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In recent years, nonreciprocally coupled systems have received growing attention. Previous work
has shown that the interplay of nonreciprocal coupling and Goldstone modes can drive the emergence
of temporal order such as traveling waves. We show that these phenomena are generically found in
a broad class of pattern-forming systems, including mass-conserving reaction–diffusion systems and
viscoelastic active gels. All these systems share a characteristic dispersion relation that acquires a
non-zero imaginary part at the edge of the band of unstable modes and exhibit a regime of propa-
gating structures (traveling wave bands or droplets). We show that models for these systems can be
mapped to a common “normal form” that can be seen as a spatially extended generalization of the
FitzHugh–Nagumo model, providing a unifying dynamical-systems perspective. We show that the
minimal nonreciprocal Cahn–Hilliard (NRCH) equations exhibit a surprisingly rich set of behaviors,
including interrupted coarsening of traveling waves without selection of a preferred wavelength and
transversal undulations of wave fronts in two dimensions. We show that the emergence of traveling
waves and their speed are precisely predicted from the local dispersion relation at interfaces far
away from the homogeneous steady state. Our work thus generalizes previously studied nonrecipro-
cal phase transitions and shows that interfaces are the relevant collective excitations governing the
rich dynamical patterns of conserved fields.

I. INTRODUCTION

Multispecies systems with effective cross-interactions
that are nonreciprocal have received significant interest
in recent years. At the microscale, classical nonreciproc-
ity is intrinsically rooted in the breaking of detailed bal-
ance. At a mesoscopic scale, it manifests itself in effec-
tive dynamical cross couplings that correspond to non-
conservative forces and cannot be obtained as deriva-
tives of a Hamiltonian or free energy. Non-reciprocity
is ubiquitous in active and non-equilibrium systems [1].
It occurs, for instance, in predator-prey systems [2], ac-
tive solids with odd elasticity [3], protein-based pattern
formation [4], mixtures of active and passive particles
[5], quorum-sensing active particles [6], directional in-
terface growth [7], and non-Hermitian quantum systems
[8]. Such systems can spontaneously organize in dynam-
ical steady states with nontrivial temporal order, such as
traveling and oscillating states.
Previous work has examined the effect of nonreciproc-

ity in models of conserved diffusive scalar fields [5, 9, 10].
Nonreciprocal cross-diffusive coupling has been shown to
result in the emergence of traveling waves (TWs), whose
appearance in systems with conservation laws where fluc-
tuations are expected to decay diffusively is surprising.
The directed motion of traveling waves provides a mech-
anism for the breaking of polar symmetry in system with
purely scalar order parameters.
A similar mechanism is at play in the antagonis-

tic coupling of two groups of flocking agents described
for instance by nonreciprocally coupled Toner-Tu equa-
tions [1]. In the absence of coupling, each population
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undergoes a phase transition to a state of finite mean mo-
tion that spontaneously breaks polar symmetry [11]—the
non-equilibrium analog of a finite magnetization in inter-
acting XY spins. When the two populations A and B
are coupled anti-reciprocally (A wants to align with B,
but B wants to antialign with A) the system is dynami-
cally frustrated and organizes into a state of chase-and-
run motion where agents chase each other—a state that
breaks chiral symmetry [1]. Both sets of results have
opened up a flurry of activity on the role of nonreciproc-
ity in dynamical pattern formation [12] and the search for
generic models of non-equilibrium transitions from static
to time-ordered states [13].

Traveling waves are ubiquitous and well understood in
nonlinearly dynamical systems with activator/inhibitor
couplings. In particular, a prototypical model for oscil-
lations, excitability, and bistability is provided by the
FitzHugh–Nagumo (FHN) equations—a set of two cou-
pled nonlinear ODEs originally introduced to describe
spike generation in stimulated neurons [14, 15]. The spa-
tially extended FHN reaction–diffusion model and its ex-
tensions have been studied extensively as prototypical
models for the emergence of traveling waves in oscilla-
tory and excitable media [16, 17], but a similarly unified
description of the origin of time order in systems with
conserved quantities is still out of reach. In this paper, we
show that a generic minimal model for the transition from
static to dynamic patterns in such systems is obtained
by coupling the Cahn–Hilliard equation nonreciprocally
to a purely diffusive field. The resulting Non-Reciprocal
Cahn-Hilliard (NRCH) provides a unified description of
a new class of dynamical pattern formation.

In the remainder of this introduction we first present
the NRCH model and then summarize the main results
of our work.
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A. Nonreciprocal Cahn–Hilliard equation

The Cahn–Hilliard equation is a classical model for
phase separation of binary fluid mixtures, where two im-
miscible fluids of conserved mass spontaneously demix.
It describes both the equilibrium states and the kinetics
of phase separation in terms of a single scalar field that
characterizes the conserved volume fraction ϕ of one of
the two components. The minimal nonreciprocal Cahn–
Hilliard equations (NRCH) discussed in this work are ob-
tained by coupling ϕ to a second conserved and purely
diffusive field ψ. The coupled dynamics of the two fields
is given by

∂tϕ(x, t) = ∇2(D11ϕ+D12ψ + ϕ3 − κ∇2ϕ) , (1a)

∂tψ(x, t) = ∇2(D21ϕ+D22ψ) , (1b)

with diffusion coefficients Dij . We demand D22 > 0 to
ensure stability of the ψ field. The κ-term (with κ > 0)
stabilizes the phase-separating ϕ-field at short scales and
thus controls the interface width and tension. Phase sep-
aration can occur through a spinodal instability when
D11 < 0. This is evident by examining the linear dy-
namics of fluctuations of the conserved fields ϕ and ψ
from their homogeneous values. Since these fields are
conserved, the dynamics of fluctuations is controlled by
soft or hydrodynamic modes, defined as those where a
fluctuation of wavenumber q decays (or grows) at a rate
σ(q), with limq→0 Re[σ(q)] = 0. A familiar example is
diffusion, where a density fluctuations can only decay by
redistributing material throughout the system. Indeed,
in the absence of cross couplings, fluctuations in ψ de-
cay diffusively, while fluctuations in ϕ exhibit the char-
acteristic dispersion relation of a spinodal instability [see
Fig. 1(a)], with largest growth at a characteristic length
scale controlled by |D11| and κ.
The minimal nonlinearity (ϕ3) saturates the pattern

amplitude, resulting in stable bulk phase separated re-
gions at long times [Fig. 1(b)].
Cross-diffusion couples the two hydrodynamic modes,

which becomes apparent through the interaction of the
eigenvalue branches in the linear fluctuation spectrum
(dispersion relation). For cross-diffusivities with equal
signs, the branches avoid crossing and remain real
[Fig. 1(a)]. By contrast, nonreciprocal cross-diffusivities
(D12 ̸= D21) cause the dispersion relation branches
to cross at a point where the corresponding eigenvec-
tors align, resulting in the appearance of an imaginary
part [green dashed lines in Fig. 1(a)]. This mode coa-
lescence due to nonreciprocal couplings transforms the
static phase separated state into traveling [Fig. 1(c)] or
oscillating domains [5, 9] through a generic mechanism
discussed in detail below. While this model and more
complex ones consisting of two coupled Cahn–Hillard
equations have been studied before [5, 9, 10], previ-
ous work has some important limitations. Specifically,
Ref. [5] has examined Eqs. (1) only for small systems near
the onset of instability. Refs. [9, 10] have considered more
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FIG. 1. (a) Dispersion relations of the NRCH equa-
tions showing the eigenvalue crossing in the uncoupled case
(D12D21 = 0, left) which becomes an avoided crossing for re-
ciprocal coupling (center) and gives rise to a band of propagat-
ing modes for anti-reciprocal coupling (right). (b), (c) Kymo-
graphs showing the spatiotemporal dynamics in 1D with peri-
odic boundary conditions. (b) Phase separation and coarsen-
ing for reciprocal coupling (D12 = D21 = 0.07). (c) Traveling
waves emerge for sufficiently strong anti-reciprocal coupling
(D12 = −D21 = 0.14). Notably, coarsening is interrupted for
traveling waves. [Parameters: ϕ̄ = 0, D22 = 0.1; system size
L = 20. Details on the numerical simulations are provided
in Appendix E. The snapshot profiles in (b) and (c) are from
timepoints t = 107 and t = 5× 104 respectively.]

complex equations, which renders an exhaustive analysis
and intuitive understanding of the dynamics difficult.

B. Summary of results and outline

Our work significantly extends previous findings in a
number of ways. It shows that, despite their apparent
simplicity, Eqs. (1) provide deep insight into a broad class
of pattern forming systems and exhibit several remark-
able behaviors that had not been previously reported,
including interrupted coarsening of traveling waves with-
out wavelength selection and undulating interfaces.

a. A generic model of traveling patterns in extended
systems. First, we show that Eqs. (1) provide a unify-
ing minimal model for a non-equilibrium phase transition
from static to time-ordered states in extended systems
with conservation laws. Specifically, antagonistic cross-
diffusion causes spatial inhomogeneities in the two fields
to undergo a chase-and-run dynamics, until they settle
in a state with a common velocity. This is signaled by
the mode coalescence via the merging of the real part
of the two hydrodynamic modes’ growth rates and the
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simultaneous emergence of a finite imaginary part indi-
cating propagating waves [see Fig. 3(b-e)]. This structure
of the dispersion relation is a distinct signature of tem-
poral organization, hence provides a criterion for iden-
tifying this new class of dynamical pattern formation.
Furthermore, the hydrodynamic nature of the fluctua-
tions guarantees that for strong enough nonreciprocity
the merging will occur for all parameter values, hence
it is generic. Connecting with the language of dynami-
cal systems, the transition of the decoupled field ϕ from
a homogeneous well-mixed state to a stationary phase
composed of dilute and dense regions occurs via a pitch-
fork bifurcation [18] of the pattern amplitude. Nonre-
ciprocal cross couplings drive a second transition to a
time-dependent state that breaks parity and time rever-
sal symmetry, where the demixed domains (“droplets”)
travel at constant velocity. The domains organize into
periodic wave trains that we refer to as traveling waves.
This transition is related to ones previously observed in
non-conserving reaction–diffusion systems [19–21] and is
known as a drift-pitchfork bifurcation [22]. The same bi-
furcation underlies the transition to collective actuation
in an active solid [23].
b. A criterion for identifying this new class of dynam-

