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NONLINEAR ASYMPTOTIC MEAN VALUE

CHARACTERIZATIONS OF HOLOMORPHIC FUNCTIONS

RICCARDO DURASTANTI AND ROLANDO MAGNANINI

Abstract. Starting from a characterization of holomorphic functions in terms
of a suitable mean value property, we build some nonlinear asymptotic char-
acterizations for complex-valued solutions of certain nonlinear systems, which
have to do with the classical Cauchy-Riemann equations. From these asymp-
totic characterizations, we derive suitable asymptotic mean value properties,
which are used to construct appropriate vectorial dynamical programming

principles. The aim is to construct approximation schemes for the so-called
contact solutions, recently introduced by N. Katzourakis, of the nonlinear sys-
tems here considered.

1. Introduction

The classical mean value property characterizes harmonic functions — the solu-
tions of the classical Laplace equation ∆u = 0. In fact, a continuous function u is
harmonic in an open set Ω ⊆ RN if and only if

u(x) =
1

|Br(x)|

∫

Br(x)

u(y) dy or u(x) =
1

|∂Br(x)|

∫

∂Br(x)

u(y) dSy, (1.1)

for every ball Br(x) with Br(x) ⊂ Ω. (Throughout this paper, we shall denote the
boundary of Ω by the letter Γ. Also, we use single bars to denote both the Lebesgue
measure of a measurable set and the surface measure of a surface in RN .) From
(1.1) one can derive most of the properties of harmonic functions, such as weak and
strong maximum principles, smoothness, analyticity, Liouville’s theorem, Harnack’s
inequality, and more. The exact mean value property in (1.1) may be weakened.
Indeed it is sufficient that a continuous function u satisfies the asymptotic mean
value property, i.e.

1

|Br(x)|

∫

Br(x)

u(y) dy = u(x)+ o(r2) or
1

|∂Br(x)|

∫

∂Br(x)

u(y) dSy = u(x)+ o(r2),

as r → 0+ (see [25, 34, 49]).
Recently, (1.1) has been somewhat extended to nonlinear settings. E. Le Gruyer

[36] noticed the relationship of the nonlinear mean defined by

1

2
max
Br(x)

u+
1

2
min
Br(x)

u (1.2)

with the absolutely minimizing Lipschitz extensions, which in particular are ∞-
harmonic functions, i.e. viscosity solutions of the ∞-Laplace equation, ∆∞u = 0.
Here, ∆∞ denotes the (game theoretic) ∞-laplacian. Extensions to the case of
the p-Laplace equation (with 1 < p ≤ ∞) have been first developed in [39, 42–
44], based on a linear combination of the mean values in (1.1) and (1.2). In the
nonlinear case, the connection between (viscosity) p-harmonic functions and the
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2 R. DURASTANTI AND R. MAGNANINI

relevant mean is obtained by adopting the notion of asymptotic mean value property
(in an appropriate viscosity sense) for a continuous function (see [42], [30], for a
definition). The references [27, 52] contain a two-dimensional approach to the case
p = 1. The relevant nonlinear mean value chosen is the median of a function on
Br(x), which is defined as the number µ such that

∣

∣{x ∈ Br(x) : u(x) > µ}
∣

∣ =
∣

∣{x ∈ Br(x) : u(x) < µ}
∣

∣; (1.3)

µ is unique if u is continuous (see [50]).
We also mention that, over the last years, there has been increasing interest

on asymptotic mean value formulas for nonlinear elliptic equations. Here, we refer
to: [4,5,10,26], for the game-theoretic Laplacian; [17] for the variational p-Laplacian;
[15,19,21,24], for the fractional p-Laplacian; [47], for double-phase operators; [13,35]
for general second order elliptic equations and Helmholtz equations; [12], for the
Monge-Ampère equation; [2, 3, 48] in metric measure spaces.

In [30], the second author of this paper and his co-authors proposed to use a
natural version of mean value. This is what we call in [16] a variational p-mean,
because it is defined as the minimum point µr

p(u)(x) of the function

R ∋ µ 7→ ‖u− µ‖p,Br(x), (1.4)

where ‖ · ‖p,Br(x) denotes the usual norm in the Lebesgue space Lp(Br(x)). It is
not difficult to show that the means defined by (1.1), (1.2), (1.3) coincide with
µr
p(u)(x), in the corresponding cases. Moreover, as the means used before, the

variational p-mean enjoys the following asymptotic property: at each point x ∈ Ω
it holds that

µr
p(φ)(x) = φ(x) + cN,p∆

G
p φ(x) + o(r2) locally uniformly in Ω as r → 0+, (1.5)

for every φ ∈ C2(Ω) such that ∇φ(x) 6= 0 in Ω. Here, cN,p is some positive constant
only depending on N and p and ∆G

p denotes the game-theoretic p-Laplace operator,
formally defined by

∆G
p φ = ∆φ+ (p− 2)

〈∇2φ∇φ,∇φ〉
|∇φ|2 .

As suggested above, the variational p-mean µr
p(u) has natural features that other

types of means do not always have. Thanks to three of these, µr
p(u) results in an

average, according the definition given in [18]. In fact, as an operator on bounded
functions, µr

p is: (i) affine invariant, i.e. µr
p(λφ + c) = λµr

p(φ) + c, for λ >
0 and c ∈ R; (ii) stable, i.e. µr

p(φ) is bounded from below and above by the
infimum and supremum of φ, respectively; (iii) monotone, i.e. µr

p(φ) ≤ µr
p(ψ), if

φ ≤ ψ pointwise. Another important feature of a variational p-mean is that the
functional Lp(Br(x)) ∋ u 7→ µr

p(u) ∈ R is continuous in the Lp(Br(x))-topology.
These properties are naturally inherited from the variational definition of µr

p, which
can also be interpreted as the Lp-projection of u on the subspace of Lp(Br(x)) of
constant functions.

As shown in [18], being an average is sufficient to prove the convergence of the
dynamic programming principle (DPP)

ur = µr
p(u

r) on Ω, (1.6)

subject to some appropriate boundary assumptions of Dirichlet type. Two types of
effective boundary assumptions can be found in the literature. The former assigns
a continuous extension on a strip around Ω of a given Dirichlet data on Γ (see [44],
[18]); the latter only assigns a Dirichlet data on Γ, at the cost of slightly modifying
the operator µr

p (see [16, 27, 28, 52]).
A function ur that, for a fixed r > 0, satisfies (1.6) locally is also said to be

p-harmonious (it is clear that r should be sufficiently small). Under appropriate



ASYMPTOTIC CHARACTERIZATIONS OF HOLOMORPHIC FUNCTIONS 3

regularity assumptions on the boundary Γ of Ω, one can prove that p-harmonious
functions with a given data on Γ converge as r → 0+ to a p-harmonic function with
the appropriate Dirichlet data on Γ. The regularity assumptions differ depending
on the boundary condition chosen for the DPP (see [16, 18, 29, 44]).

The aim of this paper is to show further that the idea of defining an average
variationally is very flexible, since it can be adapted to a variety of situations. One
way to proceed is to replace the Lp-space in (1.4) by other measure spaces, according
to convenience. This was indicated in [30] in order to treat solutions of the game
theoretic parabolic p-Laplace equation. There, the Euclidean ball Br(x) equipped
with the Lebesgue measure is replaced by the standard heat ball equipped with
a suitable time-varying finite measure. By changing the relevant measure space,
extensions of this scheme have been given in [20, 45], for the Heisenberg group,
and in [1] for Carnot groups. (See also [22, 23, 51] for non-variational mean value
formulas in Carnot groups.)

In this paper, we begin to investigate on how the variational framework can be
extended to vector-valued functions φ from Ω ⊂ RN to RN . We present our ideas
having in mind possible applications to nonlinear systems of partial differential
equations. Here, we begin our investigation by considering an important case study,
which entails holomorphic functions of one complex variable.

In order to clarify our plan, let us consider the case in which N = p = 2. It is
easily seen that, if φ = (φ1, φ2) ∈ C2(Ω;R2) and µr(φ)(x) ∈ R2 minimizes on R2

the function

R
2 ∋ µ 7→

∫

Br(x)

|φ(y)− µ|2dy,

then we obtain the asymptotic formula:

µr(φ)(x) − φ(x) =
1

8
∆φ(x) r2 + o(r2) as r → 0+.

Here, we mean ∆φ = (∆φ1,∆φ2).
Thus, we obtain that φ is a harmonic map from Ω to R2, i.e. both functions

φ1 and φ2 are harmonic in Ω if and only if µr(φ)(x) − φ(x) = o(r2) as r → 0+ for
every x ∈ Ω. In other words, the smooth solutions of the system

∆φ1 = 0, ∆φ2 = 0 in Ω

are characterized by an asymptotic mean value property (as a matter of fact, by
even an exact mean value property). With a little more effort, the smooth solutions
of the system

∆G
p φ1 = 0, ∆G

p φ2 = 0 in Ω,

i.e. the p-harmonic maps, can be characterized (away from their critical points)
by the asymptotic mean value property µr

p(φ)(x) − φ(x) = o(r2) as r → 0+, where

µr
p(φ)(x) ∈ R2 is the unique minimum point on R2 of the function

R
2 ∋ (µ1, µ2) 7→

∫

Br(x)

[

|φ1(y)− µ1|p + |φ2(y)− µ2|p
]

dy.

