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Elliptical distribution is a basic assumption underlying many multivariate
statistical methods. For example, in sufficient dimension reduction and statis-
tical graphical models, this assumption is routinely imposed to simplify the
data dependence structure. Before applying such methods, we need to decide
whether the data are elliptically distributed. Currently existing tests either fo-
cus exclusively on spherical distributions, or rely on bootstrap to determine
the null distribution, or require specific forms of the alternative distribution.
In this paper, we introduce a general nonparametric test for elliptical distri-
bution based on kernel embedding of the probability measure that embodies
the two properties that characterize an elliptical distribution: namely, after
centering and rescaling, (1) the direction and length of the random vector
are independent, and (2) the directional vector is uniformly distributed on
the unit sphere. We derive the asymptotic distributions of the test statistic via
von-Mises expansion, develop the sample-level procedure to determine the
rejection region, and establish the consistency and validity of the proposed
test. We also develop the concentration bounds of the test statistic, allowing
the dimension to grow with the sample size, and further establish the con-
sistency in this high-dimension setting. We compare our method with several
existing methods via simulation studies, and apply our test to a SENIC dataset
with and without a transformation aimed to achieve ellipticity.

1. Introduction. Elliptical distribution is a widely-used assumption for many statistical
and machine learning methods for multivariate data. For example, in sufficient dimension
reduction, the elliptical distribution assumption for the predictor is needed for moment-based
methods such as Sliced Inverse Regression (Li, 1991), Ordinary Least Squares (Li and Duan,
1989), and Iterative Hessian Transformation (Cook and Li, 2002). See also Li (2018). When
this assumption is violated, one needs either to perform data transformation or to modify
the inverse-regression methods as in Li and Dong (2009). Another example is the statistical
graphical model, where a class of methods, such as glasso (Yuan and Lin, 2006) and the
transelliptical graphical model (Liu, Han and Zhang, 2012), require either a Gaussian or an
elliptical distribution. See also Vogel and Fried (2011), which introduces a class of elliptical
graphical models as a robust alternative to the Gaussian graphical model.

There are some existing tests on spherical distributions. For example, Baringhaus (1991)
proposes a test based on the L2-distance between the empirical distribution of the data and
the distribution function partially specified by the spherical assumption. Liang, Fang and
Hickernell (2008) introduces a necessary test by applying the Rosenblatt transformation on
each element. The hypothesis in this test is necessary in the sense that it is implied by spher-
ical distribution but does not imply the spherical distribution. Henze, Hlávka and Meintanis
(2014) introduces a test by checking whether the characteristic function is constant over sur-
faces of spheres centered at the origin. Kariya and Eaton (1977) introduces a robust test of
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a spherical distribution centered at the origin against an elliptical or a noncentered spher-
ical distribution. Koltchinskii and Li (1998) uses the multivariate distribution and quantile
functions to test spherical distributions with unknown centers. All tests above are for the
spherical distributions where the covariance matrix is exactly the identity matrix, and most
of them focus on the case when we know the center is zero. These methods do not yield di-
rect extensions for testing elliptical distributions where both the mean vector and covariance
matrix are unknown.

There also exist some tests on elliptical distributions. Huffer and Park (2007) gives a test
for multivariate normal and elliptical distribution of the data based on a chi-square statistic
after slicing the data. For the multivariate normal distribution, they derive the asymptotic null
distribution of their test; for the elliptical distribution, they propose a bootstrap test without
giving a proof of its consistency and validity. Albisetti, Balabdaoui and Holzmann (2020)
introduces a test based on a Kolmogorov-Smirnov type statistic and uses bootstrap to con-
struct the null distribution. Manzotti, Pérez and Quiroz (2002) proposes a test on whether the
standardized directional vector is uniformly distributed on the unit sphere, which is, again,
only a necessary condition for spherical distribution. Schott (2002) proposes a Wald-type test
based on whether the 4th moments are consistent with an elliptical distribution. So its null
hypothesis is not exactly the elliptical distribution. Furthermore, since it requires estimation
of the 8th moments, it may not be robust. Cassart, Hallin and Paindaveine (2008) proposes a
locally and asymptotically optimal Pseudo-Gaussian test for Fechner-type symmetry, which
is wider than the class of elliptical distributions. Babić et al. (2021) develops optimal tests
for elliptical distributions against some generalized skew-elliptical alternatives. Some of the
existing methods are summarized in Babić, Ley and Palangetić (2021).

In this paper, we introduce a nonparametric test for elliptical distributions based on
Hilbert-space embedding of a product probability measure that characterizes an elliptical
distribution. The basic idea is the following. It is well known that a random vector X follows
a spherical distribution centered at 0 if and only if

1. its Euclidean norm ∥X∥ and its direction X/∥X∥ are statistically independent;
2. the direction vector X/∥X∥ is uniformly distributed on the unit sphere.

See, for example, Anderson (2003); Paindaveine (2012). This converts testing of sphericity
to testing of the two conditions. Since an elliptical distribution can always be transformed
into a spherical distribution by a linear map, we can further develop tests of ellipticity by
testing the two conditions for the linearly transformed data. However, since the mean vector
and covariance matrix need to be estimated, we have to take into account the estimation error
in this step when deriving the asymptotic distribution.

More specifically, let U = ∥X∥ and V =X/∥X∥. If X has a spherical distribution, then
the distribution PU,V can be expressed by the product measure PU ×PV , where PV is a known
distribution. We embed this distribution into a reproducing kernel Hilbert space as a cross-
covariance operator and compare it against the kernel embedding of the fully empirical dis-
tribution. The norm of the difference should be small if X has a spherical distribution, and
large otherwise. This is the core idea of our method. One side-note is that we may replace
V by its polar coordinate representation, which will significantly simplify the computation.
This procedure has several appealing features: first, the hypothesis is both necessary and suf-
ficient, that is, X has a spherical distribution if and only if the distance is small; second, it
is rather straightforward to go from spherical distribution to elliptical distribution by replac-
ing X with its centered and rescaled version; third, since the test only involves functions of
sample moments, its asymptotic null distribution can be relatively easily derived from the
infinite-dimensional δ-method, or the von-Mises expansion.

Probability embedding (Sriperumbudur, Fukumizu and Lanckriet, 2010, 2011) is a pow-
erful method that has been used in a variety of settings in statistics and machine learning,
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such as test of independence and the two-sample problem. See, for example, Gretton et al.
(2005), Gretton et al. (2007), Gretton et al. (2008), Gretton et al. (2009), and Gretton et al.
(2012). There is another type of tests of independence based on the distance covariance; see
Székely, Rizzo and Bakirov (2007) and Székely and Rizzo (2009) among others. Sejdinovic
et al. (2013) establishes the relation between these two types of tests of independence. Our
test of elliptical distribution goes beyond the test of independence between U and V , as it
must also incorporate the fact that the distribution of V is known.

The rest of the paper is organized as follows. In Section 2, we lay out the two character-
izing properties of an elliptical distribution and construct the probability embedding into a
reproducing kernel Hilbert space that embodies the two characterizing properties. In Sections
3 and 4, we introduce the test statistic based on the probability embedding and implement it
numerically through coordinate mapping. In Section 5, for the fixed dimension, we derive the
asymptotic null and alternative distributions of the test statistic via von-Mises expansion, and
in Section 6, we implement the asymptotic null distribution at the sample level, and establish
the validity and consistency of our test. In Section 7, we derive the uniform concentration
bounds for our test statistic allowing the dimension to grow with the sample size, and further
establish the consistency of our test in this high-dimensional setting. In Section 8, we con-
duct simulation studies to demonstrate the usage and effectiveness of the proposed test. In
Section 9, we apply our test to a data example. Section 10 is devoted to some discussions on
the choice of kernel functions.

Due to space limit, some technical lemmas, most of the proofs, and discussions of some
theoretical results are placed in Appendix A; additional simulation comparisons are placed
in Appendices B and C; further discussions on the choice of kernel functions are placed in
Appendix D; and the scatter plot matrices of the dataset in Section 9 are placed in Appendix
E. All Appendices are in the online Supplementary Material (Tang and Li (2024)). Our pro-
posed method is implemented in the R package KEPTED (Kernel-Embedding-of-Probability
Test for Elliptical Distribution).

2. Elliptical distribution and its kernel embedding. In this section we introduce the
definition of the elliptical distribution and develop two equivalent conditions, one at the level
of probability measures and the other at the level of linear operators. The sufficient condition
at the operator level is the theoretical basis of our test.

2.1. Spherical and elliptical distributions. Let (Ω,F , P ) be a probability space, and
(ΩX,FX) be a measurable space, where ΩX is a subset of Rd, and FX is the Borel σ-field on
ΩX . Let X : Ω→ ΩX be a Borel random vector, and let PX = P ◦X−1 be the distribution of
X . Denote λ the Lebesgue measure in Rd. We say that X has a spherical distribution centered
at µ ∈Rd if

1. PX is dominated by the Lebesgue measure in Rd with density fX = dPX/dλ;
2. fX(x) is a function of (x− µ)T(x− µ), that is,

(2.1) fX(x) = h ((x− µ)T(x− µ)) ,

for some nonnegative function h satisfying

(2.2)
∫ ∞

−∞

. . .

∫ ∞

−∞

h(xTx)dx1 . . . dxd = 1.

Here, µ is necessarily EX if X is integrable. Throughout, ∥ · ∥ will denote the Euclidean
norm (or L2 norm). Let U = ∥X − µ∥ and V = (X − µ)/U . By Theorem 1 of Cambanis,
Huang and Simons (1981), X has a spherical distribution if and only if U V and V has a
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uniform distribution on the unit sphere Sd−1 in Rd, where refers to independent throughout
this paper. See also Eaton (1986) and Schmidt (2002).

More generally, X is said to have an elliptical distribution centered at µ ∈ Rd with a
positive definite shape parameter Λ ∈Rd×d if

1. PX is dominated by the Lebesgue measure in Rd with density fX = dPX/dλ;
2. the density of X is a function of (x− µ)TΛ−1(x− µ), that is,

fX(x) = |Λ|− 1
2h ((x− µ)TΛ−1(x− µ)) ,

for some nonnegative function h satisfying (2.2), where |Λ| denotes the determinant of Λ.

A direct corollary is that Y =Λ− 1
2 (X − µ) has a spherical distribution centered at 0. Conse-

quently, if we let

(2.3) U =
√

(X − µ)TΛ−1(X − µ), V =Λ−1/2(X − µ)/U,

then X has an elliptical distribution with center µ and shape parameter Λ if and only if U V ,
and V has a uniform distribution on the unit sphere Sd−1.

According to Theorem 2.7.2 of Anderson (2003), if the components of X are square-
integrable, then

EX = µ, var(X) =
EU 2

d
Λ.

Let Σ = var(X). In this paper, we always assume that X has finite mean and variance.
Obviously, neither the dependence between U and V nor the distribution of V will be affected
if we replace Λ by Σ in their definitions in (2.3). See Paindaveine (2012) for a detailed
discussion. So, for convenience, we reset U and V to be

U =
√

(X − µ)TΣ−1(X − µ), V =Σ−1/2(X − µ)/U,(2.4)

for the rest of the paper. The sufficient and necessary condition for elliptical distribution still
applies to the redefined U and V , which we record below formally for easy reference.

