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Abstract

The bokeh effect is an artistic technique that blurs out-
of-focus areas in a photograph and has gained interest due
to recent developments in text-to-image synthesis and the
ubiquity of smartphone cameras and photo sharing apps.
Prior work on rendering bokeh effects have focused on post
hoc image manipulation to produce similar blurring effects
in existing photographs using classical computer graphics
or neural rendering techniques, but have either depth dis-
continuity artifacts or are restricted to reproducing bokeh
effects that are present in the training data. More recent dif-
fusion based models can synthesize images with an artistic
style, but either require the generation of high-dimensional
masks, expensive fine-tuning, or affect global image char-
acteristics. In this paper, we present GBSD, the first gen-
erative text-to-image model that synthesizes photorealistic
images with a bokeh style. Motivated by how image synthe-
sis occurs progressively in diffusion models, our approach
combines latent diffusion models with a 2-stage condition-
ing algorithm to render bokeh effects on semantically de-
fined objects. Since we can focus the effect on objects, this
semantic bokeh effect is more versatile than classical ren-
dering techniques. We evaluate GBSD both quantitatively
and qualitatively and demonstrate its ability to be applied
in both text-to-image and image-to-image settings.

1. Introduction
The bokeh effect refers to an artistic styling in pho-

tography that creates an out-of-focus blurring in areas of
a photograph. Photographers have traditionally achieved
the bokeh blurring effect by widening the lens aperture or
through lens aberrations. The ubiquity of portable smart-
phone cameras and photo sharing applications has gener-

*The work was done when the 1st author was an intern at Baidu Re-
search.

ated increased interest in image manipulation in general and
bokeh synthesis specifically [18, 19]. Prior work is pri-
mary concerned with post hoc image manipulation to pro-
duce similar blurring effects in existing photographs using
classical computer graphics [24, 56, 63] or neural rendering
techniques [33, 31, 60, 17, 10, 55, 59]. Neural rendering
resolves the depth discontinuity artifacts present in classi-
cal techniques, but are generally restricted to reproducing
bokeh effects that are present in the training data [33] or
typical of classical techniques (e.g., a bokeh ball effect).
Recent work achieves arbitrary blur sizes and shapes, but
requires high-dimensional maps that are difficult to gener-
ate [33]. Moreover, all prior methods assume there exists
an input image to be manipulated, that is, they are not fully
generative models.

Recently, diffusion models [8] have demonstrated an
ability to generate photorealistic images given a text
prompt [40, 46, 62]. The artistic characteristics of synthe-
sized images can be controlled through post hoc image ma-
nipulation or within the generative process. Image editing
tasks like image inpainting [26, 47, 34, 66] are typically cast
as image-to-image translations or require a user specified
mask (and thus presuppose an image) to define a location
in the image to edit. Synthesizing images with a specified
artistic styling can be achieved by conditioning on class la-
bels or text descriptions [46, 62, 40]. However, these con-
trol signals typically affect global image characteristics like
artistic style and bokeh effects have not be achieved in dif-
fusion models.

In this work, we present GBSD, the first generative text-
to-image model capable of synthesizing photorealistic im-
ages with a bokeh style. Motivated by how image synthe-
sis occurs progressively in diffusion models, that is, image
layout, shape, and color are generated before enhancing de-
tails [15], our approach combines latent diffusion models
with a 2-stage conditioning algorithm to render bokeh ef-
fects on semantically defined objects (Fig. 1). The two
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stages apply different text conditioning to the latent diffu-
sion network; the first (global layout) stage generates the
structure of the image (e.g., the shape and color of objects)
and the second (focus) stage simultaneously focuses detail
generation and bokeh on different objects. Since we can
focus the effect on objects, this semantic bokeh effect is
more versatile than classical rendering techniques. Due to
the simplicity of our conditioning algorithm, GBSD does not
require the specification of a high-dimensional mask or ex-
pensive retraining.

Our work makes the following contributions:

• We present a new problem, semantic bokeh, whose
goal is to apply the bokeh blur effect to semantically
distinct objects in an image.

