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We argue that inventory management presents unique opportunities for reliably applying and evaluating

deep reinforcement learning (DRL). Toward reliable application, we emphasize and test two techniques. The

first is Hindsight Differentiable Policy Optimization (HDPO), which performs stochastic gradient descent

to optimize policy performance while avoiding the need to repeatedly deploy randomized policies in the

environment—as is common with generic policy gradient methods. Our second technique involves aligning

policy (neural) network architectures with the structure of the inventory network. Specifically, we focus

on a network with a single warehouse that consolidates inventory from external suppliers, holds it, and

then distributes it to many stores as needed. In this setting, we introduce the symmetry-aware policy

network architecture. We motivate this architecture by establishing an asymptotic performance guarantee

and empirically demonstrate its ability to reduce the amount of data needed to uncover strong policies.

Both techniques exploit structures inherent in inventory management problems, moving beyond generic

DRL algorithms. Toward rigorous evaluation, we create and share new benchmark problems, divided into

two categories. One type focuses on problems with hidden structures that allow us to compute or bound

the cost of the true optimal policy. Across four problems of this type, we find HDPO consistently attains

near-optimal performance, handling up to 60-dimensional raw state vectors effectively. The other type of

evaluation involves constructing a test problem using real time series data from a large retailer, where

the optimum is poorly understood. Here, we find HDPO methods meaningfully outperform a variety of

generalized newsvendor heuristics. Our code can be found at https://github.com/MatiasAlvo/Neural_

inventory_control.

Key words : deep reinforcement learning; inventory theory and control; supply chain management

1. Introduction

Inventory management deals with designing replenishment policies that minimize costs related

to holding, selling, purchasing, and transporting goods. Such problems are typically modelled as

Markov Decisions Processes (MDPs), but the triple curse of dimensionality (Powell 2007) (i.e.,
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exponentially large state, action, and outcome spaces) usually renders them computationally in-

tractable. Since the 1950s, researchers have attempted to circumvent this curse by formulating

specialized models in which the optimal policy has a simple structure (Arrow et al. 1958, Scarf et al.

1960, Clark and Scarf 1960, Federgruen and Zipkin 1984b). These policies then form the basis of

simple heuristics that work well in slightly broader – but still very narrow – problem settings (see

e.g., Federgruen and Zipkin 1984a, Xin 2021). Practical inventory management problems are often

far more complex due to the presence of multiple inventory storage locations, dynamic demand

patterns, and complexities in customer behavior during stock-outs.

Deep reinforcement learning (DRL) is a promising alternative for addressing the complexities

of practical inventory management problems. These techniques aim to “learn” effective policies

through interactions with a simulator grounded in real data. Rather than using artful model ab-

stractions to simplify the optimal policy, practitioners employing DRL would emphasize the fidelity

of a simulator. Instead of being limited by the ingenuity of a human policy designer, the solution

can be improved by increasing computation – i.e., by increasing network size, training time and

data. In recent years, this approach has produced impressive successes in arcade games (Mnih

et al. 2015), board games (Silver et al. 2017), and robotics (Levine et al. 2016). Recent works have

used DRL in queuing network control (Dai and Gluzman 2022), ride-hailing (Feng et al. 2021, Oda

and Joe-Wong 2018, Tang et al. 2019) and inventory management (Gijsbrechts et al. 2021), but

applications to logistics still remain limited.

Despite the promises of DRL, two factors have slowed its adoption for addressing complex lo-

gistics problems. One factor is the differences in academic culture. Like other areas of machine

learning, the DRL literature has typically validated heuristic policies by comparing them against

each other, or against human experts. Operations research has traditionally focused on comparison

to the true optimum. Furthermore, in contrast to machine learning, where standardized benchmarks

such as ImageNet Krizhevsky et al. (2012) serve as widely accepted datasets and tasks for eval-

uating various approaches, inventory management lacks such universally recognized benchmarks

against which numerous policies can be rigorously tested.

A more important factor is that generic DRL techniques can be unreliable. Consider traditional

policy gradient methods like the REINFORCE (Williams 1992) algorithm and its variants. These

methods adjust the parameters of a neural network policy that maps states to actions, searching

for parameters that minimize total cost incurred throughout the planning horizon. The use of

randomized policies and a clever log-derivative trick enable the REINFORCE algorithm to conduct

unbiased policy gradient estimation even if transition and cost functions are unknown. This trick

is no panacea, however, and more advanced policy gradient ideas are commonplace in successful

applications; these include natural gradient methods to deal with ill-conditioning (Kakade 2001),
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entropy regularization to prevent premature convergence to nearly deterministic policies (Haarnoja

et al. 2018), baselines to help reduce variance (Greensmith et al. 2004), and actor-critic methods to

further reduce variance (at the expense of bias) (Konda and Tsitsiklis 1999). Still, many “tricks”

(Huang et al. 2022) and careful hyperparameter choices (Henderson et al. 2018) are required.

Skeptics have even argued that methods like REINFORCE are little better than random search

(Mania et al. 2018). A fundamental limitation of these algorithms is that they are entirely generic,

exploiting no structure of the problem at hand. The usual challenges of reliably applying DRL are

exacerbated in many logistics problems, due to high variance and exponentially large action spaces

(see Dai and Gluzman 2022, for a discussion). Therefore, we expect that reliable use of DRL in

logistics problems will require some tailoring of generic algorithms to exploit the structure of those

problems.

We argue that several problem classes within inventory management present unique opportunities

for reliably applying and rigorously evaluating DRL. Toward reliable application, we emphasize and

evaluate two techniques. The first is a direct method to optimize the parameters of a neural network

policy, which we call hindsight differentiable policy optimization (HDPO). The second involves

using policy (neural) network architectures that mirror inventory network structure. Focused on

a network with a single warehouse that consolidates inventory from external suppliers, holds it,

and then distributes it to many stores as needed, we introduce the symmetry-aware policy network

architecture and demonstrate its ability to reduce the amount of data needed to uncover strong

policies. Both techniques move away from completely generic DRL algorithms toward methods

that leverage some of the structures that are common in inventory management problems. Toward

rigorous evaluation, we create and share new types of benchmark problems, divided into two

categories. One type focuses on problems with hidden structures that allow us to compute or bound

the cost of the true optimal policy. The other type involves constructing a test problem using real

time series data from a large retailer, where the optimum is poorly understood. Below, we provide

detailed discussions of these contributions.

1.1. Inventory management with continuous costs

Our model treats ordering quantities as continuous variables and interprets costs as continuous

functions of these quantities, facilitating efficient gradient-based policy optimization. This model

departs from “textbook” inventory management formulations, which aim to optimize ordering

decisions for a single product in settings associated with substantial fixed costs. These fixed costs

introduce discontinuities in the overall cost structure, prompting the adoption of classic (s, S)

policies that recommend waiting until inventory has significantly depleted before replenishing.
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Our modeling is driven by the operational realities of large retailers who manage shipments of a

diverse assortment of products on a fixed delivery schedule. Viewing single-product inventory man-

agement as a simplification of this complex setting, we naturally exclude the fixed costs associated

with overall shipments when optimizing inventory orders for individual products.

1.2. Toward more reliable application of DRL in inventory management

Here we elaborate on two techniques that, based on our experiments, improve the performance of

DRL in inventory management problems.

Hindsight differentiable policy optimization (HDPO). HDPO should be viewed as an

alternative to the REINFORCE method and its variants, which attempt to optimize policy pa-

rameters by stochastic gradient ascent even though the transition dynamics and cost functions are

entirely unknown, and costs are not smooth in actions (or actions are discrete). HDPO exploits two

model features to optimize policy parameters more effectively and reliably. First, we are able to

backtest the performance of any policy under consideration. In most inventory models, for instance,

it is well understood how states evolve under given realizations of demand and shipping lead times:

inventory levels increase with the arrival of goods and decrease when items are sold or shipped.

Assuming, as is canonically done in the literature, that demand and lead times are exogenous of

ordering decisions, one can evaluate how any policy would have performed in a historical scenario

(i.e., given a sample path of demands and lead times). This structure is common to many problems

arising in operations research (Powell 2007) and, when present, allows practitioners to evaluate

policy performance with high fidelity. Second, under appropriate modeling choices, we can evaluate

the gradient of total cost incurred on a given historical scenario with respect to inventory ordering

decisions, enabling especially efficient policy search (Glasserman and Tayur 1995). In doing this

we optimize order quantities as if they were continuous; some of our numerical experiments evalu-

ate performance when decisions are rounded to integral values at implementation time. These two

structures enable one to optimize inventory control policies by performing direct gradient-based

policy search on the average cost incurred in a backtest.

It is worth noting that Madeka et al. (2022) utilizes HDPO (referred to as “DirectBackprop”)

in their recent study of inventory management at Amazon. We became aware of their work after

our numerical experiments were already in progress, and have made complementary contributions

to theirs. We discuss the overlap and differences in Section 1.4. We view the success of HDPO in

practice, at the scale of Amazon, as a major piece of evidence pointing to the promise of HDPO.

Symmetry aware policy network architectures. Many inventory management problems

involve rich network structure. The following situation arises frequently. Inventory can be ordered

from manufacturers, but long lead times make forecasting difficult. Inventory can be held at “stores”
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that sell directly to customers, but stores have high holding costs (reflecting, e.g., expensive real

estate and limited shelf space). Instead, most inventory is ordered to a centralized warehouse(s),

which holds inventory at lower cost and, as a result of “pooling” demand across stores, can forecast

more accurately. Inventory is shipped from the warehouse to stores as needed. Stores impact each

other, since they draw on the same pool of inventory, but the coupling between them is “weak”

(Meuleau et al. 1998).

A vanilla policy network architecture for such a problem is a fully connected NN that maps

the full state of the system – information needed to forecast demand, inventory levels at various

locations, inventory ordered but yet to be delivered, etc. – to a complex system-level decision

vector. We introduce a natural policy network architecture which better reflects the structure of a

class of network inventory problems in which different locations are linked through weak coupling

constraints. The architecture we propose has two ingredients: (i) a NN for each location, with

sharing of NN weights between “sibling” locations, e.g., in the setting we study, different stores

which are supplied by the same warehouse share network weights, (ii) a Context Net that takes

in the raw state as input and generates a “context” vector as output. This context acts as a

compressed summary of the overall state of the system. Using this context along with the local

state of each location, a Warehouse Net and a Store Net (one for each store) generate intermediate

outputs that lead to ordering decisions. Note that the overall neural network consisting of the

Context Net, Warehouse Net, and Store Nets can be viewed as one single NN with substantial

weight-sharing. We motivate this architecture by proving, in a specific setting, that even a small

(fixed-size) context dimension enables optimal performance in an asymptotic regime in which the

number of stores grows.

1.3. Main empirical findings

The majority of the paper is dedicated to careful, reproducible evaluation of the techniques de-

scribed above. We have three main findings.

1. HDPO recovers near-optimal policies in problems with hidden structure: Section 3

evaluates HDPO applied to a set of problems where hidden structure — identified by ingenious

researchers — allows the optimal cost to be computed or bounded. Such problems provide a

rare opportunity to benchmark DRL methods against the true optimum, rather than against

each other. On these problems, we apply HDPO to optimize over NN policies that map

“raw” state vectors to (typically vector-valued) actions, without modifications that reflect each

problem’s unique hidden structure. Nevertheless, HDPO consistently converges to (essentially)

optimal policies, achieving average optimality gaps below 0.03%, 0.25%, 0.35%, and 0.15% in

each of the four settings we considered (see Table 1 in Section 3.3). Careful comparisons to the
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results reported in Gijsbrechts et al. (2021) suggest that generic, black-box DRL algorithms

are far less reliable. For instance, they report optimality gaps of 3.0% to 6.7% across six

fairly small problems; this level of performance requires selecting the best run among 250

hyperparameter choices for each instance. By contrast, HDPO attains optimality gaps that

are as low as detectable1 across all six instances for each of twelve different combinations of

hyperparmeter choices (see Table 3 in Section 3.3.1).

2. Symmetry-aware policy network architectures enhance sample efficiency: Section

4 focuses on the sample efficiency of HDPO. Our main hypothesis is that reflecting inventory

network structure within the policy network design can enhance sample efficiency. We focus

on comparisons between the vanilla and symmetry-aware policy networks when in a setting

with a single warehouse which ships inventory to many stores. A demand “sample” is a time

series of demand observations for a single product at each of the stores. The benefits of the

symmetry-aware architecture are striking. A symmetry-aware policy network trained with

only 4 samples has stronger out-of-sample performance than its “vanilla” counterpart trained

with 256 samples, across store quantities ranging from 20 to 50 (see Figure 4).

3. HDPO outperforms generalized newsvendor heuristics with real time series data:

To further evaluate HDPO, we construct a new benchmark problem out of publicly available

sales data shared by Corporación Favorita, one of Ecuador’s largest grocery retailers. This

setting requires grappling with realistic nonstationarity and the optimal policy cannot easily

be characterized. HDPO addresses nonstationarity by optimizing the hindsight performance

of policies that map available information — including a historical window of demand obser-

vations and outstanding inventory orders — directly to a decision. This approach is compared

to a several newsvendor type policies. Our implementations address nonstationarity in the

data by training a NN to forecast the distribution of cumulative demand over item’s lead time.

We implement several methods for making decisions based on the quantiles of the demand

forecast, tuning them to minimize the cost they incur. Nevertheless, our findings indicate that

HDPO consistently outperforms these generalized newsvendor policies in a lost demand model

and points to comprehensible reasons those heuristics may perform poorly.

1.4. Further related literature

Inventory management. The field of inventory management boasts a rich and extensive his-

tory. In seminal research, Arrow et al. (1958) demonstrated that in a setting involving a single

location with positive vendor lead times and assuming backlogged demand (i.e., customers are

1 These settings rely on optimal cost values reported in Zipkin (2008), which are rounded to the second decimal place.
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willing to wait for unavailable items), an optimal one-dimensional base-stock policy exists. Specif-

ically, they illustrated that the state, which initially has the same dimension as the lead time,

can be condensed into a single parameter. Conversely, in situations where demand is considered

lost (i.e., customers do not wait for unavailable products), the optimal policy may rely on the

entire inventory pipeline, encompassing the quantity of units arriving each day until the lead time.

This assumption may better reflect reality, particularly in brick-and-mortar retail, where only 9-

22% of customers are inclined to postpone their purchases when a specific item is unavailable

in-store (Corsten and Gruen 2004). Zipkin (2008) highlighted that a base-stock policy may per-

form poorly in such contexts. Given the computational complexity associated with solving this

problem, numerous heuristics have been proposed, including myopic policies (Morton 1971, Zipkin

2008), constant-order policies (Reiman 2004), capped base-stock policies (Xin 2021), and linear

programming-based techniques (Sun et al. 2014).

In multi-echelon inventory networks, inventory can be held across numerous locations. Clark

and Scarf (1960) demonstrated that within a serial system, where inventory progresses linearly

through sequential locations, a simple extension of base-stock policies proves to be optimal under

a backlogged demand assumption. Similarly, Federgruen and Zipkin (1984a) introduced a well-

performing policy for a setting in which a central “transshipment” warehouse, unable to hold

inventory, supplies multiple stores. Yet, the task of determining the optimal policy, even in some

straightforward inventory network setups, remains daunting. For a comprehensive review of works

addressing multi-echelon inventory problems, we direct readers to De Kok et al. (2018).

Deep reinforcement learning algorithms. To describe the literature, we will differentiate

between two types of algorithms. Similar to value-iteration methods in dynamic programming,

Q-learning (Watkins and Dayan 1992) makes iterative updates to an estimate of the optimal state-

action value function (usually denoted as Q∗). DRL implementations employ neural networks to

approximate the value function. Influential work by (Mnih et al. 2015) introduces a variant of this

idea called deep Q-networks (DQN).

Closer in spirit to policy-iteration methods in dynamic programming, policy gradient methods

make iterative improvements to an initial policy. The REINFORCE algorithm by (Williams 1992)

relies on the use of randomized policies and inverse propensity weighting to produce unbiased pol-

icy gradients. See Appendix A.1 for a discussion. Most successful implementations use additional

techniques to reduce the variance of gradient estimates, improve optimization geometry, and pre-

vent convergence to deterministic policies. Actor-critic methods maintain an estimate of the value

function under the current policy and leverage this to reduce the variance of gradient estimates.

The A3C algorithm by Mnih et al. (2016) is an influential variant that exploits distributed com-

putation. Building off of works by Kakade (2001) and Schulman et al. (2015), the Proximal Policy
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Optimization (PPO) algorithm (Schulman et al. 2017) also uses regularization intended to stabilize

policy changes and improve optimization geometry. Researchers sometimes achieve fantastic results

with these algorithms, but as mentioned in the introduction, critical inspections suggest that subtle

implementation details (Huang et al. 2022) and careful hyperparameter choices (Henderson et al.

2018) have an enormous impact on reported results.

As discussed below, we use a policy gradient type algorithm, but use deterministic, rather than

randomized policies, and rely on the use of a differentiable simulator to calculate gradients.

HDPO and differentiable simulators. As discussed in the introduction, HDPO relies on two

properties: (1) an ability to back-test how a policy would have performed in a historical scenario

(See e.g. Sinclair et al. 2022) and (2) smoothness of the total cost incurred in a scenario with

respect to small changes in actions. Rather than apply REINFORCE type algorithms, which rely

on randomization to evaluate directions of potential policy improvement, these properties allow

one to employ deterministic policies and perform model-based computation of gradients with re-

spect to policy parameters. These ideas have old roots in the stochastic simulation literature. See

(Glasserman 2004, Chapter 7) for a comparison of likelihood ratio estimates (similar to REIN-

FORCE) and pathwise derivative estimates of gradients. Almost three decades ago, Glasserman

and Tayur (1995) proposed a method to estimate gradients of total cost with respect to the param-

eters of base-stock policies. Today, it is possible to scale that approach to optimize over far more

complex policy classes. Software libraries like TensorFlow (Abadi et al. 2015), PyTorch (Paszke

et al. 2019), or JAX (Bradbury et al. 2018) now enable one to easily construct rich neural network

policies, automatically calculate derivatives with respect to their parameters by backpropagation,

and perform rapid parallel computation on graphics processing units (GPUs). Our use of HDPO

is partly motivated by the recent impact differentiable physics simulators have had in optimizing

robotic control policies (Freeman et al. 2021, Hu et al. 2019) in this manner. Our results suggest

this approach holds great promise for tackling difficult inventory management problems.

The recent work of Madeka et al. (2022) also applies HDPO to inventory management. We

learned of their work while our numerical experiments were well underway, and believe it is comple-

mentary. Madeka et al. (2022) verifies that HDPO can outperform internal baselines at Amazon,

providing an exciting case study on the potential real-world impact of the approach. Our work

includes three contributions not contained in theirs. First, while their work focuses solely on a

single-location problem, our work emphasizes inventory problems in networks with multiple loca-

tions. This presents challenges due to the explosion of the state and action spaces, and motivates

the symmetry-aware neural network architecture in Section 4. Second, rather than compare the

performance of HDPO solely against heuristics, our results in Section 3 show HDPO recovers

the actual optimum in problems whose solution structure was uncovered by decades of research.
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Finally, rather than compare against heuristic baseline policies that are internal to Amazon, we

open-source our code and ensure the performance of all baseline policies is reproducible. Notably,

Section 5 includes a new benchmark problem constructed out of real time-series data. That section

offers insight into why newsvendor-style methods are outperformed, which also builds trust in the

findings.

Other deep reinforcement learning methods in inventory management. To our knowl-

edge, Van Roy et al. (1997) were the first to apply DRL to inventory management. They introduce

the notions of a “pre-decision-state” and “post-decision-state”, which is the state of the inven-

tory system before and after an order is placed. See Powell (2007) for further discussion. They

apply a specialized approximate policy iteration algorithm which approximates the cost-to-go from

a “post-decision-state” by applying a two layer neural network and hand-crafted features of the

state. Recent successes of DRL in various domains have sparked renewed interest in applications

to inventory management.

Recent papers of Oroojlooyjadid et al. (2022) and Shar and Jiang (2023) apply variants of

the deep Q-networks algorithm (Mnih et al. 2015) to inventory management problems. Oroo-

jlooyjadid et al. (2022) extends deep Q-networks (Mnih et al. 2015) to address the classical beer

game. Their data-driven approach demonstrates the ability to recover near-optimal policies in a

simplified setting and significantly outperforms simple heuristics when considering complicating

problem features. Shar and Jiang (2023) introduce weakly coupled deep Q-networks, leveraging a

Lagrangian-decomposition-based upper bound to accelerate the training of the Q-function approxi-

mation. Applied to an inventory control problem with multiple products and exogenous production

rates, their approach demonstrates superiority over classical value-based methods. Our work devi-

ates from this literature stream as HDPO focuses on directly approximating a policy rather than

a value function.

Several other works apply policy gradient type algorithms to inventory control. With the ex-

ception of Madeka et al. (2022), which we discussed above, all works apply advanced variants of

REINFORCE algorithms; these are fundamentally different from HDPO. A notable example is

the work of Gijsbrechts et al. (2021), which applies the A3C algorithm to address three classi-

cal inventory control problems. They put great effort into getting A3C to work well — including

tuning hyperparameters separately for each set of problem primitives — and report the resulting

performance on well-documented benchmarks. In some problems, they include comparisons against

the true optimal cost. For these reasons, their work serves as a crucial benchmark in Section 3.3.1.

Unlike A3C, we find HDPO performs robustly well without requiring extensive parameter tuning

or other tricks.
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Some follow up works have applied the PPO algorithm, another REINFORCE style policy gra-

dient algorithm that is a successor to A3C (Vanvuchelen et al. 2020, van Hezewijk et al. 2023,

Vanvuchelen et al. 2023, Kaynov et al. 2024). Unfortunately, it is difficult to rigorously benchmark

HDPO’s performance by comparing it against our own implementation of PPO; research suggests

that hundreds of implementation tricks impact the performance of PPO (Huang et al. 2022). (Note

that the importance of these tricks already points to the benefits of HDPO.) We chose not to invest

substantial effort in implementing and tinkering with PPO. Similar to A3C, PPO involves consid-

eration of many tunable hyperparameters, contrasting with the simplicity of HDPO. Additionally,

the results of (Vanvuchelen et al. 2020, van Hezewijk et al. 2023, Vanvuchelen et al. 2023, Kaynov

et al. 2024) all demonstrate cases where it is sometimes surpassed by hand-coded heuristics. For

instance, Kaynov et al. (2024) applied PPO to problems involving one warehouse and multiple

locations, finding that PPO was often outperformed by an echelon-stock heuristic and emphasized

the need for “better DRL algorithms tailored to inventory decision making”. In a similar problem

setup, HDPO achieved an average optimality gap smaller than 0.15% (refer to Table 4 in Section

3.3.2). Based on this evidence, we do not expect PPO to offer fundamentally different performance

from the results in Gijsbrechts et al. (2021), against which we carefully compare.

Multi-agent reinforcement learning approaches in inventory management. In recent

efforts to address inventory problems with a network structure, actor-critic multi-agent reinforce-

ment learning (MARL) techniques have been explored (Liu et al. 2022, Ding et al. 2022). Although

our work has a loose connection to MARL, we take a distinct approach by considering a “central

planner” who optimizes a system comprising many “weakly coupled” components. This approach

avoids the need for sophisticated techniques to handle the flow of information among agents.

