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Lookup table decoding is fast and distance-preserving, making it attractive for near-term quantum
computer architectures with small-distance quantum error-correcting codes. In this work, we develop
several optimization tools that can potentially reduce the space and time overhead required for flag
fault-tolerant quantum error correction (FTQEC) with lookup table decoding on Calderbank-Shor-
Steane (CSS) codes. Our techniques include the compact lookup table construction, the Meet-in-the-
Middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for
flag information, and the separatedX and Z counting technique. We evaluate the performance of our
tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level
noise. Combining all tools can result in more than an order of magnitude increase in pseudothreshold
for the hexagonal color code of distance 9, from (1.34± 0.01)× 10−4 to (1.42± 0.12)× 10−3.

I. INTRODUCTION

Inside a future large-scale quantum computer, there
will be a continuous battle against unwanted interactions
with the environment. The main goal of fault-tolerant
quantum error correction (FTQEC) protocols [1] is to
create a robust channel to transfer quantum information
from the past to the future. The threshold theorem states
that it is possible to suppress the failure rate of this chan-
nel (the logical error rate) to an arbitrarily small value
given that the physical error rate of the constituent op-
erations are below the accuracy threshold [2–7]. It is
essential to reduce both space and time overhead (the
numbers of qubits and gates) for scalable quantum com-
puting as decreasing logical error rates requires increas-
ing overhead [8–11], and the current, leading proposals
for FTQEC schemes have daunting requirements [12, 13].

An FTQEC scheme is designed to be robust against
propagating errors that emerge from faulty gates during
the execution of the protocol [1]. The scheme also has to
protect against ancilla preparation and measurement er-
rors, usually through repeated syndrome measurements.
For an [[n, k, d]] stabilizer code [14] which encodes k log-
ical qubits into n physical qubits and has minimum dis-
tance d, Shor’s solution [1] was to utilize cat-state an-
cilla register that requires w ancilla qubits and (d+1)2/4
rounds of syndrome measurements, where w is the max-
imum weight of the stabilizer generators. In Steane-style
syndrome extraction [15], the ancilla register requires n
qubits and is encoded with the same quantum error cor-
recting code (QECC) as the data qubits. Similarly, in
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Knill-style error correction [16], the ancilla register con-
sists of two blocks of n qubits encoded in the same QECC
as the data qubits.
In contrast to complex ancilla structures, bare ancillas

can also be used to fault-tolerantly extract the syndrome
while preserving the minimum distance for some specific
families of stabilizer codes [17–19] and subsystem codes
[20–22], or by tolerating some loss of distance [23–25].
For a general stabilizer code, however, generator mea-
surements with bare ancillas might not be possible. A
series of works aiming to reduce the size of the ancilla
register resulted in increasingly lighter-weight construc-
tions [26, 27], which also led to the flag FTQEC schemes
for perfect codes of distance three that use only two ancil-
las per generator [28], one flag-qubit and one syndrome
qubit. The flag schemes later generalized to arbitrary
codes of distance d require d + 1 ancillas per generator
[29], while the schemes for some specific families of codes
require fewer [30–35].
FTQEC schemes based on extraction circuits with

cat states and flag FTQEC schemes both require rep-
etition of syndrome measurements that can result in a
large number of gates. Adaptive syndrome measurement
schemes in which the subsequent measurement proce-
dures depend on the previous syndrome measurement
outcomes have been explored to reduce the number of
rounds required for FTQEC schemes with Shor-type ex-
traction circuits [36–38].
During the execution of an FTQEC protocol, faults

can occur at any gate on any round of the syndrome
measurements. The only information about the error on
data qubits that we can obtain is a sequence of error
syndromes, and we want to find an appropriate recov-
ery operator from this information. An ideal strategy
would be using all syndrome bits from all rounds, that
is, the whole measurement outcomes in space-time. For
some codes with a nice structure, such as surface codes,
an efficient space-time decoder exists [39]. However, con-
structing a space-time decoder for a general stabilizer
code is not simple. To simplify the problem, we will con-
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sider an error decoder, which is composed of two parts:
the space and the time decoders. Under the assumption
that the syndrome measurements can be faulty, the time
decoder finds a round of syndrome measurements that
has no faults and gives a correct syndrome. The space
decoder then uses the correct syndrome to construct a
recovery operator.

Conventionally, flag FTQEC uses a lookup table de-
coder as a space decoder and relies on Shor-style re-
peated syndrome measurements as a time decoder, al-
though there are instances where this is not the case [40].
These decoders have pros and cons. The lookup table de-
coder is fast and distance-preserving. However, building
a lookup table requires an exhaustive search over all pos-
sible fault combinations up to a certain number of faults,
and the table requires a lot of memory to store. Thus, it
might not work well with a code of high distance (unless
code concatenation is applied). The Shor-style time de-
coder is simple and compatible with any space decoder.
However, the large time overhead required in the repeti-
tion can result in a lower threshold.

In this work, we build several optimization tools for
both space and time decoders for the purpose of reducing
the overhead of both to obtain better-performing pro-
tocols for flag qubit-based FTQEC. Most of our tools
are applicable to general stabilizer codes, but we pri-
marily focus on self-orthogonal CSS codes (CSS codes in
which X- and Z-type generators are of the same form)
in which the number of physical qubits is odd, the num-
ber of logical qubits is 1, and logical X and Z oper-
ators are transversal for simplicity. Our main results
are the following: (1) We develop a technique to build
a lookup table more efficiently. Our compact lookup ta-
ble can leverage the structure of a self-orthogonal CSS
code and requires 87.5% less memory footprint compared
to a lookup table designed for a generic stabilizer code.
Our method also efficiently verifies whether a configura-
tion of the flag circuits preserves the code distance. The
development also leads to a notion of fault code, which
can be useful in error sampling for the circuit-level noise
model. (2) We introduce the Meet-in-the-Middle (MIM)
technique, which can help the lookup table decoder cor-
rect faults more than the number of errors correctable by
the underlying code. Although the correction is not al-
ways successful, the higher success probability can signif-
icantly increase the pseudothreshold in our simulations.
(3) We generalize previous work [38] on adaptive syn-
drome measurement schemes to flag FTQEC and intro-
duce one-tailed and two-tailed adaptive time decoders,
which are useful in different circumstances. We also de-
velop a classical processing technique on flag information
that makes our FTQEC protocols compatible with any
fault-tolerant Clifford computation. (4) We use our op-
timization tools and perform numerical simulations on
the hexagonal color codes [41] of distances 3, 5, 7, and
9. The results show that each of our tools can signif-
icantly reduce the logical error rates and increase the
pseudothreshold for each code while preserving the code

distance. For the hexagonal color code of distance 9, the
pseudothreshold is improved by one order of magnitude,
from (1.34± 0.01)× 10−4 to (1.42± 0.12)× 10−3, when
all techniques are applied.
This paper is organized as follows. In Section II, we

define the noise model in this work, review flag FTQEC,
and provide definitions of fault-tolerant error correction.
In Section III, we develop optimization tools for space de-
coder, including an efficient method to build a compact
lookup table and the MIM technique. In Section IV,
we develop optimization tools for time decoder, includ-
ing the one-tailed and two-tailed adaptive time decoder,
and other extended techniques for CSS codes. In Sec-
tion V, we provide numerical results for the hexagonal
color codes and observe the effects of the MIM, the adap-
tive time decoding, and the separated X and Z counting
techniques on the logical error rates. We discuss and
conclude our results in Section VI.

II. BACKGROUND

Quantum systems are fragile and can lose their prop-
erties easily when interacting with the environment. To
protect quantum information, one can use a QECC to
encode the quantum data. Quantum error correction
(QEC) is a process that identifies an error when it occurs
and then applies an appropriate error correction (EC) op-
erator to remove the error. However, quantum operations
in the process can be faulty and may introduce more er-
rors to the system. For this reason, we want to make
sure that the QEC process is fault tolerant, which pro-
vides robustness guarantees against the impact of noise
on the error correction implementations.
In this section, we first describe the noise model

that will be used in this work and provide the conven-
tional definition of fault-tolerant error correction in Sec-
tion IIA. We then review flag FTQEC and provide a re-
vised definition of fault-tolerant error correction, which
is more suitable for flag FTQEC in Section II B.

A. Noise model and conventional definition of
fault-tolerant error correction

An [[n, k, d]] stabilizer code [14] encodes k logical qubits
using n physical qubits and can correct up to τ =
⌊(d− 1)/2⌋ errors, where d is the code distance. A stabi-
lizer code is described by a stabilizer group, an Abelian
group generated by r = n−k commuting Pauli operators
whose elements are called stabilizers. The code space is
the simultaneous +1 eigenspace of all elements in the
stabilizer group.
The QEC process for a stabilizer code can be done by

first measuring the eigenvalues of all stabilizer genera-
tors. An r-bit string of measurement outcomes is called
the error syndrome (where bits 0 and 1 refer to +1 and
−1 eigenvalues of each generator). An example of a cir-
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FIGURE 1: A syndrome extraction circuit with bare
ancilla for measuring a stabilizer generator of the form
ZZZZ.

cuit for measuring an eigenvalue of a stabilizer generator
is displayed in Fig.1. After the syndrome is obtained, an
appropriate recovery operator will be found by a map-
ping called error decoder. Finally, the recovery operator
will be applied to the data qubits. For Calderbank-Shor-
Steane (CSS) codes [15, 42], it is possible to correct X-
and Z-type errors separately. In this work, we follow
standard CSS decoding [43], meaning independent recov-
ery for X- and Z-type errors, thus not taking the effect
of X/Z correlations like Y errors into account.
If all gates in the syndrome measurement process (with

an example circuit in Fig.1) are perfect, a stabilizer code
of distance d should be able to correct up to τ errors as
desired. However, the process above may not be fault-
tolerant under the circuit-level depolarizing noise. This
is because a single faulty gate may lead to an error that
can propagate to multiple errors on the data qubits, often
referred to as hook errors [39]. These errors can always
be handled by complex ancilla [1, 44, 45] or flag circuits
[28] and sometimes handled by the circuit order [17–19].

In this work, we use the circuit-level depolarizing noise
model. After each gate, a fault occurs on the support of
the gate. Every single-qubit gate is followed by a single-
qubit Pauli operator P ∈ {X,Y, Z} with probability p/3
each, and every two-qubit gate is followed by a two-qubit
Pauli operator P1 ⊗ P2 ∈ {I,X, Y, Z}⊗2 \ {I ⊗ I} with
probability p/15 each. In addition, a single-qubit prepa-
ration and measurement can also be faulty; this is mod-
eled be a bit-flip channel after a single-qubit preparation
or before a single-qubit measurement with error proba-
bility p.

One way to define FTQEC is by using the definition
proposed by Aliferis, Gottesman, and Preskill:

Definition 1. Fault-tolerant error correction [6]
Let t ≤ ⌊(d−1)/2⌋ where d is the distance of a stabilizer

code. An error correction protocol is t-fault tolerant if the
following two conditions are satisfied:

1. Error correction correctness property (ECCP): For
any input codeword with error of weight r, if s faults
occur during the protocol with r + s ≤ t, ideally
decoding the output state gives the same codeword
as ideally decoding the input state.

2. Error correction recovery property (ECRP): If s
faults occur during the protocol with s ≤ t, regard-
less of the weight of the error on the input state,

•
•
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•
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FIGURE 2: A Shor syndrome extraction circuit for mea-
suring a stabilizer generator of the form ZZZZ.

the output state differs from any valid codeword by
an error of weight at most s.

When a QEC protocol satisfies Definition 1, it is guar-
anteed that the output error will have weight ≤ t when-
ever the weight of the input error plus the total number
of faults in the protocol is ≤ t. This means that if the
next round of QEC has no faults, it can always correct
the output error from the current round. Normally, we
would like to construct an FTQEC protocol in which t
is as close to τ = ⌊(d − 1)/2⌋. If t = τ , we say that the
FTQEC protocol preserves the code distance.

B. Flag technique and revised definition of
fault-tolerant error correction

Before describing the flag technique for FTQEC, let
us consider a well-known Shor FTQEC [1] applied to a
stabilizer code of distance d. In this scheme, a stabi-
lizer generator of weight w is measured using a cat state
of the form 1√

2
(|0⟩⊗w + |1⟩⊗w) and transversal CNOT

gates; see Fig. 2. A circuit of this kind will be called a
Shor syndrome extraction circuit. When the cat state is
prepared fault-tolerantly, a single fault in the circuit can
lead to an error of weight no more than one on the data
qubits, so the set of all possible errors arising from up to
t faults is exactly the same as a set of all possible errors
on ≤ t qubits in this case. Therefore, any syndrome can
uniquely identify the error (up to a multiplication of some
stabilizer) when the number of faults in the protocol is
≤ t.
One drawback of the Shor syndrome extraction circuit

is that the number of required ancilla qubits is equal to
the maximum weight of the stabilizer generators. Also,
fault-tolerant preparation of the ancilla cat state requires
verification [1] or Divincenzo-Aliferis ancilla decoding cir-
cuit [26], which requires additional space and time over-
head. One possible technique that can reduce the number
of required ancillas for FTQEC is the flag technique [28],
in which each syndrome extraction circuit uses one an-
cilla qubit to keep the syndrome measurement outcome



4

and a few flag ancillas to find a location that a fault
might have occurred. A circuit of this kind will be called
a flag circuit ; See Fig. 3 for an example. The flag mea-
surement outcomes give extra information that can be
used to partition set of all possible errors from a certain
number of faults. Therefore, it is possible to distinguish
between two non-equivalent errors that correspond to the
same syndrome if the flag measurement outcomes associ-
ated with each error are different, making error correction
easier.

