are strongly deleterious (Eyre-Walker and Keightley, 2007; Kim et al., 2017;
Weghorn et al., 2019; Dukler et al., 2022). Previous theoretical work includes Nei (1968), who found
a gamma density analogous to ours in Lemma 4 but for the population allele frequency of partially
recessive lethal mutations, and Charlesworth and Hill (2019), who used Nei’s approximation to
derive the negative binomial distribution for n1, our (11a). In this case, (12a) shows that the
sampling probabilities of rare alleles fall off quickly as n1 grows: each additional copy of A1 in the
sample lowers its probability by a factor of 1/(1 + |α̃|) compared to the neutral case. Even so, the
distribution of k1 given n1 follows the Ewens sampling formula. Hartl and Campbell (1982) and
Sawyer (1983) obtained similar results by assuming that both selection and mutation are strong.
Our analysis of scenario (iii) with α̃ < 0 also shows that latent mutations of rare strongly deleterious
alleles are especially young: selection speeds up the ancestral process of latent mutation by a factor
of 1 + |α̃| on top of the factor of n already present under neutrality. This is most easily seen by
comparing the first two lines of (61) to the first two lines of (59).

Our results for scenario (i) with α < 0, which hold as α → −∞ for arbitrary sample size and
alleles at any sample frequencies, are also applicable to strongly deleterious alleles. They are similar
to the results just discussed for scenario (iii) with α̃ < 0. We expect that our results for very
strong positive selection, i.e. scenario (i) with α > 0 and scenario (iii) with α̃ > 0, will be of limited
applicability. Mutations to strongly positively selected alleles are uncommon and observing such an
allele a small number of times in a very large sample would be exceedingly unlikely.

Many open questions remain. Joyce (1995) obtained a result similar to that of Joyce and Tavaré
(1995), for a Wright-Fisher diffusion with selection and infinite-alleles mutation. This diffusion
process is a particular case of the Fleming-Viot process (see Ethier and Kurtz (1993) for a review)
and it has a unique stationary distribution denoted νselec. Joyce (1995) considered a large sample of
size n drawn from νselec. Let Cb(n) ∈ Zb+ be the first b allele counts in a sample of size n drawn
from the stationary distribution, and Kn be the total number of alleles in the sample. Joyce (1995)
showed that for any fixed b, the distribution of (Cb(n), Kn) under νselec is arbitrarily close to that
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under the neutral model. It would be interesting to know if analogous results for our scenario (iii)
also hold for the infinite allele model. In particular, is there a threshold for the selection strength
relative to n that controls whether selection is washed out or not in the limit as n→ ∞?

For time-varying populations, little is known in scenario (iii). For example, will the assumptions
in Proposition 3 hold for a general demographic function? Will there be a phase transition for the
value of y∗ in terms of α̃ and if so, what will determine the phase transition? Also, both our results
and those of Joyce and Tavaré (1995) and Joyce (1995) are for the infinite-population diffusion limit.
Further consideration of the issues raised in Section 2.1.1 is needed to assess the relevance of these
results to various kinds of finite populations.

The critical case α̃ = 1 in scenario (iii) is omitted in this paper. Results for this case are expected
to lie between those of α̃ > 1 and α̃ < 1, and require more in-depth asymptotic analysis. For
example, one can first obtain asymptotic results for the hypergeometric function in (A.6a)-(A.6b)
for the case α̃ = 1, and then follow the argument in Lemma 4 to obtain the asymptotic of the
expectation En[p0] as n2 → ∞ in this critical case. Lemma 4 asserts that En[p0] = O(1) when α̃ > 1
and En[p0] = O(1/n2) when α̃ < 1. We conjecture that En[p0] = O(n−σ2 ) for some σ ∈ (0, 1) in the
critical case.

