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Stochastic Differential Equations Driven by G-Brownian

Motion with Mean Reflections

Hanwu Li∗† Ning Ning‡

Abstract

In this paper, we study the mean reflected stochastic differential equations driven by G-

Brownian motion, where the constraint depends on the distribution of the solution rather than

on its paths. Well-posedness is achieved by first investigating the Skorokhod problem with mean

reflection under the G-expectation. Two approaches to constructing the solution are introduced,

both offering insights into desired properties and aiding in the application of the contraction

mapping method. Additionally, a new technique is proposed to prove the first propagation of

chaos result for mean reflected G-SDEs, overcoming challenges posed by the nonlinearity of G-

expectation and the non-deterministic nature of the quadratic variation of G-Brownian motion.
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1 Introduction

We firstly give the background in Subsection 1.1 and then state our contributions in Subsection 1.2,
followed with the organization of the paper in Subsection 1.3.

1.1 Background

Stochastic differential equations (SDEs) with reflecting boundaries, commonly referred to as re-
flected SDEs, were introduced by Skorokhod in the 1960s (Skorokhod, 1961). Later, El Karoui et al.
(1997a) introduced the reflected backward SDE (BSDE), where the first component of the solution
is constrained to remain above a specified continuous process, known as the obstacle. Reflected
SDEs and reflected BSDEs are intimately linked to various fields including optimal stopping prob-
lems (see, e.g., Cheng and Riedel (2013)), pricing for American options (see, e.g., El Karoui et al.
(1997b)), and the obstacle problem for partial differential equations (PDEs) (see, e.g., Bally et al.
(2002)). Hence, they have attracted a great deal of attention in the probability community, such as
Chaleyat-Maurel and El Karoui (1978); Tanaka (1979); Lions and Sznitman (1984); Ma and Zhang
(2005); Burdzy et al. (2009); Slaby (2010); Hamadene and Zhang (2010); Ning and Wu (2021, 2023);
Ning et al. (2024) and the references therein, providing a comprehensive overview of this theory. In
all the aforementioned papers, the constraints depend on the paths of the solution.

Over the past decade, Bouchard et al. (2015) pioneered the modeling of BSDEs with mean reflec-
tion, where the terminal condition constrains the distribution of the BSDE at terminal time. Mean

∗Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, Shandong,
China. Email: lihanwu@sdu.edu.cn.

†Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237,
Shandong, China.

‡Department of Statistics, Texas A&M University, College Station, Texas, USA. Email: patning@tamu.edu.

1

http://arxiv.org/abs/2306.08931v2


reflected BSDEs (MRBSDEs) were formally introduced by Briand et al. (2018). Subsequently, the for-
ward version was proposed in Briand et al. (2020a), focusing on the following type of mean reflected
SDEs (MRSDEs): for t ∈ [0, T ],




Xt = x+

∫ t

0 b(Xs)ds+
∫ t

0 σ(Xs)dWs +At,

E[h(Xt)] ≥ 0 and
∫ T

0 E[h(Xt)]dAt = 0,
(1.1)

where b, σ, h : R → R are given Lipschitz functions and W is a standard Brownian motion defined on
a complete probability space (Ω,F ,P). Here, the compensating reflection component depends on the
distribution of the solution. The authors established both the existence and uniqueness of the solution.
MRSDEs and MRBSDEs have attracted warm interests in the probability community, which include,
but are not limited to, the following: quadratic MRBSDEs (Hibon et al., 2018), MRSDEs with jumps
(Briand et al., 2020b), large deviation principle for the MRSDEs with jumps (Li, 2018), MRSDEs with
two constraints (Falkowski and S lomiński, 2021), multi-dimensional MRBSDEs (Qu and Wang, 2023),
and the well-posedness of MRBSDEs with different reflection restrictions (Falkowski and S lomiński,
2022; Li, 2023).

All the above mean reflected problems were considered in the classical probability space until
Liu and Wang (2019) studied the mean reflected BSDE driven by G-Brownian motion (G-BSDEs).
The introduction of G-Brownian motion and G-expectation was a significant development in the field
of stochastic analysis (Peng, 2007, 2008, 2019). The nonlinear G-expectation theory was motivated
by the consideration of Knightian uncertainty, especially volatility uncertainty, and the stochastic
interpretation of fully nonlinear PDEs. Roughly speaking, the G-expectation can be seen as an upper
expectation taking over a non-dominated family of probability measures. Under this framework,
G-Brownian motion and the associated G-Itô’s calculus were established. Moreover, Gao (2009)
obtained the well-posedness of SDEs driven by G-Brownian motion. For the reflected case, Lin (2013)
first investigated the scalar-valued SDE driven by G-Brownian motion (G-SDEs) whose solution is
required to be above a prescribed G-Itô’s process. Then, Lin and Soumana Hima (2019) considered
the reflected G-SDEs in non-convex domains. For the non-reflected case, Sun et al. (2023) studied
the G-SDEs whose coefficients may depend on the distribution of the solution. For the reflected G-
BSDEs, Li et al. (2018b); Li and Peng (2020); Li and Song (2021) deal with the lower obstacle case,
the upper obstacle case and the double obstacles case, respectively. Recently, Li and Ning (2024a)
investigated doubly reflected G-BSDEs and established their connection to fully nonlinear PDEs with
double obstacles.

Natural questions arise regarding whether mean reflected G-SDEs can be well-defined and under
what conditions. Additionally, since the reflection process depends on the position’s law, it exhibits
nonlinearity in the McKean–Vlasov terminology. Consequently, it appears worthwhile to investigate
whether such a system can be viewed as the asymptotic counterpart of a mean field Skorokhod problem,
namely, as the asymptotic dynamics of an interacting particle system (IPS) reflected in a mean field.
As the IPS dimension tends to infinity, the system converges towards a limit where any finite subset
of particles becomes asymptotically independent of each other. This phenomenon, commonly known
as the propagation of chaos (POC), is further elaborated in the classical work by Sznitman (1991).
The POC for MRSDEs was established in Briand et al. (2020a) and then generalized to the backward
framework in Briand and Hibon (2021). These two POC results specifically address single reflection
cases, while the POC result for MRBSDEs with double reflection is provided in Li and Ning (2024b).
However, so far, there is no established POC for both mean reflected G-SDEs. Therefore, in this
paper, we will also explore the POC after establishing the well-posedness of mean reflected G-SDEs.
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1.2 Our contributions

In this paper, we introduce the G-SDE with mean reflection in the following form: for t ∈ [0, T ],




Xt = x0 +

∫ t

0 b(s,Xs)ds+
∫ t

0 h(x,Xs)d〈B〉s +
∫ t

0 σ(s,Xs)dBs +At,

Ê[l(t,Xt)] ≥ 0 and
∫ T

0 Ê[l(t,Xt)]dAt = 0,
(1.2)

where B represents the G-Brownian motion, Ê denotes the G-expectation, and the functions b, h, σ,
and l satisfy certain regularity conditions, which will be elucidated later along with a review of the
G-expectation theory. The solution to the G-SDE (1.2) is a pair of processes (X,A), where A is a
nondecreasing deterministic function, behaving in a minimal way such that the Skorokhod condition
is satisfied. The well-posedness of a unique solution to the G-SDE (1.2) is established in Theorem
4.1, with the assumptions enforced on the coefficient functions being comparable to those of the
non-reflected case studied by Gao (2009).

Theorem 4.1 is achieved by first investigating the Skorokhod problem with mean reflection under
the G-expectation, which is rigorously defined in Definition 3.1 and practically illustrated in Example
3.3. A crucial result is the existence and uniqueness of the solution to that problem in Theorem
3.2. Two approaches to constructing the solution are presented. The first approach relies on an
intermediate result from Liu and Wang (2019), outlined in Proposition 3.4, although further stochastic
analysis is evidently required in this context. The second approach, requiring an additional assumption
to establish Theorem 3.2, is denoted as Theorem 3.6. However, this method establishes a link between
the Skorokhod problem with mean reflection and the deterministic Skorokhod problem, leading to
the acquisition of desired properties as illustrated in Proposition 3.10 and subsequently in Corollary
3.11. By combining Theorem 3.2, both construction methods, and the attained properties through
a contraction mapping argument, we establish the existence and uniqueness of solutions for (1.2).
Following this, the desired moment estimate of the solution to mean reflected G-SDEs is attained in
Proposition 4.2, ensuring the continuity of the compensating term A. However, to prove the POC, a
more refined result is required. In essence, this necessitates the compensating term to be Lipschitz
continuous when the loss function l is sufficiently smooth, a condition satisfied as shown in Proposition
4.3.

In this paper, we creatively develop a new technique to prove the first POC result for mean re-
flected G-SDEs. So far, in the classical probability space setting, all three existing POC results in
the mean reflected context (Briand et al. (2020a) on MRSDEs, Briand and Hibon (2021) on MRB-
SDEs, and Li and Ning (2024b) on MRBSDEs with double reflection) have relied on controlling the
Wasserstein distance of the empirical measure of independent and identically distributed samples to
the true distribution. However, within the G-expectation framework, we must deal with a family
of distributions and hence a family of Wasserstein distances, rendering this approach invalid. We
propose a new method utilizing technical stochastic analysis. However, two challenges persist in the
G-expectation case. Firstly, due to the nonlinearity of the G-expectation, we typically cannot change
the order of G-expectation and integral. Secondly, the non-deterministic nature of the quadratic
variation of G-Brownian motion leads to some unexpected estimates (see Remark 5.4 for details).
Consequently, we only consider the case where the coefficient function h ≡ 0 and the loss function l is
linear. Furthermore, we provide a sufficient condition for the “Fubini theorem” under G-expectation,
allowing the order of G-expectation and integral to be interchanged. Based on these results, with the
assistance of Proposition 4.3, by appropriately designing the IPS as a family of interacting G-SDEs
with oblique reflection, we achieve the POC for the mean reflected G-SDE (1.2).
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1.3 Organization of the paper

The paper is structured as follows: Section 2 provides a review of fundamental notations and results
in the G-framework. The mean reflected Skorokhod problem is defined and examined in Section 3.
Section 4 focuses on establishing the well-posedness of the mean reflected G-SDE (1.2). Lastly, in
Section 5, we present an approximation for mean reflected G-SDEs using an IPS system. Throughout
the paper, the letter C, with or without subscripts, will denote a positive constant whose value may
change for different usage.