Here we define fault combination, fault set, and distin-
guishability of a fault set as follows:

Definition 2. Fault combination, combined data error,
and cumulative flag vector [35]

A fault combination Λ = {λ1, λ2, . . . , λr} is a set of r
faults λ1, λ2, · · · , λr. Suppose that the Pauli error due to
the fault λi can propagate through the circuit and lead to

data error E(λi) and flag vector f⃗(λi). The combined

data error E(Λ) and cumulative flag vector F⃗ (Λ) corre-
sponding to the fault combination Λ are,

E(Λ) =

r∏
i=1

E(λi), (1)

F⃗ (Λ) =

r∑
i=1

f⃗(λi) (mod 2). (2)

Definition 3. Distinguishable fault set [35]
Let S be the stabilizer group of a stabilizer code, and

let the fault set Ft denote the set of all possible fault
combinations arising from up to t faults during the mea-
surement of stabilizer generators of S. We say that Ft

is distinguishable if for any pair of fault combinations
Λp,Λq ∈ Ft, at least one of the following conditions is
satisfied:

1. s⃗(E(Λp)) ̸= s⃗(E(Λq)), or

2. F⃗ (Λp) ̸= F⃗ (Λq), or

3. E(Λp) = E(Λq) ·M for some stabilizer M ∈ S,

where s⃗(E) is the error syndrome of a combined error E.
Otherwise, we say that Ft is indistinguishable.

Note that the cases of faulty flag qubit measurements
are included when the fault set is calculated for verifying
fault set distinguishability (see Section IIIA). Having a
distinguishable fault set is a key to successful error de-
coding. Given a set of syndrome extraction circuits (with
or without flags), we can calculate the fault set Ft and
check whether it is distinguishable. If it is, all possi-
ble errors arising from up to t faults that correspond to
the same syndrome and cumulative flag vector are always
logically equivalent. Therefore, if the syndrome measure-

ments give a syndrome s⃗ and a cumulative flag vector F⃗ ,

we can pick any error that corresponds to the pair (s⃗, F⃗ )

•
•

•
•

|0⟩

|0⟩ H • • H

FIGURE 3: A flag circuit for measuring a stabilizer gen-
erator of the form ZZZZ.

to be a recovery operator. Using this idea, a decoding
table and an FTQEC protocol can be constructed.
With the notion of fault distinguishability, it is possible

to further generalize the definition of FTQEC as follows:

Definition 4. Fault-tolerant error correction (revised)
[35]
Let t ≤ ⌊(d−1)/2⌋ where d is the distance of a stabilizer

code. An error correction protocol is t-fault tolerant if the
following two conditions are satisfied:

1. ECCP: For any input codeword with an error that
can arise from r faults before the protocol and corre-
sponds to the zero cumulative flag vector, if s faults
occur during the protocol with r+ s ≤ t, ideally de-
coding the output state gives the same codeword as
ideally decoding the input state.

2. ECRP: If s faults occur during the protocol with
s ≤ t, regardless of the number of faults that can
cause the input error, the output state differs from
any valid codeword by an error that can arise from
s faults and corresponds to the zero cumulative flag
vector.

The main difference between these two definitions of
FTQEC is that Definition 4 considers the number of
faults that can cause the input (or the output) error in-
stead of the weight of the error. An FTQEC protocol
satisfying Definition 4 can be constructed if we can find
syndrome extraction circuits that give a distinguishable
fault set (see previous results [35] by one of the authors of
this work and the discussion in the next section for more
details). In fact, while the threshold theorem proved by
Aliferis, Gottesman and Preskill [6] relied on the weight
of the error to define fault tolerance (Definition 1), the
theorem has been shown to hold [35] even if the definition
of fault tolerance uses the number of faults (Definition 4)
instead. For flag FTQEC, using Definition 4 can result
in simpler FTQEC protocols, so we will use Definition 4
in the protocol development throughout this work.

III. OPTIMIZATION TOOLS FOR SPACE
DECODING

In this work, the term space decoder refers to a pro-
cess that finds a recovery operator from a given syndrome
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under the assumption that it is exactly the same as the
syndrome of an error that occurred to the codeword. The
decoder succeeds if multiplying the error and the recovery
operator gives a trivial logical operator (a stabilizer), and
it fails if the multiplication gives a nontrivial logical op-
erator. Our goal is to develop a space decoder such that
whenever the total number of faults in the whole proto-
col is ≤ t, the decoder always succeeds. In this work,
we are interested in a lookup table-based space decoder
for flag FTQEC, so the decoder will use both syndrome
and flag information obtained during the syndrome mea-
surements. Note that the ability to correct faults for a
certain code depends on the structure of the circuits for
syndrome extraction, such as the ordering of gates.

In this section, we develop optimization tools for space
decoding. In Section IIIA, we discuss how to efficiently
construct a lookup table for error decoding for a distin-
guishable fault set Ft, and introduce the notion of fault
code. In Section III B, we discuss the Meet-in-the-Middle
technique, an additional technique that can help improv-
ing our space decoders for both codes and increase the
accuracy of the decoding.

A. Compact lookup table for minimum weight
decoding and fault code

In this section, we discuss how to construct the fault set
Ft, verify its distinguishability, and construct the lookup
table for error decoding. With our method, we can re-
duce the memory footprint requirement of the lookup ta-
ble by 87.5% for self-orthogonal CSS codes compared to
a lookup table designed for generic stabilizer codes. We
also present the framework of fault codes that enables
fast construction using streamlined Pauli-frame simula-
tion represented as matrix algebra operations over GF(2).

A brief summary of our methods is as follows. Let the
weight of a fault combination be the number of faults
that give rise to the fault combination. The decoding

table maps each full syndrome (s⃗, F⃗ ) to a recovery oper-
ator that corresponds to the combined data error of the
minimum-weight fault combination that results in the full
syndrome. To construct the decoding table, we start by
collecting all weight-1 fault combinations that may arise
in the extraction circuits. We map each resulting full
syndrome to its corresponding data error. At this point,
we say that the search radius of the lookup table is 1.
Afterward, we combine pairs of weight-1 fault combina-
tions to create all possible weight-2 fault combinations.
The combined data error of each weight-2 fault combi-
nation is obtained by simply taking the product of the
data errors, and the full syndrome is obtained by adding
full syndromes of the weight-1 fault combination modulo
2. If the combining process leads to a new syndrome,
we store it in the table. If the process leads to an ex-
isting syndrome, we have a collision and do one of the
following: (1) If the stored combined data error and the
new combined data error are the same up to a stabilizer,

then we do nothing. (2) If the stored combined data er-
ror and the new combined data error differ by a logical
operator (up to a stabilizer), then we raise an error; this
implies that F2 is not distinguishable. At this point, if
there is no combination that causes the second case (that
is, F2 is distinguishable), we say that the search radius
of the lookup table is 2. We can gradually increase the
search radius using similar ideas until we reach the max-
imum search radius in which the fault set is distinguish-
able. Here, we rely on an efficient representation of the
combined data errors using a decomposition of Pauli op-
erators to pure errors, stabilizers and logical operators
[46].
During sampling, the decoder receives a full syndrome

that was measured. When the decoder finds this syn-
drome in the lookup table, it returns the correspond-
ing actual recovery operator (ARO). However, when the
decoder cannot find the syndrome in the lookup table,
it only returns a so-called canonical recovery operator
(CRO). Each syndrome has a unique canonical recovery
operator, which guarantees that applying such an oper-
ator to the erroneous encoded state will map it back to
the code space but with a possible logical error.
The full description of our methods is presented below.

1. Reducing the memory footprint

To decode an [[n, k, d]] stabilizer code, we can construct
a lookup table that, for all possible fault combinations of
weight 0 to t (where t = ⌊d−1

2 ⌋), stores the full syndrome

σ⃗ = (s⃗, F⃗ ) as the key and maps the combined data er-
ror as the recovery operator. While this approach works,
it is expensive. Let Tstab denote the number of distinct
full syndromes for the fault combinations of weight 0 to
t for a generic stabilizer code. As Tstab and thus the size
of the lookup table grow exponentially in n, n − k (the
number of generators), and the number of circuit loca-
tions, we want to choose a representation to store data
as efficiently as possible. For general stabilizer codes,
n − k bits are required for the syndrome bits and n − k
bits for the cumulative flag vector (assuming flag circuits
with single flag ancilla for simplicity). Meanwhile, the
recovery operator requires 2n bits using the symplectic
representation. Thus we have Tstab(4n− 2k) bits of data
in the map.
Leveraging the structure of CSS codes, we can signif-

icantly improve the memory footprint. Assuming stan-
dard CSS decoding in which two separate lookup tables
are used for X and Z decoding. Denote with rX and rZ
the number of X- and Z-type stabilizer generators satis-
fying rX + rZ = n− k. The per entry cost decreases, as
the entries only need to cater for X- or Z-type operators
and syndromes. Each entry for the X- and Z-type syn-
dromes will have 2rX and 2rZ bits respectively for the
syndrome and the cumulative flag vector, and n bits for
the recovery operator. A self-orthogonal CSS code needs
only one table futher decreasing the cost; see more detail
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on the total number of bits in Appendix A. Moreover, we
can reduce the number of bits for the recovery operator
to k using the following two key ideas:

1. In general, for an [[n, k, d]] code, each Pauli operator
P ∈ Pn can be decomposed as a product P = EML
of a pure error E, a stabilizer M ∈ S, and a logical
operator L ∈ Pk (where Pk is the k-dimensional
logical Pauli group) [46]. We define a fixed set
of pure errors called canonical recovery operators
(CRO), one CRO for each unique syndrome s⃗.

2. Given a syndrome s⃗(E), the goal of decoding is to
find a recovery operator R such that RE ∈ S, thus
R converts the error into the logical identity oper-
ation. For any possible Pauli error, we only have
to store its logical class, a value that indicates how
the error is related to a CRO with the same syn-
drome. This enables the map value to be only 2k
bits of information in general and k bits in case the
code is a self-orthogonal CSS code. In this latter
case and with k = 1, the logical class is 0 if the
multiplication of the Pauli operator and the CRO
with the same syndrome is in the stabilizer group,
otherwise the logical class is 1.

Altogether, for a self-orthogonal CSS code with n ≫ k,
the size of the table can be as small as 12.5% of the
table if we viewed the code as a generic stabilizer code
and stored the full recovery operators instead of the log-
ical classes. For a CSS code that is not self-orthogonal,
the gain is smaller but still significant. See Appendix A
for detailed calculations around savings for the lookup
table. Note that if the lookup table is used for prov-
ing distinguishability, all unique syndromes are required.
However, in a realtime decoding architecture, the entries
corresponding to significantly low probability fault com-
binations may be excluded, resulting in further reduction
[47].

2. Constructing the lookup table

We now explicitly describe an algorithm to construct
the lookup table. During the construction of the lookup
table, we have a systemic way to enumerate fault com-
binations with their full syndromes and combined data
errors instead of running through a circuit simulator for
each case. The exhaustive enumeration of all possible
fault combinations of weight 0 to t is done in two steps.
First, we enumerate the single faults and capture their
full syndrome and logical class in a single column of the
fault check matrix, Hf using matrix algebra over GF(2)
to represent the propagation of errors in our syndrome
extraction circuits. Second, we combine these columns
in all possible combinations of 0 to t faults (

∑t
i=0

(
N
i

)
combinations in total, where N is the number of possible
single faults) while keeping track of the weight of each
fault combination. This last step verifies whether Ft is

distinguishable (which is equivalent to verifying whether
the protocol is distance preserving), and at the same time
builds a lookup table for the decoder.
Enumerating weight-1 faults— From here on, we will

only consider a self-orthogonal CSS code, and denote its
parity check matrix H. In order to list all possible single
faults under the circuit-level depolarizing noise model, it
is sufficient to consider all possible weight-1 faults within
a single round of syndrome measurements. Each column
of the fault check matrix Hf describes for each possi-
ble weight-1 fault what its full syndrome and its logical
class are. As the logical class of each fault depends on
how its CRO is defined, we define the fault check ma-
trix relative to the right inverse H−1 of H (for which
HH−1 = I(n−k)/2).
The high-level structure of Hf consists of three major

groups of rows and three major groups of columns. The
three groups of rows are the (n−k)/2 generator bits, the
(n − k)/2 flag bits, and the k bits for the logical class.
Each single fault which is represented by a column of Hf

can be put into one of the following three categories:

1. Pure data qubit errors that result only in gen-
erator bits. They do not trigger flags, resulting
in all-zero flag bits. The CRO R of each pure
data qubit error E can be described by each col-
umn of H−1H (since the syndromes of CROs are
H(H−1H) = (HH−1)H = H), thus the product
RE of each E can be described by each column of
In ⊕ H−1H (where the matrix addition, denoted
by ⊕, and multiplication are over GF(2)). If E is
an X-type (or a Z-type) error, the logical class of
RE is described by a k-bit string in which the i-
th bit indicates whether RE anticommutes with Z̄i

(or X̄i). That is, the logical classes of all pure data
qubit errors are described by

JT
1 (In ⊕H−1H)
JT
2 (In ⊕H−1H)

. . .
JT
k (In ⊕H−1H)

 ,

where Ji is the column vector representing Z̄i (or
X̄i).