Other machine learning approaches in inventory management. Alternative machine

learning approaches, different from DRL, have also been investigated for inventory problems. Qi

et al. (2023) uses supervised learning for a single-location inventory problem with stochastic lead

times, employing posterior optimal actions as training labels for a policy NN. Additionally, Harsha

et al. (2021) proposed training ReLU-based NNs to approximate value functions, and then utilizing

them in a Mixed Integer Program to derive actions.

2. Problem formulation

We begin by presenting a generic formulation of Markov Decision Processes. We then highlight

the additional features that make such a problem amenable to HDPO. Finally, we specialize to an

inventory control problem, which is our main setting of interest.
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2.1. Markov decision processes (MDPs)

In each period t, a decision-maker (who we later call the “central planner”) observes a state St,

and chooses an action at from a feasible set A(St). In a T -period problem, a policy π is a sequence

of functions π = (π1, . . . , πT ) in which each πt maps a state St to a feasible action πt(St) ∈A(St).

Let Π denote the set of feasible policies. The objective of the decision-maker is to solve

min
π∈Π

Eπ
[

1
T

∑
t∈[T ]c(St, πt(St), ξt)

∣∣S1

]
subject to St+1 = f(St, πt(St), ξt) ∀t∈ [T ], (1)

with [x] = {1, . . . , x}, and where the system function f governs state transitions, the cost function c

governs per-period costs, and ξ = (ξ1, . . . , ξT ) is a sequence of exogenous random terms. Note that

the exogenous random terms may be drawn from an arbitrary stochastic process. This is how the

classic textbook of Bertsekas (2011) defines MDPs.2 We will later approximate an infinite-horizon

average-cost objective by choosing the time horizon T to be very large. See Remark 1.

2.2. Hindsight differentiable reinforcement learning and policy optimization

In most RL problems, the decision-maker must learn to make effective decisions despite having

very limited knowledge of the underlying MDP. Typically, they learn by, across episodes, applying

policies and observing the T -length sequence of states visited and costs incurred. A hindsight

differentiable Reinforcement Learning (HD-RL) problem has three special properties:

1. Known system: The system function f and cost function c are known.

2. Historical scenarios: The policy designer observes H historical examples of scenarios

(S̄h
1 , ξ̄

h
1:T ), indexed by h∈ [H], with S̄h

1 representing an initial state and ξ̄h1:T = (ξ̄h1 , . . . , ξ̄
h
T ) rep-

resenting a trace of exogenously determined outcomes. We interpret the historical scenarios

as independent draws from some population distribution.

3. Differentiability: The action space is “continuous” and the system and cost functions are

“smooth enough” that the total cost
∑

t∈[T ] c(St, at, ξt) is an almost everywhere (a.e.) differ-

entiable function of (a1, . . . , aT ) for each fixed S1 and ξ.

While these may seem like special properties, they arise naturally in a broad class of operations

problems, including our main setting of interest described in the next subsection.

HD-RL problems allow for efficient policy search via a scheme we call hindsight differentiable

policy optimization (HDPO), defined as follows. Let Θ = Rb, for some b ∈ N, and let each θ ∈ Θ

define a smoothly parameterized deterministic policy πθ. The first two properties allow to estimate

2 An alternative definition, which may be more familiar to the reader, involves transition probabilities. This is just
a stylistic difference and the two ways of defining MDPs are mathematically equivalent. A substantive constraint
is that the current state variable must encode all information about past exogenous randomness that is relevant to
predicting the next realization. See our discussion of forecasting information in the next subsection.
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the policy loss J(θ) =Eπθ

[∑
t∈[T ] c(St, at, ξt)

]
of policy πθ based onH historical (initial state, trace)

pairs as

J̄(θ) = 1
H

∑
h∈[H]ℓ(θ, S̄

h
1 , ξ̄

h
1:T ), (2)

where ℓ(θ, S̄h
1 , ξ̄

h
1:T ) =

(
T−1

∑
t∈[T ] c(St, πθ(St), ξ̄

h
t )
)
is the cost under a scenario with trace ξ̄h1:T and

initial state S1 = S̄h
1 . The third property ensures that ℓ(θ, S̄h

1 , ξ̄
h
1:T ) is an a.e. differentiable function

of θ for a HD-RL problem. These three properties collectively enable the derivation of a low-variance

gradient estimator for the policy loss as ∇θJ̄(θ) =
1
H

∑
h∈[H]∇θℓ(θ, S̄

h
1 , ξ̄

h
1:T ). This is achieved by

computing a sample of the gradient for each scenario (S̄h
1 , ξ̄

h
1:T ) separately and subsequently av-

eraging them. Utilizing this estimator, one can efficiently perform stochastic gradient descent to

search for the policy parameter that approximately minimizes Eq. (2).

The pseudo-code for HDPO is presented in Algorithm 1. In practical terms, one can abstract

transition and cost functions f and g into a differentiable simulator, defining a differentiable map-

ping ℓ from a (parameter vector, initial state, trace) triplet to a cost (see Eq. 2). Modern auto-

matic differentiation libraries, like PyTorch, allow one to obtain low-variance gradient estimates

by backpropagating through the simulator (i.e., by repeatedly applying the chain rule through

the operations performed in the simulator in a backwards manner) to derive one gradient for each

triplet, and subsequently averaging them. To simplify the presentation, Algorithm 1 demonstrates

the forward and backward passes being performed one scenario at a time. However, in our im-

plementation, we execute each pass simultaneously across a batch of scenarios. This is achieved

by defining a tensor S̃H
t that describes the state across all scenarios within a batch and leverag-

ing PyTorch’s parallel computing capabilities to perform all operations in a parallel manner (see

Appendix B.1 for a detailed explanation).

Remark 1 (On the use of stationary policies). For our experiments in Sections 3 and

4.3, we optimize over stationary policies, which have many practical benefits. It is known that there

is a stationary optimal policy for a stationary infinite-horizon average-cost minimization problem

under regularity conditions, like the restriction to finite state and action spaces (Bertsekas 2012).

But an infinite horizon formulation of our problem is problematic in that it would require access

to an infinite-length historical trace of exogenous outcomes (ξ1, ξ2, ξ3, . . .). We will focus on large

T to mimic an infinite horizon, hence we expect a stationary policy to perform very well.

Remark 2 (Comparison with REINFORCE style policy gradient optimization).

It is noteworthy that policy gradient algorithms in the style of REINFORCE (Williams 1992)

do not calculate gradients samples as in Algorithm 1, instead attempting to perform gradient

based optimization without any knowledge of the model and without assuming any smoothness



13

Algorithm 1 Hindsight Differentiable Policy Optimization

Require: Historical scenario pairs (S̄1
1 , ξ̄

1
1:T ), . . . , (S̄

H
1 , ξ̄H1:T ), initial policy parameters θ ∈ Θ, cost

and transition functions c and f , gradient-based policy update function UpdatePolicy (e.g.,

Adam).

while not reached termination criteria do

Randomly partition scenario indexes [H] into nB index batches (Ĥ1, . . . , ĤnB
).

for index batch Ĥ ∈ (Ĥ1, . . . , ĤnB
) do

J← 0, ∇J← 0 ▷ initialize batch cost and gradient

for h∈ Ĥ do

ℓ← 0, S← S̄h
1 ▷ initialize cost and initial state

for t∈ [T ] do ▷ forward pass to obtain cost on scenario

ℓ← ℓ+ c(S,πθ(S), ξ̄
h
t ) ▷ update cost on scenario

S← f(S,πθ(S), ξ̄
h
t ) ▷ get new state

end for

J← J + ℓ ▷ update cost across batch

∇J←∇J +∇θℓ ▷ get gradient sample (by backpropagation) and update

end for

θ← UpdatePolicy(θ, 1

|Ĥ|∇J) ▷ update parameters based on average sample gradient

end for

end while

properties of it. These algorithms enforce smoothness by employing randomized policies under

which action probabilities are smooth functions of policy parameters. They derive gradient

estimates by utilizing T -length sequences of states visited and costs incurred, and differentiating

the log-probabilities associated with the sampled action in each observed state. The resulting

gradient estimates are unbiased, but can have exceptionally high variance when T is large and

policies are nearly deterministic. Further details on the operation of REINFORCE are provided

in Appendix A.1.

2.3. Formulation of an HD-RL problem in inventory control

We use the HD-RL problem formulation described above to instantiate inventory control problems.

We examine single-location problems and problems concerning two classical inventory network

structures within the operations literature: a serial system and a one warehouse multiple store

system, illustrated in Figures 1a and 1b, respectively. In the former, only the left-most location

is permitted to acquire inventory, while all other locations can solely procure inventory from the

preceding location. Additionally, only the right-most location can sell products. This problem
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assumes that storing inventory in upstream locations is more cost-effective, making it advantageous

to retain it in those locations. In the latter, a single location (referred to as the “warehouse”) has

access to an external supply source, allowing it to consolidate inventory and distribute it to stores

that handle product sales.

Outside 
supply

Demand

(a) Serial.

Outside 
supply

Demand

(b) One warehouse, multiple stores.

Figure 1 Diagrams of the network structures for two classical inventory management problems. Arrows indicate

the direction in which inventory flows.

These problems may be challenging because the state and action spaces can be quite large due

to the presence of many locations at which inventory is held. This is the “network” problem feature

stressed in the introduction. For notational convenience, we present a formulation that represents

the one warehouse multiple store system. This formulation captures all inventory control problems

we consider except for one (the serial system), and we will use it consistently from Section 3

onwards.

The problem we model consists of K +1 locations, comprising K heterogeneous stores indexed

by k ∈ [K] and one warehouse indexed as location 0. Each store sells the same identical product

(meaning that we do not model cross-product interactions), and we assume that the warehouse has

access to an unlimited supply of goods. There are no constraints on storage or transfer quantities.

For brevity, we will assume that lead times are strictly positive. It should be mentioned that the

following formulation needs slight adjustments when dealing with lead times of zero.

Recall that [x] = {1, . . . , x}, and define [x]0 = [x]∪{0} and (x)+ =max{0, x}.

State and action spaces. In this model, the trace of exogenous outcomes (ξ1, . . . , ξT ), with

ξt = (ξkt )k∈[K], represents the sequence of (uncensored) demand quantities at each store and across

time. The system state is a concatenation St = (S0
t , . . . S

K
t ) of K +1 local states

Sk
t = (Ikt ,Q

k
t ,Fk

t ),
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where Ikt ∈R is the current inventory on-hand at location k, Qk
t represents the vector of outstand-

ing orders and Fk
t represents information about the past that is relevant to forecasting future

demand. More precisely, each location k has a known and fixed3 lead time Lk ∈ N. The vector

Qk
t = (qk

t−Lk+1
, . . . , qkt−1) ∈ RLk−1

+ encodes the quantity of goods ordered in each of the previous

Lk − 1 periods. It is worth noting that Section 5 tests the performance of neural policies that are

not supplied with explicit lead time information and instead make inferences based solely on past

data.

The forecasting information Fk
t can encode information about the recent demand, and also

exogenous contextual information like the weather. For the state to satisfy the Markov property,

the forecasting information should be rich enough4 to capture information about the past demands

that is relevant to predicting the future:

P
(
[ξt, . . . , ξT ]∈ · | F1

t , . . .FK
t

)
= P

(
[ξt, . . . , ξT ]∈ · | (F1

i , . . .FK
i )i∈[t], ξ1, . . . , ξt−1

)
.

After observing St, a central planner must jointly define the warehouse’s order a0
t and the quan-

tity of goods ak
t allocated to every store from the warehouse, without exceeding the warehouse’s

inventory on-hand. The action space at state St is then given by A(St) = {at ∈RK+1
+ |

∑
k∈[K] a

k
t ≤

I0t }.
Notice that the dimension of the state space grows with the number of locations, the lead time,

and the length of the demand forecast information. The dimension of the action space and the

dimension of the demand realizations (i.e., ξt) also grows with the number of locations.

Transition functions. Following the literature on inventory control, we separately consider two

ways in which inventory on-hand at each store evolves:

Ikt+1 = Ikt − ξkt + qkt−Lk+1 k ∈ [K] , OR (3)

Ikt+1 = (Ikt − ξkt )
+ + qkt−Lk+1 k ∈ [K] . (4)

The case (3) is known as backlogged demand, and imagines the customers will wait for the product

if not immediately available (though a cost is incurred for the delay). The case (4) is known as a

lost demand model and imagines that unmet demand disappears. The rest of the transitions are

defined as

I0t+1 = I0t + qkt−L0+1−
∑

k∈[K]a
k
t (5)

Qk
t+1 = (qkt−Lk+2, . . . , q

k
t−1, q

k
t = ak

t ) k ∈ [K]0 . (6)

3 We further note that random lead times can be modeled by letting each entry in Qk
t track orders that have not yet

arrived and updating Ikt considering the stochastic realization for the random lead time.

4 One can always satisfy this property by taking Fk
t = (ξ1, . . . , ξt−1) to include all past demand observations. More

concise representations are often possible. For instance, if demand is independent across locations, one can take
Fk

t = (ξk1 , . . . , ξ
k
t−1). If instead the demand process is an mth order Markov chain, one can take Fk

t = (ξkt−m, . . . , ξkt−1).
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We omit an explicit formula for how forecasting information is updated, as this is case dependent.

In some of our examples, demand is independent across time and no forecasting state is used.

In another example, Fk
t contains a window of recent demands that is considered sufficient for

predicting the future. Taken together, these equations define the system function f that governs

state transitions.

Cost functions. The per-period cost function is defined as

c(It, at, ξt) = c0(I0t , at)︸ ︷︷ ︸
cost at warehouse

+
∑
k∈[K]

ck(Ikt , a
k
t , ξ

k
t )︸ ︷︷ ︸

cost at store k

. (7)

The cost incurred at store k is given by ck(Ikt , a
k
t , ξ

k
t ) = pk(ξkt − Ikt )

++hk(Ikt − ξkt )
+, where the first

and second terms correspond to underage and overage costs, respectively. Per-unit underage costs

pk and holding costs hk may be heterogeneous across stores. The cost incurred at the warehouse

is given by c0(I0t , at) = βa0
t + h0

(
I0t −

∑
k∈[K] a

k
t

)
. The first and second terms reflect procurement

costs at rate β and holding costs at rate h0, where we assume that h0 <mink∈[K] h
k. We will restrict

attention to zero warehouse procurement costs β = 0 for simplicity, following Gijsbrechts et al.

(2021) and Xin (2021).

Historical scenarios. The policy designer observes H historical scenarios, consisting of inde-

pendent examples of initial states S̄h
1 and demand traces ξ̄h1:T = (ξ̄h1 , . . . , ξ̄

h
T ), indexed by h∈ [H]. For

our experiments with synthetic data in Section 3, we sample these from mathematical generative

models (e.g., from a Poisson distribution), as is common in the operations literature. In practice,

retailers carry multiple items, and historical observations for each individual item provide a de-

mand trace; these traces can collectively be used for training as in Madeka et al. (2022). We build

a semi-realistic simulator from real time-series data in Section 5.

2.4. Feasibility enforcement for neural policy classes

We will apply HDPO to search over the weights θ defining a policy πθ. For any given θ, πθ maps

a state vector S to a feasible action vector πθ(S) ∈ A(S) ⊂ RK+1. To apply HDPO, we need a

convenient way to ensure a NN outputs a feasible action, e.g., to ensure that total inventory sent

to the stores does not exceed inventory at the warehouse. Here, we show an approach to enforce

action feasibility for settings involving a warehouse and multiple stores, and defer a definition for

the serial system to Appendix B.2.

As motivation, consider the conventional way of applying NNs to classification problems. To

enforce that a network output is a probability vector (over possible labels), a typical network

outputs first an intermediate output which is an unconstrained vector, interpreted as “logits”.

Applying the softmax function transforms the logits to a feasible probability vector.
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Similarly, we consider NN policies that first map a state to a warehouse allocation a0 and an

unconstrained intermediate store output vector (b1, . . . , bK)∈RK , analogous to the logits in classifi-

cation problems. Applying a pre-specified feasibility enforcement function assigns a feasible division

of available warehouse inventory based on the intermediate allocation, analogous to the application

of a softmax function in classification problems. For our settings involving one warehouse and mul-

tiple stores, a feasibility enforcement function is any function g that maps the warehouse inventory

I0 and intermediate outputs (b1, . . . , bK) to an allocation of inventory (a1, . . . , ak) ∈ RK
+ obeying∑K

k=1 a
k ≤ I0. We test three feasiblity enforcement functions defined as

g1(I
0, b1, . . . , bK) =

[
[bk]+ ·min

{
1, I0∑

j∈[K][b
j ]+

}]
k∈[K]

(Proportional Allocation) (8)

g2(I
0, b1, . . . , bK) =

[
I0 · exp (bk)

1+
∑

j∈[K] exp (bj)

]
k∈[K]

(Softmax) (9)

g3(I
0, b1, . . . , bK) =

[
I0 · exp (bk)∑

j∈[K] exp (bj)

]
k∈[K]

(Softmax without Constant) . (10)

Softmax without Constant, g3, additionally enforces all inventory at the warehouse to be allocated

to stores and will be used only for a specific setting in which the warehouse cannot hold inventory

(see Section 3.3.2).

3. HDPO recovers near-optimal policies in problems with hidden
structure

This section considers inventory control problems whose hidden structure enables us to either

compute or tightly bound the cost attained by an optimal policy. We apply HDPO to optimize over

NN policies that map “raw” state vectors to (typically vector-valued) actions, without tailoring

the methodology to each problem’s special structure. We find that HDPO achieves (essentially)

optimal average cost for each of these problems. As highlighted in the introduction, it is quite rare

to benchmark deep RL against the global optimum; our ability to do so rests on decades of research

in operations that has uncovered the hidden structure of the global optimum in some settings of

interest.

In addition to comparing against the true optimum, comparisons with results reported by Gijs-

brechts et al. (2021) highlight the benefits of HDPO over generic policy gradient methods that are

popular in deep RL. HDPO exhibits much better performance on the problems tested in Gijsbrechts

et al. (2021), and does so consistently without extensive tricks or hyperparameter tuning.

This section focuses on “textbook” inventory control problems and focuses solely on issues of

optimization. Our solutions to these problems assume access to a very large dataset on historical

demand, which, here, is synthetically generated and assumed to be i.i.d. We focus on problems

with more limited or complex data in the following sections. Section 4 focuses on sample efficiency
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improvements that are possible by reflecting inventory-network structure in the neural policy ar-

chitecture. Section 5 stresses performance on real time series data.

Short note on terminology. In our experiments, a setting denotes a problem defined by a

specific network structure and assumption regarding unmet demand (whether it is backlogged or

lost). An instance refers to a setting with a particular choice of problem primitives, such as costs

and lead time for each location. A scenario denotes an initial state and a sequence of demands over

T periods across all stores. We will use the term sample size to denote the number of scenarios

considered. A run signifies one execution of HDPO over a specific instance. An epoch refers to

one pass of the algorithm across all scenarios, while a gradient step denotes an update to policy

parameters after a pass through a batch of data. Moreover, to streamline notation, we will exclude

superscripts associated with location for settings where only one location is considered.

3.1. Settings addressed

In this section, we study the performance of HDPO in four distinct settings. We begin with two

settings involving a single store: one where unmet demand is assumed to be backlogged, and

the other where it is considered lost. Next, we consider a setting with a serial network structure

(see Figure 1a), operating under a backlogged demand assumption. Finally, we analyze a setting

involving a warehouse and multiple stores (see Figure 1b), also under the assumption of backlogged

demand. In this setting, as the warehouse cannot hold inventory, we refer to it as a transshipment

center. For detailed definitions of each setting, please refer to Appendix A.2, Section 3.3.1, Appendix

A.4, and Section 3.3.2, respectively.

3.2. Overview of implementation details

Precise experiment details for experiments using synthetic data are presented in Appendix B. We

developed a differentiable simulator using PyTorch and executed all experiments on an NVIDIA

A40 GPU with 48GB of memory. All trainable benchmark policies were also optimized using our

differentiable simulator; we restart their training multiple times and report the best results attained.

We utilize the Adam optimizer, setting the β parameters to the default values provided by PyTorch,

namely (0.9,0.999). To mimic an infinite horizon stationary setting, we train the parameters of a

stationary policy to minimize cost accrued over episodes of long duration (specified below), and

report the costs obtained per store-period. We drew initial states randomly, and this appeared to

enhance convergence speed compared to utilizing a fixed initial state. To avoid reporting “transient”

effects, the metrics we report exclude a given number of early periods, which we specify below.

We utilized three separate datasets: a train set for model training, a dev set (short for develop-

ment) for hyperparameter tuning and model selection, and a test set for evaluating the models’

performance over a longer time horizon and estimating per-period costs. For each run, we use early
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Figure 2 Vanilla NN for a setting with a warehouse and 2 stores.

stopping. That is, we save the model weights and report performance of the model that minimizes

costs on the dev set. All metrics reported throughout this section are based on the test set.

Throughout our trials, we consistently utilized a fixed duration of 50 periods, excluding the

initial 30 periods when calculating costs for both the train and dev sets. However, in the setting

involving a transshipment center (see Section 3.3.2), we extended the duration to 100 periods while

excluding the initial 60 periods for both the train and dev sets. This increase in horizon length was

necessary in that particular setting, as we observed a significant increase in average costs when

simulating over a longer horizon when training with 50 periods. For the test set, we expanded

the number of periods to 500 and excluded the initial 300 periods. We utilized a sample size of

32,768 scenarios for each of the training, development, and test sets, unless specified otherwise.

As a termination condition, we established a maximum number of gradient steps for each setting.

These limits were determined based on prior knowledge of the approximate count required to

achieve nearly optimal solutions, which we obtained from early experiments. For the experiments

in this section, computational constraints did not pose a limitation. HDPO consistently achieved

performance within 1% of optimality within a 10-minute timeframe for instances involving a single

location. For instances with up to 10 stores, it typically achieved this within less than 80 minutes,

except for a few specific runs.

Neural Network Architectures. We employ a basic NN policy architecture class, which we

refer to as the Vanilla NN. It consists of a fully-connected Multilayer Perceptron (MLP) as depicted

in Figure 2. The raw state is fed to the NN, and its output is used to determine an order quantity

for each location.
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We employed ELU activation functions for all non-output layers, facilitating faster and more

stable learning compared to ReLU and Tanh. In settings involving a single store, we apply a

Softplus activation function to each output to ensure non-negative order amounts.5

In the one transshipment center many stores setting, the Vanilla NN outputs an allocation for

the transshipment center and intermediate store outputs for each store. Subsequently, a Softmax

without Constant feasibility enforcement function (See Sec. 2.4) is applied across these intermediate

store outputs to derive store allocations. Note that both the input and output size scale linearly

with the number of locations. In Appendix B.2, we offer an in-depth explanation of the architecture

class considered for the serial setting, given the considerable difference in network structure from

other settings.

For warehouse orders, we consistently employed one “trick” which allowed to solve large-scale

problems in a more stable manner. We fix a very crude upper bound on the amount of inventory the

warehouse should order6 and call this the maximum-allowable order. Then, we obtain warehouse

orders by applying a Sigmoid activation function to the NN output and multiplying by the max-

allowable order.

3.3. Results

Table 1 summarizes the performance of the Vanilla NN for four settings where we can compare

the performance to the optimal cost or a provable lower bound, across multiple instances. For

each setting, we maintain consistent hyperparameter values across instances. In settings involving

a single location, the cost of a single run is reported for each instance. On the other hand, for

settings with multiple locations, we present the best cost achieved out of three runs for each

instance. This approach is adopted due to occasional runs where HDPO, while generally reliable,

exhibited suboptimal performance, and selecting the best run provides a more robust evaluation.