• We propose GBSD, a generative photorealistic im-
age synthesis method based on latent stage diffusion.
GBSD is the first diffusion model capable of synthe-
sizing photorealistic bokeh stylized images and can be
applied in both text-to-image (Fig. 1, left) and image-
to-image (Fig. 1, right) settings.

• We evaluate our bokeh stage diffusion model both
quantitatively and qualitatively by varying stage time
and diffusion prompts for text-to-image and image-to-
image tasks.

2. Related Work

Bokeh Synthesis. Methods for rendering bokeh include
classical techniques that are typically inefficient (e.g., ray
tracing [24, 56]) or require highly structure prior informa-
tion like 3D scenes or depth maps (e.g., image space blur-
ring or defocusing [63, 61, 14, 5, 4]). Taking advantage
of advances in computer vision, subsequent bokeh render-
ing methods improved on classical techniques through the
integration with image segmentation [48, 49], depth per-
ception [6, 27, 35, 57, 65], or both [54]. More recently,
neural bokeh synthesis techniques were developed to ad-
dress the depth discontinuity artifacts around boundaries
and lack of scalability of classical methods. Neural transla-
tion of in-focus to bokeh images using depth maps are accu-
rate [31, 59], but generating high-quality depth maps is un-
realistic in most scenarios. Methods that performed depth
prediction or employed encoder-decoder architectures fol-
lowed [55, 33, 60, 17, 10, 18, 19], but are, by construction,
limited to reproducing bokeh effects similar to the data used
to train them or require the generation of high-dimensional
maps. Additionally, while some prior work employ gen-
erative models [10, 18, 19, 38], all prior bokeh synthesis
methods aim for image-to-image translation, assuming an
input image exists to be manipulated.

Deep Generative Models. Early architectures for syn-
thesizing images from text relied on generative adversar-
ial networks (GANs) [11] and variational autoencoders
(VAE) [22]. GANs are capable of generating high-quality
and high-resolution images, but are difficult to optimize [13,
29] and can drop regions of the data distribution [30]. In
contrast with GANs, VAEs [22] can efficiently synthesize
high-resolution images but typically generate lower quality
images [7]. More recently, probabilistic diffusion models
(DM) [15, 51, 53], which are based on an iterative denois-
ing process [8], have demonstrated state-of-the-art results
across a variety of applications including text-to-image gen-
eration [40], natural language generation [25], time series
prediction [2], medical image [37], audio generation [23],
adversarial machine learning [58] and privacy-preserving
machine learning [9].

Text Driven Image Generation and Editing Using DM.
A primary application of diffusion models is image syn-
thesis and manipulation based on conditioning text, which
includes text-to-image [28, 41] and image-to-image gen-
eration. The denoising task can be conditioned by text
prompts [21] in image space (GLIDE [32] and Imagen [46]
or in latent space, which includes DALL·E 2 [40], latent
diffusion models (LDM) [42]) and vector quantized diffu-
sion [12]. To improve computational efficiency, it is com-
mon practice to train a diffusion model using low-resolution
images or latent variables, which are then processed by
super-resolution diffusion models [16] or latent-to-image
decoders [50].

Variable Text Prompt Conditioning. Adjusting the text
conditioning during the denoising process has been con-
sidered in the image manipulation context. Imagic uses a
3-step process to linearly interpolate between a target and
optimized textual embeddings based on a reference image
and text prompt [20]. However, Imagic requires the op-
timization of text embeddings based on pre-trained diffu-
sion models, followed by diffusion model fine-tuning using
the optimized text embeddings for each text prompt input.
The eDiff-I method changes the text prompt after a fixed
percentage of denoising steps [3], though the focus is on
evaluating the strength of text conditioning and denoising
efficacy under different noise levels, rather than exploring
how prompt switching affects the photographic properties
of the generated image. In contrast with prior work, we in-
vestigate how to split a continuous denoising process into
two stages and leverage the prompt in stage 2 to simultane-
ously sharpen a target object while introducing a bokeh ef-
fect in others for both text-to-image generation and image-
to-image generation. Further, our model does not require
the generation of a mask or expensive fine-tuning.



