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Chemical systems are interpreted through the species they contain and the reactions they may
undergo, i.e., their chemical reaction network (CRN). In spite of their central importance to chemistry,
the structure of CRNs continues to be challenging to deduce from data. Although there exist structural
laws relating species, reactions, conserved quantities and cycles, there has been limited attention
to their measurable consequences. One such is the dimension of the chemical data: the number of
independent reactions, i.e. the number of measured variables minus the number of constraints. In
this paper we attempt to relate the experimentally observed dimension to the structure of the CRN.

In particular, we investigate the effects of species that are concealed and reactions that are
irreversible. For instance, irreversible reactions can have proportional rates. The resulting reduction
in degrees of freedom can be captured by the co-production law Υ = e

•◦ + ∧•◦ relating co-production
relations Υ to emergent non-integer conservation laws e

•◦ and broken cycles ∧•◦. This law resolves
a recent conundrum posed by a machine-discovered candidate for a non-integer conservation law.
We also obtain laws that allow us to relate data dimension to network structure in cases where
some species cannot be discerned or distinguished by a given analytical technique, allowing to better
narrow down what CRNs can underly experimental data.

I. INTRODUCTION

Our capacity to build [1–10] and
understand[11–26] chemical systems of in-
creasing complexity is intimately tied to our
understanding of their reaction networks and
our ability to elucidate them. Whereas sizeable
molecular structures can be elucidated today,
reconstructing the structure of even small
reaction networks remains challenging[27]. Our
understanding of theoretical CRN dynamics
does not yet fully address the practical matter
of relating their structure to experimental
observation.

From a data perspective, prospects are ever
brighter: There have been leaps in standardiza-

∗ alex_blokhuis@hotmail.com
† r.pollice@rug.nl

tion and reproducibility due to increased au-
tomation in e.g. synthesis[28–31] and reaction
monitoring[32–36], which has enabled the collec-
tion of comparably large high quality datasets.
Simultaneously, new methods continue to be
developed to resolve what was previously invis-
ible or indistinguishable. A few such methods
are delayed reactant labeling [37, 38], nonlin-
ear effects for enantiomers and excess[39–41],
its extension to derivatives and rates[42], time-
dependent illumination protocols[43], oscillating
temperature[44] or concentration protocols. As
chemical data becomes more precise and cap-
tures additional details, deeper signatures of the
underlying systems are revealed[45].

The ever increasing availability of larger
datasets characterizing CRNs in turn increases
the utility of automating analysis steps. The
interpretability of chemical data - for instance
from spectroscopy - can be improved dramat-
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ically through multivariate curve resolution
(MCR) techniques that seek to decompose a
series of spectra of a mixture into a factoriza-
tion of spectra of pure components and their
concentrations[46–53]. An intrinsic obstacle for
MCR approaches - known as rotational ambigu-
ity - is that this factorization is not unique.

Usually, chemical data does not capture
all species present in any given system, and
many CRN hypotheses could be proposed to
explain said data. Naturally, one can directly
compare the measurement data to the output
of a candidate CRN. However, limited conclu-
sions can be drawn from this fit alone[54–56],
as one can not exhaust all other possible CRNs
this way. Recent approaches include alterna-
tive means of assessing more CRNs or assessing
them more rigorously, e.g., through mechanism
test functions[44], Bayesian ERN analysis[57],
first-passage time distributions [58, 59], and in-
creasingly generalized assessments of reaction
orders[60–63]. However, exhaustive CRN assess-
ment is as of yet not within reach.

In 1963, R. Aris reported on the experi-
mental possibility of establishing the number of
independent reactions from concentration-time
data in a stirred tank reactor[64] through linear
algebra. Motivated by such insight and exam-
ples set by other fields, CRN theory started
to develop shortly after[11]. One important
pillar of CRN theory is the establishment of
structural criteria[13, 22, 65–67] for the onset
or absence of complex behavior (e.g., oscilla-
tions, multistability, chaos). Another pillar is
nonequilibrium thermodynamics[11, 12, 68, 69]
applied to chemistry in a wealth of contexts,
[12, 70–73],including its connections to complex
behavior[69, 74, 75]. In their study, CRNs have
been principally approached from a perspective
where they are known a priori. As the CRN
deduction problem remains open, it seems fit-
ting to reinvestigate the 1963 viewpoint of an
observer interpreting chemical data from an un-
known CRN.

In this paper, we consider the dimensional
indices of chemical data a CRN would produce
and how it manifests in a series of spectroscopic
measurements. The first dimension we discuss
is the number of discernible independent reac-
tions, d = # measured variables −# constraints.
First, we derive what we call the co-production
law, which captures emergent non-integer con-
servation laws and broken cycles due to collinear
reactions, and demonstrate that it resolves a co-
nundrum posed by an anomalous conservation
law recently discovered[76]. Subsequently, we
derive one dimension law for concealed species

and another one for indistinguishable species.
Finally, we describe how determining these di-
mensions from the experimental data relates
portions of data to specific parts of the CRN
structure. An overview of important quantities
can be found in the glossary in Appendix A.

II. EXCESS CONSERVATION: AN
EXAMPLE

Our overarching aim is to relate conserva-
tion laws to CRN structure. Currently, theories
do not capture all such laws yet. We will thus
dedicate the next few sections to extending the
theory of conservation laws in CRNs, using as
a motivating example a system with one conser-
vation law in excess of those predicted.

As an insightful example in which a new
conservation law emerges, we will consider the
CRNs in Fig. 1. We consider s = 4 species, and
r = 2 bimolecular reactions

C
1
⇆ A + B

2
⇆ D. (1)

For mass-action kinetics, we obtain
ordinary differential equations (ODEs)

dt[A] = − (κ1 + κ2) [A][B] + κ3[C] + κ4[D],
dt[B] = − (κ1 + κ2) [A][B] + κ3[C] + κ4[D],
dt[C] = κ1[A][B]− κ3[C],
dt[D] = κ2[A][B]− κ4[C].

We can predict the number of linear con-
servation laws, which are laws of the form

L =
∑

k

ℓi[Xi]. (2)

Assuming conservation laws are due to stoi-
chiometry only, we would predict to have exactly
ℓ = s− r = 2 linear conservation laws,

L(1) = [A] + [C] + [D],
L(2) = [B] + [C] + [D].

which is correct.
However, when both reactions are rendered

irreversible, that is

C 1← A + B 2→ D. (3)

an additional conserved quantity appears. Since
now κ3 = κ4 = 0, it follows from inspection
that

dt[C] = κ1

κ2
dt[D] = κ1[A][B]. (4)
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FIG. 1: a-b) CRNs whose conservation laws fol-
low from integer stoichiometry. c) conservation
laws. Making reactions r1, r2 irreversible, an
additional non-integer conservation conserved
quantity L(3) emerges. d) CRN with an emer-
gent non-integer conserved quantity. For integer
stoichiometry, such quantities do not follow from
the first structural law (Eq.15). r : # reactions,
ℓ : # conserved quantities, Υ: co-production
index, # collinear reactions. Species are repre-
sented by nodes. Reactants (resp. products) in a
reaction are joined by round arcs.

