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Depinning transitions occur when a threshold force must be applied to drive an otherwise immobile
system. For the depinning of colloidal particles from a corrugated landscape, we show how active
noise due to self-propulsion impacts the nature of this transition, depending on the speed and the
dimensionality d of rotational Brownian motion: the drift velocity exhibits the critical exponent 1/2
for quickly reorienting particles, which changes to d/2 for slow ones; in between these limits, the
drift varies superexponentially. Different giant diffusion phenomena emerge in the two regimes. Our
predictions extend to systems with a saddle-node bifurcation in the presence of a bounded noise.
Moreover, our findings suggest that nonlinear responses are a sensitive probe of nonequilibrium
behavior in active matter.

A depinning transition occurs when a physical system
is driven out of an immobile, localized state by an ex-
ternal force f such that, upon increasing the force above
a critical value fc, the system depins and starts to slide
with a drift velocity vD [1–3]. When approaching the
transition from above, this response to the driving varies
as a power law, vD ∼ (f − fc)β , with a universal scaling
exponent β. The phenomenon appears in a variety of
contexts: it governs the onset of motion of fronts [4–6],
contact lines [7], and domain walls [8–10], but also of vor-
tices in superconductors [11–13] and magnetic skyrmions
[14]. The depinning transition is fundamental for the
phenomena of sliding friction and superlubricity [15–19],
synchronization [20], and locking [21–26]. Colloidal sys-
tems have given exquisite insight into the depinning tran-
sition of individual particles [27–30], monolayers [31–34],
and in glasses [35–37].

Unlike passive matter, active particles—motile mi-
croorganisms, artificial microswimmers, and active
colloids—propel themselves and perform a directed mo-
tion, with the direction randomized as a function of time
[38–42]. Experimental research in the field is fueled by
the vision of microrobots performing specific transport
tasks [43–45]; such particles move through structured
channels, blood vessels, or surmount geometric constric-
tions [46]. More fundamentally, the inherently nonequi-
librium nature of self-propulsion leads to a nontrivial in-
terplay with a patterned substrate [42, 47–50], with im-
pact on the macroscopic transport and inducing, e.g.,
directionality [51], negative mobility [52, 53], or superdif-
fusion [54]. One anticipates that self-propulsion also
has significant ramifications on the depinning transition,
which is an open issue.

In this work, we answer this basic question within the
paradigm of the active Brownian particle (ABP) driven
over a periodic landscape. The response is contrasted to
that of a passive particle, whose drift velocity is known
to exibit a power law with exponent β = 1/2 near de-
pinning. We show that the activity modifies the nature
of the transition, including a change of the exponent to
some β′, superexponential behavior, the emergence of an-

other singular point, and an unbounded enhancement of
the diffusivity in between. The new exponent β′ = d/2 is
sensitive to the dimensionality d of rotational Brownian
motion.

Model. We use the framework of an ABP confined to
a periodic potential energy landscape U(r) and subjected
to an external force f [Fig. 1(a)]. The position r and
the orientation u of the ABP satisfy the Itō–Langevin
equations [55, 56]:

ṙ(t) = µ0[f − ∇U(r(t))] + vAu(t) + ξ(t) , (1)
u̇(t) = ω(t) × u(t) − τ−1

R u(t) , (2)

where vA ⩾ 0 is the propulsion strength and µ0 is the
mobility of the free particle. The random linear and
angular velocities, ξ and ω, respectively, are Gaussian
white noise processes with zero means, ⟨ξ(t)⟩ = 0 and
⟨ω(t)⟩ = 0, and covariances ⟨ξ(t)⊗ξ(t′)⟩ = 2D01δ(t− t′)
and ⟨ω(t) ⊗ ω(t′)⟩ = 2DR1δ(t − t′). Here, D0 and
DR are the translational and rotational diffusion con-
stants, respectively. With τ−1

R = (d − 1)DR, Eq. (2)
implies that u(t) performs an unbiased diffusion on the
unit circle (d = 2) or unit sphere (d = 3) [56]. In the
stationary limit, all directions of u are equally prob-
able and the evolution of u(t) yields ⟨u(t)⟩ = 0 and
⟨u(t) · u(t′)⟩ = exp(−|t − t′|/τR); hence, τR is the per-
sistence time of the orientation. In the following, we will
mainly consider the case d = 3 because of its relevance
for applications [48, 57–59].