PROPOSITION 1. A random vector X has an elliptical distribution if and only if, for U
and V defined in (2.4),

1. U V ;
2. V is uniformly distributed in Sd−1.

2.2. Polar coordinate transformation and equivalent condition. Since the random vector
V only takes values in the unit sphere Sd−1 in Rd, it is more convenient to transform it into
a d − 1 dimensional vector representing the direction of the unit vector V via the polar
coordinate system. Specifically, let v = (v1, . . . , vd)

T ∈ Sd−1 and let

θ = (θ1, . . . , θd−1)
T ∈ (−π/2, π/2]× · · · × (−π/2, π/2]× (−π,π]≡ΩΘ.

For clarity of the subsequent discussion, we first give a definition of the precise meaning
of the arc tangent function in the range of (−π,π]. For a real number r ∈R, let arctan(r) be
the unique θ ∈ (−π/2, π/2) such that r = tan(θ). Then, for (x, y) ∈R2, let

Arctan(x, y) =



arctan(y/x), if x > 0,

arctan(y/x) + π, if x < 0, y ≥ 0 ,

arctan(y/x)− π, if x < 0, y < 0,

π/2, if x= 0, y > 0,

−π/2, if x= 0, y < 0.

(2.5)
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We have written this function as Arctan(x, y) instead of Arctan(y/x) because it is no longer
the function of the ratio y/x. Some useful properties of the Arctan function (2.5) are sum-
marized in the Supplementary Materials. The next lemma, whose proof is also placed in the
Supplementary Materials, gives the explicit one-to-one correspondence between v ∈ Sd−1 and
θ ∈ΩΘ. In the following, we use Sj to denote the Euclidean norm of the vector (vj, . . . , vd)

T.

LEMMA 1. The following function from ΩΘ to Sd−1

v1 = sinθ1,

v2 = cosθ1 sinθ2,

...

vd−1 = cosθ1 cosθ2 . . . cosθd−2 sinθd−1,

vd = cosθ1 cosθ2 . . . cosθd−2 cosθd−1.

(2.6)

is bijective with inverse

θj =

{
Arctan(Sj+1, vj) j = 1, . . . , d− 2,

Arctan(vd, vd−1) j = d− 1.
(2.7)

We will denote the first function (2.6) as v = ρ(θ) and the second function (2.7) as θ =
g(v). Then

x= uv = uρ(θ)≡ τ(u, θ),

Evidently τ is an invertible function, and the joint distribution of U,Θ can be written as

fUΘ(u, θ) = fX(τ(u, θ))
∣∣∣∂τ(u,θ)∂(u,θT)

∣∣∣ .(2.8)

According to Anderson (2003), the Jacobian on the right-hand side above is∣∣∣∂τ(u,θ)∂(u,θT)

∣∣∣= ud−1 cosd−2 θ1 cos
d−3 θ2 . . . cosθd−2.(2.9)

Hence, by (2.1), (2.8) and (2.9), the joint p.d.f. of (U,Θ) is

fU,Θ(u, θ) =ud−1 cosd−2 θ1 cos
d−3 θ2 . . . cosθd−2h(u

2), (u, θ) ∈ΩU ×ΩΘ,(2.10)

where ΩU = [0,∞). This relation implies (i) U and Θ are independent, and (ii) Θ has a
known distribution. We summarize this result as the following proposition.

PROPOSITION 2. If (U,Θ) = τ−1(X), then X has a spherical distribution centered at 0
if and only if

1. U Θ, or equivalently PU,Θ = PU × PΘ;
2. PΘ has p.d.f. fΘ(θ) = c cosd−2(θ1) cos

d−3(θ2) · · · cos(θd−2), where θ ∈ΩΘ and

c=
(∫

ΩΘ
cosd−2(θ1) cos

d−3(θ2) · · · cos(θd−2)dθ
)−1

.

2.3. Kernel embedding of PU × PΘ. Let κU : ΩU × ΩU → R and κΘ : ΩΘ × ΩΘ → R be
positive definite kernels, and let HU and HΘ be the reproducing kernel Hilbert space (RKHS)
generated by κU and κΘ. Let B be the collection of linear operators {f⊗g : f ∈HU , g ∈HΘ}.
Thus, each member of B is a linear operator mapping from HΘ to HU such that, for any
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h ∈ HΘ, (f ⊗ g)(h) = f⟨g,h⟩HΘ
. Let S be the linear span of B, consisting of finite linear

combinations of members of B with real coefficients. Define in S the inner product

⟨α1(f1 ⊗ g1) + · · ·+ αr(fr ⊗ gr), α̃1(f̃1 ⊗ g̃1) + · · ·+ α̃r(f̃s ⊗ g̃s)⟩

=
∑

r

i=1

∑
s

j=1
αiα̃j⟨fi, f̃i⟩HU

⟨gj, g̃j⟩HΘ
.

Endowed with this inner product, S is an inner product space; its completion as a Hilbert
space is the tensor product space HU ⊗HΘ.

Let FU and FΘ be the Borel σ-fields on ΩU and ΩΘ, and let FU × FΘ be the product
σ-field. Abbreviate ΩU × ΩΘ and FU × FΘ by ΩU,Θ and FU,Θ. Let M(ΩU,Θ,FU,Θ) denote
the class of all probability measures on (ΩU,Θ,FU,Θ). We want to find an injective mapping
from M(ΩU,Θ,FU,Θ) to HU ⊗HΘ so that testing equality of two measures in M(ΩU,Θ,FU,Θ)
is equivalent to testing the equality of two operators in HU ⊗HΘ. Such a mapping is pro-
vided by the following theorem. Recall that a kernel κ is characteristic if the mapping
P 7→

∫
κ(·,X)dP is injective. Here, the dot notation

∫
κ(·,X)dP simply means the func-

tion x 7→
∫
κ(x,X)dP . So κ being characteristic means if

∫
κ(x,X)dP1 =

∫
κ(x,X)dP2

for all x then P1 = P2.

THEOREM 1. If κU and κΘ are characteristic, then so is tensor product kernel κU ⊗ κΘ;
that is, the mapping

M(ΩU,Θ,FU,Θ)→HU ⊗HΘ, PU,Θ 7→
∫

ΩU,Θ
κU(·,U)⊗ κΘ(·,Θ)dPU,Θ

is injective.

The dot notation κU(·,U) means the function u 7→ κU(u,U); the same applies to κΘ(·,Θ).
So the operator κU(·,U) ⊗ κΘ(·,Θ) maps a function f ∈ HΘ to f(Θ)κU(·,U), which is a
member of HU . Correspondingly, the operator

∫
ΩU,Θ

κU(·,U)⊗ κΘ(·,Θ)dPU,Θ maps a func-
tion f ∈ HΘ to

∫
ΩU,Θ

κU(·,U)f(Θ)dPU,Θ, which is a member of HU . This type of dot nota-
tions will be used throughout the rest of the paper. The proof of Theorem 1 can be found in
Theorem 4 of Szabó and Sriperumbudur (2018). As a result, we only need to guarantee that
both κU and κΘ are characteristic kernels. In fact, the Gaussian radial basis kernels, which in
our context are

(2.11) κU(u1, u2) = exp[−γU(u1 − u2)
2], κΘ(θ1, θ2) = exp(−γΘ∥θ1 − θ2∥2),

for some γU , γΘ > 0, indeed satisfy the condition in Theorem 1: it is shown in Theorem 3.2
of Guella (2022) that a Gaussian radial basis kernel is integrally strictly positive definite, and
it is further shown that an integrally strictly positive definite kernel is characteristic (see, for
example, Sriperumbudur, Fukumizu and Lanckriet (2011); Fukumizu et al. (2009); Sripe-
rumbudur et al. (2010)).

Theorem 1 implies the following equivalence which is the basis of our test of ellipticity.

COROLLARY 1. Suppose

1. X is a random vector in Rd with mean µ and covariance matrix Σ;
2. (U,Θ) = τ−1(Σ−1/2(X − µ));
3. κU and κΘ are characteristic kernels.

Then X has an elliptical distribution with parameters µ and Σ if and only if∫
ΩU,Θ

[κU(·,U)⊗ κΘ(·,Θ)]dPU,Θ =

∫
ΩU

κU(·,U)dPU ⊗
∫

ΩΘ

κΘ(·,Θ)dP0

where P0 is the known true PΘ with its form given in Proposition 2.
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3. Construction of Test Statistic. In this section we construct our test statistic based on
Corollary 1. Let X1, . . . ,Xn be an i.i.d. sample of X . For a function A(x), we use EnA(X)

to denote the sample average of A(X1), . . . ,A(Xn). Let µ̂ and Σ̂ denote the sample mean
and sample variance; that is, µ̂ = En(X) and Σ̂ = En[(X − µ̂)(X − µ̂)T]. For any x ∈ ΩX ,
let

W (x) =Σ−1/2(x− µ), Ŵ (x) = Σ̂−1/2(x− µ̂),

U(x) =∥W (x)∥, Û(x) = ∥Ŵ (x)∥,

V (x) =W (x)/U(x), V̂ (x) = Ŵ (x)/Û(x),

Θ(x) =g(V (x)), Θ̂(x) = g(V̂ (x)),

where g(·) is the polar coordinate transformation as defined in (2.6). When no ambiguity is
likely, we abbreviate W (X) by W , W (Xi) by Wi, and Ŵ (Xi) by Ŵi. The same applies to
U , V and Θ. Let

(3.1) ΣUΘ =E[κU(·,U)⊗ κΘ(·,Θ)]−E[κU(·,U)]⊗E0[κΘ(·,Θ)]

where E0 refers to the expectation with respect to P0. Note that ΣUΘ is different from a usual
cross-covariance operator between two random variables, because PΘ is given the specific
form P0. By Corollary 1, X has an elliptical distribution if and only if ΣUΘ = 0, which implies
U Θ and PΘ has the form given in Proposition 2. Thus, our goal is to test the hypothesis

H0 : ΣUΘ = 0.(3.2)

Note that this is not merely a test of independence between U and Θ, because PΘ has a
known, specific form.

Let

Σ̆UΘ =En[κU(·, Û)⊗ κΘ(·, Θ̂)]−En[κU(·, Û)]⊗E0[κΘ(·,Θ)],(3.3)

where, for example, the first term on the right is the sample average of

{κU(·, Û(Xi))⊗ κΘ(·, Θ̂(Xi)) : i= 1, . . . , n}.

Since the last term is an integral with respect to the known distribution P0, this operator is
not the usual sample estimate of the cross-covariance operator ΣUΘ. That is why we denote it
by Σ̆UΘ instead of Σ̂UΘ. The operator Σ̆UΘ is a mapping from HΘ to HU : for a given f ∈HΘ,
Σ̆UΘf is the function

En[κU(·, Û)f(Θ̂)]−En[κU(·, Û)]E0[f(Θ)],

which is a member of HU .
For convenience, let κ̃Θ(·, θ) = κΘ(·, θ) −

∫
κΘ(·, θ)dP0(θ) denote the centered kernel

function in HΘ. Then, (3.1) and (3.3) can be simplified as

ΣUΘ =E[κU(·,U)⊗ κ̃Θ(·,Θ)], Σ̆UΘ =En[κU(·, Û)⊗ κ̃Θ(·, Θ̂)].