Thus ℓ = 3, i.e., a novel type of conservation
law with non-integer coefficients emerged

L(3) = k2[C]− k1[D], (5)

which does not follow from stoichiometry. As
a shorthand, such emergent invariants will be
referred to as emanants.

Importantly, if we monitored both the re-
versible CRN (1) and the irreversible CRN (3)
spectroscopically (Fig. 2), we would - pro-
vided spectral overlap - observe an isosbestic[77–
80] point for CRN (3), but not for CRN (1).
This is an immediate observable consequence
of an additional conservation law lowering the
dimension.[81]

Thus, conserved quantities need not derive
from (classical) stoichiometry alone. This forms
the motivation to reinspect how conservation
laws in CRNs are derived, and extend this for-
malism to count chemically meaningful quanti-
ties that are missed via standard approaches.

III. STOICHIOMETRIC MATRICES

We will now reinspect CRN theory from the
point of view of stoichiometry, and subsequently

a

c d

b

FIG. 2: (a) Simulated absorption spectra for
CRN C ⇆ A + B ⇆ D, no isosbestic point
(d(Λ) = 2). b) simulated spectra for CRN
C ← A + B → D, a close-up reveals an isos-
bestic point (d(Λ) = 1). (c) Underlying dynam-
ics for a) κκκ = (2.0, 0.03, 3.0, 0.11), d) underlying
dynamics for b). κκκ = (2.0, 0, 3.0, 0). For both,
[XXX]0 = (0.1, 0.08, 0, 0)

identify where this analysis can overlook conser-
vation laws. A reversible chemical reaction r◦

i

is represented as∑
k

ν⊖
k,iXk

i

⇄
∑

k

ν⊕
k,iXk (6)

where ν⊖
k,i, ν⊕

k,i are integer stoichiometric coeffi-
cients. Similarly, an irreversible reaction r▷

i is
represented as∑

k

ν⊖
k,iXk

i→
∑

k

ν⊕
k,iXk (7)

We can then define a stoichiometric matrix by
taking the difference in the indices

S = ν⊕ − ν⊖, (8)

and we refer to ν⊖ (resp. ν⊕) as the stoichiomet-
ric reactant (resp. product) matrix. We endow
S with a suffix S◦ (resp. S▷) to refer to descrip-
tions in terms of reversible (resp. irreversible)
reactions.

Formally, a reversible reaction can be built
up from a pair of opposing irreversible reactions,

X1
1
⇆ X2 + X3, (9)

X1
1→ X2 + X3

2→ X1 (10)

S◦ =

−1
1
1

 , S▷▷ =

−1 1
1 −1
1 −1

 . (11)

For a fully reversible chemical reaction network
(CRN), we can always represent the same CRN
in terms of pairs of irreversible reaction steps

S▷▷,reversible CRN = (S◦,−S◦) (12)
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Conversely, if at least some reactions do not
have a reverse, we can only fully represent the
CRN using S▷, for instance

X4
1← X1

2
⇄
3

X2 + X3, (13)

S▷▷ =

−1 −1 1
0 1 −1
0 1 −1
1 0 0

 . (14)

Thermodynamically, reactions have a micro-
scopic reverse. Irreversible reactions can parsi-
moniously describe kinetics when this reverse
becomes negligible enough[82]. This can for in-
stance occur when products disappear from the
reaction medium (e.g. as gas or precipitate), or
for reactions with high driving forces. The latter
is of special importance for the production and
subsequent reaction of highly reactive species,
as occurs in radiochemistry, plasma chemistry
and photochemistry. Irreversible reactions are
thus of chemistry-wide importance, but partic-
ularly prevalent in some branches of chemistry
such as astrochemistry[83–85], photochemical
motors[86, 87] and atmospheric chemistry[88–
90].

A. The first structural law (SL1)

Dimensions of fundamental subspaces of S
count quantities with a chemical interpretation,
through the fundamental theorem of linear alge-
bra (FTLA). We refer to the following relation
[11, 12] as the first structural law (SL1):

rk(S) = s− ℓ = r − c (15)

Letting # denote ’the number of’, we have:
rk(S): rank of matrix S
s : # species (X1, ..., Xs)
ℓ : # conserved quantities (dim(coker(S))
r : # reactions (r1, ..., rr)
c : # cycles (dim(ker(S)))

The number of conserved quantities (resp.
cycles) are thus directly related to the dimen-
sion of the left (resp. right) nullspace, i.e. of the
cokernel (resp. kernel) of S. The fundamental
theorem of linear algebra (FTLA) provides two
ways to count the rank in terms of chemical
quantities, thus giving us a combinatorial iden-
tity (SL1) (Eq. (15)) that relates them. SL1
thereby relates fundamental CRN quantitities
based on structure.

B. Stoichiometric interpretation of SL1

We will now take a closer look at the num-
ber of cycles (c) and conserved quantities (ℓ).
These correspond respectively to c right nullvec-
tors and ℓ left nullvectors

S ccc(i) = 000, (i ∈ {0, ..., c}) (16)
ℓℓℓ(i) S = 000 (i ∈ {0, ..., ℓ}) (17)

Usually, cycles are interpreted as combinations
of reactions that leave the system unchanged
and the constraints are interpreted as integer
combinations of species that remain unchanged.
For instance, the network below (Fig. 3) has
s = r = 3, ℓ = c = 1

X1
1
⇆ X2

2
⇆ X3

3
⇆ X1 (18)

S◦ =
( −1 0 1

1 −1 0
0 1 −1

)
(19)

FIG. 3: A small cyclic CRN. ℓ : # conserved
quantities. c : # cycles.

Performing reactions 1, 2, and 3 in equal
amounts leaves the system unchanged∆[X1]

∆[X2]
∆[X3]

 = S

1
1
1

 = 000 (20)

and the following integer combination of species
is conserved

L = [X1] + [X2] + [X3]. (21)

Notably, stoichiometric constraints are known
by many names[91], for instance, conserved
charges[67], components, invariants[11], con-
served quantities[12], or conservation laws[76].

We will see later that the application to
dynamics requires an extension of the above in-
terpretation of cycles and conservation laws. In
anticipation of this extension - in which cycles
may vanish and additional conservation laws
emerge - we will henceforth add a suffix to the
conserved quantities and cycles we counted with-
out this extension, and count their number as
ℓ◦, c◦.

For the stoichiometric matrix S▷▷ all reac-
tions are encoded as one-way reactions. We
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denote the number of reactions that have a re-
verse by r▷◁. Performing a pair of conjugate
reactions leaves the system unchanged, yielding
a trivial 2-membered cycle which we ordinarily
do not seek to count. In general we can write

S◦ = (S▷,S▷◁), (22)
S▷▷ = (S◦,−S▷◁) = (S▷,S▷◁,−S▷◁), (23)

where S▷◁ contains the reactions from S◦ that
are reversible. All reactions in S▷▷ in excess of
those in S◦ yield 2-cycles, we thus always have
rk(S▷▷) = rk(S◦).

