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Abstract

We show expansion à la Talay-Tubaro of a numerical scheme with rejection for the
Langevin process in the case of a singular potential. In order to achieve this, we provide
estimates on the associated semi-group of the process. The class of admissible potentials
includes the Lennard-Jones interaction with confinement, which is an important potential
in molecular dynamics and served as the primary motivation for this study.

1 Introduction
Many physical systems, can be described by a Hamiltonian (or energy) of the form:

H(x, y) = U(x) +
1

2
|y|2, (1)

where U : Rd → R+ (or U : Td → R+, where Td is the d-dimensional torus) is a potential
function, and |y|2/2 represents the kinetic energy. When the dimension d is large, obtaining
the exact evolution of the system becomes infeasible, and a statistical description must be
employed. In statistical physics, for systems with fixed temperature T = β−1 > 0 and size,
but that can exchange energy, the system is characterized by a probability measure known as
the Gibbs measure. The probability for the system to be in a state (x, y) ∈ R2d solely depends
on its energy and is given by

µ(dx, dy) =
e−βH(x,y)

Z
dxdy, (2)

where Z is a normalization constant. The goal of molecular dynamic is to compute macroscopic
quantities of the system defined by averages of the form

µ(f) := E(f(X, Y )), (X, Y ) ∼ µ, (3)

for some function f : Rd → R. One important example in chemistry is a system of N ≫ 1
particles with van der Waals interaction, which corresponds to a noble gas. In this case,
d = 3N , and x = (x1, . . . , xN) represents the positions of the particles. The potential can be
written as

U(x) =
N∑
i=1

Uc(xi) +
∑

1⩽i ̸=j⩽N

Ui(|xi − xj|),

where Uc : R3N → R+ is a confining potential and for r ∈ R3,

Ui(r) = 4

(
1

|r|12
− 1

|r|6

)
.
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The interaction part Ui is commonly known as the Lennard-Jones potential. In the case where
the gas is confined in a volume D, one could then get its pressure by computing the average

P = µβ(fP ), fP (x, y) =
1

3|D|

N∑
i=1

(
y2i
m

− xi · ∇xi
U(x)

)
,

where m > 0 is the mass of a particle. What makes this example interesting is the presence of
singularities in the potential, as it can take infinite value, and the fact that the function fP is
not locally integrable. For a more in-depth introduction to molecular dynamics, refer to [29],
as well as [21] for a mathematical perspective.

Many algorithms have been developed to compute the average (3), and a review of these
algorithms can be found in [5]. Among them is the kinetic Monte-Carlo method, which is
based on the so-called kinetic Langevin process given by:{

dXt = Ytdt,

dYt = −∇U(Xt)dt− γYtdt+
√
2γβ−1dBt,

(4)

where γ > 0 is the friction. This process models the motion of a particle in a potential U ,
in contact with a heat bath at a constant temperature T = β−1. Under mild assumption, it
admits µ as its unique stationary measure. In fact, it was shown in [12] that this process is
ergodic for a certain class of singular potential, meaning that:

E (f (Xt, Yt)) →
t→∞

µ(f), (5)

for f in a suitable class of functions. Consequently, if we could simulate a large number of
independent copies (Xk

t , Y
k
t )1⩽k⩽n of (Xt, Yt), then

1

n

n∑
k=1

f(Xk
t , Y

k
t ) ≈ µ(f), (6)

for a sufficiently large n and t. Knowing the speed of convergence in (5) and in the law of
large numbers, we are left with the study of the weak convergence of numerical schemes for
this Langevin process to get the error made by (6). For non-singular potentials, there are
numerous numerical schemes available, see for example [20] for a review on splitting schemes.
The goal here is to adapt such a scheme and prove a series expansion in the weak convergence
for singular potential, focusing on the following one:X̄n+1 = X̄n + 1Eδ(X̄n,Ȳn,Gn)∈Hδ,ℓ

δȲn+1,

Ȳn+1 = Ȳn + 1Eδ(X̄n,Ȳn,Gn)∈Hδ,ℓ

(
−δ∇U(X̄n)− δγȲn +

√
2γβ−1δGn

) (7)

for some time step δ > 0, where (Gn) is a family of independent standard Gaussian random
variable, and where for a small fixed parameter ℓ > 0,

Hδ,ℓ =
{
ϕ ⩽ δ−ℓ

}
, (8)

with
ϕ(x, y) = H(x, y) + 4dγβ−1 y · ∇U(x)

1 + |∇U(x)|2
, (9)

and

Eδ(x, y, g) =
(
x+ δ

(
y − δ∇U(x)− δγy +

√
2γβ−1δg

)
, y − δ∇U(x)− δγy +

√
2γβ−1δg

)
.
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The definition of ϕ stems from the fact that, under our assumptions, for all b < β, ebϕ is a
Lyapunov function for the Langevin process (4) (see Proposition 7 below), as well as for this
numerical scheme (as proved in Lemma 12). Hence, this numerical scheme is a version with
rejection of the following (first-order) splitting scheme{

X̃n+1 = X̃n + δỸn+1,

Ỹn+1 = Ỹn − δ∇U(X̃n)− δγỸn +
√

2γβ−1δGn,
(10)

but we only accept a step of the scheme if its Lyapunov function doesn’t exceed some threshold
depending on the time step. We could have considered a simple Euler-Maruyama scheme, but
if the initial condition satisfies U(X0 + γY0) = ∞, then the chain would not be well defined.
The splitting scheme (10) is the simplest numerical scheme that is well-defined with probability
1 for all initial conditions, and under a one-sided Lipschitz condition on U , it can be shown
that this Markov chain is ergodic. However, there is another problem, which is that even if
the numerical scheme is almost-surely well defined, X̃n has a density bounded below by the
Lebesgue measure on all compact sets. Hence, if f is not locally integrable, then :

E(f(X̃n)) = ∞, ∀n ⩾ 1.

This is also the case for all splitting schemes, and it poses two problems. Firstly, it restricts
us to consider averages only against bounded functions, which excludes the computation of
important quantities such as the mean energy for the Lennard-Jones potential or the pressure
of noble gases. Secondly, it prevents the construction of a Lyapunov function, which is a crit-
ical step in the proof of weak convergence for numerical schemes. To address these issues, we
introduced the numerical Scheme (7), which has better integrability properties, see Section 4.
Any scheme used for bounded smooth potential (e.g. splitting schemes) can be adapted in a
similar manner (namely with rejection) for singular potentials. We study this specific first-
order splitting scheme for simplicity. In the context of singular potentials in high-dimensional
spaces, an implicit scheme may be ill-defined, and in any case would have a prohibitive nu-
merical cost. Hence, we consider only explicit schemes. Another possible numerical scheme
would have been to use rejection at a threshold depending only on the energy, i.e. replacing{
ϕ ⩽ δ−ℓ

}
by
{
H ⩽ δ−ℓ

}
. However, since the Hamiltonian has not the same level line as

any Lyapunov function of the Langevin process (such as ebϕ, b < β), it is not clear that this
numerical scheme admits a Lyapunov function, and hence satisfies the integrability property
needed for the proofs. Notice in particular that ∇U is already computed for the drift, hence
no supplementary computations are needed to check if ϕ is low enough. While in practice,
averages are often computed using schemes without rejection, there are cases where rejection
could lead to better results. The discussion in Section 2.2 likely elaborates further on this
aspect.

There are two approaches for showing the convergence of a numerical scheme towards the
continuous process. The first one is strong convergence, which focuses on the convergence of
trajectories. However, since our goal is the computation of averages, we are interested in weak
convergence. For f : Rd → R in a suitable class of functions and t ⩾ 0, we aim to show that:

lim
δ→0

E(f(X̄n)) = E(f(Xt)),

where n = ⌊t/δ⌋. Our objective is to get a series expansion of this convergence, commonly
known as expansion à la Talay-Tubaro, from the seminal work [28]. Write (Pt) for the semi-
group of the Langevin process (4) defined for regular and integrable enough function by:

Ptf(x, y) = E(x,y)(f(Xt, Yt)).
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Methods to show weak convergence and series expansion of such convergence rely on estimates
on Ptf and its derivatives, typically of the form: for f : Rd → R, which grows at most
polynomially at infinity (as well as its derivative of all orders), for all multi-index α ∈ N2d,
there exists C, k > 0 such that:

|∂αPtf(x, y)| ⩽ C(1 + |x|k + |y|k).