As the potential, we employ the prototypical one-
dimensional corrugated landscape [60] with a cosine
shape: U(r) = UL(1 − cos kx) with x = r · ex and the
unit vector ex pointing perpendicular to the ripples; UL
is the amplitude of the landscape and k its wavenum-
ber, equivalently, λ = 2π/k its wavelength. Transla-
tional symmetry allows us to fix the direction of the
force to f = fex with f ⩾ 0. Focusing on the depin-
ning singularity, we switch off the translational Brown-
ian noise (D0 = 0), which is known to mask the singular
behavior at the critical point such that a rounded rather
than sharp transition is observed [61–63]. With this, the
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FIG. 1. Panel (a): Depinning of an active Janus particle from a corrugated potential landscape and subject to a driving force f
(bottom) and the mapping to passive motion in a randomly tilted potential landscape (top). The tilt has a constant contribution
−fx (black line), which is increased (green line) or decreased (red line) depending on the orientation u(t). Panels (b),(c): Drift
velocity vD(f) of the active particle with (b) fixed rotational persistence time τR = τL but varying propulsion velocity vA
and (c) fixed vA = 0.2vL but varying τR. In panel (b), the inset shows the same data as in the main panel on a logarithmic
scale. Panel (d): high-precision data for vD(f)/vL from the numerical solution of the Fokker–Planck equation, shown on an
iterated logarithmic scale and corroborating the superexponential convergence of vD(f) → 0 as f ↓ f−

c [Eq. (9)]. Panels (e),(f):
Differential mobility µ(f) = dvD(f)/df and effective diffusion constant Deff(f) as functions of the driving force f for fixed
vA = 0.2vL and varying τR. All panels: thin lines interpolate between stochastic simulation results (symbols); thick lines are
analytic predictions for the limits of the hyper wobbler (gray, τR → 0) and the lazy wobbler (orange, τR → ∞).

model reduces to an Adler equation amended by an “ac-
tive noise” vAux(t) = vAu(t) · ex:

ẋ(t) = µ0[f − fL sin(kx(t))] + vAux(t) . (3)

The characteristic force fL = ULk, the velocity vL =
µ0fL and the timescale τL = λ/vL serve us as a sys-
tem of independent units. Regimes of different responses
are distinguished by the relative strengths of the exter-
nal driving f/fL, the active propulsion vA/vL, and the
rotational noise τR/τL. For the stochastic simulations,
we combined Euler integration of Eq. (3) with a geo-
metric scheme for Eq. (2) [56] and noise reduction [64].
The drift velocity was calculated from averaging over the
driven stationary ensemble as vD(f) = limt→∞⟨x(t)⟩f /t;
the variance yielded the dispersion coefficient or effective
diffusion constant: Deff(f) = limt→∞ Var[x(t)]f /2t.

The r.h.s. of Eq. (3) may also be viewed as originating
from a tilted potential, U(x) − [f + (vA/µ0)ux(t)]x. Its
barriers can only be crossed if ux > ux,c = (vL/vA)(1 −
f/fL) [Fig. 1(a), green shading] and they act as a ran-
domly rocking ratchet, rectifying the a priori unbiased
self-propelled motion and thus facilitating transport.

Depinning transition. For passive motion, vA = 0,
the particle’s response to the driving is governed by the

dynamic system ẋ = g(x, f) with g(x, f) = µ0(f −
fL sin kx), which exhibits a saddle-node bifurcation [65].
Two equilibria x±

∗ ∈ [0, λ), obeying g(x∗, f) = 0, ex-
ist for f < fc and disappear at the critical point fc =
fL, which is determined by the additional requirement
∂xg(x∗, fc) = 0. Thus, the particle is pinned by the land-
scape for f < fL and remains immobile, vD(f) = 0. For
f > fL, the particle slides with vD(f) = λ/τ1(f), where
τ1(f) =

∫ λ

0 g(x, f)−1 dx is the time it takes the particle
to travel one wavelength. With the present potential, one
finds for the drift velocity of the passive particle:

v
(p)
D (f) = µ0

√
f2 − f2

L , f > fL, (4)

which admits for the scaling form v
(p)
D (f) = vLs(f/fL)

with the rescaled force y = f/fL and the scaling function
s(y) =

√
y2 − 1 for |y| > 1 and s(y) = 0 otherwise.

Expanding Eq. (4) close to the critical point, fc = fL,
shows that v

(p)
D (f) exhibits a square-root singularity,

v
(p)
D (f ↓ fc) ∼ (f − fc)β , β = 1/2. (5)

For the self-propelled particle, vA > 0, the force–
velocity relationship obtained from the simulations shows
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progressively stronger deviations of vD(f) from the
square-root law (4) upon gradually increasing the propul-
sion strength vA while fixing the orientational persistence
time τR = τL [Fig. 1(b)]. Conversely, changing τR at fixed
vA = 0.2vL yields a similar picture [Fig. 1(c)]; the depen-
dencies remain the same qualitatively when using other
values of τR or vA. Importantly, the ABP with vA > 0
and τR > 0 displays a nonzero drift also for f < fc. At
first sight, this seems to resemble the rounding of the
depinning transition caused by translational Brownian
noise [61]. However, we will show that the effect of active
propulsion on the transition is entirely different and can-
not be mimicked by translational diffusion, D0 > 0. In
particular, a pinned state exists in the presence of self-
propulsion for f < f−

c with the new, shifted threshold
f−

c = fL − vA/µ0 [66].