We will now split the established counting
of reactions r and cycles c◦ into their reversible
and irreversible components

rk(S▷) = s− ℓ◦ = r▷▷ − c▷▷ = r◦ − c◦(24)
c◦ = c▷▷ − r▷◁. (25)

Conventionally, r, c are used to denote nontrivial
reactions and cycles

r = ro, c = c◦. (26)

The necessity of further decomposing constraints
and cycles emerges from kinetics, which we will
introduce next. Conventionally, we have that

C. Time evolution

The time evolution of species concentra-
tions [X1], ..., [Xs] follows the kinetic equations

dt[XXX] = S JJJ, (27)

where JJJ = (J1, ..., Jr)T is a vector of r reaction
currents. We will consider these currents to
follow mass-action kinetics[92], so that their
expression follows from stoichiometry as

Ji,▷▷ = κi

s∏
k=1

ν⊖
k,i[Xk]ν

⊖
k,i . (28)

We are ultimately interested in finding linear
conservation laws L(i) with coefficients ℓℓℓ(i).

ℓ
(i)
1 [X1] + ... + ℓ

(i)
◦ [Xs] = L(i), (29)

dtL
(i) = 0. (30)

Rewriting this equation using the above nota-
tion yields

dt ℓℓℓT [XXX] = ℓℓℓT S JJJ = 0, (31)

This formulation shows that the left nullvectors
of S form a solution, as for these:

ℓℓℓT S = 000. (32)

However, these are not necessarily the only
solutions. We are ultimately interested in the
constant solutions ℓℓℓT of Eq. (31), where we
would like to remark that JJJ depends on the con-
centrations [Xk]. These solutions then give us
the coefficients of the conserved quantities. To
see that Eq. (31) can have further solutions, we
will now revisit our initial examples of reversible
CRN Eq. (1) and irreversible CRN Eq. (3). We
then derive a network law for the additional
chemical quantities SL1 needs to count when
applied to the time evolution of species. Sec.B
of the Appendix applies this law to verify and
explain the recent algorithmic detection of a
non-integer conservation law[76] that was not
anticipated, due to not being a solution to Eq.
(32).

D. Hidden irreversible conservation law

We can now address the emergence of fur-
ther conservation laws by irreversibility. We
return to our example

C
1
⇆ A + B

2
⇆ D. (33)

Using mass-action, we have r◦ = 2 linearly in-
dependent currents

J1,◦ = κ1[A][B]− κ3[C] = J1,▷▷ − J3,▷▷

J2,◦ = κ2[A][B]− κ4[D] = J2,▷▷ − J4,▷▷

and stoichiometric matrices S◦, S◦
▷▷

S◦ =
( −1 −1

−1 −1
1 0
0 1

)
, S◦

▷▷ =
( −1 −1 1 1

−1 −1 1 1
1 0 −1 0
0 1 0 −1

)
(34)

i.e. S▷◁ = S◦, so that

dt[XXX] = S◦JJJ◦ = S◦
▷▷JJJ▷▷. (35)

i.e., we can represent the same species dynamics
using a distinct number of reactions r. Since we
have r◦ = 2 linearly independent reactions, we
need at least r = 2.

We now modify the above network by ren-
dering both bimolecular reactions irreversible

C 1← A + B 2→ D, (36)
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so that r▷▷ = 0, and S▷▷ loses its last two columns
compared to S◦

▷▷. We afford the irreversible
currents by removing the reverse reaction from
J1, J2

J1,▷▷ = κ1[A][B], (37)

J2,▷▷ = κ2[A][B] = κ2

κ1
J1,▷▷ (38)

Dynamically, the reactions are not independent,
since the currents are collinear (cf. Eq. (38)).
Thus, we only need 1 current and 1 reaction for
a deterministic description[93] Hence, we can
merge the collinear reactions

A + B 1•→ pC + (1− p) D, p = κ+
1

κ+
1 +κ+

2

J1,• = J1 + J2 (39)

We now construct a new stoichiometric matrix
S• that admits merged reactions

S▷▷ =
( −1 −1

−1 −1
1 0
0 1

)
, S• =

( −1
−1
p

1−p

)
. (40)

The time evolution of the system is then fully
described by

dt[XXX] = S▷▷JJJ▷▷ = S•JJJ•. (41)

Since rk(S•) = 1, we now correctly predict the
existence of ℓ• = 3 conservation laws. Denoting

e
•◦ the number of emenants (emergent conserva-

tion laws), we have

e

•◦ = ℓ• − ℓ◦ (42)

The left nullvector ℓℓℓ
(3)
• = (0, 0, κ2,−κ1) can be

shown to only live in the nullspace of S•:

ℓℓℓ•S• = 000, ℓℓℓ•S▷▷ = (κ2,−κ1) ̸= 000. (43)

Rendering reactions irreversible can thus lead to
the emergence of additional conserved quantities.
However, not every collinear pair of reactions
supplies us with a conservation law. Let us
therefore establish a rule for what additional
quantities we need to count.

IV. EMERGENT CONSERVATION
LAWS

To correctly account for conserved quan-
tities due to collinear irreversible reactions,
we need to construct a stoichiometric matrix
wherein all reaction currents are linearly in-
dependent. Under mass-action, a pair of ir-
reversible reactions is collinear if they have

the same stoichiometry in their reactants (dis-
counting reactants fixed in concentration, i.e.,
chemostatted reactants[12], cf. Sec V A).
Collinear reactions thus have the same column
entries in the stoichiometric reactant matrix ν⊖

(cf. Eq. (8)).
Starting from S▷▷, we merge (irreversible)

collinear reactions in S▷ until none remain to
obtain S▶ , and define S• = (S▶,S▷◁,−S▷◁) as
the resulting matrix. We denote with the co-
production index Υ the number of merged reac-
tions:

Υ = r▷ − r•. (44)

We can now apply the FTLA on the difference

rk(S▷)−rk(S•) = ∆s−∆ℓ = ∆r−∆c. (45)

where ∆s = 0, as merging columns leaves species
untouched and ∆r = −Υ. We define

∧•◦ = c◦ − c•, (46)

and noting that ∆c = ∧•◦, ∆ℓ = e

•◦ we obtain a
form relating the counts of chemically meaning-
ful quantities:

Υ = e

•◦ + ∧•◦, (47)

where
Υ: co-production index, # (collinear) co-
production relations

e
•◦: # co-production emanants (emergent con-

servation laws),
∧•◦: # broken cycles.

It follows that each collinear irreversible
reaction must either produce an irreversible con-
servation law or lead to the loss of a previously
present cycle upon merging reactions, an exam-
ple for the latter is shown in Fig. 5, which is
elaborated on in Sec. C.