Finally, we have ignored the possibility of spatial structure. Spatially heterogeneous populations
in which reproduction rates, death rates, mutation rates and selection strength can depend both on
spatial position and local population density present challenges. This is because the population
dynamics now take place in high or infinite dimension (Hallatschek and Nelson, 2008; Barton
et al., 2010; Durrett and Fan, 2016; Louvet and Véber, 2023; Etheridge et al., 2023). For example,
the spatial version of (1), the stochastic Fisher-Kolmogorov-Petrovsky-Piscunov (FKPP) equation
introduced by Shiga (1988), is a stochastic partial differential equation that arises as the scaling
limit of various discrete models under weak selection (Müller and Tribe, 1995; Durrett and Fan,
2016; Fan, 2021). Under the stochastic FKPP, Hallatschek and Nelson (2008) and Durrett and Fan
(2016) studied the backward-time lineage dynamics of a single sample individual, conditioned on
knowing its type. It would be interesting to see if our results in this paper can be extended to
spatial stochastic models with selection.
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Appendix A. Asymptotic approximations used in the text

From the series expansion for a ratio of gamma functions with a common large parameter, 6.1.47
in Abramowitz and Stegun (1964) or equation (1) in Tricomi and Erdélyi (1951), we have

Γ(a+ n2)

Γ(b+ n2)
= na−b2

(
1 +

(a− b)(a+ b− 1)

2n2
+O

(
n−2
2

))
(A.1)
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for constants a and b which will depend on the application. For example, we can apply (A.1) twice
in the sampling probability (4) when n2 is large: once with a = n1 + 1 and b = 1 (in the binomial
coefficient) and once with a = θ2 and b = θ1 + θ2 + n1.

The confluent hypergeometric function is commonly defined in terms of the integral

1F1 (a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ezuua−1(1− u)b−a−1du (A.2)

or in terms of the series

1F1 (a; b; z) =

∞∑
k=0

a(k)zk

b(k)k!
(A.3)

which converges for all z ∈ R and b > a > 0, where a(k) is the rising factorial a(a+ 1) · · · (a+ k − 1)
with a(0) = 1. Again a and b depend on the context, e.g. as in (3) and (4). The parameter z
corresponds to the selection parameter α.

For large |α| and with constant a and b,

1F1 (a; b;α) =


Γ(b)

Γ(b− a)
|α|−a

(
1− a(b− a− 1)

|α|
+O

(
|α|−2

))
if α < 0 (A.4a)

Γ(b)

Γ(a)
eααa−b

(
1− (b− a)(a− 1)

α
+O

(
α−2

))
if α > 0 (A.4b)

where the middle, neutral case is given only for completeness. Equation (A.4a) is from (4.1.2) in
Slater (1960), and (A.4b) is from (4.1.6) in Slater (1960) or may be obtained from (A.4a) using
Kummer’s first theorem which appears as (1.4.1) in Slater (1960).

For large n2, with constants a, b and z,

1F1 (a; b+ n2; z) = 1 +
az

n2
+O

(
n−2
2

)
(A.5)

directly from (A.3).
For large n2 and α = α̃n2, with constants a and b,

1F1 (a; b+ n2; α̃n2) ≈


(1− α̃)−a if α̃ < 1 (A.6a)

√
2π

Γ(a)

(
1− 1

α̃

)a−1( 1

α̃

)b−a+n2

n
a− 1

2
2 en2(α̃−1) if α̃ > 1 (A.6b)

which we present only to leading order for simplicity. Equation (A.6a) follows from (A.3) and (A.6b)
was obtained by applying Laplace’s method to the integral in (A.2) for this case.

Appendix B. Proofs of Lemma 1, Lemma 4 and Lemma 5

Proof of Lemma 1. Part (ii) then follows from part (iii) with α̃ = 0, and the proof of part (i) follows
from a similar argument.

To prove part (iii), we let a = θ1 + n1 for simplicity. The function ϕ
(n1,n2)
α is a constant multiple

of the function

xa−1(1− x)n2+θ2−1eαx =
[
(1− x)eα̃x

]n2

xa−1(1− x)θ2−1ecx

= en2 S(x) xa−1(1− x)θ2−1ecx,
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where the function S : [0, 1) → R defined by S(x) := α̃x+ ln(1− x) is strictly decreasing when α̃ ∈ (−∞, 1]

has a global maximum at x = 1− 1/α̃ ∈ (0, 1) when α̃ ∈ (1,∞)
(B.1)