We use

Tn = n∥Σ̆UΘ∥2

HS

as our test statistic for the hypothesis (3.2). The squared Hilbert-Schmidt norm ∥Σ̆UΘ∥2

HS
is

the sum of eigenvalues of the operator Σ̆UΘΣ̆
∗
UΘ

, where Σ̆∗
UΘ

is the adjoint operator of Σ̆UΘ.
This is analogous to the Frobenius norm of a matrix.



8

By our definition, Tn/n is close to ∥ΣUΘ∥2

HS
. An equivalent definition of ∥ΣUΘ∥HS is

∥ΣUΘ∥HS = ∥E[κU(·,U)⊗ κΘ(·,Θ)]−E[κU(·,U)]⊗E0[κΘ(·,Θ)]∥HS

= sup
f1⊗f2∈F

|EPUΘ
[f1(U)f2(Θ)]−EPU

[f1(U)]EP0
[f2(Θ)]|

where F = {f1 ⊗ f2 ∈ HU ⊗ HΘ : ∥f1 ⊗ f2∥ ≤ 1}, and P0 is the true distribution of Θ as
defined in Proposition 2. In this way, we can interpret ∥ΣUΘ∥HS as a “distance” between
PUΘ and the “closest” elliptically symmetric distribution PU × P0. Here, “closest” can be
interpreted as keeping the marginal distribution PU unchanged and using it to construct an
elliptical distribution. Therefore, intuitively, Tn/n is small if X has an elliptical distribution.
On the other hand, if X does not have an elliptical distribution, then either U and Θ are not
independent, or the marginal distribution of Θ is not the one given by Proposition 2. In either
case Tn/n will not be small.

As we will see in the next section, Tn/n can be re-expressed as

n−2
∑

i,j
κU(Ûi, Ûj)⟨κ̃Θ(·, Θ̂i), κ̃Θ(·, Θ̂j)⟩HΘ

.

If U and Θ are independent, then the above is approximately(
n−2

∑
i,j
κU(Ûi, Ûj)

)(
n−2

∑
i,j
⟨κ̃Θ(·, Θ̂i), κ̃Θ(·, Θ̂j)⟩HΘ

)
.

If, furthermore, Θ is distributed as P0, then the second term will be near 0. Hence Tn/n will
be near 0 if and only if both Θ U and Θ∼ P0 hold; that is, X has an elliptical distribution.

4. Computing the test statistic.

4.1. Coordinate mapping. The implementation of the test at the sample level relies on
coordinate representation of linear operators. Let H be an r-dimensional space with a basis
B = {b1, . . . , br}. Then every member f of H can be represented as c1b1 + · · · + crbr. The
mapping from H to Rr defined by C(f) = (c1, . . . , cr)

T is called the coordinate mapping. Let
G be the Gram matrix {⟨bi, bj⟩H}r

i,j=1
. Then, for any f, g ∈H,

⟨f, g⟩H =
∑

r

i=1

∑
r

j=1
C(f)iC(g)j⟨bi, bj⟩H =C(f)TGC(g).

In other words, if we let Rr(G) represent the Hilbert space consisting of the vector space
Rr along with the inner product ⟨a, b⟩ = aTGb, then C : H → Rr(G) is an isomorphism.
Let A : H → H be a self-adjoint operator. An eigenvalue of A is defined by the following
relations

Af = λf, ⟨f, f⟩H = 1,

or equivalently,

CAC∗Cf = λCf, (Cf)TGCf = 1,

where, C∗ stands for the adjoint operator of C . Note, again, that ∗ and ⋆ denote different
concepts. Letting v =G1/2Cf , the above can be restated as

G1/2CAC∗G−1/2v = λv, vTv = 1.

In other words, a number is an eigenvalue of the operator A if and only if it is an eigenvalue
of the matrix G1/2CAC∗G−1/2, which can be shown to be a symmetric matrix. In particular,

tra(A) = tra(G1/2CAC∗G−1/2) = tra(CAC∗),
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where tra on the left represents the trace of a linear operator, in the middle and on the right
represent that of a matrix. This identity allows us to express the Hilbert-Schmidt norm of an
operator as the trace of a matrix.

Let ei represent the ith column of the identity matrix Ir. Since ei =Cbi, CAC∗ is simply
the n× n matrix

CAC∗(e1, . . . , ep) =CAC∗(Cb1, . . . ,Cbp) = (CAb1, . . . ,CAbr).(4.1)

4.2. Test statistic. At the sample level, HU and HΘ are spaces spanned by the two bases

BU = {κU(·, Ûi) : i= 1, . . . , n}, BΘ = {κΘ(·, Θ̂i) : i= 1, . . . , n}

respectively. Let KU and K̃Θ be the n× n matrices whose (i, j)th entries are

(4.2) (KU)ij = κU(Ûi, Ûj), (K̃Θ)ij = ⟨κ̃Θ(·, Θ̂i), κ̃Θ(·, Θ̂j)⟩HΘ

respectively. Note that KU is simply the Gram matrix of BU , and (K̃Θ)ij can be expanded as

κΘ(Θ̂i, Θ̂j)−
∫
κΘ(Θ̂i, θ)dP0(θ)−

∫
κΘ(Θ̂j, θ)dP0(θ) +

∫ ∫
κΘ(θ, θ

′)d(P0 × P0)(θ, θ
′).

Let C :HU →Rn be the coordinate mapping. Our goal is to compute

Tn = n∥Σ̆UΘ∥2

HS
= n tra(Σ̆UΘΣ̆

∗
UΘ
).

By the discussion in Section 4.1, we have

tra(Σ̆UΘΣ̆
∗
UΘ
) = tra(CΣ̆UΘΣ̆

∗
UΘ
C∗).

The next proposition gives the coordinate of Σ̆UΘΣ̆
∗
UΘ

.

PROPOSITION 3. If KU and K̃Θ are the matrices defined in (4.2), then

CΣ̆UΘΣ̆
∗
UΘ
C∗ =

1

n2
K̃ΘKU .

Let ⊙ denote Hadamard product between matrices, and let 1n be the n-dimensional vector
with all entries equal to 1, then we have the following alternative expression for ∥Σ̆UΘ∥2

HS
:

∥Σ̆UΘ∥2

HS
=

1

n2
1T

n
(KU ⊙ K̃Θ)1n.

The computation of KU is straightforward. However, for computing K̃Θ, we need∫
κΘ(Θ̂i, θ)dP0(θ),

∫ ∫
κΘ(θ, θ

′)d(P0 × P0)(θ, θ
′).

We propose to compute these by numerical integration. By Proposition 2, the d− 1 compo-
nents of Θ, namely, Θ1, . . . ,Θd−1, are independent with densities

fΘj
(θj) =

{
cosd−1−j(θj)/

∫
π/2

−π/2
cosd−1−j(θj)dθj, θj ∈ (−π/2, π/2], j = 1, . . . , d− 2

1/(2π), θj ∈ (−π,π], j = d− 1.

Let

ΩΘj
=

{
(−π/2, π/2], j = 1, . . . , d− 2,

(−π,π], j = d− 1.

If we choose κΘ to be the product kernel,

(4.3) κΘ(θ, θ
′) =

d−1∏
j=1

κΘj(θj, θ
′
j
),
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of which a typical example is the Gaussian radial basis kernel as in (2.11), then we have∫
ΩΘ

κΘ(Θ̂i, θ)dP0(θ) =

d−1∏
j=1

∫
ΩΘj

κΘj
(Θ̂ij, θj)fΘj

(θj)dθj,(4.4)

∫
ΩΘ×ΩΘ

κΘ(θ, θ
′)d(P0 × P0)(θ, θ

′) =

d−2∏
j=1

∫
ΩΘj

×ΩΘj

κΘj
(θj, θ

′
j
)fΘj

(θj)fΘj
(θ′

j
)dθjdθ

′
j
,(4.5)

where, in (4.4), Θ̂ij means the j-th element of Θ̂i.
The quantities in (4.4) can be computed by the function integrate in R, and the quan-

tity in (4.5) can be computed by the function cubintegrate in the R package cubature
(Narasimhan et al. (2023)).

5. Asymptotic distribution. In this section we derive the asymptotic distribution of Tn

under the null hypothesis (3.2). We use the von-Mises expansion to achieve this purpose; see,
for example, van der Vaart (1998); Fernholz (1983); Li (2018). We first outline the key steps
and notations for the von-Mises expansion, tailored for our current application.

5.1. von-Mises expansion. Let F denote the class of all distributions on (ΩX,FX). Let
H be a generic Hilbert space. Let T : F→H be a mapping — such mappings are known as
statistical functionals. Endow F with the uniform metric, and H with the metric induced by
its inner product. Let F0 be a member of F. Then T is Frechet differentiable at F0 if there is
a linear operator A : F→H such that

lim
∥F−F0∥F→0

∥T (F )− T (F0)−A(F − F0)∥H

∥F − F0∥F

= 0.

Under the Frechet differentiability, the linear operator A can be calculated using Gateaux
derivative: for any F ∈ F, A(F ) is simply

lim
ϵ→0

T ((1− ϵ)F0 + ϵF )− T (F0)

ϵ
.

Let x be a member of ΩX , and δx be the Dirac measure at x. Then the mapping x 7→ A(δx)
from ΩX to H is called influence function of T . We write A(δx) as T ⋆(x). Note that we use
⋆ to indicate influence function and ∗ to indicate the adjoint operator. Both notations will be
used heavily in our exposition. The key result that we use is this: if X1, . . . ,Xn are i.i.d. from
F0 and if T : F→H is Frechet differentiable at F0, then

√
n[T (Fn)− T (F0)]

D→N(0,Γ),(5.1)

where Γ ∈H⊗H is the linear operator

E(T ⋆(X)⊗ T ⋆(X))−E(T ⋆(X))⊗E(T ⋆(X)) =E(T ⋆(X)⊗ T ⋆(X)).

This fact is known as the δ-method for statistical functionals. In our case, H will be the
tensor product space HU ⊗HΘ introduced earlier. From the above discussion we see that the
key to computing the asymptotic normal distribution of

√
n(T (Fn)− T (F0)) is to compute

the influence function T ⋆(x). Next, we define our statistical functional.
5.2. Statistical functional for testing elliptical distributions. Now let us consider the sta-

tistical functional T (F ) in our setting. Since it is a simple function of Σ̆UΘ, let us first figure
out the statistical functional corresponding to this linear operator. For any F ∈ F, let

µ(F ) =
∫
xdF (x), Σ(F ) =

∫
(x− µ(F ))(x− µ(F ))TdF (x).
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Clearly, µ(F0) = µ, µ(Fn) = µ̂, Σ(F0) = Σ, and Σ(Fn) = Σ̂. For each x ∈ΩX , let

W (x,F ) =Σ(F )−1/2(x− µ(F )),

U(x,F ) =∥W (x,F )∥,

V (x,F ) =W (x,F )/U(x,F ),

Θ(x,F ) =g(V (x,F )).