2. Flag ancilla preparation or measurement er-
rors which do not propagate to data qubits, thus,
each single-flag error will result in a single flag bit.
Therefore, all errors of this type have the all-zero
syndrome and logical class 0, while the flag bits can
be easily represented by the (n− k)/2× (n− k)/2
identity matrix.

3. Gate faults that cause errors on the syndrome an-
cilla which can propagate to data and flag qubits
— we order these faults by top-down and left-right
place of occurrence and capture their effect in syn-
drome bits, flag bits, and logical class. The part of
the effective matrix corresponding to this type of
faults is denoted by Hf,gate.
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Note that single measurement and reset errors on the
syndrome ancilla are ignored during this analysis as their
effects would be removed by the time decoder through the
repetition of syndrome measurements.

Generalizing Hf for a non-self-orthogonal CSS code is
straightforward. In that case, the parity check matrices
for X- and Z-type errors can be different, leading to dif-
ferent fault check matrices. Generalizing Hf for a generic
stabilizer code is more complicated but still doable, as
all operators must be considered in the symplectic form.
In that case, the number of rows for the logical class
is 2k. Also, instead of taking the inner product with Ji,
whether each CRO commutes or anticommutes with each
logical operator can be determined by the symplectic in-
ner product between the symplectic bitstrings represent-
ing the CRO and the logical operator.

In the case that the code is a self-orthogonal CSS code,
n is odd, k = 1, and logical X and logical Z operators
are transversal, the fault check matrix is,

Hf =

 H 0
Hf,gate0 I(n−1)/2

JT (In ⊕H−1H) 0

 ,

where J is the all-one column vector of length n (repre-
senting X⊗n or Z⊗n).

As an example, consider the first group of columns for
the [[7, 1, 3]] Steane code [15] whose stabilizer generators
can be defined by the parity check matrix,

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

One can pick its right inverse H−1 as follows:

H−1 =



0 0 1
0 1 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0


.

We can see that each column of H−1 gives a Pauli op-
erator for each syndrome bit. For a data error E of any
weight, the syndrome s⃗(E) = HE can be recovered with
the CRO defined by R(s⃗(E)) ≡ H−1s⃗(E) as

s⃗(E ⊕R) = H(E ⊕R)

= HE ⊕HH−1HE

= HE ⊕HE = 0.

For example, for E = (0110000)T , s⃗(E) = (001)T and
R(s⃗(E)) = (1000000)T , thus RE = (1110000)T , for
which the syndrome is trivial (as RE is a logical opera-
tor).

For errors of weight 1 on the data qubits, the operator

•
•

· · ·
•

•
|0⟩

|0⟩ H • • H︸ ︷︷ ︸
w − 2 gates

(a)

H • H

(b)

FIGURE 4: (a) A flag circuit for measuring a Z-type sta-
bilizer generator of weight w in this work. A flag circuit
for measuring a X-type stabilizer generator of weight w
can be obtained by replacing each CNOT gate that con-
nects the data qubit to the syndrome ancilla with the
gate in (b).

RE of each error can be represented by each column of
In ⊕H−1H. Since the logical class of RE can be deter-
mined by its weight parity, the logical classes of this type
of errors are the row of L ≡ JT (In ⊕H−1H) where J is
the all-one column vector. That is for the Steane code,
the part of Hf corresponding to pure data qubit errors is

 H

0

JT (In ⊕H−1H)

 =



0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 1 1 0


.

Constructing Hf,gate— In this work, we focus on the
case that any Z-type or X-type stabilizer generator of
weight w is measured using a flag circuit with a single
flag ancilla similar to the circuit in Fig. 4 (with a slight
modification, similar construction for a general flag cir-
cuit can also be made). For Hf,gate, we are interested in
how the errors propagate from the syndrome ancilla to
the data qubits and the flag ancilla. The error propaga-
tion is represented via a binary matrices, an idea closely
related to the “gate matrix”, where the direction of prop-
agation is the opposite way, towards the ancilla from the
data qubits [45, 48]. Given single-flag syndrome extrac-
tion circuits for all stabilizer generators and the CNOT
ordering for each circuit, Hf,gate can be calculated via
the propagator matrix P and the aggregator matrix A,
defined as follows: For the error correction protocol with
n data qubits and r flag bits (which is the same number
as the number of X or Z stabilizer generators), The ma-
trix P has n + r rows. The number of columns of P is
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i=1(w(gi) + 2), where w(gi) is the Hamming weight of

the i-th stabilizer generator (gi). This is from the fact
that for each CNOT gate in the single-flag syndrome ex-
traction circuits, the only fault that can lead to a unique
data error after propagation is the fault that leads to a
single Z error on the target qubit of the CNOT (which
is the syndrome ancilla). To simplify the construction,
we construct a submatrix Pi of size (n+ r)× (w(gi) + 2)
for each row gi of H (i.e each stabilizer generator), then
concatenate the submatrices to get,

P = (P1P2 . . . Pr) . (3)

As the order of the CNOT gates matters in sub-
tle ways, for a given stabilizer generator gi, we rep-
resent the CNOT ordering by the permutation πi :
{1, 2, . . . , w(gi)} → supp(gi), where πi(j) indicates the
control (data) qubit of the j-th CNOT (the target qubit is
always the syndrome ancilla). πi can also be represented
by a list. For example, two possible permutations of
CNOT gates in the syndrome extraction circuit for mea-
suring g1 of the [[7, 1, 3]] Steane code are π1 = [4, 5, 6, 7]
and π1 = [4, 6, 5, 7].

To construct Pi, we iterate from j = 1 to w(gi), and
create a column for each iteration with all zeros except
for the 1 in row πi(j). We then insert an all-zero column
on the second from the left and the second from the right
positions (which represent the flag CNOTs), and set its
value to 1 at row n+ i. In our running example of g1 =
(0001111), for a permutation of π1 = [4, 6, 5, 7],

Pi =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


. (4)

The aggregator matrix A plays the role of propagating
the errors to the end of the syndrome measurement cir-
cuits. For each gi, we define Ai to be a square matrix of
size (w(gi) + 2)× (w(gi) + 2) having a lower triangle set
to all 1s, and define A =

⊕r
i=1Ai to be the direct sum

of all Ai’s. In our example case of g1,

Ai =



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1


(5)

Multiplying the propagator and the aggregator matrices
yields,

PA =

(
Ω

Φ

)
=

(
Ω1 Ω2 . . . Ωr

Φ1 Φ2 . . . Φr

)
, (6)

where columns of the submatrices Ωi are the final Pauli
operators, and columns of the submatrices Φi are the
cumulative flag vectors after measuring gi and having a
fault propagated from the syndrome ancilla to the data
qubits at the location corresponding to the given column.

Next, we find the syndromes for these Pauli operators
by multiplying them with the parity check matrix,

S = HΩ. (7)

Then, for each syndrome, we define the CRO based on
the right inverse H−1,

Θ = H−1S. (8)

Finally, we determine the logical class L for each of the
faults by adding the parity of the CRO and the propa-
gated, final data error,

L = JT (Ω⊕Θ). (9)

As a result, the part of Hf corresponding to the gate
faults is,

Hf,gate =

SΦ
L

 =

 HΩ

Φ

JT (In ⊕H−1H)Ω

 . (10)

The relationship between the full syndrome, the data
error, and the CRO of each fault is as follows: Suppose
that the i-th column ofHf (which represents a single fault
on the i-th location) contains error syndrome s⃗i, flag vec-

tor f⃗i, and logical class li. The CRO of the fault isH−1s⃗i,
while the data error of the fault is liJ⊕H−1s⃗i. That is, in
case of a single fault, the actual recovery operator (ARO)

we need to apply when finding the full syndrome (s⃗i, f⃗i)
is liJ ⊕H−1s⃗i.

Verifying distinguishability and building the lookup
table— The fault set Ft is distinguishable if and only if
there is no fault combination from up to 2t faults that
gives a non-trivial logical operator with trivial full syn-
drome [35]. As the fault check matrix already contains all
the possible single faults, in case of t = 1, we only need
to extend the matrix by a column with all zeros (which
represents 0 faults) and check whether there is a pair of
columns which are the same except for the logical class.
If there is, the combined data errors of one or two faults
add up to an undetectable logical operator, meaning that
F1 is not distinguishable.

When t ≥ 2, we populate the cache with the logi-
cal classes of higher-weight fault combinations by sim-
ply combining all possible fault combinations of lower-
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[[7, 1, 3]] [[19, 1, 5]] [[37, 1, 7]] [[61, 1, 9]]

# columns of Hf 28 88 181 307

# unique columns 20 62 128 218

# fault combinations 20 1,953 349,632 93,263,997

Cache size 20 1,587 262,500 67,166,572

Memory ≤ 1kB ≤ 1kB ≈ 50MB ≈ 1.38GB

Verification time ≤ 1ms ≤ 1ms ≈ 720ms ≈ 58.9s

TABLE I: Metrics of the lookup table. The number of columns of the fault check matrix counted in the first row results
from the three-part structure of data errors, flag errors, and gate faults. These columns are not necessarily unique,
which can be seen in the second row that counts the number of unique columns. The time to verify distinguishability
for the different codes on a single thread with our C++ code depends on the number of unique columns, hence the
verification of the higher distance code takes longer than shorter ones. All timings are reported using Intel Xeon Gold
6226R, 2.90GHz processors. Some fault combinations have the same full syndrome, hence the cache size is smaller
than the full number of fault combinations. The cache size in memory is reported from actual usage, including the
overhead of the hash table implementation.

weight fault combinations while keeping track of the
weights of the fault combinations. We describe the i-th

fault combination as a key-value pair [(s⃗i, F⃗i) : (li, wi)]

where (s⃗i, F⃗i) is the full syndrome, li is the logical class,
and wi is the weight of the fault combination. Com-
bining the i-th and the j-th fault combinations gives

[(s⃗i ⊕ s⃗j , F⃗i ⊕ F⃗j) : (li ⊕ lj , wi + wj)]. As we aim to
check whether Ft is distinguishable, we fill up the cache
by combining any pair of fault combinations that satisfy
wi + wj ≤ t. In case that the process gives the new key
(the full syndrome) that already exists in the cache, we
have a key conflict. This can be one of the following
cases:

1. The new and the existing fault combinations have
the same full syndrome and the same logical class
but have different weights. In this case, we store
the fault combination with smaller weight in the
cache.

2. The new and the existing fault combinations have
the same full syndrome but have different logical
classes. As the sum of weights of these two fault
combinations is ≤ 2t, we raise an error—there ex-
ists a fault combination from up to 2t faults that
gives a non-trivial logical operator with trivial full
syndrome, that is, Ft is not distinguishable.

If at the end we find that Ft is distinguishable, we
can construct a lookup table of search radius t from the

cache as follows: for each key-value pair [(s⃗i, F⃗i) : (li, wi)]

in the cache, we store a new key-value pair [(s⃗i, F⃗i) :
liJ ⊕ H−1s⃗i] in the lookup table (the weights are not
necessary for decoding, though it might be useful for es-
timating the number of faults that causes the full syn-
drome). That is, liJ ⊕ H−1s⃗i is the ARO for the full

syndrome (s⃗i, F⃗i). When performing error decoding, the
ARO is applied if the full syndrome obtained from mea-
surements is found on the lookup table; otherwise, the
CRO (H−1s⃗i) is applied.

The lookup table can then be stored in an efficient bi-
nary format on disk or memory as needed. In Table I, we
displayed the metrics related to the lookup table decoder
obtained by the algorithm above.
In summary, we perform an exhaustive search of fault

combinations which gives us a lookup table with search
radius t; this is equivalent to verifying the distinguisha-
bility of Ft. If we can construct the lookup table with
t = τ = ⌊(d − 1)/2⌋, we have a minimum-weight de-
coder that is distance-preserving under the circuit-level
depolarizing noise model. As a hash-table requires O(1)
amortized complexity for lookup, this decoder is also rel-
atively fast for numerical simulations or real-time de-
coding compared to more complicated algorithms such
as MaxSAT-decoding [49], neural-network-based decoder
[50], or the restriction decoder [51] with minimum weight
perfect matching decoding [52], all of which have at least
O(n) complexity. However, the table size scales exponen-
tially in the number of qubits, locations, and stabilizer
generators, and thus, constructing the lookup table may
be impractical for a code of high distance.