Our findings illustrate that the Vanilla NN consistently and reliably attains near-optimal policies in

instances with a state space of up to 63 dimensions, even when utilizing raw state inputs. Moreover,

our results demonstrate that when constraints can be imposed in a differentiable manner, HDPO

successfully addresses inventory problems with a network structure. This includes settings with a

serial network structure (with 4 locations) and one with a warehouse and multiple stores (ranging

from 3 to 10 stores).

5 To avoid beginning on the “flat” regions of the Softplus function, we add 1 to the output of the linear layer preceding
the application of the Softplus.

6 In practice, we set this value to 4 times the average cumulative demand across stores.
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Table 1 Vanilla NN performance in settings where the optimal cost can be bounded or computed. We report

performance under the best-performing hyperparameter configuration.

Network
structure

Unmet
demand

assumption

Dimension
of raw
state

Benchmark
Instances
tested (#)

Average
opt.
gap

Max.
opt.
gap

One store,
no warehouse

Backlogged 1 to 20
Analytical
optimal cost

24 0.03% 0.05%

One store,
no warehouse

Lost 1 to 4
Computable optimal

cost for short
lead times

16 < 0.25% < 0.25%

Serial Backlogged 10 to 13
Optimization over
optimal policy class

16 0.35% 0.69%

Many stores,
one transship-
ment center

Backlogged 9 to 63
Analytical
lower bound

24 ≤0.15% ≤ 0.47%

3.3.1. On the benefits of HDPO As explained in Section 2.2, HDPO leverages important

problem properties (known system, observation of historical scenarios, and differentiability) to

enable an efficient search over the parameters of a neural policy. Is this important, or would generic

deep RL methods have matched the exceptional performance summarized in Table 1?

Some insight can be gained by comparing to the performance reportd in Gijsbrechts et al. (2021),

who tested their A3C approach on 6 out of 16 instances from the classic inventory control paper

Zipkin (2008), which considers a single store facing a stationary Poisson demand, under lost demand

and discrete allocation (second row in Table 1). We replicated the test-bed of 16 instances from Zip-

kin (2008) by setting holding cost h= 1, underage cost p= 4,9,19,39, and lead time L= 1,2,3,4.

We trained our model as if actions were continuous, and rounded prescribed alloca-

tions to the nearest integer at test time. To test the robustness to hyperparameter choices,

we considered architectures with two and three hidden layers, learning rates of 10−4,10−3, and

10−2, and batch sizes of 1024 and 8192, i.e., 2×3×2 = 12 different hyperparameter combinations,

running each of them once on all instances. We quantify performance in terms of the optimality

gap with respect costs obtained by solving the actual dynamic program, as reported by Zipkin

(2008).

For each instance, we compare the worst loss achieved by HDPO across hyperparameter settings

with the best loss reported by Gijsbrechts et al. (2021). The latter corresponds to the best loss

across approximately 250 hyperparameter combinations for each instance. Additionally, we include

results from the Capped Base-Stock (CBS) heuristic proposed by Xin (2021), which achieved an

average optimality gap below 0.7% in the 16-instance test bed. The optimal parameters reported

by Xin (2021) were considered, but we ran the heuristic in our environment.We note that values

of the lower bound on the optimal cost are reported in Zipkin (2008) with two decimals, while we
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did not round the loss obtained by HDPO or CBS. The smallest optimal average cost is around

4.04, so we consider that gaps below 0.01/4.04 ∗ 100≈ 0.25% cannot be “detected”.

Table 2 summarizes the performance of each approach on the 6-instance test bed. While the

approach presented by Gijsbrechts et al. (2021) falls short of surpassing the CBS heuristic in any

of these instances, with gaps between 3.0% and 6.7% for the best run, HDPO consistently outper-

forms the CBS heuristic, demonstrating near-optimal performance across the board. It achieved

a minimum detectable optimality gap of 0.25% in each of the 192 runs. In contrast, Gijsbrechts

et al. (2021) reported that their A3C algorithm exhibited high sensitivity to hyperparameters,

necessitating extensive tuning.

Table 2 Optimality gaps in 6 instances studied in Zipkin (2008) for A3C (costs reported by Gijsbrechts et al.

2021, reflecting best run across around 250 hyperparameters), CBS heuristic (parameters from Xin 2021, ), and

HDPO (worst run across 12 hyperparameter settings per instance).

Approach L = 2
p = 4

L = 2
p = 9

L = 3
p = 4

L = 3
p = 9

L = 4
p = 4

L = 4
p = 9

A3C (best run) 3.20% 4.80% 3.00% 3.10% 6.70% 3.40%
CBS < 0.25% 0.43% 0.67% 1.34% 1.63% 1.04%

HDPO (worst run) < 0.25% < 0.25% < 0.25% < 0.25% < 0.25% < 0.25%

Table 3 showcases the computational efficiency of HDPO and its robustness to hyperparmeter

choices. For a range of hyperparmeter choices, it presents the average number of gradient steps and

the time required to achieve a 1% optimality gap on the dev set across the 16 instances considered

in Zipkin (2008).

Further results regarding the performance of HDPO in this context can be found in Appendix

B.5.

Remark 3 (Why we do not implement all competing DRL algorithms ourselves).

Unfortunately, benchmarking generic deep RL methods methods is subtle since their performance

can be very sensitive to implementation choices, and even the choice of random seed (Huang et al.

2022, Henderson et al. 2018). Because of this challenge, we do not implement and tune generic

deep RL methods ourselves, and instead benchmark against the results reported in previous

research works which invested subsantial effort into getting them to work well. In particular, we

compare against results of Gijsbrechts et al. (2021), who employ the A3C algorithm of Mnih et al.

(2016). With enough compute and engineering effort, we expect that a variety of DRL could be

used to solve the relatively simple problems instances in Zipkin (2008). In these easier problems,

it is the simplicity and reliability of HDPO that stands out.
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Table 3 Summary of performance metrics of the Vanilla NN for different hyperparameter settings for the single

store with lost demand problem setting, across the 16-instance test-bed in Zipkin (2008) for Poisson demand with

mean 5. We consider that an instance is solved to optimality if the gap is smaller than 0.25%. For the last 2

columns we consider the performance of the NN with continuous allocation as proxy for the performance in the

discrete-allocation setting, as costs changed, on average, by less than 1% after discretizing the allocation.

Hidden
layers

Batch
size

Learning
rate

Instances solved
to optimality (#)

Average gradient steps
to 1% dev gap

Average time to
1% dev gap (s)

2 1024 0.0001 16 4660 346
2 1024 0.0010 16 1200 94
2 1024 0.0100 16 670 48
2 8192 0.0001 16 4824 418
2 8192 0.0010 16 998 83
2 8192 0.0100 16 680 65
3 1024 0.0001 16 4660 394
3 1024 0.0010 16 1200 93
3 1024 0.0100 16 670 56
3 8192 0.0001 16 4824 498
3 8192 0.0010 16 998 96
3 8192 0.0100 16 680 63

3.3.2. HDPO can near-optimally solve some problems with network structure. We

go into further detail into the results on one setting: the many stores, one transshipment center

setting depicted in row 4 of Table 1.

We consider the setting introduced in Federgruen and Zipkin (1984a), where a warehouse operates

as a transshipment center (i.e., cannot hold inventory) and there are multiple stores, under a

backlogged demand assumption (fourth row in Table 1). Demand is i.i.d. across time but may

exhibit correlation across stores. The warehouse has a constant lead time of 3 periods. To apply

a known analytical lower bound (see Appendix A.5) on the optimum, we assume uniform per-

unit costs and lead time across all stores. We generated 24 instances by fixing holding costs at

1, considering number of stores K = 3,5,10, lead times Lk = 2,6, underage costs pk = 4,9, and

pairwise correlation in demands of 0.0 and 0.5. The store-level marginal demand distributions are

assumed to be normal, with the mean and coefficient of variation (recall that the coefficient of

variation is the ratio of the standard deviation to the mean) sampled uniformly between 2.5 to 7.5

and 0.16 to 0.32, respectively. In this setting, demand may take on negative values (corresponding

to the possibility of products being returned directly to a store). Three runs were performed for

each instance, with a limit of 800 epochs.

In Table 4 we show an upper bound on the optimality gap for the best run on each instance

for instances with pairwise correlation in demands of 0.0 (left portion) and 0.5 (right portion)

(additional findings are detailed in Table 10 in Appendix A.5). We obtain near-optimal perfor-

mance across all instances, with a maximum gap of 0.47% and an average gap of 0.15%. These
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Table 4 Upper bound on optimality gap for the Vanilla NN in the many stores one transshipment setting, with

pairwise correlations in demands of 0.0 (left portion) and 0.5 (right portion).

Number
of stores

Store
leadtime

Underage
cost

Upper bound
on test gap

3 2 4 0.07%
3 2 9 0.08%
3 6 4 0.11%
3 6 9 0.14%
5 2 4 0.06%
5 2 9 0.08%
5 6 4 0.16%
5 6 9 0.17%
10 2 4 0.15%
10 2 9 0.19%
10 6 4 0.24%
10 6 9 0.28%

Number
of stores

Store
leadtime

Underage
cost

Upper bound
on test gap

3 2 4 0.15%
3 2 9 0.23%
3 6 4 0.14%
3 6 9 0.16%
5 2 4 0.06%
5 2 9 0.06%
5 6 4 0.09%
5 6 9 0.06%
10 2 4 0.13%
10 2 9 0.15%
10 6 4 0.20%
10 6 9 0.47%

results demonstrate the reliability of HDPO in effectively addressing the network problem studied,

particularly when the existing constraints can be represented in a differentiable manner.

4. Symmetry-aware policy network architectures enhance
sample-efficiency

The previous section studied the ability of HDPO to recover near-optimal performance when ap-

plied to a large dataset of historical demand observations. Here we focus on the sample efficiency

of HDPO, which we define as the number of scenarios needed in the training data to achieve rela-

tively strong out-of-sample performance. This is likely to be an important consideration in practice.

As explained in Section 5, when applying HDPO to real data each training scenario corresponds

to a time series of demand observations for a single product. Sample inefficient methods require

historical observations of many products, rendering them unusable for inventory management for

retailers that carry narrower product ranges.

Our main hypothesis is that reflecting the structure of the inventory network in the NN architec-

ture can greatly enhance sample efficiency. We study this hypothesis in the important special case

of the setting depicted in Figure 1b, where the inventory network consists of a single warehouse that

consolidates inventory from external supply and distributes it across multiple stores. In Section

4.1, we introduce a “symmetry-aware” policy network architecture, which is designed to reflect the

similar and weakly-coupled nature of the inventory decisions made at individual stores. Section

4.2 offers theoretical insight into why this architecture could be expected to work well. Numerical

experiments in Section 4.3 show that employing symmetry-aware policies can result in enormous

sample efficiency benefits. We find that performance of the Vanilla neural network architecture

studied in the previous section degrades substantially both as the number of stores increases and
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as the number of training scenarios decreases; performance under the symmetry-aware architecture

remains strong in settings with just four scenarios in the training data and up-to fifty stores (see

Figure 4).

4.1. Symmetry-aware architecture design

As explained in Section 3.2, a Vanilla NN comprises a single fully-connected MLP that directly

maps the raw state to intermediate outputs for each location. This class of functions is quite flexible,

and could easily express strange ordering policies, like one where inventory orders at store 7 are

large whenever inventory is abundant at store 11. As a result, trained Vanilla NNs risk overfitting

decisions to spurious patterns in the training data. Our experiments in this section suggest its

out-of-sample performance degrades when there are a large number of stores.

Hoping to improve sample efficiency, we introduce the Symmetry-aware NN architecture class,

which mimics the physical structure of the inventory network, and leverages weak coupling between

locations and the symmetry among stores. The symmetry-aware NN architecture is depicted in Fig-

ure 3a. Our implementation maintains three separate neural networks: a context Net, a Warehouse

Net and a Store Net (with virtual copies of the latter, with identical weights, for each store). The

context network produces a d dimensional embedding of the overall state of the inventory system

– termed the current context. The Store Nets, depicted in Figure 3b, specify intermediate outputs

for a specific store based on the context, the store’s local state and store-specific primitives Rk,

which might include cost parameters, lead time information, or summary statistics of the demand

distribution. The Warehouse net directly specifies a warehouse order as a function of the context

and its local state.

The composition of these NNs can be viewed as a single NN, as depicted in Figure 3a. This NN

can be viewed as a specific symmetry aware policy, denoted by π in Definition 1. This architecture

exploits symmetries across stores by utilizing weight sharing, while allowing for heterogeneous

behavior solely via the learned mapping’s treatment of local states Sk
t and store-specific primitives

Rk. The weights of this NN are trained in an end-to-end fashion by HDPO.

Definition 1. Let πcontext : S →Rd be a mapping from state to a d-dimensional “context” vector

for some d∈N, and π0 :Rd0 ×Rd→R and π1 :Rd1 ×Rd2 ×Rd→R be mappings for the warehouse

and the stores, respectively, with d0 ∈ N the dimension of the local state for the warehouse, and

d1, d2 ∈N the common dimension of local state and primitives across stores. We say π is a symmetry-

aware policy with d-dimensional context if it is of the form

aπ0
t = π0

(
S0
t , πcontext(St)

)
bπkt = π1

(
Sk
t ,Rk, πcontext(St)

)
k ∈ [K]

aπk
t = [g(I0t , b

π1
t , . . . , bπKt )]k k ∈ [K],
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where g is a feasibility enforcement function, defined above. We call πcontext the context mapping

and π0, π1 the context-dependent local policies for the warehouse and the stores, respectively.
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(a) Symmetry-aware NN architecture. (b) Store Net.

Figure 3 Symmetry-aware NN (left) and Store Net (right) with a 3-dimensional context for a setting with a

warehouse and 2 stores.

4.2. Why should a symmetry-aware policy work well?

Here we offer some theoretical insights into why symmetry-aware policies should work well. We

construct a stylized example in which the number of stores K grows. Since the the dimension

of the state and action spaces increases as the number of stores grows, one might expect that

the structure of an optimal policy grows increasingly complex. Instead, due to increasingly weak

coupling between individual stores, the problem simplifies. There is a simple (asymptotically)

optimal policy in which each store makes decisions in a symmetric manner based on its local state

and summary statistics that give an overall sense of inventory scarcity in the network. Our formal

theorem shows this policy can be expressed as a particularly simple instance of a symmetry aware

NN.

The formal example we study in our theory is defined below.

Example 1. Consider K stores and one warehouse, with backlogged demand (3). The underage

and holding costs of each store k satisfy satisfy pk ∈ [p, p] and hk ∈ [h,h] for some p, p,h,h ∈ R+.

Demand is of the form ξkt = BtU
k
t , where Uk

t ∼ Uniform(uk, uk) is drawn independently across

stores and time (with uk ∈ [1/κ,κ]∀k ∈ [K] for some κ∈R), and Bt is drawn independently across

time; it takes a high value γH > 0 with probability q and a low value γL ∈ (0, γH) otherwise. The

warehouse lead time is 1 and store lead time is 0. The system starts with zero inventory. We make

two extra assumptions. First, γLuk ≥ γHuk−γLuk for every k, which ensures that, if store k starts

with an inventory no larger than γHuk, the remaining inventory after demand is realized is below

γLuk. (Note that this assumption implies that uk > 0 for every k, ensuring Uk
t > 0 w.p. 1 for every
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k and t.) Second, qp≥ (1− q)h0, which ensures that it is worth acquiring an incremental unit of

inventory at the warehouse if that is sure to prevent a lost sale in a period of high demand. □

We comment briefly on the structure of this example setting. Here, due to the aggregate demand

being either “high” or “low” in each period, and the lead time of the warehouse being a single

period, in each period there is either a scarcity or an abundance of inventory in the network, due

to the aggregate demand having been “high” or “low”, respectively, in the previous period. As a

result, both the warehouse and the stores do need some information about the global inventory

state to place an appropriate order. We believe it is possible to prove that making local orders

without knowledge of the global state necessarily leads to an Ω(1) percentage increase in the cost

incurred, under a range of problem primitives. By contrast, we expect that no information about

the global state of the system is needed when demand realizations are independent across stores.

We establish the following guarantee of asymptotic optimality in per-period costs of a symmetry-

aware policy with 1-dimensional context, as the number of stores K grows. At least in this asymp-

totic limit, it is optimal for each store to make decisions in a symmetric manner based on its local

state and a summary of the overall system state.

Theorem 1. In Example 1, let Jπ
1 be the expected total cost incurred by policy π from the initial

state. There exists C =C(p,h, p,h, q, κ, γL, γH)<∞ such that the following occurs. There exists a

stationary symmetry-aware policy π̃ with 1-dimensional context which satisfies
J π̃
1

infπ Jπ
1
≤ 1+ C√

K
.

The proof is given in Appendix C. It constructs an asymptotically optimal policy π̃ in which the

warehouse follows an echelon-stock policy (see Equation 19 in Appendix A.4) and each store a

base-stock policy (see Equation 15 in Appendix A.2), with the current base-stock level depending

only on an estimate of whether the previous system-wide demand was high or low; this is signaled

by a context mapping that maps It to the sum of its components
∑

k∈[K]0
Ikt .

4.3. On the enhanced sample efficiency of Symmetry-aware NNs

To study the sample efficiency of the Symmetry-aware NN, we explored a setting with a single

warehouse capable of holding inventory and multiple stores, under the lost demand assumption.

These experiments highlight the impact of neural architecture design on an agent’s out-of-sample

performance under a limited number of training scenarios. Our investigation is motivated by real-

world settings in which a retailer operates with a small product range, and hence data is limited

since historical data for each product provides a single scenario. Our experiments demonstrate that

the Symmetry-aware NN significantly outperforms the Vanilla NN in such a regime.

Neural Network Architectures. For the Vanilla NN, we follow the specifications outlined

in Section 3, and employ a Softmax feasibility enforcement function as per Equation (9). For the

Symmetry-aware NN, we adopt the previously mentioned “trick” for warehouse orders and utilize
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ELU activation functions. We consistently employ a Sigmoid activation function for the outputs

of the Context Net, a choice that we observed enhances the stability of the learning process.

Additionally, we utilize a Proportional Allocation feasibility enforcement function (Equation (8)).

We note that we assessed different feasibility enforcement functions for the Vanilla and

Symmetry-aware NNs and selected the one that demonstrated superior performance for each archi-

tecture separately. The superior performance of the Proportional Allocation feasibility enforcement

function in the Symmetry-aware NN aligns with the intuition that store actions are “weakly” cou-

pled. In this design, an intermediate store output may influence another store’s action only when

inventory at the warehouse is fully allocated.

Experiment specifications. For the experiments detailed in this section, we adhere to the

terminology and implementation details provided in Section 3. Any additional specifications are

highlighted here.

It is important to note that, in this setting, we no longer benefit from an analytical bound on

costs. We generate demands by sampling from a multivariate normal distribution that is i.i.d. over

time, truncating it at 0 from below. For each store, we sample parameters uniformly at random and

independently, including an underage cost between 6.3 and 11.7, holding cost between 0.7 and 1.3,

lead time between 2 and 3 periods, mean demand between 2.5 and 7.5, and coefficient of variation

of demand between 0.25 and 0.5. The warehouse operates with a lead time of 6 periods and incurs

a holding cost of 0.3 per unit. Additionally, the normal distribution from which we sample assumes

a fixed correlation of 0.5 across all pairs of stores. All parameters remain time-invariant, and the

scenarios are consistent across all runs for a fixed instance.

For the Vanilla NN, we employ three hidden layers and investigate architectures with 128 and

512 neurons per layer. As for the Symmetry-aware NN, we maintain a consistent architecture that

incorporates Warehouse and Store Nets with 16 and 32 neurons per layer, respectively, and includes

two hidden layers for each. Meanwhile, for the Context Net, we consider one hidden layer and

one output layer, each consisting of 256 neurons. While it may be possible to achieve comparable

performance with fewer units per layer in the Context Net, theoretical evidence suggests that

overparameterized networks enhance generalization in deep learning (Jiang et al. 2019) and enjoy

convergence guarantees under mild assumptions when trained with first-order methods (Chen et al.

2019, Allen-Zhu et al. 2019). Therefore, we have opted to utilize wide layers. For each architecture,

we examine the learning rates in the set 10−5,3× 10−5,10−4,3× 10−4,10−3,3× 10−3,10−2,3× 10−2.

The batch size was determined as the minimum between 1024 and the total number of training

scenarios. In our experiments with smaller batch sizes, we observed a decline in performance for the

Vanilla NN. Furthermore, in initial experiments, we explored the use of weight decay as a possible
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method to address overfitting. However, no additional gains were observed, leading us to decide

against its use.

We explore different instances by varying the number of stores within the set {3,5,10,20,30,50}

and evaluate performance with train sample sizes from the set {16,256,8192} ( a scenario consists

of an initial state and demands for each store across 50 periods). We conduct 3 runs for each

architecture class, layer width, and learning rate combination. For each training run, we use early

stopping and save the model weights corresponding to the best performance on a dev set compris-

ing 4096 scenarios. Subsequently, we assess the model’s performance on a separate clean test set

consisting of 4096 new scenarios. Training is capped at a maximum of 16,000 gradient steps, and

we stop training if the performance on the dev set does not improve after 500 epochs.

Main findings. Figure 4a depicts the cost attained by Vanilla and Symmetry-aware NNs in

their best-performing runs, for a given number of training scenarios and stores. We report the cost

achieved relative to the best run for the same number of stores across all architectures and sample

sizes. The graph reveals that the performance of the Vanilla NN declines rapidly with an increasing

number of stores, even with as many as 8192 scenarios. Moreover, its performance significantly

deteriorates with a decrease in the number of scenarios, leading to cost increases exceeding 22%

for the case of 16 scenarios and 50 stores. In contrast, the performance of the Symmetry-aware NN

does not exhibit a noticeable decline as the number of stores increases and consistently achieves

results within 5% relative to the best run. The higher sample efficiency of the Symmetry-aware NN

compared to the Vanilla NN may be because the Symmetry-aware NN architecture enforces the

underlying symmetry of the problem, eliminating the need for the agent to “learn” that property

from the data, and leading to parameter efficiency due to sharing of weights across Store Nets.

Furthermore, the Symmetry-aware NN may effectively be able to learn from each of the demand

traces seen for individual stores in a single scenario for the overall system. In contrast, the Vanilla

NN experiences an increase only in the dimension of the scenario as the number of stores grows.

We delve deeper into this experiment by assessing the performance of the Symmetry-aware NN

with smaller training sample sizes of 1,2,4 and 8 scenarios. Recognizing that with such diminutive

sample sizes, the quality of the policy learned by our agent may vary with the specific scenarios

used for training, we repeat the outlined procedure in the preceding paragraph 12 times for each

sample size to estimate the average performance. This involves changing the seeds used to generate

scenarios across each iteration. For each of the 12 seeds, we examine the lowest test loss attained

across all runs for each number of stores , and again report the cost achieved relative to the best

run for the same number of stores across all architectures and sample sizes as described in the

preceding paragraph. The average and 95% confidence interval for this quantity are depicted in

Figure 4b. Remarkably, the Symmetry-aware NN consistently displays relative performance gaps
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of less than 5% for all numbers of stores when the number of scenarios is 8 or greater. Even with

just two training scenarios, it exhibits a performance gap below 10% for every number of stores,

underscoring its exceptional sample efficiency.
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(a) Performance for the Vanilla and
Symmetry-aware NNs for 16, 256 and 8192

training scenarios.
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performance of the Symmetry-aware NN for 1,
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Figure 4 Cost comparison relative to the optimal run in a setting with one warehouse, multiple stores, and a

lost demand assumption, for a varying number of stores and training scenarios. We calculate the minimum cost

achieved across all runs for a specific architecture class, number of training scenarios, and number of stores. This

minimum cost is then divided by the minimum cost achieved across all runs for a given number of stores. For

sample sizes of 8 or smaller, we repeat the process 12 times, and report the mean and 95% confidence interval

for this quantity.