2 Preliminaries

We review some fundamental notions and results of G-expectation and G-stochastic calculus. The
readers may refer to Peng (2007, 2008, 2019) for more details. For simplicity, we only consider the
one-dimensional G-Brownian motion, noting that the results still hold for the multidimensional case.

Let ΩT = C0([0, T ];R), the space of real-valued continuous functions starting from the origin, i.e.,
ω0 = 0 for any ω ∈ ΩT , be endowed with the supremum norm. Let B(ΩT ) be the Borel set and B be
the canonical process. Set

Lip(ΩT ) =
{
ϕ(Bt1 , ..., Btn) : n ∈ N, t1, · · · , tn ∈ [0, T ], ϕ ∈ Cb,Lip(Rn)

}
,

where Cb,Lip(Rn) denotes the set of all bounded Lipschitz functions on Rn. We fix a sublinear and
monotone function G : R → R defined by

G(a) =
1

2
(σ2a+ − σ2a−), (2.1)

where 0 < σ2 < σ2. The associated G-expectation on (ΩT , Lip(ΩT )) can be constructed in the
following way. Given that ξ ∈ Lip(ΩT ) can be represented as

ξ = ϕ(Bt1 , Bt2 , · · · , Btn),

set for t ∈ [tk−1, tk) with k = 1, · · · , n,

Êt[ϕ(Bt1 , Bt2 , · · · , Btn)] = uk(t, Bt;Bt1 , · · · , Btk−1
),

where uk(t, x;x1, · · · , xk−1) is a function of (t, x) parameterized by (x1, · · · , xk−1) such that it solves
the following fully nonlinear PDE defined on [tk−1, tk) × R:

∂tuk +G(∂2xuk) = 0,

whose terminal conditions are given by
{
uk(tk, x;x1, · · · , xk−1) = uk+1(tk, x;x1, · · · , xk−1, x), k < n,

un(tn, x;x1, · · · , xn−1) = ϕ(x1, · · · , xn−1, x).

Hence, the G-expectation of ξ is Ê0[ξ], denoted as Ê[ξ] for simplicity. The triple (ΩT , Lip(ΩT ), Ê) is
called the G-expectation space and the process B is called the G-Brownian motion.

For ξ ∈ Lip(ΩT ) and p ≥ 1, we define

‖ξ‖Lp
G

= (Ê|ξ|p])1/p.

The completion of Lip(ΩT ) under this norm is denote by Lp
G(Ω). For all t ∈ [0, T ], Êt[·] is a continuous

mapping on Lip(ΩT ) w.r.t the norm ‖ · ‖L1
G

. Hence, the conditional G-expectation Êt[·] can be

extended continuously to the completion L1
G(ΩT ). Furthermore, Denis et al. (2011) proved that the

G-expectation has the following representation.
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Theorem 2.1 (Denis et al. (2011)) There exists a weakly compact set P of probability measures
on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

E
P[ξ], ∀ξ ∈ L1

G(ΩT ).

We call P a set that represents Ê.

For P being a weakly compact set that represents Ê, we define the following two Choquet capacities

V (A) = sup
P∈P

P(A) and v(A) = inf
P∈P

P(A), ∀A ∈ B(ΩT ).

A set A ∈ B(ΩT ) is called polar if V (A) = 0. A property holds “quasi-surely” (q.s.) if it holds outside
a polar set. In this paper, we do not distinguish two random variables X and Y if X = Y , q.s.. The
following proposition can be seen as the strict comparison property for the G-expectation.

Proposition 2.2 (Li and Lin (2017)) Let X,Y ∈ L1
G(ΩT ) with X ≤ Y , q.s.. The following prop-

erties hold:

(i) If v(X < Y ) > 0, then Ê[X ] < Ê[Y ];

(ii) If Ê[X ] < Ê[Y ], then V (X < Y ) > 0.

The lemma below will be utilized in constructing the solution in the next section.

Lemma 2.3 (Liu and Wang (2019)) Suppose that X ∈ L
p
G(ΩT ) with some p ≥ 1. Then, for any

ε > 0, there exists a constant δ > 0 such that for all set O ∈ B(ΩT ) with V (O) ≤ δ, we have

sup
t∈[0,T ]

Ê

[∣∣Êt[X ]
∣∣p
1O

]
≤ ε.

The following result can be regarded as the monotone convergence theorem under theG-expectation.

Lemma 2.4 (Denis et al. (2011)) Suppose {Xn}n∈N and X are B(ΩT )-measurable.

(1) If Xn ↑ X q.s. and E
P[X−

1 ] <∞ for all P ∈ P, then Ê[Xn] ↑ Ê[X ].

(2) If {Xn}n∈N ⊂ L1
G(ΩT ) satisfies Xn ↓ X q.s., then Ê[Xn] ↓ Ê[X ].

We need the following norms and spaces to specify the regularity conditions imposed on the
parameter functions.

Definition 2.5 Let M0
G(0, T ) be the collection of processes such that

ηt(ω) =

N−1∑

j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti) for a given partition {t0, · · ·, tN} of [0, T ]. For each p ≥ 1 and η ∈ M0
G(0, T ),

denote

‖η‖Hp

G
=

{
Ê

(∫ T

0

|ηs|
2ds

)p/2
}1/p

and ‖η‖Mp

G
=

{
Ê

(∫ T

0

|ηs|
pds

)}1/p

.

Let Hp
G(0, T ) and M

p
G(0, T ) be the completions of M0

G(0, T ) under the norms ‖ · ‖Hp
G

and ‖ · ‖Mp
G
,

respectively.
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Denote by 〈B〉 the quadratic variation process of the G-Brownian motion B. For two processes

ξ ∈M1
G(0, T ) and η ∈M2

G(0, T ), the G-Itô integrals (
∫ t

0 ξsd〈B〉s)0≤t≤T and (
∫ t

0 ηsdBs)0≤t≤T are well
defined, see Li and Peng (2011) and Peng (2019). The subsequent proposition can be interpreted as
the Burkholder–Davis–Gundy (BDG) inequality within the G-expectation framework.

Proposition 2.6 (Peng (2019)) If η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], then we have

σpcÊt

(∫ T

t

|ηs|
2ds

)p/2

≤ Êt

[
sup

u∈[t,T ]

∣∣∣∣
∫ u

t

ηsdBs

∣∣∣∣
p]

≤ σ̄pCÊt

(∫ T

t

|ηs|
2ds

)p/2

,

where 0 < c < C <∞ are constants depending on p and T .

Let
S0
G(0, T ) =

{
h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)

}
.

For p ≥ 1 and η ∈ S0
G(0, T ), set

‖η‖Sp

G
=

{
Ê sup

t∈[0,T ]

|ηt|
p

}1/p

.

Denote by Sp
G(0, T ) the completion of S0

G(0, T ) under the norm ‖ · ‖Sp
G

. Li et al. (2018a) proved the

following uniform continuity property for the processes in S
p
G(0, T ).

Proposition 2.7 (Li et al. (2018a)) For Y ∈ S
p
G(0, T ) with p ≥ 1, we have, by setting Ys = YT for

s > T ,

lim sup
ε→0

Ê

[
sup

t∈[0,T ]

sup
s∈[t,t+ε]

|Yt − Ys|
p

]
= 0.

3 The Skorokhod problem with mean reflection

In this section, we study the Skorokhod problem with mean reflection under the G-expectation. In
Subsection 3.1, we rigorously define this problem in Definition 3.1, present our primary result in
Theorem 3.2, and then illustrate with a concrete example in financial mathematics. In Subsection
3.2, we give the proof of Theorem 3.2. An alternative way to construct the solution is provided in
Subsection 3.3. However, this approach necessitates an additional assumption (H ′

l) to attain Theorem
3.2, thus designated as Theorem 3.6. The benefit of this alternative lies in its establishment of a
connection between the Skorokhod problem with mean reflection and the deterministic Skorokhod
problem. Both methods of construction yield intermediary results vital for establishing the well-
posedness of the mean reflected G-SDE (1.2) in Section 4.

3.1 Definition and an illustration

The assumptions below encapsulate the properties of the running loss function l and the original
process S under consideration.

(Hl) The function l : ΩT × [0, T ] × R → R satisfies the following conditions:

(1) l(t, x) is uniformly continuous w.r.t. t and x, uniformly in ω.

(2) For any t ∈ [0, T ], l(t, x) is strictly increasing in x, q.s..

(3) For any (t, x) ∈ [0, T ] × R, l(t, x) ∈ L1
G(ΩT ) and Ê[limx↑∞ l(t, x)] > 0.
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(4) For any (t, x) ∈ [0, T ] × R, |l(t, x)| ≤ κ(1 + |x|) for some κ > 0, q.s..

(HS) There exists some p ≥ 1 such that S ∈ S
p
G(0, T ) and Ê[l(0, S0)] ≥ 0.

