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Lookup table decoding is fast and distance-preserving, making it attractive for near-term quantum
computer architectures with small-distance quantum error correcting codes. In this work, we develop
several optimization tools which can potentially reduce the space and time overhead required for
flag fault-tolerant error correction (FTEC) with lookup table decoding on Calderbank-Shor-Steane
(CSS) codes. Our techniques include the compact lookup table construction, the Meet-in-the-Middle
technique, the adaptive time decoding for flag FTEC, the classical processing technique for flag
information, and the separated X and Z counting technique. We evaluate the performance of our
tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level
noise. Combining all tools can result in more than an order of magnitude increase in pseudothreshold
for the hexagonal color code of distance 9, from (1.34± 0.01)× 10−4 to (1.42± 0.12)× 10−3.

I. INTRODUCTION

Inside a future large-scale quantum computer, there
will be a continuous battle against unwanted interactions
with the environment. The main goal of fault-tolerant
quantum error correction (FTEC) protocols [1] is to cre-
ate a robust channel to transfer quantum information
from the past to the future. The threshold theorem states
that it is possible to suppress the logical error rate to
an arbitrarily small value given that the physical error
rate is below the accuracy threshold [2–5]. It is essen-
tial to reduce both space and time overhead (the num-
bers of qubits and gates) for scalable quantum computing
as decreasing logical error rates requires increasing over-
head [6–9], and the current, leading proposals for FTEC
schemes have daunting requirements [10].

An FTEC scheme is designed to be robust against
propagating errors that emerge from faulty gates dur-
ing the execution of the protocol even if the physical
noise is assumed to be uncorrelated or weakly correlated.
The scheme also has to protect against ancilla prepara-
tion and measurement errors, usually through repeated
syndrome measurements. For an [[n, k, d]] stabilizer code
[11] which encodes k logical qubits into n physical qubits
and has distance d, Shor’s solution [1] was to utilize cat-
state ancilla register that requires w ancilla qubits and
(d + 1)2/4 rounds of syndrome measurements, where w
is the maximum weight of the stabilizer generators. In
Steane-style syndrome extraction [12], the ancilla regis-
ter requires n qubits and is encoded with the same quan-
tum error correcting code (QECC) as the data qubits.
Similarly, in Knill-style error correction [13], the ancilla
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register consists of two blocks of n qubits encoded in the
same QECC as the data qubits.
In contrast to complex ancilla structure, for some spe-

cific families of codes, stabilizer generators can be fault-
tolerantly measured using bare ancillas [14–16]. For a
general stabilizer code, however, generator measurements
with bare ancillas might not be possible. A series of works
aiming to reduce the size of the ancilla register resulted in
increasingly lighter-weight constructions [17, 18], which
also led to the flag FTEC schemes for perfect codes of
distance 3 that use only 2 ancillas per generator [19].
The flag schemes later generalized to arbitrary codes of
distance d require d+1 ancillas per generator [20], while
the schemes for some specific families of codes require
fewer [21–26].
FTEC schemes based on extraction circuits with cat

states and flag FTEC schemes both require repetition of
syndrome measurements that can result in a large num-
ber of gates. Adaptive syndrome measurement schemes
in which the subsequent measurement procedures depend
on the previous syndrome measurement outcomes have
been explored to reduce the number of rounds required
for FTEC schemes with Shor-type extraction circuits [27–
29].
In a non-ideal FTEC protocol, faults can occur at any

gate on any round of the syndrome measurements. The
only information about the error on data qubits that we
can obtain is a sequence of error syndromes, and we want
to find an appropriate recovery operator from this infor-
mation. An ideal strategy would be using all syndrome
bits from all rounds, that is, the whole measurement out-
comes in space-time. For some codes with a nice struc-
ture such as surface codes, an efficient space-time decoder
exists [30]. However, constructing a space-time decoder
for a general stabilizer code is not simple. To simplify
the problem, we will consider an error decoder which is
composed of two parts: the space and the time decoders.
Under the assumption that the syndrome measurements
can be faulty, the time decoder finds a round of syn-
drome measurements that has no faults and give a cor-
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rect syndrome. The space decoder then uses the correct
syndrome to find a recovery operator.

Conventionally, flag FTEC uses a lookup table decoder
as a space decoder, and relies on Shor-style repeated syn-
drome measurements as a time decoder. These decoders
have pros and cons. The lookup table decoder is fast
and distance-preserving. However, building a lookup ta-
ble requires an exhaustive search on all possible fault
combinations up to a certain number of faults, and the
table requires a lot of memory to store. Thus, it might
not work well with a code of high distance (unless code
concatenation is applied). The Shor-style time decoder
is simple and compatible with any space decoder. How-
ever, the large time overhead required in the repetition
can result in a lower threshold.

In this work, we build several optimization tools for
both space and time decoders for flag FTEC so that it
becomes more practical. Most of our tools are applica-
ble to a general stabilizer code, but we primarily focus
on a self-dual CSS code in which the number of physi-
cal qubits is odd, the number of logical qubits is 1, and
logical X and Z operators are transversal for simplicity.
Our main results are the following: (1) We develop a
technique to build a lookup table more efficiently. Our
compact lookup table for a self-dual CSS code requires
75% less memory footprint compared to a lookup table
for a generic stabilizer code. Our method also efficiently
verifies whether a given configuration of the flag circuits
preserves the code distance. The development also leads
to a notion of fault code which can be useful in error
sampling for the circuit-level noise model. (2) We in-
troduce the Meet-in-the-Middle (MIM) technique which
can help the lookup table decoder to correct faults more
than the number of errors correctable by the underlying
code. Although the correction is not always successful,
the higher success probability can significantly increase
the pseudothreshold in our simulation. (3) We gener-
alize the adaptive syndrome measurement scheme from
[29] to flag FTEC and introduce one-tailed and two-tailed
adaptive time decoders, which are useful in different cir-
cumstances. We also develop a classical processing tech-
nique on flag information that makes our FTEC protocols
compatible with any fault-tolerant Clifford computation.
(4) We use our optimization tools and perform numerical
simulations on the hexagonal color codes [31] of distances
3, 5, 7, and 9. The results show that each of our tools can
significantly reduce the logical error rates and increase
the pseudothreshold for each code while preserving the
code distance. For the hexagonal color code of distance
9, the pseudothreshold is improved by one order of mag-
nitude, from (1.34± 0.01)× 10−4 to (1.42± 0.12)× 10−3,
when all techniques are applied.

This paper is organized as follows. In Section II, we
define the noise model in this work, review flag FTEC,
and provide definitions of fault-tolerant error correction.
In Section III, we develop optimization tools for space de-
coder, including an efficient method to build a compact
lookup table and the MIM technique. In Section IV,

we develop optimization tools for time decoder, includ-
ing the one-tailed and two-tailed adaptive time decoder,
and other extended techniques for CSS codes. In Sec-
tion V, we provide numerical results for the hexagonal
color codes and observe the effects of the MIM, the adap-
tive time decoding, and the separated X and Z counting
techniques on the logical error rates. We discuss and
conclude our results in Section VI.

II. BACKGROUND

Quantum systems are fragile and can lose their prop-
erties easily when interacting with the environment. To
protect quantum information, one can use a quantum
error correcting code (QECC) to encode the quantum
data. Quantum error correction (QEC) is a process that
identifies an error when it occurs, then applies an ap-
propriate error correction (EC) operator to remove the
error. However, quantum operations in the process can
be faulty and may introduce more errors to the system.
For this reason, we want to make sure that the QEC pro-
cess is fault tolerant ; that is, an imperfect QEC process
can correct errors faster than causing new ones.

In this section, we first describe the noise model
that will be used in this work and provide the conven-
tional definition of fault-tolerant error correction in Sec-
tion IIA. We then review flag FTEC and provide a re-
vised definition of fault-tolerant error correction which is
more suitable for flag FTEC in Section II B.

A. Noise model and conventional definition of
fault-tolerant error correction

An [[n, k, d]] stabilizer code [11] encodes k logical qubits
using n physical qubits and can correct up to τ = ⌊(d−
1)/2⌋ errors, where d is the code distance. A stabilizer
code is described by a stabilizer group, an Abelian group
generated by r = n−k commuting Pauli operators whose
elements are called stabilizers. The coding subspace is
the simultaneous +1 eigenspace of all elements in the
stabilizer group.

The QEC process for a stabilizer code can be done by
first measuring the eigenvalues of all stabilizer genera-
tors. An r-bit string of measurement outcomes is called
the error syndrome (where bits 0 and 1 refer to +1 and−1
eigenvalues of each generator). An example of a circuit
for measuring an eigenvalue of a stabilizer generator is
displayed in Fig. 1. After the syndrome (or the sequence
of syndromes) is obtained, an appropriate recovery oper-
ator will be found by a mapping called error decoder, then
the recovery operator will be applied to the data qubits.
For Calderbank-Shor-Steane (CSS) codes [12, 32], it is
possible to correct X- and Z-type errors separately. For
a self-dual CSS code (whose X-type and the Z-type sta-
bilizer generators are of the same form), similar error
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FIGURE 1: A syndrome extraction circuit with bare
ancilla for measuring a stabilizer generator of the form
ZZZZ.

decoders can be used for both X-type and Z-type error
corrections.

Note that there are many Pauli operators that corre-
spond to the same error syndrome. If the recovery oper-
ator from the decoder and the error that occurred to the
codeword are logically equivalent, i.e., they are the same
operator up to a multiplication of some stabilizer, the
QEC process succeeds. However, if the recovery opera-
tor from the decoder and the error that occurred to the
codeword are off by a multiplication of some nontrivial
logical operator, the QEC process fails.

If all gates in the syndrome measurement process de-
scribed above are perfect, a stabilizer code of distance d
should be able to correct up to τ errors as desired. How-
ever, the process above is not fault-tolerant under the
circuit-level depolarizing noise. This is because a sin-
gle faulty gate may lead to an error that can propagate
to other data qubits, causing an error of weight higher
than τ that might not be correctable. For this reason, a
better set of syndrome extraction circuits is required to
make sure that the QEC process is fault tolerant.

Before defining fault-tolerant error correction, let us
consider the noise model and error propagation. In this
work, we use the circuit-level depolarizing noise model.
Here we assume that any quantum operation can be de-
composed into a series of one- and two-qubit gates, and
single-qubit preparation in the |0⟩ state and measure-
ments in the Z-basis. An imperfect operation is modeled
as a perfect operation followed by a Pauli operator on the
support of the perfect operation, referred to as a fault.
In this error model, every single-qubit gate is followed by
a single-qubit Pauli operator P ∈ {X,Y, Z} with proba-
bility p/3 each, and every two-qubit gate is followed by a
two-qubit Pauli operator P1⊗P2 ∈ {I,X, Y, Z}⊗2\{I⊗I}
with probability p/15 each. In addition, a single-qubit
preparation and measurement can also be faulty; this is
modeled be a bit-flip channel after a single-qubit prepa-
ration or before a single-qubit measurement with error
probability p. Because any error on w qubits can be writ-
ten as a linear combination of Pauli operators of weight
w (where w is the number of non-identity factors of a
Pauli operator), if we can correct any Pauli operator of
weight w, we can also correct any type of errors on w
qubits.

When an error occurs, it may be transformed into an-
other type of error or propagated to other data qubits

depending on subsequent operations. For example,
Hadamard and CNOT gates can transform errors as fol-
lows:

H : X 7→ Z, Z 7→ X,
CNOT : XI 7→XX, ZI 7→ ZI,

IX 7→ IX, IZ 7→ZZ.