3. The fault code

Any CSS code can be defined by its parity check matrix
H, which maps a bitstring representing a combination of
errors on the data qubits to the error syndrome of the
error combination. In the case of flag FTQEC where
the circuit-level noise model is considered, we can use
similar ideas and define a fault code by the fault check
matrix Hf which maps a bitstring representing a com-
bination of possible faults to the full syndrome of the
fault combination (which includes the error syndrome of
the combined data error and cumulative flag vector) and
the logical class relative to the CRO for the syndrome.
It should be noted that the distance of the fault code
might be lower than the distance of the underlying CSS
code; this depends on the syndrome extraction circuits,
which affect the distinguishability of the fault set. We
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can define the effective distance deff to be the minimum
number of faults that can give a fault combination with a
non-trivial logical operator and the trivial full syndrome.
The number of faults teff that the fault code can correct is
teff = ⌊(deff − 1)/2⌋ (this is the maximum number of t in
which Ft is distinguishable). If the effective distance and
the code distance are equal, we say that the error cor-
rection protocol is distance preserving. Calculating the
distance of classical codes can be done by determining
the spark of the parity check matrix H, which is known
to be NP-hard, in general [53]. However, the spark algo-
rithm does not work in the case of degenerate CSS codes,
as it reports only the minimum weight of the stabilizers
which is a lower bound on the code distance [42]. Our
algorithm described in this section can be viewed as a
modified spark algorithm that uses the logical class in-
formation to calculate the distance of the code (based on
H) and also the effective distance of the fault code (based
on Hf).
The perspective of the fault code can also be useful

to extend a technique frequently used for error sampling
(in qecsim [54], for example) to the circuit-level noise
model beyond the code capacity noise model (memory er-
rors only) and phenomenological noise model (both mem-
ory and measurement errors). Here, a randomly gener-
ated column vector of Hamming weight w now represents
faults on w locations instead of errors on w qubits. Sup-
pose that the vector v⃗ represents the fault combination

and Hfv⃗ gives the full syndrome (s⃗(v⃗), F⃗ (v⃗)) and the log-
ical class l(v⃗). In an error correction simulation, the de-
coder can predict the recovery operator r⃗ based on the
full syndrome. We will find that the predicted recovery
operator causes a logical error if and only if l(v⃗) and l(r⃗)
differ.

In principle, this method can lead to a better sampling
rate compared to running the full circuit simulation for
each sample. However, one needs to be aware of the prob-
ability distribution when generating vectors representing
the fault combinations, as each possible single fault might
not occur at the same rate.

B. Meet-in-the-Middle Technique

If the fault set Ft of each code is distinguishable, the
flag FTQEC protocol can correct up to t faults with cer-
tainty. However, whenever t + 1 or more faults occur,
the error correction is not guaranteed; our decoder can
either remove the error or cause a logical error on the en-
coded state. Although the probability of having t+ 1 or
more faults is O(pt+1), being able to correct more cases
of faults can lead to a higher pseudothreshold. In this
section, we introduce the Meet-in-the-Middle technique,
which can help correct errors in case there are more than t
faults in our FTQEC protocol. Note that this technique
is general and could help any FTQEC protocol with a
table-based decoder to correct faults more than its capa-
bility if the stabilizer code being used is not a perfect (or

a perfect CSS) code.
The Meet-in-the-middle (MIM) technique is inspired

by the bidirectional search algorithm [55] to improve the
table-based decoder previously discussed in Section II B
(see also Section IIIA) in case that the decoder cannot
find in its lookup table the full syndrome obtained from
measurements. Consider the case that the fault set Ft

is distinguishable, and a lookup table of search radius
t can be constructed. Suppose that more than t faults

occur and the full syndrome is (s⃗m, F⃗m) which is not in
the lookup table. The table-based decoder discussed in
Section II B will return the canonical recovery operator
that may cause a logical error after correction. To make
successful error correction more probable in such cases,
one could, in principle, construct a lookup table with a
search radius larger than t by relaxing the distinguisha-
bility requirement for fault combinations with weights
higher than t. However, this can be impractical as the
number of fault combinations grows too fast when the
search radius increases.
To overcome this issue, we instead conduct a search

during decoding starting from the missing syndrome

(s⃗m, F⃗m). That is, we construct another decoding ta-
ble, called the MIM table, with search radius at most
ρ ≤ t using ideas similar to the original lookup table,

but we also add (s⃗m, F⃗m) to the map key before storing
the syndrome in the MIM table and check whether it is
in the decoding lookup table or not. If a new map key
in the MIM table is the same as some map key in the
decoding lookup table, the search stops, and the decoder
constructs a recovery operator from two combined data
errors from the MIM table and the decoding table that
correspond to the two map keys. If the MIM search ra-
dius reaches ρ and no matching syndrome is found, the
decoder returns the CRO for the full syndrome. Using
the recovery operator obtained from this method, we can
correct up to t + ρ faults with probability higher than
using the CRO of the full syndrome only.
An example of error decoding using a lookup table and

the MIM technique is illustrated in Fig.5. In our FTQEC
protocols for hexagonal color codes of distance 3, 5, 7,
and 9, we find that constructing the MIM table with
search radius ρ = t is sufficiently fast to be used at run-
time. Note that the MIM technique does not guarantee
successful error correction due to potential degeneracy in
syndromes above the guaranteed number of correctable
faults. However, we do find numerically that the MIM
technique has a positive impact on the performance of
our decoders for the hexagonal color codes for distances
3, 5, 7, and 9.

IV. OPTIMIZATION TOOLS FOR TIME
DECODING

In general, faults can happen at any point during syn-
drome measurements, and the syndrome obtained at each
round of measurements may not be the correct syndrome
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(a) (b)

FIGURE 5: An illustration of the error decoding using a lookup table and the MIM technique on the Hilbert space
H = C⊗n of the physical qubits. A code of distance 9 is considered in this example. Using a lookup table with search
radius 4 only, any erroneous states lying on the green (or red) circles, which are up to 4 faults (circles) away from the
logical state |ψL⟩ (or |ψ⊥

L ⟩), will be recovered to the logical state |ψL⟩ (or |ψ⊥
L ⟩). Consider the erroneous state E|ψL⟩

which is not on any green or any red circle. In (a), E|ψL⟩ is 5 faults away from |ψL⟩ and 6 faults away from |ψ⊥
L ⟩.

Using the MIM table of radius 1, the recovery operator found by the decoder is R1. Since R1E is a stabilizer, R1

brings the state back to the original state |ψL⟩. In (b), E|ψL⟩ is 6 faults away from both |ψL⟩ and |ψ⊥
L ⟩. Using the

MIM table of radius 2, the recovery operator found by the decoder is either R1 such that R1E is a stabilizer, or R2

such that R2E is a nontrivial logical operator. In this case, the state after recovery can be either |ψL⟩ or |ψ⊥
L ⟩.

(the syndrome of the combined data error at the end of
that round). In particular, measurement errors can lead
to a syndrome that differs from the correct syndrome by
some bits. Errors on the data or ancilla qubits that hap-
pen in the middle of the syndrome extraction can also
result in a syndrome that only captures some parts of
the correct syndrome. Applying a space decoder to a
faulty syndrome can lead to an incorrect recovery opera-
tion. For this reason, one must perform multiple rounds
of syndrome measurements.

The goal of a time decoder is to find a round with a cor-
rect syndrome at least at one point in the whole syndrome
measurement process. If this can be done, an FTQEC
protocol satisfying both conditions in Definition 4 can be
constructed. Note that according to the definition, it is
sufficient to consider only the case that the total number
of faults in the whole protocol is no more than t, where t
is the number of errors that a stabilizer code being used
can correct. This is because the failure probability of the
FTQEC protocol (the probability of having t+1 or more
faults in the protocol) will be O(pt+1) similar to the fail-
ure probability of an ideal error correction with the same
stabilizer code. (Nevertheless, in terms of better decod-
ing accuracy, it is beneficial to consider correcting some
cases of t + 1 or more faults as suggested by the MIM
technique in Section III B.)

In this section, we develop several types of time de-
coders for flag FTQEC, building on the ideas of adaptive
decoders for Shor-style error correction [38]. Different
time decoders use different fault count estimation pro-
cedures. In Section IVA, we describe a conventional
way to perform repeated syndrome measurements for
flag FTQEC in terms of difference vectors, which will
be useful for the development in latter sections. In Sec-
tion IVB, we develop one-tailed and two-tailed adaptive

time decoders which utilize flag information in the pro-
tocols. One-tailed adaptive decoder is applicable to a
larger family of codes, while the two-tailed adaptive de-
coder is more optimized to self-orthogonal CSS codes but
need to be used with an extended technique so that it
becomes fully fault tolerant when applying to quantum
computation. In Section IVC, we develop two extended
techniques that can further improve the performance of
our adaptive time decoders for FTQEC, given that the
code being used is a self-orthogonal CSS code.

A. Shor time decoder for flag FTQEC

In Shor’s original approach [1], the syndrome extrac-
tion is repeated until the same syndrome appears t + 1
times in a row. Observe that for R repeated but untrust-
worthy syndromes, at least R faults are required to make
them the same (we can think of having exactly the same
measurement errors for example). Therefore, to make
sure that a round with a correct syndrome exists when
considering the case with up to t faults, it is sufficient to
wait for t + 1 repeated measurements. A time decoder
with this stop condition will be referred to as Shor time
decoder.
It is possible to rephrase the Shor time decoder using

the notion of difference vector. For a syndrome history
(s⃗1, s⃗2, . . . , s⃗m) of length m, we define a difference vector

δ⃗ to be an (m − 1)-bit string in which δi is 0 if s⃗i+1 =
s⃗i, or δi is 1 if s⃗i+1 ̸= s⃗i. As two repeated syndrome
measurements are represented by a zero in the difference
vector, Shor’s method can be reformulated as waiting for

t consecutive zeros in δ⃗.
As we aim to correct no more than t faults, the analy-

sis of our time decoders can be made easier by thinking
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about the budget of t faults. Shor’s method spends all of
this budget on counting consecutive zeros in the differ-
ence vector and is completely oblivious to other parts
of the syndrome history (because the counter is reset
whenever bit one appears). We call the parts of the syn-
drome history outside of the zero substring the context
of the zero substring. As Shor’s method does not take
the context into account, we call this strategy “context-
unaware”. In the worst-case scenario for the Shor time
decoder, (t + 1)2 rounds of syndrome measurements are
done before the stopping condition is satisfied. The con-
text of the zero substrings contains useful information
and not counting the faults in the context results in un-
derestimating the number of faults that can cause a given
syndrome history. Context-aware strategies that have
a better estimate of the number of faults can stop ear-
lier and execute fewer measurements, resulting in higher
pseudothresholds.

As flag circuits are used in the syndrome extraction,

we also obtain a flag vector history (f⃗1, f⃗2, . . . , f⃗m) from
m rounds of syndrome measurements, which also leads to

a cumulative flag vector history (F⃗1, F⃗2, . . . , F⃗m). Note
that the calculation of a difference vector does not involve
flag vectors; since the cases of faulty flag qubit measure-
ments are considered when we evaluate the distinguisha-
bility of a fault set, all flag measurement outcomes are
considered correct and can be used for error decoding.
Our goal is to find a round such that all syndrome bits
are correct.

The correct syndrome will be used in conjunction with
the flag information obtained right before the measure-
ments of the correct syndrome. Suppose that the code
being used is a CSS code, and X-type generator mea-

surements at round i (which lead to s⃗i,x, f⃗i,x, and F⃗i,x)
are done before Z-type generator measurements (which

lead to s⃗i,z, f⃗i,z, and F⃗i,z). If the syndrome from round l
is correct according to Shor time decoder, Z-type (or X-

type) error correction will be done using s⃗l,x and F⃗l−1,z

(or s⃗l,z and F⃗l,x). We also use similar ideas for error
correction with other time decoders.

Suppose that a table-based space decoder for flag
FTQEC can be constructed (as discussed in Section III).
Then, a flag FTQEC protocol with Shor time decoder is
as follows:

Protocol 1. Flag FTQEC protocol with Shor time de-
coder

Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-
bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and f⃗i = (f⃗i,x, f⃗i,z) be syndrome and flag vector obtained
from the i-th round of full syndrome measurements with
flag circuits. Let the cumulative flag vector at the i-th

round be F⃗i = (F⃗i,x, F⃗i,z) =
∑i

j=1 f⃗j (mod 2). After the
i-th round with i ≥ 2, calculate δi−1. Repeat syndrome

measurements until the last t bits of δ⃗ is zero or the total
number of rounds reaches (t+1)2. Suppose that the latest
round is round l. Perform Z-type error correction using

(s⃗l,x, F⃗l−1,z), and perform X-type error correction using

(s⃗l,z, F⃗l,x).