It is easy to see that, when evaluated at F = F0, U(x,F ), V (x,F ), and Θ(x,F ) reduce to
U(x), V (x), and Θ(x), and when evaluated at F = Fn, they reduce to Û(x), V̂ (x) and Θ̂(x).
Our statistical functional of interest is the Hilbert-Schmidt norm of the operator

ΣUΘ(F ) =
∫
κU(·,U(x,F ))⊗ κΘ(·,Θ(x,F ))dF (x)

−
∫
κU(·,U(x,F ))dF (x)⊗

∫
κΘ(·, θ)dP0(θ).

(5.2)

It is important to note that the last term on the right,
∫
κΘ(·, θ)dP0(θ), does not involve the

unknown distribution F . This is the true expectation determined by the known distribution
P0 in Proposition 2. The operator in (5.2) can be re-expressed via the centered kernel as

ΣUΘ(F ) =
∫
κU(·,U(x,F ))⊗ κ̃Θ(·,Θ(x,F ))dF (x).(5.3)

Clearly, when evaluated at F = F0, ΣUΘ(F ) reduces to ΣUΘ, and when evaluated at F = Fn,
ΣUΘ(F ) reduces to Σ̆UΘ. Our statistical functional of interest is then defined as

F→R, F 7→ ∥Σ̆UΘ(F )∥2

HS
.

5.3. Derivations of influence functions. In this subsection we derive the influence func-
tions of statistical functionals involved in ∥Σ̆UΘ(F )∥2

HS
. Some of these functionals are of the

form F 7→G(x,F ), which already depends on x. To make a distinction with this x and the
argument x in T ⋆(x) =A(δx), we denote the argument in any influence function by z. Thus,
we denote the influence function of the statistical functional F 7→G(x,F ) as G⋆(x, z). That
is,

G⋆(x, z) = [∂G(x, (1− ϵ)F0 + ϵδz)/∂ϵ]ϵ=0.

We will refer to the process of deriving A⋆(z) from A(F ) as the ⋆-operation. The basic rules
for the ⋆-operation are given in Proposition 9.2 of Li (2018). We start with the influence
functions about µ(F ), Σ(F ). The results are given by Lemma 9.1 of Li (2018), and we
reproduce them here for later references.

LEMMA 2. If X is integrable, then the influence function of µ is

µ⋆(z) = z − µ.

Furthermore, if X is square integrable, then

Σ⋆(z) = (z − µ)(z − µ)T −Σ,

(Σ−1)⋆(z) =−Σ−1Σ⋆(z)Σ−1,(5.4)

vec[(Σ−1/2)⋆(z)] =−(Σ1/2 ⊗Σ+Σ⊗Σ1/2)−1vec[Σ⋆(z)],(5.5)

where, for a matrix A with columns a1, . . . , am, vec(A) denotes the vector (aT
1
, . . . , aT

m
)T.

We next derive the influence functions for U(x,F ), V (x,F ), and Θ(x,F ). For deriving
the influence function of Θ(x,F ), we need the derivative of the polar coordinate transforma-
tion, which is given in the next lemma.
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LEMMA 3. Let v = (v1, . . . , vd)
T ∈ Sd−1 and θ = g(v) = (θ1, . . . , θd−1)

T ∈ ΩΘ. Let Si be
the Euclidean norm of the vector (vj, . . . , vd)

T for i= 1, . . . , d. Then

∂g(v)

∂vT
=



S2

S2
1
− v1v2

S2
1S2

− v1v3

S2
1S2

. . .−v1vd−2

S2
1S2

−v1vd−1

S2
1S2

− v1vd

S2
1S2

0 S3

S2
2

− v2v3

S2
2S3

. . .−v2vd−2

S2
2S3

−v2vd−1

S2
2S3

− v2vd

S2
2S3

0 0 S4

S2
3

. . .−v3vd−1

S2
3S4

−v3vd−2

S2
3S4

− v3vd

S2
3S4

...
...

...
. . .

...
...

...
0 0 0 . . . Sd−1

S2
d−2

− vd−2vd−1

S2
d−2Sd−1

− vd−2vd

S2
d−2Sd−1

0 0 0 . . . 0 vd

S2
d−1

− vd−1

S2
d−1


.

Based on Lemma 2, we next derive the influence functions for the statistical functionals

F 7→ U(x,F ), F 7→ V (x,F ), F 7→Θ(x,F ).

LEMMA 4. Suppose that F 7→ U(x,F ), F 7→ V (x,F ) and F 7→ Θ(x,F ) are Frechet
differentiable at F0. Let

A1(x) =− (x− µ)TΣ−1

[(x− µ)TΣ−1(x− µ)]1/2
,

A2(x) =− [(x− µ)TΣ−1]⊗ [(x− µ)TΣ−1]

2[(x− µ)TΣ−1(x− µ)]1/2
,

B1(x) =− Σ−1/2(x− µ)A1(x)

(x− µ)TΣ−1(x− µ)
− Σ−1/2

[(x− µ)TΣ−1(x− µ)]1/2
,

B2(x) =− Σ−1/2(x− µ)A2(x)

(x− µ)TΣ−1(x− µ)
− [(x− µ)T ⊗ Id] (Σ

1/2 ⊗Σ+Σ⊗Σ1/2)−1

[(x− µ)TΣ−1(x− µ)]1/2
,

Ci(x) = [∂g(V (x))/∂vT]Bi(x), i= 1,2,

(5.6)

where ∂g(V (x))/∂vT is the matrix given by Lemma 3. Then, the influence functions of
U(x,F ), V (x,F ) and Θ(x,F ) are

U ⋆(x, z) =A1(x)µ
⋆(z) +A2(x)vec[Σ

⋆(z)],(5.7)

V ⋆(x, z) =B1(x)µ
⋆(z) +B2(x)vec[Σ

⋆(z)],(5.8)

Θ⋆(x, z) =C1(x)µ
⋆(z) +C2(x)vec[Σ

⋆(z)].(5.9)

The next lemma gives the influence function of ΣUΘ(F ). Henceforth, for a kernel function
κ(·, t), we use κ̇(·, t) to denote the partial derivative with respect to the second argument,
∂κ(·, t)/∂t.

LEMMA 5. Suppose F 7→ΣUΘ(F ) is Frechet differentiable at F0. Then

Σ⋆

UΘ
(z) =κU(·,U(z))⊗ κ̃Θ(·,Θ(z))−ΣUΘ

+E{[κ̇U(·,U(X))U ⋆(X,z)]⊗ κ̃Θ(·,Θ(X))}

+E{κU(·,U(X))⊗ κ̇Θ(·,Θ(X))TΘ⋆(X,z)},

(5.10)

where U ⋆(x, z) and Θ⋆(x, z) are given by Lemma 4.
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Even though ΣUΘ is always a member of HU ⊗HΘ, it does not follow that Σ⋆

UΘ
(z) must

also be a member of HU ⊗HΘ. However, to facilitate computation of (5.10) at the sample
level, we need Σ⋆

UΘ
(z) to be a member of HU ⊗HΘ. Fortunately, this can be ensured if

κU ∈C2(ΩU ×ΩU), κΘ ∈C2(ΩΘ ×ΩΘ),(5.11)

where, for a set A ⊆ Rm, C2(A×A) denotes the set of all real-valued functions on A×A
that are twice differentiable with a bounded Hessian matrix. The establishment is placed in
the Supplementary Materials, which requires a special case of Theorem 1 of Zhou (2008).

5.4. Asymptotic distribution of the test statistic. Based on the influence function of
ΣUΘ(F ) computed in Lemma 5 and the functional Delta method expressed in (5.1), we can
directly write down the asymptotic distribution of Σ̆UΘ.

THEOREM 2. If the statistical functional F 7→ ΣUΘ(F ) is Frechet differentiable at F0

with respect to the uniform metric in F and conditions in (5.11) are satisfied, then
√
n(Σ̆UΘ −ΣUΘ)

D−→N(0,Γ),

where Γ :HU ⊗HΘ →HU ⊗HΘ is the operator

Γ=E [Σ⋆

UΘ
(X)⊗Σ⋆

UΘ
(X)] ,

and Σ⋆

UΘ
(z) is given by (5.10).

Note that the assertion that Γ is an operator from HU ⊗HΘ to HU ⊗HΘ is a consequence of
(5.11), which guarantees that Σ⋆

UΘ
(z) ∈HU ⊗HΘ. Since, under the null hypothesis, ΣUΘ = 0,

we have the following corollary of Theorem 2, which will be important for sample-level
implementation.

COROLLARY 2. Under the null hypotheses H0 : ΣUΘ = 0 and the conditions in Theorem
2, we have

(5.12)
√
nΣ̆UΘ

D−→N(0,Γ).

where Γ=E [Σ⋆

UΘ
(X)⊗Σ⋆

UΘ
(X)] and Σ⋆

UΘ
(z) as given in (5.10) but without the ΣUΘ term.

Applying continuous mapping theorem to (5.12) by taking the squared Hilbert-Schmidt
norm, we have the following corollary.

COROLLARY 3. Under the null hypotheses H0 : ΣUΘ = 0 and the conditions in Theorem
2, we have

(5.13) n∥Σ̆UΘ∥2

HS

D−→
∑∞

i=1
λiZ

2

i
,

where Z1,Z2, . . . are i.i.d. standard normal random variables, and λ1, λ2, . . . are eigenvalues
of Γ in Corollary 2.

Note that the null distribution in (5.13) only depends on the eigenvalues of Γ, which gives
us the chance of not having to save the whole Γ on sample-level implement. Based on
Theorem 2, we can also derive the asymptotic distribution of

√
n(∥Σ̆UΘ∥2

HS
−∥ΣUΘ∥2

HS
) under

the alternative hypothesis.
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COROLLARY 4. Suppose that the conditions of Theorem 2 hold. Then, under the alter-
native hypothesis, i.e., ΣUΘ ̸= 0, we have

√
n(∥Σ̆UΘ∥2

HS
− ∥ΣUΘ∥2

HS
)

D−→N(0,4E(⟨Σ⋆

UΘ
(X),ΣUΘ⟩2HS

)).

Corollary 4 also implies that
√
n∥Σ̆UΘ∥2

HS

P−→∞ under the alternative hypothesis, which
verifies the consistency of our test.

5.5. Local power analysis. In this subsection, we derive the local alternative distribution,
which can be used to compute the local power. The idea of the proof is similar to Theorem
13 of Gretton et al. (2012).

THEOREM 3. Suppose

1. Γ has spectral decomposition
∑∞

j=1
λj(vj ⊗ vj), where v1, v2, . . . is an orthonormal basis

in HU ⊗HΘ;
2. Σ1 is a fixed linear operator in HU ⊗HΘ with expansion

∑∞
j=1

σjvj and ∥Σ1∥HS = c > 0.

Then, under the local alternative hypothesis H (n)

1
: ΣUΘ = n−1/2Σ1, we have

n∥Σ̆UΘ∥2

HS

D−→
∑∞

j=1
λjZ̃

2

j

where Z̃j are independent N(σj/
√

λj,1) random variables.