Because of this, an error on a single qubit that occurs
during the syndrome measurement can propagate and
become an error of higher weight at the end. Possible
resulting errors depend on the properties of the syndrome
extraction circuits, including the number of ancilla qubits
and the gate orderings.
One way to define fault-tolerant error correction

(FTEC) is using the definition proposed by Aliferis,
Gottesman, and Preskill:

Definition 1. Fault-tolerant error correction [5]
Let t ≤ ⌊(d−1)/2⌋ where d is the distance of a stabilizer

code. An error correction protocol is t-fault tolerant if the
following two conditions are satisfied:

1. Error correction correctness property (ECCP): For
any input codeword with error of weight r, if s faults
occur during the protocol with r + s ≤ t, ideally
decoding the output state gives the same codeword
as ideally decoding the input state.

2. Error correction recovery property (ECRP): If s
faults occur during the protocol with s ≤ t, regard-
less of the weight of the error on the input state,
the output state differs from any valid codeword by
an error of weight at most s.

When a QEC protocol satisfies Definition 1, it is guar-
anteed that the output error will have weight ≤ t when-
ever the weight of the input error plus the total number
of faults in the protocol is ≤ t. This means that if the
next round of QEC has no faults, it can always correct
the output error from the current round. Normally, we
would like to construct an FTEC protocol in which t is
as close to τ = ⌊(d − 1)/2⌋. If t = τ , we say that the
FTEC protocol preserves the code distance.

B. Flag technique and revised definition of
fault-tolerant error correction

Before describing the flag technique for FTEC, let us
consider a well-known Shor FTEC [1] applied to a stabi-
lizer code of distance d. In this scheme, a stabilizer gen-
erator of weight w is measured using a cat state of the
form 1√

2
(|0⟩⊗w+|1⟩⊗w) and transversal CNOT gates; see

Fig. 2. A circuit of this kind will be called a Shor syn-
drome extraction circuit. When the cat state is prepared
fault-tolerantly, a single fault in the circuit can lead to an
error of weight no more than 1 on the data qubits, so the
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FIGURE 2: A Shor syndrome extraction circuit for mea-
suring a stabilizer generator of the form ZZZZ.

set of all possible errors arising from up to t faults is ex-
actly the same as a set of all possible errors on ≤ t qubits
in this case. Therefore, any syndrome can uniquely iden-
tify the error (up to a multiplication of some stabilizer)
when the number of faults in the protocol is ≤ t.

One drawback of the Shor syndrome extraction circuit
is that the number of required ancilla qubits is equal to
the maximum weight of the stabilizer generators. Also,
fault-tolerant preparation of the ancilla cat state requires
verification [1] or Divincenzo-Aliferis ancilla decoding cir-
cuit [17], which requires additional space and time over-
head. One possible technique that can reduce the number
of required ancillas for FTEC is the flag technique [19], in
which each syndrome extraction circuit uses one ancilla
qubit to keep the syndrome measurement outcome and
a few flag ancillas to find a location that a fault might
have occurred. A circuit of this kind will be called a
flag circuit ; See Fig. 3 for an example. The flag mea-
surement outcomes give extra information that can be
used to partition set of all possible errors from a certain
number of faults. Therefore, it is possible to distinguish
between two non-equivalent errors that correspond to the
same syndrome if the flag measurement outcomes associ-
ated with each error are different, making error correction
easier.

Here we define fault combination, fault set, and distin-
guishability of a fault set as follows:

Definition 2. Fault combination, combined data error,
and cumulative flag vector [26]

A fault combination Λ = {λ1, λ2, . . . , λr} is a set of r
faults λ1, λ2, · · · , λr. Suppose that the Pauli error due to
the fault λi can propagate through the circuit and lead to

data error E(λi) and flag vector f⃗(λi). The combined

data error E(Λ) and cumulative flag vector f⃗(Λ) corre-
sponding to the fault combination Λ are,

E(Λ) =

r∏
i=1

E(λi), (1)

f⃗(Λ) =

r∑
i=1

f⃗(λi) (mod 2). (2)

•
•

•
•

|0⟩

|0⟩ H • • H

FIGURE 3: A flag circuit for measuring a stabilizer gen-
erator of the form ZZZZ.

Definition 3. Distinguishable fault set [26]
Let S be the stabilizer group of a stabilizer code, and

let the fault set Ft denote the set of all possible fault
combinations arising from up to t faults during the mea-
surement of stabilizer generators of S. We say that Ft

is distinguishable if for any pair of fault combinations
Λp,Λq ∈ Ft, at least one of the following conditions is
satisfied:

1. s⃗(E(Λp)) ̸= s⃗(E(Λq)), or

2. f⃗(Λp) ̸= f⃗(Λq), or

3. E(Λp) = E(Λq) ·M for some stabilizer M ∈ S,
where s⃗(E) is the error syndrome of a combined error E.
Otherwise, we say that Ft is indistinguishable.

Note that the cases of faulty flag qubit measurements
are included when the fault set is calculated for verifying
fault set distinguishability (see Section IIIA). Having a
distinguishable fault set is a key to successful error de-
coding. Given a set of syndrome extraction circuits (with
or without flags), we can calculate the fault set Ft and
check whether it is distinguishable. If it is, all possi-
ble errors arising from up to t faults that correspond to
the same syndrome and cumulative flag vector are always
logically equivalent. Therefore, if the syndrome measure-

ments give a syndrome s⃗ and a cumulative flag vector f⃗ ,

we can pick any error that corresponds to the pair (s⃗, f⃗)
to be a recovery operator. Using this idea, a decoding
table and an FTEC protocol can be constructed.
With the notion of fault distinguishablity, it is possible

to further generalize the definition of FTEC as follows:

Definition 4. Fault-tolerant error correction (revised)
[26]
Let t ≤ ⌊(d−1)/2⌋ where d is the distance of a stabilizer

code. An error correction protocol is t-fault tolerant if the
following two conditions are satisfied:

1. ECCP: For any input codeword with an error that
can arise from r faults before the protocol and corre-
sponds to the zero cumulative flag vector, if s faults
occur during the protocol with r+ s ≤ t, ideally de-
coding the output state gives the same codeword as
ideally decoding the input state.
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2. ECRP: If s faults occur during the protocol with
s ≤ t, regardless of the number of faults that can
cause the input error, the output state differs from
any valid codeword by an error that can arise from
s faults and corresponds to the zero cumulative flag
vector.

The main difference between these two definitions of
FTEC is that Definition 4 considers the number of faults
that can cause the input (or the output) error instead
of the weight of the error. An FTEC protocol satisfying
Definition 4 can be constructed if we can find syndrome
extraction circuits which give a distinguishable fault set
(see [26] and the discussion in the next section for more
details). It was proved in [26] that a version of threshold
theorem proposed in [5] still holds when Definition 1 is
replaced by Definition 4. For flag FTEC, using Defini-
tion 4 can result in simpler FTEC protocols, so we will
use Definition 4 in the protocol development throughout
this work.

III. OPTIMIZATION TOOLS FOR SPACE
DECODER

In this work, the term space decoder refers to a pro-
cess that finds a recovery operator from a given syndrome
under the assumption that it is exactly the same as the
syndrome of an error that occurred to the codeword. The
decoder succeeds if multiplying the error and the recovery
operator gives a trivial logical operator (a stabilizer), and
it fails if the multiplication gives a nontrivial logical op-
erator. Our goal is to develop a space decoder such that
whenever the total number of faults in the whole proto-
col is ≤ t, the decoder always succeeds. In this work, we
are interested a lookup table-based space decoder for flag
FTEC, so the decoder will use both syndrome and flag in-
formation obtained during the syndrome measurements.
Note that the ability to correct faults for a certain code
depends on the structure of the circuits for syndrome
extraction such as the ordering of gates.

In this section, we develop optimization tools for space
decoder. In Section IIIA, we discuss how to efficiently
construct a lookup table for error decoding for a distin-
guishable fault set Ft, and introduce the notion of fault
code. In Section III B, we discuss the Meet-in-the-Middle
technique, an additional technique that can help improv-
ing our space decoders for both codes and increase the
accuracy of the decoding.

A. Compact lookup table for minimum weight
decoding and fault code

In this section, we discuss how to construct the fault set
Ft, verify its distinguishability, and construct the lookup
table for error decoding. With our method, we can re-
duce the memory footprint requirement of the lookup

table by 75% for self-dual CSS codes and by 50% for
general CSS codes, compared to generic stabilizer codes.
We also present the framework of fault code that enables
fast construction using streamlined Pauli-frame simula-
tion represented as matrix algebra operations over GF(2).
A brief summary of our methods is as follows. Let the

weight of a fault combination be the number of faults
that give rise to the fault combination. The decoding

table maps each full syndrome (s⃗, f⃗) to a recovery oper-
ator that corresponds to the combined data error of the
minimum-weight fault combination that results in the full
syndrome. To construct the decoding table, we start by
collecting all weight-1 fault combinations that may arise
in the extraction circuits. We map each resulting full
syndrome to its corresponding data error. At this point,
we say that the search radius of the lookup table is 1.
Afterwards, we combine pairs of weight-1 fault combina-
tions to create all possible weight-2 fault combinations.
The combined data error of each weight-2 fault combi-
nation is obtained by simply taking the product of the
data errors, and the full syndrome is obtained by adding
full syndromes of the weight-1 fault combination modulo
2. If the combining process leads to a new syndrome, we
store it in the table. If the process leads to an existing
syndrome, we have a collision and do one of the follow-
ing: (1) If the stored combined data error and the new
combined data error are the same up to a stabilizer, then
we do nothing. (2) If the stored combined data error and
the new combined data error differ by a logical operator
(up to a stabilizer), then we raise an error; this implies
that F2 is not distinguishable. At this point, if there is
no combination that causes the second case (that is, F2

is distinguishable), we say that the search radius of the
lookup table is 2. We can gradually increase the search
radius using similar ideas until we reach the maximum
search radius in which the fault set is distinguishable.
Here we rely on an efficient representation of the com-
bined data errors using the decomposition proposed in
[33].
During sampling, the decoder receives a full syndrome

that was measured. When the decoder finds this syn-
drome in the lookup table, it returns the correspond-
ing actual recovery operator (ARO). However, when the
decoder cannot find the syndrome in the lookup table,
it only returns a so called canonical recovery operator
(CRO). Each syndrome has a unique canonical recovery
operator, which guarantees that applying such an oper-
ator to the erroneous encoded state will map it back to
the code space, but with a possible logical error.
The full description of our methods is presented below.

1. Reducing the memory footprint

To decode an [[n, k, d]] stabilizer code, we can construct
a lookup table that, for all possible fault combinations of
weight 0 to t (where t = ⌊d−1

2 ⌋), stores the full syndrome

σ⃗ = (s⃗, f⃗) as the key and maps the combined data error
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as the recovery operator. While this approach works,
it is expensive. As the size of the lookup table grows
exponentially in n, n − k (the number of generators),
and the number of circuit locations, we want to choose a
representation such that the data is stored as efficiently as
possible. With the generic method, for the full syndrome,
n − k bits are required for the syndrome bits and n − k
bits for the cumulative flag vector (assuming flag circuits
with single flag ancilla for simplicity). Meanwhile, the
recovery operator requires 2n bits. Thus we have 2(n −
k)+ 2n for each entry in the map. The factor of 2 comes
from the symplectic representation of Pauli operators.

Leveraging the structure of our problem, we can sig-
nificantly improve the size of each entry. As we mainly
focus on self-dual CSS codes, the number of used bits can
be reduced by half, that is, using n− k bits for the map
key and n bits for the recovery operator are sufficient.
Moreover, we can further reduce the number of bits for
the recovery operator to k using the following two key
ideas:

1. In general, for an [[n, k, d]] code, each Pauli operator
P ∈ Pn can be decomposed as a product P = EML
of a pure error E, a stabilizer M ∈ S, and a logical
operator L ∈ Pk (where Pk is the k-dimensional
logical Pauli group) [33]. We define a fixed set
of pure errors called canonical recovery operators
(CRO), one CRO for each unique syndrome s⃗.