      𝒙 (Output)

Input Image

𝒙 (Output)

Text-to-image generation Image-to-image translation

Figure 1. An illustration of stage diffusion for text-to-image and image-to-image generation with a bokeh style. A bokeh style image
is generated by a two-stage semantic conditioning algorithm. The first stage (from zT to zt) generates the global layout of the image
(e.g., shape and color) while stage two (from zt to x) focuses detail and bokeh effects through semantic conditioning. In the text-to-image
example (left), the stage 1 prompt was “A cute baby bunny standing on top of a pile of baby carrots under a spot light” and different
prompts in stage 2 that focus either the carrots (bottom) or the bunny (top). In the image-to-image example (right), we use the prompt “A
cute rabbit stands with carrots with green leaf” in stage 1 and “carrots with green leaf” in stage 2. The generated image demonstrates the
previously blurry carrot coming into focus, revealing more clear and distinct textures, while creating a bokeh effect for the rabbit.

3. Methods
3.1. Diffusion Model Preliminaries

Probabilistic diffusion models estimate the data distribu-
tion p(x) by denoising a normally distributed random vari-
able with an input image x ∈ RH×W×3 in RGB space. The
denoising process is represented as the reverse of a length
T Markovian diffusion process [42], with the best perform-
ing image generation models using a weighted variational
lower bound on p(x) [8, 15]. Let xt be a noisy version of
the input x and ϵθ(xt, t) be a denoising autoencoder with
input xt at step t. The diffusion process can be represented
as denoising autoencoders {ϵθ(xt, t)}Tt=1, which are trained
to predict a denoised variant of the input xt. A simplified
objective can be formulated as:

LDM = Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(xt, t)||22

]
Latent diffusion models (LDMs) leverage trained per-

ceptual compression models ε and D, where ε(x) is an en-
coder for input x to latent space z and D(z) decodes z from
the latent space back to image space producing x̄ [42]. The
model also uses a textual conditioning prompt y, which can
be projected into an embedded representation through a pa-
rameterized domain-specific expert τθ. A new objective L
using this latent space representation can be formulated as:

LLDM = Ez,y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, τθ(y))||22

]
Most diffusion models denoise with consistent and con-

tinued conditioning. To achieve a bokeh effect in synthe-

sized images, we design a two-stage diffusion with a re-
lated, but distinct conditioning mechanism named stage dif-
fusion.

𝜖𝜃
𝓏T𝝈𝓏 𝜖𝜃

𝓏TƊ

𝝉𝜃 𝝉𝜃

Conditioning 

Global Prompt Local Prompt

𝝉𝜃

𝓏T𝝈

Focus Stage Global Layout Stage
Conditioning 

Global Prompt

Figure 2. The generative bokeh with stage diffusion (GBSD) ar-
chitecture. For brevity, we represent the diffusion process for each
stage by a single representative denoising autoencoder.

3.2. Stage Diffusion

The goal of stage diffusion is to synthesize an image that
simultaneously focuses on a target object while producing
a bokeh effect on others in both text-to-image and image-
to-image generative scenarios. Our stage diffusion method
leverages LDMs [42], which provide a consistent text con-
ditioning signal in each denoising autoencoder during im-
age synthesis, and the progressive manner in which diffu-



sion models synthesize images (i.e., generating image lay-
out, shape, and color before enhancing details [15]). We
implement stage diffusion by decomposing the diffusion
process into two distinct stages: a global layout stage and
a focus stage (Fig. 2). The global layout stage generates
the structure of the image (e.g., layout, shape, and color),
whereas the focus stage outputs a final bokeh-styled image.