Such estimates cannot hold in the singular setting. Therefore, the primary objective of this
work is to establish equivalent estimates in the singular setting, which will be addressed in
Section 3. Those estimates will then enable us to prove in Section 4 an expansion à la Talay-
Tubaro for the numerical scheme (7), as well as for its invariant measure. In Section 2, we will
present the assumptions, theorems, and comparisons with existing works.

2 Mathematical setting and results

2.1 Assumptions and mains results

Fix a potential U : Rd → [0,∞] and write

D =
{
x ∈ Rd, U(x) <∞

}
, X = D × Rd, (11)

for the domain of definition of the process (X, Y ) solution to equation (4). In all of this work,
we will write z = (x, y) ∈ X for the global variable, and | · | for the l2-norm on Rd. For any
Banach space B, let C∞(B,R) denote the set of smooth functions from B to R, C∞

b (B,R) the
set of bounded smooth functions, and C∞

c (B,R) the set of smooth functions with compact
support. Let M1(R2d) denote the set of probability measures on R2d. We work under several
sets of assumptions. First:

Assumption 1. • U ∈ C∞(D,R+).

• D is connected and the set:

Dn =
{
x ∈ Rd, U(x) < n

}
is bounded for all n ∈ N.

• U defines a Gibbs measure at temperature β:∫
D
e−βU(x)dx <∞.

Assumption 2. • The following limit holds:

lim
x→Dc

|∇2U(x)|
|∇U(x)|2

= 0.

• There exists c0, c∞, d0, d∞ > 0, η0 ∈ R \ [−1, 0], η∞ > 1 such that:

c∞U
2− 2

η∞ + d∞ ⩽ |∇U |2 ⩽ c0U
2+ 2

η0 + d0.

Assumption 3. For all α ∈ Nd, there exist Cα > 0, kα ∈ N such that

|∂αU | ⩽ Ukα + Cα.
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Let P(U) denote the set of admissible functions for our theorems:

P(U) =
{
f ∈ C∞(X ,R)|∀α ∈ N2d, ∃C, c > 0, c < β, |∂αf | ⩽ CecH

}
.

The first theorem gives the estimates on the semi-group necessary for the proof of weak
convergence.

Theorem 1. Suppose Assumptions 1, 2 and 3. Then for all f ∈ P(U), and all multi-index
α ∈ N2d, there exist C, q > 0, b ∈ (β(1− 1

2d
), β), such that for all t > 0, z ∈ X

|∂α(Ptf − µ(f))(z)| ⩽ Ce−qtebH(z).

This theorem allows for the proof of the two following theorems:

Theorem 2. Suppose Assumption 1, 2 and 3. Then there exists l0 > 0 such that for all
0 < ℓ < ℓ0, f ∈ P(U), and t ⩾ 0, there exists a family (Ci(t))i of explicit real numbers such
that:

Ez(f(Z̄n)) = Ez(f(Zt)) + C1(t)δ + · · ·+ Ck(t)δ
k +O(δk+1),

where (Z̄n)n = (X̄n, Ȳn)n is the numerical scheme defined in (7), nδ = t, and O(δk+1) is
uniform in t.

Theorem 3. Suppose Assumption 1, 2 and 3. Then there exists δ0, ℓ0 > 0 such that for all
0 < δ < δ0, 0 < ℓ < ℓ0, the numerical scheme defined in (7) admits an unique invariant
measure µδ ∈ M1(R2d). For all f ∈ P(U), there exists C, c > 0 such that for all z ∈ Hδ,ℓ:∣∣Ez

(
f
(
Z̄n

))
− µδ(f)

∣∣ ⩽ Ce−cn.

Moreover, there exists a family (C̃i)i of explicit real numbers such that:

µδ(f) = µ(f) + C̃1δ + · · ·+ C̃kδ
k +O(δk+1).

Let’s comment on those assumptions and theorems. Assumptions 1 and 2 are derived
from [3], on which this work is based. As explained in their work, Assumption 1 is the minimal
requirement to ensure the pathwise well-posedness of the process (4), as well as for the Gibbs
measure to be well-defined and a stationary measure of the Langevin process. Assumption 2
differs slightly from the one in [3], as they suppose that there exists κ > 0 such that for all
v ∈ Rd

|∇2U(x)v| ⩽ β

16d
|∇U(x)|2|v|+ κ|v|, (12)

which would allow potentials that exhibit logarithmic singularities. Here, we forbid those
potentials, following the assumption stated in [12]. This assumption plays a vital role in the
construction of a Lyapunov function for both the continuous-time process and the numerical
scheme. We need a Lyapunov function of order ebH for any b < β, which cannot be achieved
under (12). In this case, it would be possible that the bounds on the semi-group given by The-
orem 1 are not in L1(Law(Z̄n)). Since the proof of theorem 1 relies on computation in Sobolev
spaces, and the use of Sobolev embedding, as in [32, 17], we need an additional assumption on
the derivatives of the potential of all orders in order to carry out the computation. However,
the Villani-type condition presented in [32] is not satisfied by singular potentials, as in the H1

case from [3]. Therefore, we impose Assumption 3. This set of assumptions encompasses any
repulsive interaction that exhibits a sufficiently rapid explosion (at least algebraic), such as
Lennard-Jones interaction, and Coulomb interaction as soon as the particles are living in Rq
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for q ⩾ 3, coupled with an additional confinement potential. However, it’s important to note
that 2-dimensional Coulomb interactions (Ui(r) ∝ ln(r)) do not satisfy these assumptions.

It is well-established in numerical probability that the proof of weak convergence relies on
estimates of the kind given by Theorem 1. The proof of this theorem is based on Gamma
calculus, see Section 3.1. This enables us to make series expansion at any order of the error
induced by the numerical scheme at each step, with a remaining term of the form δkE

(
ebH(Z̄n)

)
.

This would be infinite in the case of a numerical scheme without any rejection mechanism
like (10), but we will show that in the case of the numerical scheme (7), there is, under
our assumptions, as in the continuous setting, a Lyapunov function of this order, uniformly
over small time step. In particular, we may apply the method developed in [28] to get weak
convergence as well as expansion à la Talay-Tubaro for this numerical scheme. It can be
noticed from the proofs that the constants (Ck(t))k and (C̃k(t))k are independent of ℓ > 0,
and can be expressed in the same way as if we considered the numerical scheme (10) with a
regular potential, as in [20]. For instance, we have the following formula:

C1(t) =

∫ t

0

Ez (ψ(s, Zt−s)) ds,

where

ψ(t, z) = (∇U + γy)·(∇y/2−∇x)Ptf+
1

2
∂2t Ptf−

1

2
y·∇x∂tPtf+

1

2
(∇U + γy)·∇2

yy (∇U + γy)

− 1

2
y · ∇2

x,y (∇U + γy) + γβ−1

d∑
i=1

∂xi
∂yiPtf − 2

3
γβ−1∂t∆yPtf

− 7

12
γβ−1 (∇U + γy) · ∇y∆yPtf +

1

3
γβ−1y · ∇x∆yPtf

+
1

2

(
γβ−1

)2 d∑
i=1

∂4yiPtf +
1

6

(
γβ−1

)2 d∑
i ̸=j=1

∂2yi∂
2
yj
Ptf.

Besides, a corollary of Theorem 2 is the uniform in time weak convergence of the process.
For a given f ∈ P(U), and z ∈ R2d, there exists C > 0 such that for all t ⩾ 0, nδ = t:∣∣Ez(f(Z̄n))− Ez(f(Zt))

∣∣ ⩽ Cδ.