2. Given a syndrome s⃗(E), the goal of decoding is to
find a recovery operator R such that RE ∈ S, thus
R. For any possible Pauli error, we only have to
store its logical class, a value that indicates how the
error is related to a CRO with the same syndrome.
This enables the map value to be only 2k bits of
information in general and k bits in case that the
code is a self-dual CSS code. In this latter case and
with k = 1, the logical class is 0 if multiplication
of the Pauli operator and the CRO with the same
syndrome is in the stabilizer group, otherwise the
logical class is 1.

Altogether, we gain a 1− n−k+k
2(n−k)+2n = 1− 1

4−2k/n ≈ 75%

reduction in the size of the table (assuming n≫ k). For
a CSS code which is not self-dual, the gain is smaller but
still a significant 50%.

2. Constructing the lookup table

We now explicitly describe an algorithm to construct
the lookup table. During the construction of the lookup
table, we have a systemic way to enumerate fault com-
binations with their full syndromes and combined data
errors instead of running through a circuit simulator for
each case. The exhaustive enumeration of all possible
fault combinations of weight 0 to t is done in two steps.
First, we enumerate the single faults and capture their
full syndrome and logical class in a single column of the

fault check matrix using matrix algebra over GF(2) to
represent the propagation of errors in our syndrome ex-
traction circuits. Then, we combine these columns in all
possible combinations of 0 to t faults (

∑t
i=0

(
n
i

)
com-

binations in total), while keeping track of the weight
of each fault combination. This last step both verifies
whether Ft is distinguishable (which is equivalent to ver-
ifying whether the protocol is distance preserving), and
builds a lookup table for the decoder.
Enumerating weight-1 faults— From here on we will

only consider a self-dual CSS code. To list all possi-
ble single faults under the circuit-level depolarizing noise
model, it is sufficient to consider all possible weight-1
faults within a single round of syndrome measurements.
Each column of the fault check matrix Hf describes for
each possible weight-1 fault what its full syndrome and
its logical class are. As the logical class of each single
fault depends on how its CRO is defined, we denote the
fault check matrix in which the CROs are defined us-
ing a right inverse H−1 of H by Hf|H−1 . The high-level
structure of Hf consists of three major groups of rows
and three major groups of columns. The three groups of
rows are the (n− k)/2 generator bits, the (n− k)/2 flag
bits, and the k bits for the logical class. Each single fault
which is represented by a column of H̄f can be put into
one of the following three categories:

1. Pure data qubit errors result in generator bits
that can be characterized with the parity check ma-
trix H of the CSS code. They do not trigger flags,
resulting in all-zero flag bits. Given a right inverse
H−1 of H (HH−1 = I(n−k)/2), the CRO R of each
pure data qubit error E can be described by each
column of H−1H (since the syndromes of CROs
are H(H−1H) = (HH−1)H = H), thus the prod-
uct RE of each E can be described by each column
of In⊕H−1H (where the matrix addition, denoted
by ⊕, and multiplication are over GF(2)). If E is
an X-type (or a Z-type) error, the logical class of
RE is described by a k-bit string in which the i-
th bit indicates whether RE anticommutes with Z̄i

(or X̄i). That is, the logical classes of all pure data
qubit errors are described by

JT
1 (In ⊕H−1H)
JT
2 (In ⊕H−1H)

. . .
JT
k (In ⊕H−1H)

 ,

where Ji is the column vector representing Z̄i (or
X̄i).

2. Flag ancilla preparation or measurement er-
rors do not propagate to data qubits, thus each
single-flag error will result in a single flag bit.
Therefore, all errors of this type have the all-zero
syndrome and logical class 0, while the flag bits can
be easily represented by the (n− k)/2× (n− k)/2
identity matrix.
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3. Gate faults that cause errors on the syndrome an-
cilla which can propagate to data and flag qubits
— we order these faults by top-down and left-right
place of occurrence and capture their effect in syn-
drome bits, flag bits, and logical class. The part of
the effective matrix corresponding to this type of
faults is denoted by Hf,gate.

Note that single measurement and reset errors on the
syndrome ancilla are ignored during this analysis as their
effects would be removed by the time decoder through the
repetition of syndrome measurements.

In case that n is odd, k = 1, and logical X and logical
Z operators are transversal, the fault check matrix is,

Hf|H−1 =

 H 0
Hf,gate0 I(n−1)/2

JT (In ⊕H−1H) 0

 ,

where J is the all-one column vector of length n (repre-
senting X⊗n or Z⊗n).

As an example, consider the first group of columns for
the [[7, 1, 3]] Steane code [12] whose stabilizer generators
can be defined by the parity check matrix,

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

One can pick its right inverse H−1 as follows:

H−1 =



0 0 1
0 1 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0


.

We can see that each column of H−1 gives a Pauli op-
erator for each syndrome bit. For a data error E of any
weight, the syndrome s⃗(E) = HE can be recovered with
the CRO defined by R(s⃗(E)) ≡ H−1s⃗(E) as

s⃗(E ⊕R) = H(E ⊕R)

= HE ⊕HH−1HE

= HE ⊕HE = 0.

For example, for E = (0110000)T , s⃗(E) = (001)T and
R(s⃗(E)) = (1000000)T , thus RE = (1110000)T , for
which the syndrome is trivial (as RE is a logical opera-
tor).

For errors of weight 1 on the data qubits, the operator
RE of each error can be represented by each column of
In ⊕H−1H. Since the logical class of RE can be deter-
mined by its weight parity, the logical classes of this type
of errors are the row of L ≡ JT (In ⊕H−1H) where J is
the all-one column vector. That is for the Steane code,

•
•

· · ·
•

•
|0⟩

|0⟩ H • • H︸ ︷︷ ︸
w − 2 gates

(a)

H • H

(b)

FIGURE 4: (a) A flag circuit for measuring a Z-type sta-
bilizer generator of weight w in this work. A flag circuit
for measuring a X-type stabilizer generator of weight w
can be obtained by replacing each CNOT gate that con-
nects the data qubit to the syndrome ancilla with the
gate in (b).

the part of Hf|H−1 corresponding to pure data qubit er-
rors is

 H

0

JT (In ⊕H−1H)

 =



0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 1 1 0


.

Constructing Hf,gate— In this work, we focus on the
case that any Z-type or X-type stabilizer generator of
weight w is measured using a flag circuit with a single
flag ancilla similar to the circuit in Fig. 4 (with a slight
modification, similar construction for a general flag cir-
cuit can also be made). For Hf,gate, we are interested in
how the errors propagate from the syndrome ancilla to
the data qubits and the flag ancilla. Here we generalize
the representation of a syndrome extraction circuit by a
binary matrix proposed in [34, 35]. Given single-flag syn-
drome extraction circuits for all stabilizer generators and
the CNOT ordering for each circuit, Hf,gate can be cal-
culated via the propagator matrix P and the aggregator
matrix A, defined as follows: For the error correction pro-
tocol with n data qubits and r flag bits (which is the same
number as the number of X or Z stabilizer generators),
The matrix P has n+ r rows. The number of columns of
P is

∑r
i=1(w(gi)+2), where w(gi) is the Hamming weight

of the i-th stabilizer generator. This is from the fact that
for each CNOT gate in the single-flag syndrome extrac-
tion circuits, the only fault that can lead to a unique
data error after propagation is the fault that leads to a
single Z error on the target qubit of the CNOT (which
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is the syndrome ancilla). To simplify the construction,
we construct a submatrix Pi of size (n+ r)× (w(gi) + 2)
for each row gi of H (i.e each stabilizer generator), then
concatenate the submatrices to get,

P = (P1P2 . . . Pr) . (3)

As the order of the CNOT gates matters in sub-
tle ways, for a given stabilizer generator gi, we rep-
resent the CNOT ordering by the permutation πi :
{1, 2, . . . , w(gi)} → supp(gi), where πi(j) indicates the
control (data) qubit of the j-th CNOT (the target qubit is
always the syndrome ancilla). πi can also be represented
by a list. For example, two possible permutations of
CNOT gates in the syndrome extraction circuit for mea-
suring g1 of the [[7, 1, 3]] Steane code are π1 = [4, 5, 6, 7]
and π1 = [4, 6, 5, 7].

To construct Pi, we iterate from j = 1 to w(gi), and
create a column for each iteration with all zeros except
for the 1 in row πi(j). We then insert an all-zero column
on the second from the left and the second from the right
positions (which represent the flag CNOTs), and set its
value to 1 at row n+ i. In our running example of g1 =
(0001111), for a permutation of π1 = [4, 6, 5, 7],

Pi =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


. (4)

The aggregator matrix A plays the role of propagating
the errors to the end of the syndrome measurement cir-
cuits. For each gi, we define Ai to be a square matrix of
size (w(gi) + 2)× (w(gi) + 2) having a lower triangle set
to all 1s, and define A =

⊕r
i=1Ai to be the direct sum

of all Ai’s. In our example case of g1,

Ai =



1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1


(5)

Multiplying the propagator and the aggregator matrices
yields,

PA =

(
F

Φ

)
=

(
F1 F2 . . . Fr

Φ1 Φ2 . . . Φr

)
, (6)

where columns of the submatrices Fi are the final Pauli
operators, and columns of the submatrices Φi are the
cumulative flag vectors after measuring gi and having a
fault propagated from the syndrome ancilla to the data
qubits at the location corresponding to the given column.

Next, we find the syndromes for these Pauli operators
by multiplying them with the parity check matrix,

S = HF. (7)

Then, for each syndrome, we define the CRO based on
the right inverse H−1,

Θ = H−1S. (8)

Finally, we determine the logical class L for each of the
faults by adding the parity of the CRO and the propa-
gated, final data error,

L = JT (F ⊕Θ). (9)

As a result, the part of Hf|H−1 corresponding to the gate
faults is,

Hf,gate =

SΦ
L

 =

 HF

Φ

JT (In ⊕H−1H)F

 . (10)

The relationship between the full syndrome, the data
error, and the CRO of each fault is as follows: Suppose
that the i-th column of Hf|H−1 (which represents a sin-
gle fault on the i-th location) contains error syndrome s⃗i,

flag vector f⃗i, and logical class li. The CRO of the fault
is H−1s⃗i, while the data error of the fault is liJ⊕H−1s⃗i.
That is, in case of a single fault, the actual recovery op-
erator (ARO) we need to apply when finding the full

syndrome (s⃗i, f⃗i) is liJ ⊕H−1s⃗i.

Verifying distinguishability and building the lookup
table— The fault set Ft is distinguishable if and only if
there is no fault combination from up to 2t faults that
gives a non-trivial logical operator with trivial full syn-
drome (see Proposition 1 in [26]). As the fault check
matrix already contains all the possible single faults, in
case of t = 1, we only need to extend the matrix by a col-
umn with all zeros (which represents 0 faults) and check
whether there is a pair of columns which are the same ex-
cept for the logical class. If there is, the combined data
errors of one or two faults add up to an undetectable
logical operator, meaning that F1 is not distinguishable.

When t ≥ 2, we populate the cache with the logi-
cal classes of higher-weight fault combinations by sim-
ply combining all possible fault combinations of lower-
weight fault combinations while keeping track of the
weights of the fault combinations. We describe the i-

th fault combination as a key-value pair [(s⃗i, f⃗i) : (li, wi)]

where (s⃗i, f⃗i) is the full syndrome, li is the logical class,
and wi is the weight of the fault combination. Com-
bining the i-th and the j-th fault combinations gives
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[(s⃗i ⊕ s⃗j , f⃗i ⊕ f⃗j) : (li ⊕ lj , wi + wj)]. As we aim to
check whether Ft is distinguishable, we fill up the cache
by combining any pair of fault combinations that satisfy
wi + wj ≤ t. In case that the process gives the new key
(the full syndrome) that already exists in the cache, we
have a key conflict. This can be one of the following
cases:

1. The new and the existing fault combinations have
the same full syndrome and the same logical class
but have different weights. In this case, we store
the fault combination with smaller weight in the
cache.