In both cases, however, we obtain a characterization of solutions of an uncoupled
system of differential equations — a slight generalization of the scalar case. Instead,
the aim of our research is to obtain a non-trivial connection between some sort
of mean value property (exact or asymptotic) and the solutions of some coupled
system of partial differential equations. With this in mind, as a case study, we
shall analyse in this paper the Cauchy-Riemann system — maybe the most studied
coupled system of partial differential equations— and some of its possible nonlinear
generalizations.



4 R. DURASTANTI AND R. MAGNANINI

Thus, we shall consider complex-valued functions f = u + i v of the complex
variable z = x + i y on subdomains of the complex plane C. Also, we will denote
by Dr(z) the disk in C centered at z and with radius r > 0 and we set Dr = Dr(0),
D = D1 and S = ∂D. We know that sufficiently regular functions f = u + i v,
which satisfy the Cauchy-Riemann system,

vx = −uy, vy = ux,

or in complex notation

fz = 0,

are the so-called analytic or holomorphic functions. (Here, z = x−iy is the complex
conjugate of z, so that 2 fz = fx + i fy, 2 fz = fx − i fy.) We also know that any
holomorphic function is also harmonic, i.e. it satisfies the mean value properties

f(z) =
1

|Dr(z)|

∫

Dr(z)

f(ζ) dAζ and f(z) =
1

|∂Dr(z)|

∫

∂Dr(z)

f(ζ) dSζ ,

for any diskDr(z) withDr(z) ⊂ Ω. Here, dAζ and dSζ denote the respective volume
and surface elements. Conversely, there are (complex-valued) harmonic functions
which are not holomorphic: their real and imaginary parts are both harmonic, but
they do not solve the Cauchy-Riemann system (see also [11]). Hence, if we want a
characterization of holomorphic functions in terms of a mean value property and,
more generally, its extension to nonlinear systems related to the Cauchy-Riemann
equations, we must turn to another type of mean. The starting point of our study is
the following characterization, which is an adaptation of classical arguments. (We
shall postpone its proof to Appendix A.)

Proposition 1.1 (Mean value characterization of holomorphic functions). Let Ω ⊆
C be a domain and let f : Ω → C be a continuous function. Then, the function f
is of class C1(Ω) and holomorphic in Ω if and only if

f(z) =
1

|Dr(z)|

∫

Dr(z)

f(ζ)

[

1 +
2

r
(ζ − z)

]

dAζ , (1.7)

for any disk Dr(z) with Dr(z) ⊂ Ω.

In Section 2 we reformulate this result in a suitable way, and starting from
Remark 2.2, we then build up our investigation on (nonlinear) asymptotic mean
value properties for complex-valued solutions of certain nonlinear systems, which
have to do with the classical Cauchy-Riemann equations. In fact, in Section 3, we
shall consider the following general situation.

Let F : [0,∞) → [0,∞) be a function of class C1([0,∞)) ∩ C2((0,∞)), which
is strictly convex and such that F (0) = F ′(0) = 0 and F (s) → +∞ as s → +∞.

Let Ω ⊂ C be an open domain and take any closed disk Dr(z) ⊂ Ω. Next, for
f ∈ L1

loc(Ω;C) and any c ∈ C define:

F(c) =

∫

∂Dr(z)

F
(
∣

∣

∣
f(ζ)− c (ζ − z)

∣

∣

∣

)

dSζ . (1.8)

Under these assumptions, it is easy to see that F has exactly one minimum point
cF(f, r)(z) on C. With these premises, we present our main result: a characteriza-
tion of solutions of a nonlinear system of Cauchy-Riemann type.

Theorem 1.2. Let F ∈ C1([0,+∞)) ∩ C2((0,∞)) be a strictly convex function
such that F (0) = F ′(0) = 0.

Set

Λ(s) =
s F ′′(s)

F ′(s)
for s > 0 (1.9)
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and assume that, for some constants 0 < Λ− ≤ Λ+, it holds that

Λ− ≤ Λ(s) ≤ Λ+ if s > 0. (1.10)

Let Ω ⊆ C be an open set and let the function f : Ω → C be differentiable in Ω.
Let cF(f, r)(z) be the minimum point of F on C. Then, away from the zeroes of f ,
we have that

cF(f, r) = o(1) as r → 0+

if and only if f satisfies the equation

fz +
Λ(|f |)− 1

Λ(|f |) + 1

f

f
fz = 0 in Ω. (1.11)

The proof of this result will be given in Section 3.1. The assumptions on F are
quite general and include the case of the so-called p-means for p > 1, in which
F (s) = sp/p. In Corollary 3.6, we will also carry out the case p = ∞, in which the

integral in (1.8) is replaced by the supremum of |f(ζ)− c (ζ − z)| for ζ ∈ ∂Dr(z).
As a by-product of Theorem 1.2, we obtain the following nonlinear asymptotic

characterization of holomorphic functions.

Theorem 1.3. Let F : [0,∞) → [0,∞) satisfy the assumptions of Theorem 1.2
and denote by G : [0,∞) → [0,∞) the Young conjugate of F .

Suppose that g is differentiable in Ω and let cJ(g, r)(z) be the minimum point in
C of the function:

J(c) =

∫

∂Dr(z)

F

(
∣

∣

∣

∣

G′(|g(ζ)|)
|g(ζ)| g(ζ)− c (ζ − z)

∣

∣

∣

∣

)

dSζ , c ∈ C. (1.12)

Then, away from the zeroes of g, we have that g is holomorphic in Ω if and only if
cJ(g, r)(z) = o(1) as r → 0+.

The definition and properties of the Young conjugate G will be recalled in Section
3.3, together with the proof of the last theorem.

The last issue that we address in this paper is an attempt to develop approxima-
tion algorithms for solutions of nonlinear systems of partial differential equations by
solutions of certain vectorial dynamic programming principles (DPP) (see Section
4). As already mentioned, such algorithms have been constucted in the scalar case,
by solving the DPP (1.6) — based on some nonlinear mean value properties — for
a fixed radius r and then by letting r tend to zero. In the limiting process, the
theory of viscosity solutions and the concept of asymptotic mean value property in
the viscosity sense play a central role.

The aim of Sections 4 and 5 is to extend this scheme to the vectorial case. In
order to do this, we must by-pass at least two obstructions. The first one has to
do with setting up a suitable vectorial DPP, which has a fixed-point structure as in
(1.6), based on the characterizations we carried out in Section 3. However, those
characterizations do not produce the desired DPP structure. In fact, for instance,
if we were to use the weighted mean cF(f, r), the approximating equation for fixed
r should be cF(f, r) = 0.

Therefore, in Section 4 we modify the means cF(f, r) in the spirit of Proposition
1.1, Corollary 2.1, and Remark 2.2. These results suggest that a DPP structure
can be set up, at least in the quadratic case. In fact, with Remark 2.2 in mind, we
consider the function defined by

G(a, b) =

∫

∂Dr(z)

[

F
(

|f(ζ)− a|
)

+ F
(

|f(ζ)− b (ζ − z)|
)

]

dSζ ,
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for a, b ∈ C. We then denote the unique minimum point of G on C × C by
(aG(f, r), bG(f, r)) and set

µG(f, r)(z) = aG(f, r)(z) + r bG(f, r)(z). (1.13)

The following theorem provides the basis to construct an appropriate DPP. In
analogy with what done in [30], [16], we say that a differentiable function f : Ω → C

satisfies the asymptotic mean value property (AMVP) in Ω if

µG(f, r)(z) − f(z) = o(r) as r → 0+,

for any z ∈ Ω.

Theorem 1.4 (Characterization by AMVP). Let Ω be a domain in C and let f
be differentiable in Ω. Let µG(f, r)(z) be defined as in (1.13). Then, away from
the zeroes of f in Ω, f satisfies the equation (1.11) if and only if it satisfies the
asymptotic mean value property in Ω.

In Remark 4.2 we explicitly link Proposition 1.1 to Theorem 1.4.
As the AMVP suggests, it is clear that the desired vectorial DDP is

f r = µG(f r, r).

The problem of solving it with suitable boundary conditions will be considered in
a forthcoming paper.

Instead, we turn to the second obstruction. This has to do with the concept
of solution f of the system (1.11) that one should use in order to carry out its
approximation by the solutions f r of the DPPs for r > 0. Theorem 1.4 (see Lemma
4.1, as well) suggests that at the zeroes of f the concept of classical solution has to
be given up and a solution of the system (1.11) must be intended in some suitable
generalized sense. The standard weak sense is hardly viable due to the fact that
(1.11) (and generally equations obtained as limits in a DPP approximation process)
is not (genuinely) variational. The viscosity sense works for scalar elliptic and
parabolic equations and is based on comparison principles. This feature prevents a
straightforward extension to systems, though.