Theorems 2 and 3 are also motivated by the following fact:

2E
(
f
(
Z

δ/2
2n

))
− E

(
f
(
Zδ

n

))
= E (f (Zt))−

C2

2
δ2 +O(δ3),

which yields a better order convergence. With arbitrary order expansion, it is possible to
achieve any order of convergence using a combination of

(
E
(
f
(
Z

δ/2k

2kn

)))
, albeit at the ex-

pense of increased computational complexity. This approach is known as Romberg-Richardson
interpolation. While this interpolation method could potentially reduce bias, it might also lead
to an increase in the variance of the scheme. For numerical experiments on this improvement,
see the work of Talay and Tubaro [28].

2.2 Comparison between numerical scheme with and without rejec-
tion

In practice, numerical studies often utilize splitting schemes with no rejection on the bounded
torus. If the potential is defined on Td = (R/Z)d, then the Langevin process (4) would be

6



defined on Td × Rd. All proofs would still be valid, preserving the theorems’ validity. As
discussed in the introduction, for the numerical scheme (10), it is not possible to take the
expectation of unbounded functions, and an invariant probability measure may not exist. Ad-
ditionally, it also remains an open problem as to whether finite time weak expansion would still
hold under our assumptions for bounded functions and numerical schemes without rejection.
Regarding the use of schemes without rejection in practical applications, it is justified by the
fact that the continuous process does not reach the singularities. For any fixed time T > 0,
one can select a time step δ > 0 small enough so that the numerical scheme without rejection
does not get close to the singularities, and the computation of averages would yield reasonable
results. However, for a fixed δ, the scheme would approach arbitrarily close to the singularity
in large time, leading to abnormally large steps. Whereas with the rejection mechanism, it
is possible to choose larger time steps, resulting in a more computationally efficient process,
and avoiding the issue of getting too close to the singularities. This advantage of the rejection
mechanism makes it a preferable choice in certain practical scenarios, such as in the following
1-dimensional toy model:

U(x) =
1

x
+ x2,

for which we conducted the following numerical experiment: fix β−1 = 15, γ = 1, and a final
time T = 15000. Define the empirical averages by

n 7→ Sn =
1

n

n−1∑
k=0

U(Yk),

where Yk = X̄k or Yk = X̃k. For different values of δ, we simulate K = 1000 copies Si of
S⌊T/δ⌋. We plot the evolution of the proportion of copies that have more than 1% error:

δ 7→ 1

K

K∑
i=1

1Si /∈[0.99µβ(U),1.01µβ(U)],

where we estimated µβ(U) using Wolfram Alpha. We get the result in Figure 1.
We can observe that for very small δ, the scheme without rejection produces satisfactory

results. Nonetheless, there exists an interval of values of δ where the scheme with rejection
significantly outperforms the other. The proportion of failures does not converge to 0 because
of the error stemming from insufficiently long simulation times. For values of δ that aren’t
small enough, the energy threshold cannot, to prevent explosion, be set high enough to ensure
the convergence of the empirical averages converges to a value close to µβ(U) (≈ 9.035). This
behavior is illustrated in Figure 2, where we display a typical trajectory for both cases, with
δ = 10−2.

For smaller β, the explosion phenomenon would be even more prominent because the
variance of the Gaussian distribution is proportional to γδβ−1. As β decreases, the variance
increases, making the numerical scheme more susceptible to divergent behavior and explosions
in the trajectories. Hence, a smaller β exacerbates the challenge of handling the singularities
and maintaining stable and accurate numerical computations. This unstable behavior could
also arise in the case of a metastable process. The metastability imposes long simulation
times, which could prove longer than the time needed for the numerical scheme to visit the
singularities. The conclusion of this experiment/discussion is that the use of the rejection
mechanism in practical applications may help to avoid divergent behavior and explosions,
leading to more stable and accurate results.

An alternative approach to address the singularities is to employ a Metropolis-adjusted
scheme, as the one presented in [25]. Similarly to our scheme, Metropolis-adjusted algorithms

7



Figure 1: Failure probability.

(a) Without rejection. (b) With rejection.

Figure 2: n 7→ Sn, δ = 10−2.
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tend to reject transitions going too close to singularities, but the difference is that they also
reject moves in low-energy regions, where the process spends most of its time. For the toy
model discussed in this section, such a scheme exhibits remarkably high performance, with a
success rate exceeding 99% for all considered time steps. However, in high-dimensional set-
tings, Metropolis-adjusted schemes often result in numerous rejections and exhibit suboptimal
performance. As a result, they are typically not used in the realms of molecular dynamics or
statistics, even in the case of regular potentials.

2.3 Related works

The weak error expansion of the numerical scheme, as stated in Theorem 2 and Theorem 3, was
initially proven and numerically studied by Talay and Tubaro in [28]. Their work focuses on the
Euler-Maruyama and Milstein schemes for Elliptic SDEs with globally Lipschitz coefficients.
See also references therein for weak convergence of numerical schemes for such processes.
Talay also proved similar expansions for Hamiltonian systems with polynomial growth at
infinity in [27], although using an implicit Euler scheme. Those expansions are also called
weak backward analysis in [8, 19, 18]. The long-term behavior of numerical schemes has been
explored in [23], where it is shown that the explicit Euler scheme might not be ergodic for non-
globally Lipchitz vector field. See also [14] for the study of the failure of the Euler-Maruyama
scheme. Additional references can be found in [11, 13, 15]. Regarding explicit numerical
schemes for the Langevin process with bounded potentials on the torus, see [20], as well as [26]
for the Langevin process with more general kinetic energies. In the same spirit as numerical
schemes with rejection, the used of stopped scheme to transfer integrability properties of the
continuous process to the numerical scheme already appeared in [16], see also [6]. For uniform
in time convergence of a numerical scheme, see [1]. Working with modified Sobolev norm
to study the long time behavior of hypocoercive process was first introduced in the seminal
work [30]. For the study of the singular Langevin process, [7, 10] focus on the construction of
solution and ergodicity, and [12, 3, 4] on the long time behavior of the process in Wasserstein,
H1 and L2 distance, respectively. [22] addresses the case of Coulomb interaction, which
corresponds to a potential with logarithmic singularities. For alternative methods of sampling
for the Gibbs measure, see [5].

3 Proof of Theorem 1
The proof of Theorem 1 relies on Sobolev embedding, and Hk-estimates. Similar results have
been established for Langevin processes and close to quadratic potentials, in the sense that
there exists 0 < m ⩽M such that mId ⩽ ∇2U ⩽MId, where Id stands for the identity matrix
of size d, in [27]. Here we will use a method previously employed in [32, 17]. For a given
f ∈ P(U), our goal is to show bound of the form:∫

X
|∂α
(
Ptfe

−bH
)
|2dz ⩽ Ce−qt,

for some 0 < b < β and all α ∈ N2d. Sobolev embedding would then yield Theorem 1.
To do so, we define a norm ∥ · ∥k that dominates the Hk-Sobolev norm, but such that t 7→
∥Ptf−µ(f)∥k converges exponentially fast to 0. However, contrary to the cited work, we need
to take into account the singular potential by using a Lyapunov function. It was shown in [3]
that the Langevin process (4) admits a family of Lyapunov functions (V0,b̄) such that for all
0 < b̄ < β/(2d), ε > 0:

C−1e(1−ε)b̄H < V0,b̄ < Ce(1+ε)b̄H ,
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see [3, Equation 5.2] for its exact definition and Proposition 7 below for its main properties.
Thanks to this family of Lyapunov functions, we may now define our modified Sobolev norms.
Let ∇l

x∇p
yh denote the vector of all derivative of h of order l on x and p on y:

∇l
x∇p

yh =
{
∂α1
x ∂α2

y h
∣∣ |α1| = l, |α2| = p

}
,

and its norm
|∇l

x∇p
yh|2 =

∑
|α1|=l;|α2|=p

|∂α1
x ∂α2

y h|2.