2. The new and the existing fault combinations have
the same full syndrome but have different logical
classes. As the sum of weights of these two fault
combinations is ≤ 2t, we raise an error—there ex-
ists a fault combination from up to 2t faults that
gives a non-trivial logical operator with trivial full
syndrome, that is, Ft is not distinguishable.

If at the end we find that Ft is distinguishable, we can
construct a lookup table of search radius t from the cache

as follows: for each key-value pair [(s⃗i, f⃗i) : (li, wi)] in the

cache, we store a new key-value pair [(s⃗i, f⃗i) : liJ⊕H−1s⃗i]
in the lookup table (the weights are not necessary for
decoding, though it might be useful for estimating the
number of faults that causes the full syndrome). That

is, liJ ⊕H−1s⃗i is the ARO for the full syndrome (s⃗i, f⃗i).
When perform error decoding, the ARO is applied if the
full syndrome obtained from measurements is found on
the lookup table; otherwise, the CRO (H−1s⃗i) is applied.

The lookup table then can be stored in an efficient bi-
nary format as needed on disk or memory. In Table II we
displayed the metrics related to the lookup table decoder
obtained by the algorithm above.

In summary, we perform an exhaustive search of fault
combinations which gives us a lookup table with search
radius t; this is equivalent to verifying the distinguisha-
bility of Ft. If we can construct the lookup table with
t = τ = ⌊(d − 1)/2⌋, we have a minimum-weight de-
coder that is distance-preserving under the circuit-level
depolarizing noise model. As a hash-table requires O(1)
amortized complexity for lookup, this decoder is also rel-
atively fast for numerical simulations or real-time de-
coding compared to more complicated algorithms such
as MaxSAT-decoding [36], neural-network-based decoder
[37], or the restriction decoder [38] with minimum weight
perfect matching decoding [39], all of which have at least
O(n) complexity. However, the table size scales exponen-
tially in the number of qubits, locations, and stabilizer
generators, and thus constructing the lookup table may
be impractical for a code of high distance.

3. The fault code

Any CSS code can be defined by its parity check ma-
trix H which maps a bitstring representing a combina-
tion of errors on the data qubits to the error syndrome of
the error combination. In the case of flag FTEC where
the circuit-level noise model is considered, we can use
similar ideas and define a fault code by the fault check
matrix Hf which maps a bitstring representing a com-
bination of possible faults to the full syndrome of the
fault combination (which includes the error syndrome of
the combined data error and cumulative flag vector) and
the logical class relative to the CRO for the syndrome.
It should be noted that the distance of the fault code
might be lower than the distance of the underlying CSS
code; this depends on the syndrome extraction circuits
which affect the distinguishability of the fault set. We
can define the effective distance deff to be the minimum
number of faults that can give a fault combination with a
non-trivial logical operator and the trivial full syndrome.
The number of faults teff that the fault code can correct is
teff = ⌊(deff − 1)/2⌋ (this is the maximum number of t in
which Ft is distinguishable). If the effective distance and
the code distance are equal, we say that the error cor-
rection protocol is distance preserving. Calculating the
distance of classical codes can be done by determining
the spark of the parity check matrix H, which is known
to be NP-hard, in general [40]. However, the spark algo-
rithm does not work in the case of degenerate CSS codes,
as it reports only the minimum weight of the stabilizers
which is a lower bound on the code distance [32]. Our
algorithm described in this section can be viewed as a
modified spark algorithm that uses the logical class in-
formation to calculate the distance of the code (based on
H) and also the effective distance of the fault code (based
on Hf).

The perspective of the fault code can be also useful
to extend a technique frequently used for error sampling
(in qecsim [41], for example) to the circuit-level noise
model beyond the code capacity noise model (memory
errors only) and phenomenological noise model (both
memory and measurement errors). Here, a randomly-
generated column vector of Hamming weight w now rep-
resents faults on w locations instead of errors on w qubits.
Suppose that the vector v⃗ represents the fault combina-

tion and Hfv⃗ gives the full syndrome (s⃗(v⃗), f⃗(v⃗)) and the
logical class l(v⃗). In an error correction simulation, the
decoder can predict the recovery operator r⃗ based on the
full syndrome. We will find that the predicted recov-
ery operator causes a logical error if and only if l(v⃗) and
l(r⃗) differ. In principle, this method can lead to a better
sampling rate compared to running the full circuit simu-
lation for each sample. However, one needs to be aware of
the probability distribution when generating vectors rep-
resenting the fault combinations as each possible single
fault might not occur at the same rate.
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B. Meet-in-the-Middle Technique

If the fault set Ft of each code is distinguishable, the
flag FTEC protocol can correct up to t faults with cer-
tainty. However, whenever t + 1 or more faults occur,
the error correction is not guaranteed; our decoder can
either remove the error or cause a logical error on the en-
coded state. Although the probability of having t+ 1 or
more faults is O(pt+1), being able to correct more cases
of faults can lead to a higher pseudothreshold. In this
section, we introduce the Meet-in-the-Middle technique
which can help correct errors in case there are more than
t faults in our FTEC protocol. Note that this technique
is general and it could help any FTEC protocol with a
table-based decoder to correct faults more than its capa-
bility if the stabilizer code being used is not a perfect (or
a perfect CSS) code.

The Meet-in-the-middle (MIM) technique is inspired
by the bidirectional search algorithm [42] to improve the
table-based decoder previously discussed in Section II B
(see also Section IIIA) in case that the decoder cannot
find in its lookup table the full syndrome obtained from
measurements. Consider the case that the fault set Ft

is distinguishable and a lookup table of search radius t
can be constructed. Suppose that more than t faults

occur and the full syndrome is (s⃗m, f⃗m) which is not in
the lookup table. The table-based decoder discussed in
Section II B will return the canonical recovery operator
that may cause a logical error after correction. To make
successful error correction in such cases more probable,
one could in principle construct a lookup table with a
search radius larger than t by relaxing the distinguisha-
bility requirement for fault combinations with weights
higher than t. However, this can be impractical as the
number of fault combinations grows too fast when the
search radius increases.

To overcome this issue, we instead conduct a search
during decoding starting from the missing syndrome

(s⃗m, f⃗m). That is, we construct another decoding table,
called the MIM table, with search radius at most ρ ≤ t
using ideas similar to the original lookup table, but we

also add (s⃗m, f⃗m) to the map key before storing the syn-
drome in the MIM table and check whether it is in the
decoding lookup table or not. If a new map key in the
MIM table is the same as some map key in the decoding
lookup table, the search stops and the decoder constructs
a recovery operator from two combined data errors from
the MIM table and the decoding table that correspond
to the two map keys. If the MIM search radius reaches ρ
and no matching syndrome is found, the decoder returns
the CRO for the full syndrome. Using the recovery op-
erator obtained from this method, we can correct up to
t+ ρ faults with probability higher than using the CRO
of the full syndrome only.

An example of error decoding using a lookup table and
the MIM technique is illustrated in Fig. 5. In our FTEC
protocols for hexagonal color codes of distance 3, 5, 7,
and 9, we find that constructing the MIM table with

search radius ρ = t is sufficiently fast to be used at run-
time. Note that the MIM technique does not guarantee
successful error correction due to potential degeneracy in
syndromes above the guaranteed number of correctable
faults. However, we do find numerically that the MIM
technique has a positive impact on the performance of
our decoders for the hexagonal color codes for distance
3, 5, 7, and 9.

IV. OPTIMIZATION TOOLS FOR TIME
DECODER

In general, faults can happen at any point during syn-
drome measurements, and the syndrome obtained at each
round of measurements may not be the correct syndrome
(the syndrome of the combined data error at the end of
that round). In particular, measurement errors can lead
to a syndrome that differs from the correct syndrome by
some bits. Errors on data or ancilla qubits that happen
the middle of the syndrome extraction can also result in
a syndrome that only captures some parts of the correct
syndrome. Applying a space decoder to a faulty syn-
drome can lead to an incorrect recovery operation. For
this reason, multiple rounds of syndrome measurements
must be performed.
The goal of a time decoder is to find a round with

a correct syndrome at least at one point in the whole
syndrome measurement process. If this can be done, an
FTEC protocol satisfying both conditions in Definition 4
can be constructed. Note that according to the defini-
tion, it is sufficient to consider only the case that the total
number of faults in the whole protocol is no more than
t, where t is the number of errors that a stabilizer code
being used can correct. This is because the failure prob-
ability of the FTEC protocol (the probability of having
t+1 or more faults in the protocol) will be O(pt+1) sim-
ilar to the failure probability of an ideal error correction
with the same stabilizer code. (Nevertheless, in terms
of better decoding accuracy, it is beneficial to consider
correcting some cases of t+1 or more faults as suggested
by the MIM technique in Section III B.)
In this section, we develop several types of time de-

coders for flag FTEC, building on the ideas of adaptive
decoders in [29]. Different time decoders use different
fault count estimation procedures. The decoders pre-
sented in this paper are tailored to a CSS code, but they
can be generalized for any stabilizer code. We also pro-
vide extended techniques which can further improve our
flag FTEC protocols when the CSS code being used is
self-dual.

A. Shor time decoder for flag FTEC

In Shor’s original approach [1], the syndrome extrac-
tion is repeated until the same syndrome appears t + 1
times in a row. Observe that for R repeated but untrust-
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(a) (b)

FIGURE 5: An illustration of the error decoding using a lookup table and the MIM technique on the Hilbert space
H = C⊗n of the physical qubits. A code of distance 9 is considered in this example. Using a lookup table with search
radius 4 only, any erroneous states lying on the green (or red) circles, which are up to 4 faults away from the logical
state |ψL⟩ (or |ψ⊥

L ⟩), will be recovered to the logical state |ψL⟩ (or |ψ⊥
L ⟩). Consider the erroneous state E|ψL⟩ which

is not on any green or any red circle. In (a), E|ψL⟩ is 5 faults away from |ψL⟩ and 6 faults away from |ψ⊥
L ⟩. Using

the MIM table of radius 1, the recovery operator found by the decoder is R1. Since R1E is a stabilizer, R1 brings the
state back to the original state |ψL⟩. In (b), E|ψL⟩ is 6 faults away from both |ψL⟩ and |ψ⊥

L ⟩. Using the MIM table
of radius 2, the recovery operator found by the decoder is either R1 such that R1E is a stabilizer, or R2 such that
R2E is a nontrivial logical operator. In this case, the state after recovery can be either |ψL⟩ or |ψ⊥

L ⟩.

worthy syndromes, at least R faults are required to make
them the same (we can think of having exactly the same
measurement errors for example). Therefore, to make
sure that a round with a correct syndrome exists when
considering the case with up to t faults, it is sufficient to
wait for t + 1 repeated measurements. A time decoder
with this stop condition will be referred to as Shor time
decoder.

It is possible to rephrase the Shor time decoder using
the notion of difference vector. For a syndrome history
(s⃗1, s⃗2, . . . , s⃗m) of length m, we define a difference vector

δ⃗ to be an (m − 1)-bit string in which δi is 0 if s⃗i+1 =
s⃗i, or δi is 1 if s⃗i+1 ̸= s⃗i. As two repeated syndrome
measurements are represented by a zero in the difference
vector, Shor’s method can be reformulated as waiting for

t consecutive zeros in δ⃗.