The existence of this activity-controlled critical force
f−

c is justified by the second observation: upon varying
τR from 0 to ∞ at fixed ratio vA/vL < 1, the force–
velocity curves interpolate monotonically between the
analytical solutions for the “hyper wobbler” (vA > 0,
τR → 0) and the “lazy wobbler” (τR → ∞, i.e., DR →
0) [Fig. 1(c)]. The hyper wobbler is an ABP with a
rapidly changing orientation such that τR is the small-
est timescale of the problem, τR ≪ τL and τR ≪ τf =
λ/(µ0f). Such an ABP quickly samples all possible ori-
entations before any translation occurs and the active
noise ux(t) is averaged out from Eq. (3). Thus, self-
propulsion is inefficient for the hyper wobbler, which also
obeys Eq. (4).

In the opposite regime of a lazy wobbler (τR ≫ τL, τf ),
rotational motion is slow. The trajectories x(t) can be
thought of as a one-dimensional random walk composed
of a sequence of long independent segments i = 1, 2, . . .
with fixed orientations ui isotropically distributed and
randomly changing at random times with rate τ−1

R . The
active noise term in Eq. (3) is specified by the polar an-
gle ϑ ∈ [0, π] such that ux = cos ϑ; being constant here,
the noise term can be absorbed in the shifted driving
force fA(ϑ) = f + (vA/µ0) cos ϑ. With this, the dynamic
system has the same form as above, ẋ = g(x, fA(ϑ)),
and repeating the analysis leading to Eq. (4), one ar-
rives at vD(f ; ϑ) = vLs(fA(ϑ)/fL). The velocity–force
relationship of the lazy wobbler with prescribed orienta-
tion ϑ has the same functional form as for the passive
particle [Eq. (4)]. Merely the condition |fA(ϑ)| > fc
implies a shift of the critical point from fc = fL to
fL − (vA/µ0) cos ϑ. The latter expression depends on ϑ
and varies between the maximum and minimum values
f±

c = fL ± vA/µ0. In particular, it holds vD(f ; ϑ) = 0 for
f ⩽ f−

c irrespectively of ϑ.

At long times, the random walk implies a uniform av-
erage over the orientation, ⟨·⟩u := (4π)−1 ∫

· sin ϑ dϑ dφ,
and we find for the drift velocity limt→∞⟨x(t)/t⟩ =

⟨vD(f ; ϑ)⟩u =: v
(∞)
D (f) of the lazy wobbler [64]:

v
(∞)
D (f) = v2

L
2vA


0, f ⩽ f−

c ,

w+(f/fL), f−
c < f < f+

c ,

w+(f/fL) − w−(f/fL), f ⩾ f+
c ,

(6)

introducing new scaling functions w±(y) = w(y ±vA/vL)
with w(z) =

∫ z

1 s(y)dy = [zs(z) − ln(z + s(z))]/2. The
passive limit [Eq. (4)] is recovered as vA → 0; in this
limit, the two singular points f±

c converge to fc = fL.
Due to w′(z) = s(z), the critical exponent β increases by
1, turning the square-root singularity [Eq. (5)] into

v
(∞)
D (f ↓ f−

c ) ∼ (f − f−
c )β′

, β′ = 3/2 . (7)

The argument applies similarly for rotational motion in
a plane, noting that ux is distributed differently in this
case. Analysis of the leading asymptotic behavior upon
ε := (f − f−

c )/fL ↓ 0 yields for d = 2, 3 dimensions [64]:

v
(∞)
D (ε ↓ 0) ≃

√
d − 1
d

v
1/2+β′

L v
1/2−β′

A εβ′
. (8)

The new exponent β′ = d/2 renders the appearance of
v

(∞)
D (f) near f−

c smoother than for a passive particle
[Fig. 1(b,c)]; yet we stress that Eqs. (6) and (8) predict
a sharp transition.

Pictorially, the behavior of v
(∞)
D (f) near f ≈ f−

c may
be understood from the random tilts of the potential
landscape [Fig. 1(a)]: in an ensemble of particles, only
those with orientations pointing sufficiently close towards
the direction of the force contribute to the transport:
ux > ux,c = 1 − εvL/vA so that vD(f ; ϑ) > 0. Near
the transition, ux,c → 1 and the square-root behavior
vD(f ; ϑ) ∼ (ux − ux,c)1/2 is weighted with the distri-
bution of ux close to 1; the latter is flat for d = 3, but
divergent ∼ (1−ux)−1/2 for d = 2. Both factors combine
into ∼ (1−ux,c)d/2 after integration and hence β′ = d/2.
Transport near criticality is thus faster for d = 2 than for
d = 3 (Fig. S2 in [64]).