3.2.1 Global Layout Stage

In the global layout stage, we process a global prompt
that completely describes the image to synthesize, yglobal,
through a domain-specific expert, τθ to obtain its corre-
sponding textual embedding τθ(yglobal) [39]. The model
uses τθ(yglobal) as a textual input for conditioning the dif-
fusion process and employs a hyperparameter σ ∈ (0, 1) to
regulate the number of denoising steps during global layout
stage. The denoising steps for a given global layout stage
are set as the product of the total number of denoising steps
T and σ. If we consider the global layout stage as a function
of g(·) with inputs, τθ(yglobal), zT and σ, we represent the
output of global layout stage zσ·T , as:

zσ·T = g (τθ(yglobal), zT , σ)

The output of the global layout stage is an intermediate im-
age with a stable and consistent structure for synthesized
objects.

3.2.2 Focus Stage

In order to simultaneously sharpen details on some objects
while producing a bokeh effect in others, we pass a lo-
cal prompt ylocal to the text encoder [39], which produces
the textual embedding, τθ(ylocal); the local prompt ylocal
should be semantically related to the focused object. We
linearly interpolate τθ(yglobal) from the global layout stage
and τθ(ylocal) with a hyperparameter α as:

ē = (τθ(ylocal) + α× τθ(yglobal)) /(1 + α)

The resulting ē represents the textual conditioning in focus
stage. The parameter α balances the global and local in-
formation in the focus stage, impacting the final generated
image. The denoising diffusion objective L in focus stage
is represented as:

L = Ez,y,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zσ·T , t, ē)||22

]
where t = 1 . . . (σ × T ). Compared with other similar im-
age synthesis or manipulation methods [20, 31, 59], stage
diffusion does not require expensive fine-tuning or high-
dimensional mask generation.

3.3. Image Generation

Stage diffusion is capable of both text-to-image and
image-to-image synthesis. Text-to-image generation does
not require the initial diffusion process step. Instead, an ar-
bitrary text prompt yglobal is input into the model and the
initial random input is created by concatenating a sample
from a Gaussian random variable with τθ(yglobal) to create
zT . For image-to-image generation, we add diffusion noise
based on the desired amount of image perturbation. In the
global layout stage, a related or matched prompt is used as
the global prompt to ensure the preservation of objects and
prevent image distortion. This allows the model to generate
outputs that are consistent with the given prompt, ensuring
high-quality results.

4. Results
We implement our generative bokeh with stage diffu-

sion (GBSD) method both qualitatively and quantitatively
and in text-to-image and image-to-image scenarios. All ex-
periments are conducted using NVIDIA V100 GPUs with
an image output size of 512 × 512, a batch size of 4 (i.e.,
the number of samples to generate for each prompt), and
a fixed random seed of 42. The code repository leveraged
the officially released version of LDM (Stable Diffusion v1-
4) [42, 43]. For all experiments, the number of denoising
diffusion implicit model (DDIM) sampling steps was set to
50, the number of timesteps was set to 1000, and the scale
was set to 15 for all groups [52]. Additional results are pro-
vided in the appendix.

4.1. Evaluation Measures

Based on a recent evaluation of focus measure opera-
tors [36], we consider variance of Laplacian [44, 45] score
and Brenner score [64] for quantitative evaluations.

4.1.1 Variance of Laplacian

The variance of Laplacian (VoL) is a measure that uses the
variance of the image Laplacian for an evaluation of blur or
focus [44, 45] and is calculated by∑

(i,j)∈Ω(x,y)

(
∆I(i, j)−∆I

)2
,

where Ω(x, y) is a neighborhood around pixel I(i, j),
∆I(i, j) is the Laplacian at pixel I(i, j), and ∆I is the aver-
age value of the image Laplacian within the pixel neighbor-
hood Ω(x, y). The Laplacian operator is effective in detect-
ing blur due to its ability to measure regions with rapid in-
tensity changes based on the second derivative of an image,
similar to the Sobel and Scharr operators used for edge de-
tection. This method assumes that an image with high vari-
ance contains both edge-like and non-edge-like features, in-
dicating an in-focus image. Conversely, an image with low
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Figure 3. Comparing image generation by adjusting σ. The proportion of denoising steps allocated to the global layout stage was set
to {0.9,0.8,0.7,0.6,0.5} and the overall number of denoising steps and conditioning per stage was fixed. Both experiments (top and bottom
rows) shared the same global prompt “a cute baby bunny standing on top of a pile of baby carrots under a spot light”. The top row was
given a local prompt of “a pile of carrots” and the bottom row was given “a cute rabbit”. The proportion of denoising steps spent in
the global layout (stage 1) and focus (stage 2) stages is given in the green and blue boxes, respectively. The rabbit features in the top
experiment degenerated as stage 1 was shortened; similarly, the carrots features in the bottom experiment exhibited a similar trend.