Define C[0, T ] as the set of all real-valued deterministic continuous functions on [0, T ], and define
I[0, T ] as the subset of C[0, T ] consisting of non-decreasing functions with initial value 0. We now
proceed to provide the definition of the solution.

Definition 3.1 Considering (l, S) satisfying (Hl) and (HS), we define a pair of processes (X,A) ∈
S
p
G(0, T ) × I[0, T ] as a solution to the Skorokhod problem with mean reflection associated with (l, S),

denoted as SP(l, S), if for t ∈ [0, T ],

(a) Xt = St +At,

(b) Ê[l(t,Xt)] ≥ 0,

(c)
∫ T

0
Ê[l(t,Xt)]dAt = 0.

Now, we present the main result of this section whose proof is provided in Subsection 3.2.

Theorem 3.2 Under Assumptions (Hl) and (HS), there exists a unique solution (X,A) ∈ S
p
G(0, T )×

I[0, T ] to the Skorokhod problem SP(l, S).

We illustrate the solution to the Skorokhod problem SP(l, S) with a concrete example below.

Example 3.3 Let l be a function satisfying (Hl). For a fixed t ∈ [0, T ], we define a map ρt : L1
G(Ωt) →

R as

ρt(X) = inf
{
x ∈ R : Ê[l(t, x+X)] ≥ 0

}
.

It is easy to check that ρt is nonincreasing and translation invariant. That is

• If X,Y ∈ L1
G(Ωt) with X ≤ Y , then ρt(X) ≥ ρt(Y );

• ρt(X +m) = ρt(X) −m, for X ∈ L1
G(Ωt) and m ∈ R.

Therefore, ρt can be regarded as a static risk measure. The risk position X is called acceptable at time
t if ρt(X) ≤ 0. In fact, suppose that ρt(X) > 0, the value ρt(X) can be regarded as the amount of
money to be added by an agent in order to make the risk position X acceptable at time t. The readers
may refer to Artzner et al. (1999) for the background of risk measures.

Consider an agent who wants to hold a stock evolving according to

St = S0 +

∫ t

0

µ(Ss)ds+

∫ t

0

σ(Ss)dBs,

where µ, σ : R → R are Lipschitz functions. Given the dynamic risk measure {ρt}t∈[0,T ], one can ask
how to make sure that the risk position St remains acceptable at each time t. In order to satisfy this
constraint, the agent need to add some cash in it. We denote by At the cumulative amount of cash
needed to be added and Xt be the associated value process. Then, we have

Xt = S0 +

∫ t

0

µ(Ss)ds+

∫ t

0

σ(Ss)dBs +At.

Clearly, the agent would like to cover the risk in a minimal way, which leads to the condition
∫ T

0

Ê[l(t,Xt)]dAt = 0.

That is, (X,A) is the solution of a Skorokhod problem SP(l, S).
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3.2 First construction of solutions

The first method to establish the existence of the Skorokhod problem SP(l, S) relies on the following
two propositions.

Proposition 3.4 (Liu and Wang (2019)) Let (Hl) hold and X ∈ L1
G(ΩT ). Then

(i) for each (t, x) ∈ [0, T ] × R, l(t, x+X) ∈ L1
G(ΩT ),

(ii) the map x→ l(t, x+X) is continuous under the norm ‖ · ‖L1
G
; in particular, x→ Ê[l(t, x+X)]

is continuous and strictly increasing.

Proposition 3.5 Let (Hl) hold and S ∈ S
p
G(0, T ) where p ≥ 1. Then the map t → l(t, St) is

continuous under the norm ‖ · ‖L1
G
; in particular, t→ Ê[l(t, St)] is continuous.

Proof. By Assumption (Hl), for any ε > 0, there exists a constant δ > 0, such that |l(t, x)−l(s, y)| ≤ ε

for any |t− s| + |x− y| ≤ δ. It is easy to check that, for any |s− t| ≤ δ,

Ê|l(t, St) − l(s, Ss)| ≤Ê|l(t, St) − l(s, St)| + Ê

[
|l(s, St) − l(s, Ss)|1{|St−Ss|>δ}

]

+ Ê

[
|l(s, St) − l(s, Ss)|1{|St−Ss|≤δ}

]

≤2ε+ CÊ
[(

1 + sup
t∈[0,T ]

|St|
)
1{|St−Ss|>δ}

]
.

By Proposition 2.7 and Markov’s inequality, we have

lim
s→t

V ({|St − Ss| > δ}) = 0.

Then by Lemma 2.3,
lim sup

s→t
Ê|l(t, St) − l(s, Ss)| ≤ 2ε.

Since ε can be chosen arbitrarily small, the proof is complete.

Proof of Theorem 3.2. The proof proceeds in two steps, where we prove existence in the first step
and then uniqueness in the second step.

Step 1. By Proposition 3.4, Ê[l(t, x + X)] is well-defined for X ∈ L1
G(ΩT ). In order to solve the

Skorokhod problem SP(l, S), we need to use the operator Lt : L1
G(ΩT ) → [0,∞) defined as follows:

Lt(X) = inf
{
x ≥ 0 : Ê[l(t, x+X)] ≥ 0

}
. (3.1)

Under Assumption (Hl), the operator Lt is well-defined since by Lemma 2.4,

lim
x→∞

Ê[l(t, x+X)] = Ê lim
x→∞

l(t, x+X) = Ê lim
x→∞

l(t, x) > 0.

It follows from Propositions 3.4 and 3.5 that the map x → Ê[l(t, x + St)] is continuous and strictly

increasing, and the map t → Ê[l(t, x + St)] is continuous. We first prove that the map t → Lt(St) is

continuous. First, suppose that Ê[l(t, St)] > 0, which by the definition of Lt(St) yields that Lt(St) = 0.
Note that

lim
s→t

Ê[l(s,Xs)] = Ê[l(t,Xt)] > 0.

8



Then, if |s − t| is small enough, we have Ê[l(s,Xs)] > 0 and consequently, Ls(Xs) = 0. Second,

suppose that Ê[l(t, St)] ≤ 0. For any ε > 0, we have

lim
s→t

Ê[l(s, Lt(St) − ε+ Ss)] = Ê[l(t, Lt(St) − ε+ St)] < Ê[l(t, Lt(St) + St)] = 0

and 0 < Ê[l(t, Lt(St) + ε+ St)] = lim
s→t

Ê[l(s, Lt(St) + ε+ Ss)],

where we have used Proposition 2.2 in the inequality. Then, if |s− t| is small enough, we have

Ê[l(s, Lt(St) − ε+ Ss)] < 0 < Ê[l(s, Lt(St) + ε+ Ss)],

which implies that |Ls(Ss) − Lt(St)| ≤ ε. Therefore, the map t → Lt(St) is continuous. Define the
function A by setting

At = sup
s∈[0,t]

Ls(Ss),

and then define

Xt = St +At.

We are going to show that (X,A) is the solution to the Skorokhod problem SP(l, S). In fact, it is
clear that (X,A) ∈ S

p
G(0, T ) × I[0, T ] and

Ê[l(t,Xt)] = Ê[l(t, St +At)] ≥ Ê[l(t, St + Lt(St))] ≥ 0.

By the definition of A, we have At = Lt(St), dAt-a.e. and 1{Lt(St)=0} = 0 dAt-a.e. Noting that

Ê[l(t, St + Lt(St))] = 0 when Lt(St) > 0, we finally have

∫ T

0

Ê[l(t,Xt)]dAt =

∫ T

0

Ê[l(t, St + Lt(St))]dAt =

∫ T

0

Ê[l(t, St + Lt(St))]1{Lt(St)>0}dAt = 0.

Step 2. We now prove uniqueness. Suppose that (X1, A1) and (X2, A2) are two solutions to the
Skorokhod problem SP(l, S). Suppose that there exists some t ∈ (0, T ), such that A1

t < A2
t . Set

τ = sup
{
u ≤ t : A1

u = A2
u

}
.

It is easy to check that for u ∈ (τ, t], A1
u < A2

u. Due to the strict increasing property of l and
Proposition 2.2, for any u ∈ (τ, t], we have

0 ≤ Ê[l(u, Su +A1
u)] < Ê[l(u, Su +A2

u)].

The flat-off condition (c) in Definition 3.1 implies that dA2 = 0 on the interval [τ, t]. It follows that

A2
τ = A2

t > A1
t ≥ A1

τ ,

which contradicts the definition of τ . The proof is complete.
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3.3 Second construction of solutions

In this subsection, we offer an alternative construction for the solution to the Skorokhod problem with
mean reflection. The advantage of this approach lies in its ability to establish a connection between
the Skorokhod problem with mean reflection and the deterministic Skorokhod problem. However, a
drawback is that it requires an additional assumption (H ′

l) to achieve Theorem 3.2, hence labeled as
Theorem 3.6.

Theorem 3.6 Suppose Assumption (Hl) and (HS) hold, as well as the following condition:

(H ′
l) There exist an increasing function F : [0,∞) → [0,∞) with F (0) = 0 and two constants 0 <
cl < Cl, such that

(1) For any t, s ∈ [0, T ], x ∈ R

|l(t, x) − l(s, x)| ≤ F (|t− s|).

(2) For any t ∈ [0, T ] and x, y ∈ R,

cl|x− y| ≤ |l(t, x) − l(t, y)| ≤ Cl|x− y|. (3.2)

Then there exists a unique solution (X,A) ∈ S
p
G(0, T ) × I[0, T ] to the Skorokhod problem SP(l, S).

Both assumptions (Hl) and (H ′
l) impose regularity conditions on the function l. We delineate the

comparison in the following remark.