B. Adaptive time decoder for flag FTQEC

Recently, FTQEC protocols with adaptive syndrome
measurement techniques have been proposed by some of
the authors of this work [38]. Instead of using flag qubits,
in that work, each stabilizer generator is measured using
a syndrome extraction circuit with a cat state (similar to
Shor’s original circuits [1]). The authors show that using
the adaptive strong decoder, it is possible to reduce the
number of syndrome measurement rounds in the worst-
case scenario from (t+1)2 rounds to (t+3)2/4−1 rounds.
The resulting FTQEC protocol satisfies the error-weight
based definition of FTQEC (Definition 1) and is applica-
ble to any stabilizer code. In this work, we extend the
adaptive strong decoder based measurement techniques
to flag FTQEC and develop protocols satisfying the re-
vised FTQEC conditions that use the number of faults
instead of the weight of errors (Definition 4). The main
difference from Ref. [38] is that this work also uses flag
information to estimate the number faults occurred in the
protocol, leading to a faster procedure to find a syndrome
suitable for error correction. We start by describing the
key ideas of Ref. [38] in terms of correlated and uncor-
related bit histories, which is useful for bounding from
below the number of occurred faults. Afterwards, we ex-
plain how each technique in Ref. [38] could be improved
using the flag information.

1. Counting faults in correlated and uncorrelated bit
histories

Let us first consider a way to estimate the number of

occurred faults from a given difference vector δ⃗. A single
fault can cause either one or two consecutive bits of ones
in δ⃗ [38]. Thus, for each substring κ⃗ in δ⃗, the number of
faults that can cause such a substring is bounded from
below by the number of 11 sequences plus the number of
remaining 1s in κ⃗.

Suppose that the difference vector is of the form δ⃗ =
η11η21 . . . 1ηc where ηj = 00 . . . 00 are zero substrings
and 1 ≤ j ≤ c. For each ηj of length γj ≥ 1 with
2 ≤ j ≤ c − 1, we define α to be the total number of
non-overlapping 11 sequences plus the total number of
remaining 1s before the substring 1ηj1, and define βj
similarly but for the substring after 1ηj1 (for η1 and ηc,
β1 and αc are defined similarly to those of other ηj ’s, and
we let α1 = 0, βc = 0). The zero substring ηj of length γj
corresponds to γj + 1 consecutive rounds with the same
syndrome, so the number of rounds that can cause these
rounds to give incorrect syndromes is at least γj + 1.
Therefore, under the assumption that there are at most
t faults in the whole protocol, if we find that there exists
γj such that t − αj − βj < γj + 1, the syndromes of the
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γj +1 rounds that give rise to ηj cannot be all incorrect.
For this reason, at least one syndrome corresponding to
ηj is correct and can be used for error correction (see the
full analysis in Ref. [38] for more details).

For example, assume that the total number of faults
in the protocol is t = 4, and ten rounds of syndrome

measurements give the following δ⃗:

Round: 1 2 3 4 5 6 7 8 9 10

δ⃗: 1 1 0|1 0 0 1|0 1

Focusing on the substring 1ηj1 = 1001, we find that αj =

1 and βj = 1, meaning that the patterns of δ⃗ on the
left and the right sides of 1001 arise from at least two
faults, and the number of remaining faults is at most
two. We can see that γj = 2 because of the two zeros in
the substring 1001 and corresponds to three rounds with
the same syndrome. Since the number of remaining faults
that can cause the pattern 1001 is less than the number
of rounds with the same syndrome, the syndrome of at
least one round in these three rounds must be correct and
can be used for error correction.

There are multiple, increasing fine-grained ways of es-
timating the number of faults in the context around each
zero substring in the difference vector. Here, we use the
term bit history as a general term for a series of syndrome
bits (measurement outcomes) from a given stabilizer gen-
erator, a given flag bit (the measurement outcome of a
flag qubit), or bits in a difference vector (that is taken
as the difference history of a group of bits). A key el-
ement in this discussion is the notion of correlated and
uncorrelated bit histories.

Under the assumed error model, two-bit histories are
uncorrelated if they are independent of each other. For
example, in our case, the circuit-level depolarizing chan-
nel is memoryless, and each fault can cause either one
or two consecutive bits of ones. Thus, different sections
of the same syndrome bit history that are at least two
bits apart are uncorrelated as they are independent in
time. Similarly, in space, if there are no shared qubits
between two generators, then their syndrome bit histo-
ries are completely independent. Also, flag qubits are
always reset between rounds of measurements, and thus,
all flag bits are independent. However, when two stabi-
lizer generators share at least one qubit, their syndrome
bit histories are correlated. Similarly, due to hook errors,
the flag qubit’s bit history and the syndrome bit history
of that same stabilizer generator are correlated.

Our goal is to estimate the number of faults that oc-
curred from a given bit history in the case of flag FTQEC.
Estimates from uncorrelated histories can be summed to-
gether. When two or more estimates are from correlated
histories, the best we can do is to take the maximum of
those estimates. Note that the total estimates must not
exceed the actual total number of occurred faults in any
case, otherwise, the error correction protocol will not be
fault tolerant.

For the estimation in the previous work [38], which is

discussed previously in this section, the bits of the syn-
drome history before and after each substring 1ηj1 are
uncorrelated to the bits within ηj under the memoryless
depolarizing channel assumption. This means that αj

and βj , which are the minimum numbers of faults that
can cause the substring before and after 1ηj1, can be in-
dependently estimated. The estimated number of faults
in the context outside of the zero substring ηj is, there-
fore, αj + βj .
In this work, we further extend the fault counting idea

to flag FTQEC in which flag circuits with single flag qubit
are used for syndrome extraction. Below, we will dis-
cuss two types of adaptive time decoders with different
stop conditions, namely one-tailed and two-tailed adap-
tive time decoders. Both protocols are applicable to any
stabilizer code as long as flag circuits for the code that
give a distinguishable fault set can be found. The flag
FTQEC protocol with one-tailed adaptive time decoder
satisfies the FTQEC conditions in Definition 4, thus it is
applicable to any fault-tolerant quantum computation as
long as the fault-tolerant implementation of other opera-
tions (gate, state preparation, or measurement) also sat-
isfies the revised definition of fault tolerance which con-
siders the number of faults instead of the weight of the er-
ror [35]. Meanwhile, the flag FTQEC protocol with two-
tailed adaptive time decoder does not satisfy the FTQEC
conditions in Definition 4 as the output error may cor-
respond to a nontrivial cumulative flag vector, hence it
is only applicable to quantum memory. Nevertheless, for
a self-orthogonal CSS code, the FTQEC protocol with
the two-tailed adaptive time decoder can be applied to
any fault-tolerant Clifford computation if the cumulative
flag vector is processed appropriately. An analysis of this
extension will be discussed in Section IVC.

2. Two-tailed adaptive time decoder

For the substring 1ηj1 in δ⃗, suppose that bit one on the

left of ηj is the i1-th bit of δ⃗, and bit one on the right of

ηj is the i2-th bit of δ⃗. Let αj , βj , γj be defined as before,
and let µj , νj be the total numbers of nonzero flag bits
obtained from round 1 to round i1 and from round i2+1
onward. Also, let ωj be the sum of the numbers of flag
bits that exceed 1 bit per round during round i1 + 1 to
round i2. For example, consider the substring 1ηj1 =
1001 in the example below:

Round: 1 2 3 4 5 6 7 8 9 10

# flag bits: 1 0 2 0|0 2 1|0 0 1

δ⃗: 1 1 0|1 0 0 1|0 1

In this example, αj = 1, βj = 1, γj = 2, µj = 3, and
νj = 1, and ωj = 1.
Since a single fault can cause both nontrivial flag bits

and syndrome differences (that is, syndrome bits and
flag bits are correlated), one has to make sure that
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the number of faults is not overcounted. The numbers
of faults that can cause bit histories before and after
1ηj1 are bounded from below by α̃j = max(αj , µj) and

β̃j = max(βj , νj), respectively. So an estimate of the

number of faults for the context outside of ηj is α̃j + β̃j .
Next, let us consider ηj of length γj which corresponds

γj + 1 consecutive rounds with the same syndrome. To
make all syndromes in this region incorrect, it requires at
least one fault per round. So if we find a round with more
than one flag bit, the number of flag bits that exceed one
bit per round can be a part of the total estimate. That
is, for each ηj , the total estimate is α̃j + β̃j + ωj .
Under the assumption that there are at most t faults

in the whole protocol, if we find that there exists γj such

that t− α̃j − β̃j −ωj < γj +1 (or equivalently, α̃j + β̃j +
γj + ωj ≥ t), we know that a syndrome of at least one
round in the γj + 1 rounds that give rise to ηj must be
correct.

Another way to find a correct syndrome is to estimate
the total number of faults that can cause the whole syn-
drome and flag bit histories. Let N11 be the total number

of non-overlapping 11 sequences in the whole δ⃗. Assum-
ing that there are at most t faults in the whole protocol,
if N11 ≥ t, the last round must have a correct syndrome.
Suppose that a table-based space decoder for flag

FTQEC can be constructed. Then, a flag FTQEC pro-
tocol with two-tailed adaptive time decoder is as follows:

Protocol 2. Flag FTQEC protocol with two-tailed adap-
tive time decoder

Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-
bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and F⃗i = (F⃗i,x, F⃗i,z) be syndrome and cumulative flag
vector obtained from the i-th round of full syndrome mea-
surements with flag circuits. After the i-th round with
i ≥ 2, calculate δi−1. Repeat syndrome measurements
until one of the following conditions is satisfied, then
perform error correction using the error syndrome cor-
responding to each condition:

1. For each ηj in δ⃗, calculate α̃j , β̃j , γj , ωj. If at least

one ηj with α̃j + β̃j + γj +ωj ≥ t is found, stop the
syndrome measurements. Let l be the last round of
the γj + 1 rounds that correspond to ηj. Perform

Z-type error correction using (s⃗l,x, F⃗l−1,z), and per-

form X-type error correction using (s⃗l,z, F⃗l,x).

2. Calculate N11 from the whole syndrome and flag
bit histories. If N11 ≥ t, stop the syndrome
measurements. Suppose that the latest round is
round l. Perform Z-type error correction using

(s⃗l,x, F⃗l−1,z), and perform X-type error correction

using (s⃗l,z, F⃗l,x).

The two-tailed adaptive time decoder for flag FTQEC
developed in this work use similar ideas to the adap-
tive strong decoder presented in the previous work [38].

Therefore, the number of syndrome measurement rounds
in the worst-case scenario is (t+3)2/4− 1 when t is odd,
and is (t + 2)(t + 4)/4 − 1 when t is even. This can be
proved by assuming that all faults does not cause any
nonzero flag bits, then the rest of the proof follows the
proof of Theorem 2 of the previous work [38].

If the syndrome s⃗l and cumulative flag vector F⃗l =∑l
i=1 f⃗i (mod 2) of round l are used for error correction,

any faults that happened up to round l will be corrected.
However, because round l may correspond to some ηj in

the middle of δ⃗, an output error may correspond to a non-
trivial cumulative flag vector. Therefore, Protocol 2 may
not satisfy FTQEC conditions in Definition 4 and can-
not be applied to fault-tolerant quantum computation.
Nevertheless, Protocol 2 is still applicable to a quantum
memory. To do so, one needs to pass the remaining cu-
mulative flag vector of the current FTQEC routine (the
sum of the flag vectors from round l + 1 onward) to the
next FTQEC routine and use it as an initial flag vector.

3. One-tailed adaptive time decoder

One-tailed and two-tailed decoders use similar ideas
to estimate the number of faults, except that in the one-
tailed case, the syndrome and cumulative vector for error

correction must be from the very last zero substring in δ⃗
(it is to ensure that the output error satisfies both con-

ditions in Definition 4). Suppose that δ⃗ = η11η21 . . . 1ηc
for some positive integer c, ηc has length γc ≥ 1, and bit

one on the left of ηc is the i1-th bit of δ⃗. We define αc

as usual and define µc to be the total number of nonzero
flag bits obtained from round 1 to round i1. Also, we
define ωc to be the sum of the numbers of flag bits that
exceed 1 bit per round during round i1 + 1 onward. Let
α̃c = max(αc, µc). In this case, the total estimate of the
number of occurred faults is α̃c + ωc.
Assuming that there are at most t faults in the whole

protocol, if we find that α̃c + γc + ωc ≥ t, at least one
round in the γc + 1 rounds that give rise to ηc must
have a correct syndrome. This is the first possible stop
condition.

The second possible stop condition is similar to what
we have for the two-tailed decoder. Let N11 be the total
number of non-overlapping 11 sequences in the whole δ⃗.
If N11 ≥ t, the last round must have a correct syndrome.

Suppose that a table-based space decoder for flag
FTQEC can be constructed. Then, a flag FTQEC pro-
tocol with the one-tailed adaptive time decoder is as fol-
lows:

Protocol 3. Flag FTQEC protocol with one-tailed adap-
tive time decoder

Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-
bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and F⃗i = (F⃗i,x, F⃗i,z) be syndrome and cumulative flag
vector obtained from the i-th round of full syndrome mea-
surements with flag circuits. After the i-th round with
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i ≥ 2, calculate δi−1. Repeat syndrome measurements
until one of the following conditions is satisfied:

1. α̃c, γc, ωc satisfy α̃c + γc + ωc ≥ t;

2. N11 ≥ t.

Suppose that the latest round when any condition is sat-
isfied is round l. Perform Z-type error correction using

(s⃗l,x, F⃗l−1,z), and perform X-type error correction using

(s⃗l,z, F⃗l,x).