ical pattern formation. We identify the spatially local-
ized coalescence of hydrodynamic modes arising from the
conservation laws shown in Fig. 3(b-e) as a generic mech-
anism for temporal organization in these systems. The
features of the linear dispersion relation highlighted in
Fig. 3(b) thus provide a criterion for identifying this new
class of dynamical pattern formation. The intersection
of the two branches of the dispersion relation is associ-
ated with a non-diagonalizable form of the matrix that
governs the linear dynamics of fluctuations and degen-
erate eigenvectors. This mechanism is analogous to the
one responsible for the onset of chiral states in antago-
nistic flocking models and is referred to as an exceptional
point in the corresponding phase diagram [1]. There is,
however, an important difference between the two sys-
tems. In flocking models the velocity order parameter
is not conserved. Instead, the spontaneously broken po-
lar symmetry of the flocking state is associated with the
emergence of a Goldstone mode with relaxation rate that
vanishes at long wavelength. Chiral states that spon-
taneously select handedness occur when the Goldstone
mode coalesces with the relaxational mode describing
fluctuations of the homogeneous steady state. [1]. The
coalescence therefore happens globally. In contrast, for
the mass-conserving systems studied here, mode coales-
cence is spatially localized at the interfaces of the phase
separated patterns and the emergence of traveling states
that break polar symmetry occurs generically for all pa-
rameter values. The interfaces effectively “self-tune” to
the neutrally stable mode at the right edge of the band of
unstable modes. This behavior is manifest in the charac-
teristic form of the dispersion relation [Fig. 3(b–e)] that
identifies the class of systems captured by the minimal
model, Eq. (1). Importantly, this allows us to predict the

speed of the traveling waves by a local dispersion relation
at the interface, even far from the homogeneous steady
state. This points towards a vantage point for tackling
highly nonlinear systems by linearizing locally and using
the presence of conservation laws as previously proposed
in Refs. [24, 25].

c. A unifying model of traveling patterns. We ex-
plicitly demonstrate that the mode-coalescence route to
spatiotemporal order arises naturally in a broad class
of pattern-forming systems that can all be recast in
the NRCH framework. We show this explicitly for
one-dimensional realizations of non-equilibrium systems
previously considered in the literature, including mix-
tures of active and passive particles [5], mass-conserving
reaction–diffusion systems [13, 26, 27], and active gel
models [28, 29]. In all these systems an analysis of the
linear dispersion relation at the inflection point of the
interface between two phase separated regions using a
method introduced in Ref. [25], provides an expression
predicting the interface speed—a result that generally
requires an analysis deep in the nonlinear region.

d. A new mechanism for interrupted coarsening.
We show that, although the equations contain only a
single explicit length scale, corresponding to the width
of the interface, the traveling droplets exhibit inter-
rupted/arrested coarsening. It is known that the intro-
duction of a second length scale, as arising for instance
from broken mass conservation, can arrest coarsen-
ing [30–33]) Other mechanisms that have been shown to
interrupt coarsening resulting in micro-phase-separated
states include elasticity [34, 35], the coupling to chemical
reactions [36], and long-range interactions [37, 38]. The
mechanism that stabilizes finite wavelength patterns in
the NRCH model is, however, more subtle. In the initial
stages of the phase separation droplets travel at differ-
ent speed and the system continues to coarsen via colli-
sions of traveling droplets in a chase-and-run mode until
all droplets have achieved the same stable velocity and
coarsening stops. As a result, one finds that the system
can select stable traveling droplets with a broad range
of wavelengths—ranging from the interface width to the
system size—depending on the initial conditions.

e. New dynamical patterns in two-dimensional sys-
tems. In two-dimensional (2D) systems, interfaces can
become unstable leading to undulations of the wave
fronts. This interfacial instability gives rise to a rich
variety of patterns including spatiotemporal chaos. No-
tably, since undulations propagate along the interfaces,
i.e. transversally to the wave fronts, they break chiral
symmetry in addition to polar symmetry.

f. Role of boundary conditions. No-flux boundaries
break translation invariance and can arrest traveling
waves in one dimension (1D). For sufficiently strong anti-
reciprocal coupling, stationary solutions cease to exist
giving rise to standing waves in 1D and to periodically
sloshing structures in 2D. In 1D the onset of the transi-
tion to the standing wave regime can be read off from a
simple geometric condition in the phase portrait and the
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FIG. 2. Phase portrait of the FHN model (2) with a = 0.
(a) For reciprocal coupling (c12 = c21), the v-nullcline is al-
ways sloped such that the system is bistable. (b) For suffi-
ciently strong anti-reciprocal coupling, limit-cycle oscillations
emerge.

full phase diagram can be predicted by linear stability
analysis and simple graphical constructions.
g. Outline. The remainder of this paper is organized

as follows. In Section II we revisit the FitzHugh–Nagumo
model to highlight the role of nonreciprocity in driving
temporal oscillations (limit cycles). In Section III we
introduce the minimal NRCH model, carry out a lin-
ear stability analysis, and show that a regional stability
analysis in the interfacial region provides an excellent es-
timate for the speed of traveling waves. After discussing
the arrest of coarsening and wavelength selection in 1D in
Section IV, we extend the numerical work to 2D, where a
new state of undulating traveling waves is observed (Sec-
tion V). In Section VI we show that a number of recently
studied physical systems can be mapped onto our mini-
mal NRCH model. Details of the mapping are given in
Appendix F for reaction-diffusion systems, with specific
application to the dynamics of the Min-protein system of
E. coli, and in Appendix G for active gel models of active
poroelastic media. We conclude the body of the paper
with a brief discussion and outlook in Section VII.

II. REVISITING THE FITZHUGH–NAGUMO
MODEL

We start with a minimal example that places nonre-
ciprocity in a dynamical systems framework. To this end,
we briefly revisit the classic FitzHugh–Nagumo (FHN)
model [14, 15]

∂tu(t) = u− u3 + c12v , (2a)

∂tv(t) = a− bv + c21u , (2b)

which serves as a prototypical minimal model for ex-
citability, bistability and oscillations in a broad variety
in physical and biological systems. In the biological con-
text, u is called an activator and v an inhibitor when
c12 < 0 and c21 > 0. When c12 = c21 = c, Eq. (2) can
be derived as relaxational dynamics in the free energy
landscape f(u, v) = − 1

2u
2 + 1

4u
4 − cuv − av + b

2v
2.

It is useful to analyze the behavior in the language of
dynamical systems [18, 39] by plotting the nullclines in
the (u, v) phase space, defined as the solutions of ∂tu = 0
and ∂tv = 0 (Fig. 2(a,b)). The intersection of the null-
clines determines the fixed points of the system. In the
reciprocal case the system is bistable: there is an un-
stable fixed point at u = v = 0 and two stable fixed
points [black disks in Fig. 2(a)]. The dynamics cannot
exhibit limit cycle oscillations, as is manifest from the
phase portrait Fig. 2(a). By contrast, oscillations appear
when the coupling is sufficiently nonreciprocal c12 ̸= c21.
In the regime of separated timescales, |a|, b, |c12| ≪ 1,
the limit cycle oscillations can be constructed geometri-
cally in the phase portrait as relaxation oscillations which
periodically switch the state of the system between the
two stable steady state branches of the fast u-dynamics
[see Fig. 2(b)]. Thus, the FHN model exemplifies that a
dynamical systems perspective allows one to understand
geometrically how oscillations emerge from nonreciprocal
coupling. Such insight is useful because, unlike the am-
plitude equation formalism commonly employed to study
pattern formation [40], it is not restricted to the vicinity
of the onset of oscillations. In the following, we shall seek
this kind of insight for the dynamics of Eqs. (1).

III. A PROTOTYPICAL MODEL FOR
NONRECIPROCALLY COUPLED CONSERVED

FIELDS

To go from the “well-mixed” setting described by a
few degrees of freedom to a spatially extended system,
it is useful to first consider just the bistable dynamics of
u, i.e. Eq. (2a) with c12 = 0. Bistable dynamics can be
cast as relaxational dynamics in a double-well potential.
The minimal prescription for a spatially extended system
is to supplement the double-well free energy density by
the lowest order term of a gradient expansion, κ

2 (∇u)
2,

penalizing interfaces. The relaxational dynamics can be
either non-conserved in which case one obtains the Allen–
Cahn equation [41] or conserved giving the Cahn–Hilliard
equation [42], i.e. Eq. (1a) with D12 = 0. (These equa-
tions are also referred to as Model A and Model B, re-
spectively [43].) We can now apply the same logic to the
FHN equations, by deriving the relaxational dynamics
from the free energy density f+ κ

2 (∇u)
2 (yielding recipro-

cal dynamics) and then allowing the coupling coefficients
to become nonreciprocal. In the non-conserved case, one
arrives at the well-known FHN reaction–diffusion equa-
tions which are a prototypical model for oscillatory and
excitable media, exhibiting phase and trigger waves [44].
In the conserved case, one obtains the NRCH model,
Eqs. (1). Table I provides an overview of the relationships
between different models discussed above and places the
NRCH model in a systematic classification scheme. To
emphasize that the variables are fields and avoid confu-
sion with the FHN ODEs (2), we have changed notation
to the fields ϕ, ψ and the diffusion coefficients Dij .
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Local Bistability
Oscillations,
Excitability

Spatial

{
Non-conserved Allen–Cahn FHN-RD

Conserved Cahn–Hilliard NRCH: Eq. (1)

TABLE I. “Local” dynamics and their generalizations to
spatially extended systems. FHN-RD is the classic FHN
reaction–diffusion model for oscillatory and excitable media
obtained by supplementing Eq. (2) by diffusion of u and v.

Before analyzing the emergent behavior arising from
Eqs. (1) in further detail, let us get a few preliminaries
out of the way. The spatial averages of ϕ̄ = ⟨ϕ⟩ and
ψ̄ = ⟨ψ⟩, are conserved and are therefore control pa-
rameters of the system. However, because the Eqs. (1)
are invariant under addition of a global constant to ψ,
we can set ψ̄ = 0 without loss of generality. Moreover,
we have scaled the coefficient in front of the ϕ3 term
to unity which is always possible by rescaling the field
ϕ. We further choose length and timescales such that
κ = 1, D11 = −1. Observe that one can rescale ψ such
that either D21 = D12 (reciprocal case) or D21 = −D12

(anti-reciprocal case). In other words, only the product
D12D21 is relevant for the dynamics. We therefore intro-
duce the signed geometric mean of the cross-diffusivities,

D̃ := sgn(D12D21)
√
|D12D21| , (3)

as the parameter controlling the strength and reciprocity
of cross-diffusive coupling throughout the paper. That
is, we set D12 → D̃, D21 → |D̃| in Eq. (1).
Finally, we note that by discretizing Eqs. (1) in the

elementary setting of two well-mixed, diffusively cou-
pled compartments, one obtains equations for the mass
differences between the two compartments whose form
recovers the FHN equations (see Appendix A). Static
and standing wave patterns correspond to bistability and
limit-cycle oscillations in the FHN model, respectively.