As we aim to correct no more than t faults, the analy-
sis of our time decoders can be made easier by thinking
about the budget of t faults. Shor’s method spends all of
this budget on counting consecutive zeros in the differ-
ence vector and is completely oblivious to other parts
of the syndrome history (because the counter is reset
whenever bit one appears). We call the parts of the syn-
drome history outside of the zero substring the context
of the zero substring. As Shor’s method does not take
the context into account, we call this strategy “context-
unaware”. In the worst-case scenario for the Shor time
decoder, (t + 1)2 rounds of syndrome measurements are
done before the stopping condition is satisfied. The con-
text of the zero substrings contains useful information
and not counting the faults in the context results in un-
derestimating the number of faults that can cause a given
syndrome history. Context-aware strategies that have
a better estimate of the number of faults can stop ear-
lier, and execute fewer measurements, resulting in higher

pseudothresholds.
As flag circuits are used in the syndrome extraction, we

also obtain a flag vector history (f⃗1, f⃗2, . . . , f⃗m) from m
rounds of syndrome measurements, which also leads to a

cumulative flag vector history (⃗f1, f⃗2, . . . , f⃗m). Note that
the calculation of a difference vector does not involve flag
vectors; since the cases of faulty flag qubit measurements
are considered when we evaluate the distinguishability of
a fault set, all flag measurement outcomes are considered
correct and can be used for error decoding. Our goal is
to find a round such that all syndrome bits are correct.
The correct syndrome will be used in conjunction with

the flag information obtained right before the measure-
ments of the correct syndrome. Suppose that the code
being used is a CSS code, and X-type generator mea-

surements at round i (which lead to s⃗i,x, f⃗i,x, and f⃗i,x)
are done before Z-type generator measurements (which

leads to s⃗i,z, f⃗i,z, and f⃗i,z). If the syndrome from round
l is correct according to Shor time decoder, Z-type (or

X-type) error correction will be done using s⃗l,x and f⃗l−1,z

(or s⃗l,z and f⃗l,x). We also use similar ideas for error cor-
rection with other time decoders.
Suppose that a table-based space decoder for flag

FTEC can be constructed (as discussed in Section III), a
flag FTEC protocol with Shor time decoder is as follows:

Protocol 1. Flag FTEC protocol with Shor time decoder
Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-

bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and f⃗i = (f⃗i,x, f⃗i,z) be syndrome and flag vector obtained
from the i-th round of full syndrome measurements with
flag circuits. Let the cumulative flag vector at the i-th

round be f⃗i = (⃗fi,x, f⃗i,z) =
∑i

j=1 f⃗j (mod 2). After the
i-th round with i ≥ 2, calculate δi−1. Repeat syndrome

measurements until the last t bits of δ⃗ is zero or the total
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number of rounds reaches (t+1)2. Suppose that the latest
round is round l. Perform Z-type error correction using

(s⃗l,x, f⃗l−1,z), and perform X-type error correction using

(s⃗l,z, f⃗l,x).

B. Adaptive time decoder for flag FTEC

Recently, FTEC protocols with adaptive syndrome
measurement techniques have been proposed in [29]. In
their work, each stabilizer generator is measured using
a syndrome extraction circuit with a cat state (similar
to the circuit originally proposed in [1]). The authors
show that by using context-aware strategies, it is pos-
sible to reduce the number of syndrome measurement
rounds in the worst-case scenario from (t+1)2 rounds to
(t + 3)2/4 − 1 rounds. The FTEC protocol with adap-
tive strong decoder in [29] satisfies the FTEC conditions
in Definition 1 and is applicable to any stabilizer code.
In this work, we extend the adaptive measurement tech-
niques to flag FTEC and develop flag FTEC protocols
that satisfies the revised FTEC conditions in Definition 4.

1. Counting faults in correlated and uncorrelated bit
histories

Let us first consider a way to estimate the number of

occurred faults from a given difference vector δ⃗ as pro-
posed in [29]. A single fault can cause either one or two

consecutive bits of ones in δ⃗ (see Type I and Type II faults

in [29]). Thus, for each substring κ⃗ in δ⃗, the number of
faults that can cause such a substring is bounded from
below by the number of 11 sequences plus the number of
remaining 1s in κ⃗.

Suppose that the difference vector is of the form δ⃗ =
η11η21 . . . 1ηc. For each ηj of length γj ≥ 1 (where
2 ≤ j ≤ c − 1), we define α to be the total number
of non-overlapping 11 sequences plus the total number
of remaining 1s before the substring 1ηj1, and define βj
similarly but for the substring after 1ηj1 (for η1 and ηc,
β1 and αc are defined similarly to those of other ηj ’s,
and we let α1 = 0, βc = 0). ηj of length γj corresponds
γj + 1 consecutive rounds with the same syndrome, so
the number of rounds that can cause these rounds to
give incorrect syndromes is at least γj + 1. Therefore,
under the assumption that there are at most t faults in
the whole protocol, if we find that there exists γj such
that t − αj − βj < γj + 1, the syndromes of the γj + 1
rounds that give rise to ηj cannot be all incorrect. For
this reason, at least one syndrome corresponding to ηj is
correct and can be used for error correction (see the full
analysis in [29] for more details).

There are multiple, increasing fine-grained ways of es-
timating the number of faults in the context around each
zero substring in the difference vector. Here we use the
term bit history as a general term for a series of syndrome

bits (measurement outcomes) from a given stabilizer gen-
erator, a given flag bit (the measurement outcome of a
flag qubit), or bits in a difference vector (that is taken
as the difference history of a group of bits). A key el-
ement in this discussion is the notion of correlated and
uncorrelated bit histories.

Under the assumed error model, two-bit histories are
uncorrelated if they are independent of each other. For
example, in our case, the circuit-level depolarizing chan-
nel is memoryless and each fault can cause either one
or two consecutive bits of ones, thus different sections
of the same syndrome bit history that are at least two
bits apart are uncorrelated as they are independent in
time. Similarly, in space, if there are no shared qubits
between two generators, their syndrome bit histories are
completely independent. Also, flag qubits are always re-
set between rounds of measurements, and thus all flag
bits are completely independent. However, when two sta-
bilizer generators share at least one qubit, their syndrome
bit histories are correlated. Similarly, due to hook errors,
the flag qubit’s bit history and the syndrome bit history
of that same stabilizer generator are correlated.

Our goal is to estimate the number of faults that oc-
curred from a given bit history in the case of flag FTEC.
Estimates from uncorrelated histories can be summed to-
gether. When two or more estimates are from correlated
histories, the best we can do is to take the maximum of
those estimates. Note that the total estimates must not
exceed the actual total number of occurred faults in any
case, otherwise, the error correction protocol will not be
fault tolerant.

For the estimation in [29] which is discussed earlier, the
bits of the syndrome history before and after each sub-
string 1ηj1 are uncorrelated to the bits within ηj under
the memoryless depolarizing channel assumption. This
means that αj and βj , which are the minimum numbers
of faults that can cause the substring before and after
1ηj1, can be independently estimated. The estimate of
the number of faults for the context outside of the zero
substring ηj is, therefore, αj + βj .

In this work, we further extend the fault counting idea
to flag FTEC in which flag circuits with single flag qubit
are used for syndrome extraction. Below, we will dis-
cuss two types of adaptive time decoders with different
stop conditions, namely one-tailed and two-tailed adap-
tive time decoders. Both protocols are applicable to any
stabilizer code as long as flag circuits for the code that
give a distinguishable fault set can be found. The flag
FTEC protocol with one-tailed adaptive time decoder
satisfies the FTEC conditions in Definition 4, thus it is
applicable to any fault-tolerant quantum computation as
long as the fault-tolerant implementation of other op-
erations (gate, state preparation, or measurement) also
satisfies the revised definition of fault tolerance in [26].
Meanwhile, the flag FTEC protocol with two-tailed adap-
tive time decoder does not satisfy the FTEC conditions
in Definition 4 as the output error may correspond to a
nontrivial cumulative flag vector, hence it is only appli-
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cable to quantum memory. Nevertheless, for a self-dual
CSS code, the FTEC protocol with the two-tailed adap-
tive time decoder can be applied to any fault-tolerant
Clifford computation if the cumulative flag vector is pro-
cessed appropriately. An analysis of this extension will
be discussed in Section IVC.

2. Two-tailed adaptive time decoder

For the substring 1ηj1 in δ⃗, suppose that bit one on the

left of ηj is the i1-th bit of δ⃗, and bit one on the right of

ηj is the i2-th bit of δ⃗. Let αj , βj , γj be defined as before,
and let µj , νj be the total numbers of nonzero flag bits
obtained from round 1 to round i1 and from round i2+1
onward. Also, let ωj be the sum of the numbers of flag
bits that exceed 1 bit per round during round i1 + 1 to
round i2. For example, consider the substring 1ηj1 =
1001 in the example below:

Round: 1 2 3 4 5 6 7 8 9 10

# flag bits: 1 0 2 0|0 2 1|0 0 1

δ⃗: 1 1 0|1 0 0 1|0 1

In this example, αj = 1, βj = 1, γj = 2, µj = 3, and
νj = 1, and ωj = 1.
Since a single fault can cause both nontrivial flag bits

and syndrome differences (that is, syndrome bits and
flag bits are correlated), one has to make sure that
the number of faults is not overcounted. The numbers
of faults that can cause bit histories before and after
1ηj1 are bounded from below by α̃j = max(αj , µj) and

β̃j = max(βj , νj), respectively. So an estimate of the

number of faults for the context outside of ηj is α̃j + β̃j .
Next, let us consider ηj of length γj which corresponds

γj + 1 consecutive rounds with the same syndrome. To
make all syndromes in this region incorrect, it requires at
least one fault per round. So if we find a round with more
than one flag bit, the number of flag bits that exceed one
bit per round can be a part of the total estimate. That
is, for each ηj , the total estimate is α̃j + β̃j + ωj .
Under the assumption that there are at most t faults

in the whole protocol, if we find that there exists γj such

that t− α̃j − β̃j −ωj < γj +1 (or equivalently, α̃j + β̃j +
γj + ωj ≥ t), we know that a syndrome of at least one
round in the γj + 1 rounds that give rise to ηj must be
correct.

Another way to find a correct syndrome is to estimate
the total number of faults that can cause the whole syn-
drome and flag bit histories. Let N11 be the total number

of non-overlapping 11 sequences in the whole δ⃗. Assum-
ing that there are at most t faults in the whole protocol,
if N11 ≥ t, the last round must have a correct syndrome.
Suppose that a table-based space decoder for flag

FTEC can be constructed, a flag FTEC protocol with
two-tailed adaptive time decoder is as follows:

Protocol 2. Flag FTEC protocol with two-tailed adap-
tive time decoder
Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-

bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and f⃗i = (⃗fi,x, f⃗i,z) be syndrome and cumulative flag vec-
tor obtained from the i-th round of full syndrome mea-
surements with flag circuits. After the i-th round with
i ≥ 2, calculate δi−1. Repeat syndrome measurements
until one of the following conditions is satisfied, then
perform error correction using the error syndrome cor-
responding to each condition:

1. For each ηj in δ⃗, calculate α̃j , β̃j , γj , ωj. If at least

one ηj with α̃j + β̃j + γj +ωj ≥ t is found, stop the
syndrome measurements. Let l be the last round of
the γj + 1 rounds that correspond to ηj. Perform

Z-type error correction using (s⃗l,x, f⃗l−1,z), and per-

form X-type error correction using (s⃗l,z, f⃗l,x).

2. Calculate N11 from the whole syndrome and flag
bit histories. If N11 ≥ t, stop the syndrome
measurements. Suppose that the latest round is
round l. Perform Z-type error correction using

(s⃗l,x, f⃗l−1,z), and perform X-type error correction

using (s⃗l,z, f⃗l,x).

The two-tailed adaptive time decoder for flag FTEC
developed in this work use similar ideas to the adap-
tive strong decoder presented in [29]. Therefore, the
number of syndrome measurement rounds in the worst-
case scenario is (t + 3)2/4 − 1 when t is odd, and is
(t + 2)(t + 4)/4 − 1 when t is even. This can be proved
by assuming that all faults does not cause any nonzero
flag bits, then the rest of the proof follows the proof of
Theorem 2 in [29].