Remark 3.7 Clearly, Assumption (H ′
l) yields that l is uniformly continuous in (t, x), which is (Hl)

(1). Next, suppose (H ′
l) (2) holds true, and then for any X ∈ L1

G(ΩT ), Lt(X) is well-defined if we

consider (Hl) but omit Ê[limx→∞ l(t, x)] > 0 in (Hl) (3). In fact, for any x ≥ 0, (H ′
l) (2) implies

that

l(t, x+X) − l(t,X) ≥ clx.

It follows that

lim
x→∞

Ê[l(t, x+X)] ≥ lim
x→∞

(Ê[l(t,X)] + clx) = ∞. (3.3)

Furthermore, under Assumption (Hl) and (H ′
l) (2), Lemma 3.12 in Liu and Wang (2019) indicates

that for any X,Y ∈ L1
G(ΩT ), we have

|Lt(X) − Lt(Y )| ≤
Cl

cl
Ê[|X − Y |], for any t ∈ [0, T ].

For any t ∈ [0, T ] and Y ∈ L1
G(ΩT ), recalling that Proposition 3.4 ensures that l(t, Y − Ê[Y ] + z) ∈

L1
G(ΩT ) for each fixed z ∈ R, we define a mapping H(t, ·, Y ) : R → R by

H(t, z, Y ) = Ê[l(t, Y − Ê[Y ] + z)]. (3.4)

Lemma 3.8 Suppose that l satisfies (Hl) and (H ′
l). Then, for any t ∈ [0, T ] and Y ∈ L1

G(ΩT ),
H(t, ·, Y ) is strictly increasing, continuous and

lim
z→−∞

H(t, z, Y ) = −∞, lim
z→+∞

H(t, z, Y ) = +∞.
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Proof. For any z, z′ ∈ R, it is easy to check that

∣∣∣Ê[l(t, Y − Ê[Y ] + z)] − Ê[l(t, Y − Ê[Y ] + z′)]
∣∣∣

≤Ê

[∣∣∣l(t, Y − Ê[Y ] + z) − l(t, Y − Ê[Y ] + z′)
∣∣∣
]
≤ Cl|z − z′|.

Hence, H(t, ·, Y ) is continuous. Suppose that z < z′. Proposition 3.4 (ii) yields that

H(t, z, Y ) = Ê[l(t, Y − Ê[Y ] + z)] < Ê[l(t, Y − Ê[Y ] + z′)] = H(t, z′, Y ),

which implies that H(t, ·, Y ) is strictly increasing. The last assertion can be proved similarly with
(3.3). The proof is complete.

By Lemma 3.8, we may define the inverse map H−1(t, ·, Y ) : R → R. In fact, for any z ∈ R,

H−1(t, z, Y ) = z̄ ⇐⇒ Ê[l(t, Y − Ê[Y ] + z̄)] = z.

Lemma 3.9 Suppose that l satisfies (Hl) and (H ′
l) and Y ∈ S

p
G(0, T ) with p ≥ 1. If z̄ = {z̄t}t∈[0,T ] ∈

C[0, T ], then z = {H(t, z̄t, Yt)}t∈[0,T ] ∈ C[0, T ]. Similarly, if z = {zt}t∈[0,T ] ∈ C[0, T ], then z̄ =
{H−1(t, zt, Yt)}t∈[0,T ] ∈ C[0, T ].

Proof. For any z̄ ∈ C[0, T ] and any s, t ∈ [0, T ], it is easy to check that

|zt − zs| ≤ F (|t− s|) + Cl

{
|z̄t − z̄s| + 2Ê|Yt − Ys|

}
.

By Proposition 2.7, we have z ∈ C[0, T ]. It remains to prove the second assertion. Given a sequence
{tn}n∈N ⊂ [0, T ] with limn→n tn = t, we first claim that the sequence {z̄tn} is bounded. Otherwise,
there exists a subsequence {tnk

}k∈N, such that limk→∞ z̄tnk
= ∞. By Proposition 2.7 and the Lipschitz

property of l in (t, x), we have

lim
k→∞

∣∣∣Ê[l(t, Yt − Ê[Yt] + z̄tnk
)] − Ê[l(tnk

, Ytnk
− Ê[Ytnk

] + z̄tnk
)]
∣∣∣ = 0.

Lemma 3.8 indicates that

lim
k→∞

Ê[l(t, Yt − Ê[Yt] + z̄tnk
)] = ∞.

Hence, we deduce that

zt = lim
k→∞

ztnk
= lim

k→∞
Ê[l(tnk

, Ytnk
− Ê[Ytnk

] + z̄tnk
)] = ∞,

which is a contradiction. To show that z̄tn → z̄t, it suffices to prove that for any subsequence {n′} ⊆ N,
one can choose a subsequence {n′′} ⊆ {n′} such that z̄tn′′

→ z̄t. Since {z̄tn′
} is bounded, there exists

a subsequence {n′′} ⊆ n′ such that z̄tn′′
→ z′′. By the definition of z̄, we have

Ê[l(tn′′ , Ytn′′
− Ê[Ytn′′

] + z̄tn′′
)] = ztn′′

.

Letting n′′ goes to infinity, we obtain that

Ê[l(t, Yt − Ê[Yt] + z̄′′)] = zt,

which implies that z′′ = z̄t by the definition of z̄. The proof is complete.

11



In the following we give the proof of Theorem 3.6, which very different to that of Theorem 3.2.
Proof of Theorem 3.6. For any t ∈ [0, T ], set

st = Ê[St] and l̄t = H−1(t, 0, St).

By Proposition 2.7 and Lemma 3.9, we have s = {st}t∈[0,T ] ∈ C[0, T ] and l̄ = {l̄t}t∈[0,T ] ∈ C[0, T ].
The trivial equality

Ê[l(0, S0 − Ê[S0] + Ê[S0])] = Ê[l(0, S0)]

implies that
Ê[S0] = H−1(0, Ê[l(0, S0)], S0).

Noting that H−1(t, ·, Y ) is strictly increasing for any t ∈ [0, T ] and Y ∈ L1
G(ΩT ) and Ê[l(0, S0)] ≥ 0,

we have Ê[S0] ≥ l̄0. Now, let (x,A) be the unique solution of the Skorokhod problem SP(l̄, s), which
is defined to satisfy the following conditions:

(1’) xt = st +At ≥ l̄t, t ∈ [0, T ],

(2’) A ∈ I[0, T ] and
∫ T

0
(xt − l̄t)dAt = 0.

In fact, At = sups∈[0,t](st − l̄t)
−. Set Xt = St + At. We claim that (X,A) is the solution to the

Skorokhod problem SP(l, S). First, simple calculation implies that

Ê[l(t,Xt)] = Ê[l(t, St +At)] = Ê[l(t, St − Ê[St] + xt)] = H(t, xt, St) ≥ H(t, l̄t, St) = 0.

The above equation also indicates that xt = H−1(t, Ê[l(t,Xt)], St). Furthermore, note that

xt > l̄t ⇐⇒ Ê[l(t, St − Ê[St] + xt)] > 0 ⇐⇒ Ê[l(t,Xt)] > 0,

which, together with the above condition (2’), implies that
∫ T

0 Ê[l(t,Xt)]dAt = 0.
It remains to prove the uniqueness. Suppose that (X ′, A′) is another solution of the Skorokhod

problem SP(l, S). Similar arguments as above could show that (x′, A′) where x′t = H−1(t, Ê[l(t,X ′
t)], St),

is the solution of Skorokhod problem SP(l̄, s). Due to the uniqueness of solutions to classical Skorokhod
problem, we have A = A′. Consequently, X = X ′. The proof is complete.

The preceding proof establishes the connection between the solution to a Skorokhod problem with
mean reflection and the solution to a classical Skorokhod problem, thereby aiding in obtaining the
following a priori estimates.

Proposition 3.10 Suppose li and Si satisfy Assumptions (Hl), (H
′
l), and (HS), for i = 1, 2. Let

(X i, Ai) be the solution of the Skorokhod problem SP(li, Si), i = 1, 2. Then, there exists a constant C
depending on cl, Cl, such that

sup
t∈[0,T ]

|A1
t −A2

t | ≤ C

{
sup

t∈[0,T ]

Ê sup
x∈R

|l1(t, x) − l2(t, x)| + sup
t∈[0,T ]

Ê|S1
t − S2

t |

}
,

and Ê sup
t∈[0,T ]

|X1
t −X2

t | ≤ C

{
sup

t∈[0,T ]

Ê sup
x∈R

|l1(t, x) − l2(t, x)| + Ê sup
t∈[0,T ]

|S1
t − S2

t |

}
.

Proof. It suffices to prove the first estimate, for the reason that the second estimate can be obtained
by the representation of X and the triangle inequality. By the proof of Theorem 3.2, (xi, Ai) are the
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solutions of the Skorokhod problem SP(l̄i, si), where sit = Ê[Si
t ], l̄

i
t = H−1

i (t, 0, Si
t) and H−1

i (t, ·, Si
t) is

the inverse map of Hi(t, ·, S
i
t) = Ê[li(t, Si

t − Ê[Si
t ] + ·)], for i = 1, 2. Since

Ai
t = sup

s∈[0,t]

(sis − l̄is)
−,

we have

sup
t∈[0,T ]

|A1
t −A2

t | ≤ sup
t∈[0,T ]

|s1t − s2t | + sup
t∈[0,T ]

|l̄1t − l̄2t |. (3.5)

It is easy to check that

0 =Ê[l1(t, S1
t − Ê[S1

t ] + l̄1t )] − Ê[l2(t, S2
t − Ê[S2

t ] + l̄2t )] =: I1
t + I2

t + I3
t ,

where

I1
t =Ê[l1(t, S1

t − Ê[S1
t ] + l̄1t )] − Ê[l2(t, S1

t − Ê[S1
t ] + l̄1t )],

I2
t =Ê[l2(t, S1

t − Ê[S1
t ] + l̄1t )] − Ê[l2(t, S2

t − Ê[S2
t ] + l̄1t )],

I3
t =Ê[l2(t, S2

t − Ê[S2
t ] + l̄1t )] − Ê[l2(t, S2

t − Ê[S2
t ] + l̄2t )].