Fix 0 < b̄ < β/(2d), and k ∈ N∗. Write V = V
1/k

0,b̄
, and for p ∈ J1, kK, Wp = V p + λ, for some

λ > 0. For h ∈ C∞(X ,R), denote:

∥h∥2mHr,k,b̄ =

∫
X
h2Wkdµ

+

∫
X

r∑
p=1

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y h|2 + ωp,p|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2
)
(1 + εpWk−p) dµ,

(13)

where (ωi,p) and (εp) are two families of positive parameters to be fixed later, and ξ = γ
2
+√

γ2

4
+ 1. The exact value of ξ does not matter, as the important term is the scalar product

∇p
x · ∇p−1

x ∇y. However this expression allows for simplified computation, see inequality (27).
For the sequel of this work, we will drop the dependence in b̄ in the definition of the norm and
simply write ∥ · ∥mHr,k . Write:

mHk =
{
h ∈ L2(X ,R), ∥h∥mHk,k <∞

}
.

The goal is to show that for f ∈ P(U), we may chose b̄ such that ∥Ptf −µ(f)∥mHr,k decreases
exponentially fast along the dynamic.

Theorem 4. Under Assumptions 1, 2 and 3, for all f ∈ P(U), k ∈ N, there exists 0 < b̄ <
β/(2d) such that for all t ⩾ 0, Ptf ∈ mHk, and we have that there is qk > 0 such that:

∥Ptf∥mHk,k ⩽ e−qkt∥f∥mHk,k . (14)

This section will be mostly about the demonstration of this theorem, which relies on
Gamma calculus. We start with a quick review of Gamma calculus in Section 3.1 for non-
singular potential, then we will prove H1 convergence in Section 3.2, which serves as an initial
case for an induction argument which will prove Theorem 4 in Section 3.3. Finally, Theorem 1
will be proven is Section 3.4.

In the sequel, we denote by L the generator of the process (4) given by

L = y · ∇x −∇U · ∇y − γy · ∇y + γβ−1∆y, (15)

and by L∗ its adjoint in L2(µ), given by:

L∗ = −y · ∇x +∇U · ∇y − γy · ∇y + γβ−1∆y.

10



3.1 Gamma calculus

For smooth and bounded function f : X → R, Hörmander’s theorem yields that Ptf is smooth
and solves the following Kolmogorov equation:{

∂tg = Lg,

g(t = 0, ·) = f,
(16)

where L is the generator of the process defined in (15), see [7, Proposition 2.5]. We are
interested in the evolution of quantities of the form:∫

X
ϕ (Ptf) (z)µ(dz)

for quadratic functional ϕ : C∞(X ) → C∞(X ) of the form:

ϕ(h) = |A∇αh|2 =
∑

α1+···+α2d=α

|Aα1,...,α2d
∂α1
z1
. . . ∂α2d

z2d
h|2,

for some α ∈ N and tensor A. To this end, define:

ΓL,ϕ(h) =
1

2
(L(ϕ(h))−Dhϕ(h)Lh) , (17)

where Dhϕ denote the differential operator of ϕ. This definition is motivated by the following
formal computation:

d
dt

∫
X
ϕ (Ptf(z))µ(dz) = −

∫
X
ΓL,ϕ (Ptf(z))µ(dz), (18)

which uses that µ is invariant for Pt. If we can get an inequality of the form

c

∫
X
ϕ(h)(z)µ(dz) ⩽

∫
X
ΓL,ϕ(h)(z)µ(dz)

for all smooth h, then this implies the convergence:∫
X
ϕ (Ptf(z)) dz ⩽ e−ct

∫
X
ϕ (f(z)) dz. (19)

Gamma calculus is a tool particularly well adapted for the study of quadratic functional,
because of the following identity:

Proposition 5. If there exists A = (A1, · · · , Ap) : C∞ → (C∞)p a linear operator such that
ϕ(h) = |Ah|2, then

ΓL,ϕ(h) = ΓL,2(Ah) + Ah · [L,A]h,
where ΓL,2(Ah) =

∑p
i=1 Γ(Aih), Γ(h) = ΓL,h2(h), and [L,A] = ([L,A1], · · · , [L,Ap]).

In the non-singular case, we can use this to show H1(µ) (and even Hk(µ)) convergence of
Pt(f) towards µ(f): If there exists 0 < m ⩽M such that mId ⩽ ∇2U ⩽MId, where Id stands
for the identity matrix of size d, then we can show that

ϕ(h) = ch2 + |(∇x +∇y)h|2+|∇yh|2,
for some c > 0, satisfies inequality (19) thanks to a Poincaré inequality (see Proposition 6
below), and

∫
X ϕ(h)(z)µ(dz) is equivalent toH1(µ). For a more complete introduction, see [24].

In the singular case, U is not convex and does not have a bounded Hessian, and a slightly more
complex norm must be defined, as we will now see. Of course, one would also have to justify
the derivative (18). We will avoid this in the proof of Theorem 1 thanks to the Lumer-Phillips
theorem. Since, in the sequel of this work, L will always denote the generator of the Langevin
process, we will drop the dependency in L to simplify the notation, and write Γϕ instead of
ΓL,ϕ.
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3.2 H1-setting

We now adapt the previous section to the singular case, as done in [3], to serve as the initial-
ization of our induction argument. However, the modified H1-norm used in the cited work
does not contain any Lyapunov function in the Ḣ1 part (i.e. the term with derivative of order
1), and we need some for the induction. Hence we use a slightly different norm, given in (13),
which becomes for r = 1:

∥h∥mH1,k =

∫
X

(
h2Wk + ω

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
(1 + εWk−1)

)
dµ, (20)

where ξ = γ
2
+
√

γ2

4
+ 1, and ε > 0, will be determined later. As in [3], we need a local

Poincaré inequality:

Proposition 6. For all compact set K ⊂ X , µ satisfies a Poincaré inequality on K: there
exists ρ > 0 such that for all f ∈ C∞(X ,R):∫

K

f 2dµ ⩽ ρ

∫
K

|∇f |2dµ+
1

µ(K)

(∫
K

fdµ
)2

. (21)

Proof. Proof of such inequality can be found in [2].

The functions W and V satisfy the following properties, which are described in [3, Theorem
4.15]:

Proposition 7. Under Assumptions 1 and 2, for all b̄ > 0, all k ∈ N, there exists V0,b̄ : X →
[1,∞) such that if V = V

1/k

0,b̄
, Wp = V p + λ for some λ > 0, V : X → [1,∞) is C2, and there

exist α, σ > 0, J ⊂ X such that:

• For all ε > 0, there exists C > 0 such that

C−1e(1−ε)b̄H < V < Ce(1+ε)b̄H . (22)

• J is compact, connected, and for all p ∈ [1, k]:

L∗V p ⩽ −αp
k
V p + σ1J .

• For all p ∈ J1, kK, g ∈ C∞
b (X ,R), we have that LgWp, gL

∗Wp ∈ L1(µ) and∫
X
LgWpdµ =

∫
X
gL∗Wpdµ.

• ∀(x, y) ∈ X ,

V k(x, y) ⩾
2σµ(J c)

αµ(J)
. (23)

• ∀(x, y) ∈ X , v ∈ Rd,

Wk(x, y)|v|2 ⩾ β(σρ′ + 1)

((
1

2
+

2

γ2

)
|v|2 + 1

2γ2
|∇2Uv|2

)
, (24)

where
ρ′ = 4(1 + ξ2)ρ/γ, (25)

and ρ is the constant from the Poincaré inequality on J .
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In particular, (22) yields that limH→∞ V = ∞, and (23) that the set J is not so large. In
order to study the evolution of the norm (20) along the trajectories, we use Gamma calculus.
All computations will be performed on functions h : X → R such that∫

X
hdµ = 0. (26)

Recall the definition (17) of Γϕ. We have

[L,∇x] = ∇2U∇y, [L,∇y] = −∇x + γ∇y.

Hence from Proposition 5 we get that:

Γ|∇y ·|2(h) ⩾ γβ−1|∇2
yh|2 −∇yh · (∇x − ξ∇y)h+ (γ − ξ)|∇yh|2,

and:

Γ|(∇x−ξ∇y)·|2(h) ⩾ γβ−1|(∇x∇y − ξ∇2
y)h|2 + ξ|(∇x − ξ∇y)h|2

+ ξ(ξ − γ)∇yh · (∇x − ξ∇y)h+∇2U∇yh · (∇x − ξ∇y)h.