If the syndrome s⃗l and cumulative flag vector f⃗l =∑l
i=1 f⃗i (mod 2) of round l are used for error correction,

any faults that happened up to round l will be corrected.
However, because round l may correspond to some ηj in

the middle of δ⃗, an output error may correspond to a
nontrivial cumulative flag vector. Therefore, Protocol 2
may not satisfy FTEC conditions in Definition 4 and can-
not be applied to fault-tolerant quantum computation.
Nevertheless, Protocol 2 is still applicable to a quantum
memory. To do so, one needs to pass the remaining cu-
mulative flag vector of the current FTEC routine (the
sum of the flag vectors from round l + 1 onward) to the
next FTEC routine and use it as an initial flag vector.

3. One-tailed adaptive time decoder

One-tailed and two-tailed decoders use similar ideas
to estimate the number of faults, except that in the
one-tailed case the syndrome and cumulative vector for
error correction must be from the very last zero sub-

string in δ⃗ (it is to ensure that the output error satis-
fies the both conditions in Definition 4). Suppose that
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δ⃗ = η11η21 . . . 1ηc for some positive integer c, ηc has
length γc ≥ 1, and bit one on the left of ηc is the i1-

th bit of δ⃗. We define αc as usual, and define µc to
be the total numbers of nonzero flag bits obtained from
round 1 to round i1. Also, we define ωc to be the sum
of the numbers of flag bits that exceed 1 bit per round
during round i1 + 1 onward. Let α̃c = max(αc, µc). In
this case, the total estimate of the number of occurred
faults is α̃c + ωc.
Assuming that there are at most t faults in the whole

protocol, if we find that α̃c + γc + ωc ≥ t, at least one
round in the γc + 1 rounds that give rise to ηc must
have a correct syndrome. This is the first possible stop
condition.

The second possible stop condition is similar to what
we have for the two-tailed decoder. Let N11 be the total
number of non-overlapping 11 sequences in the whole δ⃗.
If N11 ≥ t, the last round must have a correct syndrome.
Suppose that a table-based space decoder for flag

FTEC can be constructed, a flag FTEC protocol with
the one-tailed adaptive time decoder is as follows:

Protocol 3. Flag FTEC protocol with one-tailed adap-
tive time decoder

Let t = ⌊(d− 1)/2⌋ be the number of errors that a sta-
bilizer code of distance d can correct. Let s⃗i = (s⃗i,x, s⃗i,z)

and f⃗i = (⃗fi,x, f⃗i,z) be syndrome and cumulative flag vec-
tor obtained from the i-th round of full syndrome mea-
surements with flag circuits. After the i-th round with
i ≥ 2, calculate δi−1. Repeat syndrome measurements
until one of the following conditions is satisfied:

1. α̃c, γc, ωc satisfy α̃c + γc + ωc ≥ t;

2. N11 ≥ t.

Suppose that the latest round when any condition is sat-
isfied is round l. Perform Z-type error correction using

(s⃗l,x, f⃗l−1,z), and perform X-type error correction using

(s⃗l,z, f⃗l,x).

The number of rounds of full syndrome measurements
in the worst-case scenario for Protocol 3, which is also
the minimum number of rounds required to guarantee
that error correction can be done, can be found by the
following theorem:

Theorem 1. Suppose that flag circuits being used in
Protocol 3 give a distinguishable fault set Ft, where t =
⌊(d − 1)/2⌋ and d is the distance of the stabilizer code.

Performing t(t+3)
2 + 2 rounds of full syndrome measure-

ments is sufficient to guarantee that Protocol 3 is strongly
t-fault tolerant; i.e., both conditions in Definition 4 are
satisfied.

Proof. Suppose that δ⃗ = η11η21 . . . 1ηc and γc ≥ 1.
We will show that if none of η1, η11η2, η11η21η3, . . . ,
η11η21 . . . 1ηc satisfies any condition in Protocol 3, the

maximum length of such δ⃗ is t(t+3)
2 . In the worst-case

scenario, flag measurement results do not help in esti-
mating the number of occurred faults, so we can assume
that α̃c = α and µall−1. Below are the results from ana-
lyzing η1, η11η2, and η11η21η3:

1. For η1, αc = 0 and γc = γ1, so the maximum length
of η1 such that α̃c + γc ≥ t is not satisfied is t− 1.

2. For η11η2, αc = 0 and γc = γ2, so the maximum
length of η2 such that α̃c + γc ≥ t is not satisfied is
t− 1.

3. For η11η21η3, αc = 1 and γc = γ3, so the maximum
length of η3 such that α̃c + γc ≥ t is not satisfied is
t− 2.

By induction, the maximum length of δ⃗ = η11η21 . . . 1ηc
such that α̃c + γc ≥ t is not satisfied is (t− 1) + 1 + (t−
1) + 1 + (t− 2) + 1 + · · ·+ 1+ 1+ 0+ 1, which is t(t+3)

2 .

Here δ⃗ is of the form,

00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−2

1 00 . . . 00︸ ︷︷ ︸
t−3

1 . . . 1001011

(11)

The number of rounds that gives δ⃗ of the maximum

length is t(t+3)
2 + 1. By performing one more round of

syndrome measurements, δ⃗ is extended by one bit, which
must be 0 if the total number of faults is no more than
t. In that case, α̃c + γc ≥ t will be satisfied. There-

fore, t(t+3)
2 + 2 rounds of full syndrome measurements is

sufficient to guarantee that flag FTEC can be performed.

Note that there are other forms of δ⃗ in which none
of η1, η11η2, η11η21η3, . . . , η11η21 . . . 1ηc satisfies any

condition in Protocol 3, and the length of δ⃗ is t(t+3)
2 − 1;

For example, suppose that t = 3. Possible forms of such

δ⃗ are 001101011, and 001001111. In any case, one of
the conditions in Protocol 3 will be satisfied if one more
round of syndrome measurements is done, so the number

of rounds to guarantee fault tolerance is still t(t+3)
2 +

2.

Note that the number given by Theorem 1 is worse
than that of the two-tailed decoder because we are not
allowed to check whether the syndrome of any round in
the middle can be used for error correction.

An advantage of the FTEC protocol with one-tailed
adaptive time decoder is that it is applicable to any kind
of fault-tolerant quantum computation as long as the cor-
responding fault-tolerant implementation satisfies the re-
vised definitions of fault tolerance in [26]. This is possible
because when the syndrome and cumulative flag vector

for error correction are from the last zero substring in δ⃗,
it is guaranteed that the output error corresponds to a
zero cumulative flag vector.
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C. Extended techniques for CSS codes

In this section, we discuss two additional techniques
which can further improve our flag FTEC protocols with
adaptive time decoding. The first technique is the sepa-
rated X and Z counting which is applicable to any CSS
code. This technique is based on the ideas from [28] and
[29], and can be used to improve the pseudothreshold.
The second technique is the classical processing of the
remaining cumulative flag vector. This technique allows
our flag FTEC protocol with the two-tailed adaptive time
decoder to be applicable to any fault-tolerant Clifford
computation.

1. Separated X and Z counting

For any CSS code, Z-type and X-type errors can be
corrected separately. It is possible to improve the number
of measurements by separating the X-type and Z-type
syndrome measurement rounds (which correspond to X-
type and Z-type stabilizer generators). In this section,
we introduce the XZ and ZX decoding strategies. In the
XZ strategy, first, we execute a time decoder (which can
be Shor, one-tailed, or two-tailed decoder) using only the
X-type syndromes. The difference vector for this process

is denoted by δ⃗x. After the decoder returns the X-type
syndrome and the cumulative flag vectors for Z-type er-
ror correction, we estimate the number of faults tx that

could cause δ⃗x; we define αall,x to be the total number
of non-overlapping 11 sequences plus the total number of

remaining 1s in δ⃗x, define µall,x to be the total number of

nontrivial flag bits in δ⃗x, and let tx = max(αall,x, µall,x).
Given that we spend this number of faults from our fault
budget t, we can reduce the target number of faults in the
stop condition for the Z-type syndrome measurements.
Afterward, we run a time decoder for Z-type syndromes
with the target number of faults tz = t − tx. The ZX
strategy is similar to the XZ strategy, except that the
Z-type generators are measured first.

When the separated X and Z counting technique is
applied to a flag FTEC protocol, one can find syndromes
for Z-type and X-type error corrections faster compared
to a conventional method where the target numbers of
faults for both types of error corrections are t. However,
a drawback is that the flag FTEC protocol will only be
compatible with quantum memory. This is because of
each type of error correction requires flag information of
the opposite type. In particular, Suppose that the time
decoder for X-type syndrome measurements give syn-

drome s⃗x and cumulative flag vector f⃗x, and the time de-
coder for Z-type syndrome measurements give syndrome

s⃗z and cumulative flag vector f⃗z. Z-type error correc-
tion will be done by applying a space decoder to s⃗x and
the zero cumulative flag vector, while X-type error cor-
rection will be done by applying a space decoder to s⃗x
and f⃗z. The cumulative flag vector f⃗x which has not been

used will be treated as the remaining cumulative flag vec-
tor of the current FTEC routine and used as an initial
flag vector for Z-type error correction in the next FTEC
routine.

2. Classical processing of the remaining cumulative flag
vector

One drawback of a flag FTEC protocol that uses the
two-tailed adaptive time decoder or the separated X and
Z counting technique is that it is only applicable to a
quantum memory, not a general fault-tolerant quantum
computation. This is because the output error at the end
of each FTEC routine may correspond to a nontrivial cu-
mulative flag vector. To correct such an error, one needs
to pass the flag information from each FTEC routine (the
remaining cumulative flag vector) to the next FTEC rou-
tine. However, if there are some quantum computation
between two FTEC routines (as in an extended rectan-
gle in [5]), the error will be transformed and may not be
correctable if the corresponding flag information is not
processed properly.

Nevertheless, for any self-dual CSS code, a flag FTEC
protocol with two-tailed adaptive time decoder or sepa-
rated X and Z counting (or both) can made applicable
to any fault-tolerant Clifford computation. For example,
let us consider an application of a logical Hadamard gate
H̄ between two FTEC routines. Suppose that the first
FTEC routine causes an output error Ex · Ez and the

remaining cumulative flag vector is (⃗fx, f⃗z). Without a
logical Hadamard gate, Ex and Ez can be corrected using

f⃗z and f⃗x, respectively. A logical Hadamard gate trans-
forms anX-type error to a Z-type error of the same form,
and vice versa. Because the X-type and Z-type genera-
tors are of the same form, possible fault combinations for
both types of errors are also of the same form. To cor-
rect the transformed error H̄(Ex · Ez)H̄

† in the second
FTEC routine, one needs to swap the X-type and Z-type
cumulative flag vector; that is, the initial flag vector for

the second FTEC routine must be (⃗fz, f⃗x).

We can apply similar ideas for flag information pro-
cessing to logical S and logical CNOT gates. The sum-
mary of the classical processing operations for logical
H, S, and CNOT gates is provided in Table I. Because
{H,S,CNOT} generates the Clifford group, a flag FTEC
protocol with two-tailed adaptive time decoder or sep-
arated X and Z counting is applicable to any fault-
tolerant Clifford computation given that the CSS code
is self-dual. Note that the magic state distillation and
injection [43, 44] use only Clifford operations. Thus, our
techniques are also applicable to fault-tolerant univer-
sal quantum computation given that high-fidelity magic
states are provided.
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Remaining cumulative flag vector Logical Clifford Initial flag vector of the

of the current FTEC routine operation next FTEC routine

(⃗fx, f⃗z) H̄ (⃗fz, f⃗x)

(⃗fx, f⃗z) S̄ (⃗fx, f⃗x ⊕ f⃗z)

(⃗fx,1, f⃗z,1 |⃗fx,2, f⃗z,2) CNOT1,2 (⃗fx,1, f⃗z,1 ⊕ f⃗z,2 |⃗fx,1 ⊕ f⃗x,2, f⃗z,2)

TABLE I: A list of required classical processing operations on the remaining cumulative flag vector in case that a
logical Clifford gate is performed between two FTEC routines. With these operations, a flag FTEC protocol with two-
tailed adaptive time decoder or separated X and Z counting is applicable to any fault-tolerant Clifford computation,
given that the CSS code is self-dual.