Thus, in Section 5, we attempt to adapt to our case study the theory of contact
solutions, which N. Katzourakis has proposed in [33], very recently. This tries
to extend the theory of viscosity solutions for partial differential equations to the
case of systems. The new theory may appear quite intricate, having to do with
tensor calculus. Nevertheless, it succeeds to effectively generalize several important
features of that of viscosity solutions. The most significant are the definition of
solutions by jets or by touching test functions and a stabilty theorem. In Section
5.1, we shall recall the details of the theory which are pertinent to our investigation.
In order to perform our adaptation, in Section 5.3, we introduce the idea of contact
asymptotic mean value property (CAMVP), which is aimed to generalise the AMVP
for viscosity solutions, introduced in [42]. Thus, with reference to the definitions
contained in Section 5, we present our last characterization, which is in the spirit
of those presented in [42] and [30] for scalar functions.

Theorem 1.5 (Characterization by CAMVP). Let Ω be a domain in C and let
f : Ω → C be a continuos function in Ω. Then, f is a contact solution of the
system (1.11) if and only if it satisfies the contact asymptotic mean value property
in Ω.

Applications of the ideas presented in this paper are various. Mainly, they are
attempts of extensions to systems of known results and techniques for scalar equa-
tions. One already mentioned is the estension of DPPs to vectorial cases. Also, the
approximation by means of solutions of suitable DPPs of solutions of systems of
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PDEs may help to obtain information about the regularity of the latter, which is
a current field of intensive study (see e.g. [38, 39] in the scalar case). Further, we
notice that the relevant DPPs mentioned in this paper may be interpreted as some
kind of short-range non-local equations.

2. A mean value property for holomorphic functions

In this section, we briefly explore on the connection between the mean value prop-
erty or its asymptotic counterpart and the minimization of a suitable functional.
This is the starting point of the analysis carried out in the remaining sections, in
which we extend that connection to some nonlinear settings, thus giving a link
among Proposition 1.1 and Theorems 1.2 and 1.4, whose proofs are presented in
Sections 3 and 4.

We start with a direct consequence of Proposition 1.1.

Corollary 2.1. Let Ω ⊆ C be a domain and let f : Ω → C be a continuous function.
Then, the following assertions are equivalent:

(i) the mean value formula (1.7) holds for any disk Dr(z) with Dr(z) ⊂ Ω;
(ii) f ∈ C1(Ω) and the following asymptotic mean value formula formula holds at

every z ∈ Ω:

f(z) =
1

|Dr(z)|

∫

Dr(z)

f(ζ)

[

1 +
2

r
(ζ − z)

]

dAζ + o(r) as r → 0+;

(iii) f is holomorphic in Ω.

Proof. Proposition 1.1 ensures that (i) and (iii) are equivalent. It is also clear that
(ii) follows from (i). By an inspection of the arguments used in item (i) of the
proof of Proposition 1.1, we easily infer that (iii) follows from (ii). �

Now we define the functional G : C2 → R as

G(a, b) =

∫

Dr(z)

∣

∣

∣
f(ζ)− a− b (ζ − z)

∣

∣

∣

2

dAζ for a, b ∈ C.

It is not difficult to show that G has only one minimum point (a(f, r), b(f, r)) in
C2, and we have that

a(f, r)(z) =
1

|Dr(z)|

∫

Dr(z)

f(ζ) dAζ ,

b(r, f)(z) =
2

r2|Dr(z)|

∫

Dr(z)

f(ζ) (ζ − z) dAζ .

Thus, the mean value at the right-hand side of (1.7) equals

a(f, r)(z) + r b(f, r)(z) = πr(f)(z, z + r),

where

πr(f)(z, ζ) = a(f, r)(z) + b(f, r)(z) (ζ − z)

is the L2-projection of f on the subspace of affine anti-holomorphic functions. As
a direct consequence of Corollary 2.1 we have the following remark which gives an
idea of how to define the right variational mean, in the nonlinear case.

Remark 2.2. Let (a(f, r), b(f, r)) be a minimum point of

G(a, b) =

∫

Dr(z)

∣

∣

∣
f(ζ) − a− b (ζ − z)

∣

∣

∣

2

dAζ .

Then f is holomorphic in Ω if and only if

a(f, r)(z) + r b(f, r)(z) = f(z) + o(r) as r → 0+.
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For the sequel, we finally observe that the function G shares the same critical
(minimum) point of the function defined by

∫

Dr(z)

[

|f(ζ)− a|2 + |f(ζ)− b (ζ − z)|2
]

dAζ for a, b ∈ C.

3. A nonlinear characterizations of holomorphic functions

In this section, we introduce some variational means on spheres for complex-
valued functions related to quite general convex densities and we shall study their
asymptotic behavior as the radius of the spheres tends to zero. This analysis will
lead to characterizations of complex-valued solutions of certain nonlinear equations
and, as a by-product, to a new nonlinear characterization of holomorphic functions.

3.1. Variational means of complex-valued functions. For the reader’s conve-
nience, we recall some notations and definitions from the introduction.

Let F ∈ C1([0,∞)) ∩ C2((0,∞)) be a convex function with F (0) = F ′(0) = 0
and such that F (s) → +∞ as s → +∞. Let Ω ⊂ C be an open domain and let

f ∈ L1
loc(Ω;C). For any c ∈ C and any closed disk Dr(z) ⊂ Ω, we consider the

function in (1.8), i.e.

F(c) =

∫

∂Dr(z)

F
(
∣

∣

∣
f(ζ)− c (ζ − z)

∣

∣

∣

)

dSζ .

It is convenient to set H(w) = F (|w|) and rewrite (1.8) as

F(c) =

∫

∂Dr(z)

H
(

f(ζ)− c (ζ − z)
)

dSζ . (3.1)

It is clear that a minimum of F on C exists. Let C be the set of minimum points
of F on C. Any c ∈ C satisfies the equation:

∫

∂Dr(z)

Hw

(

f(ζ)− c (ζ − z)
)

(ζ − z) dSζ = 0, (3.2)

since ∂cF = 0 at c. Moreover, if C contains only one point cF(f, r)(z), then the last
equation characterizes cF(f, r)(z).

Proposition 3.1. Let F ∈ C1([0,∞)) ∩ C2((0,∞)) be a strictly convex function
such that F (0) = F ′(0) = 0 and F (s) → +∞ as s → +∞. Then, for any r > 0,
there exists a unique minimum point cF(f, r)(z) for F on C, i.e. C = {cF(f, r)(z)}.
Proof. The strict convexity of F and the growth condition make sure that F has
only one minimum point, i.e. C is a singleton. �

In what follows, Λ(s) is the function defined in (1.9).

Proposition 3.2. Let F ∈ C1([0,∞))∩C2((0,∞)) be a convex function such that
F (0) = F ′(0) = 0, F (s) → +∞ as s→ +∞ and F ′(s)/s ∈ L1((0, 1)). Denote by S

the unit circle.
For r > 0, set cr = cF(fa, r)(z), where fa is the affine function defined by

fa(ζ) = ω + σ (ζ − z) + τ (ζ − z) for ζ ∈ C,

with ω ∈ C \ {0} and σ, τ ∈ C. Then, it holds that

cr = τ + α(r)σ + β(r)σ + γ(r) (τ − cr), (3.3)

where

α(r) =

∫

S

∫ 1

0
F ′(|w|)

|w| [Λ(|w|) − 1] w
w
dt dSζ

∫

S

∫ 1

0
F ′(|w|)

|w| [Λ(|w|) + 1] dt dSζ

,
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β(r) =

∫

S

∫ 1

0
F ′(|w|)

|w|
[

Λ(|w|) + 1
]

ζ2dt dSζ

∫

S

∫ 1

0
F ′(|w|)

|w| [Λ(|w|) + 1] dt dSζ

,

γ(r) =

∫

S

∫ 1

0
F ′(|w|)

|w|
[

Λ(|w|)− 1
]

w
w
ζ2dt dSζ

∫

S

∫ 1

0
F ′(|w|)

|w| [Λ(|w|) + 1] dt dSζ

.

Here, we denote w = w(r, t; ζ) = ω + t r [σ ζ + (τ − cr) ζ] for t ∈ [0, 1].
In particular, if F (s) = sp/p with p > 1, we have that

cr = τ +
p− 2

p
αp(r)σ + βp(r)σ +

p− 2

p
γp(r) (τ − cr),

where

αp(r) =

∫

S

∫ 1

0
|w|p−2 w

w
dt dSζ

∫

S

∫ 1

0 |w|p−2dt dSζ

βp(r) =

∫

S

∫ 1

0
|w|p−2ζ2dt dSζ

∫

S

∫ 1

0
|w|p−2dt dSζ

, γp(r) =

∫

S

∫ 1

0
|w|p−2 w

w
ζ2dt dSζ

∫

S

∫ 1

0
|w|p−2dt dSζ

.