Finally, with our choice of ξ and ϕ(h) = |∇yh|2 + |(∇x − ξ∇y)h|2, one gets:

Γϕ(h) = Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

⩾ γβ−1|∇2
yh|2 + γβ−1|(∇x∇y − ξ∇2

y)h|2

+ γ|(∇x − ξ∇y)h|2 −
2

γ
|∇yh|2 +∇2U∇yh · (∇x − ξ∇y)h.

Young inequality then yields:

Γϕ(h) ⩾ γβ−1|∇2
yh|2 + γβ−1|(∇x∇y − ξ∇2

y)h|2 +
γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh), (27)

where
R(x, v) =

2

γ
|v|2 + |∇2Uv|2

2γ
.

Write:
H(t) = ∥Ptf −

∫
X
fdµ∥mH1,k .

Because of the Lyapunov function, we have additional terms in the derivative of H in com-
parison to the regular case. Using that Ptf solves the Kolmogorov equation ∂tPtf = LPtf ,
this formally reads

H ′(t) =

∫
X
PtfLPtfWkdµ

+ ω

∫
X
(∇yPtf · ∇yLPtf + (∇x − ξ∇y)Ptf · (∇x − ξ∇y)LPtf) (1 + εWk−1) dµ.

Lemma 8. For all h ∈ C∞
b (X ,R)∫

X
hLhWkdµ+ ω

∫
X
(∇yh · ∇yLh+ (∇x − ξ∇y)h · (∇x − ξ∇y)Lh) (1 + εWk−1) dµ

=

∫
X

(
h2L∗Wk − γβ−1|∇yh|2Wk

)
dµ+ ωε

∫
X

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
L∗Wk−1dµ

− ω

∫
X

(
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
(1 + εWk−1) dµ.

13



Proof. The fact that µ is an invariant measure of the Langevin process yields that

0 =

∫
X
L
(
h2Wk

)
dµ =

∫
X
L
(
h2
)
Wkdµ+

∫
X
h2fLWkdµ+ 2

∫
X
Γ
(
h2f,Wk

)
dµ.

This implies that

2

∫
X
Γ
(
h2f,Wk

)
dµ = −

∫
X
L
(
h2
)
Wkdµ−

∫
X
h2fLWkdµ

= −
∫
X
h2fL∗Wkdµ−

∫
X
h2fLWkdµ,

so that
0 =

∫
X
L
(
h2
)
Wkdµ−

∫
X
h2fL∗Wkdµ.

This equality allows us to write∫
X
hLhWkdµ =

∫
X
hLhWkdµ−

∫
X
L
(
h2
)
Wkdµ+

∫
X
h2fL∗Wkdµ

= −
∫
X
Γ
(
h2
)
Wkdµ+

∫
X
h2fL∗Wkdµ.

The same computation yields∫
X
∇yh · ∇yLh (1 + εWk−1) dµ = −

∫
X
Γ|∇y ·|2 (h) (1 + εWk−1) dµ

+

∫
X
|∇yh|2L∗ (1 + εWk−1) dµ,

and∫
X
(∇x − ξ∇y)h · (∇x − ξ∇y)Lh (1 + εWk−1) dµ = −

∫
X
Γ|(∇x−ξ∇y)·|2 (h) (1 + εWk−1) dµ

+

∫
X
|(∇x − ξ∇y)h|2L∗ (1 + εWk−1) dµ,

which concludes the proof.

Hence to conclude in the H1 setting, we need a control on the additional terms. This is
the object of the next lemma, which is also the initialisation of the induction argument used
in the next section for the Hk setting:

Lemma 9. For all k ∈ N∗, under Assumptions 1 and 2, there exist q, ω, ε > 0 such that:∫
X

(
h2L∗Wk − γβ−1|∇yh|2Wk

)
dµ

+ ωε

∫
X

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
L∗Wk−1dµ

− ω

∫
X

(
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
(1 + εWk−1) dµ

⩽ −q
(
∥h∥mH1,k +

∫
X
Wk−1

(
|∇2

yh|2 + |∇x∇yh|2
)
dµ
)
, (28)

for all h ∈ C∞
b (X ,R).
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Notice that in contrast to inequality (4.8) of [3], we keep the higher order derivative for
the induction, see Section 3.3.

Proof. We first treat the L2-term using the Lyapunov property of V :∫
X
h2L∗Wkdµ ⩽ − α

1 + λ

∫
X
h2Wkdµ+ σ

∫
J

h2dµ.

Using Cauchy-Schwarz inequality, inequality (23) and that h satisfies (26), one gets(∫
J

hdµ
)2

=

(∫
Jc

hdµ
)2

⩽ µ(J c)

∫
X
h2dµ ⩽

αµ(J)

2σ(1 + λ)

∫
X
h2Wkdµ.

The local Poincaré inequality (21) on J can then be written as follow:

σ

∫
J

h2dµ ⩽ σρ′
γ

2

∫
J

(|(∇x − ξ∇y)h|2 + |∇yh|2)dµ+
σ

µ(J)

(∫
J

hdµ
)2

⩽ σρ′
∫
X

γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh) +R(x,∇yh) + |∇yh|2dµ

+
α

2(1 + λ)

∫
X
h2Wkdµ,

where ρ′ was defined in (25). Using inequality (24), we get:∫
X
R(x,∇yh) +

γ

2
|∇yh|2dµ ⩽

γβ−1

σρ′ + 1

∫
X
|∇yh|2Wkdµ.

We also have from inequality (27):∫
X

γ

2
|(∇x − c∇y)h|2 −R(x,∇yh)dµ ⩽

∫
Γ|∇y ·|2(h) + Γ|(∇x−c∇y)·|2(h)dµ.

We treat the second line of (28) using the Lyapunov property as follow:∫
X

(
|∇yh|2L∗Wk−1 + |(∇x − ξ∇y)h|2L∗Wk−1

)
dµ

⩽
∫
X

(
|∇yh|2 + |(∇x − ξ∇y)h|2

)
σ1Jdµ

⩽
2σ

γ

∫
X

(γ
2
|∇yh|2 +R(x,∇yh) +

γ

2
|(∇x − ξ∇y)h|2 −R(x,∇yh)

)
dµ

⩽
2σ

β(1 + σρ′)

∫
X
|∇yh|2Wkdµ+

2σ

γ

∫
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)dµ.

Next, the ε-term of the third line is bounded thanks to (27) as follow:

−
∫
X

(
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
Wk−1dµ

⩽ −γβ−1

∫
X

(
|∇2

yh|2 + |(∇x∇y − ξ∇y)h|2
)
Wk−1dµ

− γ

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµ+

∫
X
R(x,∇yh)Wk−1dµ.
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Thanks to Assumption 2 we get that there is C > 0 such that |∇2U | ⩽ CV . This yields that

R(x,∇yh)Wk−1 ⩽ C ′ (|∇yh|2 + |∇2U∇yh|2
)
Wk−1

⩽ C ′′ (|∇yh|2 + |∇yh|2V 1/(k−1)
)
Wk−1 ⩽ κ|∇yh|2Wk

and:

−
∫
X

(
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)

)
Wk−1dµ

⩽ −γβ−1

∫
X

(
|∇2

yh|2 + |∇x∇yh|2
)
Wk−1dµ

− γ

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµ+ κ

∫
X
|∇yh|2Wkdµ.

We then get the following upper bound for the left-hand side of equation (28):

− α

2(1 + λ)

∫
X
h2Wkdµ

−
(
γβ−1 − 2εσβ−1

σρ′ + 1
− κεω

)∫
X
|∇yh|2Wkdµ

− εωγβ−1

∫
X

(
|∇2

yh|2 + |∇x∇yh|2
)
Wk−1dµ

+

(
2σεω

γ
+ σρ′ − ω

)∫
X
Γ|∇y ·|2(h) + Γ|(∇x−ξ∇y)·|2(h)dµ

− γεω

2

∫
X
|(∇x − ξ∇y)h|2Wk−1dµ.