A. Linear stability analysis

We begin with a linear stability analysis of the homo-
geneous steady states. Notably, this analysis will later
prove useful beyond the usual setting of linearization
around a global steady state. Instead, we will use a local
dispersion relation—calculated at the interfaces of highly
nonlinear patterns—to predict the onset and speed of
traveling waves.
Linearizing Eqs. (1) around a homogeneous steady

state (ϕ, ψ) = (ϕ0, ψ0) [45] for perturbations of the form
eiqx+σt yields the Jacobian

J = −q2
(
D11 + 3ϕ20 + κq2 D̃

|D̃| D22

)
. (4)

In the uncoupled case (D̃ = 0), the dispersion relation
has two independent branches given by the diagonal en-
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FIG. 3. (a) Linear stability diagram in the D22-D̃ param-
eter plane for an equal mixture (ϕ̄ = 0); for unequal mix-
tures ϕ̄ ̸= 0, see App. B. Along the solid purple line (E) an
“exceptional point” appears in the dispersion relation, where
the band of unstable modes touches the band of propagating
modes [see (b)]. CH and P indicate the “conserved Hopf” and
pitchfork bifurcations bounding the regime where pattern for-
mation is suppressed by fast ψ diffusion (D22 > −D11). Below
the dashed purple line, the fastest growing mode in the dis-
persion relation is propagating. (b–d) Dispersion relations in
different regimes: (b) exceptional point (see inset); (c) near
the pitchfork bifurcation; (d) near the conserved Hopf bifurca-
tion, where all unstable modes propagate [Imσ(q → 0) ∼ q2].
(e), (f) Pattern amplitude and wave speed as a function ofD22

and D̃. Stationary patterns (S) transition to traveling waves

(TW) in a drift-pitchfork (DP) bifurcation at D̃ = −D22

which lies exactly along the line of exceptional points [see
(a)]. The onset of patterns at the conserved Hopf (CH) and
pitchfork (P) bifurcations is supercritical for the case equal
mixture case ϕ̄ = 0 shown here. [System size L = 100 in (e)
and (f).]

tries in the Jacobian [see Fig. 1(a), left]. A band of un-
stable modes [0, q+] emerges in the first branch when
D11 < −3ϕ20, where q2+ = (−D11 − 3ϕ20)/κ. This is
the well-known spinodal decomposition instability that
drives phase separation. Cross-diffusive couplings cause
the branches of the dispersion relation to interact near
their intersection point, giving rise to either an avoided
crossing in the reciprocal case D̃ > 0 [see Fig. 1(a),
center] or a band of propagating modes (Imσ ̸= 0) in

the anti-reciprocal case D̃ < 0; see Fig. 1(a), right and
Fig. 3(c–e). For sufficiently strong anti-reciprocal cou-
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pling, the band of propagating modes begins to overlap
with the band of unstable modes [0, q+]. Some simple al-
gebra (and introducing the shorthand d11 = D11 + 3ϕ20)
yields

q+ =
√

−(d11 +D22)/κ , (5a)

Imσ(q+) = ±q2+
√
−D̃|D̃| −D2

22 , (5b)

if −D̃ > D22 and

q+ =
√
−(d11 − D̃|D̃|

D22
)/κ , (5c)

Imσ(q+) = 0 , (5d)

if −D̃ ≤ D22. Unstable modes exist only when the ex-
pressions under the square root in q+ is positive, which
sets the boundaries of the linearly unstable parame-
ter regime, demarcated by “conserved-Hopf” (CH) and
pitchfork (P) bifurcations in Fig. 3(a). Outside this
regime, fast ψ diffusion (D22 > −D11) suppresses pat-
tern formation. The term “conserved-Hopf” instability
was coined in Ref. [13] to describe a long-wavelength in-
stability with propagating modes, giving rise to traveling
waves with a finite speed at onset [5, 13] (analogous to
the onset of oscillations with finite frequency in a Hopf
bifurcation [18]). At the pitchfork bifurcation, stationary
patterns emerge with an amplitude that scales as ∆1/2

where ∆ is the parameter distance from the bifurcation
[see Fig. 4(d)]. Both these bifurcations are supercritical
for ϕ̄ = 0, as can be seen from the pattern amplitude
going to zero at the bifurcation [Fig. 3(e)]. For ϕ̄ ̸= 0
they become subcritical (see Appendix B).

For D̃ = −D22, the marginal mode q+ touches the
band of propagating modes. At this point, the Jacobian
has two vanishing eigenvalues and is non-diagonalizable,
i.e. its eigenvectors coincide. This marks an exceptional
point [1, 8]. Note that an exceptional point has codi-
mension two, meaning that two parameters need to be
tuned for it to occur. Here, one of these parameters is the
wavenumber q. This implies that only one control param-
eter of the system, e.g. a cross-diffusion coefficient, needs
to be tuned for an exceptional point to appear in the dis-
persion relation. (Additional linear stability diagrams in
terms of D± = (D21 ±D12)/2 and in the D11-D22 plane
are shown in Fig. 9 in Appendix C.)
A puzzling observation in previous literature has been

that traveling waves emerge when Imσ(q+) ̸= 0, even
if the fastest growing mode of the dispersion relation,
corresponding to wavenumber qmax is not propagating
(i.e. has vanishing imaginary part) [28, 29, 46, 47]. In-
deed numerical simulations show that Imσ(q+) provides
a precise criterion for the onset of traveling waves in a
drift-pitchfork (DP) bifurcation [22] [Fig. 3(f)]. In such
a bifurcation, a stationary pattern becomes unstable and
starts propagating (or “drifting”) and the propagation
speed scales as ∆1/2 with the distance ∆ from the bi-
furcation. In other words, the propagation speed under-
goes a pitchfork bifurcation—hence the name. This is an

important difference to the CH instability, where trav-
eling waves emerge with a finite speed. The emergence
of traveling waves in DP and CH bifurcations sponta-
neously breaks parity symmetry in 1D (polary symmetry
in higher spatial dimensions).

The prediction of the DP bifurcation from the excep-
tional point in the dispersion relation is remarkable from
the standpoint of weakly nonlinear analysis where one
expects traveling waves only when the fastest growing
mode is propagating (i.e. when Imσ(qmax) ̸= 0). To
resolve this puzzle, we first analyze the fully nonlinear
stationary patterns and then use the local dispersion re-
lation at its interfaces to understand the transition to
traveling waves.

B. Generalized Maxwell construction for
stationary patterns

Weakly nonlinear analysis, as performed in Ref. [5], is
restricted to small systems of size L ≃ 2π/q+ where only
the system-size mode is unstable. To overcome this limi-
tation, i.e. investigate the fully nonlinear traveling waves
in a large system, we first take a closer look at the station-
ary patterns by generalizing the Maxwell construction for
phase separation. Stationary patterns will form the basis
for a quantitative understanding of the onset and speed
of traveling waves. We focus on one spatial dimension in
this and the subsequent section. Two-dimensional pat-
terns will be briefly investigated in Sec. V.

In a stationary state [ϕ̂(x), ψ̂(x)], the fluxes of ϕ and ψ
have to vanish. We can express these fluxes Jϕ = −∇µϕ,
Jψ = −∇µψ as gradients of the generalized chemical po-
tentials

µϕ(ϕ, ψ) = D11ϕ+ ϕ3 + D̃ψ − κ∂2xϕ , (6a)

µψ(ϕ, ψ) = |D̃|ϕ+D22ψ , (6b)

On a domain with periodic or no-flux boundary con-
ditions, the fluxes vanish only when these potentials

are spatially constant, i.e. µϕ(ϕ̂, ψ̂) = const, µψ(ϕ̂, ψ̂)
!
=

const. Graphically, the latter condition implies that the
densities fall onto a straight line in the ϕ-ψ phase por-
trait, see Fig. 4(b). In analogy to the FHN model, we call
this “ψ-nullcline”. Furthermore, bulk regions where ∂xϕ

vanishes must lie on the ϕ-nullclineD11ϕ̂+ϕ̂
3+D̃ψ̂ = µϕ.

In other words, the bulk densities ϕ± are given by the
nullcline intersection points. The third intersection point
in the center corresponds to the inflection point of the in-
terface, where ∂2xϕ vanishes.

To find the generalized chemical potentials µϕ and µψ,
and the size of the low and high density domains, we
employ the Maxwell construction (also know as common
tangent construction) and the given average densities ϕ̄

and ψ̄. Solving Eq. (6b) for ψ̂ and substituting into
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FIG. 4. Graphical construction of stationary states. (a) The
elementary building block of a stationary pattern is a single
interface separating the low density phase from the high den-
sity phase, i.e. a “half-droplet”. (b) ϕ-ψ phase portrait with
the ϕ-nullcline (blue line) and ψ-nullcline (red line), corre-
sponding to lines where the respective generalized chemical
potentials are constant [Eqs. (6)]. The bulk phase densities
and the densities at the interface’s inflection point can be read
of from the intersection points of the nullclines. (c) Maxwell
construction determining the generalized chemical potential.
The areas under the curve have to balance, see Eq. (8).
(d) Amplitude of stationary patterns as a function of the anti-

reciprocal coupling strength D̃ < 0. The numerical results
(◦) agree excellently with the prediction from the graphical
construction (solid line). P marks the supercritical pitchfork
bifurcation. The dashed line indicates the unstable homoge-
neous steady state. (Parameters: ϕ̄ = 0, D22 = 1.2, L = 100).

Eq. (6a) gives

µϕ −
D̃

D22
µψ︸ ︷︷ ︸

:= µ = const.