Without loss of generality, assume that l̄1t > l̄2t . By the assumption of l2, for any (t, x) ∈ [0, T ] × R,
we have

cl(l̄
1
t − l̄2t ) ≤ l2(t, x+ l̄1t ) − l2(t, x+ l̄2t ) ≤ Cl(l̄

1
t − l̄2t ).

Consequently,

cl(l̄
1
t − l̄2t ) ≤ I3

t ≤ Cl(l̄
1
t − l̄2t ).

Hence, there exists a constant C ∈ [cl, Cl], such that I3
t = C(l̄1t − l̄2t ). The above analysis indicates

that

|l̄1t − l̄2t | ≤
1

cl
|I3t | ≤

1

cl
(|I1

t | + |I2
t |) ≤

1

cl

{
Ê sup

x∈R

|l1(t, x) − l2(t, x)| + 2ClÊ|S
1
t − S2

t |

}
.

Plugging the above inequality into Equation (3.5), we obtain the desired result.

Corollary 3.11 Suppose l satisfies (Hl) and (H ′
l) and S satisfies (HS). Let (X,A) be the solution

of the Skorokhod problem SP(l, S). For any 0 ≤ s ≤ t ≤ T , we have

|At −As| ≤ C

{
sup

r∈[s,t]

Ê|Sr − Ss| + F (|t− s|)

}
,

and Ê sup
r∈[s,t]

|Xr −Xs| ≤ C

{
Ê sup

r∈[s,t]

|Sr − Ss| + F (|t− s|)

}
.

Proof. We only prove the first estimate, while the second estimate can be obtained by the represen-
tation of X and the triangle inequality. For any fixed s ∈ [0, T ] and r ∈ [0, T ], set

S′
r = Sr∧s and l′(r, x) = l(r ∧ s, x).
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Let (X ′, A′) be the solution to the Skorokhod problem SP(l′, S′). It is easy to check that for any
r ∈ [0, T ],

X ′
r = Xr∧s and A′

r = Ar∧s.

By Proposition 3.10, we have

|At −As| ≤ sup
r∈[s,t]

|Ar −A′
r|

≤ C

{
sup

r∈[s,t]

Ê sup
x∈R

|l(r, x) − l′(r, x)| + sup
r∈[s,t]

Ê|Sr − S′
r|

}

≤ C

{
sup

r∈[s,t]

Ê|Sr − Ss| + sup
r∈[s,t]

F (|r − s|)

}

≤ C

{
sup

r∈[s,t]

Ê|Sr − Ss| + F (|t− s|)

}
,

as desired.

4 Mean reflected G-SDEs

In this section, we establish the well-posedness of the mean reflected G-SDE (1.2), recalled here as
follows: for t ∈ [0, T ],




Xt = x0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
h(x,Xs)d〈B〉s +

∫ t

0
σ(s,Xs)dBs +At,

Ê[l(t,Xt)] ≥ 0 and
∫ T

0
Ê[l(t,Xt)]dAt = 0.

We consider the coefficient functions b, h, σ : ΩT × [0, T ] × R → R satisfy the following conditions:

(A1) For some p ≥ 1 and each x ∈ R, b(·, ·, x), h(·, ·, x) ∈M
p
G(0, T ) and σ(·, ·, x) ∈ H

p
G(0, T );

(A2) For any (ω, t) ∈ ΩT × [0, T ] and any x, x′ ∈ R, there exists a constant κ > 0, such that

|b(ω, t, x) − b(ω, t, x′)| + |h(ω, t, x) − h(ω, t, x′)| + |σ(ω, t, x) − σ(ω, t, x′)| ≤ κ|x− x′|.

Now, we state the main result of this section.

Theorem 4.1 Suppose Assumptions (A1), (A2), (Hl) and (H ′
l) hold and Ê[l(0, x0)] ≥ 0. The mean

reflected G-SDE (1.2) admits a unique pair of solution (X,A) ∈ S
p
G(0, T ) × I[0, T ].

Proof. First, we fix a positive constant δ, which will be determined later. Given a process U ∈
S
p
G(0, δ), for any t ∈ [0, δ], set

X̃t = x0 +

∫ t

0

b(s, Us)ds+

∫ t

0

h(s, Us)d〈B〉s +

∫ t

0

σ(s, Us)dBs.

By Assumptions (A1) and (A2), Hölder’s inequality and the BDG inequality under the G-expectation

(Proposition 2.6), we may check that X̃ ∈ S
p
G(0, δ). Theorem 3.2 indicates that there exists a unique

solution (X,A) to the Skorokhod problem SP(l, X̃) on the time interval [0, δ]. We define the mapping
Γ : Sp

G(0, δ) → S
p
G(0, T ) as

Γ(U) = X.
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We then show that Γ is a contraction mapping when δ is small enough. Similarly, for given U ′ ∈
S
p
G(0, δ), define X̃ ′ as above. Let (X,A) and (X ′, A′) be the solutions to the Skorokhod problem

associated with (l, X̃) and (l, X̃ ′), respectively. We define

b̂t = b(t, Ut) − b(t, U ′
t), ĥt = h(t, Ut) − h(t, U ′

t), σ̂t = σ(t, Ut) − σ(t, U ′
t),

Ât = At −A′
t and X̂t = Xt −X ′

t.

Simple calculation implies that

Ê sup
t∈[0,δ]

|X̂t|
p ≤C

{
Ê sup

t∈[0,δ]

|X̃t − X̃ ′
t|
p + sup

t∈[0,δ]

|Ât|
p

}

≤C

{
Ê sup

t∈[0,δ]

∣∣∣∣∣

∫ t

0

b̂sds

∣∣∣∣∣

p

+ Ê sup
t∈[0,δ]

∣∣∣∣∣

∫ t

0

ĥsd〈B〉s

∣∣∣∣∣

p

+ Ê sup
t∈[0,δ]

∣∣∣∣∣

∫ t

0

σ̂sdBs

∣∣∣∣∣

p

+ sup
t∈[0,δ]

|Ât|
p

}

≤C

{
Ê

∫ δ

0

|Ût|
pds+ sup

t∈[0,δ]

|Ât|
p

}
,

(4.1)

where we have used Hölder’s inequality and the BDG inequality under the G-expectation (Proposition
2.6). Here, C is a constant depending only on p, δ, κ, σ, σ. Recalling the first proof of Theorem 3.2,
we have

sup
t∈[0,δ]

|Ât|
p ≤ sup

t∈[0,δ]

|Lt(X̃t) − Lt(X̃
′
t)|

p ≤
C

p
l

c
p
l

sup
t∈[0,δ]

Ê|X̃t − X̃ ′
t|
p ≤ CÊ

∫ δ

0

|Ût|
pds, (4.2)

where we have used Remark 3.7 in the second inequality and C is a constant depending on p, δ, κ,
σ, σ, Cl, cl. Equations (4.1) and (4.2) yield that

Ê sup
t∈[0,δ]

|X̂t|
p ≤ CδÊ sup

t∈[0,δ]

|Ût|
p.

Therefore, for δ being sufficiently small, Γ is a contraction mapping. We then obtain the existence
and uniqueness of the solution, denoted by (X(1), A(1)), to the mean reflected G-SDE (1.2) on the
interval [0, δ]. Now, let N be such that N = [Tδ ] + 1. For any 2 ≤ n ≤ N , by a similar analysis as
above, the following reflected G-SDEs on the time interval [(n− 1)δ, nδ ∧ T ] admits a unique solution
(X(n), A(n)):




X
(n)
t = X

(n−1)
(n−1)δ +

∫ t

(n−1)δ
b(s,X

(n)
s )ds+

∫ t

(n−1)δ
h(s,X

(n)
s )d〈B〉s +

∫ t

(n−1)δ
σ(s,X

(n)
s )dBs + A

(n)
t ,

Ê[l(t,X
(n)
t )] ≥ 0 and

∫ nδ∧T

(n−1)δ Ê[l(t,X
(n)
t )]dAn

t = 0.

We define, for t ∈ ((n− 1)δ, nδ ∧ T ] and 1 ≤ n ≤ N ,

Xt = X
(1)
t 1[0,δ](t) +

N∑

n=2

X
(n)
t 1((n−1)δ,nδ∧T ](t) and At = A

(n)
t +

n−1∑

j=1

A
(j)
jh ,

with the convention
∑0

j=1 A
j
jh = 0. It is easy to check that (X,A) is the solution to the mean

reflected G-SDE (1.2). The uniqueness follows from the uniqueness for each small interval. The proof
is complete.
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Let (X,A) be the solution to the mean reflected G-SDE (1.2) and we provide its some moment
estimates in the proposition below. Set

Ut = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

h(s,Xs)d〈B〉s +

∫ t

0

σ(s,Xs)dBs. (4.3)

Proposition 4.2 Suppose Assumptions (A1), (A2), (Hl), (H
′
l) hold and Ê[l(0, x0)] ≥ 0. Then, there

exists a constant C depending on p, κ, Cl, cl, σ, σ, T , such that

Ê sup
t∈[0,T ]

|Xt|
p (4.4)

≤ C

(
1 + |x0|

p + Ê

[∫ T

0

|b(s, 0)|pds

]
+ Ê

[∫ T

0

|h(s, 0)|pds

]
+ Ê

(∫ T

0

|σ(s, 0)|2ds

)p/2)
.