The number of rounds of full syndrome measurements
in the worst-case scenario for Protocol 3, which is also
the minimum number of rounds required to guarantee
that error correction can be done, can be found by the
following theorem:

Theorem 1. Suppose that flag circuits being used in
Protocol 3 give a distinguishable fault set Ft, where t =
⌊(d − 1)/2⌋ and d is the distance of the stabilizer code.

Performing t(t+3)
2 + 2 rounds of full syndrome measure-

ments is sufficient to guarantee that Protocol 3 is strongly
t-fault tolerant; i.e., both conditions in Definition 4 are
satisfied.

Proof. Suppose that δ⃗ = η11η21 . . . 1ηc and γc ≥ 1.
We will show that if none of η1, η11η2, η11η21η3, . . . ,
η11η21 . . . 1ηc satisfies any condition in Protocol 3, the

maximum length of such δ⃗ is t(t+3)
2 . In the worst-case

scenario, flag measurement results do not help in esti-
mating the number of occurred faults, so we can assume
that α̃c = αc and ωc = 0. Below are the results from
analyzing η1, η11η2, and η11η21η3:

1. For η1, αc = 0 and γc = γ1, so the maximum length
of η1 such that α̃c + γc ≥ t is not satisfied is t− 1.

2. For η11η2, αc = 0 and γc = γ2, so the maximum
length of η2 such that α̃c + γc ≥ t is not satisfied is
t− 1.

3. For η11η21η3, αc = 1 and γc = γ3, so the maximum
length of η3 such that α̃c + γc ≥ t is not satisfied is
t− 2.

By induction, the maximum length of δ⃗ = η11η21 . . . 1ηc
such that α̃c + γc ≥ t is not satisfied is (t− 1) + 1 + (t−
1) + 1 + (t− 2) + 1 + · · ·+ 1+ 1+ 0+ 1, which is t(t+3)

2 .

Here δ⃗ is of the form,

00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−2

1 00 . . . 00︸ ︷︷ ︸
t−3

1 . . . 1001011

(11)

The number of rounds that gives δ⃗ of the maximum

length is t(t+3)
2 + 1. By performing one more round of

syndrome measurements, δ⃗ is extended by one bit, which
must be 0 if the total number of faults is no more than
t. In that case, α̃c + γc ≥ t will be satisfied. There-

fore, t(t+3)
2 + 2 rounds of full syndrome measurements is

sufficient to guarantee that flag FTEC can be performed.

Note that there are other forms of δ⃗ in which none
of η1, η11η2, η11η21η3, . . . , η11η21 . . . 1ηc satisfies any

condition in Protocol 3, and the length of δ⃗ is t(t+3)
2 − 1;

For example, suppose that t = 3. Possible forms of such

δ⃗ are 001101011, and 001001111. In any case, one of
the conditions in Protocol 3 will be satisfied if one more
round of syndrome measurements is done, so the number

of rounds to guarantee fault tolerance is still t(t+3)
2 +

2.

Note that the number given by Theorem 1 is worse
than that of the two-tailed decoder because we are not
allowed to check whether the syndrome of any round in
the middle can be used for error correction.
An advantage of the FTQEC protocol with one-tailed

adaptive time decoder is that it is applicable to any kind
of fault-tolerant quantum computation as long as the
corresponding fault-tolerant implementation satisfies the
revised definitions of fault tolerance which consider the
number of faults instead of the weight of errors [35]. This
is possible because when the syndrome and cumulative
flag vector for error correction are from the last zero sub-

string in δ⃗, it is guaranteed that the output error corre-
sponds to a zero cumulative flag vector.

C. Extended techniques for CSS codes

In this section, we discuss two additional techniques
which can further improve our flag FTQEC protocols
with adaptive time decoding. The first technique is the
separated X and Z counting which is applicable to any
CSS code. This technique is based on the ideas from Refs.
[37, 38], and can be used to improve the pseudothreshold.
The main difference from the technique developed in Ref.
[38] is that this work also uses flag information to esti-
mate the number of occurred faults, making the proce-
dure to obtain a syndrome for error correction terminate
faster. The second technique is the classical processing of
the remaining cumulative flag vector. This technique al-
lows our flag FTQEC protocol with the two-tailed adap-
tive time decoder to be applicable to any fault-tolerant
Clifford computation.

1. Separated X and Z counting

For any CSS code, Z-type and X-type errors can be
corrected separately. It is possible to improve the number
of measurements by separating the X-type and Z-type
syndrome measurement rounds (which correspond to X-
type and Z-type stabilizer generators). In this section,
we introduce the XZ and ZX decoding strategies. In the
XZ strategy, first, we execute a time decoder (which can
be Shor, one-tailed, or two-tailed decoder) using only the
X-type syndromes. The difference vector for this process

is denoted by δ⃗x. After the decoder returns the X-type



16

Remaining cumulative flag vector Logical Clifford Initial flag vector of the

of the current FTQEC routine operation next FTQEC routine

(F⃗x, F⃗z) H̄ (F⃗z, F⃗x)

(F⃗x, F⃗z) S̄ (F⃗x, F⃗x ⊕ F⃗z)

(F⃗x,1, F⃗z,1|F⃗x,2, F⃗z,2) CNOT1,2 (F⃗x,1, F⃗z,1 ⊕ F⃗z,2|F⃗x,1 ⊕ F⃗x,2, F⃗z,2)

TABLE II: A list of required classical processing operations on the remaining cumulative flag vector in case that
a logical Clifford gate is performed between two FTQEC routines. With these operations, a flag FTQEC protocol
with two-tailed adaptive time decoder or separated X and Z counting is applicable to any fault-tolerant Clifford
computation, given that the CSS code is self-orthogonal.

syndrome and the cumulative flag vectors for Z-type er-
ror correction, we estimate the number of faults tx that

could cause δ⃗x; we define αall,x to be the total number
of non-overlapping 11 sequences plus the total number of

remaining 1s in δ⃗x, define µall,x to be the total number of

nontrivial flag bits in δ⃗x, and let tx = max(αall,x, µall,x).
Given that we spend this number of faults from our fault
budget t, we can reduce the target number of faults in the
stop condition for the Z-type syndrome measurements.
Afterward, we run a time decoder for Z-type syndromes
with the target number of faults tz = t − tx. The ZX
strategy is similar to the XZ strategy, except that the
Z-type generators are measured first.

When the separatedX and Z counting technique is ap-
plied to a flag FTQEC protocol, one can find syndromes
for Z-type and X-type error corrections faster compared
to a conventional method where the target numbers of
faults for both types of error corrections are t. However,
a drawback is that the flag FTQEC protocol will only
be compatible with quantum memory. This is because of
each type of error correction requires flag information of
the opposite type. In particular, suppose that the time
decoder for X-type syndrome measurements give syn-

drome s⃗x and cumulative flag vector F⃗x, and the time de-
coder for Z-type syndrome measurements give syndrome

s⃗z and cumulative flag vector F⃗z. Z-type error correc-
tion will be done by applying a space decoder to s⃗x and
the zero cumulative flag vector, while X-type error cor-
rection will be done by applying a space decoder to s⃗x
and F⃗z. The cumulative flag vector F⃗x which has not
been used will be treated as the remaining cumulative
flag vector of the current FTQEC routine and used as an
initial flag vector for Z-type error correction in the next
FTQEC routine.

2. Classical processing of the remaining cumulative flag
vector

One drawback of a flag FTQEC protocol that uses
the two-tailed adaptive time decoder or the separated
X and Z counting technique is that it is only applica-
ble to a quantum memory, not a general fault-tolerant
quantum computation. This is because the output error
at the end of each FTQEC routine may correspond to

a nontrivial cumulative flag vector. To correct such an
error, one needs to pass the flag information from each
FTQEC routine (the remaining cumulative flag vector)
to the next FTQEC routine. However, if there is some
quantum computation between two FTQEC routines (as
in an extended rectangle [6]), the error will be trans-
formed and may not be correctable if the corresponding
flag information is not processed properly.

Nevertheless, for any self-orthogonal CSS code, a flag
FTQEC protocol with two-tailed adaptive time decoder
or separated X and Z counting (or both) can made
applicable to any fault-tolerant Clifford computation.
For example, let us consider an application of a log-
ical Hadamard gate H̄ between two FTQEC routines.
Suppose that the first FTQEC routine causes an output
error Ex · Ez and the remaining cumulative flag vector

is (F⃗x, F⃗z). Without a logical Hadamard gate, Ex and

Ez can be corrected using F⃗z and F⃗x, respectively. A
logical Hadamard gate transforms an X-type error to a
Z-type error of the same form, and vice versa. Because
the X-type and Z-type generators are of the same form,
possible fault combinations for both types of errors are
also of the same form. To correct the transformed error
H̄(Ex ·Ez)H̄

† in the second FTQEC routine, one needs to
swap the X-type and Z-type cumulative flag vector; that
is, the initial flag vector for the second FTQEC routine

must be (F⃗z, F⃗x).

We can apply similar ideas for flag information pro-
cessing to logical S and logical CNOT gates. The sum-
mary of the classical processing operations for logical
H, S, and CNOT gates is provided in Table II. Be-
cause {H,S,CNOT} generates the Clifford group, a flag
FTQEC protocol with two-tailed adaptive time decoder
or separated X and Z counting is applicable to any fault-
tolerant Clifford computation given that the CSS code
is self-orthogonal. Note that the magic state distilla-
tion and injection [56, 57] use only Clifford operations.
Thus, our techniques are also applicable to fault-tolerant
universal quantum computation given that high-fidelity
magic states are provided.
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V. NUMERICAL RESULTS

A. Methods

Our optimization tools for space and time decoders
including the compact lookup table construction, the
MIM technique, and the adaptive time decoders for flag
FTQEC are applicable to any stabilizer code. However,
we focus on a specific family of codes where the aforemen-
tioned tools can be simplified and extended techniques,
including separated X and Z decoding and classical pro-
cessing of flag information are applicable—the family of
self-orthogonal CSS codes in which the number of phys-
ical qubits is odd, the number of logical qubits is 1, and
logical X and Z operators are transversal. To evaluate
the performance of our tools, we simulate FTQEC proto-
cols on the [[(3d2 + 1)/4, 1, d]] hexagonal color codes [41]
of distance 3, 5, 7 and 9. These codes are planar topo-
logical codes with configurations displayed in Fig. 6. For
each code, stabilizer generators are measured using the
syndrome extraction circuits with single flag ancilla, as
depicted in Fig. 4. It was proven that for the hexago-
nal code of any distance, using flag circuits of this form
preserves the code distance regardless of the gate order-
ings [32, 35]). The simulation is implemented under the
circuit-level depolarizing noise model specified in Sec-
tion IIA. As there is no idling noise in our error model,
the syndromes can be extracted sequentially.

To construct a lookup table for space decoding and to
verify that our circuit configurations preserve the code
distance, we implement the algorithm described in Sec-
tion IIIA using C++. The timing for verification along-
side the statistics of the lookup table can be found in
Table I. The lookup table for these codes can be gener-
ated on the fly before the sampling starts as the required
time is low enough.

Here we simulate the storage (i.e. the result of the
logical identity operation) of the logical state |0̄⟩. We
use of the Pauli frame simulator in Stim [58] to collect
measurement samples, and use Cirq [59] for constructing
the circuits with the given noise model. After a perfect
preparation of |0̄⟩, we perform noisy error correction and
recovery. In the error correction process, full rounds of
syndrome measurements are repeated until the stop con-
dition of the time decoder is satisfied. The time decoder
returns an accepted full syndrome (consisting of error
syndrome and cumulative flag vector), then the space
decoder determines the recovery operation based on the
accepted full syndrome. This recovery operation is ap-
plied to the data qubits afterwards. Finally, we apply an
ideal error correction and determine whether the output
error is a logical X error (which corresponds to having
|1̄⟩ as the output state).

FIGURE 6: The studied members of the hexagonal color
code, for distances 3, 5, 7, and 9 (right to left). Qubits are
on the vertices and stabilizer generators are the plaque-
ttes. As the codes are self-orthogonal CSS codes, both
the X and Z stabilizer generators are described by the
same layout.

B. The overall effect of optimization tools

We first compare two protocols: (1) the FTQEC proto-
col with Shor time decoder without the MIM technique
(the protocol in which none of our optimization tools
are applied) and (2) the FTQEC protocol with the MIM
technique and the two-tailed adaptive time decoder with
the ZX strategy (the best FTQEC protocol in this work
which is compatible with any Clifford computation on a
self-orthogonal CSS code). The logical error rate pL vs
physical error rate p for hexagonal color codes of distance
3, 5, 7, and 9 are plotted in Fig.7. Our results show that
for each code, applying the optimization tools can sig-
nificantly improve the pseudothreshold (the intersection
between each plot and the pL = 2p/3 line). Further-
more, the optimized decoder yields orders of magnitude
improvements in the logical error rate in the p = 10−4

error regime.