5. HDPO with real time series data

To exemplify the use of HDPO with real-world data, we utilized sales data from the Corporación

Favorita Grocery Sales Forecasting competition (Favorita 2017) hosted on Kaggle. Corporación

Favorita, one of Ecuador’s largest grocery retailers, operates stores in a variety of formats, includ-

ing hypermarkets, supermarkets, and convenience stores, all with physical locations. The dataset

encompasses around 200,000 daily sales time series for over 4,000 products across 54 stores, span-

ning the years 2013 to 2018. The primary challenge in these test problems lies in addressing the

presence of potentially complex nonstationary patterns in the sales data. Building and sharing an

open-source set of test problems derived from this dataset is a secondary contribution of the paper.

HDPO addresses nonstationarity by optimizing the hindsight performance of policies that map

relevant information — including a historical window of demand observations, information on out-

standing inventory orders and other features — to a decision. This approach is compared with
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generalized newsvendor policies, which address nonstationarity in the data by initially forecast-

ing the distribution of upcoming cumulative demand over the item’s lead time and then making

decisions based on that distribution’s quantiles. Our findings indicate that HDPO consistently out-

performs these generalized newsvendor methods in a lost demand model. Subsection 5.7 provides

insights into the drivers of the performance gap.

5.1. Dataset description

We utilize the dataset by aggregating sales data on a weekly basis. Each sales time series, corre-

sponding to a specific product at a particular store, is treated as an independent demand trace.

We concentrate on a period of 170 weeks, encompassing sales data from January 2013 to early

April 2016. We excluded data from mid-April 2016 onward to mitigate potential distortions in

sales distribution caused by a major earthquake in Ecuador. Figure 5 displays the weekly sales for

five demand traces (first five plots) and summed across 32,768 demand traces (last plot), selected

based on the criteria we now describe. The figure highlights varying orders of magnitude in sales

across demand traces and significant heterogeneity in the effects of seasonality. Since our goal is

to evaluate data-driven inventory decisions, as an initial pre-processing step we selectively choose

demand traces that exhibit at least one sale in any of the first 16 periods.

A limitation of this dataset is that it only includes sales data, which may be censored due to

stockouts. In an effort to align sales observations more closely with underlying demand, we try to

filter out demand traces that were heavily influenced by stockouts. Interpreting zero-sale periods

as proxies for stock-outs, we excluded all demand traces that exhibited no sales in at least 10% of

the weeks. Moreover, we omitted all perishable products, anticipating that inventory replenishment

would occur more frequently than on a weekly basis for such products. Finally, we randomly

selected 32,768 sales demand traces from within the filtered sub-sample, treating them as demand

paths for our experiments. It is important to note that in a real-world setting, retailers may have

additional information, such as inventory availability or website visits, enabling better estimates of

historical demand than raw sales data. Though an imperfect reflection of reality, we believe that

the nonstationarity in real-world sales data still provides a good stress test of the performance of

inventory policies.

5.2. Problem definition

After this pre-processing, we construct a testbed of inventory control problems using the dataset

in the setting of a single store under a lost demand assumption. We draw inspiration from Madeka

et al. (2022) in considering that each product provides a sampled scenario and training across

products. Due to the absence of unit economics data, we assign random underage costs and lead
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Figure 5 Weekly sales (blue line) and Gaussian smoothing (orange line) for 5 sample paths (first 5 plots) and

summed across all 32,768 sample paths (last plot). Data corresponds to a filtered sub-sample of the dataset

provided in the Corporación Favorita Grocery Sales Forecasting competition.

times to each demand trace while maintaining a constant holding cost. We generate multiple meta-

instances, which define the procedure through which problem primitives are sampled (explained

in Section 5.5). These meta-instances can represent, e.g., industries with distinct average margins.

A scenario is defined as a demand trace ξh1:T paired with an initial state Sh
0 consisting of sampled

problem primitives (i.e., specifically fixed values for underage cost and lead time) and initial states

of inventory and forecasting information. For simplicity in our terminology, we will say that a

scenario relates to a specific product, although the associated demand trace pertains to a given

(product, store) pair.

In our setting of interest, the decision-maker possesses information about a product’s lead time,

holding cost, and underage cost, and observes the current on-hand inventory, outstanding inventory

orders, and historical demand observations for the product. The formulation of a HD-RL problem

in Section 2.2 can represent the knowledge of problem primitives within each scenario through the

state St, with transition and cost functions accounting for specific values associated with each set
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of problem primitives. A policy, in this context, is a rule that maps the available information to

an ordering decision. We can evaluate such a policy by repeatedly sampling scenarios, applying

the policy in that scenario, and tracking the average cost incurred, as per Eq. (2). It is important

to note that our inventory control formulation in Section 2.3, designed for simplicity, assumes

fixed problem primitives, necessitating adjustments for accurate representation. Nonetheless, we

will adopt most terminology from that section, excluding store-related superscripts due to the

single-store nature of this setting. We represent the state as St = (p,h,L, It,Qt,Ft), where p, h,

and L represent underage cost, holding cost, and lead time, respectively, for the given scenario.

Additionally, It, Qt, and Ft denote variables tracking the inventory on-hand, outstanding orders,

and forecasting information at time t. These variables evolve according to the equations presented

in our instantiation of an inventory control problem in Section 2.3.

The testbed isolates a single challenging problem feature: nonstationarity in real-world demand

patterns. By simplifying other problem features, we facilitate the adaptation of ideas from the OR

literature to design heuristic policies. Notably, our application of HDPO did not appear to leverage

these simplifying assumptions, and we expect that its performance would not undergo substantial

changes if, for example, lead times were random.

5.3. State representation and input features

We train a separate NN for each meta-instance. We feed time-invariant features (i.e., item-specific

underage and holding cost) into our NNs. To manage the NN input size, we introduce a lookback

window of length s1 ∈ N, denoting the number of preceding periods of demand that our agents

utilize. Additionally, we input the count of days remaining until the next Christmas, as it appears

to have a significant correlation with demand (see Figure 5).

The heuristics we compare against are assumed to have complete knowledge of lead time values,

but we do not input this information directly to the policies trained by HDPO. Instead, we feed

the list of all inventory orders and inventory arrivals (i.e., units of inventory that arrived in each

period) over a lookback window of the previous s2 ∈N weeks. This is consistent with how we input

demand information to the network. We expect this method is more practical in settings where lead

times are uncertain and time-varying, requiring a decision-maker to (at least implicitly) forecast

them from observed data.

While supplying the NN with additional product-specific information (e.g., product type) could

enhance performance, we choose not to do so to simplify the development of practical heuristics

against which we benchmark.
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5.4. Benchmarks

We assessed our model by comparing it to several generalized newsvendor heuristics. These heuris-

tics utilize a distribution forecaster trained offline, and aim to “raise” inventory levels to a level

dictated by a given quantile. The inventory position Xt = It +
∑L−1

l=1 qt−l reflects the sum of in-

ventory on-hand and orders yet to arrive. Denoting the distribution of the sum of the next L+1

demands, given lead time L and forecasting information Ft, as H(L,Ft), a generalized newsvendor

policy π takes the form

π(St) =
(
H(L,Ft)

−1(τπ)−Xt

)+
. (11)

Here, τπ represents a time-invariant quantile, with the flexibility to depend on static product

features (e.g., underage and holding costs) to accommodate heterogeneity across products.

The rationale for adopting this class of policies stems from the notion that, assuming that

unmet demand is backlogged, the inventory on-hand before the order placed at time t arrives

can be expressed as It+L =Xt−
∑L−1

l=0 ξt+l. Hence, under the backlogged demand assumption, the

action minimizing the expected cost L periods into the future can be obtained as a quantile of the

distribution of the sum of the next L+ 1 demands. Adjusting this quantile has the potential to

account for variations in product economics (underage and holding costs) and underlying model

misspecifications.

We trained a NN to forecast multiple quantiles for this metric using historical features. This

allows us to approximate H(L,Ft) and hence estimate the specified quantiles. Additional informa-

tion about the implementation and performance evaluation of the quantile forecaster can be found

in Appendix B.10. We conducted two separate assessments to validate the good performance of

our trained forecaster (see Figures 13a and 13b). We further validate the efficacy of the quantile

forecaster by observing satisfactory results achieved by some generalized newsvendor benchmarks

(to be introduced shortly) in meta-instances with lost demand and high average unit underage

costs (refer to Figure 6a in Section 5.6) and in a backlogged demand setting (refer to Figure 7 in

Section 5.7).

We considered several generalized newsvendor policies, which are equipped with the same quan-

tile forecaster and have access to the problem primitives in each scenario. They only differ in the

heuristic choice of the quantile τπ:

• Newsvendor: Places orders up to the newsvendor quantile, given by p
p+h

.

• Fixed Quantile: Considers a common quantile τπ for all scenarios, with the quantile being a

trainable parameter.

• Transformed Newsvendor: Utilizes a NN to flexibly learn a map from the newsvendor quantile

p
p+h

to a new quantile.
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For the last two heuristics, we optimize the parameters defining the policy by integrating the

forecaster (with fixed parameters) into our simulator. Employing linear interpolation across the

predicted quantiles enables us to optimize the parameters in a differentiable manner 7. It is crucial

to highlight that our forecaster is not trained at this stage.

We additionally considered two non-admissible policies, to serve as benchmarks and enable a

better evaluation of HDPO.

• Returns Newsvendor: Resembles the Newsvendor policy but allows for “negative” orders,

simulating the possibility of returning inventory. Conditional on the forecaster outputting the

“true” distribution, this policy would lead to a lower bound on costs for settings involving

backlogged demand.8 It outputs the demand quantile that minimizes expected cost in every

period, irrespective of the current inventory state.

• Just-in-time: An oracle policy that looks into the future and orders precisely to meet future

demand (i.e., sets at = ξt+L). The cost under the Just-in-time policy is a lower bound on the

minimal achievable cost.

5.5. Parameter setting

Our main setting of interest considers a lost demand assumption. However, to identify the limita-

tions of generalized newsvendor heuristics, we will also incorporate results under the assumption

of backlogged demand, despite its departure from real-world settings (Corsten and Gruen 2004).

For the backlogged demand setting, we trained our agents to minimize cumulative expected cost,

defined as E
[∑

t∈T [p(ξt− It)
+ +h(It− ξt)

+]
]
. In contrast, for the lost demand setting, we let p

be the variable profit (excluding holding costs) per unit, and set the objective to maximizing

E
[∑

t∈T [pmin{ξt, It}−h(It− ξt)
+]
]
. Note that under a lost demand assumption, maximizing profit

considering a variable profit per unit p is equivalent to minimizing cost considering p as the un-

derage cost. We report the percentage of the maximum possible profit accrued by each policy.

We employ a Vanilla NN architecture with 2 hidden layers, each containing 64 neurons. The

learning rate is set to 0.003, and the batch size is fixed at 8192. A lookback window of length 16 is

utilized for the demand, and we monitor the 8 preceding orders and inventory arrivals to construct

a data-driven representation of the inventory state. At the start of the planning horizon, we assume

7 When predicting values outside the range of predicted quantiles, we employ linear interpolation using the slope of
the nearest quantile range. For example, to predict an extremely low quantile, we interpolate with the same slope as
the line connecting the first and second quantiles. It is worth noting that the vast majority of predicted quantiles fall
within the range of predicted quantiles.

8 Since the quantile forecaster is not specifically trained to minimize costs in the downstream objective, this policy
does not necessarily lead to a lower bound on costs. Nevertheless, one may expect that it is challenging to outperform
this benchmark.
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zero on-hand inventory and no outstanding orders.9 Additionally, we initialize previous orders and

inventory arrivals to zero, incorporating an initial sequence of previous demands derived from real

data.

Training and model selection occur during weeks 17-120, which we refer to as train set, allowing

weeks 1-16 to be used as the initial sequence of previous demands. Performance evaluation takes

place during weeks 121-170 (considering weeks 105-120 as the initial sequence of previous demands),

which we refer to as dev set. Again, all quantities in the dev set are initialized according to the

values explained in the preceding paragraph, ensuring independence between the train and dev sets.

To mitigate the impact of the initial inventory state on performance, we exclude the first 16 periods

when presenting costs (i.e., weeks 17-32 and 121-136 in the train and dev sets, respectively). All

metrics presented subsequently are based on performance in the dev set, unless explicitly stated

otherwise. Although training and selecting models on the same dataset might result in overfitted

models, we choose not to introduce an additional “test” set to leverage a larger set of weeks for

training our agents.

We set holding costs to 1 in all our experiments, creating seven meta-instances that differ solely

in the average unit underage cost p̂. We specified p̂ values as 2,3,4,6,9,13, and 19. For a given

meta-instance, the underage cost for each scenario was derived by multiplying p̂ by a uniformly

random number ranging from 0.7 to 1.3, independently drawn for each scenario. Simultaneously,

lead times were uniformly drawn at random from 4 to 6 periods, maintaining independence across

scenarios. The range of lead times remained constant across meta-instances, and every policy was

retrained for each setting of p̂.

5.6. Numerical results

Figure 6a presents the outcomes for the lost demand setting, across the 7 meta-instances detailed

in Section 5.5. It depicts the total profit as a percentage of the value achieved by the Just-in-

time benchmark. The figure illustrates that HDPO consistently outperforms all heuristics across

instances, achieving over 80% of the hindsight optimal profit when p̂ takes a value of 9 or larger.

Our agent surpasses the best generalized newsvendor policy by up-to 22%, and the performance

gap diminishes as the average unit underage cost increases—an aspect we scrutinize further in the

subsequent subsection. Additional details on the performance of HDPO in this setting can be seen

in Table 13 in Appendix B.9.

9 Optimizing over generalized newsvendor policies with a time invariant target quantile may learn a smaller-than-
ideal quantile if stock-outs in earlier periods are typically large, given that we assume zero on-hand inventory and no
outstanding orders at the start of the planning horizon. To address this, we excluded the cost of the first 16 periods
during quantile training (i.e., we “disable” the gradient of the first 16 ordering actions) and the first 16 periods for
reporting cost in the dev set, which allowed this influence to become negligible.
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For further analysis, we compute the average weekly revenue and average weekly holding cost

by summing the revenue pmin{ξt, It} and holding cost h(It− ξt)
+ across all scenarios and weeks,

then dividing by the total number of scenario-weeks. Figures 6b and 6c depict the average weekly

revenue and holding cost, respectively, normalized by the average unit underage cost in the setting

with lost demand. The figures illustrate that HDPO consistently achieves higher revenues and lower

holding costs compared to competitive benchmarks. The exception is the newsvendor policy, which

severely over-orders and incurs very high costs, but as a consequence does have higher revenues

than HDPO. This emphasizes that adjusting a quantile alone cannot systematically compensate

for a policy that merely tracks the inventory position (see Equation 11), which is further analyzed

in Section 5.7.
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Figure 6 Relative performance for setting with one store, considering h= 1, realistic demand data and a lost

demand assumption, for different average unit underage costs.

5.7. What do generalized newsvendor policies miss?

Quantile policies are designed to be effective in a backlogged demand setting, where all incoming

demand depletes the existing inventory. To empirically validate this assertion, Figures 7a and

7b depict the cost comparisons of various policies against the Return Newsvendor benchmark

in the train and dev sets, respectively, assuming backlogged demand. These figures demonstrate

the favorable performance of all generalized newsvendor policies evaluated, consistently achieving

costs within 5% of those attained by the benchmark. Notably, the Transformed Newsvendor policy

performs comparably to HDPO, and even outperforms it in certain meta-instances, although this

might be attributed to overfitting (particularly evident in the low relative costs attained by HDPO

in the train set for scenarios with high average unit underage costs).
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Figure 7 Cost relative to the Return Newsvendor benchmark for various policies under different average unit

underage costs, assuming backlogged demand and a unit holding cost of 1.

In contrast, in a lost demand setting demand does not deplete inventory upon a stock-out,

posing a challenge for policies optimized for backlogged demand settings. While adjusting the

target quantile can partially address this issue, the underestimation of inventory may depend on

the current inventory state in a non-trivial manner. As anticipated, in the lost demand setting, the

performance of generalized newsvendor policies improves with an increase in average underage cost

(see Figure 6a in Section 5.6), as unmet demand is expected to decrease. This observation aligns

with previous analyses in stylized settings considering a lost demand assumption, where base-stock

policies become asymptotically optimal as the underage cost grows large (Sun et al. 2014).

To conduct a more detailed analysis, we calculate the implied quantile that the agent orders

up to by “inverting” the target level (at +Xt) using our quantile forecaster. In other words, we

find the τπ that solves H(L,Ft)(τ
π) = (at+Xt) following Equation (11) (with the implied quantile

set to 0 when at = 0 since we cannot solve for τπ in that case). We standardize this quantity by

subtracting the mean and dividing by the standard deviation for each scenario. Subsequently, we

define the stock-out ratio as the cumulative unmet demand until the order at time t arrives (i.e.,

L periods into the future), divided by the scenario’s average cumulative demand across L periods.

In Figure 8, we group the standardized implied quantile into buckets of width 0.1 and compute

the sample average stock-out ratio for each bucket, for the meta-instance with û= 9, and under a

lost demand assumption. We interpret this as the expected stock-out ratio observed by the agent

at time t when defining each quantile. The analysis reveals that our agent tends to place orders

corresponding to lower quantiles when predicting significant stock-outs in subsequent periods,

highlighting the potential underestimation of future inventory by a generalized newsvendor policy

in such cases.
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Figure 8 Standardized implied quantile versus expected stock-out ratio, considering an average unit underage

cost of 9 and a lost demand assumption. The standardized implied quantile is binned with a width of 0.1, and the

expected stock-out ratio is computed by averaging the sample stock-out ratio within each bin.

An additional drawback of generalized newsvendor policies lies in their failure to incorporate

value functions. For products with pronounced seasonality, such as Christmas trees, excessive

ordering may lead to incurring additional holding costs across multiple periods beyond the one in

which orders arrive. In our experiments involving a backlogged demand setting (refer to Figure 7),

the over-ordering indicated by the Newsvendor quantile can be partially mitigated by statically

adjusting the target quantile, as demonstrated by the favorable performance of the Transformed

Newsvendor policy. However, it is reasonable to anticipate that in a scenario featuring predictable

short-term demand surges (such as planned promotions or national holidays), the effectiveness of

generalized newsvendor policies might decline.

Finally, it is crucial to emphasize that constructing a generalized newsvendor policy, which

involves building and training a forecaster for multiple time horizons and quantiles, requires sig-

nificantly more computational resources and time compared to building and training an agent

directly on the downstream task. Furthermore, determining how to divide a task into prediction

and optimization stages becomes increasingly challenging as the problem incorporates more real-

istic features, such as the inclusion of random lead times. This underscores additional advantages

of an end-to-end approach over strategies that separate prediction and decision-making.

6. Conclusion and future research

Previous research applying deep reinforcement learning to inventory managmenet problems has

typically applied generic RL methods, like REINFORCE and its variants, and used generic neural

network architectures. While such methods can often be made to work, (Gijsbrechts et al. 2021)

reports that “initial tuning of the hyperparameters is computationally and time intensive and
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requires both art and science.” We systematically study two approaches to enhancing the reliability

of DRL methods. The first is HDPO, a way of performing stochastic gradient optimization over the

parameters of neural network policies that leverages important problem structure. The second is a

symmetry-aware policy network architecture, which we find greatly enhances sample efficiency in

a natural inventory network consisting of a single warehouse and a single store. Armed with these

approaches, we consistently solve a range of inventory problems to optimality by searching over

neural network policies that map “raw” high-dimensional state vectors to actions. Experiments

with real time-series data point to substantial benefits of optimizing over a flexible policy class in

an end-to-end fashion, rather than employ newsvendor type policies which are common in practice.

This paper suggests many promising future directions. First, one might seek out other problems

in operations that are amenable to HDPO. Second, as discussed in the introduction, HDPO does

not address problems with discrete actions and highly discontinuous costs, like those that arise

when deciding whether to order a single shipment with a large bundle of goods or to delay that

decision. It would be interesting to explore differentiable approximations to some these decision

problems, or hybrid approaches which use REINFORCE to optimize over discrete decisions and

HDPO to optimize over continuous ones. Lastly, it would be interesting to tackle problems with

a more complex inventory network structure. Building on the intuition that inventory network

should be reflected in the policy network, the use of graph neural networks as a policy architecture

appears promising.
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Appendix

Outline of the appendix

We divide the Appendix into 3 large sections. In Appendix A, we provide an overview of the computation of

zeroth-order gradient estimators and offer a detailed description of the settings discussed in Section 3.3 that

were not explicitly detailed in the main body. Additionally, we show how we obtained the optimal cost or

lower bound, and detail well-performing heuristics. In Appendix B, we provide details on the implementation

of our models, the process of hyperparameter tuning and numerical results. Finally, in Appendix C we provide

a full proof of Theorem 1.

A. Description of problem settings and benchmarks for the numerical experiments
in Section 3.3

In this Section, we provide an overview of the computation of zeroth-order gradient estimators and offer

an overview of the settings discussed in Section 3.3 that were not explicitly detailed in the main body.

Additionally, we describe the optimal policy structures for these settings whenever a straightforward one is

known; otherwise, we provide a description of well-performing heuristics. Recall that, to streamline notation,

we will exclude superscripts associated with location for settings where only one location is considered.

A.1. Zeroth-order estimators for inventory control

In this section, we briefly explain how zeroth-order estimators of gradients can be computed, which are

commonly used in the REINFORCE algorithm and its variants. Let πθ be a randomized policy such that,

for each S ∈ S, πθ(·|S) defines a probability distribution over actions a ∈ A(S). Define the policy loss

J(θ) = Eπθ

[∑
t∈[T ] c(St, at, ξt)

]
, representing the expected cumulative cost when following policy πθ. The

REINFORCE algorithm uses the following policy gradient formula

∇θJ(θ) =Eπθ

∑
t∈[T ]

Gt

∇θπθ(at|St)

πθ(at|St)

 , (12)

where Gt =
∑

u=t,...,T
c(Su, au, ξu).

To obtain an estimator for the gradient of the policy loss, a collection of N trajectories, denoted as

{τn = (Sn
1 , a

n
1 , c

n
1 , . . . , S

n
T , a

n
T , c

n
T )}n∈[N], must be generated via policy rollouts following each gradient update.

Here, Sn
t represents the state, an

t signifies the action sampled from πθ(·|Sn
t ), and cnt denotes the corresponding

incurred cost at time step t within policy rollout n. Subsequently, the gradient is estimated as:

1

N

∑
n∈[N]

∑
t∈[T ]

Gn
t

∇θπθ(a
n
t |Sn

t )

πθ(an
t |Sn

t )

 , (13)

with Gn
t =

∑
u=t,...,T

cnu representing the cumulative cost from time period t onwards for rollout n.