Upon substitution, a more complete SL1
(where ℓ includes co-production) would become:

s− ℓ• = r• − c•, (48)
s− (ℓ◦ + e

•◦) = (r − Υ)− (c◦ − ∧•◦).(49)

However, we recall that these indices are gov-
erned by two independent relations:

s− ℓ◦ = r − c◦, (50)
Υ = e

•◦ + ∧•◦, (51)

With the co-production law, we are now
equipped to characterize the candidate for a
non-integer conservation law in Ref. [76]. This
is illustrated in Fig. 4 and analyzed in detail
in Sec. B of the Appendix. A co-production
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NO
O3

NO2

HO2

HO

HNO3HO2H

H2 CO

HCHO

•

•

O

c�=1

FIG. 4: An Atmospheric CRN model with co-
production index Υ = 1. Collinear reactions are
highlighted in pink. These do not include cycle
reactions - highlighted in blue - and hence no
cycles break upon merging collinear reactions
∧•◦ = 0. e

•◦ = 1 co-production conservation
law then results from the co-production law
Υ = e

•◦+∧•◦, confirming the newly found law CQ3
marks the detection of a genuine conservation
law.

index Υ = 1 follows from visual inspection of
the highlighted reactions in Fig. 4.

The collinear reactions correspond to r4, r5
in

S▷ =



0 1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 −1 0 0 0

−1 0 1 0 0 0 1 −1 0 0
0 0 0 -1 -1 −1 0 0 0 0
0 0 0 2 0 1 −1 0 0 1
0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 −1 1 −1 2 −1
1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0


By merging r4 and r5, a stoichiometric matrix
S• of independent reactions is obtained

S• =



0 1 −1 0 0 0 0 0 0
1 0 −1 0 0 −1 0 0 0

−1 0 1 0 0 1 −1 0 0
0 0 0 -1 −1 0 0 0 0
0 0 0 2p 1 −1 0 0 1
0 0 0 0 0 0 0 −1 −1
0 0 0 0 −1 1 −1 2 −1
1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1-p 0 0 0 0 0


.

which leads to the emergence of a new co-
production law as left nullvector:

ℓℓℓ• =
(

6,−5, 1, 3, 9, 6, 3, 6, 4,−3,
6− 18p

1− p

)
.

(52)

We show in Sec. B that this is the quantity
found by the SID algorithm in Ref. [76], and
that Eq. (49) accounts for all true[94] conserved
quantities SID may find for a CRN.

X1 X2

X3

X1 X2

X3

X1 X2

X3

=

a b

FIG. 5: a) a cyclic CRN composed of irreversible
reactions. Cycle reactions are highlighted in
blue. Reversing any of the reaction arrows
in this cyclic CRN affords CRN b) with co-
production index 1. After merging collinear
reactions, the original reaction cycle can no
longer be performed.

V. BEYOND ISOSBESTIC POINTS:
DATA DIMENSION

To generalize the utility of isosbestic points,
we introduce the notion of a data dimension d.
For a CRN modeled through a set of variables
V , we define the model dimension d(V )

d(V ) = v − ℓ(V ), (53)

v: # assessed variables (v = |V |)
ℓ(V ): # constraints on these variables, i.e., num-
ber of conserved quantities for these variables.

In the context of a CRN described using
s species variables, we have a set of variables
X = {[X1], .., [Xs]}. We retain the convention
that s = |X|, ℓ = ℓ(X) and thus:

d(X) = s− ℓ. (54)

Suppose we monitor a system spectroscopically,
assuming a fixed linear relation between species
and absorbance throughout the experiment (e.g.,
temperature is fixed and we are within the linear
regime of the detector). Thus, we suppose that
the Lambert-Beer law is valid

Aλ = L−1
p

s∑
k=1

[Xk]ϵk(λ), (55)

where Lp is the light path length and we
monitor in bins around n wavelengths, Λ =
{λ1, λ2, ..., λn},

dtAAA(Λ) = L−1
p S JJJE(Λ), (56)

so that E is an s-by-n matrix with each row
corresponding to the spectrum of a species:

E =

 ϵ1(λ1) ϵ1(λ2) ... ϵ1(λn)
ϵ2(λ1) ϵ2(λ2) ... ϵ2(λn)

...
...

. . .
...

ϵs(λ1) ϵs(λ2) ... ϵs(λn)

 . (57)
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The rank of E is at most s, when all species are
spectroscopically distinct and n is sufficiently
large to discern them. We consider the following
contributions that lower the rank

rk(E(Λ)) = s−s■(Λ)−§(Λ)−ℓ||(Λ). (58)

s■(Λ) : # concealed species, species not
measurably absorbing in Λ
§(Λ) : isospectral index, # independent pairs
of isospectral species in Λ (e.g., enantiomers in
achiral environments)
ℓ||(Λ) : # further collinearities among absorp-
tion spectra in Λ

Further collinearities (ℓ||(Λ)) can occur
when n becomes comparable to the dimension.
For instance, when computer vision is used for
reaction monitoring[95–97], the RGB images
have n = 3, which may set an upper bound on
the dimension that may be resolved.

For the data dimension for n = |Λ| spectral
variables we write Eq.(53) as

d(Λ) = n− ℓ(Λ) ≤ d(X). (59)

Let us denote the number of dimensions not
accounted for spectroscopically as ∆dΛ

d(X)− d(Λ) = ∆dΛ. (60)

A. The concealed species law versus
chemostatting

Next, we consider the subnetwork we effec-
tively see due to the first two constraints in Eq.
58 relating species to their spectral observables.
First, we partition S in a matrix S□ of species
that absorb, and a matrix S■ of species that do
not:

S =
(
S■
S□

)
, (61)

from applying the FTLA / SL1 to S■, we obtain

s■(Λ) = b
�

(Λ) + a
�

(Λ), (62)
b
�

(Λ) = ℓ− ℓ□ (63)
a
�

(Λ) = c□ − c (64)

b
�

(Λ): # concealed conservation laws in visible
subnetwork (S□)
a
�

(Λ): # apparent cycles in visible subnetwork

We borrow this partitioning procedure [12]
from a different context, in which sY species are
chemostatted (fixed in concentration),

S =
(
SY
SX

)
, (65)

A

B
C

D

AC D A

B
C

D

𝑙=2 𝑙=1

Chemostat B Conceal B

0

𝑙=2
0

FIG. 6: Contrasting chemostatting and conceal-
ing. Upon fixing concentration [B] = cte, r1
and r2 become collinear, and we obtain a co-
production index Υ = 1. Upon concealing [B],
it remains a variable, but we lose access to it.
Reactions r1 and r2 then remain independent.

and then

sY = bX + aX, (66)
bX = ℓ− ℓX, (67)
aX = cX − c. (68)

bX: # broken conservation laws in SX,
aX: # emergent cycles in internal network.

An emergent cycle aaa denotes a right nullvec-
tor of the subnetwork with fewer species that
does not extend to the full network

S aaa
�
̸= 000, S□ aaa

�
= 000, (69)

S aaaX ̸= 000, SX aaaX = 000. (70)

However, the net effect of chemostatting species
is not equivalent to concealing them: previously
independent irreversible reactions can become
collinear by fixing variables (chemostatting), but
not by concealing variables. A minimal example
is given in Fig. 6. The same phenomenon occurs
in the example provided in Appendix B.

B. The isospectral species law

In the observable subnetwork S□, we now
merge all pairs of isospectral species that mea-
surably absorb, to describe the effective subnet-
work due to their indistinguishibility. We denote
as §(Λ) the number of mergers thus performed.

rk(S□)− rk(S
?