Under a noise model parameterized by a single param-
eter p, the fault-tolerant threshold pth is the error prob-
ability under which the logical error rate is guaranteed
to decrease with increasing code distance for a specific
code family and decoder. Our decoders can yield a pth
for concatenated code families using a level-by-level de-
coder, but they will not yield a threshold for topological
code families for two reasons. The practical reason is
that our space decoder that uses a lookup table is not
scalable to the large d limit. The fundamental reason is

that the time decoder will always take δ⃗ in which all bits
are one when d is large, because δj for each round will be
1 with a probability exponentially close to 1 for finite p.
The space decoder then acts on the final state but lacks
the information about correlations to properly correct it.
This is why an efficient space-time decoder is critical for
achieving pth for topological codes.

We can define an effective threshold p̃th as the error
rate below which increasing the code distance improves
the logical error rate for this finite set of codes. The op-
timized protocol yields a p̃th = 1.5× 10−3, while the un-
optimized protocol yields p̃th = 4.5× 10−5. We also note
that the crossing point between the codes of distances d
and d − 2 is dropping quickly with the unoptimized de-
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Two-tailed ZX time-decoding with MIM

d = 3: (1.02± 0.25)× 10−3

d = 5: (1.58± 0.20)× 10−3

d = 7: (1.61± 0.16)× 10−3

d = 9: (1.43± 0.07)× 10−3

FIGURE 7: The upper plot shows the curve of logical er-
ror rate pL vs physical error rate p for the hexagonal color
code family without any of our optimization techniques,
using the Shor time decoder without MIM. The lower plot
uses the best-performing combination of our techniques,
including MIM and the two-tailed adaptive time decoder
with ZX strategy. Pseudothresholds for each curve (the
pth error rate which gives pL(pth) = 2pth/3) are included
in the labels and marked with vertical lines. The data
points represent the number of logical errors divided by
the total number of samples at that p error rate and
thus estimate the true logical error rates, which should lie
within the shaded areas with high confidence. The dot-
ted helper lines, which are αpt+1 where α = 2

3p
−t
th retroac-

tively calculated for each curve from its pseudothreshold,
show good agreement with distance preservation.

coder, while it is stable for the optimized decoder over
this code set. Table III summarizes the effects of dif-
ferent optimization tools on the pseudothreshold of the
d = 9 color code. In the next sections, we further discuss
the effect of each technique that can contribute to this
improvement.

C. The effect of the Meet-in-the-Middle technique

In this section, we evaluate the performance of simu-
lated storage that uses the space decoder with and with-

Time decoder w/o MIM (×10−4) MIM (×10−4)

Shor 1.34± 0.01 2.79± 0.01

One-tailed 2.11± 0.05 3.91± 0.26

Two-tailed 3.38± 0.17 6.30± 0.45

Two-tailed XZ – 6.09± 0.47

Two-tailed ZX – 14.3± 0.7

TABLE III: The effect of different time decoders (rows)
and the MIM technique (columns) on the pseudothresh-
old of the distance 9 hexagonal color code. See Figs. 8
to 10 for more details on the underlying data.

out the MIM technique. We explore the effect for dis-
tances 3, 5, 7, and 9, and compare the effect when the
time decoder is Shor, one-tail, or two-tail time decoder.
We observe a significant decrease in logical error rates
and an improvement in pseudothreshold when the MIM
technique is applied. We also find that the benefit in-
creases with the code distance. In Fig. 8, we show the
improvement for the code of distance 9 where the benefit
is the largest. The results for codes of other distances are
provided in Figs. 14 to 16.
It is clear that both non-adaptive (Shor) and adap-

tive time decoders benefit from the MIM technique. The
pseudothreshold for the Shor time decoder increases by
more than 100%, from (1.34 ± 0.01) × 10−4 to (2.79 ±
0.01)×10−4. The pseudothreshold for one-tailed adaptive
time decoder increases by 85%, from (2.11±0.05)×10−4

to (3.91± 0.26)× 10−4. Finally, the pseudothreshold for
the two-tailed adaptive time decoder gets a boost of 76%,
from (3.38± 0.17)× 10−4 to (5.96± 0.71)× 10−4.

D. The effect of the adaptive time decoders

In this section, we compare the performance of the
simulated storage numerical experiments that use differ-
ent time decoders when the MIM technique is applied.
The results are displayed in Fig.9 for the hexagonal code
of distance 9, and we refer the reader to Fig. 17 in Ap-
pendix C for the results for the codes of other distances.
For the code of distance 9, in comparison with the Shor

time decoder, the one-tailed adaptive time decoder im-
proves the pseudothreshold by 40% from (2.79± 0.07)×
10−4 to (3.91 ± 0.07) × 10−4. The two-tailed method
achieves (5.96 ± 0.71) × 10−4 pseudothreshold, which is
more than a 100% increase compared to the Shor time
decoder. However, this gain vanishes at lower error rates,
and the performances of Shor and one-tailed decoders be-
come similar at around p = 10−4. It is not surprising as
we expect all adaptive time decoders to converge to Shor
time decoder at lower error rates. The main reason for
this convergence is that the performance gains for the
adaptive techniques come from a decrease in the aver-
age number of rounds for syndrome measurements, and
the decrease converges to zero at low error rates. How
fast the decrease converges does matter, and in contrast
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Effect of MIM for One-tailed (d = 9)

One-tailed adaptive w/o MIM: (2.11± 0.05)× 10−4

One-tailed adaptive with MIM: (3.91± 0.26)× 10−4
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Effect of MIM for Two-tailed (d = 9)

Two-tailed adaptive w/o MIM: (3.38± 0.17)× 10−4

Two-tailed adaptive with MIM: (6.30± 0.45)× 10−4

FIGURE 8: The effect of the MIM technique on different
time decoders at distance 9. The effect is the largest for
Shor time decoder, more than doubling the pseudothresh-
old. The MIM technique also gives at least a significant
70% improvement on the adaptive time decoders.

to the one-tailed approach, the two-tailed time decoder
preserves its performance gain over Shor time decoder at
the observed low-error regime as low as 5× 10−5.

We also provide the plots of the average numbers of
full rounds of measurements for all decoders. At a low-
error-rate regime, all decoders have the same minimum
number of measurement rounds, t+1, which corresponds
to the case that all bits in the difference vector are zeros.
We can see the separation more clearly when the phys-

ical error rate is in the 10−3 range; the two-tailed time
decoder requires the fewest rounds, followed by the one-
tailed decoder, and the Shor time decoder performs the
worst. At the high-error-rate regime, all bits in the differ-
ence vector tend to be ones. In this case, the Shor time
decoder requires (t + 1)2 rounds, while both one-tailed
and two-tailed decoders require 2t+ 1 rounds.

E. The effect of the separated X and Z counting
technique

In this section, we observe the performance gains when
the separated X and Z counting technique is applied.
Here we compare the FTQEC protocols that use the
two-tailed adaptive time decoder with joint X and Z
generator measurements (as in Section IVB2), the two-
tailed adaptive time decoder with XZ strategy, and the
two-tailed adaptive time decoder with ZX strategy (as
in Section IVC1). The logical error rate is calculated
from the number of samples in which the output error is
a logical X error. The pL versus p plots for the code of
distance 9 are shown in Fig. 10 (the results for codes of
other distances can be found in Fig. 18 in Appendix C).
In terms of the pseudothreshold, we observe that the

decoder with separated X and Z counting performs the
best when Z-type generators are measured beforeX-type
generators. Compared to the two-tailed decoder with
joint X and Z generator measurements, the separated
two-tailed ZX decoder improves the pseudothreshold by
140% from (5.96± 0.71)× 10−4 to (1.44± 0.20)× 10−3.
This is mainly because measuring generators of the first
type (X or Z) requires more rounds, and it is more prob-
able that the measurements can cause correlated errors of
the same type as the generators being measured (which
are more difficult to correct than uncorrelated errors since
they require flag information). Because in our simula-
tions we measure the performance of storing the logical
|0⟩ state (thus, a logical X error is counted), the decoder
that measures X-type generators first performs worse.
We also observe that there is no significant difference
between the two-tailed decoder with joint measurements
and the two-tailed decoder with XZ strategy.
We also provide plots of the average number of full

rounds of measurements for all decoders (where the full
round of single-type generator measurements is counted
as half a round of total measurements). At the low-
error-rate regime, all decoders require t + 1 rounds. For
the original two-tailed decoder, the average number of
rounds increases as the physical error rate increases, and
it reaches 2t+1 rounds at the high-error-rate regime. For
both two-tailed decoders with separated X and Z count-
ing, we find that the average number of rounds increases
near the pseudothreshold, then there are the dips after
the pseudothreshold, and the numbers reach t+1 rounds
at the high-error-rate regime. The dips come from the
fact that the measurements of generators of the first type
(either X or Z) can stop at less than (2t + 1)/2 rounds
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FIGURE 9: Logical error rates of one-tailed and two-tailed adaptive time decoders compared to the Shor time decoder
(left) with corresponding average number of rounds (right) for the hexagonal color code of distance 9.
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FIGURE 10: Logical error rates of the two-tailed time decoder with XZ and ZX strategies in comparison with the
two-tailed adaptive time decoder with joint X and Z measurements (left) and corresponding average number of rounds
(right) for the hexagonal color code of distance 9.

but the estimate of the number of occurred faults can
be t, which then causes the measurements of generators
of the second type to stop at 1/2 rounds. At the high-
error-rate regime, the decoders with separated X and Z
counting require t+1 rounds since measuring generators
of the first type requires (2t + 1)/2 rounds while mea-
suring generators of the second type requires 1/2 rounds
on average. Overall, the decoder that measures Z-type
generators first performs better than the decoder that
measures X-type generators first.

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we focus on flag FTQEC with lookup ta-
ble decoding and improvements to a decoder consisting
of a time decoder and a space decoder. For the space
decoder, we first develop a technique to build the lookup
table more efficiently in Section IIIA. With our lookup
table construction method, the lookup table for a self-
orthogonal CSS code requires at least 87.5% less mem-
ory compared to the lookup table for a generic stabilizer
code. The construction method also verifies the distin-
guishability of the fault set corresponding to flag circuits
for syndrome measurements. Our construction also leads
to the notion of the fault code, a linear code correspond-

ing to the faults under circuit-level noise, which simpli-
fies the verification of the distance of the protocol. More
efficient decoding schemes for the fault code can be an
interesting avenue to explore in future work.

Another optimization tool for space decoding is the
MIM technique in Section III B, which could improve de-
coding accuracy when the number of faults in the proto-
col is greater than t (where t = ⌊(d−1)/2⌋ for the code of
distance d). The effect of the MIM technique on the sim-
ulated storage of the hexagonal color codes is discussed
in Section VC (see also Fig. 14). We find that for any
kind of time decoder, the logical error rates are reduced,
and the pseudothresholds are improved when applying
the MIM technique, with greater improvements at larger
distances.

For the time decoder, we generalize the adaptive syn-
drome measurement technique from the previous work
[38] (which is applicable to Shor-style error correction [1])
to flag FTQEC, and develop one-tailed and two-tailed
adaptive time decoders in Section IVB. For a general
stabilizer code in which flag FTQEC is possible, the one-
tailed decoder is preferable as it is compatible with any
fault-tolerant quantum computation, while the two-tailed
decoder is applicable to quantum memory only. Nev-
ertheless, for self-orthogonal CSS codes, the two-tailed
decoder is applicable to any fault-tolerant computation
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built from Clifford gates and application of T gates by
gate teleportation using high-fidelity magic states with
the help of the classical processing technique on cumula-
tive flag vectors developed in Section IVC. The effect of
the adaptive time decoders on the simulated storage is
discussed in Section VD. We observe that our adaptive
time decoders can improve the pseudothresholds com-
pared to the non-adaptive (Shor) time decoder while pre-
serving the code distance. The two-tailed decoder also
outperforms the one-tailed decoder.

The two-tailed adaptive decoder without MIM in this
work is similar to the adaptive strong decoder in the pre-
vious work [38], except that this work uses flag circuits
instead of syndrome extraction circuits with cat states.
The numerical results show that using flag circuits re-
sults in a 20-35% increase of the pseudothreshold for the
hexagonal color codes of distances 3, 5, 7 and 9. This
is mainly because flag circuits have fewer state prepa-
ration and qubit measurement locations, although they
have more gates. The previous work [38] also assumes
fault-tolerant preparation of cat states, which requires
verification [1] or ancilla decoding circuit [26] that can
result in higher space and time overhead. Thus, the pseu-
dothresholds could be worse in that case if additional re-
quirements are also considered. It should be noted that
flag circuits may not outperform syndrome extraction cir-
cuits with cat states in general, as flag FTQEC for other
codes may require more complicated flag circuits.

We can further improve the performance of adaptive
time decoders on self-orthogonal CSS codes by using the
separated X and Z counting technique described in Sec-
tion IVC. Here, we estimate the number of faults oc-
curred from the measurement of generators of the first
type (either X or Z) and then use that information in
the measurement of generators of the second type. The
effect of this technique can be found in Section VE. When
the logical |0⟩ state is stored, we find that the protocol
that measures Z-type generators before X-type genera-
tors performs the best. We see no significant difference
in the protocol that measures X-type generators before
Z-type generators, and the protocol that measures X-
type and Z-type generators jointly. Thus, the separated
X and Z counting provides an advantage only for certain
input states depending on the measurement order.