Finite rotational diffusion. For 0 < τR < ∞, away
from the limiting cases, the polar angle ϑ(t) samples dif-
ferent orientations in the course of time. Regarding the
transport, this kind of motion is less efficient than with a
fixed orientation in the direction of the driving force (ϑ =
0), whereas the opposite direction (ϑ = π) is the most in-
efficient situation. One concludes that the drift velocity
vD(f) is bounded, vD(f ; ϑ = π) ⩽ vD(f) ⩽ vD(f ; ϑ = 0);
in particular, vD(f) = 0 for f < f−

c for all values of τR.
The drift velocity is furthermore bounded by the so-

lutions for the passive particle and the lazy wobbler
[Eqs. (4) and (6)]: v

(p)
D (f) ⩽ vD(f) ⩽ v

(∞)
D (f) for all

τR and f < fx (Fig. 1c) with fx being the force where
the two bounds intersect. For f > fx, the bounds reverse
their roles so that for strong driving, counterintuitively,
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active propulsion slows down transport compared to pas-
sive particles.

The described behavior of vD(f) is corroborated by
precise numerical solutions of the corresponding Fokker–
Planck equation, which allowed us to follow vD(f)/vL
down to 10−15 [64]. These semi-analytical results suggest
a superexponential convergence to the critical point f−

c ,

vD(f) ≃ vL exp
(
−b(f − f−

c )−α
)

, f ↓ f−
c ; (9)

the coefficients α > 1 and b > 0 depend on τR and we
found that α increases as τR is decreased [Fig. 1(d)]. The
form of Eq. (9) is in line with predictions from related
discrete-time models [67, 68] and it is rooted in a very
slow initial increase of the probability that the particle
slips along ex by one wavelength upon increasing f > f−

c .
(For f < f−

c , this probability is zero.) For τR ≫ τL
and upon increasing f further, the asymptotic behavior
of vD(f) crosses over to closely follow the lazy-wobbler
solution, v

(∞)
D (f). We conclude that vD(f) > 0 for f >

f−
c , i.e., the critical point is the same for all τR > 0.
Differential mobility. The differential mobility

µ(f) = dvD(f)/df may serve as an alternative measure
of the transport which is more sensitive to singular
behavior. For finite τR, we have calculated µ(f) from
the numerical results for vD(f), and µ(f) is readily
obtained for τR → 0 and τR → ∞ from Eqs. (4)
and (6), respectively [Fig. 1(e)]. In any situation, the
potential landscape becomes irrelevant for sufficiently
strong driving, µ(f → ∞) = µ0. For the hyper wobbler
(τR → 0), the mobility diverges at the corresponding
critical force, µp(f ↓ fc) ∼ (f − fc)−1/2, whereas for the
lazy wobbler it vanishes as µ∞(f ↓ f−

c ) ∼ (f − f−
c )1/2.

In addition, µ∞(f) remains finite but exhibits a cusp at
f = f+

c , pinpointing the presence of a second singular
point, at which µ∞(f) is maximal. In between these
limiting cases, the mobility exhibits a maximum that,
upon increasing τR, interpolates in peak height and
position between the divergence at f = fc (τR ≪ τL)
and the cusp at f = f+

c (τR ≫ τL). Concomitantly,
the left flank of the peak moves from f = fc to f−

c ,
broadening the peak.

Activity-induced giant diffusion. For passive depin-
ning, the differential mobility was found to be a good
proxy of the dispersion coefficient, Deff(f) ∝ µ(f), which
restores a linear response relation [69]. We have calcu-
lated Deff(f) for ABPs within the stochastic simulations.
For small τR, the obtained behavior of Deff(f) is strik-
ingly similar to that of µ(f) [Fig. 1(e,f)]; in particular,
Deff(f)/Dfree shows a peak near the transition (f ≈ fc),
which grows in height without bounds as τR → 0; here,
Dfree = v2

AτR/3 is the effective diffusion of the free ABP.
Such giant diffusion was studied for passive particles [70–
72] and has been seen in experiments [27, 73]; a similar
effect was unveiled recently for circle swimmers subject
to gravity [26].

In the lazy-wobbling limit (large τR), the corrugated
potential induces also an enhanced dispersion. In this
regime, the corresponding data for Deff(f)/Dfree depend
only weakly on τR. Invoking again the random walk pic-
ture of uncorrelated velocities vD(f ; ϑi) changing at a
“collision rate” τ−1

R yields for the velocity autocorrelation
function Z(t) = Var[vD(f ; ϑ)]u exp(−t/τR) [74]. The
Green–Kubo relation gives us Deff(f) =

∫ ∞
0 Z(t)dt =

Var[vD(f ; ϑ)]uτR; the remaining u-average is an elemen-
tary integral. The lengthy result is given in Eqs. (S21)
and (S24) of [64] and drawn in Fig. 1(f) (orange line),
which shows that Deff(f)/Dfree is maximal near f ≈
(fc + f+

c )/2. Expanding Dmax ≈ Deff((fc + f+
c )/2) for

vA ≪ vL yields

Dmax ≃ (9Dfree/8)(vL/vA + 3/5), (10)

which predicts an 6.3-fold enhancement of Deff(f) over
Dfree for vA = 0.2vL, as is observed in the data for
τR = 10τL near f ≈ 1.1fL [Fig. 1(f)]. We antici-
pate an arbitrarily large enhancement of the dispersion,
Dmax/Dfree ∼ 1/vA, for weakly self-propelled particles
with τR ≳ τL.