This method has at least two substantial drawbacks. First, estimating the policy gradient requires employ-

ing that policy for many periods to gather data. This is feasible when a high fidelity simulator is available,

but may be impractical otherwise. Second, while the estimator (13) is unbiased, its variance grows with

the time horizon T and can explode if policies become nearly deterministic, since the inverse propensity

weights 1/πθ(a
n
t |Sn

t ) explode. The structure of hindsight differentiable RL problems alleviates these chal-

lenges, making it easy to backtest the performance of new polices without additional data gathering and

enabling gradient estimation without inverse propensity weighting.



46

A.2. One store, no warehouse. Backlogged demand assumption.

This setting consists of a single store with known per-unit underage and holding costs and a deterministic

lead time L. In each period, the store faces an independent, identically distributed (i.i.d.) demand with

distribution F , and has access to a supplier with infinite inventory. Under linear costs, a base-stock policy

is optimal (Arrow et al. 1958). We define the store’s inventory position at time t as

Xt = It +

L−1∑
l=1

qt−l. (14)

The optimal policy then takes the form

π(St) =
(
Ŝ−Xt

)+

, (15)

for some constant base-stock level Ŝ ∈R. Furthermore, as there are no procurement costs, the optimal base

stock level can be calculated as

Ŝ =
(
F̂
)−1

(
p

p+h

)
, (16)

where F̂ is the distribution of the cumulative demand in L+1 periods.

A.3. One store, no warehouse. Lost demand assumption.

We consider the setting defined in Section 3.3.1. This setting is identical to that in Appendix A.2, except that

demand is assumed to be lost if not satisfied immediately (e.g., consumers may buy from the competition

if a product is not available). This assumption may better represent reality especially in brick and mortar

retail, as depending on product category, only 9−22% of customers are willing to delay their purchase when

not finding a specific item at a store (Corsten and Gruen 2004).

A base-stock policy is no longer optimal in this setting under a lead time of at least of 1 period, and

its performance deteriorates as the lead time grows. Furthermore, the optimal policy does not appear to

have a simple structure, and may depend on the complete inventory pipeline. Finding an exact solution to

this problem is computationally intractable, even for instances of moderate size. Nevertheless, Zipkin (2008)

managed to solve the underlying dynamic program for smaller instances, serving as the benchmark against

which we evaluate our algorithms in both Section 3.3.1 and Appendix B.5.

Many heuristics have been suggested for this setting. One of the top-performing heuristics in this context

is based on the class of Capped Base-Stock (CBS) policies, as discussed in (Xin 2021). These policies demon-

strate an average optimality gap of 0.71% across the 32-instance test-bed introduced in (Zipkin 2008). A

CBS policy is defined by a base stock level Ŝ and an order cap r, as per

π(St) =min

{(
Ŝ−Xt

)+

, r

}
. (17)

A.4. Serial network structure. Backlogged demand assumption.

In this setting, the system consists ofK echelons, each comprising a single location. Locations are sequentially

numbered from 1 to K, starting from the upstream and progressing towards the downstream. Demand arises

solely at the most downstream location (location K), which we refer to as the store, and any unfilled demand

is backlogged. Inventory costs, denoted as hk, are incurred at each location, and there is an underage cost
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of p per unit at the most downstream location. Each location has a positive lead time denoted as Lk ∈N. It
is assumed that demand is i.i.d. over time.

The sequence of events is as follows: A central planner observes the state St at time t and jointly determines

the order a1t that the first location places with an external supplier with unlimited inventory and, for k =

2, . . . ,K, specifies the quantity ak
t to transfer from location k − 1 to location k, ensuring that it does not

exceed the current inventory level at location k− 1 (i.e., , ak
t ≤ Ik−1

t ).

We define the echelon inventory position Y k
t of location k at time t as

Y k
t =

K∑
j=k

Xk
t , (18)

with Xk
t the inventory position of location k as defined in (14). That is, it represents the sum over all

inventory positions of downstream locations and its own. As shown by Clark and Scarf (1960), the optimal

policy π takes the form

[π(St)]1 = [Ŝ1−Y 1
t ]

+

[π(St)]k =min{Ik−1
t , [Ŝk−Y k

t ]
+} k= 2, . . . ,K

(19)

for some echelon base-stock levels Ŝ1, . . . , ŜK . We note that we will use the terms echelon base-stock levels

and echelon-stock levels interchangeably. We refer to (19) as an Echelon-stock policy.

A.5. Many stores, one transshipment center. Backlogged demand assumption.

We consider the setting described in Section 4.3, where a warehouse operates as a transshipment center

(i.e., cannot hold inventory) and there are multiple stores, under a backlogged demand assumption. The

demand is i.i.d. across time but may be correlated across stores. The costs incurred solely consider holding

and underage costs at the stores.

Federgruen and Zipkin (1984a) provides a clever way to obtain a lower bound when demand at the stores

follows a jointly normal demand, and store costs and lead times are identical. To leverage their results, we

assume that all stores have the same underage costs denoted as p1 and lead time denoted as L1, while the

transshipment center has a lead time of L0. For each store k, we consider a marginal demand that follows

a normal distribution with mean µk and standard deviation σk. Furthermore, we represent the covariance

matrix as Σ, where [Σ]ij denotes the covariance Cov(ξi1, ξ
j
1) between the demands of stores i and j.

The echelon inventory position at the transshipment center takes the form

Y 0
t =

∑
k∈[K]0

Xk
t , (20)

where Xk
t denotes the inventory position of location k as defined in (14). That is, Y 0

t represents the sum of the

inventory position across stores plus its own. The authors consider a relaxation of the problem by allowing

inventory to flow from stores to the transshipment center and to other stores. The authors demonstrate that

it is possible to reformulate the problem using the echelon inventory position Y 0
t as the state variable. They

establish that the Bellman Equation in this relaxed setting can be expressed as a single-location inventory

problem with convex costs. Consequently, they deduce that an optimal policy for the transshipment center,

in the relaxed problem, is an echelon-stock policy of the form

[π(St)]1 = [Ŝ0−Y 0
t ]

+ (21)
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for some echelon base-stock level Ŝ0 ∈R+. Finally, as we do not consider purchase costs, the optimal base-

stock level Ŝ0 can be calculated analytically via the newsvendor-type formula

Ŝ0 = F−1
G

(
p1

p1 +h1

)
, (22)

where G is a normal distribution with mean µ̂G and standard deviation σ̂G given by

µ̂G = (L0 +L1 +1)
∑
k∈[K]

µk

σ̂G =

√√√√√L0
∑
i∈[K]

∑
j∈[K]

[Σ]ij +(L1 +1)

∑
i∈[K]

σi

2

.

Now, let ŝ= Ŝ0−µ̂G

σ̂G
be a standardized version of Ŝ. The lower bound on costs per-period is finally given

by

p1(µ̂G− Ŝ0)+ (p1 +h1)σ̂G (ŝΦ(ŝ)+ϕ(ŝ)) ,

with Φ(·) and ϕ(·) the Cumulative Distribution Function and Probability Density Function, respectively, of

a standard Normal distribution.

We note that the previous quantity is not normalized by the number of stores.
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B. Implementation details and numerical experiments

This section offers a comprehensive account of our implementation and numerical experiments. In Appendix

B.1, we define terminology, outline training procedures, and provide details of our PyTorch implementation.

Appendix B.2 details the feasibility enforcement functions used for settings considering multiple locations.

Appendix B.3 specifies the best-performing hyperparameter setting and initialization procedure for each

problem setting. In appendices B.4 to B.9, we present all information required to replicate our experiments

accurately, including experimental setup, results, and analysis. Finally, Appendix B.10 provides details on

our quantile forecaster and its performance.

B.1. Implementation details

Terminology and reporting conventions

We briefly introduce the terminology required to follow our experiments and setup

• Hyperparameter: A parameter that is set before the learning process begins and affects the model’s

behavior or performance.

• NN architecture class: Overall topology and organization of the network, which determines how infor-

mation flows through the network and how computations are performed.

• Epoch: A complete pass through the entire training dataset during the training process.

• Batch: A subset of the training dataset used for updating model parameters.

• Batch size: The number of scenarios included in each batch.

• Gradient step: A step taken to update the model’s parameters based on the gradient computed over

one batch.

• Learning rate: A hyperparameter that determines the step size of the gradient step.

• Hidden layer: A layer in a NN that sits between the input and output layers and performs intermediate

computations.

• Unit/neurons: Fundamental unit of a NN that receives input, performs a computation, and produces

an output.

We outline the reporting convention that will be followed throughout this section.

• Units per layer: The count of units or neurons present in each hidden layer.

• Loss: The average cost incurred per period and per store in a given dataset. Calculated by dividing the

total cost accumulated across the periods considered by the number of stores and periods considered.

• Gap: The percentage difference between the cost incurred by a policy and a predefined benchmark cost.

The benchmark cost can take the form of the optimal cost, a lower bound on costs, or the cost incurred

by a heuristic approach.

Initialization

We analyzed two different procedures to initialize the on-hand inventories Ik
1 and vectors of outstanding

orders Qk
1 for stores.
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• Uniform: letting µ̂k be the sample mean demand for store k, we initialized Ik
1 and every entry in Qk

t by

sampling independently (across Q and I, and across (k, t)) from Uniform(0, µ̂k).

• Set to 0: we simply set Ik
1 and every entry in Qk

t to 0.

In the experiments outlined in Sections 3.3 and 4.3, we utilized the uniform initialization procedure,

selected for its tendency to expedite learning. Nevertheless, in the setting involving real data discussed in

Section 5, we choose to set the initial inventory to 0 to mitigate any additional impact of the algorithm’s

performance associated with the chosen initialization procedure. For the warehouse’s inventory on-hand I01

and vector of outstanding orders Q0
1, we set each entry to 0 across all experiments.

Hyperparameter tuning

We found that our method exhibited robustness to the choice of hyperparameters (especially for single-

location settings), requiring minimal tuning effort in most cases. Initially, we conducted experiments to

explore various combinations of hyperparameters such as learning rates, batch sizes, number of hidden layers,

and number of neurons per layer. Through this process, we identified a set of hyperparameter combinations

that yielded satisfactory performance. However, when dealing with settings involving multiple locations, we

performed some ad-hoc tuning by searching for hyperparameter values on a grid.

Technical implementation specifications

We developed a differentiable simulator using PyTorch and conducted all experiments on an NVIDIA

A40 GPU with 48GB of memory. To expedite the training process, we implemented an efficient parallel

computation scheme. For a given mini-batch of H scenarios, we simultaneously executed the forward pass

first, followed by the backward pass, across all scenarios. To achieve this, we utilized an initial mini-batch

“state” matrix denoted as S̃H
1 . This matrix was obtained by stacking the initial states S̄h

1 for each scenario

h∈H. At each time period, we input the matrix S̃H
t into the NN, enabling us to obtain the outputs for every

scenario in a highly parallelizable manner. Subsequently, we computed the costs ct and updated the mini-

batch state matrix S̃H
t+1 through efficient matrix computations. This approach allowed PyTorch to efficiently

estimate the gradients during the backward pass.

B.2. Feasibility enforcement functions for settings in Sections 3.3 and 4.3

Table 5 provides an overview of the feasibility enforcement functions employed in settings with multiple

locations for each architecture class. Subsequently, we offer a comprehensive description of the architecture

adopted for the serial system, along with brief commentary on the selection of feasibility enforcement func-

tions for each specific setting. For the serial system, we assume that NNs output allocation a1 for the most

upstream location, and intermediate outputs bk for each k ∈ {2, . . . ,K}. Subsequently, the feasibility enforce-

ment function g, which is applicable for k ∈ {2, . . . ,K}, takes two inputs: the current inventory level Ik−1 at

location k− 1, and the intermediate output bk corresponding to the immediately downstream location k. It

then generates a feasible action for location k.

For the serial network structure, we initially experimented with a feasibility enforcement function analogous

to proportional allocation. In this setup, for k= 2, . . . ,K, the k-th intermediate output of the NN was initially

considered as a tentative allocation for ordering from the parent location in the supply chain. These tentative
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Table 5 Feasibility enforcement functions used for each setting with a network structure and for each

architecture class. For the serial system, we outline the feasibility enforcement functions considered for each

location, except the most upstream one.

Setting description Architecture class Feasibility enforcement function

Serial system.
Backlogged demand (B.6) Vanilla Softmax

Many stores, one transshipment
center. Backlogged demand (B.7) Vanilla Softmax without constant

Many stores, one warehouse.
Lost demand (B.8)

Vanilla Softmax

Symmetry-aware Proportional allocation

allocations were capped at the inventory available at the parent location. However, we encountered situations

where this policy became trapped in what we believe were suboptimal local optima. To address this issue,

we utilized a Sigmoid function, noting its equivalence to applying Softmax to a single input. Consequently,

if bk represents the k-th output and Ik−1 denotes the inventory on-hand at the preceding location, the

final allocations were calculated as ak = exp(bk)

1+exp(bk)
× Ik−1. This modified approach consistently yielded near-

optimal performance in our experiments. For the first location, we employed the “trick” described in Section

3, in which we apply a Sigmoid activation function and multiply by a crude upper bound.

In the setting with one transshipment center and multiple stores under backlogged demand (second row in

Table 5), we exclusively assessed Softmax without Constant as a feasibility enforcement function. This choice

stems from the fact that the warehouse lacks the capacity to store inventory, and utilizing this feasibility

enforcement function inherently enforces this constraint directly.

In the setting with one warehouse and multiple stores under lost demand (third and fourth rows in Table

5), we examined various functions for the Vanilla and Symmetry-aware NNs. Notably, Softmax yielded best

performance for the former, while Proportional Allocation proved most effective for the latter. This aligns

with the nature of weak coupling among store orders in the Symmetry-aware NN, where a proportional

allocation allows for only a “weak” relationship between intermediate store outputs.

B.3. Hyperparameter settings for numerical experiments

Table 6 presents well-performing hyperparameter combinations for each setting in Section 3.3 for the Vanilla

NN. The reported results for fixed hyperparameters are based on these hyperparameters. When assessing

different hyperparameters, we choose the ones that minimize cost on the dev set. It is worth noting that a

wide range of hyperparameters generally yield satisfactory performance for experiments in Section 3.3. Unless

explicitly stated, we employed 32,768 scenarios for the training, dev, and test sets in all experiments. Results

demonstrating robustness to hyperparameter choices in a single-store lost-demand setting were presented in

Section 3.3.1 in Table 3.

The hyperparameters used in the experiments in Section 4.3 are documented in Tables 11 and 12 in

Appendix B.8. We note that in the experiments conducted in this section, the extensive exploration of

learning rates is motivated by empirical evidence suggesting that larger learning rates contribute to improved
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generalization (Jiang et al. 2019). Indeed, particularly for the Vanilla NN in low-data regimes, the test set

loss was typically minimized by one of the largest learning rates among those leading to low training losses.

Hyperparameter choices for experiments involving real data were already detailed in the main body of the

paper. See Section 5.5.

Table 6 Hyperparameter settings for the Vanilla NN for each setting in Section 3.3. For the second row, we

consider the best-performing set of hyperparameters among the ones assessed (see table 3).

Setting description
Hidden
layers (#)

Units per
layer

Learning
rate Batch size

One store, no warehouse.
Backlogged demand (B.4) 3 32 0.001 8192

One store, no warehouse.
Lost demand (B.5) 3 32 0.01 1024

Serial network structure.
Backlogged demand (B.6) 2 32 0.01 8192

Many stores, one
transshipment center.
Backlogged demand. (B.7)

3 256 0.0001 1024

B.4. One store, no warehouse. Backlogged demand assumption.

We generate demand traces by sampling from a normal distribution with a mean of µ= 5.0 and a standard

deviation of σ = 1.6, truncating it from below at 0. We created 24 instances by setting h= 1, p= 4,9,19,39

and L= 1,4,7,10,15,20. We compare our model with the optimal base-stock policy computed according to

(15) and (16) in Appendix A.3.

Figures 9a and 9b, respectively, show the optimality gap on the test set and time to reach 1% of optimality

gap on the dev set. Our approach achieves an average gap of 0.03% across instances and takes less than 4

minutes, on average, to obtain a 1% gap. Further, gaps are consistently below 0.1% across instances, even

for long lead times of up-to 20 periods. We report additional performance indicators in Table 7.

B.5. One store, no warehouse. Lost demand assumption.

The details of the test-bed considered for this setting can be found in Section 3.3.1. In Table 8, we report the

performance under the hyperparameter setting that minimizes loss on the dev set (see Table 6 in Appendix

B.3). This table illustrates the reliability of HDPO, achieving results within 1% of optimality in under 70

seconds for all but one instance. Moreover, Figures 10a and 10b show the learning curves on one instance for

two “extreme” choices of hyperparameters, revealing stable learning and rapid convergence to near-optimal

solutions across different hyperparameter settings (note that an epoch corresponds to 4 and 32 gradients

steps for the plots on the left and right, respectively).

In Figure 11 we plot the inventory position (see Eq. (14)) and allocation under the Vanilla NN policy for 2

settings and compare it to the allocation under the optimal CBS policy (red line). We randomly jitter points

for visibility, and color points according to the current inventory on-hand. We observe that the structure of

the policy learned by our Vanilla NN somewhat resembles a CBS policy, but our learned policy is able to
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(a) Optimality gap on the test set.
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(b) Time to reach 1% opt. gap on the dev set.

Figure 9 Optimality gap on the test set and time to reach 1% of optimality gap on the dev set for the one

store under backlogged demand setting for different underage costs and lead times. Training was halted after 4,

000 epochs, which took around 30 minutes for every run.
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(a) 2 hidden layers, learning rate of 10−4

and batch size of 8192.
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(b) 3 hidden layers, learning rate of 10−2

and batch size of 1024.

Figure 10 Epochs vs average cost per period on train and dev set considering continuous allocation, for

different choice of hyperparameters. Setting of one store under a lost demand assumption, with unit underage

cost of 9 and lead time of 4. Note that an epoch corresponds to 4 and 32 gradients steps for the plots on the left

and right, respectively.

use additional information in the state space to achieve lower costs. For a fixed inventory position, the NN

tends to order less for lower inventory on hand, as a stock-out is more likely under such a scenario in which

case less inventory will actually be depleted.

B.6. Serial network structure. Backlogged demand assumption.

We analyzed a serial network structure with 4 echelons. We considered Normal demand with mean µ= 5.0

and standard deviation σ= 2.0, and truncated it at 0 from below. We fixed holding costs as h1 = 0.1, h2 = 0.2,
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Table 7 Performance metrics of the Vanilla NN for each instance of the setting with one store under a

backlogged demand assumption.

Store
lead-
time

Store
under-
age cost

Train
loss

Dev loss Test
loss

Train
gap (%)

Dev gap
(%)

Test
gap (%)

Time to
1% dev
gap (s)

1 4 3.17 3.17 3.17 0.02 0.03 0.03 62
1 9 3.97 3.97 3.97 0.03 0.03 0.03 135
1 19 4.66 4.68 4.67 0.04 0.04 0.04 122
1 39 5.29 5.29 5.29 0.04 0.04 0.04 274
4 4 5.03 5.02 5.01 0.02 0.02 0.03 335
4 9 6.28 6.30 6.28 0.03 0.02 0.03 149
4 19 7.36 7.37 7.38 0.04 0.03 0.04 282
4 39 8.36 8.36 8.36 0.06 0.04 0.06 221
7 4 6.33 6.33 6.34 0.02 0.02 0.02 239
7 9 7.93 7.94 7.93 0.02 0.01 0.01 269
7 19 9.41 9.39 9.34 0.07 0.01 0.01 326
7 39 10.56 10.61 10.56 0.03 0.01 0.02 332

10 4 7.45 7.41 7.43 0.04 0.01 0.01 215
10 9 9.32 9.29 9.31 0.07 0.01 0.01 225
10 19 10.92 11.00 10.95 0.05 0.01 0.01 285
10 39 12.45 12.42 12.42 0.07 0.01 0.02 269
15 4 8.97 8.94 8.94 0.08 0.00 0.01 251
15 9 11.48 11.22 11.23 0.04 0.01 0.01 242
15 19 13.27 13.20 13.21 0.02 0.02 0.02 298
15 39 14.91 14.89 14.94 0.06 0.03 0.03 366
20 4 10.28 10.29 10.24 0.09 0.00 0.01 256
20 9 12.98 12.86 12.87 0.30 0.06 0.05 360
20 19 15.01 15.19 15.13 0.05 0.12 0.05 424
20 39 17.37 17.12 17.14 0.01 0.12 0.03 997

h3 = 0.5 and h4 = 1.0. The lead times for the first 3 echelons are fixed as L1 = 2, L2 = 4 and L3 = 3. We

created 16 instances by setting p= 4,9,19,39 and L4 = 1,2,3,4.

Within this setting, there exists an optimal echelon-stock policy (see Eq. (19) in Appendix A.4). We

employ our differentiable simulator to search for the best-performing base-stock levels Ŝ1, . . . , ŜK through

multiple runs. We then compare our NNs with the best-performing echelon-stock policy obtained, which we

take as the optimal cost.

Table 9 describes the performance of the Vanilla NN for each instance of the serial network structure de-

scribed in Appendix A.4, for the hyperparameters in Table 6. The Vanilla NN achieved an average optimality

gap of 0.35%, and needed around 1500 gradient steps, on average, to achieve a gap smaller than 1% in the

dev set.

B.7. Many stores, one transshipment center. Backlogged demand assumption.

Table 10 summarizes the performance of the Vanilla NN for the setting described in Appendix A.5, consid-

ering the experimental setup described in Section 3.3.2, for the hyperparameters in Table 6, and reveals a

consistent near-optimal performance across instances. HDPO required approximately 8,000 gradient steps

and 53 minutes, on average, to achieve 1% of optimality gap on the dev set.
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Table 8 Performance metrics of the Vanilla NN for each instance of the setting with one store under the lost

demand assumption for the best hyperparameter setting. For the last two columns we consider the performance

of the NN with continuous allocation as proxy for the performance in the discrete-allocation setting, as costs

changed, on average, by less than 1% after discretizing the allocation.

Store lead
time

Store
underage
cost

Test loss Test gap
(%)

Gradient
steps to 1%
dev gap

Time to
1% dev
gap (s)

1 4 4.04 <0.25 160 10
1 9 5.44 <0.25 320 19
1 19 6.67 <0.25 160 11
1 39 7.84 <0.25 480 69
2 4 4.40 <0.25 3680 247
2 9 6.09 <0.25 160 10
2 19 7.67 <0.25 640 45
2 39 9.10 <0.25 480 74
3 4 4.60 <0.25 480 67
3 9 6.53 <0.25 320 24
3 19 8.36 <0.25 160 11
3 39 10.04 <0.25 1120 79
4 4 4.73 <0.25 480 79
4 9 6.84 <0.25 960 72
4 19 8.88 <0.25 480 34
4 39 10.79 <0.25 640 45
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Figure 11 Inventory position vs allocation under Vanilla NN for setting with one store under lost demand

assumption, Poisson demand with mean 5 and unit underage cost of 9. Points are randomly jittered for clarity.

Point colors correspond to current inventory on-hand, and the red line captures the allocation under the optimal

CBS policy (reported in Xin (2021)).
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Table 9 Performance metrics for the Vanilla NN for each instance of the serial network structure.