) = ∆s−∆ℓ = ∆r −∆c,

(71)
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for which ∆s = §(Λ). Reactions that vanish
by merging a pair of species are reactions ap-
pearing as direct isomerization reactions in S□,
∆r = r∼. Merging isospectral species can ei-
ther break conservation laws or create apparant
cycles, affording the isospectral species law

§(Λ) = b§(Λ) + a§(Λ) + r∼(Λ), (72)

where
b§(Λ) : # lost conservation laws
a§(Λ) : # apparent cycles (combinations of
reactions that leave discernable variables un-
changed)
r∼(Λ) : # direct isomerization reactions among
isospectral species pairs

We can then express the loss of dimension
between the full CRN and what is discerned
spectroscopically as

∆dΛ = §(Λ) + s■(Λ)− r∼(Λ)
−b
�

(Λ)− b§(Λ) (73)
= a

�
(Λ) + a§(Λ). (74)

We can represent these spectral properties in
network representations, and thereby graphi-
cally determine d(X) and d(Λ). Some examples
are provided in Fig. 7. More examples with
elaboration are provided in Sec. D.

The dimension of spectroscopic data can
match the original data dimension d(X) (∆dΛ =
0) even if not all species are discernable. Up to
ℓ variables can be lost (Eq.(73)), provided this
only leads to unobservable conservation laws or
isospectral isomerization reactions. Conversely,
each missing dimension corresponds to an ap-
parent cycle, i.e., combinations of reactions that
leave the discernable variables unchanged (this
includes reactions which have become unobserv-
able ■ ⇆ ■). For nonabsorbing species, such a
cycle requires two chemostats (s■(Λ) ≥ 1) for
the effective CRN. Hence, for s■(Λ) = 1, no
loss of dimension occurs.

VI. MEASURING DATA DIMENSION

We will now formalize the process of mea-
suring the data dimension. We define a spectral
data matrix A as the matrix containing spectra
measured at successive times t1, t2, ..., tm

A =


Aλ1 (t1) Aλ2 (t1) ... Aλn (t1)
Aλ1 (t2) Aλ2 (t2) ... Aλn (t2)

...
...

. . .
...

Aλ1 (tm) Aλ2 (tm) ... Aλn (tm)

 . (75)

⋆ ⋆

⋆ ⋆

r∼

FIG. 7: Illustration of laws for isospectral (Eq.
(72)) and concealed (Eq. (62)) species for sev-
eral CRNs. Dark nodes correspond to spectro-
scopically inactive species. Species that are in-
distinguishable are marked with a star. New
cycles - leading to loss of data dimension - are
highlighted in orange and blue. Data dimen-
sions: d(X), d(Λ) (spectral), d(X) (species). d(Λ)
spectral data dimension, s■(Λ) : # concealed
species, b�(Λ) : # concealed conservation laws,
a�(Λ) : # apparent cycles, §(Λ) : isospectral
index, r∼(Λ) : # isospectral isomerization reac-
tions, b§(Λ) : # isospectral broken conservation
laws, a§(Λ)#, isospectral emergent cycles.

We denote by ∆Aλn a mean subtracted absorp-
tion

∆Aλn
(tq) = Aλn

(tq)− 1
m

m∑
k=1

Aλn
(tk),

(76)

and we analogously define

∆A =


∆Aλ1 (t1) ∆Aλ2 (t1) ... ∆Aλn (t1)
∆Aλ1 (t2) ∆Aλ2 (t2) ... ∆Aλn (t2)

...
...

. . .
...

∆Aλ1 (tm) ∆Aλ2 (tm) ... ∆Aλn (tm)

 .

(77)

To contrast with genuine (noisy) data, we let
∆Ã derive from an exact (noise-free) solution
[XXX](t) to the dynamics multiplied by exact theo-
retical spectra. Whereas we expect a true data
matrix to be of full rank, noise-free ∆Ã can have
a nonzero kernel, and (starting away from equi-
librium) its rank is given by the spectroscopic
data dimension d(Λ)

rk(∆Ã) = d(Λ). (78)

We can then model noisy data by addition of a
random matrix η whose entries are independent
identically distributed random variables with
mean 0 and variance ϵ2

∆A = ∆Ã + η(ϵ), (79)
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so that almost always

rk(A) = rk(η) = max(n, m). (80)

While we cannot directly asses d(Λ), we can
adopt a decomposition procedure to attempt
to separate signal-rich dimensions from noisy
ones, and estimate a dimension dϵ from that by
some criterion. A simple criterion introduced in
Sec. VI A considers the spectral properties of
random matrix [98] η(ϵ) and will suffice for our
examples (see Refs.[99–101] for more thorough
considerations). We will call the estimate dϵ(Λ)
hereby obtained the discernable dimension.

The procedure we will use for our illus-
tration is singular value decomposition (SVD),
which decomposes the data in successive com-
ponents that maximally explain remaining vari-
ance (alternative decompositions to estimate
data dimension exist[64]). The SVD has several
desirable mathematical properties and is widely
implemented. A disadvantage in our context is
that the decomposition is not tailored to the
structure of our problem, and is prone to un-
derestimating d(Λ) when dimensions become
small.

The need for dϵ(Λ) becomes apparent by
revisiting the CRN C ⇆ A + B ⇆ D, starting
with only A, B ([A]0, [B]0 > 0, [C]0, [D]0 = 0).
Up to a linear approximation, we then have

∆[A] = − (k1 + k2) [A]0[B]0t +O(t2),
∆[C] = −k1[A]0[B]0t +O(t2),
∆[D] = −k2[A]0[B]0t +O(t2).

For a signal-to-noise ratio ϵ > 0, we can then
choose a sufficiently small time t∗ such that
higher order corrections starting at O(t2) be-
come comparable to noise. For data recorded
on shorter timescales, we cannot yet distinguish
reverse reactions, and then C ⇆ A + B ⇆ D
behaves as C ← A + B → D, i.e., we have
a discernable dimension dϵ(X) = 1 for t ≪ t∗,
dϵ(X) = 2 for t≫ t∗. Under such circumstances,
a co-production law e

•◦ may be transient.
Resolution and chemical interpretations of

missing dimensions d0−dϵ is outside the scope of
this paper and will be discussed in our follow-up
work. For the remaining examples, we confine
our discussions to cases where no dimensions
are lost due to resolution, i.e., ϵ is chosen such
that dϵ(Λ) = d0(Λ) = d(Λ).

A. SVD for spectral data

A singular value decomposition of the m-
by-n matrix ∆A represents it as a product of

three matrices

∆A = UΣV T . (81)

In our context, V is an n-by-m matrix with
rows v1(λ), v2(λ), ..., vm(λ) (right singular vec-
tors) corresponding to spectra

V =

 v1(λ1) v2(λ1) .. vm(λ1)
v1(λ2) v2(λ2) .. vm(λ2)

...
...

. . .
...

v1(λn) v2(λn) .. vm(λn)

 (82)

U is an m-by-m matrix with rows
u1(t), u2(t), ..., un(t) (left singular vectors)
corresponding to time trajectories, i.e.,
time-dependent spectral contributions

U =

 u1(t1) u2(t1) .. um(t1)
u1(t2) u2(t2) .. um(t2)

...
...