Furthermore, suppose for each x ∈ R, b(·, ·, x), h(·, ·, x), σ(·, ·, x) ∈ S
p
G(0, T ). Then, for any 0 ≤ s ≤

t ≤ T ,

|At −As| ≤ C
{
|t− s|

1
2 + F (|t− s|)

}
and Ê|Xt −Xs|

p ≤ C
{
|t− s|

p
2 + F p(|t− s|)

}
. (4.5)

Proof. Note that A can be viewed as the second component of the solution to the Skorokhod problem
SP(l, U). By Corollary 3.11, for any 0 ≤ s ≤ t ≤ T , we have

|At| ≤ C

{
sup

r∈[0,t]

Ê|Ur − U0| + F (|t|)

}
≤ C

{
sup

r∈[0,t]

Ê|Ur − x0| + F (|T |)

}
, (4.6)

|At −As| ≤ C

{
sup

r∈[s,t]

Ê|Ur − Us| + F (|t− s|)

}
. (4.7)

Simple calculation gives that

Ê sup
s∈[0,t]

|Xs|
p ≤ C

{
Ê sup

s∈[0,t]

|Us|
p + |At|

p

}

≤ C

{
1 + |x0|

p + Ê

[∫ t

0

|b(s, 0)|pds

]
+ Ê

[ ∫ t

0

|h(s, 0)|pds

]

+ Ê

(∫ t

0

|σ(s, 0)|2ds

)p/2

+ Ê

[∫ t

0

|Xs|
pds

]}

≤ C

{
1 + |x0|

p + Ê

[∫ t

0

|b(s, 0)|pds

]
+ Ê

[ ∫ t

0

|h(s, 0)|pds

]

+ Ê

(∫ t

0

|σ(s, 0)|2ds

)p/2

+

∫ t

0

Ê

[
sup

r∈[0,s]

|Xr|
p

]
dr

}
.

Applying Grönwall’s inequality, we obtain the moment estimate (4.4).
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Next, by Hölder’s inequality and Proposition 2.6, we have

Ê|Ut − Us|
p ≤C

{
Ê

∣∣∣∣
∫ t

s

b(r,Xr)dr

∣∣∣∣
p

+ Ê

∣∣∣∣
∫ t

s

h(r,Xr)d〈B〉r

∣∣∣∣
p

+ Ê

∣∣∣∣
∫ t

s

σ(r,Xr)dBr

∣∣∣∣
p
}

≤C

{
Ê

∣∣∣∣
∫ t

s

|b(r,Xr)|dr

∣∣∣∣
p

+ Ê

∣∣∣∣
∫ t

s

|h(r,Xr)|dr

∣∣∣∣
p

+ Ê

(∫ t

s

|σ(r,Xr)|2dr

)p/2
}

≤C

{
Ê

∣∣∣∣∣

∫ t

s

(
sup

r∈[s,t]

|b(r, 0)| + sup
r∈[s,t]

|h(r, 0)| + sup
r∈[s,t]

|Xr|
)
dr

∣∣∣∣∣

p

+ Ê

∣∣∣∣∣

∫ t

s

(
sup

r∈[s,t]

|σ(r, 0)|2 + sup
r∈[s,t]

|Xr|
2
)
dr

∣∣∣∣∣

p/2}

≤|t− s|p/2,

where we have used the estimate (4.4) and the fact that b, h, σ ∈ S
p
G(0, T ) in the last step. Plugging

the above inequality into equation (4.7), we obtain the first result in equation (4.5). Noting that

Xt −Xs = Ut − Us +At −As,

we obtain the estimate for Ê|Xt −Xs|
p. The proof is complete.

Proposition 4.2 establishes the continuity of the second component A in the solution to the mean
reflected G-SDE. In the following, we show that subject to certain regularity conditions on the loss
function l, the function A exhibits Lipschitz continuity.

Proposition 4.3 Let Assumptions (A1) and (A2) hold with p ≥ 2. Assume that l ∈ C
1,2
b ([0, T ]×R)

is bi-Lipschtiz (i.e., satisfies (3.2)) and strictly increasing in its second component with l(0, x0) ≥ 0
and

sup
t∈[0,T ]

(
Ê|b(t, 0)|2 + Ê|h(t, 0)|2 + Ê|σ(t, 0)|2

)
<∞,

where C1,2
b ([0, T ] × R) is the space of all functions of class C1,2([0, T ] × R) whose partial derivatives

are bounded. Let (X,A) be the solution to the mean reflected G-SDE (1.2). Then the function A is
Lipschitz continuous.

Proof. We define the operator L̃t : L1
G(ΩT ) → R as

L̃t(X) = inf
{
x ∈ R : Ê[l(t, x+X)] ≥ 0

}
. (4.8)

Clearly, we have Lt(X) = (L̃t(X))+. Let (X,A) be the solution to the Skorokhod problem SP(l, S).

By the proof of Theorem 3.2, we have At = sups∈[0,T ](L̃s(Ss))
+. We first prove that t → L̃t(Ut) is

Lipschitz continuous on [0, T ]. In fact, by the definition of L̃t(Ut), we have

Ê[l(t, L̃t(Ut) + Ut)] = 0.

If x ≥ y, since l is bi-Lipschitz and Ê[·] is sub-additive, we obtain that

cl(x− y) ≤ −Ê[l(t, y + Ut) − l(t, x+ Ut)] ≤ Ê[l(t, x+ Ut)] − Ê[l(t, y + Ut)].
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The above analysis implies that, for any 0 ≤ s < t ≤ T ,

|L̃s(Us) − L̃t(Ut)| ≤
1

cl

∣∣∣Ê[l(t, L̃s(Us) + Ut)] − Ê[l(t, L̃t(Ut) + Ut)]
∣∣∣

=
1

cl

∣∣∣Ê[l(t, L̃s(Us) + Ut)] − Ê[l(s, L̃s(Us) + Us)]
∣∣∣. (4.9)

Applying G-Itô’s formula (Li and Peng, 2011) to l(t, L̃s(Us) + Ut), we obtain that

l(t, L̃s(Us) + Ut) =l(s, L̃s(Us) + Us) +

∫ t

s

[
∂tl(r, L̃s(Us) + Ur) + ∂xl(r, L̃s(Us) + Ur)b(r,Xr)

]
dr

+

∫ t

s

[
∂xl(r, L̃s(Us) + Ur)h(r,Xr) +

1

2
∂2xl(r, L̃s(Us) + Ur)σ

2(r,Xr)
]
d〈B〉r

+

∫ t

s

∂xl(r, L̃s(Us) + Ur)σ(r,Xr)dBr.

(4.10)

By Equations (4.9) and (4.10), together with the estimate (4.4) in Proposition 4.2, we have

|L̃s(Us) − L̃t(Ut)|

≤
1

cl
Ê

[∣∣∣∣∣

∫ t

s

[
∂tl(r, L̃s(Us) + Ur) + ∂xl(r, L̃s(Us) + Ur)b(r,Xr)

]
dr

+

∫ t

s

[
∂xl(r, L̃s(Us) + Ur)h(r,Xr) +

1

2
∂2xl(r, L̃s(Us) + Ur)σ2(r,Xr)

]
d〈B〉r

∣∣∣∣∣

]

≤
C

cl
Ê

[ ∫ t

s

(
1 + |b(r, 0)| + |h(r, 0)| + |σ(r, 0)|2 + |Xr| + |Xr|

2
)
dr

]

≤ C|t− s|.

Now we are ready to prove that A is Lipschitz continuous. Since Lt(Ut) = (L̃t(Ut))
+, L·(U·) is

Lipschitz continuous with Lipschitz constant C. Note that A can be viewed as the second component
of the solution to the Skorokhod problem SP(l, U). By the first proof of Theorem 3.2, for any 0 ≤ s ≤
t ≤ T , we have

At = sup
r∈[0,t]

Lr(Ur) = max

(
sup

r∈[0,s]

Lr(Ur), sup
r∈[s,t]

Lr(Ur)

)
= max

(
As, sup

r∈[s,t]

Lr(Ur)

)
.

For any r ∈ [s, t], it is easy to check that

Lr(Ur) ≤ Ls(Us) + C(r − s) ≤ As + C(t− s),

which implies that supr∈[s,t] Lr(Ur) ≤ As + C(t− s). Therefore,

0 ≤ As ≤ At ≤ As + C(t− s).

The proof is complete.
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5 Approximation by an interacting particle system

The aim of this section is to demonstrate that the solution of the mean reflected G-SDE can be
viewed as the limit of an interacting reflected particle system. To achieve this, we make the following
assumptions: the loss function is defined as l(t, x) = ax − rt, the coefficient function h ≡ 0, and the
coefficient functions b and σ are deterministic and independent of t, where a represents a positive
constant and {rt}t∈[0,T ] is a continuous function. The rationale behind considering this particular
form of mean reflected G-SDEs is discussed in Remark 5.4. Without loss of generality, we assume
a = 1. The solution of the mean reflected G-SDE (1.2) can be written as

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs + sup
s∈[0,t]

Ls(Us), (5.1)

where the operator Lt is defined in Equation (3.1) and

Ut = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs. (5.2)

It is easy to check that

Lt(Ut) = (rt − Ê[Ut])
+ =

(
rt − x0 − Ê

[∫ t

0

b(Xs)ds

])+

.