Part (iii) then follows from asymptotic expansion of integrals such as the Laplace method.
Let x∗ ∈ [0, 1] be the global maximum of the function S. Then x∗ = 0 when α̃ ∈ (−∞, 1] and

x∗ = 1 − 1/α̃ when α̃ ∈ (1,∞). Fix an arbitrary ϵ ∈ (0, 1). There exists δ ∈ (0, 1) small enough
such that supy∈[0,1]: |y−x∗|<δ |f(y)− f(x∗)| < ϵ. For each of the two cases, by (B.1), the ratio∫

x∈[0,1]: |x−x∗|>δ
en2 S(x) xa−1(1− x)θ2−1ecx dx

/∫ 1

0
en2 S(x) xa−1(1− x)θ2−1ecx dx→ 0 (B.2)

as n2 → ∞. For any f ∈ Cb([0, 1]),∣∣∣ ∫ 1

0
f(x)ϕ(n1,n2)

α (x) dx− f(x∗)
∣∣∣

≤
∣∣∣ ∫

x∈[0,1]: |x−x∗|>δ
f(x)ϕ(n1,n2)

α (x) dx
∣∣∣+ ∣∣∣ ∫

x∈[0,1]: |x−x∗|≤δ
f(x)ϕ(n1,n2)

α (x) dx− f(x∗)
∣∣∣

≤∥f∥
∫
x∈[0,1]: |x−x∗|>δ

ϕ(n1,n2)
α (x) dx+ ϵ+ |f(x∗)|

∫
x∈[0,1]: |x−x∗|>δ

ϕ(n1,n2)
α (x) dx.

Hence by (B.2), lim supn2→∞

∣∣∣ ∫ 1
0 f(x)ϕ

(n1,n2)
α (x) dx− f(x∗)

∣∣∣ ≤ ϵ. Since ϵ > 0 is arbitrary, we have

shown that
∣∣∣ ∫ 1

0 f(x)ϕ
(n1,n2)
α (x) dx− f(x∗)

∣∣∣→ 0 as n2 → ∞.

Proof of Lemma 4. Convergence in distribution to a constant is equivalent to convergence in proba-
bility. Hence Lemma 4, except the last statement about the convergence in distribution of n2p0,
follows from Lemma 1. As in the main text, A ≈ B below means A/B → 1 in the specified limit.

When α̃ ∈ (−∞, 1), we let a = n1 + θ1 for simplicity. The probability density function of np0
under Pn is

1

n
ϕ(n1,n2)
α

(y
n

)
=

1

n

1

Beta(a, n2 + θ2)1F1 (a;n+ θ1 + θ2;α)

(y
n

)a−1 (
1−

(y
n

))n2+θ2−1
eα

y
n

≈ 1

n

1

Beta(a, n2 + θ2)1F1 (a;n+ θ1 + θ2; α̃n2)

(y
n

)a−1
e−y eα̃y

≈ 1

na
1

Beta(a, n2 + θ2) (1− α̃)−a
ya−1 e−y eα̃y

≈ 1

Γ(a) (1− α̃)−a
ya−1 e−y eα̃y

as n2 → ∞, where we used (A.6a) and then (A.1) in the last two approximations above. Hence the
probability density function of n2p0 (under Pn) converges pointwise to that of the Gam(n1+θ1, 1−α̃)
random variable. This implies the desired convergence in distribution.
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Proof of Lemma 5. Fix t ∈ R+ and let k = [N(N − 1)t/2]. Suppose A(k) is the number of type 1
at step k of the discrete-time Moran process. Direct calculations from (13) and (14) show that, as
N → ∞,

E
[
A(k + 1)−A(k)

ρ(t)N

∣∣∣ A(k)
ρ(t)N

= x

]
≈ b(t, x)

2

N2

and

E

[(
A(k + 1)−A(k)

ρ(t)N

)2 ∣∣∣ A(k)
ρ(t)N

= x

]
≈ σ2(t, x)

2

N2
,

where b(t, x) := θ1
2ρ(t)(1 − x) − θ2

2ρ(t)x+ α
2ρ(t)x(1 − x) and σ(t, x) =

√
x(1−x)
ρ2(t)

are the coefficients in

(44). The condition on ρ guarantees that the SDE (44) has a unique weak solution and that the
desired weak convergence follows from standard (martingale problem) method; for reference see
Stroock and Varadhan (1979, Chapter 11).