Taking ω > σρ′, ε small enough so that the second and fourth terms of the previous bounds are
negative, and using the fact that Wk−1 ⩽ Wk (because V ⩾ 1) then concludes the proof.

Removing the second order terms, Lemma 8 and 9 formally yields:

H ′(t) ⩽− qH(t),

for some q > 0. Since Wk ⩾ 1 for all k > 0, this would imply convergence in H1-norm

∥Ptf − µ(f)∥H1 ⩽ Ce−qt∥f − µ(f)∥mH1,k ,

for some C > 0. This is only a formal computation, which we will justify in the proof of
Theorem 4.

3.3 Hk-setting

Building upon the result of the previous section, we may now perform computations in higher-
order Sobolev spaces. From those computations arise derivatives of U of arbitrary orders, hence
we now need to assume Assumption 3. Since the Lyapunov function satisfies V = ebH+o(H),
for some 0 < b < β, this assumption implies: for all α ∈ Nd, there exists κα > 0 such that

|∂αU | ⩽ καV. (29)
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Recall the definition of the modified Sobolev norm from (13), fix some r ∈ J1, kK, and write:

Hr,k(t) = ∥Ptf −
∫
X
fdµ∥mHr,k .

The same proof as Lemma 8 yields the following formal derivative:

H ′
r,k(t) =

∫
X

(
(Ptf)

2L∗Wk − γβ−1|∇yPtf |2Wk

)
dµ

+

∫
X

r∑
p=1

εp

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y Ptf |2 + ωp|
(
∇p

x − ξ∇p−1
x ∇y

)
Ptf |2

)
L∗Wk−pdµ

−
∫
X

r∑
p=1

(
p−1∑
i=0

ωi,pΓi,p−i(Ptf) + ωpΓp(Ptf)

)
(1 + εpWk−p) dµ (30)

where we wrote:
Γl,p = Γ|∇l

x∇
p
y ·|2 ,

and
Γp = Γ|(∇p

x−ξ∇p−1
x ∇y)·|2

for any l, p ∈ N × N∗. As in the previous section, we need to bound this derivative. This
bound is obtained through an induction principle on r ∈ J1, kK, and the repetitive use of
Proposition 5. First we compute:

[L,∇l
x∇p

y] = γ∇l
x∇p

y − 1p⩾1∇l+1
x ∇p−1

y +
l∑

i=1

∣∣∣∣li
∣∣∣∣∇i+1U ⊗∇l−i

x ∇p
y,

where the terms in the sum as to be understood as:∣∣∣∣li
∣∣∣∣∇i+1U ⊗∇l−i

x ∇p
y =

(
d∑

j=1

∑
ks⩽ls

d∏
s=1

(
ls
ks

)
∂xj

∂kU∂yj∂
l−k
x ∂p+1

y

)
∑

lj=l,
∑

pj=p

.

Using Proposition 5, we get that:

Γl,p(h) = Γ(∇l
x∇p

yh) +∇l
x∇p

yh · [L,∇l
x∇p

y]h.

If p ⩾ 2, we may then bound below using inequality (29):

Γl,p(h) ⩾ γβ−1|∇l
x∇p+1

y h|2 − θl,p

(
|∇l

x∇p
yh|2 + V

l∑
i=1

|∇l−i
x ∇p+1

y h|2
)

− 1

4γ
|∇l+1

x ∇p−1
y |2, (31)

for some θl,p ⩾ 0. If p = 1, there is a term |∇l+1
x h|2 in the commutator, which will be

problematic, as we cannot control it by induction using the derivative of the lower-order
terms. In order to take care of it, we fix a small parameter ηl > 0, use the inequality
a · b ⩽ |a|2/(2η) + η|b|2/2 and we bound below again using inequality (29):

Γl,1(h) ⩾ γβ−1|∇l
x∇2

yh|2 − θl,1

(
|∇l

x∇1
yh|2 + V

l∑
i=1

|∇l−i
x ∇2

yh|2
)

− ηl|(∇l+1
x − ξ∇l

x∇y)h|2.

(32)
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As usual in hypocoercive computations for kinetic processes, the derivative of a Sobolev norm
of order p will lack in its derivative a term of the form |∇p

xh|2. It will be the derivative of
the cross term ∇p

xh.∇p−1
x ∇y in | (∇p

x − c∇p−1
x ∇y)h|2 that will give us this missing derivative.

Indeed, using that ξ ⩾ γ and inequality (29), one has:

∇p
xh · [L,−ξ∇p−1

x ∇y]h = ξ∇p
xh ·

(
∇p

x − γ∇p−1
x ∇y −

p∑
i=1

∣∣∣∣pi
∣∣∣∣∇i+1U ⊗∇p−i

x ∇y

)
h

⩾
γ

2
|∇p

xh|2 − CV

(
p∑

l=1

|∇p−l
x ∇yh|2 +

p−1∑
l=1

|∇p−1−l
x ∇2

yh|2
)
. (33)

We also have that

|
(
∇y∇p

x − ξ∇p−1
x ∇2

y

)
h|2 ⩾ 1

2
|∇p

x∇yh|2 −
1

2
ξ|∇p−1

x ∇2
yh|2

Hence after rearranging the terms, Proposition 5 again yields:

Γp(h) ⩾

γβ−1

2
|∇p

x∇yh|2 +
γ

2
|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2 − θp,0V

(
p∑

l=1

|∇p−l
x ∇yh|2 +

p−1∑
l=0

|∇p−1−l
x ∇2

yh|2
)
,

(34)
for some θp,0 > 0. Thanks to those different lower bounds, we will be able to prove the next
lemma which is the central part of this section.
Lemma 10. Fix k ∈ N∗. There exists (ωi,p)1⩽i⩽p⩽k, (εp)1⩽p⩽k, all positive, such that for all
r ∈ J1, kK, there exists qr > 0 such that for all h ∈ C∞

b (X ,R):∫
X

(
h2L∗Wk − γβ−1|∇yh|2Wk

)
dµ

+

∫
X

r∑
p=1

εp

(
p−1∑
i=0

ωi,p|∇i
x∇p−i

y h|2 + ωp|
(
∇p

x − ξ∇p−1
x ∇y

)
h|2
)
L∗Wk−pdµ

−
∫
X

r∑
p=1

(
p−1∑
i=0

ωi,pΓi,p−i(h) + ωpΓp(h)

)
(1 + εpWk−p) dµ

⩽ −qr

(
∥h∥mHr,k +

∫
X

r∑
i=0

|∇i
x∇r+1−i

y h|2Wk−rdµ

)
. (35)

Proof. The proof is done by induction. The case r = 1 corresponds to Lemma 9. Let r ∈ J1, kK,
and we suppose the inequality (35) true for such an r. To prove the result at rank r + 1, we
want to bound:

− qr

∫
X

(
h2Wk +

∑
1⩽i+j⩽r,j⩾1

|∇i
x∇j

yh|2Wk−(i+j) +
r∑

i=1

|
(
∇i

x − ξ∇i−1
x ∇y

)
h|2Wk−i

)
dµ

− qr

∫
X

r∑
i=0

|∇i
x∇r+1−i

y h|2Wk−rdµ

+ εr+1

∫
X

(
r∑

i=0

ωi,r+1|∇i
x∇r+1−i

y h|2 + ωr+1|
(
∇r+1

x − ξ∇r
x∇y

)
h|2
)
L∗Wk−(r+1)dµ

−
∫
X

(
r∑

i=0

ωi,r+1Γi,r+1−i(h) + ωr+1Γr+1(h)

)(
1 + εr+1Wk−(r+1)

)
dµ.
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First we bound using the Lyapunov property:

|∇i
x∇r+1−i

y h|2L∗Wk−(r+1) ⩽ σ|∇i
x∇r+1−i

y h|2.