. . .
...

u1(tm) u2(tm) .. um(tm)

 . (83)

Singular vectors thus produced are orthonormal

UUT = I, V V T = I. (84)

The contributions of the singular vectors to the
data are weighed by singular values σ1, ..σn,
which occur diagonally in the n−by−m matrix
Σ,

Σki = δk
i σk, (85)

σi = Σii ≥ 0, σi ≥ σi+1. (86)

Singular values are non-negative and placed in
decreasing order. Based on the results of SVD,
a single spectrum at time tq can now be recon-
stituted as

Aλ(tq) =
min(n,m)∑

i

σiui(tq)vvvi, (87)

which, on the level of the data matrix ∆A, can
be written as a sum of rank-1 matrices

∆A =
∑

i

∆A(i), (88)

∆A(i) = σiuuuivvv
T
i , (89)

rk(∆A(i)) = 1. (90)

and by truncating at k we can now approximate
the data with data of rank k.

Since σi ≥ σi+1, the reconstructive contri-
bution of successive ∆A(i) diminish with increas-
ing i. Informed by the spectral properties of
random matrix[98] η(ϵ), and supposing n > m
we will consider a threshold

σ∗ = ϵ

(
1 +

√
m

n

)2√
m, (91)



11

We then let the discernable dimension dϵ be the
number of singular values above this threshold.
For our examples, dϵ(Λ) will also be qualitatively
evident from visual inspection.

0 5 10 15
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FIG. 8: (top) First 5 components of Singular
value Decomposition of ∆A for CRN C ⇄ A +
B ⇄ D. By visual inspection, only 2 non-noisy
trajectories and spectra are discerned, consistent
with dϵ(Λ) = 2. (bottom) First 5 components of
Singular Value Decomposition of ∆A for CRN
C ← A + B → D. dϵ(Λ) = 1. v1(λ) crosses
the origin 4 times, corresponding to 4 isosbestic
points in Fig. 1. For both, we have noise level
ϵ = 10−5, m = 100 successive spectra, n = 1000
wavelengths.

1. Beyond isosbestic points

Provided small enough ϵ, signal is captured
within the first d(Λ) components, and further
dimensions should look qualitatively distinct.
Fig. 8 shows the first 5 components for the
spectral data for our initial example in Fig. 1
(d(Λ) = 2)

An analysis that makes use of the whole
spectrum (such as SVD) allows for a more robust
identification of a dimension compared to the
use of special features such as isosbestic points
or isosbestic lines.

As will be developed in more detail in paper
II, a CRN may have d(Λ) = 1 but inherently
not yield an isosbestic point, for instance when
we are looking at single reactions of the form

∑
k

ν⊖
k,iXk

i
⇄ ∅, (92)

or ∑
k

ν⊖
k,iXk

i
⇄ ■, (93)

where the spectral change due to consumption
(resp. production) is not counterbalanced, i.e.
there is no positive conservation law. (on SVD,
the corresponding v1(λ) will not change in sign).

VII. DISCUSSION

Machine learning (ML) approaches can
learn representations of chemical data and make
predictions based on this representation. Impor-
tantly, any ML representation that incorporates
inherent symmetries and constraints will make
more physically sound predictions and will need
less training data[102]. The algorithmic detec-
tion of such symmetries has become an impor-
tant development in its own right[76, 89, 103–
106]. Understandably, many ML approaches
have adopted CRNs as the model representa-
tion to be learned, through a variety of learning
strategies [107–110]. The challenges posed by
ML and MCR thus bring us back to our orig-
inal unresolved challenge, namely, how CRN
structure follows from data, and vice versa.

In paper I, we advance a first line of results
to relate structural elements (cycles, conserva-
tion laws, reactions, species, co-production) in
the CRN to the dimension of the data it can
bring forth. We have by no means exhausted
this strategy: further dimensional quantities
(such as isosbestic points and its generalizations,
data dimensions with added constraints) can be
defined and measured, and related to structural
elements by the fundamental theorem of linear
algebra. This will form the object of paper II
and III.

The data dimension is useful for filtering
competing hypotheses. As more measured di-
mensional quantities (such as data dimension
d) are combined, the identity of a CRN can be
narrowed down further: the pool of CRNs that
can obey all the observed constraints shrinks
exponentially with the number of constraints.

For our laws to pertain to as much data as
possible recorded in experimental practice, we
derived laws pertaining to the common chemical
experimental context in which not all species
can be observed or distinguished. Further con-
sideration of the viewpoint of an observer[111]
should be beneficial for CRNs in theory and
experiment, as it has been for other physical
theories.
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VIII. CONCLUSION

We characterized effects of irreversible reac-
tions and concealed species on the dimension of
chemical data. This furnished several new CRN
laws, which fundamentally derive from applying
the first structural law (SL1) s − ℓ = r − c to
new contexts: irreversible co-production and
incomplete observation (through spectroscopy).
The reinterpretation of underlying arguments
in this new context in terms of countable chemi-
cally meaningful concepts thereby leads to laws
of chemistry that govern it.

The co-production law Υ = e

•◦ +∧•◦ formal-
izes one of the prominent topological differences
that can arise in passing from CRNs with reac-
tions that are reversible to ones that are irre-
versible. A set of common conservation laws can
be found from an analysis of integer stoichiom-
etry, but irreversbile CRNs can have further
(non-integer) conservation laws that such an
analysis would miss. Conversely, conservation
laws are more informative of CRN structure
than currently considered, as they pick up on
more structural detail. This provides further
motivation to extract them from chemical data
and to elucidate how that can be done.

Critically, data one collects in chemistry
(e.g., by UV-VIS) often need not ’see’ all un-
derlying CRN species. A dimensional the-
ory for chemical data must thus account for
the effects of what can and cannot be experi-
mentally observed, and what cannot be distin-
guished. Within the scope of this work, these
effects are governed by the concealed species law
s■(Λ) = b

�
(Λ)+a

�
(Λ)) and isospectral species

law §(Λ) = b§(Λ) + a§(Λ) + r∼(Λ). We thereby
have started establishing bridges between data
dimension and underlying CRN features, e.g., in-
dependent isosbestic points correspond to single
reactions with associated conservation law(s).

Our approach lays the foundation towards
a CRN-level theory that characterizes the multi-
farious types of ambiguities and indeterminacies
in chemical data and establishes chemical laws
that govern them. By construction, such a the-
ory provides deeper insights into the structure
and chemical context of the ambiguity problem,
the central problem in multivariate curve reso-
lution (MCR). We surmise that this additional
structure and context may be leveraged by a
new generation of MCR algorithms and data
collection protocols.

Importantly, our approach enables new in-
ference methods by which portions of a reaction
network are deduced from dimensions of por-
tions of data, similar to how portions of NMR

spectra illuminate portions of a molecular struc-
ture. Understanding how structure in chemistry
introduces structure in data thereby creates new
tools allowing to address greater analytical chal-
lenges in chemistry.