Now, fix a positive integer N . Let B1 be a G-Brownian motion independent of B and let Bi be
a G-Brownian motions independent of (B,B1, · · · , Bi−1) for any i = 2, · · · , N . The dynamics of the
candidate particle system is of the following form: for any t ∈ [0, T ] and 1 ≤ i ≤ N ,

X
i,N
t = x0 +

∫ t

0

b(X i,N
s )ds+

∫ t

0

σ(X i,N
s )dBi

s + sup
s∈[0,t]

G̃s(U
(N)
s ), (5.3)

where U
(N)
t = 1

N

∑N
i=1 U

i,N
t and

G̃t(U
(N)
t ) = inf

{
x ≥ 0 :

1

N

N∑

i=1

l(t, x+ U
i,N
t ) = 0

}
,

with U
i,N
t evolving according to

U
i,N
t = x0 +

∫ t

0

b(X i,N
s )ds+

∫ t

0

σ(X i,N
s )dBi

s.

It is easy to check that

G̃t(U
(N)
t ) = (rt − U

(N)
t )+.

Then we introduce the independent copies of X , for 1 ≤ i ≤ N ,

X i
t = x0 +

∫ t

0

b(X i
s)ds+

∫ t

0

σ(X i
s)dB

i
s + sup

s∈[0,t]

Ls(Us),

and the particles

U i
t = x0 +

∫ t

0

b(X i
s)ds+

∫ t

0

σ(X i
s)dB

i
s.
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By Proposition 4.3, the function {sups∈[0,t] Ls(Us)}t∈[0,T ] is Lipschitz continuous. Denote its

Radon-Nikodym derivative by ψ. Then X and X i can be viewed as the solution to the SDE with
coefficients b̃, σ where b̃(t, x) = b(x) +ψt, driven by G-Brownian motion B and Bi, respectively. That
is,

Xt = x0 +

∫ t

0

(b(Xs) + ψs)ds+

∫ t

0

σ(Xs)dBs,

X i
t = x0 +

∫ t

0

(b(X i
s) + ψs)ds+

∫ t

0

σ(X i
s)dB

i
s.

We now enforce b, σ and ψ enough regularities to suffice the technical assumption below.

(H0) For any fixed t0 ∈ [0, T ], let u(t0; t, x) be the solution to the following fully nonlinear PDE:



∂tu(t0; t, x) +G(σ2(x)∂2xu(t0; t, x)) + (b(x) + ψt)∂xu(t0; t, x) = 0,

u(t0; t0, x) = b(x),
(5.4)

where u(t0; t, x) ∈ C1,2([0, t0] × R). Additionally, for any t ∈ [0, t1] with 0 ≤ t1 < t2 ≤ T ,

∂2xu(t1; t, x)∂2xu(t2; t, x) ≥ 0. (5.5)

We validate the above assumption in the following remark.

Remark 5.1 Let b be a convex and nondecreasing function and σ(x) = a1x + a2, where a1, a2 are
constants. Then, for any t ∈ [0, t0] where t0 ∈ [0, T ], the function u(t0; t, x) is convex in x. In fact,
for any (t, x) ∈ [0, t0] × R, consider the following FBSDE driven by G-Brownian motion




Xt,x

s = x+
∫ s

t
(b(Xt,x

r ) + ψr)dr +
∫ s

t
σ(Xt,x

r )dBr ,

Y t0;t,x
s = b(Xt,x

t0 ) −
∫ t0
s
Zt0;t,x
r dBr − (Kt0;t,x

t0 −Kt0;t,x
s ).

By Theorem 4.5 in Hu et al. (2014), u(t0; t, x) = Y
t0;t,x
t is the solution to PDE (5.4). Hence, it suffices

to show that Y t0;t,x
t is convex in x. Noting that b is convex and nondecreasing, by the comparison

theorem for G-BSDE (Theorem 3.7 in Hu et al. (2014)), it then suffices to show that Xt,x is convex
in x. Define, for any x, x′ ∈ R and λ ∈ (0, 1),

Xλ,t,x,x′

s = λXt,x
s + (1 − λ)Xt,x′

s .

It is easy to check that

Xλ,t,x,x′

s = λx+ (1 − λ)y +

∫ s

t

(
λb(Xt,x

r ) + (1 − λ)b(Xt,x′

r ) + ψr

)
dr +

∫ s

t

(a1X
λ,t,x,x′

r + a2)dBr

= λx+ (1 − λ)y +

∫ s

t

(
b(Xλ,t,x,x′

r ) + b̃r + ψr

)
dr +

∫ s

t

(a1X
λ,t,x,x′

r + a2)dBr,

where

b̃r = λb(Xt,x
r ) + (1 − λ)b(Xt,x′

r ) − b(Xλ,t,x,x′

r ) ≥ 0.

Set X̂s = Xλ,t,x,x′

s −X
t,λx+(1−λ)x′

s . Simple calculation yields that

X̂s =

∫ s

t

(b(Xλ,t,x,x′

r ) − b(Xt,λx+(1−λ)x′

r ) + b̃r)dr +

∫ s

t

a1X̂rdBr. (5.6)
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Similar construction as in the proof of Theorem 3.6 in Hu et al. (2014), for any ε > 0, there exists a
pair of processes (bε,mε) such that bε ∈M2

G(0, T ) with |bεr| ≤ κ and |mε
r| ≤ 2κε satisfying

b(Xλ,t,x,x′

r ) − b(Xt,λx+(1−λ)x′

r ) = bεrX̂r +mε
r.

Then, we may solve the G-SDE (5.6) explicitly, i.e.,

X̂s = (Γε
s)

−1

∫ s

t

(b̃r +mε
r)Γε

rdr ≥ −2κε(Γε
s)

−1

∫ s

t

Γε
rdr, (5.7)

where

Γε
s = exp

(
−

∫ s

t

bεrdr +
1

2
a21(〈B〉s − 〈B〉t) − a1(Bs −Bt)

)
.

Letting ε→ 0 in Equation (5.7), we obtain the desired result. Furthermore, if for any t0 ∈ [0, T ], the
function u(t0; t, x) belongs to C1,2([0, t0] ×R), then for any t ∈ [0, t0], we have ∂2xu(t0; t, x) ≥ 0. That
is, Equation (5.5) holds.

Condition (H0) ensures that we may change the order of integral and the nonlinear expectation

Ê[·] in certain cases, which will be needed in the following lemma.

Lemma 5.2 Suppose that the functions b, σ are deterministic satisfying (A2) and the loss function
l(t, x) satisfies l(0, x0) ≥ 0. Under Assumption (H0), let Xx0 be the solution to the G-SDE (5.1).
Then we have

Ê

∫ T

0

b(Xx0

t )dt =

∫ T

0

Ê[b(Xx0

t )]dt.

Proof. For any fixed n ∈ N, let {ti}
n
i=1 be a partition of [0, T ]. Let {ai}

n
i=1 be positive constants.

We first show that

Ê

n∑

i=1

aiϕ(Xx0

ti ) =

n∑

i=1

aiÊ[ϕ(Xx0

ti )].

Without loss of generality, we assume that ai = 1 for i = 1, · · · , n. Set

Y
ti,x0

t =

{
u(ti; t,X

x0

t ), t ∈ [0, ti], ,

b(Xx0

ti ), t ∈ (ti, T ],

where u(ti; t, x) is the solution to the PDE (5.4). Applying G-Itô’s formula (Li and Peng, 2011) to
Y

ti,x0

t , for any t ∈ [0, ti], we obtain that

Y
ti,x0

t =u(ti; ti, X
x0

ti ) +

∫ ti

t

[
∂tu(ti; s,X

x0

s ) + (b(Xx0

s ) + ψs)∂xu(ti; s,X
x0

s )
]
ds

+

∫ ti

t

1

2
σ2(Xx0

s )∂2xu(ti; s,X
x0

s )d〈B〉s +

∫ ti

t

σ(Xx
s )∂xu(ti; s,X

x
s )dBs

=b(Xx0

ti ) +

∫ T

t

ζti,x0

s dBs +

∫ T

t

ηti,x0

s d〈B〉s −

∫ T

t

2G(ηti,x0

s )ds,

where for any s ∈ [0, ti],

ζti,x0

s = σ(Xx0

s )∂xu(ti; s,X
x0

s ) and ηti,x0

s =
1

2
σ2(Xx0

s )∂2xu(ti; s,X
x0

s ),
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and for any s ∈ (ti, T ],
ζti,x0

s = ηti,x0

s = 0.

By Equation (5.5), for any 0 ≤ i < j ≤ n and s ∈ [0, T ], we have

ηti,x0

s ηtj ,x0

s ≥ 0.

It follows that

n∑

i=1

Y
ti,x0

t =
n∑

i=1

b(Xx0

ti ) +

∫ T

t

n∑

i=1

ζti,x0

s dBs +

∫ T

t

n∑

i=1

ηti,x0

s d〈B〉s −

∫ T

t

2
n∑

i=1

G(ηti,x0

s )ds

=

n∑

i=1

b(Xx0

ti ) +

∫ T

t

n∑

i=1

ζti,x0

s dBs +

∫ T

t

n∑

i=1

ηti,x0

s d〈B〉s −

∫ T

t

2G

(
n∑

i=1

ηti,x0

s

)
ds.

Therefore, we have

Ê

n∑

i=1

b(Xx0

ti ) =

n∑

i=1

Y
ti,x0

0 =

n∑

i=1

Ê[b(Xx0

ti )].

At last, for any n ∈ N, let ti = iT
n where i = 0, 1, . . . , n. Recalling Equation (4.5), it is easy to

check that

n−1∑

i=0

∫ ti+1

ti

Ê|b(Xx0

t ) − b(Xx0

ti )|dt ≤ C

n−1∑

i=0

∫ ti+1

ti

|t− ti|
1/2dt → 0, as n→ ∞.