Using this theorem, we calculate the local power of our test as

P
(
n∥Σ̆UΘ∥2

HS
> s

)
→ P

(∑∞
j=1

λjZ̃
2

j
> s

)
.

6. Approximating the asymptotic null distribution.

6.1. Outline of the problem and notations. In this section we approximate the asymp-
totic distribution of Tn, which is

∑∞
i=1

λiZ
2

i
, where λ1, λ2, . . . are the eigenvalues of Γ, and

Z1,Z2, . . . are i.i.d. N(0,1). The operator Γ is estimated by substituting, wherever possible,
the expectation E by the sample average En in the expression E(Σ⋆

UΘ
⊗ Σ⋆

UΘ
). Denote the

estimate of Γ as Γ̂. We use the eigenvalues λ̂i of Γ̂ to estimate λi in the asymptotic distribu-
tion

∑∞
i=1

λiZ
2

i
. We then use the plug-in estimate

∑∞
i=1

λ̂iZ
2

i
to approximate the asymptotic

distribution of Tn.
In the following, for an integer m, we use [m] to represent the set {1, . . . ,m}. If A is a

set and a : [m]→A is a function, we use a[m] to represent the vector (a1, . . . , am)
T. Further-

more, for a function f defined on A, and a function a : [m]→ A, we use f(a[m]) to denote
the vector (f(a1), . . . , f(am))

T. This notation also extends to functions involving other vari-
ables. For example, κ(·, a[m]) represents the vector of functions (κ(·, a1), . . . , κ(·, am))

T; and
f(x, y, z[m]) represents the vector (f(x, y, z1), . . . , f(x, y, zm))

T.
One of the advantages of the RKHS is that we can use the representer theorem (see, for

example, Schölkopf, Herbrich and Smola (2001)) to turn an infinite dimensional problem
into a finite dimensional problem. Let H be the RKHS generated by a kernel κ :A×A→R.
Suppose our statistical procedure relies on functions in H only through f(a1), . . . , f(am)

for a1, . . . , am ∈A. Then we can, without loss of generality, restrict our attention to Ĥ ⊆ H,
where Ĥ is spanned by κ(·, a1), . . . , κ(·, am). This is because there is always a function f̂ ∈ Ĥ
such that f(ai) = f̂(ai) for i= 1, . . . ,m. In fact, let

f̂ = t1κ(·, a1) + · · ·+ tmκ(·, am) = tT
[m]
κ(·, a[m]).
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Up on solving the equation f̂(a[m]) = f(a[m]), we have t[m] = K−1f(a[m]), where K is the
Gram matrix {κ(ai, aj)}m

i,j=1
. For this reason, in this section, we will reset HU and HΘ to be

the RKHS spanned by

BU = {κU(·, Ûi) : i= 1, . . . , n}, BΘ = {κΘ(·, Θ̂i) : i= 1, . . . , n}.

A basis for HU ⊗HΘ is

{κU(·, Ûi)⊗ κΘ(·, Θ̂j) : i, j = 1, . . . , n}.

Let CUΘ : HU ⊗ HΘ → Rn2 be the coordinate mapping that takes κU(·, Ûi) ⊗ κΘ(·, Θ̂j) to
ei ⊗ ej in Rn2 . Then, it is easy to see that CUΘ =CU ⊗CΘ, where CU takes κU(·, Ûi) to ei and
CΘ takes κΘ(·, Θ̂j) to ej . Let KUΘ be the Rn2×n2 Gram matrix whose ((i, j), (i′, j′))th entry
is

(KUΘ)(i,j),(i′,j′) = ⟨κU(·, Ûi)⊗ κΘ(·, Θ̂j), κU(·, Û ′
i
)⊗ κΘ(·, Θ̂′

j
)⟩HU⊗HΘ

=κU(Ûi, Û
′
i
)κΘ(Θ̂j, Θ̂

′
j
) = (KU)ii′(KΘ)jj′ .

Thus, in matrix notation,

KUΘ =KU ⊗KΘ,

where ⊗ is the Kronecker product between matrices. As discussed earlier, the eigenvalues of
Γ̂ are the same as the eigenvalues of

K1/2

UΘ
CUΘΓ̂C

∗
UΘ
K−1/2

UΘ
= (KU ⊗KΘ)

1/2(CU ⊗CΘ)Γ̂(CU ⊗CΘ)
∗(KU ⊗KΘ)

−1/2.(6.1)

So it all boils down to computing the coordinate (CU ⊗CΘ)Γ̂(CU ⊗CΘ)
∗.

6.2. Estimation of Γ. By Corollary 2, under U Θ, Γ is of the form

Σ⋆

UΘ
(z) =κU(·,U(z))⊗ κ̃Θ(·,Θ(z))

+
∫
κ⋆

U
(x, z)⊗ κ̃Θ(·,Θ(x))dF0(x) +

∫
κU(·,U(x))⊗ κ⋆

Θ
(x, z)dF0(x)

≡Σ⋆

UΘ,1
(z) +Σ⋆

UΘ,2
(z) +Σ⋆

UΘ,3
(z).

(6.2)

Let Â1(x) and Â2(x) be as defined in (5.6) with µ and Σ replaced by µ̂ and Σ̂; let B̂1(x)

and B̂2(x) be as defined in (5.6) with µ(x), Σ(x), A1(x), and A2(x) replaced by µ̂(x), Σ̂(x),
Â1(x), and Â2(x); let Ĉ1(x) and Ĉ2(x) be as defined in (5.6) with B1(x) and B2(x) replaced
by B̂1(x) and B̂2(x). Let µ̂⋆(z) and Σ̂⋆(z) be as defined in Lemma 2 with µ and Σ replaced
by µ̂ and Σ̂. Let Û ⋆(x, z) and Θ̂⋆(x, z) be as defined in (5.7) and (5.9) with A1(x), A2(x),
C1(x), C2(x), µ⋆(x), and Σ⋆(x) replaced by Â1(x), Â2(x), Ĉ1(x), Ĉ2(x), µ̂⋆(x), and Σ̂⋆(x).

To approximate Σ⋆

UΘ,1
(z) in (6.2), we replace U(z) and Θ(z) by Û(z) and Θ̂(z), and

replace κ̃Θ(·, θ) by

κ̃(e)

Θ
(·, θ) = κΘ(·, θ)− n−1

∑
n

i=1
κΘ(·, Θ̂i),

where the superscript in κ̃(e) indicates the word “empirical”, as we use the sample average
n−1

∑
n

i=1
κΘ(·, Θ̂i) instead of the population average EκΘ(·,Θ) to center the kernel κΘ. So

Σ⋆

UΘ,1
(z) is approximated by

Σ̂⋆

UΘ,1
(z) = κU(·, Û(z))⊗ κ̃(e)

Θ
(·, Θ̂(z)).

To approximate Σ⋆

UΘ,2
(z) and Σ⋆

UΘ,3
(z) in (6.2), we replace κ⋆

U
(·, x, z) and κ⋆

Θ
(·, x, z) by

κ̂⋆

U
(·, x, z) = κ̇U(·, Û(x))Û ⋆(x, z), κ̂⋆

Θ
(·, x, z) = κ̇Θ(·, Θ̂(x))TΘ̂⋆(x, z).
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We replace
∫
· · ·dF0(x) by En(· · · ). So Σ⋆

UΘ,2
(z) is approximated by

Σ̂⋆

UΘ,2
(z) = n−1

∑
n

i=1
κ̂⋆

U
(·,Xi, z)⊗ κ̃(e)

Θ
(·, Θ̂i).

Similarly, Σ⋆

UΘ,3
(z) is approximated by

Σ̂⋆

UΘ,3
(z) = n−1

∑
n

i=1
κU(·, Ûi)⊗ κ̂⋆

Θ
(·,Xi, z).

Combining the above results, we approximate Σ⋆

UΘ
(z) by

Σ̂⋆

UΘ
(z) =Σ̂⋆

UΘ,1
(z) + Σ̂⋆

UΘ,2
(z) + Σ̂⋆

UΘ,3
(z)

=κU(·, Û(z))⊗ κ̃(e)

Θ
(·, Θ̂(z)) + n−1

∑
n

i=1
κ̂⋆

U
(·,Xi, z)⊗ κ̃(e)

Θ
(·, Θ̂i)

+ n−1
∑

n

i=1
κU(·, Ûi)⊗ κ̂⋆

Θ
(·,Xi, z).

(6.3)

To approximate Γ, we replace Σ⋆

UΘ
(z) by Σ̂⋆

UΘ
(z) and

∫
· · ·dF0(x) by En(· · · ), as follows

Γ̂ = n−1
∑

n

i=1
[Σ̂⋆

UΘ
(Xi)⊗ Σ̂⋆

UΘ
(Xi)].

6.3. Approximating the asymptotic distribution of n∥Σ̆UΘ∥2

HS
. Our goal is to find the

eigenvalues of Γ̂ so as to form the approximation of
∑

λiZ
2

i
. Recall that Γ is a self adjoint

linear operator from HU ⊗HΘ to HU ⊗HΘ, where, as mentioned earlier, HU and HΘ can be
regarded as the finite-dimensional RKHS’s spanned by BU and BΘ. As mentioned at the end
of Section 6.1, we need to compute the matrix (6.1).

We need to review a coordinate mapping rule in a tensor product space. Suppose H1

and H2 are finite-dimensional Hilbert spaces of dimension m1 and m2, with bases B1 =
{b(1)

1
, . . . , b(1)

m1
} and B2 = {b(2)

1
, . . . , b(2)

m2
}, respectively. Let C1 : H1 → Rm and C2 : H2 → Rm

be coordinate mappings with respect to B1 and B2, respectively. Let G1 and G2 be the Gram
matrices for B1 and B2. A basis of the tensor product space H1 ⊗H2 is

B12 = {bij = b(1)
i
⊗ b(2)

j
: i= 1, . . . ,m1, j = 1, . . . ,m2}.

For f1 ∈H1 and f2 ∈H2, the tensor product f1 ⊗ f2 can be viewed in two ways: as a member
of H1 ⊗H2 or as an operator from H2 to H1. As a member of H1 ⊗H2, the coordinate of
f1 ⊗ f2 with respect to B12 is

(C1 ⊗C2)(f1 ⊗ f2) = (C1f1)⊗ (C2f2),

where ⊗ on the right is the Kronecker product between matrices. As a linear operator from
H2 to H2, the coordinate of f1 ⊗ f2 with respect to the bases {B1,B2} is

C1(f1 ⊗ f2)C
∗
2
.

By Li and Solea (2018), we have

C1(f1 ⊗ f2)C
∗
2
= (C1f1)(C2f2)

TG2.(6.4)

Applying (6.4) to H1 =H2 =HU ⊗HΘ, we have

(CU ⊗CΘ)[Σ̂
⋆

UΘ
(Xi)⊗ Σ̂⋆

UΘ
(Xi)](CU ⊗CΘ)

∗

= [(CU ⊗CΘ)Σ̂
⋆

UΘ
(Xi)][(CU ⊗CΘ)Σ̂

⋆

UΘ
(Xi)]

T(KU ⊗KΘ).