Proof. By a change of variable in (3.2), we have that
∫

S

Hw

(

ω + r [σ ζ + (τ − cr)ζ]
)

ζ dSζ = 0,

and hence that

1

r

∫

S

{

Hw

(

ω + r [σ ζ + (τ − cr)ζ]
)

−Hw (ω)
}

ζ dSζ = 0,

being as
∫

S
ζ dSζ = 0.

Since H(w) = F (|w|), for every w 6= 0 we compute that

Hww(w) =
|w|F ′′(|w|) + F ′(|w|)

4|w| =
F ′(|w|)
4|w|

{

Λ(|w|) + 1
}

,

Hww(w) =
|w|F ′′(|w|) − F ′(|w|)

4|w|
w

w
=
F ′(|w|)
4|w|

{

Λ(|w|) − 1
} w

w
.

By our assumptions both F ′(s)/s and F ′′(s) belong to L1((0, 1)). Thus, we can
apply the fundamental theorem of calculus and obtain that

0 =

∫

S

∫ 1

0

d

dt
Hw(ω + t r [σ ζ + (τ − cr)ζ]) ζ dt dSζ =

∫

S

∫ 1

0

{

Hww (w) [σ ζ2 + τ − cr] +Hww (w) [σ + (τ − cr) ζ
2]
}

dt dSζ ,

where we mean that w = w(r, t; ζ) for t ∈ [0, 1], for notational convenience.
Hence we get that

∫

S

∫ 1

0

F ′(|w|)
|w| [σ ζ2 + τ − cr][Λ(|w|) + 1] dt dSζ+

∫

S

∫ 1

0

F ′(|w|)
|w| [σ + (τ − cr) ζ

2][Λ(|w|)− 1]
w

w
dt dSζ = 0,

after some algebraic manipulations. Then, (3.3) follows at once.
The proof of the formula for F (s) = sp/p follows by easy computations. �

Lemma 3.3. Let F ∈ C1([0,∞)) ∩ C2((0,∞)) be a strictly convex function such
that F (0) = F ′(0) = 0. Assume that the function Λ defined in (1.9) satisfies (1.10).
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Let fa be the affine function defined by

fa(ζ) = ω + σ (ζ − z) + τ (ζ − z) for ζ ∈ C,

where ω ∈ C \ {0} and σ, τ ∈ C. Then, we have that

cF(fa, r)(z) = τ +
Λ(|ω|)− 1

Λ(|ω|) + 1

ω

ω
σ + o(1) uniformly as r → 0+. (3.4)

Proof. Notice that the assumptions on F and Λ(s) give that the growth conditions

K

1 + Λ− s1+Λ−

+K− ≤ F (s) ≤ K

1 + Λ+
s1+Λ+

+K+,

K sΛ
− ≤ F ′(s) ≤ K sΛ

+

,

hold for any s ≥ 1, with K = F ′(1) and K−,K+ ∈ R. In particular, F (s) → +∞
as s→ +∞ and F ′(s)/s ∈ L1((0, 1)). Thus, we can apply Proposition 3.2.

For notational convenience set cr = cF(fa, r)(z). Next, we claim that, under our
assumptions on Λ(s), we have that |cr| remains bounded as r → 0+. In fact, we
can easily infer that |β(r)| ≤ 1 and

|α(r)|, |γ(r)| ≤
∫

S

∫ 1

0
F ′(|w|)

|w| |Λ(|w|)− 1| dt dSζ

∫

S

∫ 1

0
F ′(|w|)

|w| [Λ(|w|) + 1] dt dSζ

≤ max

[

Λ+ − 1

1 + Λ+
,
1− Λ−

1 + Λ−

]

< 1,

since

|Λ(s)− 1| = [1 + Λ(s)]
|Λ(s)− 1|
1 + Λ(s)

≤ max

[

Λ+ − 1

1 + Λ+
,
1− Λ−

1 + Λ−

]

[1 + Λ(s)].

Thus, from (3.3) we infer that
{

1−max

[

Λ+ − 1

1 + Λ+
,
1− Λ−

1 + Λ−

]}

|cr| ≤ 2 (|τ |+ |σ|),

for any r > 0. Hence, up to subsequences, cr converges as r → 0 to some complex
number c0.

Now, in the limiting process as r → 0, the growth conditions on F ′(s) allow to
use the arguments (with p = Λ+) presented in the proof of [30, Lemma 3.1], which
are based on applications of the dominated convergence theorem and its generalized
version. Therefore, since w(r) → ω as r → 0, with ω 6= 0, and

∫

S
ζ2dSζ = 0, we

can conclude that

α(r) → Λ(|ω|)− 1

Λ(|ω|) + 1

ω

ω
and β(r), γ(r) → 0 uniformly as r → 0.

By these limits, (3.3) gives (3.4). �

Proof of Theorem 1.2. Thanks to Lemma 3.3, it is sufficient to show that

lim
r→0

cF(f, r)(z) = lim
r→0

cF(fa, r)(z),

where fa(ζ) is the affine function defined in Lemma 3.2, with the choice ω = f(z),
σ = fz(z), and τ = fz(z).

Since f is differentiable at z ∈ Ω, we have that

f(ζ) = f(z) + fz(z) (ζ − z) + fz(z) (ζ − z) + o(|ζ − z|) as |ζ − z| → 0.

This means that, for any η > 0, there exists rη > 0 such that

|f(z + r ζ) − fa(z + r ζ)| < η r for ζ ∈ D and 0 < r < rη. (3.5)

Next, for notational convenience, we set cr = cF(f, r)(z) and car = cF(fa, r)(z).
By the characterizations of cr and car (see (3.2)), we know that

1

r

∫

S

{

Hw

(

f(z + r ζ)− r cr ζ
)

−Hw

(

fa(z + r ζ)− r car ζ
)}

ζ dSζ = 0.
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Then, we proceed with the use of the fundamental theorem of calculus, as in the
proof of Proposition 3.2. This time we set

w = w(t, r; ζ) = fa(z + r ζ)− r car ζ + t [f(z + r ζ)− fa(z + r ζ) − r (cr − car) ζ]

and obtain:
∫

S

∫ 1

0

Hww (w)

[

f(z + r ζ) − fa(z + r ζ)

r
− (cr − car) ζ

]

ζ dt dSζ+

∫

S

∫ 1

0

Hww (w)

[

f(z + r ζ)− fa(z + r ζ)

r
− (cr − car) ζ

]

ζ dt dSζ = 0.

Now, we use the fact that H(w) = F (|w|) and follow the arguments of the proof
of Lemma 3.3. After similar manipulations, from (3.5) we finally gain the inequality

|cr − car | ≤ C η,

where C = C(Λ−,Λ+) is a positive constant. This means that |cr − car | → 0 as
r → 0, since

lim sup
r→0

|cr − car | ≤ C η

and η is arbitrary. The proof is complete. �

Remark 3.4 (Quasiregular functions). Note that from (1.11) it follows that, if
cF(f, r)(z) = o(1) as r → 0+, then

|fz(z)| ≤
∣

∣

∣

∣

Λ(|f(z)|)− 1

Λ(|f(z)|) + 1

∣

∣

∣

∣

|fz(z)| ≤ max

[

Λ+ − 1

Λ+ + 1
,

1
Λ−

− 1
1

Λ−
+ 1

]

|fz(z)|,

for every z such that f(z) 6= 0. Thus, if f is a non-constant function belonging to

W 1,2
loc (Ω), we obtain that f is K-quasiregular with

K = max

[

Λ+,
1

Λ−

]

∈ [1,+∞).

(For the definition and properties of K-quasiregular functions see the discussions
in [31, Section 2] and [6, Section 3].)

3.2. The case of p-means. An important special case occurs when we choose
F (s) = sp/p, 1 < p < ∞. Thus, we set cp(f, r) = cF(f, r)(z) and call it a p-mean.
Then, we compute that Λ(s) = p− 1, and hence (1.11) reads as

fz +
p− 2

p

f

f
fz = 0 in Ω. (3.6)

We shall next examine apart the case in which p = ∞.

Lemma 3.5. Let

fa(ζ) = ω + σ (ζ − z) + τ (ζ − z) for ζ ∈ C,

with ω, σ, τ ∈ C and ω 6= 0. Let c∞(fa, r) be any minimum point of the function
F∞ : C → [0,∞) defined by

F∞(c) = max
ζ∈∂Dr(z)

∣

∣

∣
fa(ζ) − c (ζ − z)

∣

∣

∣
, c ∈ C.

Then, it holds that

c∞(fa, r) = τ +
ω

ω
σ + o(1) as r → 0+.
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Proof. We fix ω, σ, τ ∈ C with ω 6= 0. For notational convenience, we set cr =
c∞(fa, r). We have that

F∞(c) = max
ζ∈S

∣

∣ω + r [σ ζ + (τ − c) ζ]
∣

∣

and notice that cr also minimizes the function

C ∋ c 7→ F∞(c)2 − |ω|2
r

=

max
ζ∈S

{

2 Re
[

ω [σ ζ + (τ − c) ζ]
]

+ r
∣

∣σ ζ + (τ − c) ζ
∣

∣

2
}

.