Appendix A: Glossary

In the context of a recently started effort
to clarify and harmonize concepts and notation
in stochastic thermodynamics, we clarify below
the notation and conventions that have been
adopted.[25] Our notation closely follows the
notation adopted in the framework of Ref [12],
and the proposed unified notation from the
(post)modern thermodynamics lecture notes
[25], with the following exceptions:
- Stoichiometric matrices are denoted by S
- Rate constants are denoted by κ (reserving k
for indices).
We adopt the following additional conventions:
- For sub/superscripts not used as integer
indices, non-alphanumeric symbols (◦,■, ▷) are
preferred.
- Non-alphanumeric sub/superscripts are chosen
that have some relation to the context. E.g.
equivalence ∼ for isomers, a black box ■ for a
concealed subnetwork, etc.
- Fillable sub/superscripts are preferred when
decompositions will be taken (e.g. □, ▷, ◦,)

Symbol Meaning
First appear-
ance

Stoichiometric matrices (S, ν,P)
S regular S p.4 Eq.(8)
ν⊕ S, positive part p.4, Eq.(8)
ν⊖ S, negative part p.4, Eq.(8)
S◦ all reactions once p.4 Eq.(11)
S▷◁ reversible reactions p.5 Eq.(22)
S▷ irreversible reactions p.5 Eq.(22)

S▷▷

all reactions, irreversible
reactions twice p.5 Eq.(23)

S• merged co-production p.6 Eq. (40)
SY external subnetwork p.8 Eq. (65)
SX internal subnetwork p.8 Eq. (65)
S■ concealed subnetwork p.8 Eq. (61)
S□ absorbing subnetwork p.8 Eq. (61)
S
?

merged isospectral species p.9, Eq. (71)
species (s)

s # species p.4 Eq.(15)
s■(Λ) # concealed species p.8 Eq. (58)
sY # chemostats p.8, Eq.(68)
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Symbol Meaning
First appear-
ance

reactions (r, Υ)
r # reactions p.4 Eq.(15)
r▷ # irreversible reactions p.5 Eq.(24)

r▷▷

# reactions, counting re-
versibility twice p.5 Eq.(24)

r◦

# reactions, counting re-
versibility once p.5 Eq.(24)

r▷◁ # reversible reactions p.5 Eq.(25)
Υ Co-production index p.6 Eq. (43)

r∼(Λ)

# independent direct
isomerization reactions
among isospectral species p.9 Eq.(72)

conserved quantities (ℓ, b)
ℓ # conserved quantities p.4 Eq.(15)
ℓ◦ # conserved quantities, S◦ p.4 Eq.(24)

e

•◦

# Co-production em-
anants, Co-production
conservation laws p.5 Eq. (40)

ℓ||(Λ)
# further collinearities in
absorbtion spectra p.8 Eq. (58)

b
�

(Λ)
# concealed conservation
laws p.8 Eq. (62)

cycles (c, Λ, a)
c◦ # cycles, reversible CRN p.4 Eq.(24)
c # cycles p.4 Eq.(15)

∧•◦

# broken cycles due to co-
production p.6 Eq. (47)

a
�

(Λ) # apparent cycles p.8 Eq. (62)
dimension indices (d, I, §)

d data dimension p.7 Eq. (53)

∆dΛ

# CRN dimensions miss-
ing in spectroscopic data p.9 Eq. (60)

§(Λ) Isospectral index p. Eq. (58)
other indices

Aλ absorbance p.7 Eq. (55)
Lp path length p.7 Eq. (55)
[Xk] amount concentration p.7 Eq. (55)

ϵk(λ)
molar extinction coeffi-
cient p.7 Eq. (55)

E(Λ) Molar Extinction Matrix p. Eq. (57)

Appendix B: A hidden conserved quantity
in an atmospheric chemistry model

As a final application example, we revisit
the atmospheric model considered in recent
studies[76, 89], in which a non-integer quantity
that appeared to be conserved was discovered
numerically. It was unclear whether this was an
approximate conservation law, or a genuine one,
and no clear interpretation could be given for
its non-integer nature. We address both ques-
tions below by showing that it is an instance of
co-production conservation.

The model starts by considering the irre-
versible reactions

NO2 + hν → NO + O (B1)
O + O2 → O3 (B2)

O3 + NO→ NO2 + O2 (B3)
HCHO + 2O2 + hν → 2HO•

2 + CO (B4)
HCHO + hν → H2 + CO (B5)
HCHO + HO• → HO•

2 + CO + H2O(B6)
HO•

2 + NO→ HO• + NO2 (B7)
HO• + NO2 → HNO3 (B8)

HO2H + hν → 2HO• (B9)
HO2H + HO• → H2O + HO•

2 (B10)

It is further supposed that H2O is not monitored,
and that O2 is a reservoir species (chemostatted).
The subnetwork thus afforded is

NO2 + hν → NO + O (B11)
O → O3 (B12)

O3 + NO → NO2 (B13)
HCHO + hν → 2HO•

2 + CO (B14)
HCHO + hν → H2 + CO (B15)

HCHO + HO• → HO•
2 + CO (B16)

HO•
2 + NO → HO• + NO2 (B17)

HO• + NO2 → HNO3 (B18)
HO2H + hν → 2HO• (B19)

HO2H + HO• → HO•
2 (B20)

Since H2O only occurs as a sink species, the
effects of concealing it and chemostatting it are
equivalent (bX = 1 or b□ = 1).

We will now see how coproduction emerges:
we remove O2 and H2O from the description
by chemostatting. By the chemostatting of O2,
reactions r4 and r5 have become collinear, hence
Υ = 1. The chemostat law (i.e., Eq. (68)) states
that sY = 2 reservoirs are introduced, and here
one can readily check that b = 2 stoichiometric
conservation laws are broken (i.e., hydrogen and
oxygen conservation being lost). Since e

•◦ = 1,
the number of conservation laws is only reduced
by 1 rather than 2. The subnetwork with the
highlighted collinear reactions is depicted in Fig.
4.

The subnetwork satisfies S▷▷ = S▷, with
stoichiometric matrix

S▷ =



0 1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 −1 0 0 0

−1 0 1 0 0 0 1 −1 0 0
0 0 0 −1 −1 −1 0 0 0 0
0 0 0 2 0 1 −1 0 0 1
0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 −1 1 −1 2 −1
1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
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FIG. 9: Figure 4, reproduced for convenience. An
Atmospheric CRN model with co-production
index Υ = 1. Collinear reactions are highlighted
in pink. These do not include cycle reactions -
highlighted in blue - and, hence, no cycles break
upon merging collinear reactions ∧•◦ = 0. e

•◦ = 1
co-production conservation law then results from
the co-production law Υ = e

•◦ + ∧•◦, confirming
the newly found law CQ3 marks the detection of
a genuine conservation law.