The goal now is to check that for any order of derivative, we may chose εr+1, (ωi,r+1) and
(ωr+1) such that inequality (35) holds true with (r + 1) instead of r. To this end, we will use
the inequality (31),(32) and (34) on the Γ’s. The term of order r + 2 of derivatives is:

−γβ−1

∫
X

(
r∑

i=0

ωi,r+1|∇i
x∇r+2−i

y h|2 + ωr+1

2
|(∇r+1

x ∇y − ξ∇r
x∇2

y)h|2(1 + εr+1Wk−(r+1))

)
dµ,

which is already what we were looking for. This does not impose any condition on the coef-
ficient, except the positivity of the (ω). The derivative of order r + 1 in x which was missing
from the rank r, is:∫
X

(
εr+1ωr+1σ − γωr+1

2
(1 + εr+1Wk−(r+1)) + ηrωr,r+1(1 + εr+1Wk−(r+1))

)
|
(
∇r+1

x − ξ∇r
x∇y

)
h|2dµ.

We choose ηr = γωr+1

8ωr,r+1
, and 0 < εr+1 <

γ
8σ

, so that we are left with:

−γωr+1

4

∫
X
|
(
∇r+1

x − ξ∇r
x∇y

)
h|2
(
1 + εr+1Wk−(r+1)

)
dµ.

For the other terms of order r + 1, fix some i ∈ J0, rK. The term in |∇i
x∇r+1−i

y h|2 is:∫
X
(−qrWk−r + σεr+1ωi,r+1

+
(
ωi,r+1θi,r+1−i + ωi+1,r+1

(
1/(4γ) + θi+1,r+1−(i+1)V

))
(1 + εr+1Wk−(r+1))

)
|∇i

x∇j
yh|2dµ.

Using that VWk−(r+1) ⩽ Wk−r(1 + λ), we may choose the (ωi,r+1) small enough so that this
last quantity is less than:

−qr
2

∫
X
Wk−r|∇i

x∇j
yh|2dµ.

The lower order terms are treated in the same way, and this concludes the induction and the
proof.

Proof of Theorem 4. Instead of trying to justify the derivative (30), we apply a semi-group
argument. Our goal is to apply Lumer-Phillips theorem to the operator L + qk/2I, where I
denotes the identity operator of mHk. This theorem can be stated as follows: an operator A
on a Hilbert space generates a contraction semi-group if and only if it is maximally dissipative,
see [31, Chapter IX, p.250]. Fix 0 < b̄ < β/(2d) and k ∈ N. mHk is a Hilbert space, with
scalar product

⟨f, g⟩2mHk =

∫
X
fgWkdµ

+

∫
X

k∑
p=1

(
p−1∑
i=0

ωi,p∇i
x∇p−i

y f · ∇i
x∇p−i

y g + ωp,p

(
∇p

x − ξ∇p−1
x ∇y

)
f ·
(
∇p

x − ξ∇p−1
x ∇y

)
g

)
(1 + εpWk−p) dµ.

Lemma 10 and a density argument yield that the operator L+ qk/2I, is dissipative:

∀h ∈ D(L), ⟨(L+ qk/2I)h, h⟩mHk ⩽ 0,

19



where D(L) denote the domain of L in mHk defined by:

f ∈ D(L), g = Lf ⇔ f ∈ mHk, lim
t→0

∥∥∥∥Ptf − f

t
− g

∥∥∥∥
mHk

= 0.

We are left to show that L+ qI, for some q < qk/2, is surjective. Fix such a q < qk/2. Thanks
to Lemma 10, we have that

Λ : (f, g) 7→ ⟨−(L+ qI)f, g⟩mHk

is coercive and continuous from
(
mHk

)2 to R, as long as k ⩾ 2. Hence, we may apply Lax-
Milgram theorem to get that for all g ∈ mHk, there exists f ∈ mHk such that for all h ∈ mHk,
we have:

⟨−(L+ qI)f, h⟩mHk = ⟨−g, h⟩mHk ,

which implies that f is a solution to the equation

(L+ qI)f = g,

and L + qk/2I is maximally dissipative. Lumer-Phillips theorem then yields that the semi-
group generated by L+ qk/2 is a contraction on mHk: for all f ∈ mHk

∥eqkt/2Ptf∥mHk ⩽ ∥f∥mHk .

For all f ∈ P(U), we may fix b̄ > 0 small enough so that f ∈ mHk, and this concludes the
proof.

3.4 Proof of Theorem 1

The proof of Theorem 1, based on Theorem 4, uses the Lyapunov structure of V .

Proof of theorem 1. Fix some f ∈ P(U). Thanks to Proposition 7, we may fix the parameter
b̄ from the Lyapunov function such that ∥f∥mHk <∞. For all k ∈ N, we can apply Theorem 4
to get some C > 0 such that:

∥Ptf∥mHk ⩽ Ce−qkt.

Fix 0 < b < β, C, ε > 0 such that e(β−(1−ε)b)H ⩽ CV0, for some C > 0. Thanks to Assump-
tion 3, we may write for all α ∈ N2d:∫

X

∣∣∂α (Ptfe
−bH
)∣∣2 ⩽ C

∑
|σ|⩽|α|

∫
X
|∂σPtf |2

∣∣∂α−σe−bH
∣∣2

⩽ C ′
∑

|σ|⩽|α|

∫
X
|∂σPtf |2 e−(1−ε)bH

= C ′
∑

|σ|⩽|α|

∫
X
|∂σPtf |2 e(β−(1−ε)b)He−βH

⩽ C ′′∥Ptf∥mH|α|

⩽ C ′′e−q|α|t.

We conclude with Sobolev embedding.
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4 Weak error expansion
The main ingredient in the proof of a Talay-Tubaro expansion for a numerical scheme (or even
simply weak convergence) are the estimates given in Theorem 1. It allows to control the error
(in law) made by each step of the numerical scheme, uniformly in time. Hence we are now
able to prove Theorem 2 and Theorem 3. This section is divided into two parts. The first
one proves the existence of a Lyapunov function of order ebH , for all 0 < b < β, as well as
Theorem 2, about finite time expansion of the numerical scheme (7). The second part shows
the existence of a unique stationary measure for the numerical scheme, as well as Theorem 3
for the Talay-Tubaro expansion of this stationary measure.

4.1 Finite-time expansion for the numerical scheme with rejection

The reason why we are interested in the scheme (7) instead of the scheme (10) is Lemma 12.
To bound the error made by the numerical scheme, and hence to prove Theorem 2, we need
uniform in n ∈ N and δ > 0 integrability. To get this integrability, we show that the Lyapunov
structure of the continuous process described in [12] still holds after discretization. This
comes from the rejection mechanism that prevents the scheme from seeing the part of space
where the gradient of the potential and its derivatives are too big compared to δ, which is a
neighborhood of the singularities and of infinity. Recall the definition of Hδ,ℓ from (8), and
denote ζ = 4dγβ−1. To prove Lemma 12, we first need to introduce a regularized version of the
potential Û and a modified kinetic energy Ŵ , along with a numerical scheme corresponding
to the counterpart of the scheme (10) for the new Hamiltonian Ĥ(x, y) = Û(x) + Ŵ (y). A
comparison between this new numerical scheme with the previously considered one will lead
to the result.

Lemma 11. Under Assumptions 1 and 2, there exist δ0, ℓ0 > 0 such that for all 0 < δ < δ0
and 0 < ℓ < ℓ0, there exist

Û , Ŵ : Rd → R+

satisfying

• Û and Ŵ are bounded.

• Û = U , Ŵ = | · |2/2 on Hδ,ℓ.

• For all (x, y) ∈ Hc
δ,ℓ

ϕ̂(x, y) = Û(x) + Ŵ (y) + ζ
∇Ŵ · ∇Û(x)
1 + |∇Û(x)|2

⩾ 1/δℓ.