variance has a small spread of responses, indicating a lack
of edges and bokeh style. Therefore, as blur increases, the
number of distinct edges in an image decreases, leading to
lower variance and a higher degree of blurriness.

4.1.2 Brenner Score

The Brenner score [64] is a measure of the focus quality
of a digital image. The Brenner score computes image tex-
tures at two different scales to characterize the amount of
high and low resolution data contained within the image.
For example, texture measurements may be calculated from
the average of adjacent pixel pairs from the high resolution
measurements compared with the average of adjacent pixels
triplets from the low resolution measurements. A score that
indicated the quality of focus is then generated as a function
of the low- and high-resolution measurements.

4.2. The Effect of Adjusting σ

To investigate the impact of adjusting σ, which controls
the proportion of the global layout (stage 1) and focus (stage
2) stages, we increased the length of the focus stage from
10% to 50% (Fig. 3). We performed two experiments with
varied σ both containing the same global prompt: “a cute
baby bunny standing on top of a pile of baby carrots under
a spot light”. The first experiment (Fig. 3, top row) used
a local prompt for the focus stage of “a pile of carrots”,

(a) (b)

Figure 4. Undesirable semantic mixing with a short global
layout. We used a global prompt that incorporated both the terms
“carrots” and “rabbit”. In the subsequent focus stage, a local
prompt that solely included the keyword “carrots” was added.
When the global layout stage is too short (here, 20%), the “car-
rots” features merged with a “rabbit”-like object, producing an
object that combined the features of both for two distinct random
seeds (a) and (b).

whereas the second experiment (Fig. 3, bottom row) used
the local prompt “a cute rabbit”.

Firstly, both “rabbit” and “carrots” objects are easily
identifiable when the global layout stage encompasses at
least 70% of the total denoising process (Fig. 3 (a-c)), in-
dicating that a stage 1 length of 70%-90% of the denoising
steps is sufficient to stabilize objects. When the global lay-
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Stage 1 (80%) Stage 2 (20%)

(b) (1) (2)

Laplacian: 25.03
          Brenner: 6.25×105

Laplacian: 95.53
Brenner: 1.94×106

(3)

Laplacian: 164.72 
Brenner: 10.83×106

Laplacian: 132.13
Brenner: 7.61×106

Figure 5. Comparison between the baseline LDM and GBSD. We used the text conditioning “a cute baby bunny standing on top of a
pile of baby carrots under a spot light” both as the input prompt for LDM (a) and the global prompt for GBSD (b). In (b), a local prompt
“a pile of baby carrots under a spot light” was used in stage 2 with 80% of denoising steps dedicated to stage 1 and 20% to stage 2. The
highlighted image segments demonstrate that GBSD produces (1) stem details on the carrots, (2) a sharper image due to the focus on the
carrots in stage 2, and (3) a bokeh effect on the bunny.

out stage was allocated 60% or less of the total denoising
process, there existed insufficient evidence to confirm the
presence of the feature that was the target of the bokeh ef-
fect, i.e., the “rabbit” in Figure 3, top row (d-e) and the
“carrots” in Figure 3, bottom row (d-e). Furthermore, by
comparing the different σ within each experiment, it can
be observed that an increase in stage 2 leads to a degrada-
tion in the information that is present in the global prompt
but not in the local prompt. When comparing the two ex-
periments for each σ, we observed that the object position
within each image are essentially identical since we use the
same configuration to generate the images. However, the
preservation of the object features are reversed with the first
experiment retaining the features of “carrots” (Fig. 3, top
row) and second experiment retaining the features of “rab-
bit” (Fig. 3, bottom row).