(B21)

Which has rk (S▷) = 9. Since r▷ = 10, there is
c◦ = 1 cycle, involving r1 to r3

ccc = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) (B22)

which is highlighted in Fig. 9.
As reactions r4 and r5 are now collinear,

we merge them

pr4 + (1− p)r5, p = k4

k4 + k5
(B23)

which becomes

HCHO + hv → 2pHO•
2 + CO + (1− p) H2

(B24)

So that our stoichiometric matrix S• in terms
of independent reactions becomes

S• =



0 1 −1 0 0 0 0 0 0
1 0 −1 0 0 −1 0 0 0

−1 0 1 0 0 1 −1 0 0
0 0 0 −1 −1 0 0 0 0
0 0 0 2p 1 −1 0 0 1
0 0 0 0 0 0 0 −1 −1
0 0 0 0 −1 1 −1 2 −1
1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1−p 0 0 0 0 0

 .

As we have not merged any cycle reactions, no
cycles are lost ∧•◦ = 0. This is readily seen by
making the cycle vector ccc one reaction shorter

ccc• = (1, 1, 1, 0, 0, 0, 0, 0, 0), (B25)
S•ccc• = 000. (B26)

Thus, co-production Υ = 1 then yields e

•◦ = 1,
as evidenced by an additional left nullvector

ℓℓℓ
(3)
• =

(
6,−5, 1, 3, 9, 6, 3, 6, 4,−3,

6− 18p

1− p

)
(B27)

To see if this is the elusive hidden conservation
law[112] CQ3 reported in the literature[76], we
substitute (p = 0.40541..):

ℓℓℓ
(3)
• = (6,−5, 1, 3, 9, 6, 3, 6, 4,−3, 2.18..)

CQ3 ≈ (6,−5, 1, 3, 9, 6, 3, 6, 4,−3, 2.21)

The numerical estimate of the measured quan-
tity CQ3 thus closely approximates the genuine
conservation law. We can thus confirm that
the observation of CQ3 was due to a genuine
conserved quantity in the (chemostatted) model.
The existence and exact nature - co-production
conservation - of this conservation law has
thereby been clarified.

In general, the SID algorithm proposed in
that work[76] detects conservation laws of first
order differential equations dtxxx = fff(xxx) by cre-
ating a list of K independent phase-space func-
tions bbb = b(1)(xxx), ..., b(K)(xxx). H(xxx) = θθθT b(xxx) is
then a conserved quantity, if, for all xxx:[113]

g(xxx)Tθθθ = 0, (B28)
g(xxx) = ∇bbbfff(xxx). (B29)

Applied to CRNs where xxx = [XXX], fff(xxx) = SJJJ
and with a list of candidate functions bbb = [XXX],
the above equation reduces to (the transpose of)
the condition ℓℓℓTSJJJ = 0 mentioned before. We
conclude that the analysis provided herein is
sufficient to explain all true linear conservation
laws the SID algorithm might find in a CRN.
There can be further conservation laws due to
special choices of parameters (Sec. E).

Appendix C: Example: ∧•◦ vs e

•◦

Coproduction can result in an emergent
conservation law or a broken cycle. Here we
illustrate a minimal example of a broken cycle.

For this, we first start with a CRN display-
ing the cycle to be broken

X1
1→ X2

2→ X3
3→ X1, (C1)
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for which

S• =

−1 0 1
1 −1 0
0 1 −1

 . (C2)

Here, there are no reactions to be merged, and
so Υ = e

•◦ = ∧•◦ = 0. Furthermore, there is
c = 1 cycle and ℓ◦ = 1 conservation law

ccc = (1, 1, 1)T (C3)
L(1) = [X1] + [X2] + [X3] (C4)

Reversing any of the reactions will yield

X1 X2

X3

X1 X2

X3

X1 X2

X3

=

a b

FIG. 10: a) a cyclic CRN composed of irreversible
reactions. Cycle reactions are highlighted in
blue. Reversing any of the reaction arrows
in this cyclic CRN affords CRN b) with co-
production index 1. After merging collinear
reactions, the original reaction cycle can no
longer be performed.

X1
1→ X2

2← X3
3→ X1, (C5)

S▷ =

−1 0 1
1 1 0
0 −1 −1

 . (C6)

For which a cycle (right nullvector) is ccc =
(1,−1, 1)T . We find that Υ = 1, because r2
and r3 are now collinear. Upon merging these
we obtain

X1
1→ X2, X3

2→ pX1 + (1− p) X2,

S• =

−1 p
1 −1
0 1− p

 . (C7)

and by this merger ∧•◦ = 1 cycle is thus lost.

Appendix D: Applying laws for isospectral
and concealed species

Fig. 11 furnishes further examples of the
application of the isospectral species law and
the concealed species law.

d(X) d(Λ)

3 2 3 2 1

2 1 0 1 0 1 000

2 1 0 1 0 1 100

§s b b§ a§a

00 00

CRN ∎

⋆⋆

⋆ ⋆

⋆ ⋆

3 3 2 2 0 0 0 0 0

0 01 010022

1 1 1 1 0 0 0 0 0

3 2 2 1 1 0 0 0 0

3 2 0 0 0 1 0 1 0⋆⋆

r∼

FIG. 11: Illustration of laws for isospectral (Eq.
(72)) and concealed (Eq. (62)) species for sev-
eral CRNs. Dark nodes correspond to spec-
troscopically inactive species. Species that are
indistinguishable are marked with a star. New
cycles - leading to loss of data dimension - are
highlighted in orange and blue. Data dimen-
sions: d(X), d(Λ) (spectral), d(X) (species).
d(Λ) spectral data dimension, s■(Λ) : # con-
cealed species, b□(Λ) : # concealed conserva-
tion laws, a□(Λ) : # apparent cycles, §(Λ) :
isospectral index, r∼(Λ) : # isospectral isomer-
ization reactions, b§(Λ) : # isospectral broken
conservation laws, a§(Λ)#, isospectral emergent
cycles.

Appendix E: Parametric collinearity

We have considered collinearity that is due
to structure alone. For certain combinations
of parameters and initial conditions, a CRN
may become symmetric and behave like a lower-
dimensional CRN. As a concrete example, we
consider

C
1
⇆ A + B

2
⇄ D. (E1)

For which we previously considered that we have
r◦ = 2 linearly independent currents

J1,◦ = κ1[A][B]− κ3[C] = J1,▷▷ − J3,▷▷

J2,◦ = κ2[A][B]− κ4[D] = J2,▷▷ − J4,▷▷
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and, hence, a priori, no collinearity should exist.
If we now fix [C]0 = [D]0, κ1 = κ3, κ2 = κ4,
then the rates become collinear J1,◦ = J2,◦ and
dynamics for [C] and [D] become equivalent,
hence we have a conserved quantity:

L = [C]− [D] = 0. (E2)

This relates to a symmetry in the CRN C↔ D,
which vanishes when we let [C]0 ̸= [D]0.

This requirement of 3 parametric con-
straints is readily attained in chemical prac-
tice: if C and D are enantiomers in an achiral
environment, then the 2 constraints on rate con-
stants will naturally be verified. The constraint
[C]0 = [D]0 would require that we either add
C and D as a racemic mixture, or do not add
them at all. We refer to Ref. [114, 115] for

pertinent further decompositions of CRNs with
symmetries due to chiral species.

Since parametric collinearity occurs for spe-
cific choices of rate constants and initial con-
ditions, it will not generically be detected by
algorithmic procedures that seek out conserved
quantities.
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