Store
lead-
time

Store
under-
age cost

Train
loss

Dev
loss

Test
loss

Train
gap
(%)

Dev
gap
(%)

Test
gap
(%)

Gradient
steps to 1%
dev gap

Time to 1%
dev gap (s)

1 4 6.91 6.91 6.91 0.42 0.23 0.26 1912 497
1 9 8.36 8.39 8.38 0.25 0.22 0.24 900 218
1 19 9.62 9.63 9.63 0.48 0.21 0.24 2012 494
1 39 10.71 10.73 10.72 0.44 0.17 0.19 644 159
2 4 7.62 7.61 7.61 0.61 0.28 0.31 1408 324
2 9 9.26 9.28 9.28 0.41 0.24 0.27 1168 287
2 19 10.68 10.70 10.70 0.44 0.31 0.35 1780 442
2 39 11.96 11.98 11.99 0.80 0.60 0.69 4020 1004
3 4 8.21 8.22 8.22 0.40 0.30 0.34 1008 263
3 9 10.05 10.06 10.06 0.56 0.27 0.31 1492 370
3 19 11.59 11.61 11.61 0.42 0.21 0.27 1044 262
3 39 13.00 13.01 13.01 0.72 0.33 0.42 2040 515
4 4 8.80 8.78 8.78 0.85 0.44 0.48 1596 433
4 9 10.74 10.76 10.76 0.48 0.35 0.37 896 224
4 19 12.41 12.45 12.45 0.38 0.36 0.38 912 233
4 39 13.98 13.96 13.97 0.87 0.40 0.48 1272 327

B.8. Many stores, one warehouse. Lost demand assumption.

The details of the experimental setup for this setting are outlined in Section 4.3. Table 11 presents various

metrics for the first experimental setup, with Figure 4a in 4.3 serving as a summary of results. The findings

indicate that, for training scenarios of 16 and 256, the Vanilla NN struggles to generalize effectively, evidenced

by significant gaps between losses in the train and dev sets. These gaps, as well as the test loss, escalate as

the number of stores increases, reaching disparities of approximately 8% between performance in the train

and dev sets. This leads to relative test losses of up to 123%. On the other hand, the Symmetry-aware NN

showcases robust generalization with 256 training scenarios, consistently maintaining a difference in train

and dev losses below 2% and relative test losses below 102%.

Table 12 presents various metrics for the second experimental setup, with Figure 4b in Section 4.3 serving

as a summary of results. It highlights the good performance overall across all training sample sizes, achieving

mean relative test losses below 113% even for a single training scenario.

B.9. Real demand data

We consider the setting and experiment specifications detailed in Section 5. Tables 13 and 14 showcase the

performance of our approach across different average unit underage costs, accounting for lost and backlogged

demand assumptions, respectively. It is important to note that, despite including the elapsed time and the

number of gradient steps required to achieve a 1% performance gap relative to a benchmark, our approach was

not specifically optimized for speed. These metrics would likely be considerably smaller if the hyperparameters

were selected with speed optimization as the primary objective.

In Table 13, it is evident that our approach demonstrates robust generalization under a lost demand

assumption, as indicated by the minimal difference in profits relative to the Just-in-time benchmark between
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Table 10 Performance metrics of the Vanilla NN for each instance of setting with one “transshipment”

warehouse under backlogged demand assumption. Results consider sampling means and coefficients of variation

uniformly between 2.5− 7.5 and 0.16− 0.32, respectively.

Number
of
stores

Store
lead-
time

Store
under-
age cost

Pairwise
correla-
tion

Lower
bound

Train
loss

Dev
loss

Test
loss

Test
gap ≤
(%)

Gradient
steps to 1%
dev gap

Time to
1% dev
gap (s)

3 2 4 0.0 3.30 3.30 3.30 3.30 0.07 4000 1494
3 2 4 0.5 3.68 3.69 3.69 3.69 0.15 4960 1851
3 2 9 0.0 4.13 4.14 4.14 4.14 0.08 3840 1427
3 2 9 0.5 4.62 4.62 4.62 4.63 0.23 5920 3906
3 6 4 0.0 4.66 4.67 4.66 4.66 0.11 4800 1827
3 6 4 0.5 4.94 4.95 4.94 4.95 0.14 4960 1890
3 6 9 0.0 5.84 5.85 5.85 5.85 0.14 6880 2641
3 6 9 0.5 6.19 6.20 6.20 6.20 0.16 7360 2814
5 2 4 0.0 2.94 2.94 2.94 2.94 0.06 5440 2042
5 2 4 0.5 3.39 3.39 3.39 3.39 0.06 6080 2281
5 2 9 0.0 3.68 3.68 3.68 3.69 0.08 7360 3479
5 2 9 0.5 4.25 4.25 4.25 4.25 0.06 6720 2519
5 6 4 0.0 4.26 4.27 4.27 4.27 0.16 7360 2885
5 6 4 0.5 4.59 4.59 4.59 4.59 0.09 8800 3452
5 6 9 0.0 5.35 5.35 5.35 5.36 0.17 10080 3994
5 6 9 0.5 5.75 5.76 5.76 5.76 0.06 9760 3852
10 2 4 0.0 2.99 2.99 3.00 3.00 0.15 7840 2774
10 2 4 0.5 3.54 3.54 3.55 3.55 0.13 8480 2993
10 2 9 0.0 3.75 3.75 3.76 3.76 0.19 8960 3136
10 2 9 0.5 4.44 4.45 4.45 4.45 0.15 10400 3671
10 6 4 0.0 4.44 4.45 4.45 4.45 0.24 11360 4283
10 6 4 0.5 4.83 4.84 4.84 4.84 0.20 11520 4340
10 6 9 0.0 5.57 5.58 5.58 5.58 0.28 18080 6903
10 6 9 0.5 6.05 6.08 6.08 6.08 0.47 12960 4929

the train and dev sets. Moreover, our approach consistently achieves a profit within 1% of the Transformed

Newsvendor benchmark in less than 90 seconds for each instance. It is noteworthy that, as depicted in

Figure 6a in Section 5.6, the Transformed Newsvendor policy attains profits within 5% of those obtained by

our approach in instances with unit underage costs of 9 or greater. This observation underscores that our

approach achieves commendable performance within a brief time frame.

Conversely, as shown in Table 14, our approach displays noticeable overfitting when considering that unmet

demand is backlogged, which intensifies with higher unit underage costs. Remarkably, our approach attains

costs on the train set lower than the formidable Returns Newsvendor benchmark for unit underage costs

of 9 or higher. Nevertheless, the approach consistently achieves costs within 1% of those incurred by the

Transformed Newsvendor policy in less than 30 minutes on average, showcasing rapid learning overall.

Lastly, Figure 12 displays the weekly profit, averaged across scenarios, for each week and policy in the

development set. The illustration highlights that our approach consistently achieves higher profits almost

every week, emphasizing the reliability of the Vanilla NN.
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Table 11 Metrics for the setting of one warehouse and many stores under a lost demand assumption. For each

number of stores, training scenarios, and architecture classes, we report the metrics corresponding to the run that

minimizes the dev loss among the three runs for each learning rate and layer width. Numbers in bold represent

the best test loss obtained for a fixed number of stores. Relative test loss is calculated by dividing the test loss by

the loss obtained by the best run for a given number of stores and multiplying by 100. The number of units per

layer for the Symmetry-aware NN is fixed, as detailed in Section 4.3.

Number
of stores

Training
scenarios (#)

Architecture
Class

Learning
rate

Units per
layer (#)

Train
loss

Dev
loss

Test
loss

Relative
test loss (%)

3 16 Symmetry-aware 0.0300 - 6.01 5.79 5.79 103.20
3 16 Vanilla 0.0030 128 5.70 5.94 5.95 106.17
3 256 Symmetry-aware 0.0300 - 5.59 5.66 5.67 101.08
3 256 Vanilla 0.0010 128 5.55 5.69 5.68 101.40
3 8192 Symmetry-aware 0.0010 - 5.60 5.61 5.61 100.02
3 8192 Vanilla 0.0010 128 5.61 5.61 5.61 100.00

5 16 Symmetry-aware 0.0100 - 5.35 5.45 5.44 103.74
5 16 Vanilla 0.0030 128 5.41 5.79 5.80 110.60
5 256 Symmetry-aware 0.0100 - 5.36 5.29 5.29 100.98
5 256 Vanilla 0.0010 128 5.36 5.38 5.38 102.70
5 8192 Symmetry-aware 0.0100 - 5.25 5.25 5.24 100.05
5 8192 Vanilla 0.0003 512 5.25 5.25 5.24 100.00

10 16 Symmetry-aware 0.0100 - 5.80 5.85 5.83 102.03
10 16 Vanilla 0.0003 512 6.01 6.37 6.36 111.37
10 256 Symmetry-aware 0.0100 - 5.71 5.80 5.77 101.06
10 256 Vanilla 0.0003 512 5.82 6.00 5.99 104.79
10 8192 Symmetry-aware 0.0100 - 5.74 5.73 5.71 100.00
10 8192 Vanilla 0.0003 512 5.72 5.74 5.72 100.12

20 16 Symmetry-aware 0.0100 - 5.48 6.04 6.01 103.23
20 16 Vanilla 0.0003 512 5.68 6.84 6.79 116.70
20 256 Symmetry-aware 0.0100 - 5.93 5.93 5.91 101.53
20 256 Vanilla 0.0001 512 6.08 6.23 6.21 106.64
20 8192 Symmetry-aware 0.0030 - 5.85 5.84 5.82 100.00
20 8192 Vanilla 0.0030 128 5.85 5.87 5.85 100.46

30 16 Symmetry-aware 0.0030 - 5.19 5.66 5.65 101.73
30 16 Vanilla 0.0003 512 5.46 6.46 6.43 115.89
30 256 Symmetry-aware 0.0100 - 5.62 5.63 5.62 101.22
30 256 Vanilla 0.0001 512 5.79 6.07 6.04 108.86
30 8192 Symmetry-aware 0.0030 - 5.56 5.57 5.55 100.00
30 8192 Vanilla 0.0030 128 5.58 5.60 5.59 100.64

50 16 Symmetry-aware 0.0030 - 5.48 5.52 5.53 103.14
50 16 Vanilla 0.0030 128 6.09 6.57 6.59 122.97
50 256 Symmetry-aware 0.0030 - 5.31 5.44 5.45 101.70
50 256 Vanilla 0.0003 512 5.61 5.87 5.89 109.95
50 8192 Symmetry-aware 0.0030 - 5.35 5.34 5.36 100.00
50 8192 Vanilla 0.0003 512 5.41 5.40 5.42 101.06
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Table 12 Metrics for the Symmetry-aware NN for the setting of one warehouse and many stores under a lost

demand assumption. For every combination of store count and training sample size, we examine the metrics

associated with the run that minimizes the dev loss among three runs for each learning rate. This procedure is

repeated 12 times, with the seed varied in each of the 12 iterations, and we present aggregated metrics across all

iterations. Relative test loss is calculated by dividing the test loss by the loss obtained by the best run for a given

number of stores and multiplying by 100. The number of units per layer for the Symmetry-aware NN is fixed, as

detailed in Section 4.3.

Number
of stores

Training
scenarios
(#)

Mean of
train
loss

Mean of
dev loss

Mean of
test loss

Mean of
relative test
loss (%)

Standard dev.
of relative
test loss (%)

3 1 3.73 6.32 6.31 112.56 6.07
3 2 4.33 6.14 6.15 109.62 4.21
3 4 4.78 5.95 5.95 106.20 1.61
3 8 5.25 5.85 5.85 104.29 0.80

5 1 3.16 5.75 5.76 109.77 3.91
5 2 3.65 5.61 5.61 106.98 2.30
5 4 4.22 5.52 5.52 105.33 1.89
5 8 4.52 5.45 5.45 104.01 1.47

10 1 3.71 6.28 6.28 109.88 2.47
10 2 4.28 6.14 6.13 107.38 1.83
10 4 4.66 6.00 6.00 104.97 2.00
10 8 5.13 5.92 5.91 103.48 1.06

20 1 4.01 6.54 6.54 112.44 8.70
20 2 4.46 6.27 6.26 107.59 2.01
20 4 4.86 6.10 6.10 104.73 1.39
20 8 5.27 6.03 6.02 103.52 0.88

30 1 3.86 6.02 6.02 108.39 2.43
30 2 4.27 5.93 5.93 106.88 2.78
30 4 4.77 5.84 5.84 105.26 2.27
30 8 4.97 5.74 5.74 103.45 0.88

50 1 4.28 5.94 5.93 110.63 3.94
50 2 4.69 5.72 5.71 106.51 2.03
50 4 4.76 5.64 5.63 105.10 2.05
50 8 4.95 5.57 5.57 103.89 0.97

B.10. Quantile forecaster

In this subsection, we provide detailed information regarding the offline training and performance assessment

of the quantile forecaster employed by the generalized newsvendor policies in Section 5.4. The quantile

forecaster is designed to estimate the distribution of the sum of m demand terms (considering various values

of m simultaneously), given the sequence of the previous s1 ∈N demands and the number of days until the

next occurrence of Christmas, denoted as dChristmas ∈ N. Specifically, given a tuple (ξ1, . . . , ξs1 , dChristmas),

the quantile forecaster predicts the value of the τ -quantile of the sum of the next m demands concurrently
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Table 13 Performance metrics of the Vanilla NN for each instance of the setting with one store considering

sales data from the Corporación Favorita Grocery Sales Forecasting competition, under a lost demand

assumption. Evaluation on dev set was performed every 5 epochs (equivalent to 20 gradient steps), so time and

gradient steps represent upper bounds.

Average
unit
underage
cost

Train
profit

Dev
profit

Train profit
relative to
Just-in-time
(%)

Dev profit
relative to
Just-in-time
(%)

Time to 1%
gap from
Transformed
Newsvendor (s)

Gradient steps
to 1% gap from
Transformed
Newsvendor

2 69.77 65.60 65.2 66.0 28 100
3 112.92 105.02 70.4 70.5 33 120
4 157.66 146.35 73.7 73.7 34 120
6 250.31 231.23 78.0 77.6 35 120
9 394.10 363.37 81.9 81.3 44 160

13 590.35 543.64 84.9 84.2 82 280
19 890.83 820.42 87.7 86.9 60 220

Table 14 Performance metrics of the Vanilla NN for each instance of the setting with one store considering

sales data from the Corporación Favorita Grocery Sales Forecasting competition, under a backlogged demand

assumption. Evaluation on dev set was performed every 5 epochs (equivalent to 20 gradient steps), so time and

gradient steps represent upper bounds.

Average
unit
underage
cost

Train
loss

Dev
loss

Train cost
relative to
Returns
Newsvendor (%)

Dev cost
relative to
Returns
Newsvendor (%)

Time to 1%
gap from
Transformed
Newsvendor (s)

Steps to 1%
gap from
Transformed
Newsvendor

2 80.93 78.80 101.6 102.1 898 3160
3 97.88 96.50 100.8 101.6 747 2660
4 112.44 111.74 101.4 102.1 1195 4220
6 133.13 134.97 100.2 101.8 1697 5960
9 157.00 162.84 99.4 101.9 2374 8340

13 181.67 193.18 98.8 102.4 2727 9620
19 206.00 228.14 96.2 102.6 2010 6900

for each τ and m within specified sets Q andM, respectively. This is, for one input tuple, it produces |Q||M|

terms.

We consider a dataset comprising N pairs in the form of (xi, yi), where xi ∈ Rs1+1 represents a feature

vector, and yi ∈R|M| is a target vector. Given the prediction ŷi ∈R|Q||M| for feature vector xi, we define the

multi-horizon loss for the τ -quantile as

ℓτ (yi, ŷi) =
∑
m∈M

max{τ(yim− ŷimτ ), (1− τ)(ŷimτ − yim)}, (23)

and the multi-horizon multi-quantile loss as

ℓ(yi, ŷi) =
∑
τ∈Q

ℓτ (yi, ŷi). (24)

The objective is to minimize the sample average of ℓ(yi, ŷi), given by 1/N
∑N

i=1 ℓ(yi, ŷi).
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Figure 12 Average weekly profit on the dev set obtained by each policy in the setting with one store and

realistic demand, for an average unit underage cost of 6 and under a lost demand assumption. Orange and green

lines significantly overlap.

We implemented the quantile forecaster using PyTorch, considering quantiles ranging from 0.05 to 0.95

in steps of 0.05. Given that the numerical experiments in Section 5.6 consider lead times of 4, 5, and 6, we

setM= {5,6,7} (recall that generalized newsvendor policies take into account the distribution of the sum

of L+ 1 demands). The train set and dev set sizes were approximately 4 million and 1.5 million samples,

respectively. These sets were generated by extracting subsequences of demands with a length of 16 from the

datasets outlined in Section 5.6.

The architecture of the implemented Multilayer Perceptron (MLP) includes 2 hidden layers, each with

128 neurons. We considered a batch size of 1,048,576 samples and a learning rate of 0.01. In practice, input

features for all samples within a batch are fed in a compact matrix form, and the model outputs a matrix

of predictions with dimensions (nbatch, |Q|, |M|), where nbatch is the batch size. This design allows us to

leverage the parallel computing capabilities of GPUs and take advantage of an efficient implementation in

PyTorch.

We are able to validate the efficacy of the quantile forecaster by observing remarkable results achieved

by the non-admissible Return Newsvendor benchmark in the backlogged demand setting (refer to Figure 7

in Section 5.7), as well as the satisfactory performance of the Transformed Newsvendor policy in the lost

demand setting with high average unit underage costs (refer to Figure 6a in Section 5.6). To further assess

the performance of our quantile forecaster, we conducted two separate analyses.

First, we evaluated the model’s calibration, which measures the agreement between the predicted values

for each quantile and the empirical probability of a target lying below each of them. Ideally, for each τ ∈Q,
we would observe an empirical proportion of τ of the samples lying below the predicted τ -quantile. Therefore,

in Figure 13a, we plotted each τ ∈Q against the proportion of targets lying below the predicted τ -quantile,

calculated as
∑

i∈[N]

∑
m∈M 1 (yim ≤ ŷimτ )/(N |M|). The figure demonstrates that our forecaster is nearly
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(a) Calibration for each quantile, calculated as
the proportion of targets that lie below the
quantile predicted by the forecaster.
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(b) Sum of multi-horizon quantile loss (see Equa-
tion 23) divided by the sum of the targets, for
each quantile.

Figure 13 Performance indicators for the quantile forecaster.

perfectly calibrated in the train set. However, in the dev set, there is a slight overestimation, resulting in

larger-than-ideal proportions of observed targets lying below each predicted quantile value, although the

calibration remains generally good.

Next, our objective is to provide an estimation of the magnitude of prediction errors relative to the targets.

Illustrated in Figure 13b, we depict, for each τ ∈Q, the cumulative multi-horizon loss (see Eq. 23) divided by

the sum of targets, given by
∑

i∈[N] ℓτ (yi, ŷi)/
∑

i∈[N]

∑
m∈M yim. To enhance comprehension, consider that

when τ = 0.5, the multi-horizon quantile loss is equivalent to one half of the sum of mean absolute errors

(MAEs) across time horizons m∈M. The sum of MAEs is therefore less than 18% of the sum of the targets,

indicating a relatively low value. As the analyzed ratio is nearly maximized for τ = 0.5, this suggests that

the quantile forecaster adeptly predicts the conditional distribution of cumulative demands.

While we recognize the importance of comparing our forecaster with other methodologies to evaluate its

performance, the three evaluations conducted in this section collectively indicate its effectiveness.
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C. Proof of Theorem 1

In this section, we prove Theorem 1. To begin, we review our existing notation and introduce some supple-

mentary notation that will aid us in defining a relaxed version of our problem setting. We note that, given

that stores have zero lead time, the form of transition and cost functions will be somewhat different to that

presented in Section 2.3.

State and action spaces. The state of the system is given by St = It = (I0t , . . . , I
K
t ). We emphasize that Ik

t

represents the inventory on-hand for location k ∈ [K]0 before orders are placed. As store lead times are zero,

there are no outstanding orders. Further, for the warehouse, we can update inventory by replacing qkt−L0+1

by a0t in (5), avoiding the need for keeping track of Q0
t . We further let Zt =

∑
k∈[K]0

Ik
t track the system-wide

inventory in the system. The action space at state St is given by A(It) = {at ∈RK+1
+ |

∑
k∈[K] a

k
t ≤ I0t }.

Random variables. As described in Section 4.2, demand takes the form ξkt = BtU
k
t , where Uk

t ∼

Uniform(uk, uk) and Bt takes a high value γH > 0 with probability q and a low value γL ∈ (0, γH). We

denote the mean E[Uk
t ] of each uniform as µk = (uk + uk)/2, and denote the aggregate demand by Ξt =∑

k∈[K] ξ
k
t . Further, let Ût =

∑
k∈[K]U

k
t be the sum of the K uniforms at time t, µ̂=

∑
k∈[K] µ

k its mean, and

Ũk
t =

∑
k∈[K](U

k
t −µk) be the sum of zero-mean uniforms. Note that we can represent aggregate demand as

Ξt =BtÛt.

We define DH = E[Ξt|Bt = γH] = γHµ̂ and DL = E[Ξt|Bt = γL] = γLµ̂ as the expectation of aggregate

demand conditional on Bt taking high and low values, respectively, and let Dt be a random variable such

that Dt =DH if Bt = γH and Dt =DL otherwise. Finally, let Wt = 1(Bt−1 = γL) be an indicator that the

demand was low in the previous period, and W̃t(Zt) be an estimator of the previous quantity, which will be

defined shortly. For brevity, we define the shorthand notation W̃t ≡ W̃t(Zt).

Transition functions

Given that stores have no lead time and that the warehouse lead time is equal to 1, inventory evolves as

Ik
t+1 = Ik

t + ak
t − ξkt k ∈ [K] (25)

I0t+1 = I0t + a0t −
∑

k∈[K]a
k
t . (26)

Even though (25) would be identical for store lead times of one period, there is a distinction in the cost

function between lead times of zero and one, as shown later on.

Meanwhile, the system-wide level of inventory evolves as

Zt+1 =Zt + a0t −Ξt , (27)

and note that Zt does not depend on a1t , . . . , a
K
t .

Cost functions. The case when store lead times are zero is an edge-case where the cost incurred at stores

is different from what was written in the generic problem formulation. In particular, the cost at store k in

some period is given by ck(Ik
t , a

k
t , ξ

k
t ) = pk(ξkt − (Ik

t + ak
t ))

+ +hk((Ik
t + ak

t )− ξkt )
+, where the first and second

terms correspond to underage and overage costs, respectively. Note that, as store lead times are zero, the

inventory ak
t allocated in the current period arrives to the store before demand occurs, so the store incurs
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the same overage/underage costs it would if lead time were nonzero and it had inventory Ik
t +ak

t on hand at

the start of the period.

The cost at the warehouse is solely composed of holding costs and is given by c0(I0t , at) =

h0
(
I0t −

∑
k∈[K] a

k
t

)
. Total costs in period t are finally c(It, at, ξt) = c0(I0t , at)+

∑
k∈[K] c

k(Ik
t , a

k
t , ξ

k
t ). We will

define costs in a more convenient way by defining

v(Z,y1, . . . , yK) = h0Z +
∑
k∈[K]

Eξkt

[(
pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk
)]

(28)

and noting that c(It, at, ξt) = v
(∑K

k=0 I
k
t , I

1
t + a1t , . . . , I

K
t + aK

t

)
.

Cost-to-go.