Next, we obeserve that

F∞(c)2 − |ω|2
r

≥ 2 max
ζ∈S

{

Re
[

ω [σ ζ + (τ − c) ζ]
]}

=

2 max
ζ∈S

{

Re
[(

ω σ + ω (τ − c)
)

ζ
]}

= 2 |ω σ + ω (τ − c)| ≥ 2 |ω| (|τ − c| − |σ|).

Thus, we infer that

|τ − cr| ≤ |σ|+ F∞(cr)
2 − |ω|2

2 r |ω| ≤ |σ|+ F∞(0)2 − |ω|2
2 r |ω| ,

and the last term, and hence cr, remains bounded for 0 < r ≤ 1.
Now, as r → 0+, it is clear that

F∞(c)2 − |ω|2
r

→ 2 max
ζ∈S

{

Re
[

(ω σ + ω (τ − c)
]

ζ
}

= 2
∣

∣ω σ + ω (τ − c)
∣

∣,

uniformly in c on compact subsets of C.
Therefore, any minimum point c∞(fa, r) converges to the unique minimum point

τ +
ω

ω
σ

of the function C ∋ c 7→ 2
∣

∣ω σ+ω (τ −c)
∣

∣ and this gives the desired conclusion. �

Corollary 3.6. Let f ∈ C1(Ω;C) and let c∞(f, r) be any minimum point of the
function F∞ : C → [0,∞) defined by

F∞(c) = max
ζ∈∂Dr(z)

|f(ζ)− c (ζ − z)|, c ∈ C.

Then, away from the zeroes of f , we have that

c∞(f, r) = o(1) as r → 0+

if and only if f satisfies the equation

fz +
f

f
fz = 0 in Ω. (3.7)

Proof. We observe that, by a Taylor expansion, by choosing ω = f(z), σ = fz(z),
and τ = fz(z) we have that

f(ζ) = fa(ζ) + o(r) as r → 0+,

uniformly on any compact subset of Ω. The conclusion then follows by the same
argument used in the proof of Lemma 3.5. �

Remark 3.7. Notice that in the limit for p→ ∞ from (3.6) we obtain (3.7).
Also, observe that (3.7) can be rewritten as

f ∂z log(f f) = 0
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away from the zeroes of f . In other words, we have that log |f | is a real-valued
holomorphic function, and hence is constant (toghether with |f |) on domains which
do not contain zeroes of f .

Remark 3.8 (p-harmonic functions). For Ω ⊆ C, let u ∈ C2(Ω;R) and assume
that f = 2 ∂zu = ux − i uy. It follows that 2 fz = ∆u and, in particular, fz is
real-valued. This gives that (3.6) can be rewritten as

fz =
2− p

2p

(

f

f
fz +

f

f
fz

)

(3.8)

at any point for which f 6= 0, that is to say at points such that ∇u 6= 0.
From [14] we know that f = 2 ∂zu is a solution of (3.8) if and only if ∆G

p u = 0.

Hence, we can conclude that cp(∂zu, r) = o(1) as r → 0+ if and only if ∆G
p u = 0.

Note that, as shown in [14], the function defined by g = |f |
√
p−1−1f is a solution

of the Beltrami equation:

gz =
1−√

p− 1

1 +
√
p− 1

g

g
gz,

with the dilation coefficient
|1−√

p− 1|
1 +

√
p− 1

< 1.

Remark 3.9. Note that, for the variational p-mean defined in (1.4), we have that
Λ(s) = Λ− = Λ+ = p− 1 for every s > 0.

From Remark 3.4, it thus follows that, if cp(f, r) = o(1) as r → 0+, f ∈W 1,2
loc (Ω),

and the set {z ∈ Ω : f(z) = 0} has zero Lebesgue measure, then f is K-quasiregular
with

K = max

[

p− 1,
1

p− 1

]

.

In particular, from Remark 3.8 we deduce that, if u is p-harmonic with non-constant
gradient and ∇u ∈ W 1,2

loc (Ω;R
2), then ∇u is K-quasiregular (see also [8, Introduc-

tion] and [7, Section 2]).
Recall that, in the plane, the critical points of p-harmonic functions are isolated

unless u is constant (see [14] or Corollary 1 of [41]). This fact in [37] is used to
prove an alternative asymptotic mean value property which holds pointwise in all
Ω at least in the range 1 < p < p0 = 9.52520797... This range was later extended
for all 1 < p <∞ in [9].

3.3. A nonlinear asymptotic characterization of holomorphic functions.

If we examine (1.11), we can see that the transformation

f = ψ(|g|) g

|g|
gives that, if

Λ(ψ(t))ψ′(t)− ψ(t)

t
= 0,

then gz = 0, away from the zeroes of g. By recalling the definition of Λ, we see
that F ′(ψ(t)) = C t for some positive constant C, which we can normalize to 1.
Therefore, we obtain that the function

g = F ′(|f |) f|f |
is holomorphic if f satisfies (1.11). In particular, for equation (3.6), we have that
g = |f |p−2f is holomorphic.

We shall now use these remarks to obtain a characterization of holomorphic
functions by means of a nonlinear asymptotic mean value property. In order to see
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this, besides assuming that F ∈ C1([0,∞))∩C2((0,∞)) is strictly convex and that
F (0) = F ′(0) = 0, we also require that F satisfies the growth condition

lim
s→∞

F (s)

s
= +∞.

Under these assumptions, the so-called Young or Fenchel conjugate of F is defined
for every t ≥ 0 by

G(t) = sup{t s− F (s) : s ≥ 0}.
It easily seen that F ′ is invertible, because strictly increasing and continuous. In
addition, it is a known fact that G′ is the inverse of F ′, and hence

F ′(G′(t)) = t, F ′′(G′(t))G′′(t) = 1,

G′(F ′(s)) = s, G′′(F ′(s))F ′′(s) = 1, (3.9)

Λ(G′(t)) =
G′(t)

tG′′(t)
.

We are now in position to state the following companion of Lemma 3.3.

Lemma 3.10. Let F ∈ C1([0,+∞)) ∩ C2((0,∞)) be a strictly convex function
such that F (0) = F ′(0) = 0. Also, let Λ be defined in (1.9) and satisfy (1.10). Let
G : [0,∞) → [0,∞) be the Young conjugate of F .

Suppose that g is differentiable in Ω and let cJ(g, r)(z) be the minimum point in
C of the function defined in (1.12), i.e.

J(c) =

∫

∂Dr(z)

F

(∣

∣

∣

∣

G′(|g(ζ)|)
|g(ζ)| g(ζ)− c (ζ − z)

∣

∣

∣

∣

)

dSζ , c ∈ C.

Then, we have that

cJ(g, r)(z) =
2

1 + Λ(G′(|g(z)|))
G′(|g(z)|)
|g(z)| gz(z) + o(1) as r → 0+, (3.10)

at every z ∈ Ω such that g(z) 6= 0.

Proof. It is sufficient to set f(ζ) = G′(|g(ζ)|) g(ζ)/|g(ζ)| and apply Lemma 3.3 to
f . In fact, we have that

cJ(g, r) = cF(f, r) =

fz(z) +
Λ(|f(z)|)− 1

Λ(|f(z)|) + 1

f(z)

f(z)
fz(z) + o(1) =

2G′(|g|)G′′(|g|)
G′(|g|) + |g|G′′(|g|) gz + o(1),

after tedious, but straightforward, calculations involving (3.9). Then, (3.10) follows
at once. �

Proof of Theorem 1.3. It is clear that the theorem is a straightforward consequence
of the lemma. �

We conclude this section with the relevant case of a modified p-mean.

Corollary 3.11 (The case of p-means). Let F (s) = sp/p with p > 1 and set
p′ = p/(p−1). Let g : Ω → C be differentiable in Ω and let cJp(g, r)(z) be the unique
minimum point in C of the function defined by

Jp(c) =
1
p

∫

∂Dr(z)

∣

∣

∣
|g(ζ)|p′−2g(ζ)− c (ζ − z)

∣

∣

∣

p

dSζ , c ∈ C.

Then, it holds that

cJp(g, r)(z) =
2

p
|g(z)|p′−2gz(z) + o(1) as r → 0+, (3.11)

at every z ∈ Ω such that g(z) 6= 0. In particular, away from its zeroes, g is
holomorphic in Ω if and only if cJp(g, r)(z) = o(1) as r → 0+.
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Proof. It is easy to check that G(t) = tp
′

/p′, G′(t)/t = tp
′−2, and Λ(s) = p− 1. �

4. A classical asymptotic mean value property
for nonlinear Cauchy-Riemann systems

In this section, we shall prove Theorem 1.4. We first modify the mean cF(f, r) in
the spirit of Proposition 1.1 and Corollary 2.1, in order to obtain an operator acting
on f which is appropriate to set up the desired vectorial DPP. Thus, as explained
in the introduction, with Remark 2.2 in mind, we consider the function defined by

G(a, b) =

∫

∂Dr(z)

[

F
(

|f(ζ)− a|
)

+ F
(

|f(ζ)− b (ζ − z)|
)

]

dSζ , (4.1)

for a, b ∈ C, and denote by (aG(f, r), bG(f, r)) the unique minimum point of G on
C× C.