Therefore, we can reexpress (6.1) as

(KU ⊗KΘ)
1/2(CU ⊗CΘ)Γ̂(CU ⊗CΘ)

∗(KU ⊗KΘ)
−1/2

= n−1
∑

n

i=1
[(KU ⊗KΘ)

1/2(CU ⊗CΘ)Σ̂
⋆

UΘ
(Xi)][(KU ⊗KΘ)

1/2(CU ⊗CΘ)Σ̂
⋆

UΘ
(Xi)]

T.

(6.5)
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Let

m̂(Xi) =n−1/2(KU ⊗KΘ)
1/2(CU ⊗CΘ)Σ̂

⋆

UΘ
(Xi), M̂ = (m̂(X1), . . . , m̂(Xn)) .

Then the matrix in (6.5) can be rewritten as

(KU ⊗KΘ)
1/2(CU ⊗CΘ)Γ̂(CU ⊗CΘ)

∗(KU ⊗KΘ)
−1/2 = M̂M̂ T.

It remains to calculate m̂(Xi), where the key is to calculate (CU ⊗CΘ)Σ̂
⋆

UΘ
(Xi). By (6.3),

this is

(CU ⊗CΘ)Σ̂
⋆

UΘ,1
(Xi) + (CU ⊗CΘ)Σ̂

⋆

UΘ,2
(Xi) + (CU ⊗CΘ)Σ̂

⋆

UΘ,3
(Xi).

Reading off Σ̂⋆

UΘ,1
(z) from (6.3), we have

(CU ⊗CΘ)Σ̂
⋆

UΘ,1
(Xi) =(CU ⊗CΘ)[κU(·, Ûi)⊗ κ̃(e)

Θ
(·, Θ̂i)]

= [CUκU(·, Ûi)]⊗ [CΘκ̃
(e)

Θ
(·, Θ̂i)],

where

CUκU(·, Ûi) = ei, CΘκ̃
(e)

Θ
(·, Θ̂i) = ei − 1n/n.

Reading off Σ̂⋆

UΘ,2
(z) from (6.3), we have

(CU ⊗CΘ)Σ̂
⋆

UΘ,2
(Xi) =n−1

∑
n

j=1
(CU ⊗CΘ)[κ̂

⋆

U
(·,Xj,Xi)⊗ κ̃(e)

Θ
(·, Θ̂j)]

=n−1
∑

n

j=1
[CU κ̂

⋆

U
(·,Xj,Xi)]⊗ [CΘκ̃

(e)

Θ
(·, Θ̂j)].

(6.6)

To calculate CU κ̂
⋆

U
(·,Xj,Xi), we now give an expression for CU(f) for any f ∈HU .

LEMMA 6. Suppose H is a finite-dimensional RKHS generated by a kernel κ, with basis
κ(·, aa), . . . , κ(·, am), f is a member of H, and C is the coordinate mapping. Then

C(f) =K−1f(a[k]),

where f(a[k]) is the vector (f(a1), . . . , f(ak))
T, and K is the Gram matrix {κ(ai, aj)}m

i,j=1
.

PROOF. Since f ∈H, we have f = C(f)Tκ(·, a[m]) where κ(·, a[m]) represents the vector
of functions (κ(·, a1), . . . , κ(·, am))

T. Evaluate this equation at a1, . . . , am, we have

f(a[k]) =KC(f).

Solving this equation, we have the desired result. □

Applying Lemma 6 to (6.6), we have

(CU ⊗CΘ)Σ̂
⋆

UΘ,2
(Xi) = n−1

∑
n

j=1
[K−1

U
κ̇U(Û[n], Ûj)Û

⋆(Xj,Xi)]⊗ (ej − 1n/n)

= n−1
∑

n

j=1
{K−1

U
κ̇U(Û[n], Ûj)[Â1(Xj)µ̂

⋆(Xi) + Â2(Xj)vec(Σ̂
⋆(Xi))]} ⊗ (ej − 1n/n).

Reading off Σ̂⋆

UΘ,3
(z) from (6.3), we have

(CU ⊗CΘ)Σ̂
⋆

UΘ,3
(Xi) =n−1

∑
n

j=1
[CUκU(·, Ûj)]⊗ [CΘκ̂

⋆

Θ
(·,Xj,Xi)]

=n−1
∑

n

j=1
ej ⊗ [CΘκ̂

⋆

Θ
(·,Xj,Xi)].

(6.7)

Applying Lemma 6 again to (6.7), we have

(CU ⊗CΘ)Σ̂
⋆

UΘ,3
(Xi) = n−1

∑
n

j=1
ej ⊗ [K−1

Θ
κ̇Θ(Θ̂[n], Θ̂j)Θ̂

⋆(Xj,Xi)]

= n−1
∑

n

j=1
ej ⊗ {K−1

Θ
κ̇Θ(Θ̂[n], Θ̂j)[Ĉ1(Xj)µ̂

⋆(Xi) + Ĉ2(Xj)vec(Σ̂
⋆(Xi))]}.
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To summarize, we have

m̂(Xi) =n−1/2(KU ⊗KΘ)
1/2[ej ⊗ (ej − 1n/n)]

+ n−1/2(KU ⊗KΘ)
1/2

{
n−1

∑
n

j=1
[K−1

U
κ̇U(Û[n], Ûj)Û

⋆(Xj,Xi)]⊗ (ej − 1n/n)
}

+ n−1/2(KU ⊗KΘ)
1/2

{
n−1

∑
n

j=1
ej ⊗ [K−1

Θ
κ̇Θ(Θ̂[n], Θ̂j)Θ̂

⋆(Xj,Xi)]
}
.

We need to calculate the eigenvalues λ̂1, . . . , λ̂n of the matrix M̂M̂ T. Since this is n2 × n2,
its eigenvalues are expensive to compute if computed directly. However, it is equivalent to
calculate the eigenvalues of M̂ TM̂ , which is an n × n matrix. We then use

∑
n

i=1
λ̂iZ

2

i
to

approximate the asymptotic null distribution in (5.13). We apply the function imhof in the
R package CompQuadForm (Duchesne and de Micheaux (2010)) to compute the p-value of
the distribution of

∑
n

i=1
λ̂iZ

2

i
. If the p-value is smaller than some prespecified significance

level α, then we reject H0.

6.4. Validity and consistency. Since we have plugged the estimated eigenvalues λ̂1, . . . , λ̂n

into the asymptotic distribution of n∥Σ̆UΘ∥2

HS
, we want to show that this step preserves the

validity and consistency of the test.
Notice that Γ̂ is a consistent estimator of Γ. Suppose that

∑∞
j=1

λ1/2

j
<∞, then, by Theo-

rem 1 of Gretton et al. (2009), we have∑
n

j=1
λ̂jZ

2

j

D−→
∑∞

j=1
λjZ

2

j
,

which indicates the validity of the test. The consistency is straightforward since, under the
alternative hypothesis, Σ̆UΘ

P−→ΣUΘ which is nonzero, indicating that n∥Σ̆UΘ∥2

HS

P−→∞ (see,
for example, Section 12.4 of Kokoszka and Reimherr (2017)).

7. Uniform concentration bounds. In this section, we develop the concentration
bounds for

∣∣∥Σ̆UΘ∥HS − ∥ΣUΘ∥HS

∣∣ in two cases: we first considered the simple case where
µ and Σ are known, and then considered the general case where µ and Σ are unknown. These
bounds also allow us to establish the consistency of our method when the dimension d goes
to infinity with the sample size n.

7.1. Case for known µ and Σ. We first consider the case where µ and Σ are known,
which would be true, for example, for testing a spherical distribution, where µ= 0 and Σ=
Ip. In this case Û and Θ̂ are replaced by U and Θ, and our test statistic reduces to

Σ̆UΘ =En[κU(·,U)⊗ κΘ(·,Θ)]−En[κU(·,U)]⊗E[κΘ(·,Θ)].(7.1)

The next theorem gives the concentration bound for ∥Σ̆UΘ∥HS, which is similar to Theorem 7
in Gretton et al. (2012).

THEOREM 4. Suppose that µ and Σ are known and Σ̆UΘ is defined as (7.1). Furthermore,
suppose the kernels κU and κΘ are bounded: 0 ≤ κU(u,u

′) ≤MU and 0 ≤ κΘ(θ, θ
′) ≤MΘ

for all u,u′, θ, θ′. Then,

P
(∣∣∥Σ̆UΘ∥HS − ∥ΣUΘ∥HS

∣∣≥ t+ 4(MUMΘ/n)
1/2

)
≤ exp

(
− t2n

10MUMΘ

)
.(7.2)

The proof of Theorem 4 is placed in the Supplementary Materials. Let u= nt2

10MUMΘ
. Then,

(7.2) is equivalent to

P
(∣∣∣∥Σ̆UΘ∥HS − ∥ΣUΘ∥HS

∣∣∣≥ (10MUMΘu/n)
1/2 + 4(MUMΘ/n)

1/2

)
≤ e−u.(7.3)
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7.2. Case for unknown µ and Σ. Since we would like our concentration bounds to reflect
the behavior with respect to both the sample size n and the dimension d, we need to separate
out d and n from any constants in our derivations. To make this explicit, we call a constant
that doesn’t depend on d or n an absolute constant. We first make the following assumptions.

ASSUMPTION 1. There exist absolute constants c1 > 0 and c2 > 0 such that

c1 ≤ λmin(Σ)≤ λmax(Σ)≤ c2.

ASSUMPTION 2. The random vector X has a uniform sub-Gaussian distribution in the
sense that, there is a constant σ2 that is independent of d such that, for all v ∈ S,

E(eλ⟨v,X−µ⟩)≤ eσ2λ2/2.

ASSUMPTION 3. The density of W is bounded by cd for some absolute constant c.

ASSUMPTION 4. The kernel functions κU and κΘ are bounded and Lipschitz continuous:

0≤ κU(u,u
′)≤MU , ∀u,u′, 0≤ κΘ(θ, θ

′)≤MΘ, ∀θ, θ′,

and

∥κU(·, u)− κU(·, u′)∥ ≤ LU |u− u′|, ∀u,u′,(7.4)

∥κΘ(·, g(v))− κΘ(·, g(v′))∥ ≤ d−1LV ∥v− v′∥, ∀v, v′.(7.5)
In the subsequent discussions we will carefully track the indices of the absolute constants

as they will eventually appear in the same expression. Let

f1(n,d,u) = c1

√
d[log(2d) + u]

n
,

f2(n,d,u) = c2dmax

{(
d+ u

n

)
1/4

,

(
d+ u

n

)
1/2
}
+ c3

√
d,

f3(n,d,u) = c4d

√
d+ u

n
,

f4(n,u) = c9

√
u

n
+ c10

√
1

n
,

(7.6)

where c1, c2, c3, c4, c9, c10 are some positive absolute constants.
THEOREM 5. Suppose X satisfies Assumption 2, and X1, . . . ,Xn are i.i.d samples of X .