Conclusions. We have shown that activity impacts
the depinning transition as follows: the threshold force is
shifted from its value fc for passive particles to f−

c < fc,
which depends on the propulsion strength vA but not on
the persistence time τR of rotational motion. A sharp
transition is preserved in the presence of active noise,
in contrast to the rounding due to translational ther-
mal noise. However, the approach to the transition point
from above depends on τR and the dimension d of rota-
tional Brownian motion: it obeys different power laws for
the limits of the hyper and lazy wobbler with exponents
β = 1/2 (small τR) and β′ = d/2 (large τR), respectively.
In between, vD(f) vanishes superexponentially fast, con-
trasting from the scenario of a τR-dependent exponent.
For the lazy wobbler, another singular point f+

c emerges
as the mirror image of f−

c relative to fc, where the dif-
ferential mobility µ(f) is maximum. Concomitantly, the
dispersion coefficient shows a giant enhancement, whose
position depends on τR. Overall, this qualitative change
of the phenomenology is likely beyond the scope of a
perturbative treatment of the passive case with τR as
the small parameter (e.g., [75, 76]). Our work suggests
further that probing nonlinear responses [35–37] can con-
tribute to a similar debate for arrested active matter [77–
79].

Our predictions appear amenable to experimental
tests, e.g., using active colloidal particles driven by ex-
ternal fields (e.g., gravitational [29, 80, 81] or magnetic
[25, 33]) over a periodic landscape [48, 58, 60], and po-
tentially for the chemotaxis of bacteria crawling on struc-
tured substrates [82, 83]. Experiments on active colloidal
monolayers may give insight into the activity-induced de-
pinning of collective variables, and our study is relevant
for the melting transition of active colloidal crystals [84].
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We also note that the lazy wobbler resembles a run-and-
tumble motion with switching rate τ−1

R , which describes
the motion of, e.g., E. coli bacteria [85, 86].

Finally, the active noise vAu(t) differs qualitatively
from the thermal, white noise ξ(t), both entering Eq. (1):
vAu(t) is bounded in magnitude, but ξ(t) can assume ar-
bitrarily large values. Only in the latter case, the prob-
ability to surmount the potential barrier is nonzero for
any, even small driving force f ⩾ 0. Second, the inte-
gral

∫ t

0 vAu(s) ds is a finite-variation process, unlike the
Wiener process

∫ t

0 ξ(s) ds, and hence yields a drift rather
than a diffusion term in the corresponding Fokker–Planck
operator (also see [64, 76]). The active noise may thus be
interpreted as a random tilting of the potential landscape
but not as an intrinsic diffusion. We anticipate that our
findings go well beyond the active matter context and
apply to any system with a saddle-node bifurcation in
the presence of a bounded noise.
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SUPPLEMENTAL MATERIAL

NUMERICS OF THE ACTIVE BROWNIAN PARTICLE (ABP) MODEL

Stochastic simulation of the Itō–Langevin equations

For the stochastic simulation of the ABP model given by Eqs. (2) and (3) in the main text, we have generated, for
each force f , up to 5×105 random trajectories x(t) of length 5×104τL. To this end, we combined the Euler(–Maruyama)
integration for the translational motion and a geometric integration scheme [56] for the rotational Brownian motion,
using an integration time step of ∆t = 10−3τL. In addition, we have applied a simple antithetic variance reduction
technique, where for every noise realization ω(t) one obtains two trajectories: one with ω(t) and one with −ω(t),
exploiting the inflection symmetry of the noise.

Numerical solution of the Fokker–Planck equation

The Fokker–Planck equation (FPE) corresponding to the Itō–Langevin Eqs. (1) and (2) of the main text reads
∂tp(r, u, t) = −∇ · [µ0(f − ∇U(r)) + vAu] p(r, u, t) + τ−1

R Lu p(r, u, t) , (S1)
where p(x, u, t) is the joint probability density of the position x and the orientation u at time t and Lu denotes the
Laplace–Beltrami operator on the d-dimensional unit sphere. For the one-dimensional corrugated potential landscape
discussed in this work, only the projection x = r · ex and the polar angle ϑ such that z := cos(ϑ) = u · ex are relevant.
Then, Eq. (S1) reduces to

∂tp(x, z, t) = −∂x[µ0f − vL sin(kx) + vAz] p(x, z, t) + τ−1
R ∂z

(
1 − z2)

∂z p(x, z, t) , (S2)
which is the FPE corresponding to Eqs. (2) and (3) of the main text. The domain of p(x, z, t) is x ∈ R, z ∈ [−1, 1],
and t ⩾ 0.