Now, it is clear that we can apply Lemma 3.3 and Theorem 1.2 to bG(f, r), since
this is the minimum point in C of the function C ∋ b 7→ G(aG(f, r), b). Moreover, by
similar computations, if F ′(s) = C sα+o(sα) as s→ 0+ for some positive constants
C and α, we easily infer that

aG(f, r)(z) = f(z) + o(r) as r → 0+, (4.2)

since the function C ∋ a 7→ G(a, bG(f, r)) is minimized on C at aG(f, r). Thus, we
consider the mean defined in (1.13), i.e.

µG(f, r)(z) = aG(f, r)(z) + r bG(f, r)(z), (4.3)

and summarize the above remarks in the following result.

Lemma 4.1. Let F satisfy the assumptions of Theorem 1.2 and that F ′(s) =
C sα+o(sα) as s→ 0+ for some positive constants C and α. Let f be differentiable
in Ω. Then, it holds that

µG(f, r)(z) =

f(z) + r

[

fz(z) +
Λ(|f(z)|)− 1

Λ(|f(z)|) + 1

f(z)

f(z)
fz(z)

]

+ o(r) as r → 0+ (4.4)

at every z ∈ Ω such that f(z) 6= 0.

Proof of Theorem 1.4. The theorem is clearly a straightforward corollary of Lemma
4.1. �

Remark 4.2. It is clear that µG(f, r)(z) generalizes the mean of Proposition 1.1
and Corollary 2.1 (cf. (1.7)). Indeed, if we select F (s) = s2/2, by applying Theorem
1.4 and keeping in mind (3.6), we obtain that f is holomorphic in Ω if and only if
it satisfies the asymptotic mean value property in Ω, i.e.

µG(f, r)(z) = aG(f, r)(z) + r bG(f, r)(z) = f(z) + o(r) as r → 0+.

With this choice of F , it easy check that the means aG and bG coincide with those
mentioned in Remark 2.2.

Remark 4.3. Lemma 4.1 informs us that the operator f 7→ µG(f, r) can be taken
as the basis of a vectorial DDP:

f r = µG(f r, r). (4.5)

The problem of setting up the appropriate (Dirichlet) boundary conditions for
(4.5) will be considered in a forthcoming paper. Here, we just observe that the
strategy based on comparison principles, which has been employed in the scalar
case, may be no longer practicable. However, as an alternative, one can benefit
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from the continuity properties of the operator f 7→ µG(f, r), which are naturally
inherited from the fact that µG(f, r) can be thought of as an appropriate projection.

Remark 4.4. It is clear that imposing Dirichlet boundary conditions to the DDP
(4.5) leads to a Dirichlet problem for the system (1.11). It is important to notice
that we cannot expect that a solution of such a boundary problem be smooth
everywhere in the relevant domain.

This can be easily understood even when we consider the easiest case, namely,
that of the Cauchy-Riemann system. In fact, we know that, in a simply connected
domain, a (everywhere) holomorphic function is uniquely determined, up to an
additive constant, by the values on the boundary of its real or imaginary part.
Thus, imposing the boundary values of both real and imaginary parts of a complex-
valued function subject to the Cauchy-Riemann equations will lead to a (everywhere
smooth) holomorphic solution only occasionally.

Therefore, any decent definition of the solution of the Dirichlet problem for
the Cauchy-Riemann system should be intended in some (non-smooth) generalized
sense. These observations motivate the introduction of the concept of contact
solutions and contact mean value property, which we shall consider in the next
subsection.

5. The contact asymptotic mean value property
for nonlinear Cauchy-Riemann systems

In this section, we shall prove Theorem 1.5. While in Theorem 1.4 we considered
differentiable functions, here, merely continuous functions will be allowed.

5.1. Contact solutions. In order to prepare the proof of Theorem 1.5, we now
recall some notations, definitions and results from the theory of vector-valued con-
tact solution of fully nonlinear PDE systems, recently proposed by N. Katzourakis
in [33].

The theory has been set up for general degenerate elliptic second order N × n
systems of partial differential equations. Here, we will only report the definitions
for first order 2 × 2 systems that are relevant to our aims. In fact, for a function
u : Ω → R2, we shall consider the system

F(x, u,Du) = 0, (5.1)

where Ω is a planar open set and F : Ω × R
2 × R

2×2 → R
2 is a locally bounded

map, with variables x ∈ Ω, η ∈ R2, and P ∈ R2×2. Here, we stick to the notations
used in [33]. In particular, R2×2 = R2 ⊗R2 denotes the space of 2× 2 matrices and
R2×2

s is the subspace of symmetric matrices.
In order to define contact solutions of the system (5.1), we recall some notations

from [33]. We first define three operators on (column) vectors ξ, η ∈ R2:

(i) ξ⊤ is the transpose of ξ, so that ξ⊤η is the scalar product of ξ and η or, else,
the projection of η along ξ;

(ii) ξ⊥ = I − ξ ⊗ ξ, so that when ξ is unitary ξ⊥η is the projection of η on the
hyperplane orthogonal to ξ;

(iii) ξ ∨ η = 1
2 (ξ ⊗ η + η ⊗ ξ) = 1

2 (ξ η
⊤ + η ξ⊤) is a 2× 2 symmetric matrix.

Let u : Ω → R2 be a continuous map. For ξ ∈ S1, the first contact ξ-jet of u at
x ∈ Ω is the set

J1,ξu(x) =
{

P ∈ R
2 ⊗ R

2 : ξ ∨ [u(y)− u(x)− P (y − x)] ≤ o(|y − x|) as y → x
}

.

Here, we mean that there is a continuous matrix-valued map M : R2 \ {0} → R2×2
s

such that M(y− x) bounds the matrix ξ ∨ [u(y)− u(x)−P (y− x)] from above (in
the sense of matrices), and |M(z)|/|z| → 0 as |z| → 0.
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Next, since the system (1.11) we want to treat has discontinuous coefficients, we
need to define the ξ-envelope of F as

ξ∗F(x, η, P ) = lim sup
r→0

{ξ⊤F(y, β,Q) : |y − x|+ |β − η|+ |Q− P | ≤ r}. (5.2)

This function is upper semicontinuous.
We are now ready to define a contact solution. Let F : Ω× R2 × R2×2 → R2 be

locally bounded. A continuous map u : Ω → R2 is called a contact solution of (5.1)
in Ω if, for every x ∈ Ω and ξ ∈ S1, we have that

ξ∗F(x, u(x), P ) ≥ 0 for any P ∈ J1,ξu(x).

This definition generalizes that of viscosity solution given for scalar equations, which
can be recovered by replacing the set S1 by {+1,−1}.

Similarly to the case of viscosity solutions, there is another equivalent definition
of contact solutions, which extends the idea of test functions touching from above
or below. In fact, we first define a cone with vertex at x and some slope L > 0 as
the function defined by

Cx(y) = L |y − x| for y ∈ R
2.

Then, we say that a map ψ ∈ C1(R2;R2) is a first contact ξ-map for u at x if
ψ(x) = u(x) and, for every cone Cx, it holds that

|ξ⊥(u− ψ)(y)|2 ≤ Cx(y) [−ξ⊤(u− ψ)(y)], (5.3)

for any y in some neighborhood of x in Ω. Notice that this definition is another
way to say that

|ξ⊥(u − ψ)(y)|2 ≤ o(|y − x|) [−ξ⊤(u − ψ)(y)] as y → x.

Moreover, since the left-hand side of (5.3) is non-negative and u(x) = ψ(x), the
projection ξ⊤(u − ψ)(y) along the line in R2 spanned by ξ has a (local) vanishing
maximum at y = x, i.e.

ξ⊤(u− ψ) ≤ 0 = ξ⊤(u− ψ)(x)

in a neighborhood of x.
Thanks to [33, Theorem 35], one has the equivalence between contact jets and

contact maps, in the sense that it turns out that

J1,ξu(x) =
{

Dψ(x) : ψ ∈ C1(Ω;R2) : ψ(x) = u(x) and

(5.3) holds near x for any cone Cx

}

.

As a consequence, one obtains an equivalent definition. In fact, we say that a
continuous map u : Ω → R2 is a contact solution of (5.1) in Ω if, for every x ∈ Ω
and ξ ∈ S1, we have that

ξ∗F(x, u(x), Dψ(x)) ≥ 0,

for any first contact ξ-map ψ ∈ C1(R2;R2).

5.2. Contact solutions of nonlinear Cauchy-Riemann systems. In this sec-
tion, we proceed to establish a convenient definition of generalized asymptotic mean
value property. This will extend the definition of asymptotic mean value property
in the viscosity sense, introduced in [42], to the case of the system (1.11).