=

(
D11 −

D̃|D̃|
D22

)
︸ ︷︷ ︸

:= D̂11

ϕ̂+ ϕ̂3−κ∇2ϕ̂ . (7)

This is simply the stationary state equation for the Cahn–
Hilliard equation. Non-trivial solutions, i.e. stationary
patterns only exist when D̂11 < 0. This can be seen
from a simple mechanical analogy where the stationary

profile ϕ̂(x) is mapped to the position ϕ̂ of a ball with

mass κ at time x rolling in a potential V (ϕ̂) = µϕ̂ −
D̂11ϕ

2/2+ϕ4/4 [44]. Stationary patterns, corresponding
to periodic oscillations of the ball exist only when V has
a local minimum which requires D̂11 < 0. In 1D, the

value of µ is fixed as follows: We first multiply with ∂xϕ̂

and then integrate across the interface using 2∂x∂
2
xϕ̂ =

∂x(∂xϕ̂)
2 and the fact that ∂xϕ̂ ≈ 0 in the bulk phases,

giving

[ϕ+(µ)− ϕ−(µ)]µ = F [ϕ+(µ)]− F [ϕ−(µ)] , (8)

with the “local free energy density” F (ϕ) = D̂11ϕ
2/2 +

ϕ4/4. For the symmetric free energy density of the
Cahn–Hilliard model, Eq. (8) is solved by µ = 0, ϕ± =

±
√

−D̂11; see Fig. 4(c). The graphical construction gen-
eralizes to asymmetric local free energy densities where
finding µ in general requires solving Eq. (8) numerically.
In 1D, the sizes of the low and high density domains,
L±, are determined by the average density via the “lever
rule” (L+ + L−) ϕ̄ = ϕ−L− + ϕ+L+; see Fig. 4(a). The
above construction generalizes to higher spatial dimen-
sions, where x is taken to be the coordinate transversal
to the interface. Interface curvature introduces an ad-
ditional term proportional to κ which is obtained by lo-
cally transforming to polar coordinates centered around
the local center of curvature.

In the above graphical construction, the binodal lines
limiting the regime of stationary patterns can be read
off from the nullcline intersection in the phase portrait

ϕ̄±binodal = ϕ± = ±
√
D11 − D̃|D̃|/D22. At ϕ̄ = 0, the

binodal touches the spinodal obtained from linear stabil-
ity analysis, implying that the pitchfork bifurcation from
the homogeneous to the phase-separated state is super-
critical in that case; see Fig. 4(d). For ϕ̄ ̸= 0, the regime
of linear instability is smaller than the regime where sta-
tionary patterns exist, implying that the system is sub-
critical; see Appendix B. This is a consequence of the
fact that the spinodal and binodal become different for
unequal mixtures, while they coincide for equal mixtures.
Numerical simulations show that there is also a regime
of subcritical traveling waves when ϕ̄ ̸= 0 that emerge in
a drift-pitchfork bifurcation from subcritical stationary
patterns.

C. Interface mode predicts traveling wave onset
and speed

The “generalized Maxwell” construction presented in
the previous section yields the “bulk phases” ϕ±, but in
itself is not informative about the interface that separates
them. However, from the inner nullcline intersection we
can read off the profile’s inflection point (ϕinf , ψinf) =
(0, 0) around which the interface is centered [cf. Fig. 4].
This allows one to calculate a local dispersion relation
at the interface by evaluating the Jacobian Eq. (4) at
ϕ0 = ϕinf [see Fig. 5(b)]. This is of course a slight abuse
of linear stability analysis of the homogeneous state since
the interface is evidently not homogeneous. Nonetheless,
the local dispersion relation is informative about the in-
stability that maintains the interface against “flattening”
towards a homogeneous state. The interface width ℓint
is the length scale where destabilizing and stabilizing ef-
fects balance and can be read off from the marginally
stable mode qint+ in the dispersion relation: ℓint ≈ π/qint+

[25]. More precisely, the interface can be approximated
as a half-period sinusoidal profile ϕ ∼ sin[qint+ (x − xint)]
concatenated to flat plateaus at ϕ = ϕ± [see Fig. 5(a)].
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FIG. 5. (a) Illustration of a traveling “droplet” profile with the interfaces (red) and bulk (blue) regions highlighted. (b) Local
dispersion relations of the interface and the bulk obtained by evaluating the Jacobian Eq. (4) at ϕinf and ϕ±, respectively.
The regional dispersion relation in the bulk exhibits no instability. The marginal mode qint+ , obtained from the local dispersion
relation at the interface, predicts interface width (see Ref. [25] and droplet speed as shown in (c) and (d). (c) Droplet speed

as a function of the nonreciprocal coupling strength D̃, comparing numerical simulations for various wavelengths (symbols)

and the analytic prediction Eq. (12) (solid line). DP marks the drift-pitchfork bifurcation at D̃ = −D22. (d) Wave speed as
a function of the average density ϕ̄ which controls the relative size of the low and high density bulk domains. Note that the
prediction from the interface mode qint+ is valid even where the homogeneous steady state is unstable i.e. outside the “spinodals”

±ϕ∗ = ±
√

−D11/3). No patterns exist outside the “binodals” indicated by vertical dashed lines. (e) Wave speed as a function

of the wavelength λ and the interface width (ℓint ≈
√
κ/|D11|) controlled by κ. (f) For λ ≈ ℓint, the wave profile is nearly

sinusoidal; (g) sharp interfaces form when λ ≫ ℓint. [Parameters: D11 = −1, D22 = 0.1; ϕ̄ = 0 in (c) and (e); λ = 100 in (d);

D̃ = −0.15 in (d) and (e).]

To understand how the interface width is selected dy-
namically, consider an interface wider than π/qint+ . The
corresponding sinusoidal mode will grow, since it falls
into the band of unstable modes (q < qint+ ). The non-
linearity causes the saturation of ϕ at the plateaus ϕ±,
while the sinusoidal mode’s growth causes the interface
to narrow. This process stops when the interface width
reaches π/q+ where the sinusoidal mode at the interface
stops growing. Conversely, an interface initially narrower
than π/qint+ , will contain a sinusoidal mode that decays

until the interface width reaches π/qint+ .

For sufficiently strong anti-reciprocal coupling (D̃ <
−D22), the interface mode’s growth rate acquires a non-
zero imaginary part [Imσ(qint+ ) ̸= 0, see Fig. 3(a)], in-
dicating a propagating mode driven by local chase-and-
run dynamics. Indeed, this condition coincides exactly
with the drift-pitchfork bifurcation where stationary pat-
terns turn into traveling waves [cf. Fig. 3(g)]. What sets
the speed of these waves? The propagation speed of a
mode with wavenumber q and complex growth rate σ(q)
is given by Imσ(q)/q. Based on the hypothesis that the
waves are driven by the interface mode, we expect that
the speed of traveling waves follows the relationship

vTW ∝
Imσ(qint+ )

qint+

. (9)

In fact, this relationship holds as an equality for a sinu-
soidal pattern where the wavelength is twice the interface

width [5]. Since the droplet propagation requires redis-
tribution of mass, the wave speed is limited by diffusive
transport through the domains separating the interfaces
when λ ≫ ℓint. Specifically, the mass fluxes through
these domains scales as J± ∝ 1/λ±, where λ− (λ+) de-
note the widths of the low (high) density domains. Mov-
ing an interface bridging the density difference ϕ+ − ϕ−
requires a net mass flux

(ϕ+ − ϕ−)vTW = J+ + J− ∝ 1

λ+
+

1

λ−
. (10)

To fix the prefactor, we demand that the relation vTW =
Imσ(q+)/q+ is recovered for the sinusoidal pattern where
λ+ = λ− = L/2 ≈ π/q+. This yields

vTW ≈
π Imσ(qint+ )

2 (qint+ )2

(
1

λ+
+

1

λ−

)
, (11)

=
|D̃|
λ

2π

1− ϕ̄2

√
1− D2

22

D̃2
. (12)

In the second line, we used Eq. (5b) and the “lever rule”
for the sizes of the low and high density domains. No-
tably, qint+ cancels from this expression implying that vTW

is independent of the interface width. In numerical simu-
lations across parameter sweeps for D̃, ϕ̄, λ and κ, we find
that the observed wave speeds agree well with the ana-
lytic approximation from Eq. (12) as shown in Fig. 5(c–
e). Remarkably, the prediction is accurate even in the
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binodal regime |ϕ̄| > ϕ∗ =
√

−D11/3, where the homo-
geneous steady state is stable. This emphasizes the fact
that the local dispersion relation at the interface informs
about properties of the highly nonlinear pattern which
are not captured by the global dispersion relation of the
homogeneous steady state.
In passing, we note independence of wave speed from

the interface width suggests that one might derive an an-
alytic expression in the sharp interface limit qint+ → ∞.
However, the cross-diffusive coupling poses a particu-
lar challenge for such an approach since ψ becomes dis-
continuous at interfaces in the limit. This problem is
not present in recently studied systems, where a phase
separating field is coupled to a non-conserved diffusive
field via source terms rather than cross-diffusive fluxes
such that a sharp interface approximation can be ap-
plied straightforwardly [47–50]. Resolving this technical
challenge is left for future work.

IV. INTERRUPTED COARSENING AND
WAVELENGTH SELECTION

A hallmark of phase-separating systems is coarsen-
ing, the growth of the characteristic length scale of spa-
tial patterns. In mass-conserving systems, coarsening is
driven by redistribution of mass from smaller to larger
droplets, a process known as Ostwald ripening [51, 52].
In the reciprocally coupled case, coarsening in the

NRCH system proceeds to complete phase separation as
in the conventional Cahn–Hilliard equation [cf. Fig. 2(c)].
We find the same behavior for weak anti-reciprocal cou-
pling (−D̃ < D22), where no traveling waves occur. By
contrast, the coarsening kinetics is markedly different in
the region where the system supports traveling waves
(−D̃ > D22).