We also investigated the behavior of stage diffusion
when the global layout stage was shortened to 20% of the
denoising process (Fig. 4). Regardless of the local prompt,
a short global layout stage produced objects that semanti-
cally intermixed the features of “carrots” and “rabbit” as
a result of not being able to appropriately establish image
layout before refining details.

4.3. Baseline Comparisons

We quantitatively compared the generated images be-
tween the baseline LDM [42] and GBSD (Fig. 5) using the
VoL and Brenner measure. When a bokeh effect is desired,

the VoL and Brenner measure should be lower; conversely,
when sharp details are desires, the VoL and Brenner mea-
sure should be larger. Using LDM and GBSD, we gener-
ated two images using two distinct random seeds (Fig. 5,
(a) and (b), left and right). We used the prompt “a cute
baby bunny standing on top of a pile of baby carrots under
a spot light” as an input prompt for the baseline and global
prompt for GBSD. We used a partial segment of the global
prompt as the local prompt, “a pile of baby carrots under a
spot light”, which encompassed 20% of denoising steps for
GBSD in the focus stage.

Even when the random input seed is fixed across models,
some segments of the image were too dissimilar to produce
meaningful quantitative comparisons (Fig. 5 (1)). However,
even these segments of carrots show enhanced detail in the
GBSD synthesized image compared with LDM (e.g., the
green stem). Next, we highlighted the highly similar car-
rot objects in the second experiment (Fig. 5, green boxes,
right image) and computed their corresponding blur maps
(Laplacian of the image normalized to grayscale). While
the normalization of the blur map makes it difficult to com-
pare the LDM and GBSD, the VoL, Brenner score, and qual-
itative comparisons demonstrate that the carrots are more
in-focus for GBSD (Fig. 5 (2)) where our approach achieves
95.53 in Laplacian score and 1.94×106 in Brenner score
which is 3.81× and 3.10× to baseline. When a bokeh effect
is desired (here, in the bunny), the GBSD produces smaller
(better) VoL and Brenner score values (Fig. 5 (3)).



(a) (b) (c) (d) (e)
Figure 6. Comparisons with prompt containing keyword “focus”. We implemented variable focus using different prompts for LDM
(a-d) and the same prompt as in Figure 5 for GBSD (e): (a) “a cute baby bunny standing on top of a pile of baby carrots under a spot
light”, (b) “a cute baby bunny standing on top of a pile of baby carrots under a spot light, rabbit is in focus, carrots out of focus”, (c)“a
cute baby bunny standing on top of a pile of baby carrots under a spot light, carrots is in focus, rabbit out of focus”, (d)“a cute baby
bunny standing on top of a pile of baby carrots under a spot light, rabbit and carrot in focus” and (e) our output from Figure 5.

4.4. Comparison with “focus” Prompt

As discussed in the previous section, our proposed
method demonstrated a significant score improvement in
terms of Laplacian measures compared to the baseline ap-
proach when evaluated with the same prompt, that is, the
LDM prompt and GBSD global prompts were identical. Fur-
thermore, the focus prompt did not contain any additional
information. We investigated whether adding text to the
conditioning prompt could reproduce sharpening or blur-
ring effects, we added “in focus” and “out of focus” phrases
to the prompts (Fig. 6).

Using the same seed, we synthesized 4 images using
LDM (Fig. 6 (a-d)).Image (a) was generated using the
prompt “a cute baby bunny standing on top of a pile of baby
carrots under a spot light”. To generate images (b-d), we
added suffixes to change the image focus: (b) “rabbit is in
focus, carrots out of focus”; (c) “carrots is in focus, rab-
bit out of focus”; (d) “rabbit and carrot in focus”. Finally,
image (e) was generated using stage diffusion as described
above (Fig. 5). Visual inspection of the images demonstrate
undesirable results for images (a-c): (1) a bokeh effect in the
carrots for image (a) when it was not desired; (2) an unnat-
ural carrot structure being created in image (b) in response
to the “out of focus” phrase; and (3) the opposite effect of
what was desired in image (c), that is, the carrots are blurry
then they should be in focus. Conversely, image (d) shows
both rabbit and carrots in focus which, while desired based
on the text prompt, does not achieve a bokeh effect. How-

ever, compared with the LDM baseline, the desired sharpen-
ing of the carrots and bokeh effect on the bunny is achieved
in image (e) with GBSD (see also Fig. 5).