We define Jπ
t (It) =Eπ

[∑T

s=t
c(Is, πs(Is), ξs)

∣∣It] as the expected cost-to-go under policy π ∈Π from period

t and initial state It, and Jt(It) as the optimal cost-to-go, that is, Jt(It) = infπ∈Π Jπ
t (It).

Recall that the setting in Example 1 makes two assumptions.

Assumption 1. γLuk ≥ γHuk− γLuk for every k.

Assumption 2. qp≥ (1− q)h0.

These assumptions will facilitate our analysis. Assumption 1 ensures that, if store k starts with an inventory

no larger than γHuk, the remaining inventory after demand is realized is below γLuk. This condition can be

slightly relaxed relative to the form stated, but we avoid presenting the most general form in the interest of

simplicity. Assumption 2 ensures that it is worth acquiring an incremental unit of inventory at the warehouse

if that is sure to prevent a lost sale in a period of high demand.

C.1. Proof overview

We now present a detailed version of Theorem 1. Let

κ≡ max
k∈[K]

max(uk,1/uk) ⇒ uk ∈ [1/κ,κ]∀k ∈ [K]

and recall the definition of the Proportional Allocation feasibility enforcement functions as

g1(I
0, b1, . . . , bK) =

[
[bk]+ ·min

{
1, I0∑

j∈[K][b
j ]+

}]
k∈[K]

. Moreover, denote Rk = (uk, uk, pk, hk) as the store-

specific primitives of location k, and let H⊂R4 denote the set of possible values for store-specific primitives

according to the assumptions outlined in Example 1.

Theorem 2. Under the Proportional Allocation feasibility enforcement function, there exists a constant

C = C(p,h, p,h, q, κ, γL, γH)<∞, y0 ∈ R, continuous functions G,G :H→ R+ and a stationary symmetry-

aware policy π̃ with

π̃context(St) =Zt

π̃0
(
I0t ,Zt

)
= y0−Zt

π̃1
(
Ik
t ,Rk,Zt

)
=max(0,

[
G(Rk)+ W̃t(Zt)(G(Rk)−G(Rk))

]
− Ik

t ) k ∈ [K],

(29)

where W̃t(Z) = 1
{
y0−Zt < (DH +DL)/2

}
, such that, its expected cumulative cost J π̃

1 (I1) satisfies

J π̃
1 (I1)

J1(I1)
≤ 1+

C√
K

.
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Throughout this section, we utilize the notation yk = G(Rk) and yk = G(Rk). The construction of the

functions G and G is demonstrated within the proof of Lemma 4 in Appendix C.9.

For this asymptotically optimal policy π̃, the context mapping signals the current system-wide level of

inventory Zt to the stores. Then, the warehouse follows an echelon-stock policy (see Equations 21 and 22 in

Appendix A.5), this is, it observes Zt and places an order to “raise” the system-wide level of inventory up-to

the target level y0. Meanwhile, stores use the context signal to compute the estimator W̃t(Z) of whether the

demand in the previous period was low and, consequently, propose a tentative allocation to raise their local

inventory to one base-stock level among yk and yk. The intuition behind the form of W̃t(Z) is the following.

Given that under π̃ the system-wide inventory is raised to y0 before demand is realized, the quantity (y0−Zt)

is equal to cumulative demand in the previous period. Then, if the previous demand is below the midpoint

(DH +DL)/2 of the conditional expectations for high and low demand periods, the store estimates that

demand in the previous period was low.

Our proof of Theorem 2 consists of two main parts, which we now summarize:

1. Converse bound: We start by constructing a relaxed setting in two steps. First, we allow inventory

to “flow back” from stores to the warehouse, and show that the cost-to-go only depends on the current

state through the system-wide level of inventory. We then analyze a setting, which we refer to as the

fully relaxed setting, in which the system-wide level of inventory evolves as if Ût = µ̂, but in which the

costs incurred at stores do account for the randomness coming from Uk
t , and show that the expected

cost in this relaxed system is a lower bound on that of the original one.

2. Achievability: Our strategy for establishing achievability begins with a detour in which we consider

the fully relaxed setting and we characterize the optimal policy for that system: We will demonstrate the

optimality of a stationary policy for the fully relaxed setting, where the warehouse follows an echelon

stock policy and the stores follow a base-stock policy with one of two base-stock levels. Additionally, we

will establish that the inventory at the stores prior to demand realization is kept below both base-stock

levels. This indicates that the optimal policy for the fully relaxed setting does not involve transferring

inventory from the stores to other stores or the warehouse. We will then derive an asymptotically

optimal policy for the original system by following the warehouse’s echelon stock level and store’s base-

stock levels from the optimal policy in the relaxed setting, and employing a Proportional Allocation

feasibility enforcement function (Eq. 8 in Section 2.4). We will use a simple upper bound on the the

per-unit cost of “scarcity” (i.e., units of unsatisfied store’s orders) and show that scarcity is upper

bounded by the deviation of the sum of Uniforms Ût from its mean. We will conclude that per-period

scarcity costs scale as
√
K, implying a relative excess cost of order 1/

√
K as compared to that incurred

in the fully relaxed setting.

C.2. Converse bound

We begin by presenting the structure of the optimal cost-to-go in the original setting, and then introduce a

series of relaxations that will allow us to obtain a lower bound on costs.

In Appendix C.4, we show the following expression for the cost-to-go.
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Lemma 1. The cost-to-go (for the original setting) in period t takes the form

Jt(It) = inf
at∈A(It)

Eξt [Jt+1(f (It, at, ξt))] + v

 ∑
k∈[K]0

Ik
t , I

1
t + a1t , . . . , I

K
t + aK

t

 , (30)

where the immediate cost v(·) was defined in (28).

We construct a relaxed system, which we denote as the partially relaxed system, following a procedure

similar to that of Federgruen and Zipkin (1984a). We will allow a1, . . . , aK to be negative, thus allowing

inventory to flow from stores to the warehouse and be re-allocated to other stores. The action space for the

partially relaxed system is given by Â(It) = {at ∈R+×RK |
∑

k∈[K] a
k
t ≤ I0t }. As formalized in Appendix C.5,

since we allow inventory to flow back from stores, the cost-to-go for the partially relaxed system J̆t+1(It+1)

depends on It+1 solely through the sum of its components Zt+1 =
∑

k∈[K]0
Ik
t+1 = Zt + a0t −Ξt (from (27)).

This leads to the following Bellman equation for the partially relaxed cost-to-go

J̆t(It) = inf
at∈Â(It)

Eξt

[
J̆t+1(Zt + a0t −Ξt)

]
+ v

 ∑
k∈[K]0

Ik
t , I

1
t + a1t , . . . , I

K
t + aK

t

 , (31)

= inf
a0
t∈R+

Eξt

[
J̆t+1(Zt + a0t −Ξt)

]
+ inf∑

k∈[K] a
k
t ≤I0t

v

 ∑
k∈[K]0

Ik
t , I

1
t + a1t , . . . , I

K
t + aK

t

 . (32)

Here, (32) captures that the minimization over at is separable across the warehouse action a0t versus the

store allocations (ak
t )k∈[K], because the cost-to-go term in (31) does not depend on store allocations, and the

immediate cost term v(·) in (31) does not depend on the warehouse order a0t . (We abuse notation in writing

J̆t(It) = J̆t(Zt).)

Letting yk
t = Ik

t + ak
t for k ∈ [K], the second minimization in (32) can be rewritten as a minimization over

yt = (yk
t )k∈[K] as follows:

R̂(Zt)≡ inf
yt∈RK

v
(
Zt, y

1
t , . . . , y

K
t

)
s.t.

∑
k∈[K]

yk
t ≤Zt .

(33)

As a result, the Bellman equation (32) for the partially relaxed system can be written as

J̆t(Zt) = R̂(Zt)+ min
a0
t∈R+

EΞt

[
J̆t+1(Zt + a0t −Ξt)

]
. (34)

We introduce an additional relaxation referred to as the fully relaxed system, where the state evolves as

if Ût = µ̂, while maintaining the same cost incurred in each period as in the partially relaxed system. In the

fully relaxed setting, we denote the system-wide inventory level by Ẑt, and define that it evolves according to

Ẑt+1 = Ẑt + a0t −Dt. It is important to note that this quantity is, in general, different from the system-wide

inventory levels in the original and partially relaxed systems, even when fixing a policy and demand trace.

However, we will demonstrate later that the optimal expected cost in all three systems are close to each other.

Let Ĵt(Ẑt) represent the cost-to-go for the fully relaxed system, starting from period t with a system-wide

inventory level of Ẑt. The Bellman equation for the fully relaxed system is

Ĵt(Ẑt) = R̂(Ẑt)+ min
a0
t∈R+

EDt

[
Ĵt+1(Ẑt + a0t −Dt)

]
. (35)

We consider Ẑ1 =Z1 as the initial state for the fully relaxed system.

In Appendix C.6, we show the following key convexity property.
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Lemma 2. R̂(·) is a convex function. For all t= 1,2, . . . , T , J̆t(·) and Ĵt(·) are convex functions.

We use this convexity to prove that our relaxations indeed lead to a lower bound on costs for the original

setting.

Proposition 1. For any starting inventory state I1 ∈ (R+)K+1 and Z1 =
∑

k∈[K]0
Ik
1 , we have

Ĵ1(Z1)≤ J̆1(Z1)≤ J1(I1) ,

i.e., the expected cost in the fully relaxed system is weakly smaller than the expected cost in the partially

relaxed system, which, in turn, is weakly smaller than the expected cost in the original system.

We show Proposition 1 in Appendix C.7. The first inequality is obtained by using the convexity of R̂ and

applying Jensen’s inequality on Ût. The second inequality is immediate since J̆ is obtained by relaxing the

original setting.

C.3. Achievability

We begin by unveiling the structure of the optimal policy for the fully relaxed setting which, in turn, will

allow us to construct an asymptotically optimal policy for the original setting.

Let yk
t = Ik

t + ak
t , for every k ∈ [K], be the inventory level at store k before demand is realized.

Lemma 3. There exists an optimal policy (which is stationary) for the fully relaxed setting such that the

warehouse follows an echelon-stock policy. Furthermore, the optimal echelon-stock level Ŝ satisfies

Ŝ ∈ argmin
S∈R

[
qR̂(S−DH)+ (1− q)R̂(S−DL)

]
, (36)

where R̂(·) is as defined in (33).

We prove Lemma 3 in Appendix C.8. The policy for the warehouse relies on the fact that (35) takes the

form of a single-location inventory problem with inventory level Ẑt and convex cost function R̂(Ẑt). Following

Federgruen and Zipkin (1984a), an echelon-stock policy must be optimal. Since there are no procurement

costs involved, we demonstrate that the echelon-stock level in each period should minimize the expected

cost incurred in the subsequent period, as indicated in (36). Consequently, the echelon-stock level remains

constant across all periods.

Starting from t= 2 onwards, it is important to observe that Ẑt can only assume one of two distinct values

under the optimal policy: either Ŝ −DH or Ŝ −DL. Since store inventory levels solve (33) in each period,

at each store the inventory level before the actual demand occurs will take one of two values (corresponding

to the two aforementioned solutions of (33)). These inventory levels will be interpreted as store base-stock

levels in subsequent analysis.

Lemma 4. Suppose Assumption 2 holds, and let y and y be optimal solutions for problem (33) with total

inventory Zt = Ŝ−DH
t and Ŝ−DL

t , respectively. Then, γ
Huk ≥ yk ≥ yk ≥ γLuk for each k ∈ [K]. In particular,

an optimal policy for the fully relaxed system does not move inventory from a store to other stores or to the

warehouse. Additionally, there exist continuous functions G,G :H→R+ (where H was defined in Appendix

C.1), such that yk =G(Rk) and yk =G(Rk) for each k ∈ [K].
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We prove Lemma 4 in Appendix C.9. The argument leading to the assertion that an optimal policy for

the fully relaxed system does not move inventory from a store to other stores or to the warehouse is as

follows: Recall that Assumption 1 ensures that if store k starts with an inventory no larger than γHuk, the

remaining inventory after demand is realized is below γLuk. Hence, Lemma 4 allows us to conclude that the

base-stock levels yk, yk for each store are always above the store’s inventory level after demand occurs under

our assumptions. Therefore, an optimal policy for the fully relaxed system does not move inventory from a

store to other stores or to the warehouse. Moreover, in the Lemma we show how to compute yk and yk from

the optimality conditions of problem (33) with initial inventories Ŝ −DH
t and Ŝ −DL

t , respectively, which

permits the construction of the aforementioned continuous functions G and G.

We derive a feasible policy π̃ to the original problem by following the structure in (29), and setting y0 = Ŝ

for Ŝ as defined in Lemma 3, and yk and yk for k ∈ [K] as per the definitions in Lemma 4. That is, the

warehouse will follow an echelon-stock policy with level Ŝ and stores will follow a base-stock policy, with

level yk (or yk) whenever the demand in the previous period is estimated as being low (high). We derive

feasible actions by using the Proportional Allocation feasibility enforcement function g1(I
0, b1, . . . , bK) =

[bk]+ ·min
{
1, I0∑

j∈[K][b
j ]+

}
. We can therefore represent tentative allocations and actions under π̃ by

aπ̃0
t = Ŝ−Zt

bπ̃k
t =max(0,

[
yk + W̃t(Zt)(y

k− yk)
]
− Ik

t ) k ∈ [K]

aπ̃k
t =

[
g1(I

0
t , b

π̃1
t , . . . , bπ̃K

t )
]
k

k ∈ [K].

We provide a brief explanation regarding the role of W̃t and its definition W̃t(Z) ≡

1
{
y0−Zt < (DH +DL)/2

}
. Recall our assumption that only the observed demand is available to us, with-

out knowledge of the underlying high or low state. Therefore, an estimate is required based on the current

system-wide inventory levels. We compare the realized total demand in the previous period y0 − Zt with

the midpoint between DH and DL to estimate whether the demand in the previous period was high or low

Bt−1. As the number of stores K increases, the demand fluctuations caused by the sum of uniform random

variables Ût scale by approximately
√
K, while the difference between the midpoint and both DH and DL

scales linearly with K. Consequently, as K grows larger, the probability of incorrect estimation W̃t ̸=Bt−1

decreases exponentially, as demonstrated in Appendix C.11.

Recall that ŨK
t =

∑
k∈[K](U

k
t −µk) represents the centered sum of the K uniforms at time t, i.e., the sum

minus its mean. Let α= |R̂(Ŝ−DL)− R̂(Ŝ−DH)|+max{p,h}(|DH−DL|).

Proposition 2. The total expected cost in the original system under the policy π̃ is bounded above as

J π̃
1 (I1)≤ Ĵ1(Z1)+T

[
max{p,h}γHE

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)]
. (37)

(Recall that Ĵ1(Z1) is the total expected cost in the fully relaxed system, with the same starting inventory.)

We prove Proposition 2 in Appendix C.10. The proposition bounds the additional expected cost per period

in the real system relative to that under the fully relaxed system. The T max{p,h}γHE[|ŨK
1 |] term bounds

the impact of the aggregate demand deviating from DL or DH, and the TαP(|ŨK
1 | ≥ µ̂ γH−γL

2γH ) term bounds
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the impact of occasionally getting Wt wrong Wt ̸=Bt−1. In short, the additional expected cost per period

in the real system is at most proportional to deviation of the sum of uniforms from its mean. We show

the latter quantity to be “small”, specifically we show that it is O(
√
K) by the central limit theorem, in

Appendix C.11. Plugging this bound into Proposition 2, together with the converse bound in Proposition 1

and 2 leads us to a proof of Theorem 2 in Appendix C.12.

C.4. Bellman Equation for Optimal Cost-to-go

Lemma 5. The Bellman equation for the original system can be written as

Jt(It) = inf
at∈A(It)

Eξt [Jt+1(f (It, at, ξt))] + v

 ∑
k∈[K]0

Ik
t , I

1
t + a1t , . . . , I

K
t + aK

t

 . (38)

Recall that Jt(It) represents the optimal cost-to-go for the original system from period t ∈ [T ] when

starting at state It. The Bellman equation is

Jt(It)
(i)
= inf

at∈A(It)

Eξt

Jt+1(f (It, at, ξt))+
∑
k∈[K]

(
pk(ξkt − (Ik

t + ak
t ))

+ +hk(Ik
t + ak

t − ξkt )
+
)

+h0(I0t −
∑
k∈[K]

ak
t )


(ii)
= inf

at∈A(It)

{
Eξt

[
Jt+1(f (It, at, ξt))+h0I0t

+
∑
k∈[K]

(
pk(ξkt − (Ik

t + ak
t ))

+ +hk(Ik
t + ak

t − ξkt )
+−h0ak

t

)
(iii)
= inf

at∈A(It)

Eξt

Jt+1(f (It, at, ξt))+h0
∑

k∈[K]0

Ik
t

+
∑
k∈[K]

(
pk(ξkt − (Ik

t + ak
t ))

+ +hk(Ik
t + ak

t − ξkt )
+−h0(Ik

t + ak
t )
)

(iv)
= inf

at∈A(It)

Eξt [Jt+1(f (It, at, ξt))] + v

 ∑
k∈[K]0

Ik
t , I

1
t + a1t , . . . , I

K
t + aK

t

 ,

where (ii) is obtained by reorganizing h0(I0t −
∑

k∈[K] a
k
t ), (iii) by adding and subtracting h0

∑
k∈[K] I

k
t , and

(iv) from the definition of v(·) (see (28)).

C.5. Cost-to-go of relaxed systems depends solely on Zt

Lemma 6. For any It ∈RK+1, the cost-to-go for the partially relaxed system (and the fully relaxed system)

depends on It solely through the total inventory on hand Zt =
∑

k∈[K]0
Ik
t .

We prove the result by backward induction in t. Let J̆t(It) be the optimal cost-to-go for the partially

relaxed setting when starting from period t at state It. Clearly, J̆T (IT ) = R̂T (ZT ) depends only on ZT .

Suppose J̆t+1(It+1) depends only on Zt+1 = Zt + a0t −Ξt. As deduced in (34), J̆t(It) satisfies the following

Bellman Equation

J̆t(It) = R̂(Zt)+ min
a0
t∈R+

EΞt

[
J̆t+1(Zt + a0t −Ξt)

]
, (39)
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for R̂(·) defined in (33). (We abuse notation in writing J̆t+1(It+1) = J̆t+1(Zt+1), since by induction hypothesis

J̆t+1(It+1) depends only on Zt+1.) Since the right-hand side depends only on Zt so does the left-hand side.

Induction on t= T − 1, T − 2, . . . ,1 completes the proof.

C.6. Convexity of R̂(Z), J̆t and Ĵt

[ Proof of Lemma 2] We first show the convexity of R̂(·). Note that for every demand trace,∑
k∈[K] [p

k(ξkt − yk)+ +hk(yk− ξkt )
+−h0yk] is convex in yk, as linear functions are convex, the pos-

itive part operator preserves convexity (as it is the maximum of linear functions), and the sum

of convex functions is also convex. Further, as expectation preserves convexity, we have that∑
k∈[K]Eξkt

[(pk(ξkt − yk)+ +hk(yk− ξkt )
+−h0yk)] is also convex in yk.

Consider arbitrary Z ∈ R+ and Z ∈ R+ and let y, y be the store inventory level vectors for which the

minima of the problem (33) (which defines R̂(·)) with initial total inventory Z and Z, respectively, are

attained. For any λ∈ (0,1), letting y= λy+(1−λ)y, we have that∑
k∈[K]

yk =
∑
k∈[K]

(λyk +(1−λ)yk)

= λ
∑
k∈[K]

yk +(1−λ)
∑
k∈[K]

yk

≤ λZ +(1−λ)Z,

where we used the feasibility of y (resp. y) for problem (33) with Z (resp. Z). Hence, y is a feasible solution

to the problem (33) with initial total inventory Y = λZ +(1−λ)Z. Further, note that

v(Y, y1, . . . , yK) = h0(λZ +(1−λ)Z)+
∑
k∈[K]

Eξkt

[(
pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk
)]

(i)

≤ h0(λZ +(1−λ)Z)+λ
∑
k∈[K]

Eξkt

[(
pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk
)]

+(1−λ)
∑
k∈[K]

Eξkt

[(
pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk
)]

= λR̂(Z)+ (1−λ)R̂(Z) ,

where (i) follows from the convexity of
∑

k∈[K]Eξkt
[(pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk)] in yk. Thus, clearly,

R̂(λZ + (1− λ)Z) = R̂(Y )≤ v(Y, y1, . . . , yk)≤ λR̂(Z) + (1− λ)R̂(Z). Since this holds for arbitrary arbitrary

Z ∈R+ and Z ∈R+, we conclude that R̂(·) is convex.

The convexity of J̆t(·) and Ĵt(·) follows by backward induction in t. We provide the argument for J̆t(·),

and the argument for Ĵt(·) is similar. Note that J̆T (·) = R̂(·) is convex as shown above. Suppose J̆t+1(·) is

convex. Recall the Bellman equation (34) for the partially relaxed system. We have shown above that the

first term on the right R̂(·) is convex. We will now argue that the second term on the right of (34) is also

convex. Let y0t ≡ a0t +Zt and ℓ̆(y0t )≡EΞt

[
J̆t+1(y

0
t −Ξt)

]
. Since J̆t+1(·) is convex, so is ℓ̆(·). The second term

on the right of (34) is nothing but

min
y0
t≥Zt

ℓ̆(y0t ) .
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Let y∗ ≡ argminy0
t≥R ℓ̆(y

0
t ) be the minimizer of ℓ̆(·). Then,

min
y0
t≥Zt

ℓ̆(y0t ) =

{
ℓ̆(y∗) for Zt ≤ y∗

ℓ̆(Zt) for Zt > y∗ ,

and its convexity follows from the convexity of ℓ̆(y0t ) for y
0
t ≥ y∗. Since the right-hand side of (34) is the sum

of convex functions, we deduce that J̆t(·) is convex. Induction on t= T − 1, T − 2, . . . ,1 completes the proof.

C.7. Proof of Proposition 1

[ Proof of Proposition 1.]

We will first show the inequality Ĵ1(Z1)≤ J̆1(Z1). We will show by induction for t= T,T − 1, . . . ,1 that

for any total inventory level Zt at time t, the optimal cost-to-go in the fully relaxed setting is weakly smaller

than that of the partially relaxed setting Ĵt(Zt)≤ J̆t(Zt). The desired result Ĵ1(Z1)≤ J̆1(Z1) will follow for

the cost-to-go from the initial period.

We clearly have ĴT (ZT ) = J̆T (ZT ) = R̂(ZT ) for every ZT . This forms our induction base. As our induction

hypothesis, let us assume that Ĵt+1(Zt+1)≤ J̆t+1(Zt+1) for all Zt+1 ∈R+. We now show that Ĵt(Zt)≤ J̆t(Zt)

for all Zt ∈ R+. Let π̂ and π̆ be optimal policies for the partially relaxed and the fully relaxed systems,

respectively. Recall that Ût =
∑

k∈[K]U
k
t is the sum of the K uniforms at time t and that J̆t+1(Z) is convex

in Z by Lemma 2. Therefore, for any Zt, we have

J̆t(Zt) = R̂(Zt)+EBt

[
EÛt

[
J̆t+1(Zt + aπ̆0

t −BtÛt)
]]

(i)

≥ R̂(Zt)+EBt

[
J̆t+1(Zt + aπ̆0

t −Btµ̂)
]

(ii)

≥ R̂(Zt)+EBt

[
Ĵt+1(Zt + aπ̆0

t −Btµ̂)
]

(iii)

≥ R̂(Zt)+EBt

[
Ĵt+1(Zt + aπ̂0

t −Btµ̂)
]

(iv)
= Ĵt(Zt),

where (i) follows by applying Jensen’s inequality to J̆(·), (ii) by hypothesis, and (iii) by the fact that π̂

minimizes Ĵt+1(Zt+aπ0−Btµ̂), and (iv) is just the Bellman equation for the fully relaxed system. Therefore,

we can conclude that Ĵt ≤ J̆t for every t∈ [T ]. In particular, it holds for t= 1 and Ẑt =Zt.