FIGURE 6: The studied members of the hexagonal color
code, for distances 3, 5, 7, and 9 (right to left). Qubits
are on the vertices and stabilizer generators are the pla-
quettes. As the codes are self-dual CSS codes, both the
X and Z stabilizer generators are described by the same
layout.

V. NUMERICAL RESULTS

A. Methods

Our optimization tools for space and time decoders in-
cluding the compact lookup table construction, the MIM
technique, and the adaptive time decoders for flag FTEC
are applicable to any stabilizer code. However, we focus
on a specific family of codes where the aforementioned
tools can be simplified and extended techniques includ-
ing separated X and Z decoding and classical process-
ing of flag information are applicable—the family of self-
dual CSS codes in which the number of physical qubits
is odd, the number of logical qubits is 1, and logical X
and Z operators are transversal. To evaluate the perfor-
mance of our tools, we simulate FTEC protocols on the
[[(3d2 + 1)/4, 1, d]] hexagonal color codes [31] of distance
3, 5, 7 and 9. These codes are planar topological codes
with configurations displayed in Fig. 6. For each code,
stabilizer generators are measured using the syndrome
extraction circuits with single flag ancilla, as depicted
in Fig. 4. It was proved in [23] that for the hexagonal
code of any distance, using flag circuits of this form pre-
serves the code distance regardless of the gate orderings
(an alternative proof can be found in [26]). The simula-
tion is implemented under the circuit-level depolarizing
noise model specified in Section IIA. As there is no idling
noise in our error model, the syndromes can be extracted
sequentially.

To construct a lookup table for space decoding and to
verify that our circuit configurations preserve the code
distance, we implement the algorithm described in Sec-
tion IIIA using C++. The timing for verification along-
side the statistics of the lookup table can be found in
Table II. The lookup table for these codes can be gener-
ated on the fly before the sampling starts as the required
time is low enough.
Here we simulate the storage (i.e. the result of the

logical identity operation) of the logical state |0̄⟩. We
use of the Pauli frame simulator in Stim [45] to collect
measurement samples, and use Cirq [46] for constructing
the circuits with the given noise model. After a perfect
preparation of |0̄⟩, we perform noisy error correction and
recovery. In the error correction process, full rounds of
syndrome measurements are repeated until the stop con-
dition of the time decoder is satisfied. The time decoder
returns an accepted full syndrome (consisting of error
syndrome and cumulative flag vector), then the space
decoder determines the recovery operation based on the
accepted full syndrome. This recovery operation is ap-
plied to the data qubits afterwards. Finally, we apply an
ideal error correction and determine whether the output
error is a logical X error (which corresponds to having
|1̄⟩ as the output state).

B. The overall effect of optimization tools

We first compare two protocols: (1) the FTEC proto-
col with Shor time decoder without the MIM technique
(the protocol in which none of our optimization tools are
applied) and (2) the FTEC protocol with the MIM tech-
nique and the two-tailed adaptive time decoder with the
ZX strategy (the best FTEC protocol in this work which
is compatible with any Clifford computation on a self-
dual CSS code). The logical error rate pL vs physical
error rate p for hexagonal color codes of distance 3, 5,
7, and 9 are plotted in Fig. 7. Our results show that
for each code, applying the optimization tools can sig-
nificantly improve the pseudothreshold (the intersection
between each plot and the pL = 2p/3 line). Further-
more, the optimized decoder yields orders of magnitude
improvements in the logical error rate in the p = 10−4

error regime.
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[[7, 1, 3]] [[19, 1, 5]] [[37, 1, 7]] [[61, 1, 9]]

# columns of Hf|H−1
f

28 88 181 307

# unique columns 20 62 128 218

# fault combinations 20 1,953 349,632 93,263,997

Cache size 20 1,587 262,500 67,166,572

Memory ≤ 1kB ≤ 1kB ≈ 50MB ≈ 1.38GB

Verification time ≤ 1ms ≤ 1ms ≈ 720ms ≈ 58.9s

TABLE II: Metrics of the lookup table. The number of columns of the fault check matrix counted in the first row results
from the three-part structure of data errors, flag errors, and gate faults. These columns are not necessarily unique,
which can be seen in the second row that counts the number of unique columns. The time to verify distinguishability
for the different codes on a single thread with our C++ code depends on the number of unique columns, hence the
verification of the higher distance code takes longer than shorter ones. All timings are reported using Intel Xeon Gold
6226R, 2.90GHz processors. Some fault combinations have the same full syndrome, hence the cache size is smaller
than the full number of fault combinations. The cache size in memory is reported from actual usage, including the
overhead of the hash table implementation.

Under a noise model parameterized by a single param-
eter p, the fault-tolerant threshold pth is the error prob-
ability under which the logical error rate is guaranteed
to decrease with increasing code distance for a specific
code family and decoder. Our decoders can yield a pth
for concatenated code families using a level-by-level de-
coder, but they will not yield a threshold for topological
code families for two reasons. The practical reason is
that our space decoder that uses a lookup table is not
scalable to the large d limit. The fundamental reason is

that the time decoder will always take δ⃗ in which all bits
are one when d is large, because δj for each round will be
1 with a probability exponentially close to 1 for finite p.
The space decoder then acts on the final state but lacks
the information about correlations to properly correct it.
This is why an efficient space-time decoder is critical for
achieving pth for topological codes.

We can define an effective threshold p̃th as the error
rate below which increasing the code distance improves
the logical error rate for this finite set of codes. The op-
timized protocol yields a p̃th = 1.5× 10−3, while the un-
optimized protocol yields p̃th = 4.5× 10−5. We also note
that the crossing point between the codes of distances d
and d − 2 is dropping quickly with the unoptimized de-
coder, while it is stable for the optimized decoder over
this code set. In the next sections, we further discuss
the effect of each technique that can contribute to this
improvement.

C. The effect of the Meet-in-the-Middle technique

In this section, we evaluate the performance of simu-
lated storage that use the space decoder with and without
the MIM technique. We explore the effect for codes of
distances 3, 5, 7, and 9, and compare the effect when
the time decoder is Shor, one-tail, or two-tail time de-
coder. We observe a significant decrease in logical error
rates and an improvement in pseudothreshold when the

MIM technique is applied. We also find that the benefit
increases with the code distance. In Fig. 8, we show the
improvement for the code of distance 9 where the benefit
is the largest. The results for codes of other distances are
provided in Fig. 12.
It is clear that both non-adaptive (Shor) and adap-

tive time decoders benefit from the MIM technique. The
pseudothreshold for the Shor time decoder increases by
more than 100%, from (1.34 ± 0.01) × 10−4 to (2.79 ±
0.01)×10−4. The pseudothreshold for one-tailed adaptive
time decoder increases by 85%, from (2.11±0.05)×10−4

to (3.91± 0.26)× 10−4. Finally, the pseudothreshold for
the two-tailed adaptive time decoder gets a boost of 76%,
from (3.38± 0.17)× 10−4 to (5.96± 0.71)× 10−4.

D. The effect of the adaptive time decoders

In this section, we compare the performance of the
simulated storage numerical experiments that use differ-
ent time decoders when the MIM technique is applied.
The results are displayed in Fig.9 for the hexagonal code
of distance 9, and we refer the reader to Fig. 15 in Ap-
pendix A for the results for the codes of other distances.
For the code of distance 9, in comparison with the Shor

time decoder, the one-tailed adaptive time decoder im-
proves the pseudothreshold by 40% from (2.79± 0.07)×
10−4 to (3.91 ± 0.07) × 10−4. The two-tailed method
achieves (5.96 ± 0.71) × 10−4 pseudothreshold, which is
more than a 100% increase compared to the Shor time
decoder. However, this gain vanishes at lower error rates,
and the performances of Shor and one-tailed decoders be-
come similar at around p = 10−4. It is not surprising as
we expect all adaptive time decoders to converge to Shor
time decoder at lower error rates. The main reason for
this convergence is that the performance gains for the
adaptive techniques come from a decrease in the aver-
age number of rounds for syndrome measurements, and
the decrease converges to zero at low error rates. How
fast the decrease converges does matter, and in contrast
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Two-tailed ZX time-decoding with MIM

d = 3: (1.02± 0.25)× 10−3

d = 5: (1.58± 0.20)× 10−3

d = 7: (1.61± 0.16)× 10−3

d = 9: (1.43± 0.07)× 10−3

FIGURE 7: The upper plot shows the curve of logical
error rate pL vs physical error rate p for the hexago-
nal color code family without any of our optimization
techniques, using the Shor time decoder without MIM.
The lower plot uses the best-performing combination of
our techniques, including MIM and the two-tailed adap-
tive time decoder with ZX strategy. Pseudothresholds for
each curve (the intersection points with the pL = 2p/3
line) are included in the labels and marked with vertical
lines. The data points represent the number of logical
errors divided by the total number of samples at that p
error rate and thus estimate the true logical error rates,
which should lie within the shaded areas with high con-
fidence. The dotted helper lines marking the expected
slope for curves with different distances show good agree-
ment with distance preservation.

to the one-tailed approach, the two-tailed time decoder
preserves its performance gain over Shor time decoder at
the observed low-error regime as low as 5× 10−5.

We also provide the plots of the average numbers of full
rounds of measurements for all decoders. At a low-error-
rate regime, all decoders have the same minimum number
of measurement rounds, t + 1, which corresponds to the
case that all bits in the difference vector are zeros. We
can see the separation more clearly the physical error rate
is in the 10−3 range; the two-tailed time decoder requires
the fewest rounds, followed by the one-tailed decoder,
and the Shor time decoder performs the worst. At the
high-error-rate regime, all bits in the difference vector
tend to be ones. In this case, the Shor time decoder
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Effect of MIM for Shor (d = 9)

Shor w/o MIM: (1.34± 0.01)× 10−4

Shor with MIM: (2.79± 0.07)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L
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Effect of MIM for Two-tailed (d = 9)

Two-tailed adaptive w/o MIM: (3.38± 0.17)× 10−4

Two-tailed adaptive with MIM: (6.30± 0.45)× 10−4

FIGURE 8: The effect of the MIM technique on different
time decoders at distance 9. The effect is the largest for
Shor time decoder, more than doubling the pseudothresh-
old. The MIM technique also gives at least a significant
70% improvement on the adaptive time decoders.

requires (t + 1)2 rounds, while both one-tailed and two-
tailed decoders requires 2t+ 1 rounds.

E. The effect of the separated X and Z counting
technique

In this section, we observe the performance gains when
the separated X and Z counting technique is applied.
Here we compare the FTEC protocols that use the two-
tailed adaptive time decoder with joint X and Z gener-
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FIGURE 9: Logical error rates of one-tailed and two-tailed adaptive time decoders compared to the Shor time decoder
(left) with corresponding average number of rounds (right) for the hexagonal color code of distance 9.
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FIGURE 10: Logical error rates of the two-tailed time decoder with XZ and ZX strategies in comparison with the
two-tailed adaptive time decoder with joint X and Z measurements (left) and corresponding average number of rounds
(right) for the hexagonal color code of distance 9.

ator measurements (as in Section IVB2), the two-tailed
adaptive time decoder with XZ strategy, and the two-
tailed adaptive time decoder with ZX strategy (as in Sec-
tion IVC1). The logical error rate is calculated from the
number of samples in which the output error is a logical
X error. The pL versus p plots for the code of distance
9 are shown in Fig. 10 (the results for codes of other dis-
tances can be found in Fig. 16 in Appendix A).