In the slow-ψ regime (|D̃| ≪ |D11|), traveling droplets
initially coarsen via collisions of counter-propagating
droplets as shown in the kymograph in Fig. 6(a). Re-
markably, the coarsening stops once all droplets travel in
the same direction. Mass is redistributed from smaller
to larger droplets until their masses are equilibrated, re-
sulting in a periodic wavetrain. Starting from a homoge-
neous state perturbed by small amplitude noise, the ini-
tial propagation directions of the droplets are random.
As a result, an ensemble of simulations with different
noise realizations shows a broad distribution of droplets
remaining in steady state [Fig. 6(c)]. In other words, the
dynamics does not select a particular wavelength. In fact,
starting simulations initialized with a given wavelength,
we find that the initial wavelength is selected in the fi-
nal steady state, implying that all wavelengths (larger
than the interface width) are stable. In particular, this
includes the fully phase separated state (see Fig. 11 in
Appendix E).
We find this remarkable multistability of wavelengths

for all traveling waves. However, close to the CH bifurca-
tion, i.e. in the fast-ψ regime |D̃| ≈ |D11|, we find that the
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FIG. 6. (a) In the slow-ψ regime, droplet collisions drive
coarsening (see blow up view on the left) until all droplets
travel in the same direction and slowly equilibrate their
masses (right). (b) Near the CH bifurcation, the dynamics
appears as a superposition of counter-propagating traveling
waves, corresponding to the fastest growing mode of the dis-
persion relation. Over time, the amplitude of one of the waves
vanishes and the steady state is always a pure traveling wave.
(c), (d) Distribution of droplet number (inversely proportional
to wavelength) of traveling wave trains in simulations initial-
ized from a homogeneous state with small amplitude noise.
Red lines indicate the number of “droplets” corresponding to
the fastest growing mode, n∗ = Lqmax/2π. (c) Significant
coarsening and broad distribution of final peak number near
the drift-pitchfork bifurcation. (d) Almost no coarsening and
narrow distribution of final peak number near the supercriti-
cal conserved-Hopf bifurcation. [Parameters: L = 200 in (b)
and (c) and L = 400 in (c) and (d); ensemble size 200. Simu-
lations were run sufficiently long to ensure that a steady state
was reached, T = 5×105.]

final wavelength selected from a randomly perturbed ini-
tial condition is very close to the wavelength of the fastest
growing mode [see Fig. 6(b) and Fig. 6(d)]. This suggests
that a different wavelength selection mechanism is at play
in this regime. Recall that the CH bifurcation is super-
critical, meaning that the pattern amplitude is small in
the vicinity of the bifurcation and the dynamics is dom-
inated by the fastest growing mode. Since this mode is
propagating near the CH bifurcation [cf. Fig. 3(d)], there
is initially a superposition of two counter-propagating
waves [Fig. 6(b)]. These waves interact through the non-
linearity, which eventually causes the amplitude of one
to go to zero such that a traveling wave remains. Alter-
natively, the amplitudes of both waves might equilibrate,
which would result in a standing wave pattern. However,
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we have not found stable standing waves in any of our
simulations, suggesting that they are unstable. An anal-
ysis in terms of the amplitude equation formalism (also
known as weakly nonlinear analysis) [40] might explain
this puzzling observation.
The multistability of wavetrains with different wave-

lengths, including the fully phase separated state, is sim-
ilar to what is found in 1D models of flocking [53, 54].
However, in that case not all wavelength larger than
the interface width are stable, and in particular short
wavelengths are unstable. Other scenarios for inter-
rupted coarsening, such as in systems with weakly broken
mass conservation, long range interactions, or coupling to
chemical interactions generally exhibit a band of stable
wavelengths that is bounded both from above and below
[33, 36]. The reason for this is that the same process that
causes coarsening to stop also drives splitting of domains
above a critical size [33, 55].

V. 2D PATTERNS: UNDULATING FRONTS
AND SPATIOTEMPORAL CHAOS

We conclude our analysis of Eqs. (1) with a brief ex-
ploration of dynamics in two spatial dimensions. As in
one dimension (1D), we find uninterrupted coarsening
in the phase separation regime and interrupted coarsen-
ing for traveling waves [see Fig. 7(a) Movie 1]. Strik-
ingly, for sufficiently large wavelength, the interfaces of
the traveling waves start undulating and the undulations
propagate transversal to the traveling wave [see Fig. 7(b)
and Movies 2 and 3]. While traveling waves break polar
symmetry, the traveling undulations additionally break
chiral symmetry. Notably, undulations of adjacent inter-
faces can travel either in the same direction (see Movie 2)
or in opposite directions [see Fig. 7(b) and Movie 3].
A large parameter sweep shows that the threshold

wavelength of traveling bands above which undulations
form decreases with the strength of nonreciprocal cou-
pling [Fig. 7(c)]. We suspect that the interface undula-
tions are driven by a nonreciprocal generalization of the
Mullins–Sekerka instability [56] which describes finger-
ing of a propagating interface and is driven by gradients
of a single diffusive field. The nonreciprocal interaction
with the second diffusive field is likely responsible for
the transversal motion of the undulations, which is ab-
sent in the classical Mullins–Sekerka fingers. A further
investigation of the interface instability using capillary
wave theory is beyond the scope of this manuscript and
deferred to future work. In the Conclusion (Sec. VII),
we briefly discuss potential relations to other interfacial
instabilities discovered in recent studies [9, 48, 57].
For non-equal mixtures (ϕ̄ ̸= 0), the canonical Cahn–

Hilliard dynamics transitions from labyrinth-like patterns
to high density droplets in a low density background
(ϕ̄ < 0). [Since the model is symmetric under ϕ → −ϕ,
the dynamics of droplets is equivalent to that of “bub-
bles/holes”.] The NRCH model shows a similar transi-

tion from traveling wave bands to traveling droplets [9]
that can form regular dynamic lattices (see Movie 6). In
large systems, we find that interfacial undulations cause
larger droplets to break up while smaller droplets collide
and merge resulting in chaotic dynamics (see Movie 7).
The breaking up of large droplets interrupts coarsening
and the system eventually reaches a steady distribution
of droplet sizes (see Fig. 12 in Appendix E). This dy-
namically maintained distribution of droplet sizes is in
contrast to the stable traveling wave (“train of droplets”)
which forms in 1D because droplet collisions cease once
all droplets travel in the same direction (cf. Fig. 6). As a
consequence, we do not expect that interrupted coarsen-
ing in 2D will exhibit the same strong dependence on the
initial condition as we found in 1D. Testing this hypoth-
esis and developing a kinetic theory for the droplet size
distribution are interesting avenues for future research.

Finally, let us turn to 2D systems with no-flux bound-
ary conditions. In contrast to 1D, where no-flux bound-
aries can arrest the interface mode that drives travel-
ing waves (see Appendix D), the propagating interface
mode can drive mass transport transversal to the in-
terface in 2D. Thus, stationary interfaces are always
unstable in 2D for D̃ < −D22 [Fig. 7(d)]. Starting
from a fully phase separated (demixed) initial condition,
the interfaces’ transversal instability drives the breakup
of the phase-separated domains, leading to a dynamic,
“microphase-separated” state, where mass sloshes from
one side of the domain to the other chaotically [see
Fig. 7(d) and Movie 4]. The slow sloshing is a result
of the initial condition where ϕ is concentrated on one
side of the system. Starting from a homogeneous state,
we find spatiotemporal chaos (see Movie 5).

VI. CONCRETE PHYSICAL SYSTEMS

In the following, we discuss various classes of systems
that can be mapped to Eqs. (1) as summarized in Ta-
ble II. The appearance of propagating modes near q+ is
the characteristic feature that identifies these systems,
since it indicates that their linearized dynamics (Jaco-
bian) is of the form Eq. (4). For each system, we dis-
cuss the origin of the effective negative diffusion D11 that
drives the pattern-forming (mass-redistribution) instabil-
ity and the origin of nonreciprocity in the effective cross-
diffusive coupling.

Before discussing concrete physical systems, we note
that mapping to Eqs. (1), will generally lead to coef-
ficients Dij and κ that depend on the fields ϕ and ψ.
Nonetheless, studying the minimal model provides a cru-
cial baseline. The rich behavior of the NRCH model
suggests that in many cases the minimal model might
indeed be sufficient to provide a phenomenological ac-
count of experimental observations. The failure of the
minimal model to reproduce certain experimental obser-
vations may provide hints toward necessary model exten-
sions, such as non-constant coefficients [58].
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no-flux boundary conditions (D̃ = −0.2); see Movie 4. [ϕ̄ = 0, D22 = 0.1; L = 200 in (a); L = 100 in (b) and (d).]

In nonreciprocally coupled binary mixtures [9, 10, 58],
phase separation is driven by relaxation to equilib-
rium while nonreciprocity results explicitly from non-
equilibrium effects. This is in contrast to the other sys-
tems below, in which phase separation itself is driven
by non-equilibrium processes such that there is no equi-
librium limit which is reciprocal but still exhibits phase
separation.
For mixtures of active and passive Brownian particles,

a mapping to Eqs. (1) has been provided in Ref. [5]. The
active particles form patterns via motility-induced phase
separation [59]. Persistence of self-propulsion of the ac-
tive particles causes them to slow down when their orien-
tation points in a direction of increasing density (of both
active and passive particles). This causes both the mass-
redistribution instability and the negative cross-diffusion
term χap (hereD12). In contrast, the cross-diffusion term
χpa (here D21) is not affected by activity, because passive
particles are simply sterically repelled by both active and
passive particles.
Mass-conserving reaction–diffusion systems describe,

for instance, pattern formation by proteins that cycle
between different conformational states (e.g. membrane
bound and cytosolic) much faster than they are produced
or degraded [4]. An effective description of the proteins’
mass-redistribution dynamics can be obtained via a lo-

cal equilibrium approximation [24, 25, 60]. The most
widely studied example is the Min-protein system of E.
coli, which has been reconstituted in vitro [61], where
it exhibits a remarkable diversity of spatiotemporal pat-
terns [26, 62, 63]. The dynamics of the densities of MinD
and MinE can be mapped to Eq. (1) via the local equi-
librium approximation (see Appendix F for details). Due
to MinD’s self-recruitment to the membrane, its effective
self-diffusion coefficient is negative thus driving the pat-
tern forming mass-redistribution instability [60]. Non-
reciprocal cross-diffusion of MinD and MinE is a con-
sequence of the nonreciprocity in the chemical reactions
(MinD recruits MinE to the membrane while MinE drives
membrane detachment of MinD). In general, the effective
transport coefficients can be read off from the slopes of
the surfaces of reactive equilibria as a function of the
total densities, which gives them a simple geometric in-
terpretation [60]. We note that a systematic mapping of
mass-conserving reaction–diffusion dynamics to a more
general form of the nonreciprocal Cahn–Hilliard equa-
tion has been obtained very recently via a weakly non-
linear analysis in Ref. [13]. While this approach is math-
ematically more rigorous than ours, it does not provide
the physical and geometric insight afforded by the local-
equilibrium approximation.