Further suppose Σ satisfies Assumption 1, the density of W satisfies Assumption 3, and the
kernel functions κU and κΘ satisfy Assumption 4. Then, for any ϵ > 0, we have

P
(∣∣∥Σ̆UΘ∥HS − ∥ΣUΘ∥HS

∣∣≥ [c7 + 2c8/(ϵd)]×

[f3(n,d,u)f2(n,d,u) + c5f1(n,d,u)] + f4(n,u)
)
≤ n(c6ϵ)

d + 7e−u,

where f1, f2, f3, f4 are as defined in (7.6), and c1, . . . , c10 are some positive absolute constants.

The tail bounds in Theorem 5 allows us to establish the consistency of the test even when
d goes to infinity with n, as shown in the next theorem.

THEOREM 6. Suppose all conditions in Theorem 5 are satisfied. If logn≺ d≺ n1/4, then

∥Σ̆UΘ∥HS

P→∥ΣUΘ∥HS.
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8. Simulations. In this section we present some simulation results of using Tn to test
ellipticity under both the null distribution and the alternative distribution. In all the simula-
tions, we use Gaussian radial basis kernels for both U and Θ as given in (2.11). To select the
tuning parameters, we use the criterion in Section 6.4 of Li and Solea (2018):

1
√
γU

=

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

|Ûi − Ûj|,
1

√
γΘ

=

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

∥Θ̂i − Θ̂j∥.

8.1. Results under the null distribution. In this subsection we perform simulations under
the null distribution. We consider scenarios consisting of different sample sizes and dimen-
sions:

(n,d) ∈ {500,1000} × {3,4,5,6,10,15,20}.(8.1)

For each (n,d), we generate T = 100 datasets as follows. We first generate the mean vec-
tor µ from N(0, σ2

µ
Id), where σ2

µ
= 100, and the covariance matrix Σ using R function

genPositiveDefMat in the package clusterGeneration (Qiu and Joe. (2020)) un-
der its default settings. We then simulate X1, . . . ,Xn as i.i.d. samples from N(µ,Σ).

Based on the samples X1, . . . ,Xn we compute the test statistic n∥Σ̆UΘ∥2

HS
and compute

the p-value based on our test. One side-note is that we add a small number, ϵ = 10−6, to
the diagonal of a matrix whenever we compute its inverse, square-root or eigenvalues. This is
done to avoid numerical instability that can happen in some extreme samples. Figure 1 shows
the boxplots of p-values under different combinations of (n,d) in (8.1), and the empirical
type-I errors among 100 experiments at α= 0.1 are summarized in Table 1.
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FIG 1. Boxplots of p-values under the null hypothesis. The red line represents 0.1.

TABLE 1
Empirical type-I errors (in percentage) at α= 0.1.

n d= 3 d= 4 d= 5 d= 6 d= 10 d= 15 d= 20

500 6 4 5 4 5 1 2
1000 7 6 3 8 2 7 7

As we can see from Figure 1, the bulk of the p-values are quite large for all combinations
of n and d, indicating the elliptical distribution hypothesis is not rejected in the great majority
of cases. In Table 1, the empirical type-I errors are all below the significance level, which is
consistent with the validity of our test.
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8.2. Results under alternative distributions. We consider alternative distributions with
different degrees of departure from the elliptical distribution. We first generate Zk inde-
pendently from N(0,4), and set Z = (Z1, . . . ,Zd)

T. We then randomly select a subset J
of {1, . . . , d} of cardinality ⌈d/3⌉ and, for each k ∈ J , we replace Zk by Wk − df , with Wk

generated from χ2(df). We denote the resulting random vector by Z̃ . We then construct X
by

X = µ+Σ1/2Z̃,

where Σ is generated in the same way as it was in the null distribution case, and µ =
(µ1, . . . , µd)

T is generated from
µk = 40βk − 20, k = 1, . . . , d,

where each βk is independently generated from Beta(0.5,0.5). That is, each µk is a rescaled
and centered Beta variable. We take the degrees of freedom df to be 2 or 4, with df = 2
representing stronger departure from ellipticity.

We then perform our proposed test on the i.i.d. samples X1, . . . ,Xn from X . The boxplots
in Figure 2 show p-values for df = 4 with (n,d) in the range (8.1); those in Figure 3 show
p-values for df = 2 with (n,d) in the same range. The numerical values of the empirical
powers among 100 experiments at α= 0.1 are summarized in Table 2.
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FIG 2. Boxplots of p-values under the alternative hypothesis with df = 4. The red line represents 0.1.
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FIG 3. Boxplots of p-values under the alternative hypothesis with df = 2. The red line represents 0.1.
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TABLE 2
Results under the alternative hypothesis

n df d= 3 d= 4 d= 5 d= 6 d= 10 d= 15 d= 20

500 4 100 100 99 99 94 78 73
500 2 99 99 100 100 100 94 88

1000 4 100 100 100 100 100 100 95
1000 2 100 100 100 100 100 100 100

According to Figure 2 and Figure 3, the bulk of the p-values are smaller than 0.1, indi-
cating strong evidence that X does not have an elliptical distribution. This, together with the
empirical powers in Table 2, implies the consistency of our test. More specifically, in each
figure, when the sample size n is fixed, the boxplots becomes slightly higher as d increases,
and the empirical power is lower when d is high, indicating it is more difficult to detect non-
ellipticity in higher dimensions. This is reasonable because the skewness might be masked
by higher dimensions. If we fix the dimension d and the skewness as represented by df , an
increase of sample size n from 500 to 1000 makes the p-values more concentrated around
0. Furthermore, comparing Figure 3 with Figure 2, we see that the p-values for df = 2 are
smaller than those for df = 4, indicating that an increase of skewness makes non-ellipticity
more detectable.

9. Application. In this section we apply our test to a dataset concerning a Study on
the Efficacy of Nosocomial Infection Control (SENIC Project), which is used in Haley
et al. (1980). We download the dataset from https://users.stat.ufl.edu/~rrandles/sta4210/
Rclassnotes/data/textdatasets/KutnerData/Appendix%20C%20Data%20Sets/APPENC01.txt.
This is one of the datasets from the book Kutner et al. (2005).

According to Kutner et al. (2005), the data of 113 hospitals during the 1975-76 study
period are sampled from the original 338 hospitals surveyed. For a single hospital, there are
11 variables:

length of stay, age, infection risk, routine culturing, routine chest x-ray, number of beds, medical
school affiliation, region, average daily census, number of nurses, available facilities.

For detailed information about these variables, see Kutner et al. (2005).
We treat the variable “length of stay” as the response variable, and check whether other

predictor variables are elliptically distributed. We remove the two categorical variables,
“medical school affiliation” and “region”. We carry out our test on the dataset where n= 113
and d= 8 at a significance level α = 0.05, and obtained the p-value 0.0014, which leads to
rejection of the elliptical distribution hypothesis. The original data is as shown in Figure 1 in
Appendix E of the online Supplementary Material (Tang and Li (2024)).

We then perform the Box-Cox transformation on the dataset. Using the method presented
in Chapter 7 of Li (2018), we find the optimal λ for the Box-Cox transformation as

1.158,0.737,−0.105,0.947,−0.316,−0.105,−0.316,0.947.

The transformed variables are shown in Figure 2 in Appendix E of the online Supplementary
Material (Tang and Li (2024)). We carry out our test on the transformed data, and obtain the
p-value 0.2454. This is much larger than 0.05, leading us to accept the elliptical distribution
hypothesis after the Box-Cox transformation.

10. Discussion. For our method, the choice of kernels are indeed important. In general,
the kernel functions κU and κΘ should satisfy the following three conditions.

https://users.stat.ufl.edu/~rrandles/sta4210/Rclassnotes/data/textdatasets/KutnerData/Appendix%20C%20Data%20Sets/APPENC01.txt
https://users.stat.ufl.edu/~rrandles/sta4210/Rclassnotes/data/textdatasets/KutnerData/Appendix%20C%20Data%20Sets/APPENC01.txt
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1. Both κU and κΘ should be characteristic kernels. This is to guarantee that ΣUΘ = 0 if and
only if X follows an elliptical distribution. If either of them fails to be characteristic, then
there will exist cases when X does not follow an elliptical distribution and yet ΣUΘ = 0 is
satisfied, which leads to non-consistency of the test.

2. Both κU and κΘ should be C2-smooth kernel functions, i.e., the conditions in (5.11) should
be satisfied. This is to guarantee that Σ⋆

UΘ
(z) is a member of HU ⊗HΘ. Also, we need the

derivatives κ̇U(Ûi, Ûj) and κ̇Θ(Θ̂i, Θ̂j) in the implementation, which requires differentia-
bility in κU and κΘ.

3. From a computational perspective, a product-type kernel for κΘ is preferred. This is be-
cause, otherwise, we will need to compute n numerical integrals of dimension (d− 1) in
equation (4.4) and one numerical integral of dimension (2d − 2) in equation (4.5). The
product-type kernels allow us to replace these high-dimension numerical integration by 1-
or 2-dimensional integration.

Clearly, the Gaussian kernel satisfies all three conditions above, so it is preferred. It also
works well in our simulation studies. However, many other kernels also satisfy the three con-
ditions. We can construct a broad class of product kernels that are computationally feasible
for our method.

Specifically, for any d − 1 kernel functions on R × R, say κΘ1
, . . . , κΘd−1

, their prod-
uct given by (4.3) is still a reproducing kernel. Furthermore, by Theorem 1, the product of
characteristic kernels is still characteristic. For example, we can use the product-type inverse-
quadratic (PIQ) kernels defined as follows:

κU(u,u
′) =

1

1+ γU(u− u′)2
, κΘ(θ, θ

′) =

d−1∏
j=1

1

1 + γΘ(θj − θ′
j
)2
,(10.1)

which also satisfy the above three requirements. In principle, all such kernels can be used
for our purpose. This gives us broad choices for kernels.Further discussions on the choice of
kernels are given in the Supplementary Materials.
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BABIĆ, S., GELBGRAS, L., HALLIN, M. and LEY, C. (2021). Optimal tests for elliptical symmetry: Specified
and unspecified location. Bernoulli 27 2189 – 2216. https://doi.org/10.3150/20-BEJ1305

BARINGHAUS, L. (1991). Testing for Spherical Symmetry of a Multivariate Distribution. The Annals of Statistics
19 899–917.

CAMBANIS, S., HUANG, S. and SIMONS, G. (1981). On the theory of elliptically contoured distributions. Journal
of Multivariate Analysis 11 368-385. https://doi.org/10.1016/0047-259X(81)90082-8

CASSART, D., HALLIN, M. and PAINDAVEINE, D. (2008). Optimal detection of Fechner-asymmetry. Journal of
Statistical Planning and Inference 138 2499-2525. https://doi.org/10.1016/j.jspi.2007.10.011

COOK, R. D. and LI, B. (2002). Dimension Reduction for Conditional Mean in Regression. The Annals of
Statistics 30 455–474.

DUCHESNE, P. and DE MICHEAUX, P. L. (2010). Computing the distribution of quadratic forms: Further com-
parisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data
Analysis 54 858-862.