Combining all techniques together, we find a signifi-
cant improvement in the pseudothreshold while the code
distance is still preserved. For example, on the hexago-
nal color code of distance 9, the pseudothreshold goes up
from (1.34 ± 0.01) × 10−4 to (1.42 ± 0.12) × 10−3. We
also find that in comparison with the unoptimized de-
coder, the crossing points between the codes of distances
d and d − 2 come much closer when all techniques are
applied (as shown in Fig. 7), leading to a higher effective
threshold p̃th for this set of codes.

While our techniques are applicable to a broader fam-
ily of codes, it would be interesting to see how our results
compare with other works that study error decoding on
the hexagonal color codes under circuit-level noise. For

example, Baireuther et al. [60] reported a pseudothresh-
old above 2×10−3 (against pL = p instead of pL = 2p/3)
with a neural-network decoder, which also preserves the
code distance empirically. However, it was also reported
that training decoders for d > 7 became too expensive.
By adapting efficient color-decoding algorithms known
as restriction decoder [61] and projection decoder [51],
Chamberland et al. [32] and Beverland, Kubica and
Svore [24] reported threshold values of 2 × 10−3 and
3.7×10−3 respectively. The difference between threshold
values is mostly contributed by different choices of syn-
drome extraction circuits: for each weight-six stabilizer
generator, Ref. [32] used three flag qubits for connec-
tivity considerations, while Ref. [24] did not use any
flag qubits. However, both the restriction decoder and
the projection decoder can only correct up to d/3 errors
(see Fig. 15 in Sahay and Brown [62] for example fail-
ure modes) on the color code family considered in this
paper1. Recent preprints report distance-losing schemes
to decode the color code with even higher thresholds of
4.7 × 10−3 [25], and between 5 × 10−3 to 7 × 10−3 [63]
without using flag qubits.
In contrast to the constructions that utilize the restric-

tion decoder [32] and the projection decoder [24], our
adaptive decoding method preserves the code distance
(although the lookup table is not scalable to codes with
larger distances). It is expected that our method could
become advantageous for the codes of interest when the
physical error rate is below a certain value. However, the
noise models in Refs. [24, 25, 32, 60, 63] also consider
idling noise, while our noise model does not. Sequen-
tial syndrome extraction is expected to perform poorly
in architectures where idling noise is dominant (see Ap-
pendix B for an analysis on the [[7, 1, 3]] code). To im-
prove performance, our methods need to be combined
with optimized schedules specific to the given code fam-
ily. CNOT schedule optimization is involved, requiring
an enumeration of valid CNOT schedules satisfying basic
constraints and finding the best-performing one using ex-
haustive search, similar to how Beverland, Kubica, and
Svore[24] found a well-performing schedule for hexagonal
color codes and bare ancillas. It is thus an open ques-
tion what the error regime is where our flag qubit-based,
adaptive methods are advantageous in comparison to the
non-distance preserving decoders. This analysis will re-
quire evaluation using code-specific optimizations under
different strength idling noise scenarios, which we leave
for future work.
Hierarchical decoding approaches also provide an in-

teresting avenue to explore with lookup table-based and
adaptive techniques [64, 65]. We conjecture that our
techniques may result in efficient pre-decoders. The
lookup tables and the adaptive syndrome algorithms
would have to be restricted to local sections of topologi-
cal codes or sparsely connected modules of other codes.

1 See Appendix A of the 3rd arXiv version of [32].
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Then, when the lookup table decoders cannot decode the
local problems, the more expensive and accurate decoder
can attempt to decode the nonlocal problem.

It should be noted that this work uses the adaptive
syndrome measurement technique, which assumes fast
qubit preparation and measurement. For the architec-
tures on which qubit measurement and reset are slow,
however, our method may require a large number of an-
cillas or may not be possible. In that case, one may
consider using the flag schemes that do not require fast
qubit measurement and reset, such as the flag scheme
for any distance-3 code [66], or the flag scheme in which
the flag gadgets are constructed from the classical BCH

codes [67].
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Appendix A: Memory footprint savings in the lookup table

In this section, we detail how much savings each of the ideas in the main text contributes relative to the lookup
table memory cost of

Mstab = Tstab(4n− 2k) bits, (A1)

when we look at a code as a generic stabilizer code. If CROs and the logical class are used instead of full Pauli operators
for recovery, then instead of storing the full 2n bits for recovery, only 2k bits are required. Thus,Mstab,CRO = Tstab(2n)
leading to:

Mstab,CRO/Mstab =
Tstab(2n)

Tstab(4n− 2k)
=

1

2− k/n
=

1

2−R
, (A2)

where R = k/n, the encoding rate. Thus, for codes with R→ 0 as n→ ∞, this alone saves up to 50% in storage.

For CSS codes, as mentioned in the main text, we assume independent recovery for X and Z type errors. Let TX
and TZ denote the number of unique X- and Z-type non-trivial syndromes (which are obtained by measuring X- and
Z-type generators, respectively). Then, CSS codes have two lookup tables mapping pure X- and Z-type syndromes
to purely Z- and X-type recovery operators, with TX + 1 and TZ + 1 entries. Thus, they require only 2rX and 2rZ
bits for the map key (factor of two for flags and data bits) and n bits for the recovery operator. This results in the
memory cost for the lookup tables of a CSS code:

MCSS = (TX + 1)(2rX + n) + (TZ + 1)(2rZ + n) bits

= 2rXTX + 2rX + nTX + n+ 2rZTZ + 2rZ + nTZ + n bits

= 2(rXTX + rZTZ) + 2(rX + rZ) + n(TX + TZ) + 2n bits

= 2(rZTZ + rXTX) + (4n− 2k) + n(TZ + TX) bits (A3)

To compare this with Mstab, we need to take care of the trivial syndrome and introduce a variable, TXZ , for the
number of unique mixed X/Z syndromes that a generic stabilizer code representation would yield:

Tstab = TX + TZ + 1 + TXZ (A4)

Thus, from Eq. (A1):

Mstab = (TX + TZ + 1 + TXZ)(4n− 2k) bits (A5)

The ratio between the storage cost for a CSS code versus the cost when the same code is viewed as a generic
stabilizer code is hard to bound precisely. Nevertheless, at least we know that Mstab > MCSS as the savings are,

Mstab −MCSS = (TX + TZ + 1 + TXZ)(4n− 2k)− (TX + 1)(2rX + n) + (TZ + 1)(2rZ + n)

= 2(TXrZ + TZrX) + n(TX + TZ) + 2TXZ(2n− k) bits. (A6)

If we use CROs, we can reduce the size of the map values to k bits from n:

MCSS,CRO = (TX + 1)(2rX + k) + (TZ + 1)(2rZ + k) bits

= 2rXTX + 2rX + kTX + k + 2rZTZ + 2rZ + kTZ + k bits

= 2(rXTX + rZTZ) + 2(rX + rZ) + k(TX + TZ) + 2k bits

= 2(rXTX + rZTZ) + 2n+ k(TZ + TX) bits (A7)

And thus, not surprisingly, the decrease in bits is:

MCSS −MCSS,CRO = (n− k)(2 + TZ + TX) = (n− k)TCSS (A8)

where TCSS is the total number of entries of the two tables.
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If the code is self-orthogonal, then the two tables coincide, T := TX = TZ , r := rX = rZ . Thus,

MCSS,CRO,SO =
1

2
(2(rZTZ + rXTX) + 2n+ k(TZ + TX))

=
1

2
(2(rT + rT ) + 2n+ k(T + T ))

=
1

2
(4rT + 2n+ 2kT )

= 2rT + n+ kT

= (n− k)T + n+ kT

= nT + n

= n(T + 1), (A9)

which is consistent with having T +1 entries, with a map key of n− k bits (with (n− k)/2 for flags and for generator
bits) and a value with k bits. If we would view the self-orthogonal CSS code as a generic stabilizer code, we would
get Tstab = 1 + 2T + TXZ and thus the ratio is,

MCSS,CRO,SO/Mstab =
n(T + 1)

Tstab(4n− 2k)

=
n(T + 1)

(1 + 2T + TXZ)(4n− 2k)

=
T + 1

(1 + 2T + TXZ)(4− 2R)

≤ 1

8− 4R
, (A10)

where we used the fact that TXZ must be at least 1 for t > 0 and a non-trivial encoding. This upper bound means
that at a zero rate code, leveraging the structure of a self-orthogonal CSS code and the CROs can create a memory
footprint less than 12.5% that of the memory footprint of a lookup table if we viewed the code as a stabilizer code.

Appendix B: The effect of idling noise

To demonstrate the effect of idling noise, we evaluate the [[7, 1, 3]] code under a naive interleaved schedule, depicted
in Fig. 12a without noise terms and in Fig. 12b with gate noise terms with strength p = 0.02 and idling noise terms
with strength pI = 0.01. Note that further improvements are possible to reduce idling in the circuit by doubling the
number of flag qubits and ancilla qubits and measuring X and Z stabilizer generators in parallel, similar to the scheme
by Beverland, Kubica, and Svore [24]. This will, however, be only possible for the two-tailed adaptive decoder, and
the separated X/Z decoder will not work by definition. Also, protocol-specific CNOT schedule optimization might
be possible depending on the underlying quantum code. As we are not aiming to find tools on the code level, this
investigation is out of scope of this paper. It is also interesting to point out that using a single flag qubit and single
ancilla forces sequential execution of the gates within a generator, while multi-flag based schemes such as in the work
of Chamberland et al. [32] allow for multiple CNOT gates to be executed in the same time step. While our methods
here use single flag qubit-based protocols, that angle can be relaxed if the strength of idling noise requires it.

Our numerical evaluation results displayed in Fig.11 show that at idling noise strength pI = p, the pseudothreshold
is 20 to 25 times smaller than the case without idling noise pI = 0. However, as the relative strength of the depolarizing
noise p/pI increases, the performance approaches the ideal case rapidly. Furthermore, we can see that our decoders
still preserve the distance, which is expected given that the single qubit depolarizing noise terms do not change the
set of errors to be corrected but only change the strength of some terms.
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FIGURE 11: The effect of idling noise on a naive CNOT schedule for the [[7, 1, 3]] code at different idling noise strength
pI relative to the gate errors p. In this setup pI = p is the full, standard depolarizing noise model, and pI = 0 is the
one we used to evaluate our methods in the main text, while pI = p/2, pI = p/5 and pI = p/10 are between those two
extremes.
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FIGURE 12: An interleaved schedule of extracting the Z syndrome of the [[7, 1, 3]] code without (a) and with (b)
noise terms at gate depolarizing strength p = 0.02 and idling noise strength pI = p/2 = 0.01. Data qubits are 0 to 6,
ancilla qubits are 7 to 9 and flag qubits are 10 to 11. Brackets above and below the circuit group gates together that
are executed during the same time step. X-type syndrome extraction is similar.
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Appendix C: Figures for all distances
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FIGURE 13: The threshold formation effect of increasingly better space and time decoders. Both space decoding
improvement (MIM) and time decoding improvements (from Shor to two-tailed ZX-strategy) help in making the
intersections of the pL vs p curves more focused.
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d = 9.



30

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
p L

Logical error rate pL vs physical error rate p

One-tailed w/o MIM: (5.29± 0.76)× 10−4

One-tailed with MIM: (5.22± 0.82)× 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

N

Average number of rounds N vs. physical error rate p

One-tailed w/o MIM

One-tailed with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed w/o MIM: (4.34± 0.44)× 10−4

One-tailed with MIM: (6.43± 0.80)× 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

5

N

One-tailed w/o MIM

One-tailed with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed w/o MIM: (3.20± 0.17)× 10−4

One-tailed with MIM: (5.17± 0.55)× 10−4

10−4 10−3 10−2 10−1 100

p

0

2

4

6

N

One-tailed w/o MIM

One-tailed with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed w/o MIM: (2.11± 0.05)× 10−4

One-tailed with MIM: (3.91± 0.26)× 10−4

10−4 10−3 10−2 10−1 100

p

0

5

N

One-tailed w/o MIM

One-tailed with MIM

d = 9

d = 7

d = 5

d = 3

FIGURE 15: The effect of the MIM technique on one-tailed adaptive time decoder for hexagonal color codes of
distances 3, 5, 7, and 9. The improvement is increasing with distance, with no improvement at d = 3 and the biggest
one at d = 9.
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FIGURE 16: The effect of the MIM technique on two-tailed decoder for hexagonal color codes of distances 3, 5, 7,
and 9. The improvement is increasing with distance, with no improvement at d = 3 and the biggest one at d = 9.
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FIGURE 17: Comparison of one-tailed and two-tailed adaptive time decoders to Shor time decoder for hexagonal
color codes of distances 3, 5, 7, and 9. The improvement is increasing with distance, with no improvement at d = 3
and the biggest one at d = 9. Here, all decoders use MIM-enhanced space decoding.
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FIGURE 18: Comparison of the two-tailed time decoder with joint measurements and two-tailed time decoders with
XZ and ZX strategies for hexagonal color codes of distances 3, 5, 7, and 9. Here, all decoders use space decoding with
MIM.
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