Active gel theory has been used to model active vis-
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coelastic and poroelastic media on various scales from
the intracellular actomyosin cortex [28, 64, 65] to tissues
and motile cells embedded in extracellular matrix (ECM)
[66–68]. These models qualitatively reproduce the wave-
like and “pulsatory” dynamics observed in these biolog-
ical systems [69–72]. A prototypical model for motile
cells embedded in ECM serves as a concrete setting in
the following discussion (mapping of poroelastic mod-
els [28, 29] to these equations is briefly discussed in Ap-
pendix G). In the following, we restrict our analysis to
isotropic active stress and a 1D description that captures
only the longitudinal mode, where the displacement field
is aligned with the wavevector. This setting is sufficient
to capture the basic instability of active contractile media
[28, 29, 64, 66]. In future work, it will be interesting to
study 2D and 3D active gel models, where the transversal
component(s) of the displacement field may be excited by
the undulational instability of traveling waves.
In 1D, mass-conservation of cell density c and force

balance take the form

∂tc+ ∂x(u̇c) = D∂2xc (13a)

γu̇ = ∂x
[
η∂xu̇+ E∂xu+ Ta(c)

]
. (13b)

Here u is the displacement (and u̇ = ∂tu the velocity) of
the ECMwhich is modelled as a Kelvin–Voigt viscoelastic
material with stiffness E and viscosity η, γ is the friction
of the ECM with an underlying rigid substrate, and Ta(c)
is the active stress exerted by the cells.
Let us first consider the case of vanishing ECM stiffness

E = 0. This case corresponds to the model studied in
Ref. [64] in the context of an actomyosin cortex, where
c describes the density of contractile myosin motors. We
can formally solve Eq. (13b) and substitute into Eq. (13a)

∂tc = ∂x
{[
D − c (γ − η∂2x)

−1T ′
a(c)

]
∂xc
}
, (14)

where T ′
a = ∂cTa. This is a closed equation for c and has

the form of a diffusion equation where the effective dif-
fusion constant becomes negative in the long wavelength
limit when cT ′

a(c) > γD.
Going through the same calculations for a finite stiff-

ness E > 0 and introducing the strain ε = ∂xu yields (see
Appendix G)

γ∂tc = ∂x
[
(γD − cT ′

a)∂xc− cE ∂xε
]
− η

γ ∂
4
xTa(c) , (15a)

γ∂tε = E ∂2xε+ ∂x(T
′
a ∂xc) , (15b)

where we have expanded the kernel (γ−η∂2x)−1 to second
order in ∂x to obtain the term η

γ ∂
4
xTa(c) that stabilizes

short wavelenghts. In the form Eq. (15), it becomes clear
that ECM elasticity has the role of an effective “cross-
diffusive” coupling that couples the cell density c to the
ECM strain ε. In turn, the active tension Ta(c) pro-
vides the cross-coupling from c to ε. Because the “cross-
diffusion” terms appear with opposite signs (and because
T ′
a(c) > γD/c > 0 is required for phase separation), the

coupling is necessarily anti-reciprocal. Traveling waves
therefore appear generically.

The hydrodynamic modes in active gels arise from
mass-conservation of the density c and translation in-
variance of the displacement field u (i.e. invariance under
u → u + a). The translation invariance is broken if the
ECM is elastically attached to an underlying rigid sub-
strate, which introduces a term kε in Eq. (15b). This is
analogous to a production–degradation term that breaks
mass conservation. This generically interrupts the coars-
ening process leading to microphase separation [33]. For
soft attachment (small k), the branches crossing in the
dispersion relation remains close to q+, such that the
interfacial mode remains oscillatory/propagating. Stiff
attachment however shifts the second branch of the dis-
persion relation down and thereby suppresses traveling
waves.

A slightly different scenario to the one described by
Eq. (13) is a viscous active gel that is coupled to an elastic
substrate by friction. In this case, the substrate needs
to be sufficiently soft for traveling waves to emerge. In
the limit of a rigid substrate, one recovers the scenario
studied in Ref. [64].

Contraction pulses and waves are observed in the acto-
myosin cortex of cells [69–71, 75] and in tissues [72, 76].
While most previous models have relied on oscillatory or
excitable biochemical kinetics [69, 71, 77], our unifying
NRCH model demonstrates how these dynamic patterns
can arise generically from transport of conserved quan-
tities even in the absence of feedback loops in the bio-
chemical reactions. A key feature of the NRCH model
is the transition from dynamic to stationary patterns as
a function of the (effective) transport coefficients. This
might shed new light on the question how the actomyosin
cortex transitions from dynamic pulses to the stationary
cytokinetic ring [78].

Chemosensitive motility and catalytically active
droplets. The cell densities of two motile bacterial
species that cross-regulate each others motility via
signaling molecules can effectively be described as
a binary mixture with nonreciprocal coupling [32].
Non-reciprocity of the effective cross-diffusion results
directly from the nonreciprocity of chemical signaling
interactions. The effective description in terms of only
the bacterial densities is valid when the dynamics of the
signaling molecules is much faster than the bacterial
motility.

Recently, the opposite limit of a fast chemotactic parti-
cles coupled to a slow signaling molecule has been studied
in Ref. [47]. Even though the chemical field is not con-
served in the dynamics, the branches in the dispersion
relation cross near q+ when the chemical field is slow.
Therefore, the traveling waves emerge by the same mech-
anism as in the prototypical model Eq. (1). A related
scenario was studied in Ref. [49] in the context of cat-
alytically active droplets. In both models [47, 49], bro-
ken mass conservation leads to interrupted coarsening.
As we have shown here, coarsening of traveling waves is
generically interrupted, even without broken mass con-
servation. The mechanism of wavelength selection due
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TABLE II. Overview of physical systems sharing the same prototypical core behavior described by Eq. (1). The Min-protein
system of E. coli serves as example for protein-based pattern formation described by mass-conserving reaction diffusion systems.
*MinE redistribution is required for the pattern-forming instability, see Ref. [60]. †The density field alone does not possess an
instability in this case: coupling to strain is required for the instability, see Eq. (15). ‡Hydrodynamic mode due to translation
invariance of the displacement field u→ u+ a.

System ϕ ψ

Nonreciprocal binary mixtures [5, 6, 9, 32, 58, 73] Phase-separating field Diffusive field

Active/passive particle mixtures [5] Density of active particles Density of passive particles

Mass-conserving reaction–diffusion systems [26, 27, 74] MinD concentration* MinE concentration

Active gels [28, 29, 64, 66, 68] Density of contractile elements† Strain‡

to weakly broken mass conservation is well understood
for quasi-stationary patterns [30, 33, 79], In contrast, for
traveling wave patterns the question of wavelength selec-
tion far from a homogeneous state remains a wide open
and an interesting avenue for future research.

VII. CONCLUSION

Traveling waves emerge generically in a broad range of
dynamical systems. While their emergence and dynam-
ics are well understood in excitable and oscillatory me-
dia without conserved quantities [40, 44, 80, 81], much
less is known about traveling waves in the presence of
conservation laws. Here, we have presented the NRCH
model Eq. (1) as a minimal model for the emergence
of traveling waves in systems with conservation laws.
The NRCH model can be seen as the mass-conserving
analogue of the well-known FitzHugh-Nagumo reaction–
diffusion model [16]; see Table I. It unifies many previ-
ously studied systems, including mixtures of active and
passive particles, reaction–diffusion systems and active
gels [see Table II]. Notably, already this minimal model
exhibits several remarkable behaviors such as coarsening
driven by droplet collisions which arrests without select-
ing a preferred wavelength and a transversal instability of
planar interfaces that gives rise to traveling wavefront un-
dulations and spatiotemporal chaos. The present study
provides only a first glimpse of this rich phenomoenology
and raises many interesting questions for further research
as summarized below.
As a central result, we have identified the mechanism

by which stationary patterns transition to traveling pat-
terns in the NRCH model. The transition is heralded
by an exceptional point in the local dispersion relation
at the interfaces of the stationary pattern. At the ex-
ceptional point, two hydrodynamic modes coalesce i.e.
the Jacobian’s eigenvectors coincide. This mechanism
of temporal organization generalizes the notion of nonre-
ciprocal phase transitions [1] to mass-conserving systems.
In the non-conserved case, the mode coalescence involves
a global Goldstone mode (e.g. due to the rotation in-
variance of an orientational order parameter or oscillator
phase) and is independent of spatial gradients. By con-

trast, in the mass-conserving system, the mode coales-
cence takes place at finite wavenumber and is spatially
localized to domain interfaces. Notably, the traveling
wave speed is predicted by the local dispersion relation
at the interface, even far from the homogeneous steady
state.

More generally, our results show that interfaces are the
relevant collective excitations that govern the pattern dy-
namics of nonreciprocally coupled conserved fields. This
justifies, a posteriori, that we used the minimal form of
the equations for two conserved fields Eqs. (1), as these
equations capture the key features: the formation of in-
terfaces through phase separation and their motion gov-
erned by the local dispersion relation. This offers a com-
plementary approach to the amplitude equation formal-
ism, which is valid for small amplitude sinusoidal pat-
terns near the onset of pattern formation (e.g. near the
conserved Hopf bifurcation) [13].

We are only beginning to understand the rich phe-
nomenology of the NRCH model and many important
questions remain open. In the following, we point to sev-
eral exciting avenues for future research.

First, noise plays a crucial role in the nonreciprocal
phase transitions studied in [1]. This is not the case
for the systems studied here. On the other hand, our
analysis of the deterministic dynamics has revealed that
traveling waves are highly multistable, with stable wave-
lengths ranging from the interfacial length scale up to
the system size (corresponding to a fully phase separated
state) and the selected wavelength depends sensitively
on the initial condition. This suggests that noise may
play an important role in wavelength selection, similar
to what is observed in models of flocking [54]. Other
than noise, weakly broken mass-conservation [30, 33],
coupling to chemical reactions [36], or long-range inter-
actions [37, 38], e.g. via an elastic medium [34, 35], may
also provide mechanisms for wavelength selection. The
scenario of elasticity-mediated long-range coupling is par-
ticularly interesting in the context of active gel theories
and poroelastic media.