For consistency, we proceed by adapting the ideas of Section 5.1 to the complex-
variable framework adopted in this paper. Thus, we consider a first order differential
equation

F(f ; fz, fz) = 0, (5.4)
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where F = F1 + iF2 is a complex-valued operator in the variables (ω;σ, τ) ∈ C ×
C1×1. In the case under scrutiny in this paper (see Eq. (1.11)), we have that

F(ω;σ, τ) = τ +
Λ(|ω|)− 1

Λ(|ω|) + 1

ω

ω
σ for ω 6= 0. (5.5)

We now define the corresponding ξ-envelope of F. If we identify ξ ∈ S1 with the
complex number ξ1 + i ξ2, for any (ω;σ, τ) ∈ C× C1×1 we define:

ξ∗F(ω;σ, τ) = lim sup
r→0

{

Re [ξ F(ω′;σ′, τ ′)] : |ω′ − ω|+ |σ′ − σ|+ |τ ′ − τ | ≤ r
}

.

In the case of (5.5), if Λ(s) converges as s→ 0+ to a limit Λ(0+) ≥ 0, by choosing

ω′ =
1

4
r e

i
2 [πδΛ(0)+Arg(ξ)+Arg(σ′)] with δΛ(0) =

{

0 if Λ(0+) ≥ 1,

1 if Λ(0+) < 1,

we then compute

ξ∗F(ω;σ, τ) =















Re(ξ τ) +
Λ(|ω|)− 1

Λ(|ω|) + 1
Re
[ω

ω
ξ σ
]

for ω 6= 0,

Re(ξ τ) +

∣

∣

∣

∣

Λ(0+)− 1

Λ(0+) + 1

∣

∣

∣

∣

|σ| for ω = 0.

(5.6)

Next, we adapt to the complex setting the definition of first contact ξ-jet. Thus,
for a continuous function f : Ω → C and z ∈ Ω, we define the set

J1,ξ
C
f(z) =

{

(σ, τ) ∈ C
1×1 :

ξ ∨ [f(ζ)− f(z)− σ (ζ − z)− τ (ζ − z)] ≤ o(|ζ − z|) as ζ → z
}

.

Here, the operator ∨ is defined as

ξ ∨ η =
1

2

[

2(Re ξ)(Re η) Im(ξη)
Im(ξη) 2(Im ξ)(Im η)

]

for ξ, η ∈ C.

Let Ω ⊆ C. According to the theory recalled in Section 5.1, a continuous function
f : Ω → C is then called a contact solution of (5.4)–(5.5) in Ω if, for every z ∈ Ω
and ξ ∈ S1 ⊂ C, we have that

ξ∗F(f(z);σ, τ) ≥ 0 for any (σ, τ) ∈ J1,ξ
C
f(z).

As seen in Section 5.1, we have an equivalent definition, as follows. A continuous
function f : Ω → C is a contact solution of (5.4)–(5.5) in Ω if it holds that

ξ∗F(f ;ψz, ψz) ≥ 0 at z,

for any ξ ∈ S
1 ⊂ C and (z, ψ) ∈ Ω × C1(Ω;C), with ψ(z) = f(z) and ψ(z) 6= 0,

such that

|ξ⊥(f − ψ)(ζ)|2 ≤ Cz(ζ)
[

−Re
[

ξ(f − ψ)(ζ)
]]

, (5.7)

near z for any cone Cz. Here,

ξ⊥η = η − Re(ξ η) ξ for any η in C.

In the next section, we shall modify this definition, aiming at a characterization
of it by a generalized AMVP based on our nonlinear mean (4.3).
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5.3. Nonlinear Cauchy-Riemann systems and the CAMVP. In this sec-
tion, we shall discuss on possible ways to extend the characterizations by means of
AMVP, obtained in [30] for nonlinear scalar equations, to the case of the nonlinear
Cauchy-Riemann systems considered in this paper.

Of course, as Section 2 shows, the case of the classical Cauchy-Riemann system
presents no difficulties, since all its solutions are smooth. The situation drastically
changes when some nonlinearity is introduced. As in the scalar case, one needs to
establish a suitable notion of generalized solutions of the systems under scrutiny
which, as seen in Section 4, present some singularities/degenerations.

Generally, the nonlinear systems under study are not variational, i.e. they are
not derived as Euler equations of variational functionals. The use of weak solutions
in Sobolev spaces is thus ruled out or at least difficult to pursue.

Nowadays, the theory of viscosity solutions is well established to effectively treat
non-variational scalar partial differential equations. The recent appearence of its
promising extension to systems proposed by N. Katzourakis — the notion of contact
solutions recalled in Section 5.1 and adapted in Section 5.2 to the case of nonlin-
ear Cauchy-Riemann systems — gave us a motivation to investigate on possible
characterizations of contact solutions by means of suitable generalized AMVPs.

Thus, in this section, we consider the nonlinear mean µG(f, r)(z) defined in
(1.13). We have shown in Section 4 that, away from the zeroes of a solution, a
notion of classical AMVP can be established rather easily.

In order to extend the notion of AMVP to general continuous complex-valued
functions, one may think of defining an extended operator starting from µG(f, r)(z).
In other words, we may define the ξ-mean envelope as

ξ∗MG(ω;σ, τ) = lim sup
r→0

{

r−1 Re
[

ξ
[

µG(fa, r)(z)− ω′]] :

|ω′ − ω|+ |σ′ − σ|+ |τ ′ − τ | ≤ r
}

for every (ω;σ, τ) ∈ C× C
1×1,

where fa(ζ) = ω′ + σ′ (ζ − z) + τ ′ (ζ − z).
Then, in analogy with what done in Sections 5.1 and 5.2, one idea would be to

define some sort of generalized AMVP, based on ξ∗MG, as follows. A continuous
function f : Ω → C satisfies a generalized AMVP in Ω if, for every z ∈ Ω and
ξ ∈ S1, it holds that

ξ∗MG(ω;σ, τ) ≥ 0 for any (σ, τ) ∈ J1,ξ
C
f(z).

However, this strategy would be successful only if we prove that

ξ∗MG(ω;σ, τ) = ξ∗F(ω;σ, τ) for any (ω;σ, τ) ∈ C× C
1×1,

where F is the operator defined in (5.5). By Lemma 3.3, this formula certainly
holds true when ω 6= 0. Unfortunately, when ω = 0, the formula is no longer true.
In fact, an inspection of Proposition 3.2 and Lemma 3.3 informs us that, when
ω = ω(r) tends to 0 as a O(r), the functions β(r) and γ(r) may not vanish along,
as it would be desirable, in view of 5.6. This fact is even more evident if we consider
the homogeneous case in which pF (s) = sp.

Therefore, we must resort to a different strategy. In fact, we propose to follow
the ideas contained in [32] and [42].

In [32], the case of the (game theoretic) p-Laplace equation is considered and the
relevant real-valued second order operator is defined by

F(η,X) = tr(X) + (p− 2)
〈X η, η〉
|η|2 , (5.8)

where η ∈ RN and X is an N×N symmetric matrix. Differently from our case, this
is a second order (scalar) elliptic operator. Nevertheless, one can see an analogy



20 R. DURASTANTI AND R. MAGNANINI

with (5.5), if one identifies the complex number ω with the vector η and the pair
(σ, τ) with the matrix X .

In the case of (5.8), by choosing ξ ∈ {−1,+1} = S0, it is easily seen that the
notion of contact solution introduced in [33] reduces to the well-known definition of
(viscosity) subsolution (for ξ = +1) and supersolution (for ξ = −1). Now, in [32],
it is pointed out that, in certain instances, the definition of viscosity solution based
on the relevant extended operator, which in this case reads as

ξ∗F(η,X) =

{

tr(X) + (p− 2)+E(X)− (p− 2)−e(X) for ξ = +1,

− tr(X) + (p− 2)−E(X)− (p− 2)+e(X) for ξ = −1,

does not guarantee effective comparison results. Here, E(X) and e(X) are the
maximum and minimum eigenvalues of X and (p − 2)± are the positive and the
negative part of p− 2 respectively. (See [33] for the details concerning second order
operators.)

Thus, a different definition of viscosity solution is adopted. A continuous function
in Ω is then declared a viscosity solution of

∆u+ (p− 2)
〈∇2u∇u,∇u〉

|∇u|2 = 0 in Ω

if, for any pair (x, φ) ∈ Ω × C2(Ω) such that φ touches u from above (+ in (5.9))
or φ touches u from below (− in (5.9)) at x and ∇φ(x) 6= 0, it holds that

±
[

∆φ+ (p− 2)
〈∇2φ∇φ,∇φ〉

|∇φ|2
]

≥ 0 at x. (5.9)

We recall that φ touches u from above at x if u− φ attains a strict local maximum
at x with u(x) = φ(x). (Note the analogy of this notion with that of contact
map proposed in [33] for quite general second order elliptic systems and recalled in
Secion 5.1.)

This definition of viscosity solution restores the desired comparison properties.
As a by-product of this approach, in [42] viscosity solutions of the game-theoretic
p-Laplace equation are characterized by means of a generalized AMVP, as follows.
(See also [30] for an alternative definition of AMVP.)