Appendix C. Events in the conditional ancestral selection graph

Here we show how the minimal conditional ancestral process in Section 4 is obtained from the full
conditional ancestral process. To begin, we assume that at some time in the conditional ancestral
process there were r1, r2, v1 and v2 real and virtual lineages of type 1 and type 2. The associated
sampling probability is qo(r1, r2, v1, v2), the straightforward extension of (53) or (54) to include
both type-1 and type-2 virtual lineages. How branching events are resolved depends on which allele
is favored by selection. We begin here by assuming that A2 is favored, or α < 0. Grouping events
by the types of lineages involved (real or virtual of type 1 or type 2) then by whether it is mutation,
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branching or coalescence gives fourteen possibilities which occur at the following rates.

r1
θπ1
2

(
qo(r1, r2, v1, v2)

qo(r1, r2, v1, v2)
+
qo(r1 − 1, r2 + 1, v1, v2)

qo(r1, r2, v1, v2)

)
(C.1)

r2
θπ2
2

(
qo(r1, r2, v1, v2)

qo(r1, r2, v1, v2)
+
qo(r1 + 1, r2 − 1, v1, v2)

qo(r1, r2, v1, v2)

)
(C.2)

v1
θπ1
2

(
qo(r1, r2, v1, v2)

qo(r1, r2, v1, v2)
+
qo(r1, r2, v1 − 1, v2 + 1)

qo(r1, r2, v1, v2)

)
(C.3)

v2
θπ2
2

(
qo(r1, r2, v1, v2)

qo(r1, r2, v1, v2)
+
qo(r1, r2, v1 + 1, v2 − 1)

qo(r1, r2, v1, v2)

)
(C.4)

r1
|α|
2

qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
(C.5)

r2
|α|
2

(
2
qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
+
qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)

)
(C.6)

v1
|α|
2

qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
(C.7)

v2
|α|
2

(
2
qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
+
qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)

)
(C.8)

(
r1
2

)
qo(r1 − 1, r2, v1, v2)

qo(r1, r2, v1, v2)
(C.9)

(
r2
2

)
qo(r1, r2 − 1, v1, v2)

qo(r1, r2, v1, v2)
(C.10)

r1v1
qo(r1, r2, v1 − 1, v2)

qo(r1, r2, v1, v2)
(C.11)

r2v2
qo(r1, r2, v1, v2 − 1)

qo(r1, r2, v1, v2)
(C.12)

(
v1
2

)
qo(r1, r2, v1 − 1, v2)

qo(r1, r2, v1, v2)
(C.13)

(
v2
2

)
qo(r1, r2, v1, v2 − 1)

qo(r1, r2, v1, v2)
(C.14)

The sum of (C.1) through (C.14) is equal to the total rate of events in the unconditional ances-
tral process, (r1 + r2 + v1 + v2)(θ + |α| + r1 + r2 + v1 + v2 − 1)/2. Twenty-two distinct events
(r1, r2, v1, v2) → (r′1, r

′
2, v

′
1, v

′
2) are represented, one for each of the ratios of sampling probabilities,

q0(r
′
1, r

′
2, v

′
1, v

′
2)/q0(r1, r2, v1, v2). Note that the assumption of parent-independent mutation leads to

the four kinds of spurious or empty mutation events in (C.1) through (C.4) which do not change the
ancestral state of the sample (r′1 = r1, r

′
2 = r2, v

′
1 = v1, v

′
2 = v2). Also, only those events which have

have non-zero probabilities of giving the data appear in (C.1) through (C.14); coalescent events
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between lineages with different types and type-i mutation events on type 3− i lineages would make
the data impossible.

Recall that the resolution of branching events depends on which allele is favored by selection.
The events and their probabilities in (C.5) through (C.8) are just for the case α < 0, where A2 is
the favored allele. Each branching event creates an incoming lineage and a continuing lineage, both
of which may be of type 1 or type 2. Let (I, C) be the types of these lineages. In (C.5) and (C.7),
only one of the four (I, C) pairs has non-zero probability of producing the data: (I = 1, C = 1)
corresponding to the event (r1, r2, v1, v2) → (r1, r2, v1 + 1, v2). In (C.6) and (C.8), the possibility
(I = 1, C = 1) is discarded as it would then be impossible for the descendant lineage to be of type 2.
The other three possibilities have non-zero chances of producing the data, and associated events