In terms of the pseudothreshold, we observe that the
decoder with separated X and Z counting performs the
best when Z-type generators are measured beforeX-type
generators. Compared to the two-tailed decoder with
joint X and Z generator measurements, the separated
two-tailed ZX decoder improves the pseudothreshold by
140% from (5.96± 0.71)× 10−4 to (1.44± 0.20)× 10−3.
This is mainly because measuring generators of the first
type (X or Z) requires more rounds, and it is more prob-
able that the measurements can cause correlated errors of
the same type as the generators being measured (which
are more difficult to correct than uncorrelated errors since
they require flag information). As in our simulations we
measure the performance of storing the logical |0⟩ state
(thus, a logical X error is counted), the decoder that
measures X-type generators first performs worse. We
also observe that there is no significant difference between
the two-tailed decoder with joint measurements and the

two-tailed decoder with XZ strategy.

We also provide plots of the average number of full
rounds of measurements for all decoders (where the full
round of single-type generator measurements is counted
as 1/2 full rounds of total measurements). At the low-
error-rate regime, all decoders require t + 1 rounds. For
the original two-tailed decoder, the average number of
rounds increases as the physical error rate increases, and
it reaches 2t+1 rounds at the high-error-rate regime. For
both two-tailed decoders with separated X and Z count-
ing, we find that the average number of rounds increases
near the pseudothreshold, then there are the dips after
the pseudothreshold, and the numbers reach t+1 rounds
at the high-error-rate regime. The dips come from the
fact that the measurements of generators of the first type
(either X or Z) can stop at less than (2t + 1)/2 rounds
but the estimate of the number of occurred faults can
be t, which then causes the measurements of generators
of the second type to stop at 1/2 rounds. At the high-
error-rate regime, the decoders with separated X and Z
counting require t+1 rounds since measuring generators
of the first type requires (2t + 1)/2 rounds while mea-
suring generators of the second type requires 1/2 rounds
on average. Overall, the decoder that measures Z-type
generators first performs better than the decoder that
measures X-type generators first.
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VI. DISCUSSIONS AND CONCLUSIONS

In this work, we focus on flag FTEC with lookup ta-
ble decoding. We consider an error correction protocol
consisting of two parts, the time decoder, and the space
decoder. The time decoder finds a correct syndrome
from the history of syndromes obtained from repeated
syndrome measurements, and the space decoder finds a
recovery operator from the correct syndrome. We de-
velop several optimization tools for both space and time
decoders which make flag FTEC with lookup table de-
coding more practical for codes of small distances. Here
we focus primarily on the family of self-dual CSS codes in
which the number of physical qubits is odd, the number
of logical qubits is 1, and logical X and Z operators are
transversal, although most of our techniques can be gen-
eralized for other stabilizer codes. Here we assume that
all stabilizer generators are measured with flag circuits
with a single ancilla. We also evaluate the performance
of our tools on the hexagonal color codes of distances 3,
5, 7, and 9.

For the space decoder, we first develop a technique to
build the lookup table more efficiently in Section IIIA.
With our lookup table construction method, the lookup
table for a self-dual CSS code requires 75% less mem-
ory compared to the lookup table for a generic stabilizer
code. The construction method also verifies the distin-
guishability of the fault set corresponding to flag circuits
for syndrome measurements. This verification can tell
whether particular gate orderings in the flag circuits pre-
serve the code distance. Our construction also leads to
the notion of the fault code, a linear code correspond-
ing to the faults under circuit-level noise which simplifies
the verification of the distance of the protocol. More
efficient decoding schemes for the fault code can be an
interesting avenue to explore in future work. The fault
code can also be useful for improving the performance of
numerical simulations of error correction schemes under
circuit-level noise.

Another optimization tool for space decoding is the
MIM technique in Section III B, which could improve de-
coding accuracy when the number of faults in the proto-
col is greater than t (where t = ⌊(d−1)/2⌋ for the code of
distance d). The effect of the MIM technique on the sim-
ulated storage of the hexagonal color codes is discussed
in Section VC (see also Fig. 12). We find that for any
kind of time decoder, the logical error rates are reduced
and the pseudothresholds are improved when applying
the MIM technique. Moreover, the MIM technique be-
comes more beneficial as the code distance increases.

For the time decoder, we generalize the adaptive syn-
drome measurement techniques proposed in [29] to flag
FTEC, and develop one-tailed and two-tailed adaptive
time decoders in Section IVB. For a general stabilizer
code in which flag FTEC is possible, the one-tailed de-
coder is preferable as it is compatible with any fault-
tolerant quantum computation, while the two-tailed de-
coder is applicable to quantum memory only. Neverthe-

less, for self-dual CSS codes, the two-tailed decoder is ap-
plicable to any fault-tolerant Clifford computation (and
any quantum computation if high-fidelity magic states
are provided) with the help of the classical processing
technique on cumulative flag vectors developed in Sec-
tion IVC. The effect of the adaptive time decoders on
the simulated storage is discussed in Section VD. We
observe that our adaptive time decoders can improve the
pseudothresholds compared to the non-adaptive (Shor)
time decoder while preserving the code distance. The
two-tailed decoder also outperforms the one-tailed de-
coder.

The two-tailed adaptive decoder without MIM in this
work is similar to the adaptive strong decoder in [29], ex-
cept that this work uses flag circuits instead of syndrome
extraction circuits with cat states. The numerical results
show that using flag circuits results in a 20-35% increase
of the pseudothreshold for the hexagonal color codes of
distances 3, 5, 7 and 9. This is mainly because flag cir-
cuits have fewer state preparation and qubit measure-
ment locations, although they have more gates. [29] also
assumes fault-tolerant preparation of cat states, which re-
quires verification [1] or ancilla decoding circuit [17] that
can result in higher space and time overhead. Thus, the
pseudothresholds could be worse in that case if additional
requirements are also considered. It should be noted that
flag circuits may not outperform syndrome extraction cir-
cuits with cat states in general, as flag FTEC for other
codes may require more complicated flag circuits.

The performance of adaptive time decoders on self-
dual CSS codes can be further improved by the separated
X and Z counting technique described in Section IVC.
Here we estimate the number of occur faults from the
measurement of generators of the first type (either X or
Z) and then use that information in the measurement of
generators of the second type. The effect of this tech-
nique can be found in Section VE. When the logical |0⟩
state is stored, we find that the protocol that measures
Z-type generators before X-type generators performs the
best. We see no significant difference in the protocol
that measures X-type generators before Z-type genera-
tors, and the protocol that measures X-type and Z-type
generators jointly. Thus, the separated X and Z count-
ing provides an advantage only for certain input states
depending on the measurement order.

Combining all techniques together, we find a signifi-
cant improvement in the pseudothreshold while the code
distance is still preserved. For example, on the hexago-
nal color code of distance 9, the pseudothreshold goes up
from (1.34 ± 0.01) × 10−4 to (1.42 ± 0.12) × 10−3. We
also find that in comparison with the unoptimized de-
coder, the crossing points between the codes of distances
d and d − 2 come much closer when all techniques are
applied (as shown in Fig. 7), leading to a higher effective
threshold p̃th for this set of codes.

While our techniques are applicable to a broader fam-
ily of codes, it would be interesting to see how our results
compare with other works that study error decoding on
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the hexagonal color codes under circuit-level noise. For
example, Baireuther et al. [47] reported a pseudothresh-
old above 2×10−3 (against pL = p instead of pL = 2p/3)
with a neural-network decoder, which also preserves the
code distance empirically. However, it was also reported
that training decoders for d > 7 became too expensive.
By adapting efficient color-decoding algorithms known
as restriction decoder [48] and projection decoder [38],
Chamberland et al. [23] and Beverland et al. [49] re-
ported threshold values of 2 × 10−3 and 3.7 × 10−3 re-
spectively. The difference between threshold values is
mostly contributed by different choices of syndrome ex-
traction circuits: for each weight-six stabilizer generator,
Ref. [23] used three flag qubits for connectivity consider-
ations, while Ref. [49] did not use any flag qubit. How-
ever, both restriction decoder and projection decoder can
only correct up to d/3 errors on the color code family
considered in this paper1.

In contrast to the constructions in [23] and [49], our
adaptive decoding method preserves the code distance
(although the lookup table is not scalable to codes with
larger distances). It is expected that our method could
become advantageous for the codes of interest when the
physical error rate is below a certain value. However,
the noise models in Refs. [23, 47, 49] also consider idling

noise, while our noise model does not. A fair comparison
between the different decoders requires using the same
noise model, which is left for future work.
It should be noted that this work uses the adaptive syn-

drome measurement technique which assumes fast qubit
preparation and measurement. For the architectures on
which qubit measurement and reset are slow, however,
our method may require a large number of ancillas or may
not be possible. In that case, one may consider using the
flag schemes that do not require fast qubit measurement
and reset, such as the flag scheme for any distance-3 code
in [50], or the flag scheme in which the flag gadgets are
constructed from the classical BCH codes in [51].
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Appendix A: Figures for all distances

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor w/o MIM

d = 3: (5.22± 0.75)× 10−4

d = 5: (3.58± 0.29)× 10−4

d = 7: (2.18± 0.07)× 10−4

d = 9: (1.34± 0.01)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor with MIM

d = 3: (5.36± 0.71)× 10−4

d = 5: (4.83± 0.52)× 10−4

d = 7: (3.99± 0.25)× 10−4

d = 9: (2.79± 0.07)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed w/o MIM

d = 3: (5.29± 0.76)× 10−4

d = 5: (4.34± 0.44)× 10−4

d = 7: (3.20± 0.17)× 10−4

d = 9: (2.11± 0.05)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed with MIM

d = 3: (5.22± 0.82)× 10−4

d = 5: (6.43± 0.80)× 10−4

d = 7: (5.17± 0.55)× 10−4

d = 9: (3.91± 0.26)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed w/o MIM

d = 3: (5.26± 0.80)× 10−4

d = 5: (5.48± 0.79)× 10−4

d = 7: (4.68± 0.44)× 10−4

d = 9: (3.38± 0.17)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM

d = 3: (5.35± 0.77)× 10−4

d = 5: (7.78± 0.86)× 10−4

d = 7: (7.63± 0.59)× 10−4

d = 9: (6.30± 0.45)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed XZ with MIM

d = 3: (6.48± 0.91)× 10−4

d = 5: (8.77± 1.17)× 10−4

d = 7: (7.37± 0.59)× 10−4

d = 9: (6.09± 0.47)× 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed ZX with MIM

d = 3: (1.02± 0.25)× 10−3

d = 5: (1.58± 0.20)× 10−3

d = 7: (1.61± 0.16)× 10−3

d = 9: (1.43± 0.07)× 10−3

FIGURE 11: The threshold formation effect of increasingly better space and time decoders. Both space decoding
improvement (MIM) and time decoding improvements (from Shor to two-tailed ZX-strategy) help in making the
intersections of the pL vs p curves more focused.
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FIGURE 12: The effect of the MIM tecnique on Shor time decoder for hexagonal color codes of distances 3, 5, 7, and
9. The improvement is increasing with the code distance, with no improvement at d = 3 and the biggest one at d = 9.
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FIGURE 13: The effect of the MIM technique on one-tailed adaptive time decoder for hexagonal color codes of
distances 3, 5, 7, and 9. The improvement is increasing with distance, with no improvement at d = 3 and the biggest
one at d = 9.
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FIGURE 14: The effect of the MIM technique on two-tailed decoder for hexagonal color codes of distances 3, 5, 7,
and 9. The improvement is increasing with distance, with no improvement at d = 3 and the biggest one at d = 9.
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FIGURE 15: Comparison of one-tailed and two-tailed adaptive time decoders to Shor time decoder for hexagonal
color codes of distances 3, 5, 7, and 9. The improvement is increasing with distance, with no improvement at d = 3
and the biggest one at d = 9. Here all decoders use MIM-enhanced space decoding.
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FIGURE 16: Comparison of the two-tailed time decoder with joint measurements and two-tailed time decoders with
XZ and ZX strategies for hexagonal color codes of distances 3, 5, 7, and 9. Here all decoders use space decoding with
MIM.
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