Exploiting the inherent x-periodicity of the problem, we proceed to the reduced probability density [87] p̂(x, z, t) :=∑∞
n=−∞ p(x+nλ, z, t), which satisfies Eq. (S2) for x ∈ [0, λ] with periodic boundary conditions, p̂(x, z, t) = p̂(x+λ, z, t)

with λ = 2π/k. We recall further that the eigenfunctions of the d = 3 rotational diffusion operator are the Legendre
polynomials Pℓ(z), i.e.,

∂z

(
1 − z2)

∂zPℓ(z) = −ℓ(ℓ + 1)Pℓ(z) ; ℓ ∈ N0 . (S3)
The periodicity of p̂(x, z, t) in x together with Eq. (S3) suggest to represent the solution as a Fourier–Legendre series,

p̂(x, z, t) =
∑
n∈Z

∑
ℓ⩾0

cnℓ(t)einkxPℓ(z) . (S4)

The time evolution of the coefficients cnℓ(t) is implied by Eq. (S2) and one finds:

ċn0 = − ink
[
µ0fcn0 − vL

2i (cn−1,0 − cn+1,0)
]

− inkvA
cn1

3 ; ℓ = 0, (S5a)

ċnℓ = − ink
[
µ0fcnℓ − vL

2i (cn−1,ℓ − cn+1,ℓ)
]

− inkvA

(
ℓ

2ℓ − 1cn,ℓ−1 + ℓ + 1
2ℓ + 3cn,ℓ+1

)
− τ−1

R ℓ(ℓ + 1)cnℓ ; ℓ > 0. (S5b)

For the stationary solution, the left hand sides are set to zero, ċnℓ = 0, and Eq. (S5) becomes a linear system in the
coefficients cnℓ. The normalization condition

∫
p̂(x, z, t) dxdz = 1 implies c00 = 1/2, which renders the linear system

inhomogeneous. We truncated the series (S4) symmetrically to keep only terms with −N ⩽ n ⩽ N and 0 ⩽ ℓ ⩽ L
and solved the system of (2N + 1) × (L + 1) equations numerically using standard BLAS routines.

The mean speed vD(f) = limt→∞⟨ẋ(t)⟩ is the integral of the x-component of the probability flux ⟨ẋ(t)⟩ =∫
ȷ̂x(x, z, t) dxdz with ȷ̂x(x, z, t) = (µ0f − vL sin(kx) + vAz)p̂(x, z, t) and, upon using Eq. (S4), it is calculated from

the expansion coefficients as

vD(f) = µ0f + 2vL Im c1,0 + 2
3vAc0,1 . (S6)

The numerical results shown in Fig. S1 and in Fig. 1(c) of the main text were obtained for N = 10 000 and L = 30.
The different orders of magnitude for N and L were chosen to account for the observation that the eigenvalues of ∇
scale as n, whereas the eigenvalues of Lu scale as ℓ(ℓ + 1).
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FIG. S1. Drift velocity vD(f) as function of the driving force f was obtained from the numerical FPE solution [Eq. (S6)] with
the self-propulsion velocity fixed to vA = 0.2vL. The same data are shown in Fig. 1c of the main text on a super-logarithmic
scale.

DRIFT VELOCITY AND DISPERSION COEFFICIENT OF LAZY WOBBLERS

Random walk model

As described in the main text, the trajectories x(t) in the regime of the lazy wobbler (τR ≫ τL and τR ≫ τf )
are approximated by a one-dimensional random walk (or “flight”) such that the orientation of the particle changes
instantaneously at random times with a rate τ−1

R . In this heuristic model, the orientation u(t) consists of piecewise
constant segments ui of random durations τi for i = 1, 2, . . . . For the depinning problem, we may equivalently use the
angles ϑi such that cos ϑi = ui · ex. Given a fixed orientation ui (or ϑi), the particle moves at the velocity vD(f ; ϑi)
for a time span τi. Then, assuming x(0) = 0, the spatial displacement after time t is

x(t) =
N(t)∑
i=1

vD(f ; ϑi)τi , (S7)

where N(t) is counting the reorientation events up to and including time t =
∑N(t)

i=1 τi. The resulting trajectories x(t)
correspond exactly to the motion of run-and-tumble particles.

Following the ideas of Boltzmann’s Stoßzahlansatz (molecular chaos hypothesis) [74], the reorientation events (“col-
lisions”) are assumed to be independent and combine exponentially distributed times τi between subsequent collisions
with orientations ui that are sampled independently from the equilibrium distribution, i.e., a uniform distribution on
the unit sphere, |u| = 1. As a consequence, N(t) is a Poisson process with parameter τ−1

R .