(r1, r2, v1, v2) →


(r1, r2, v1 + 1, v2) when (I = 1, C = 2) (C.15a)

(r1, r2, v1 + 1, v2) when (I = 2, C = 1) (C.15b)

(r1, r2, v1, v2 + 1) when (I = 2, C = 2) . (C.15c)

In contrast, if α > 0 then branching events on type-2 lineages are the ones for which only one of
the four (I, C) pairs has non-zero probability of producing the data: (I = 2, C = 2) corresponding
to the event (r1, r2, v1, v2) → (r1, r2, v1, v2 + 1). When α > 0, if the branching event occurs on a
type-1 lineage, then in place of (C.15a), (C.15b) and (C.15c) we have

(r1, r2, v1, v2) →


(r1, r2, v1 + 1, v2) when (I = 1, C = 1) (C.16a)

(r1, r2, v1, v2 + 1) when (I = 1, C = 2) (C.16b)

(r1, r2, v1, v2 + 1) when (I = 2, C = 1) . (C.16c)

Therefore, when α > 0, (C.5) through (C.8) must be replaced with

r1
α

2

(
qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
+ 2

qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)

)
(C.17)

r2
α

2

qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)
(C.18)

v1
α

2

(
qo(r1, r2, v1 + 1, v2)

qo(r1, r2, v1, v2)
+ 2

qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)

)
(C.19)

v2
α

2

qo(r1, r2, v1, v2 + 1)

qo(r1, r2, v1, v2)
(C.20)

Equations (C.1) through (C.7) and (C.9) through (C.14) are the same for α > 0 and α < 0.
The simplifications discovered by Slade (2000a) and Fearnhead (2002) follow from the simple

fact that each sampled lineage is either of type 1 or type 2. Slade (2000a) noticed that when both
the descendant lineage and the incoming lineage have the favored type, the type of the continuing
lineage does not matter so there is no need to introduce a new virtual lineage. Instead, these two
possibilities can be collapsed into a single null event which does not change the numbers and types
of ancestral lineages. That is, we can use

qo(r1, r2, v1 + 1, v2) + qo(r1, r2, v1, v2 + 1) = qo(r1, r2, v1, v2) (C.21)
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in (C.6), (C.8), (C.17) and (C.19). As a result, no type-2 virtual lineages will be created.
Along the same lines, Fearnhead (2002) noticed that when mutation is parent-independent there

is no need to follow ancestral lineages once they have mutated, because the ancestral lineage could
be of either type. Any such lineage can be removed from the ancestral process. Here we use

qo(r1, r2, v1, v2) + qo(r1 + 1, r2 − 1, v1, v2) = qo(r1, r2 − 1, v1, v2) (C.22)

in (C.2), and other appropriate identities in (C.3) and (C.4). But we do not make use of this
simplification in (C.1) because our specific goal is to model latent mutations in the ancestry of
A1. These are actual mutations, where the ancestral type was A2. The remaining A1 → A1 empty
mutations are null events, which do not change the numbers and types of ancestral lineages.

The conditional ancestral processes for α < 0 and α > 0 given by (55) and (56) in the main text
each include just five kinds of (non-null) events. We obtain these by applying the simplifications
of Slade (2000a) and Fearnhead (2002) then grouping events by their outcomes. For example, the
coalescent events in (C.10) have effect r2 → r2 − 1, as do the combined mutations in (C.2) once the
simplification of Fearnhead (2002) is applied. So these appear together as one kind of event, the
fifth case in both (55) and (56).

We do not include null events in (55) and (56) since these by definition have no effect on the
ancestral lineages. In the case α < 0, the null events are empty mutations on type-1 real lineages
and branching events on type-2 real lineages where the incoming line is also of type 2. These occur
with total rate r1θπ1/2 + r2|α|/2. In the case α > 0, the null events are empty mutations on type-1
real lineages and branching events on type-1 real lineages where the incoming line is also of type 1.
These occur with total rate r1θπ1/2 + r1α/2.
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Przeworski, M., 2012. Revisiting an old riddle: What determines genetic diversity levels within
species? PLOS Biology 10, 1–9. doi:10.1371/journal.pbio.1001388.
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