A continuous function u is said to satisfy in Ω an AMVP in the viscosity sense
if, for any pair (x, φ) ∈ Ω× C2(Ω) such that φ touches u from above (+ in (5.10))
or φ touches u from below (− in (5.10)) at x and ∇φ(x) 6= 0, it holds that

±
[

µr
p(φ)(x) − φ(x)

]

≥ o(r2) as r → 0+. (5.10)

Here, µr
p(φ) is a relevant mean in [42].

Therefore, motivated by this analysis, we propose an alternative definition of
contact solution of the system (5.4)–(5.5) and a related definition of generalized
AMVP.

Let Ω ⊆ C. We say that a continuous function f : Ω → C is a contact solution
of the nonlinear Cauchy-Riemann system (1.11) in Ω (equivalently of (5.4)–(5.5))
if, for every z ∈ Ω such that f(z) 6= 0 and ξ ∈ S1 ⊂ C, we have that

Re
[

ξ F(f(z);σ, τ)
]

≥ 0 for any (σ, τ) ∈ J1,ξ
C
f(z).

Bearing in mind the correspondence between contact jets and contact maps
recalled in Secion 5.1, we can also say that f is a contact solution in Ω if

Re
[

ξ F(f ;ψz, ψz)
]

≥ 0 at z,

for any ξ ∈ S1 and (z, ψ) ∈ Ω × C1(Ω;C), with ψ(z) = f(z) and ψ(z) 6= 0, such
that (5.7) holds near z for any cone Cz .
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Associated to this definition of contact solution, we propose our generalized
AMVP.

We say that f satisfies the contact asymptotic mean value property (CAMVP)
in Ω if, for every z ∈ Ω such that f(z) 6= 0 and ξ ∈ S

1 ⊂ C, we have that

Re
{

ξ
[

µG(fa, r)(z)− f(z)
]}

≥ o(r) as r → 0+,

for every (σ, τ) ∈ J1,ξ
C
f(z). Here, the operator µG is that defined in (4.3) and

fa(ζ) = f(z) + σ (ζ − z) + τ (ζ − z).
Equivalently, f satisfies the (CAMVP) in Ω if

Re
{

ξ
[

µG(ψ, r)(z) − ψ(z)
]}

≥ o(r) as r → 0+,

for any ξ ∈ S
1 and (z, ψ) ∈ Ω × C1(Ω;C), with ψ(z) = f(z) and ψ(z) 6= 0, such

that (5.7) holds near z for any cone Cz .
We are finally ready to prove our characterization contained in Theorem 1.5. We

restate it here in detail, for the sake of clarity.

Theorem 5.1. Let F ∈ C1([0,∞))∩C2((0,∞)) be a strictly convex function such
that F (0) = 0 and F ′(s) = C sα + o(sα) as s → 0+ for some positive constants C
and α. Set

Λ(s) =
s F ′′(s)

F ′(s)
for s > 0

and assume that, for some constants 0 < Λ− ≤ Λ+, it holds that

Λ− ≤ Λ(s) ≤ Λ+ if s > 0.

A continuous function f : Ω → C is a contact solution of (1.11), i.e.

fz +
Λ(|f |)− 1

Λ(|f |) + 1

f

f
fz = 0 in Ω,

if and only if f satisfies the CAMVP in Ω.

Proof. We first notice that

aG(fa, r) = f(z) + aG(fa − f(z), r)

and we know from (4.2) that aG(fa − f(z), r) = o(r) as r → 0+. Hence, the desired
conclusion clear follows by an application of Lemma 3.3. �

Appendix A. The proof of Proposition 1.1

In this appendix, we will carry out the proof of Proposition 1.1. We begin by
showing that the mean value property (1.7) entails regularity.

Lemma A.1. Let Ω be an open subset of C and, for fixed r > 0, suppose that Ω

contains at least a closed ball of radius 2r. Set Ωr = {z ∈ Ω : Dr(z) ⊂ Ω}.
Let f : Ω → C be an essentially bounded function on Ω such that (1.7) holds for

any disk Dr(z) with Dr(z) ⊂ Ω. Then, f ∈ C∞(Ω2r).

Proof. We proceed as in [40] with some adjustments. Set:

jr(ζ) =
1

π r2

(

1− 2 ζ

r

)

XDr
(ζ).

Then, by extending f as f XΩ to C, (1.7) reads as a convolution:

f(z) =

∫

Ω

f(ζ) jr(z − ζ) dAζ =

∫

C

f(ζ) jr(z − ζ) dAζ .

Take z1, z2 ∈ Ωr sufficiently close to one another, say |z1 − z2| < r. We have that

|f(z1)− f(z2)| ≤
∫

C

|jr(z1 − ζ)− jr(z2 − ζ)||f(ζ)| dAζ ≤



22 R. DURASTANTI AND R. MAGNANINI

‖f‖∞
∫

C

|jr(z1 − ζ)− jr(z2 − ζ)| dAζ ≤ C ‖f‖∞
|z1 − z2|

r
,

for some numerical constant C > 0. The last inequality is obtained by standard
manipulations and by observing that

∫

C

∣

∣XDr(z1) − XDr(z2)

∣

∣ dAζ = |Dr(z1)△Dr(z2)| ≤ 4r |z1 − z2|.

Here, Dr(z1)△Dr(z2) denotes the symmetric difference of the two balls. If instead
|z1 − z2| ≥ r, then we easily infer that

|f(z1)− f(z2)| ≤ 2 ‖f‖∞ ≤ 2‖f‖∞
|z1 − z2|

r
.

Thus, f is Lipschitz continuous in Ωr, and hence is almost everywhere differentiable,
by Rademacher’s theorem.

Now, fix z ∈ Ω2r. Since Ω2r is open, z + t is in Ω2r, for any sufficiently small
real-valued increment t. Then we have that

f(z + t)− f(z)

t
=

∫

C

jr(ζ)
f(z − ζ + t)− f(z − ζ)

t
dAζ .

Since the integrand is bounded by a constant independent of t and converges almost
everywhere to jr(ζ) ∂xf(z−ζ), by the Dominated Convergence Theorem we get that

∂xf(z) =

∫

C

jr(ζ) ∂xf(z − ζ) dAζ .

This holds at every point z ∈ Ω2r. By choosing a purely imaginary increment i t,
we obtain a similar formula for ∂yf(z). Thus, we have proved that f has partial
derivatives in Ω2r. These must be locally Lipschitz continuous, since we have proved
that they satisfy the same integral equation as f . Hence, f is of class C1(Ω2r).

The desired conclusion then follows by iterating the same argument. �

Proof of Proposition 1.1. (i) Suppose that (1.7) holds for any disk Dr(z) with

Dr(z) ⊂ Ω. Lemma A.1 tells us that f ∈ C∞(Ω). Thus, we know that

f(ζ) = f(z) + fζ(z) (ζ − z) + fζ(z) (ζ − z) + o(|ζ − z|),
uniformly as ζ → z on a neighborhood of z. Therefore, we can write that

1

|Dr(z)|

∫

Dr(z)

f(ζ) dAζ =

1

|Dr(z)|

∫

Dr(z)

[

f(z) + fζ(z) (ζ − z) + fζ(z) (ζ − z) + o(|ζ − z|)
]

dAζ =

f(z) + o(r) as r → 0+,

since
∫

Dr(z)

(ζ − z) dAζ =

∫

Dr(z)

(ζ − z) dAζ = 0.

Similarly, we have that

2

r2
1

|Dr(z)|

∫

Dr(z)

f(ζ) (ζ − z) dAζ = fζ(z) + o(1) as r → 0+,

since
∫

Dr(z)

(ζ − z)2 dAζ = 0 and
1

|Dr(z)|

∫

Dr(z)

|ζ − z|2dAζ =
1

2
r2.

All in all, (1.7), the two asymptotic formulas, and some calculations give that
fζ(z) = o(1) as r → 0+, and hence fζ(z) = 0. Since z can be chosen arbitrarily in
Ω, we conclude that f is holomorphic in Ω.
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(ii) Notice that holomorphic functions are characterized by the Cauchy Integral
Theorem, i.e. f is holomorphic in a simply connected domain Ω if and only if

∫

γ

f(ζ) dζ = 0,

for any closed rectifiable curve γ contained in Ω (see [46]). In particular, if f is
holomorphic in Ω, we have that

∫

∂Dr(z)

f(ζ) (ζ − z) dSζ = −i r
∫

∂Dr(z)

f(ζ) dζ = 0,

and hence
∫

Dr(z)

f(ζ) (ζ − z) dAζ =

∫ r

0

(

∫

∂Dρ(z)

f(ζ) (ζ − z) dSζ

)

dρ = 0,

for any disk Dr(z) with Dr(z) ⊂ Ω. Since f is also harmonic in Ω, we have that

f(z) =
1

|Dr(z)|

∫

Dr(z)

f(ζ) dAζ ,

and hence we obtain (1.7). �
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