Drift velocity

For the drift velocity (or: mean speed), one finds from Eq. (S7):

v
(∞)
D (f) = lim

t→∞

x(t)
t

= lim
N→∞

1
N

N∑
i=1

vD(f ; ϑi)τi

/
1
N

N∑
i=1

τi

= ⟨vD(f ; ϑi)⟩u⟨τi⟩
⟨τi⟩

= 1
4π

∫
vD(f ; ϑ) sin(ϑ) dϑdφ . (S8)
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In the second line, we have used that N(t → ∞) → ∞ monotonically, which permits that the limit t → ∞ is replaced
by letting N → ∞. The third line follows from the strong law of large numbers and the independence of ϑi and τi.
The last line of Eq. (S8) represents the orientation-averaged drift velocity, ⟨vD(f ; ϑi)⟩u. We rewrite the integrand, as
in the main text, in terms of vD(f ; ϑ) = vLs(fA(ϑ)/fL) with the effective driving force fA(ϑ) = f + (vA/µ0) cos ϑ and
s(y) =

√
y2 − 1 for |y| > 1 and s(y) = 0 otherwise. Substituting ux = cos ϑ, the u-average is calculated as:

v
(∞)
D (f) = vL

2

∫ 1

−1
s
(
f/fL + (vA/vL)ux

)
dux

= v2
L

2vA

max(y+,1)∫
max(y−,1)

s(y) dy , (S9)

after substituting y = fA(ϑ)/fL = f/fL + (vA/vL)ux for ux. The integral bounds y± = f/fL ± vA/vL have been
tightened to the condition |y| > 1, where the integrand is nonzero. The remaining integral is elementary:

w(y) :=
∫ y

1
s(y′)dy′ = 1

2[ys(y) − ln (y + s(y))] . (S10)

Introducing w±(f/fL) := w(y±) = w(y ±vA/vL) and noting that w−(f+
c /fL) = w(1) = 0, we obtain the result quoted

in Eq. (6) of the main text:

v
(∞)
D (f) = v2

L
2vA


0, f ⩽ f−

c ,

w+(f/fL), f−
c < f < f+

c ,

w+(f/fL) − w−(f/fL), f ⩾ f+
c .

(S11)

Critical behavior

To obtain the critical behavior of the drift velocity, we introduce the distance to the critical point, ε = (f −f−
c )/fL,

and find the leading term in an asymptotic expansion of the integral in Eq. (S9). Restricting to 0 < ε < 2vA/vL, it
holds y+ = 1 + ε and y− = 1 + ε − 2vA/vL < 1, which simplifies the integral bounds. Introducing a new integration
variable 0 ⩽ η ⩽ 1 such that y = 1 + ηε yields:

v
(∞)
D (f = f−

c + εfL) = v2
L

2vA

1+ε∫
1

s(y) dy = v2
L

2vA
ε

1∫
0

√
2ηε [1 + O(ε)] dη

= v2
L

2vA

2
√

2
3 ε3/2 [1 + O(ε)] . (S12)

We used that s(y) is bounded on the domain of integration, which permits interchanging the η-integral with the
expansion for ε → 0. Hence,

v
(∞)
D (f ↓ f−

c ) ≃
√

2
3

v2
L

vA
ε3/2 ∼ (f − f−

c )3/2 . (S13)

Alternatively, the same result is obtained by expanding w+(1 + ε) defined after Eq. (S10).

Extension to rotational motion in the plane

The preceding analysis of the lazy-wobbling limit has a straightforward extension to ABP models with two-
dimensional rotational motion, where the self-propulsion velocity is constrained to the plane of translational motion.
The essential difference is that the orientation vector u is uniformly distributed on a circle rather than on a sphere,
which has implications for the integrals implementing the u-average. For the mean speed, Eq. (S8) is replaced by

v
(∞)
D (f) = 1

π

∫ π

0
vD(f ; ϑ) dϑ , (S14)
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where we stick to a representation in terms of the polar angle ϑ ∈ [0, π]. Relative to Eq. (S8), the factor sin(ϑ) is missing
from the differential of the solid angle. Nevertheless, we substitute ux = cos(ϑ) with dux = sin(ϑ) dϑ =

√
1 − u2

x dϑ
and, subsequently, introduce y as above. With this, the expression corresponding to Eq. (S9) reads

v
(∞)
D (f) = vL

π

∫ 1

−1

s
(
f/fL + (vA/vL)ux

)√
1 − u2

x

dux

= v2
L

πvA

max(y+,1)∫
max(y−,1)

s(y)√
1 − r(y)2

dy , (S15)

upon replacing ux = r(y) := (vL/vA)(y − f/fL) by y and y± = f/fL ± vA/vL, as before.
In the absence of an explicit form for the integral in Eq. (S15), we determine the critical behavior close to the

critical point analogously as above for d = 3. Writing again f = f−
c + εfL, it holds r(y; ε) = 1 + (vL/vA)(y − 1 − ε).