Second, we found the emergence of transversally trav-
eling undulations at the interfaces of traveling waves as
a particularly striking feature of the NRCH dynamics.
These undulations are reminiscent of the traveling fin-
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ger patterns observed at an oil-air interface driven by
the rotation of two acentrically mounted cylinders [7]. A
similar phenomenon has recently been observed in sim-
ulations of a nonreciprocal four-component mixture [9].
While the exact mechanism driving these undulations re-
mains unclear, we hypothesize that they may arise via a
nonreciprocal generalization of the well-known Mullins–
Sekerka instability [56]. An active Mullins–Sekerka insta-
bility has recently been identified in a model for active
phase separation [57], where the amplitude of undula-
tions does not saturate leading to the formation of an
“active foam” like state. A different scenario for finger-
ing has recently been studied in the context of chemo-
tactic fronts [48], where the front instability is mediated
by a non-conserved chemoattractant field. Similar in-
stabilities might be found in other recently studied sys-
tems where a phase-separating field is coupled to a non-
conserved field through source terms [47, 49]. Developing
a capillary wave theory for the NRCH model is left for
future work. We expect that understanding the interface
dynamics will be crucial to approach the open questions
of coarsening and wavelength selection in 2D.
Third, we have restricted our analysis to the minimal

model Eq. (1) with constant coefficients. These mini-
mal equations already give rise to unexpectedly rich phe-
nomena, suggesting that many observations from experi-
ments and more complex models might also be described
by a minimal phenomenological model. The simplicity
of Eq. (1) has allowed us to understand the dynamics
in terms of linear stability analysis and phase space ge-
ometry, providing a starting point for systematic investi-
gations of more complex models with density-dependent
transport coefficients [58] or spontaneous phase separa-
tion of the ψ-field [10].
A promising experimental setting for observing signa-

tures of NRCH dynamics may be the in vitro reconsti-
tuted Min-protein system of E. coli [61]. Mathematical
models of the Min system can be mapped to the NRCH
equations since the densities of MinD and MinE are con-
served and their interactions are nonreciprocal. The pro-
tein interactions can be tuned at a molecular level [82].
Moreover, the Min-protein system can be confined to
shallow microchambers [26, 62]. This suppresses bulk-
surface oscillations that appear in systems with larger
bulk-surface volume [24], allowing one to integrate out
the bulk degrees of freedom. Notably, in such microcham-
bers, the Min system exhibits spatiotemporal chaos and
traveling droplets not unlike those found in the NRCH
model (see Movies 5 and 6). The insights from the NRCH
model might also shed light on the quasi-stationary pat-
terns of traveling waves observed in the Min-protein sys-
tem and the transitions between such patterns [63].
Finally, the interface undulations also bear striking

similarities to those found in phase separating mixtures
of passive fluids and active liquid crystals driven out of
equilibrium by cytoskeletal motor proteins [83]. In these
systems it has been shown that the emergence of active
emulsions of continuously splitting and merging droplets

and of traveling interfacial waves is facilitated by the cou-
pling to liquid crystalline degrees of freedom [83, 84].
The present work suggests, however, that variations of
the purely scalar minimal model described here may also
capture this behavior.
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Appendix A: Two-compartment approximation:
mapping to FHN

As a minimal “cartoon” of the spatially extended sys-
tem, we can approximate the spatial extended domain by
two diffusively-coupled well-mixed compartments [60]

∂tϕL = D11(ϕR − ϕL) + ϕ3L − ϕ3R +D12(ψR − ψL),

∂tϕR = −∂tϕL,
∂tψL = D21(ϕR − ϕL) +D22(ψR − ψL),

∂tψR = −∂tψL

The average densities ϕ0 = (ϕL + ϕR)/2 and ψ0 = (ψL +
ψR)/2 are conserved. Therefore, the dynamics can be
written in terms of the redistributed densities ∆ϕ = (ϕR−
ϕL)/2, ∆ψ = (ψL − ψR)/2

1
2∂t∆ϕ = −D11(1− 3ϕ20)∆ϕ−∆ϕ3 +D12∆ψ, (A2a)
1
2∂t∆ψ = D21∆ϕ−D22∆ψ. (A2b)

These equations have exactly the form of the FHN model
Eq. (2) with “offset” a = 0. This zero offset is a conse-
quence of the parity symmetry of Eqs. (1). For spatially
varying coefficients in Eq. (1), this parity symmetry is
broken and one obtains an FHN equation with a ̸= 0 in
the two-compartment approximation.

Note that the two-compartment approximation corre-
sponds to a system with no-flux boundary conditions,
which exhibits standing waves rather than traveling
waves. The continuous translational symmetry required
for traveling waves can be captured by a single-mode ap-
proximation [5].

Appendix B: Unequal mixtures (ϕ̄ ̸= 0)

In the main text, we have focused our analysis on the
case of an equal (symmetric) mixture ϕ̄ = 0. In this
case, the onset of pattern formation is supercritical as the
spinodal and the binodal lines coincide. In the following,
we briefly discuss unequal mixtures. As shown in Fig. 8,
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the onset of pattern formation is generically subcritical
when ϕ̄ ̸= 0.
In the phase diagram, the binodal lines ϕ̄ = ϕ±, bound-

ing the regime where stationary patterns exist, are given

by D̃b = −
√
(−D11 − ϕ̄2)D22. The spinodal, bounding

the regime where the homogeneous steady state is unsta-

ble, is given by D̃s = −
√

(−D11 − 3ϕ̄2)D22. Because it
patterns exist outside the spinodal region, the spinodal
line is a subcritical pitchfork bifurcation. Notably, the
locus of the exceptional point in the local dispersion re-
lation [cf. Fig. 3] predicts precisely the drift-pitchfork bi-
furcation (DP) where traveling waves emerge from phase
separated patterns. This is true even deeply in the
subcritical regime where the global homogeneous steady
state is stable for all values of D̃ and D22 [Fig. 8(b)].
Near the drift-pitchfork bifurcation, the conserved

Hopf bifurcation is subcritical while it remains supercrit-
ical further away [Fig. 8(a)].

Appendix C: Linear stability diagrams in the D−-D+

plane

In this Appendix, we redraw our phase diagram in the
plane of D± = D12±D21 for the original form of Eq. (1)
where ψ has not been rescaled. This parametrization
has been used before in the literature [1, 9] and is there-
fore useful for making contact with previous work. In
this parametrization the axes D− = 0 and D+ = 0 cor-
respond to purely reciprocal and purely anti-reciprocal
cases, respectively [see Fig. 9(a,b)]. Due to the freedom
to rescale ψ, only the product D12D21 = D2

+ −D2
− con-

trols the behavior of the system and therefore the bifur-
cation lines in the D± plane have a hyperbolic shape. By
rescaling ψ, one can always map system onto a purely re-
ciprocal or purely anti-reciprocal one, depending on the
sign of D12D21 as indicated by the black and red arrows,
respectively. In the regions between the solid purple and
orange dashed lines systems with no-flux boundary con-
ditions exhibit arrested traveling waves [cf. Fig. 10(b)].
Note that large values of D22, corresponding to fast dif-
fusion of the ψ field, allow the ψ field to catch up with
ϕ, stabilizing the static phase separated state and sup-
pressing the traveling waves (regions shaded in white in
the phase diagrams).

Traveling wave patterns exist only forD22 < −D11 [see
Fig. 9(a), cf. Fig. 3(a)]. KeepingD22 fixed and decreasing
the negative value of D11 thus eliminates traveling waves
from the phase diagram once −D11 < D22.

Appendix D: Arrested traveling waves and standing
waves

In the main text, we have argued that traveling waves
are driven by the propagating interface mode and that
they require continuous mass transport through the bulk
domains. No-flux boundary conditions suppress this
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FIG. 8. Phase diagrams for unequal mixtures (ϕ̄ ̸= 0).
(a) The homogeneous steady state is unstable above the spin-
odal (dashed blue line), while stationary patterns exist above
the binodal (solid and dot-dashed blue line, the discrepancy to
the numerical simulations is due to the finite size of the sim-
ulation domain). Below the drift-pitchfork bifurcation (solid
magenta line, DP), stationary patterns are unstable and de-
velop into traveling waves. The red line indicates the con-
served Hopf bifurcation (CH). Near the drift-pitchfork bifur-
cation, the conserved Hopf bifurcation is subcritical (dashed
red line), while it is supercritical further away. (b) When
|ϕ̄|2 > −D11/3, the homogeneous steady state is stable for all

values of D22 and D̃ < 0, such that no spinodal and no con-
served Hopf bifurcation appear in the phase diagram. Travel-
ing waves emerging due to a drift-pitchfork bifurcation from
stationary patterns exist for sufficiently weak anti-reciprocal
coupling.

mass transport and thereby stabilize a stationary inter-
face against the drift-pitchfork bifurcation; see Fig. 10.
In 2D, such “arrested” interfaces are destabilized by mass
transport transversal to the interface [cf. Fig. 7(d)]. In
1D, the stationary patterns become unstable only when
the bulk domains lose stability. An approximate criterion
for this instability can be read-off from the phase-portrait
construction, which suggests that the bulk domains are
unstable when (ϕ±, ψ±) lie on the positively sloped seg-
ment of the ϕ-nullcline. In other words, stationary pat-
terns are expected to lose stability when the ψ-nullcline
intersects the ϕ-nullcline at its turning points. Indeed,
this criterion provides a good approximation for the on-
set of standing wave oscillations; see Fig. 10(a,c). It is
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For sufficiently slow diffusion of ψ (i.e. D11 < −D22 < 0), there is a regime of traveling waves. (b) No regime traveling waves
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phase separation. For D11 > 0, the uncoupled system is linearly stable but sufficiently strong reciprocal cross-diffusive coupling
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√
D11D22) can destabilize the homogeneous steady state, giving rise to cross-diffusion induced static phase

separation. (c) Phase diagram in the D11-D22 plane in the anti-reciprocal regime (D+ = 0). Note that this phase diagram
shows the same information as the one in Fig. 3(a).
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interface-driven traveling waves once all mass has accumulated at a no-flux boundary (D12 = −D21 = 0.14). Note that the
nullcline intersection points corresponding to the bulk densities lie on the stable segments (solid blue line) of the ϕ-nullcline in
the phase portrait. (c) Standing wave pattern resulting from the destabilization of the bulk domains (D12 = −D21 = 0.25).
(Parameters: D11 = −1, D22 = 0.1, L = 50, simulation time t = 0− 2×104.)

analogous to the geometric criterion for the onset of limit
cycle oscillations in the FHN model [cf. Fig. 2(b)].