We clearly have the second inequality J̆1(Z1)≤ J1(Z1) given that the action space in the partially relaxed

setting contains that of the original setting.

C.8. Proof of Lemma 3

Equation (35) takes the form of an inventory problem for a single location under convex costs. Following

Federgruen and Zipkin (1984a), the optimal policy is given by a base-stock policy (we refer to it as an

echelon-stock policy given that it considers the system-wide level of inventory).

To show that the policy is stationary, let Ŝt for every t∈ [T ] be the optimal echelon-stock level at period

t. Note that for all t∈ [T ],

Ŝ = arg min
S∈R+

EBt

[
R̂(S−Btµ̂)

]
(40)
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by definition of Ŝ and the fact that Bt is i.i.d. Consequently, infa0
t≥0

{
EBt

[
R̂(Zt + a0t −Btµ̂)

]}
={

EBt

[
R̂(max(Ŝ,Zt)−Btµ̂)

]}
, where we further used convexity of R̂(·) (Lemma 2).

We will show that Ŝt = Ŝ for all t ∈ [T − 1] by backward induction in t= T − 1, T − 2, . . . ,1. Plugging in

the echelon stock policy, the Bellman Equation at period T − 1 takes the form

ĴT−1(ZT−1) = R̂(ZT−1)+EBT−1

[
R̂(max(ŜT−1,ZT−1)−BT−1µ̂)

]
,

and hence ŜT−1 = Ŝ using (40).

Suppose Ŝt = Ŝ. We will show that Ŝt−1 = Ŝ. For period t− 1, the Bellman Equation takes the form

Ĵt−1(Zt−1) = R̂(Zt−1)+EBt−1

[
Ĵt(Ŝt−1−Bt−1µ̂)

]
= R̂(Zt−1)+EBt−1

[
R̂(Ŝt−1−Bt−1µ̂)

]
+EBt−1

[
inf

a0
t≥Ŝt−1−Bt−1

{
EBt

[
Ĵt+1

(
(a0t + Ŝt−1−Bt−1µ̂)−Btµ̂

)]}]
︸ ︷︷ ︸

A(Ŝt−1)

.

Note that Ŝt−1 affects the second and third terms on the right. We will show that Ŝt−1 = Ŝ causes each

of the second and third terms to be individually minimized. For the second term, this follows from (40).

Consider the third term. Setting Ŝt−1 = Ŝ implies that Ŝt−1 −Bt−1µ̂≤ Ŝ for both possible values of Bt−1.

Consequently,

A(Ŝ) =EBt

[
Ĵt+1(Ŝ−Btµ̂)

]
=min

S∈R
EBt

[
Ĵt+1(S−Btµ̂)

]
by our induction hypothesis that Ŝt = Ŝ, i.e., setting Ŝt−1 = Ŝ also causes the third term to be minimized.

We deduce that Ŝt−1 = Ŝ. Induction completes the proof that the optimal echelon stock level is time invariant

and equal to Ŝ for t= T − 1, T − 2, . . . ,1.

C.9. Proof of Lemma 4

In Appendix C.8 we showed that the optimal base-stock level Ŝ for the fully relaxed system must

minimize qR̂(Ŝ−DH)+(1− q)R̂(Ŝ−DL). Recall that y and y denote the optimal solutions for problem (33)

with total inventory Ŝ−DH
t and Ŝ−DL

t , respectively.

We will first prove that Ŝ is such that yk ≥ γLak for every k. Suppose the opposite, i.e., Ŝ is such that

yk < γLak for some k. Let δk > 0 be such that yk + δk < γLak, and consider a base-stock level Ŝ + δk. In

the problem (33) with total inventory (Ŝ + δk −DH
t ), we can construct a feasible solution y(δk) such that

y(δk)k = yk+δk and y(δk)j = yj for all j ̸= k, reducing cost D by pkδk as the extra δk will be sold immediately

w.p. 1 given that the realized demand will be at least γLak. We can keep y unperturbed, increasing cost by

h0δk, as there are an additional δk units being held at the warehouse. Therefore, the expected cost is reduced

by at least qpkδk − (1− q)h0δk > 0, so Ŝ could not have been optimal. We thus conclude that yk ≥ γLak for

every k ∈ [K].

Now, note that the KKT conditions of R̂(Z) can be written as:

−pkP(ξkt ≥ yk)+hkP(ξkt ≤ yk)−h0 +λ= 0 ∀y ∈ [K]

λ · (
∑
k∈[K]

yk−Z) = 0,

∑
k∈[K]

yk−Z ≤ 0,

λ≥ 0.

(41)
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It can be easily verified that the optimal yk for a problem R̂(Z) are weakly increasing in Z by the

optimality conditions (41) and the convexity of costs. Therefore, y ≥ y. Clearly, as h0 < hk, a solution such

that yk > γHbk cannot be optimal, as the units above γHbk will not be sold immediately w.p. 1. We can

hence conclude that γHbk ≥ yk ≥ yk ≥ γLak for each k ∈ [K].

The proof for the fact that an optimal policy for the fully relaxed system does not move inventory from

a store to other stores or to the warehouse was provided in the paragraph immediately after the lemma

statement.

Additionally, the first condition in (41) implies that yk = F−1
ξkt

(
pk+h0−λ

pk+hk

)
for every k ∈ [K]. This allows us

to write yk =G(Rk) = F−1
ξkt

(
pk+h0−λ

pk+hk

)
and yk =G(Rk) = F−1

ξkt

(
pk+h0−λ

pk+hk

)
, with λ and λ the optimal values

of dual variable λ for problem (33) with initial total inventories Ŝ−DH
t and Ŝ−DL

t , respectively. Note that

G and G are continuous functions of problem primitives Rk, since the assumptions outlined in Example 1

imply that pk +hk ≥ p+h> 0 for every k ∈ [K].

C.10. Proof of Proposition 2

To prove this proposition, we define some specialized notation. Let cπ̃(It) = v (Zt, a
π̃1
t (It), . . . , a

π̃K
t (It)) be the

immediate cost under π̃. Recall that Zt+1 = Ŝ −Ξt under π̃ and that Ẑt+1 = Ŝ −Dt following the optimal

policy for the fully relaxed setting. We will use the following two lemmas, which we will prove at the end of

this section.

Let α= |R̂(Ŝ−DL)− R̂(Ŝ−DH)|+max{p,h}(|DH−DL|).

The next lemma bounds the immediate cost under π̃ by R̂(Zt), which plays the role of the immediate

cost in the partially relaxed system (See (34)) plus two extra terms. The term max{p,h}(|Ẑt−Zt|) penalizes

deviations in overall system inventory from the level Ẑt observed in the fully relaxed system and the term

1(W̃t(Zt) ̸=Wt)α penalizes cases when the the “estimate” W̃t of whether demand was high or low in the

previous period was incorrect.

Lemma 7. In any period t, with probability 1,

cπ̃(It)≤ R̂(Ẑt)+max{p,h}(|Ẑt−Zt|)+1(W̃t ̸=Wt)α. (42)

The next lemma bounds key terms in (42) in terms of the deviations of the sum of zero-mean uniforms

random variables from the sum’s mean. Recall that ŨK
1 =

∑
k∈[K](U

k
1 − µk) is the sum of K zero-mean

uniforms.

Lemma 8. For t∈ {2, . . . , T},

E
[∣∣∣Ẑt−Zt

∣∣∣]≤ γHE
[∣∣∣ŨK

1

∣∣∣] . (43)

and

P
(
W̃t ̸=Wt

)
≤ P

(∣∣∣ŨK
1

∣∣∣≥ µ̂
γH− γL

2γH

)
. (44)

We now prove Proposition 2.
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[ Proof of Proposition 2] By taking expectation on (42), using (43) and (44), we get that for t= 2, . . . , T

E[cπ̃(It)]≤E
[(

R̂(Ẑt)+max{p,h}(|Ẑt−Zt|)
)
+α1(W̃t ̸=Wt)

]
≤E[R̂(Ẑt)] +max{p,h}γHE

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)
.

Using this inequality, we conclude that

J π̃
1 (It) = cπ̃(I1)+E

[
T∑

t=2

cπ̃(It)

]

≤ cπ̃(I1)+E

[
T∑

t=2

R̂(Ẑt)

]
+(T − 1)

[
max{p,h}γHEŨK

1

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)]

= R̂(Z1)+E

[
T∑

t=2

R̂(Ẑt)

]
+(T − 1)

[
max{p,h}γHEŨK

1

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)]
= Ĵ1(Z1)+ (T − 1)

[
max{p,h}γHEŨK

1

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)]
≤ Ĵ1(Z1)+T

[
max{p,h}γHEŨK

1

[∣∣∣ŨK
1

∣∣∣]+αP
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)]
.

The first and third equalities apply the definitions of the cost-to-go functions under the two systems. The

second equality uses that cπ̃(I1) = v (Z1, a
π̃1
1 (I1), . . . , a

π̃K
1 (I1)) = R̂(Z1) = R̂(Ẑ1) because of how the policy π̃ is

constructed and because the initial inventory levels (Z1 and Ẑ1) in the two systems are equal by construction.

We now return to prove the lemmas stated above.

Lemma 7 follows from two facts: (i) Whenever the policy π̃ correctly “estimated” whether the demand in

the previous period was low (i.e., W̃t =Wt) we can bound the difference in the costs incurred in the fully

relaxed and original systems by a quantity proportional to the difference in system-wide inventories among

systems. Here we make use of Lemma 4 which assures us that we can do as well in the original system as

in a fully relaxed system with the same system-wide inventory. (ii) Whenever the estimation is wrong (i.e.,

W̃t ̸=Wt), we incur an additional cost of at most |R̂(Ŝ−DH)− R̂(Ŝ−DL)|.

[ Proof of Lemma 7.]

Let rk(yk) =Eξkt
[(pk(ξkt − yk)+ +hk(yk− ξkt )

+−h0yk)], so that v(Z,y1, . . . , yK) = h0Z +
∑

k∈[K] r
k(yk). It

is clear that

rk(yk−x)− rk(yk)≤ px (45)

for all k ∈ [K] as, in the worst case, x fewer units can cause an additional underage cost of px.

Now, recall that, given the definition of W̃t, we will have that π̃ will follow the base-stock levels y whenever

Ŝ − DL+DH

2
≤ Zt. Let us first address two separate cases in which π̃ follows y. These differ on whether

Zt ≤ Ŝ−DL or Zt > Ŝ−DL.

Let us first consider the case Zt > Ŝ−DL. We have

Rπ̃(It) = h0Zt +
∑
k∈[K]

rk(aπ̃k
t (It))

(i)
= h0Zt +

∑
k∈[K]

rk(yk)
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(ii)
= h0(Zt− (Ŝ−DL))+h0(Ŝ−DL)+

∑
k∈[K]

rk(yk)

(iii)
= h0(Zt− (Ŝ−DL))+ R̂(Ŝ−DL),

where (i) follows by the fact that, as implied by Lemma 4, aπ̃k
t (It) = yk whenever Zt > Ŝ−DL, (ii) by adding

and subtracting h0(Ŝ−DL) and (iii) by the definition of R̂(Ŝ−DL)

Similarly, if Ŝ− DL+DH

2
≤Zt ≤ Ŝ−DL, we have

Rπ̃(It) = h0Zt +
∑
k∈[K]

rk(aπ̃k
t (It))

(i)

≤ h0(Ŝ−DL)+
∑
k∈[K]

rk(aπ̃k
t (It))

(ii)
= h0(Ŝ−DL)+

∑
k∈[K]

rk(yk)+
∑
k∈[K]

(rk(aπ̃k
t (It))− rk(yk))

(iii)

≤ h0(Ŝ−DL)+
∑
k∈[K]

rk(yk)+ p(Ŝ−DL−Zt)

(iv)
= R̂(Ŝ−DL)+ p(Ŝ−DL−Zt),

where (i) follows from Zt ≤ Ŝ −DL, (ii) by adding and subtracting
∑

k∈[K] r
k(yk), (iii) from (45) and the

fact that, using Lemma 4,
∑

k∈[K](y
k − aπ̃k

t (It)) = (Ŝ −DL −Zt) whenever Zt ≤ Ŝ −DL, and (iv) from the

definition of R̂(Ŝ−DL).

Let c=max{p,h}. Given that h> h0, we obtain that whenever Ŝ− DL+DH

2
≤Zt,

Rπ̃(It)≤ R̂(Ŝ−DL)+ c(|Ŝ−DL−Zt|)

= 1(W̃t =Wt)[R̂(Ŝ−DL)+ c(|Ŝ−DL−Zt|)]

+1(W̃t ̸=Wt)[R̂(Ŝ−DL)+ c(|Ŝ−DL−Zt|)]

(46)

Note that under {W̃t =Wt}, we have that Ŝ−DL = Ẑt. Conversely, if {W̃t ̸=Wt}, we have that Ŝ−DH = Ẑt.

Under {W̃t ̸=Wt}, we have

R̂(Ŝ−DL)+ c(|Ŝ−DL−Zt|) = R̂(Ŝ−DL)− R̂(Ŝ−DH)+ c(|Ŝ−DL−Zt| − |Ŝ−DH−Zt|)

+ [R̂(Ẑt)+ c(|Ẑt−Zt|)]
(i)

≤ |R̂(Ŝ−DL)− R̂(Ŝ−DH)|+ c(|DH−DL|)

+ [R̂(Ẑt)+ c(|Ẑt−Zt|)]

≤ α+ [R̂(Ẑt)+ c(|Ẑt−Zt|)],

with α= |R̂(Ŝ−DL)− R̂(Ŝ−DH)|+ c(|DH−DL|), where (i) follows by the triangle inequality.

Applying our previous identities on (46) and rearranging terms, we obtain

Rπ̃(It)≤
(
R̂(Ẑt)+max{p,h}(|Ẑt−Zt|)

)
+1(W̃t ̸=Wt)α (47)

The procedure for the cases in which π̃ follows y are analogous, so we will omit them. We therefore conclude

the desired result.
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[ Proof of Lemma 8.]

Let Ũk
t−1 =

∑
k∈[K](U

k
t−1 − µk) be the sum of the zero-mean uniforms. Then, following π̃, we have Zt =

Ŝ−Ξt−1. Therefore, ∣∣∣Ẑt−Zt

∣∣∣ (i)= ∣∣∣Ŝ−Dt− (Ŝ−Ξt−1)
∣∣∣

(ii)
=

∣∣∣∣∣∣Ŝ−Bt−1µ̂− (Ŝ−Bt−1

∑
k∈[K]

Uk
t−1)

∣∣∣∣∣∣
(iii)
=

∣∣∣∣∣∣Bt−1

∑
k∈[K]

(Uk
t−1−µk)

∣∣∣∣∣∣
(iv)

≤ γH
∣∣∣ŨK

t−1

∣∣∣
where (i) and (ii) follow from the definition of Zt and Ẑt under their respective policies, (iii) by µ̂=

∑
k∈[K] µ

k

and (iv) by Bt ≤ γH. Similarly, noting that the distance between Dt and the “crossing point” DH−DL

2
is given

by ∣∣∣∣Dt−
DH−DL

2

∣∣∣∣= µ̂
γH− γL

2

and recalling that the cumulative demand in the original system can be written as Ξt−1 =Bt−1µ̂+Bt−1Ũ
K
t−1,

we have that (
W̃t ̸=Wt

)
implies

(∣∣∣Bt−1Ũ
K
t−1

∣∣∣≥ µ̂
γH− γL

2

)
.

As Bt−1 ≥ γH and ŨK
t−1 are i.i.d, we deduce that

P
(
W̃t ̸=Wt

)
≤ P

(∣∣∣ŨK
1

∣∣∣≥ µ̂
γH− γL

2γH

)
.

C.11. Bounding E
[∣∣∣ŨK

1

∣∣∣] and P
(∣∣∣ŨK

1

∣∣∣≥ µ̂ γH−γL

2γH

)
Recall the definition of the primitive κ≡maxk∈[K]max(uk,1/uk).

Lemma 9. We have

E
[∣∣∣ŨK

1

∣∣∣]≤ κ
√
K . (48)

Let Ũk
1 = Uk

1 − µk be the zero-mean uniform corresponding to store k. Clearly, Ũk
1 ∼ Uniform(uk −

µk, uk − µk), and has variance Var(Ũk
1 ) = (uk − uk)2/12. Thus, Var(ŨK

1 ) =
∑

k∈K
(uk − uk)2/12. Let ∆ ≡

maxk∈[K] (u
k−uk)≤ κ.

Now, notice that

E
[∣∣∣ŨK

1

∣∣∣]≤(
E
[∣∣∣ŨK

1

∣∣∣2])1/2

= (Var(ŨK
1 ))1/2

≤
√
K∆/

√
12≤ κ

√
K/12 .

We drop the
√
12 to reduce the notational burden, leading to the lemma.
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Lemma 10. We have

P
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)
≤ 4γHκ2

(γH− γL)
√
K

. (49)

U sing the definition of µ̂ as the total expected sum of uniforms and uk ≥ 1/κ∀k ∈ [K], we have the lower

bound

µ̂
γH− γL

2γH
≥ d1K , for d1 =

γH− γL

4γHκ
. (50)

By Markov’s inequality, we have

P
(∣∣∣ŨK

1

∣∣∣≥ µ̂
γH− γL

2γH

)
≤E[|ŨK

1 |]
2γH

µ̂(γH− γL)
≤ 4γHκ2

(γH− γL)
√
K

, (51)

using Lemma 9 and (50) to get the second inequality.

C.12. Proof of Theorem 2

We will use the following lemmas, which we will prove at the end of this subsection.

Lemma 11. There exists a constant C3 = C3(q, p,h,κ) > 0 such that Ĵ1(I1) ≥ C3T
√
K for every I1 and

K.

Lemma 12. There exists a constant C4 =C4(p,h, γ
H, γL, κ)<∞ such that α≤C4K for every K.

[ Proof of Theorem 2.]

Using the bounds in Lemmas 9 and 10 in Proposition 2 (achievability) we obtain

J π̃
1 (I1)≤ Ĵ1(Z1)+T

√
K

[
max{p,h}γHκ+α

4γHκ2

(γH− γL)

]
≤ J1(I1)+C5T

√
K for C5 =C5(γ

H, γL, p, h,κ) , (52)

where the second inequality uses Ĵ1(Z1)≤ J1(I1) from Proposition 1 (converse) and Lemma 12.

By Lemma 11, there exists C3 = C3(q, p,h,κ)> 0 such that J1(I1)≥ C3KT . Dividing (52) by J1(I1), we

obtain

J π̃
1 (I1)

J1(I1)
≤ 1+

C5T
√
K

J1(I1)

≤ 1+
C5

C3

√
K

.

Defining C ≡C5/C3 <∞ yields the theorem.

We now prove Lemmas 11 and 12.

[ Proof of Lemma 11.] Let wk(yk) =Eξkt
[(pk(ξkt − yk)+ +hk(yk− ξkt )

+)] be the expected cost incurred at

period t at store k given that the inventory level before demand is realized is yk. Define νk = γH(uk +uk)/2

and νk = γL(uk + uk)/2, the “mid-points” of the support of the demand distribution conditioned on the

general demand being high and low, respectively. Let β = (γH− γL)/(4κ)> 0. For any choice of yk, we have

that the larger distance ε(yk) between yk and νk, νk, defined as

ε(yk) =max{ |νk− yk|, |νk− yk|},
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satisfies ε(yk)≥ (ν − ν)/2 = (γH − γL)(uk + uk)/4≥ (γH − γL)(uk)/4≥ (γH − γL)/(4κ) = β. Without loss of

generality, let us assume |νk − yk| ≥ β and that yk < νk (all other cases are analogous). Now, P(ξkt ≥ νk)≥
q/2≥ q(1− q)/2. Further, whenever ξkt ≥ νk, a cost of at least min{h,p}β is incurred. Therefore, we must

have that the expected cost per store for each period satisfies wk(yk)≥ min{h,p}q(1−q)β

2
for every possible yk.

Defining C3 ≡
min{h,p}q(1−q)β

2
=

min{h,p}q(γH−γL)

8κ
, we immediately infer that Ĵ1(I1)≥C3TK for all I1.

[ Proof of Lemma 12.] Recall that α= |R̂(Ŝ −DL)− R̂(Ŝ −DH)|+max{p,h}(|DH −DL|). First, given
that uk <κ for every k ∈ [K], we must have that

DH −DL = (γH− γL)µ̂≤ (γH− γL)Kκ. (53)

Now, for the problem (33) with inventory Ŝ−DH , consider its minimizer y. We can build a feasible solution

y to the problem with inventory Ŝ−DL by setting yk = yk for every k. Therefore,

R̂(Ŝ−DL)− R̂(Ŝ−DH)≤ h0(DH −DL), (54)

as following y with initial inventory Ŝ−DL leads to holding an additional (DH −DL) units of inventory in

the warehouse, as compared to that by following y with initial inventory Ŝ−DH .

On the other hand, for the problem (33) with inventory Ŝ −DL, consider its minimizer y. Let us first

consider the case that
∑

k∈[K] y
k >DH−DL. We can build a feasible solution ỹ to the problem with inventory

Ŝ −DH by setting ỹk = yk

∑
k∈[K] y

k−(DH−DL)∑
k∈[K] y

k . Note that
∑

k∈[K] y
k −

∑
k∈[K] ỹ

k =DH −DL. Note that the

warehouse inventory is the same in the two cases, hence the warehouse holding costs are the same, and each

store has lower inventory under ỹ and hence store holding costs are weakly lower under ỹ. Recalling that the

per-unit cost of “scarcity” is upper bounded by p (see (45)), we can conclude that

R̂(Ŝ−DH)− R̂(Ŝ−DL)≤ p(DH −DL) . (55)

Now consider the case that
∑

k∈[K] y
k <DH−DL. We build a feasible solution to the problem with inventory

Ŝ−DH by setting ỹk = 0 for every k. First, clearly,
∑

k∈[K] y
k−

∑
k∈[K] ỹ

k =
∑

k∈[K] y
k <DH−DL, so we can

bound the excess underage costs incurred across stores by p(DH −DL), and stores incur no holding costs.

Furthermore, the inventory at the warehouse when following y for the problem with inventory Ŝ −DL is

given by

y0 = Ŝ−DL−
∑
k∈[K]

yk > Ŝ−DH = ỹ0 .

Hence, warehouse holding costs are smaller in the case of ỹ. Therefore, the upper bound in (55) still applies.

Using (53), (54) and (55), and given that h> h0, we conclude that

α= |R̂(Ŝ−DL)− R̂(Ŝ−DH)|+max{p,h}(|DH−DL|)

≤max{p,h}(DH −DL)+max{p,h}(DH −DL)

= 2max{p,h}(DH −DL)

≤ 2max{p,h}(γH− γL)κK

≤C4K,

where we set C4 = 2max{p,h}(γH− γL)κ.
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