For 0 < ε < 2vA/vL, we thus have

v
(∞)
D (f = f−

c + εfL) = v2
L

πvA

1+ε∫
1

s(y)√
1 − r(y; ε)2

dy . (S16)

Passing on to the integration variable η such that y = 1 + ηε, the leading order in ε is obtained by letting ε → 0 in
the integrand:

v
(∞)
D (f = f−

c + εfL) = v2
L

πvA

∫ 1

0

√
2ηε + O(ε2)√

2(vL/vA)(1 − η)ε + O(ε2)
εdη

≃
v

3/2
L ε

πv
1/2
A

∫ 1

0

√
η/(1 − η) dη

= v
3/2
L ε

2v
1/2
A

; (S17)

the integral in the last step evaluates to π/2. Thus close to the critical point, it holds for the d = 2 case:

v
(∞)
D (f ↓ f−

c ) ≃ 1
2(vL/vA)1/2µ0(f − f−

c ) ∼ f − f−
c . (S18)

The critical laws in Eqs. (S13) and (S18) can be summarized for d = 2, 3 as

v
(∞)
D (f ↓ f−

c ) ≃ 1
d

[
(d − 1)vLvA

]1/2 [
µ0(f − f−

c )/vA
]d/2

. (S19)

Figure S2 corroborates this analytic result, which coincides asymptotically (f ↓ f−
c ) with the data for v

(∞)
D (f) from

the quadrature of the u-average [Eq. (S8) for d = 3, Eq. (S14) for d = 2].

Dispersion coefficient

Concerning the dispersion of the trajectories, we note first that the sequence of reorientations yields, in full analogy
to the particle collisions in a dilute gas, for the velocity autocorrelation function:

Z(t) = ⟨[vD(f ; ϑ(t)) − v
(∞)
D (f)] [vD(f ; ϑ(0)) − v

(∞)
D (f)]⟩

= Var[vD(f ; ϑi)]u e−t/τR , (S20)

taking into account that ⟨vD(f ; ϑi)⟩u = v
(∞)
D (f) may not be zero. The factor e−t/τR is simply the probability that no

“collision” has occurred in the time interval [0, t]. The effective diffusion coefficient then follows from the Green–Kubo
relation:

Deff(f) =
∫ ∞

0
Z(t) dt = Var[vD(f ; ϑi)]uτR

=
(
⟨vD(f ; ϑi)2⟩u − v

(∞)
D (f)2)

τR . (S21)
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FIG. S2. Critical behavior of the drift velocity v
(∞)
D (f) in the lazy-wobbling limit (τR → ∞) as function of the distance to the

critical point, ε = (f − f−
c )/fL, evaluated for vA/vL = 0.2 and for rotational motion in d = 2 and d = 3 dimensions. Solid

lines show the analytic prediction for both cases [Eq. (S19)] and symbols denote numerical results from the quadrature of the
orientational u-average given in Eq. (S14) for d = 2 (squares) and Eq. (S8) for d = 3 (circles); the latter agree also with the
explicit expression in Eq. (S11).

It remains to compute the second moment, ⟨vD(f ; ϑi)2⟩u. The same arguments apply that have led to Eq. (S9) for
the first moment in the case d = 3. Therefore:

⟨vD(f ; ϑi)2⟩u = v2
L
2

∫ 1

−1
s(f/fL + (vA/vL)ux)2dux

= v3
L

2vA

max(y+,1)∫
max(y−,1)

(
y2 − 1

)
dy (S22)

Introducing w̃(y) :=
∫ y

1 s(y′)2 dy′ = 1
3
(
y3 − 1

)
+ 1 − y and w̃±(f/fL) = w̃(y±) and noting that w̃(1) = 0, it follows

⟨vD(f ; ϑi)2⟩u = v3
L

2vA


0, f ⩽ f−

c ,

w̃+(f/fL), f−
c < f < f+

c ,

w̃+(f/fL) − w̃−(f/fL), f ⩾ f+
c ,

(S23)

which can be rewritten in the form

⟨vD(f ; ϑi)2⟩u = v2
L ×


0, f ⩽ f−

c ,
vL/vA

6f3
L

(f − f−
c )2(f + f+

c + fL), f−
c < f < f+

c ,

(f/fL)2 + 1
3(vA/vL)2 − 1, f ⩾ f+

c .

(S24)

The dispersion coefficient Deff(f) is obtained by inserting Eqs. (S11) and (S24) into Eq. (S21), and its behavior is
exemplarily shown in Fig. 1(f) of the main text (orange line).
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