Then we have

Ê

∫ T

0

b(Xx0

t )dt = lim
n→∞

Ê

n−1∑

i=0

b(Xx0

ti )(ti+1 − ti) = lim
n→∞

n−1∑

i=0

Ê[b(Xx0

ti )](ti+1 − ti) =

∫ T

0

Ê[b(Xx0

t )]dt,

as desired.

The following theorem is the main result of this section.

Theorem 5.3 Suppose that the functions b, σ are deterministic satisfying (A2) and the loss function
l(t, x) satisfies l(0, x0) ≥ 0. Under Assumption (H0), there exists a constant C independent of N such
that, for j = 1, · · · , N ,

Ê sup
r∈[0,T ]

|Xj,N
r −Xj

r |
2 ≤

C

N

(
1 + sup

s∈[0,T ]

Ê|Xu|
2

)
.

Proof. The proof proceeds in two steps. In the first step, we will show that, there exists a constant
C independent of N , such that for any t ∈ [0, T ],

Ê sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|
2 ≤

C

N

(
1 + sup

s∈[0,T ]

Ê|Xu|
2

)
,

where U
(N)

t = 1
N

∑N
i=1 U

i
t and G̃t(U

(N)

t ) = (rt − U
(N)

t )+. Then we plug that into the result obtained
in the second step to complete the proof.

22



Step 1. By the representations of G̃s(U
(N)

s ) and Ls(Us), noting that Ê[Us] = Ê[U i
s] for i = 1, 2, · · · , N ,

we obtain that

|G̃s(U
(N)

s ) − Ls(Us)| =
∣∣∣(rt − U (N)

s )+ − (rs − Ê[Us])
+
∣∣∣

≤

∣∣∣∣∣
1

N

N∑

i=1

U i
s −

1

N

N∑

i=1

Ê[U i
s]

∣∣∣∣∣

=

∣∣∣∣∣
1

N

N∑

i=1

{∫ s

0

b(X i
u)du − Ê

[∫ s

0

b(X i
u)du

]}
+

1

N

N∑

i=1

∫ s

0

σ(X i
u)dBi

u

∣∣∣∣∣

≤

∣∣∣∣∣

∫ s

0

1

N

N∑

i=1

(b(X i
u) − Ê[b(X i

u)])du

∣∣∣∣∣+

∣∣∣∣∣
1

N

N∑

i=1

∫ s

0

σ(X i
u)dBi

u

∣∣∣∣∣ ,

where we have used Lemma 5.2 in the last inequality. Set

X i
u = b(X i

u) − Ê[b(X i
u)].

As a byproduct, we have

sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)| ≤

∫ t

0

∣∣∣∣∣
1

N

N∑

i=1

X i
u

∣∣∣∣∣ du+ sup
s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

∫ s

0

σ(X i
u)dBi

u

∣∣∣∣∣ .

For any u ∈ [0, T ], simple calculation yields that

Ê

∣∣∣∣∣
1

N

N∑

i=1

X i
u

∣∣∣∣∣

2

≤
1

N2





N∑

i=1

Ê|X i
u|

2 + 2
∑

1≤i<j≤N

Ê[X i
uX

j
u ]





=
1

N2

N∑

i=1

Ê

[
(b(X i

u) − Ê[b(X i
u)])2

]

=
1

N
Ê

[
(b(Xu) − Ê[b(Xu)])2

]

≤
C

N

(
1 + sup

s∈[0,T ]

Ê[|Xu|
2]

)
.

Applying Proposition 2.6, we obtain that for any t ∈ [0, T ],

Ê sup
s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

∫ s

0

σ(X i
u)dBi

u

∣∣∣∣∣

2

≤
C

N2

N∑

i=1

∫ t

0

Ê[σ2(X i
u)]du ≤

C

N

(
1 + sup

s∈[0,T ]

Ê[|Xu|
2]

)
.

All the above analysis gives

Ê sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|
2 ≤

C

N

(
1 + sup

s∈[0,T ]

Ê|Xu|
2

)
,

as desired

Step 2. Let t ∈ (0, T ]. For j = 1, · · · , N , set

X̂j = Xj,N −Xj.
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For any r ≤ t, we have

|X̂j
r | ≤

∫ r

0

|b(Xj,N
s ) − b(Xj

s )|ds+

∣∣∣∣
∫ r

0

(σ(Xj,N
s ) − σ(Xj

s ))dBj
s

∣∣∣∣+

∣∣∣∣∣ sup
s∈[0,r]

G̃s(U
(N)
s ) − sup

s∈[0,r]

Ls(Us)

∣∣∣∣∣ .

By the representations of G̃s(U
(N)
s ) and G̃s(U

(N)
s ), it is easy to check that

∣∣∣∣∣ sup
s∈[0,r]

G̃s(U
(N)
s ) − sup

s∈[0,r]

Ls(Us)

∣∣∣∣∣

≤

∣∣∣∣∣ sup
s∈[0,r]

G̃s(U
(N)
s ) − sup

s∈[0,r]

G̃s(U
(N)

s )

∣∣∣∣∣+

∣∣∣∣∣ sup
s∈[0,r]

G̃s(U
(N)

s ) − sup
s∈[0,r]

Ls(Us)

∣∣∣∣∣

≤ sup
s∈[0,r]

|G̃s(U
(N)
s ) − G̃s(U

(N)

s )| + sup
s∈[0,r]

|G̃s(U
(N)

s ) − Ls(Us)|

≤ sup
s∈[0,r]

∣∣∣∣∣
1

N

N∑

i=1

(U i,N
s − U i

s)

∣∣∣∣∣+ sup
s∈[0,r]

|G̃s(U
(N)

s ) − Ls(Us)|.

Combining the above two inequalities yields that

sup
r∈[0,t]

|X̂j
r | ≤ I

j
t + sup

s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

(U i,N
s − U i

s)

∣∣∣∣∣+ sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|, (5.8)

where

I
j
t =

∫ t

0

|b(Xj,N
s ) − b(Xj

s )|ds+ sup
r∈[0,t]

∣∣∣∣
∫ r

0

(σ(Xj,N
s ) − σ(Xj

s ))dBj
s

∣∣∣∣ .

Applying Hölder’s inequality and Proposition 2.6, we obtain that

Ê|Ijt |
2 ≤ C

∫ t

0

Ê|X̂j
s |

2ds. (5.9)

Note that

sup
s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

(U i,N
s − U i

s)

∣∣∣∣∣ ≤
1

N

N∑

i=1

sup
s∈[0,t]

|U i,N
s − U i

s| ≤
1

N

N∑

i=1

Iit .

Since the variables are exchangeable, it follows that

Ê sup
s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

(U i,N
s − U i

s)

∣∣∣∣∣

2

≤
C

N

N∑

i=1

Ê|Iit |
2 = CÊ|Ijt |

2 ≤ C

∫ t

0

Ê|X̂j
s |

2ds. (5.10)

Combining Equations (5.8)-(5.10), we obtain that

Ê sup
r∈[0,t]

|X̂j
r |

2 ≤ C

∫ t

0

Ê|X̂j
s |

2ds+ CÊ sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|
2

≤ C

∫ t

0

Ê sup
r∈[0,s]

|X̂j
r |

2ds+ CÊ sup
s∈[0,T ]

|G̃s(U
(N)

s ) − Ls(Us)|
2
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It follows from Grönwall’s lemma that

Ê sup
r∈[0,T ]

|X̂j
r |

2 ≤ CÊ sup
s∈[0,T ]

|G̃s(U
(N)

s ) − Ls(Us)|
2.

Using the result obtained in Step 1, we complete the proof.

Finally, we address the reason for omitting the d〈B〉 term in the following remark, aiming to
provide insights that may inspire future research.

Remark 5.4 If there exists the d〈B〉-term, we cannot get the convergence result. For example, sup-
pose that h = 1, b = σ = 0. Recall that the convergence result requires the estimate for the following
term

Ê sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|
2.

In this case, we have

G̃s(U
(N)

s ) = (rs − x0 −
1

N

N∑

i=1

〈Bi〉s)
+ and Ls(Us) = (rs − Ê[x0 + 〈B〉s])+ = (rs − x0 − σ̄2s)+.

It follows that

|G̃s(U
(N)

s ) − Ls(Us)| ≤

∣∣∣∣∣
1

N

N∑

i=1

(〈Bi〉s − σ̄2s)

∣∣∣∣∣

However, simple calculation yields that

Ê sup
s∈[0,t]

∣∣∣∣∣
1

N

N∑

i=1

(〈Bi〉s − σ̄2s)

∣∣∣∣∣

2

= Ê

(
1

N

N∑

i=1

(σ̄2t− 〈Bi〉t)

)2

= (σ̄2 − σ2)2t2,

which clearly is independent of N . Therefore, we cannot get the desired estimate

Ê sup
s∈[0,t]

|G̃s(U
(N)

s ) − Ls(Us)|
2 ≤

C

N
.

That is also the rationale behind our focus solely on the linear loss function l. Alternatively, if l were
a nonlinear smooth function and σ 6= 0, estimating the term |G̃s(U

(N)s) − Ls(Us)| would necessitate
the application of G-Itô’s formula (Li and Peng, 2011) to l(s, U i

s +As), where As = supr∈[0,s] Lr(U)r
(see the proof of Theorem 3.3 (ii) in Briand et al. (2020a)). It is evident that this approach would
introduce a d〈B〉 term, rendering it untenable to obtain the convergence result outlined earlier.
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