EATON, M. L. (1986). A characterization of spherical distributions. Journal of Multivariate Analysis 20 272–276.
FERNHOLZ, L. T. (1983). von Mises Calculus For Statistical Functionals. Lecture Notes in Statistics. Springer

New York.
FUKUMIZU, K., GRETTON, A., LANCKRIET, G., SCHÖLKOPF, B. and SRIPERUMBUDUR, B. K. (2009). Kernel

Choice and Classifiability for RKHS Embeddings of Probability Distributions. In Advances in Neural Infor-
mation Processing Systems (Y. BENGIO, D. SCHUURMANS, J. LAFFERTY, C. WILLIAMS and A. CULOTTA,
eds.) 22. Curran Associates, Inc.

GRETTON, A., BOUSQUET, O., SMOLA, A. and SCHÖLKOPF, B. (2005). Measuring Statistical Dependence
with Hilbert-Schmidt Norms. In Algorithmic Learning Theory (S. JAIN, H. U. SIMON and E. TOMITA, eds.)
63–77. Springer Berlin Heidelberg, Berlin, Heidelberg.

GRETTON, A., BORGWARDT, K. M., RASCH, M., SCHÖLKOPF, B. and SMOLA, A. J. (2007). A Kernel Method
for the Two-Sample-Problem. In Advances in Neural Information Processing Systems 19: Proceedings of the
2006 Conference The MIT Press. https://doi.org/10.7551/mitpress/7503.003.0069

GRETTON, A., FUKUMIZU, K., TEO, C., SONG, L., SCHÖLKOPF, B. and SMOLA, A. (2008). A Kernel Statis-
tical Test of Independence. In Advances in Neural Information Processing Systems (J. PLATT, D. KOLLER,
Y. SINGER and S. ROWEIS, eds.) 20. Curran Associates, Inc.

GRETTON, A., FUKUMIZU, K., HARCHAOUI, Z. and SRIPERUMBUDUR, B. K. (2009). A Fast, Consistent Ker-
nel Two-Sample Test. In Advances in Neural Information Processing Systems (Y. BENGIO, D. SCHUURMANS,
J. LAFFERTY, C. WILLIAMS and A. CULOTTA, eds.) 22. Curran Associates, Inc.

GRETTON, A., BORGWARDT, K. M., RASCH, M. J., SCHÖLKOPF, B. and SMOLA, A. (2012). A Kernel Two-
Sample Test. Journal of Machine Learning Research 13 723-773.

GUELLA, J. C. (2022). On Gaussian kernels on Hilbert spaces and kernels on hyperbolic spaces. Journal of
Approximation Theory 279 105765. https://doi.org/10.1016/j.jat.2022.105765

HALEY, R. W., QUADE, D., FREEMAN, H. E. and BENNETT, J. V. (1980). The SENIC Project. Study on the
efficacy of nosocomial infection control (SENIC Project). Summary of study design. American Journal of
Epidemiology 111 472-485. https://doi.org/10.1093/oxfordjournals.aje.a112928

HENZE, N., HLÁVKA, Z. and MEINTANIS, S. G. (2014). Testing for spherical symmetry via the empirical
characteristic function. Statistics 48 1282-1296. https://doi.org/10.1080/02331888.2013.832764

HUFFER, F. W. and PARK, C. (2007). A test for elliptical symmetry. Journal of Multivariate Analysis 98 256-281.
https://doi.org/10.1016/j.jmva.2005.09.011

KARIYA, T. and EATON, M. L. (1977). Robust Tests for Spherical Symmetry. The Annals of Statistics 5 206–
215.

KOKOSZKA, P. and REIMHERR, M. (2017). Introduction to Functional Data Analysis. Chapman & Hall/CRC
Texts in Statistical Science. CRC Press.

KOLTCHINSKII, V. I. and LI, L. (1998). Testing for Spherical Symmetry of a Multivariate Distribution. Journal
of Multivariate Analysis 65 228-244. https://doi.org/10.1006/jmva.1998.1743

KUTNER, M., NACHTSHEIM, C., NETER, J. and LI, W. (2005). Applied Linear Statistical Models. McGrwa-Hill
international edition. McGraw-Hill Irwin.

LI, K.-C. (1991). Sliced Inverse Regression for Dimension Reduction. Journal of the American Statistical Asso-
ciation 86 316–327.

LI, B. (2018). Sufficient Dimension Reduction: Methods and Applications with R. Chapman & Hall/CRC Mono-
graphs on Statistics and Applied Probability. CRC Press.

LI, B. and DONG, Y. (2009). Dimension reduction for nonelliptically distributed predictors. The Annals of Statis-
tics 37 1272 – 1298. https://doi.org/10.1214/08-AOS598

LI, K.-C. and DUAN, N. (1989). Regression Analysis Under Link Violation. The Annals of Statistics 17 1009 –
1052. https://doi.org/10.1214/aos/1176347254

https://doi.org/10.3150/20-BEJ1305
https://doi.org/10.1016/0047-259X(81)90082-8
https://doi.org/10.1016/j.jspi.2007.10.011
https://doi.org/10.7551/mitpress/7503.003.0069
https://doi.org/10.1016/j.jat.2022.105765
https://doi.org/10.1093/oxfordjournals.aje.a112928
https://doi.org/10.1080/02331888.2013.832764
https://doi.org/10.1016/j.jmva.2005.09.011
https://doi.org/10.1006/jmva.1998.1743
https://doi.org/10.1214/08-AOS598
https://doi.org/10.1214/aos/1176347254


KERNEL-EMBEDDING BASED TEST FOR ELLIPTICAL DISTRIBUTION 25

LI, B. and SOLEA, E. (2018). A Nonparametric Graphical Model for Functional Data With Application to Brain
Networks Based on fMRI. Journal of the American Statistical Association 113 1637-1655. https://doi.org/10.
1080/01621459.2017.1356726

LIANG, J., FANG, K.-T. and HICKERNELL, F. J. (2008). Some necessary uniform tests for spherical symmetry.
Annals of the Institute of Statistical Mathematics 60 679–696. https://doi.org/10.1007/s10463-007-0121-9

LIU, H., HAN, F. and ZHANG, C.-H. (2012). Transelliptical Graphical Models. In Advances in Neural Informa-
tion Processing Systems (F. PEREIRA, C. J. BURGES, L. BOTTOU and K. Q. WEINBERGER, eds.) 25. Curran
Associates, Inc.

MANZOTTI, A., PÉREZ, F. J. and QUIROZ, A. J. (2002). A Statistic for Testing the Null Hypothesis of Elliptical
Symmetry. Journal of Multivariate Analysis 81 274-285. https://doi.org/10.1006/jmva.2001.2007

NARASIMHAN, B., JOHNSON, S. G., HAHN, T., BOUVIER, A. and KIÊU, K. (2023). cubature: Adaptive Mul-
tivariate Integration over Hypercubes R package version 2.0.4.6.

PAINDAVEINE, D. (2012). Elliptical Symmetry. Encyclopedia of Environmetrics 802–807.
QIU, W. and JOE., H. (2020). clusterGeneration: Random Cluster Generation (with Specified Degree of Separa-

tion) R package version 1.3.7.
SCHMIDT, R. (2002). Tail dependence for elliptically contoured distributions. Mathematical Methods of Opera-

tions Research 55 301-327. https://doi.org/10.1007/s001860200191
SCHÖLKOPF, B., HERBRICH, R. and SMOLA, A. J. (2001). A Generalized Representer Theorem. In Computa-

tional Learning Theory (D. HELMBOLD and B. WILLIAMSON, eds.) 416–426. Springer Berlin Heidelberg,
Berlin, Heidelberg.

SCHOTT, J. R. (2002). Testing for elliptical symmetry in covariance-matrix-based analyses. Statistics & Proba-
bility Letters 60 395-404. https://doi.org/10.1016/S0167-7152(02)00306-1

SEJDINOVIC, D., SRIPERUMBUDUR, B., GRETTON, A. and FUKUMIZU, K. (2013). Equivalence of Distance-
Based and RKHS-Based Statistics in Hypothesis Testing. The Annals of Statistics 41 2263–2291.

SRIPERUMBUDUR, B., FUKUMIZU, K. and LANCKRIET, G. (2010). On the relation between universality, charac-
teristic kernels and RKHS embedding of measures. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (Y. W. TEH and M. TITTERINGTON, eds.). Proceedings of Machine
Learning Research 9 773–780. PMLR, Chia Laguna Resort, Sardinia, Italy.

SRIPERUMBUDUR, B. K., FUKUMIZU, K. and LANCKRIET, G. R. G. (2011). Universality, Characteristic Ker-
nels and RKHS Embedding of Measures. Journal of Machine Learning Research 12 2389–2410.

SRIPERUMBUDUR, B., GRETTON, A., FUKUMIZU, K., SCHÖLKOPF, B. and LANCKRIET, G. (2010). Hilbert
Space Embeddings and Metrics on Probability Measures. Journal of Machine Learning Research 11 1517-
1561.

SZABÓ, Z. and SRIPERUMBUDUR, B. K. (2018). Characteristic and Universal Tensor Product Kernels. Journal
of Machine Learning Research 18 1–29.

SZÉKELY, G. J., RIZZO, M. L. and BAKIROV, N. K. (2007). Measuring and testing dependence by correlation
of distances. The Annals of Statistics 35 2769 – 2794. https://doi.org/10.1214/009053607000000505

SZÉKELY, G. J. and RIZZO, M. L. (2009). Brownian distance covariance. The Annals of Applied Statistics 3
1236 – 1265. https://doi.org/10.1214/09-AOAS312

TANG, Y. and LI, B. (2024). Supplementary material for “A nonparametric test for elliptical distribution based
on kernel embedding of probabilities".

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press. https://doi.org/10.1017/CBO9780511802256

VOGEL, D. and FRIED, R. (2011). Elliptical graphical modelling. Biometrika 98 935–951.
YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 68 49–67.
ZHOU, D.-X. (2008). Derivative reproducing properties for kernel methods in learning theory. Journal of Com-

putational and Applied Mathematics 220 456–463.

https://doi.org/10.1080/01621459.2017.1356726
https://doi.org/10.1080/01621459.2017.1356726
https://doi.org/10.1007/s10463-007-0121-9
https://doi.org/10.1006/jmva.2001.2007
https://doi.org/10.1007/s001860200191
https://doi.org/10.1016/S0167-7152(02)00306-1
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1017/CBO9780511802256

	Introduction
	Elliptical distribution and its kernel embedding
	Spherical and elliptical distributions
	Polar coordinate transformation and equivalent condition
	Kernel embedding of P U P 

	Construction of Test Statistic
	Computing the test statistic
	Coordinate mapping
	Test statistic

	Asymptotic distribution
	von-Mises expansion
	Statistical functional for testing elliptical distributions
	Derivations of influence functions
	Asymptotic distribution of the test statistic
	Local power analysis

	Approximating the asymptotic null distribution
	Outline of the problem and notations
	Estimation of 
	Approximating the asymptotic distribution of n  U  HS2
	Validity and consistency

	Uniform concentration bounds
	Case for known  and 
	Case for unknown  and 

	Simulations
	Results under the null distribution
	Results under alternative distributions

	Application
	Discussion
	Acknowledgments
	Funding
	Supplementary Material
	References