(a) “Bokeh” (b) Baseline method with “Bokeh”

(c) Ours

Figure 7. Comparing the “bokeh effect” between LDM with
“bokeh” in the prompt and GBSD. (a) is an example of “bokeh”
from a photography resource [1]. (b) is the output of LDM where
the “bokeh” keyword is added to the text prompt. (c) is the output
of GBSD with a focus stage prompt highlighting the bunny (left
and right images) and carrots (middle image).



(a) Input Image (b) Our Output

VoL: 160.56
Brenner: 4.61×106

VoL: 236.02
Brenner: 8.93×106  

Our Output 
VoL: 349.51 Brenner: 4.83×106

Input Image
VoL: 605.64 Brenner: 7.76×106

Figure 8. Evaluating image-to-image generation. The global prompt was “A cute rabbit stands with carrots with green leaf ” and the
local prompt is “carrots with green leaf ” for (b). Our outputs achieve up to 73% improvement in VoL and 93% improvement in Brenner
compared to the input image.

4.5. Comparisons with “bokeh” Prompt

Next, we investigated whether adding a “bokeh effect”
prompt to the baseline would produce the desired blurring
of semantically distinct objects (Fig. 7). Typical examples
of the bokeh effect includes urban settings with a blurring
ball out-of-focus effect on lighting in the background (Fig. 7
(a)). Including the keywords “bokeh effect” in the prompt
of LDM interestingly removed carrot objects but generated
a similar blurring effect with carrot-colored lighting (Fig. 7
(b)). The bokeh effect produces by LDM is also not real-
istic, as there are no physical light sources located in the
background. Since the presence of points of light is a com-
mon feature in publicly available bokeh images, the bokeh
artifact produced by LDM is likely due to its presence in
the training data. In contrast, GBSD offers the advantage of
producing a more realistic bokeh effect on either carrot or
bunny objects instead of simply replicating a typical bokeh
effect from the training data (Fig. 7 (c)).

4.6. Focus Shift in Image-to-Image Generation

Text-to-image generation involves generating an image
from a text prompt, whereas image-to-image generation re-
quires two types of conditioning: a text prompt and an in-
put image. One challenge of image-to-image generation is
identifying an appropriate level of noise to incorporate into
the input image. The noise must be capable of modifying
image features without causing significant deviations from
the input image. An image was selected from an online
source to use as the input (Fig. 8 (a)). To add focus to

the carrots, we set a global prompt “A cute rabbit stands
with carrots with green leaf ” in the global layout stage and
local prompt of “carrots with green leaf ” in focus stage.
Overall, GBSD sharpens the detail of the carrots achieving a
VoL of 236.02 and Brenner score of 8.93× 106, which are
1.73× and 1.93× larger than the input image, respectively
(Fig. 8 (b), left). Further, the stage diffusion algorithm also
achieves a bokeh effect on the rabbit, with a smaller VoL
and Brenner score when compared with the input image
(Fig. 8 (b), right).

5. Conclusions
In this paper, we presented GBSD, the first generative

text-to-image model that synthesizes photorealistic images
with a bokeh style. The approach combines latent diffu-
sion models with a 2-stage conditioning algorithm to ren-
der blurring effects. Unlike prior bokeh methods, GBSD is
able to produce a semantic bokeh effect, where semantically
distinct objects are blurred based on the 2-stage text condi-
tioning procedure. We evaluated GBSD both quantitatively
and qualitatively and demonstrated its ability to be applied
in both text-to-image and image-to-image settings. In sum,
we believe that GBSD and other generative models of photo-
realistic images with artistic stylings can provide a valuable
content generation resource to AI-assisted industries reliant
on image synthesis.
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