Appendix E: Numerical simulations

1D simulations were performed using Mathematica’s
NDSolve[] function. 2D Simulations were performed us-
ing the finite element software COMSOL Multiphysics v6.
Since finite element methods are not well-suited to han-

dle gradients beyond second order, we introduce µϕ as an
auxiliary field and write the ϕ equation as ∂tϕ = ∇2µϕ.
To make the equation for µϕ parabolic, we allow it to
relax on a fast timescale τµ ≪ 1:

τµ∂tµϕ + µϕ = D11ϕ+ ϕ3 + D̃ψ − κ∇2ϕ. (E1)

We used τµ = 10−4. Choosing smaller values of τµ did
not change the results.
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ber of “droplets”. Note that the time axis is scaled dif-
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wavespeed with inverse wavelength, vTW ∼ 1/λ. Parame-
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The wave speed in 1D simulations was calculated via

vTW = −
∫ L
0
dx ∂xϕ∂tϕ∫ L

0
dx (∂xϕ)2

, (E2)

which robustly determines the average speed of moving
interfaces where (∂xϕ)

2 is large as one can easily see by

transforming into the co-moving frame ϕ(x, t) = ϕ̃(x −
vTWt).
To asses patterns in the binodal regime [e.g. in

Fig. 5(d) and Fig. 8], simulations were initialized in a
phase-separated state

ϕ(x, 0) = tanh
[(

L+

2 − |x− L
2 |
)
/ℓ
]
+ ξ1(x), (E3)

ψ(x, 0) = sin(2πx/L) + ξ2(x). (E4)

Here, L is the simulation domain size, L+ = (1 + ϕ̄/2)
is the size of the high-density domain, and ℓ controls the
initial width of interfaces. ξ1,2 denote small amplitude
noise (uniformly distributed in [−0.1, 0.1]). This initial
condition, extended to 2D was also used to study the
emergence of interface undulations in 2D [cf. Fig. 7(b–
d)].
To assess the stability of traveling waves with differ-

ent wavelengths, we performed simulations starting with
initial conditions given by

ϕ(x, 0) = tanh
[
sin(2πnx/L)/ℓ

]
+ ξ1(x), (E5)

ψ(x, 0) = cos(2πnx/L) + ξ2(x). (E6)

The π/2 phase shift between ϕ and ψ sets the direction of
wave propagation. We found that all wavelengths above
the interface width are stable, including the fully phase
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FIG. 12. (a) Snapshots of a long-term simulation show-
ing interrupted coarsening of traveling droplets. The droplet
areas (b) and number (c) continue to fluctuate as droplets
continually collide and break up (shaded band in indicates
one standard deviation around the mean). The distribution
of droplet sizes [see inset in (c)] reaches a steady state that
appears to be well approximated by a Gamma distribution
with shape parameter α = 2 and scale parameter β = 14, i.e.
P (

√
A) ∼

√
A exp[

√
A/14.0]. Droplet sizes were pooled across

the time interval t ∈ [0.6, 2]×105.

separated state (n = 1). Kymographs of three examples
are shown in Fig. 11.

We investigated the interrupted coarsening dynamics
of droplets in a system with non-equal mixture (ϕ̄ =
−0.5) by running a simulation until the distribution of
droplet sizes reached a steady state (see Fig. 12).

Appendix F: Mass-conserving reaction–diffusion
systems

1. General mass-conserving reaction–diffusion
systems

Dynamical equations describing reaction–diffusion can
be written in the general form

∂tu(x, t) = D∇2u+ f(u) , (F1)

where u = {ui} represents the collection of all diffusing
and reacting densities and D = diag({Di}) is the diffu-
sion matrix. We demand the diffusion matrix be diago-
nal, meaning that there is no cross-diffusion on the level
of the individual components ui. When the reaction ki-
netics f is mass conserving, there exist “stochiometric”
vectors si such that sTi f = 0. The corresponding con-
served densities are given by ρi = sTi u. We can further
define the mass-redistribution potentials ηi(u) := sTi Du.
Multiplying Eq. (F1) with sTi from the left then yields



18

the mass-redistribution dynamics

∂tρi(x, t) = ∇2ηi(u(x, t)) . (F2)

To find approximate, closed dynamics for the densi-
ties ρi, we introduce the local reactive equilibria [24, 25],
which are functions of the local total densities ρi

u∗({ρi}) :

{
f(u∗) = 0,
sTi u

∗ = ρi ∀i. (F3)

Under the condition that the local reactive dynamics
∂tu = f(u) have a single stable fixed point u∗, we can
make a local equilibrium approximation in the long wave-
length limit

u(x, t) ≈ u∗({ρj(x, t)}) , (F4)

and reduce the dynamics to the redistribution of the total
densities

∂tρi(x, t) = ∂2xη
∗
i ({ρj}) = ∂x

∑
j

Dij ∂xρj

 , (F5)

with the effective (cross-)diffusion coefficients Dij :=
sTi D∂ρju

∗. Effective cross-diffusion of the conserved den-
sities arises as a consequence of the chemical reactions
even when the “bare” diffusion matrix D is diagonal.
The coefficients Dij will in general depend on the lo-
cal densities, ρi, via the local equilibrium concentrations
u∗({ρi}).

When the determinant of the effective diffusion ma-
trix D is negative, the dynamics becomes effectively anti-
diffusive, i.e. has a long-wavelength instability. At short
wavelengths, the local equilibrium approximation doesn’t
hold and the system is restabilized by the interplay be-
tween (slow) diffusion and reactions [25]. Accounting
for this interplay in the local equilibrium approximation
yields the stabilizing ∇4 term in (1a).

2. Min-protein dynamics

The “skeleton model” of the Min system [26, 85] de-
scribes the concentrations of MinD and MinE in dif-
ferent conformational states, namely membrane-bound
MinD (md) and MinDE complexes (mde), and cytosolic
MinD-ATP, MinD-ATP, and MinE (cDT, cDD, cE). The
model can be written in the form Eq. (F1) with u =
(md,mde, cDT, cDD, cE), D = diag(Dd, Dde, DD, DD, DE)
and the reactive dynamics are given by

f(u) =


Ron

D (u)−Ron
E (u)

Ron
E (u)−Roff

DE(u)

−Ron
D (u) + λcDD

Roff
DE(u)− λcDD

−Ron
E (u) +Roff

DE(u)

 , (F6)

where the reaction terms

Ron
D (u) = (kD + kdDmd)cDT , (F7a)

Ron
E (u) = kdEmdcE , (F7b)

Roff
DE(u) = kdemde , (F7c)

account, respectively, for MinD attachment and self-
recruitment to the membrane, MinE recruitment by
MinD, and dissociation of MinDE complexes with subse-
quent detachment of both proteins to the cytosol. The
term λcDD accounts for nucleotide exchange, i.e. conver-
sion from cDD to cDT, in the cytosol. Importantly, these
reaction kinetics conserve the average total density of
MinD and MinE proteins, ρ̄D and ρ̄E, individually, i.e.
there are two globally conserved masses that are redis-
tributed in space.

Appendix G: Active gel models

1. Mapping to effective NRCH equation

To derive Eq. (15) from the 1D active gel model
Eqs. (13), we first rewrite the force balance equation as

(γ − η∂2x)u̇ = E ∂2xu+ ∂xTa(c) (G1)

and then formally solve for u̇. The resulting kernel
(γ−η∂2x)−1 can be approximated in a gradient expansion,
yielding (to third order in ∂x)

γu̇ ≈
(
1 + η

γ ∂
2
x

) [
E ∂2xu+ ∂xTa(c)

]
(G2)

≈ E ∂2xu+ ∂xTa(c) +
η

γ
∂3xTa(c). (G3)

After applying ∂x on both sides and introducing the
strain ε = ∂xu one has

γ∂tε ≈ E ∂2xε+ ∂2xTa(c) +
η

γ
∂4xTa(c). (G4)

Substituting u̇ into Eq. (13a) gives

γ∂tc = γ∂2xD − ∂x
[
cE ∂2xu+ ∂xTa(c)

]
− η

γ
∂4xTa(c).

(G5)

In Eq. (13), we have retained the fourth order gradient
only in the c-dynamics, where it is necessary to stabilize
short lengthscales when T ′

a > γD/c.

2. Active poroelastic models

As we briefly explain in the following, the models
by Radszuweit et al. [28] and by Weber et al. [29] are
closely related. This fact is slightly obscured by the
non-dimensionalization performed in Weber et al. which
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uses the elasticity constant to rescale time and thus pre-
vents decoupling the displacement field from the mass-
redistribution dynamics in the limit of a vanishing elas-
tic constant. The explicit concentration field c in [28] is
replaced by the volume fraction in [29]. Both models can
be cast in the form of Eq. (13).

We recapitulate the derivation from [29], immediately
specifying to an active solid with volume fraction ϕ and
a passive fluid with volume fraction 1−ϕ. The dynamics
of ϕ is governed by a transport equations and an incom-
pressibility equation

∂tϕ+ ∂x(vsϕ) = D∂2xϕ , (G6)

0 = ∂x(ϕvf + (1− ϕ)vs) . (G7)

Given appropriate boundary conditions (Dirichlet or pe-
riodic) the incompressibility condition can be solved to
give vf = −ϕ/(1− ϕ)vs.

Force balance in the two phases reads

0 = ∂x(ϕσs)− ϕ∂xp− f , (G8)

0 = ∂x[(1− ϕ)σf ]− (1− ϕ)∂xp+ f , (G9)

with the friction force f = γϕ(1− ϕ)(vs − vf). The pres-
sure p serves as a Lagrange multiplier to enforce incom-
pressibility. The active solid is described by a Kelvin–
Voigt model together with an active tension

σs = E∂xu+ η∂xvs + Ta(ϕ) , (G10)

where u is the solid’s displacement, i.e. u̇ = vs. The
viscous stress in the fluid phase is negligible compared to
the solid stresses, so we can set σf = 0. Solving Eq. (G9)
for ∂xp and substituting into Eq. (G8) then gives

γϕ2

1− ϕ
u̇−η ∂x(ϕ∂xu̇) = E∂x(ϕ∂xu)+∂x(ϕTa(ϕ)) . (G11)

Together with Eq. (G6), we have a closed system of equa-
tions for the dynamics of ϕ and u.

Note the close similarity to Eq. (13b). In fact, for
small deviations from a uniform state ϕ = ϕ0, we can
approximate ϕ as constant in all terms in (G11) except
for the last one which is responsible for the instability.

The origin of the friction term in the viscoelastic gel
case Eq. (13b) and the poroelastic case Eq. (G11) dif-
fer. In the former case, it accounts for friction with a
rigid substrate, whereas in the latter case, it accounts for
friction between the two interpermeating phases.
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