• For all α ∈ N2d, 1 ⩽ |α|1 ⩽ 4, there exists Cα > 0, ℓα < 1/2 such that:

|∂αÛ |, |∂αŴ | ⩽ Cα

δℓα
. (36)

Proof. For all 0 < ℓ < 1, 0 < δ < 1, fix a smooth, increasing and concave function

gδ,ℓ : R+ → R+

such that

gδ,ℓ(t) = t, ∀t ∈ [0, 4δ−ℓ]; g′δ,ℓ(t) ⩽
2(4δ−ℓ)2

t2
, |g(p)δ,ℓ (t)| ⩽

C

tp+1
, ∀t ⩾ 4δ−ℓ, p ∈ J2, 4K,
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for some C > 0. Then define

Û = gδ,ℓ(U), Ŵ = gδ,ℓ(| · |2/2).

Let’s show that Û and Ŵ satisfy the desired conditions. First, the conditions on gδ,ℓ yield that

gδ,ℓ ⩽ 4δ−ℓ +

∫ ∞

4δ−ℓ

2(4δ−ℓ)2

t2
dt = 12δ−ℓ,

so that Û and Ŵ are bounded. For all (x, y) ∈ Hδ,ℓ, we have using Young’s inequality:

δ−ℓ ⩾ U(x) +
|y|2

2
+ ζ

y · ∇U(x)
1 + |∇U(x)|2

⩾
1

2
H(x, y)− ζ2,

so that H ⩽ 2δ−ℓ + 2ζ2. As soon as δ−ℓ ⩾ ζ2, we have that for all (x, y) ∈ Hδ,ℓ, U(x) ⩽ 4δ−ℓ

and |y|2/2 < 4δ−ℓ, yielding Û(x), Ŵ (y) = U(x), |y|2/2 and the second point.
The definition of the modified kinetic energy implies that ∇Ŵ (y) = g′δ,ℓ(|y|2/2)y, and the

conditions on gδ,ℓ then yield

sup
y∈Rd

|∇Ŵ (y)| ⩽ max

(
√
8δ−ℓ, sup

s⩾
√
8δ−ℓ

g′(s)s

)
⩽ 16δ−ℓ/2.

To prove the third point of the lemma, we distinguish two cases: if (x, y) /∈ Hδ,ℓ satisfies
U(x) < 4δ−ℓ and |y|2/2 < 4δ−ℓ, then ϕ̂(x, y) = ϕ(x, y) ⩾ δ−ℓ by definition of Hδ,ℓ. If
U(x) > 4δ−ℓ or |y|2/2 > 4δ−ℓ, we have

ϕ̂(x, y) ⩾ 4δ−ℓ − 16ζδ−ℓ/2 ⩾ δ−ℓ,

for δ small enough depending on ℓ > 0. The last point is a direct consequence of the conditions
imposed on gδ,ℓ and the definitions of Û and Ŵ .

We are now able to prove:

Lemma 12. Under Assumptions 1 and 2, there exist δ0, ℓ0 > 0 such that for all 0 < b < β,
there exists Vb : X → R+ such that:

• infX Vb > 0.

• For all ε > 0, there exists C > 0 such that

C−1e(1−ε)bH ⩽ Vb ⩽ Ce(1+ε)bH .

• There exists α,K > 0 such that for all 0 < δ < δ0, 0 < ℓ < ℓ0, (x, y) ∈ Hδ,ℓ:

E(x,y)

(
Vb(X̄1, Ȳ1)

)
⩽ (1− αδ)Vb(x, y) + αδK.

Proof. Fix 0 < b < β and write:

Vb(x, y) = exp (bϕ(x, y)) , V̂b(x, y) = exp
(
bϕ̂(x, y)

)
,

where ϕ was defined in (9) and ϕ̂ in Lemma 11. It is different from the Lyapunov function
of [12] in that we need in the denominator of ϕ the term 1 + |∇U(x)|2 instead of |∇U(x)|2.

22



However, the proof written in [12] can be immediately adapted to cover the case we consider,
and it yields that there exists a compact set K1 ⊂ R2d such that for all (x, y) /∈ K1:

LVb(x, y)

Vb(x, y)
⩽ −c, (37)

where L is the generator defined in (15). For any ε > 0, we have∣∣∣∣ζ y · ∇U(x)
1 + |∇U(x)|2

∣∣∣∣ ⩽ ε|y|2/2 + ζ2

2ε
× |∇U(x)|2

1 + |∇U(x)|2
⩽ εH + C,

for some C > 0, and this implies the first two points. Now all that remains to do to show the
third point is to show that inequality (37) remains true for the numerical scheme, as it stays in
the region of space where U = O(δ−ℓ). Recall the definition of Û and Ŵ from Lemma 11. We
introduce the following numerical scheme, counterpart of the scheme (10) for the Hamiltonian
Ĥ: {

X̂n+1 = X̂n + δ∇Ŵ (Yn),

Ŷn+1 = Ŷn − δ∇Û(X̂n)− δγ∇Ŵ (Ŷn+1) +
√

2γβ−1δGn,
(38)

where (Gn) is the same family of Gaussian random variable as in the definition of the scheme (7).
On the event

{
(X̄1, Ȳ1) ̸= (X̂1, Ŷ1)

}
, the step of (X̄1, Ȳ1) was rejected, (X̂1, Ŷ1) /∈ Hδ,ℓ, and we

have using the third point of Lemma 11

V̂b(X̄1, Ȳ1) = V̂b(x, y) ⩽ ebδ
−ℓ

⩽ V̂b(X̂1, Ŷ1). (39)

Suppose we have K > 0, and 0 < α < 1 both independent of δ such that:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)V̂b(x, y) + αδK,

for all (x, y) ∈ Hδ,ℓ. Then, using that for all (x, y) ∈ Hδ,ℓ, Vb(x, y) = V̂b(x, y), and inequal-
ity (39), we would have for all (x, y) ∈ Hδ,ℓ:

E(x,y)

(
Vb(X̄1, Ȳ1)

)
= E

(
V̂b(X̄1, Ȳ1)

)
⩽ E

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)V̂b(x, y) + αδK = (1− αδ)Vb(x, y) + αδK.

Thus we only have to show that the Lyapunov structure holds (partially) true for the reg-
ularized numerical scheme (38). In the sequel of this proof, the notation o(δ) will denote a
quantity uniform in (x, y) ∈ R2d:

fδ(x, y) = o(δ) ⇔ lim
δ→0

sup
(x,y)∈R2d

|fδ(x, y)|
δ

= 0.

We have:

V̂b(X̂1, Ŷ1)− V̂b(x, y) = V̂b(x, y)
(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)
+

1

2
V̂b(x, y)

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)2
+ V̂b(x, y)

∑
p⩾3

1

p!

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p
.

A Taylor expansion on ϕ̂ yields that there exists (θ1, θ2) ∈ R2d, random, such that:

ϕ̂(Ẑ1) = ϕ̂(z) + (Ẑ1 − z) · ∇ϕ̂(z) + 1

2
∇2ϕ̂(z)(Ẑ1 − z)◦2 +

1

6
∇3ϕ̂(θ1, θ2)(Ẑ1 − z)◦3, (40)

23



where z = (x, y) and Ẑ1 = (X̂1, Ŷ1). Condition (36) yields that for p ∈ {1, 2}:

E
((

∇3ϕ̂(θ1, θ2)(Ẑ1 − z)◦3
)p)

= o(δ).

Moreover, we have

(Ẑ1− z) ·∇ϕ̂(z) = δ∇Ŵ (y) ·∇xϕ̂− δ∇Û(x) ·∇yϕ̂− δγ∇Ŵ (y) ·∇yϕ̂+
√
2γβ−1δG1 ·∇yϕ̂(x, y),

and
1

2
∇2ϕ̂(z)(Ẑ1 − z)◦2 = γβ−1δG1 · ∇2

yϕ̂(x, y)G1 + o(δ).

Thus, taking the expectation of equation (40) yields

E
(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)
= δ∇Ŵ (y) · ∇xϕ̂− δ∇Û(x) · ∇yϕ̂− δγ∇Ŵ (y) · ∇yϕ̂+ δγβ−1∆yϕ̂+ o(δ),

as well as
E
((

ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)
)2)

= 2δγβ−1|∇yϕ|2 + o(δ).

In the same spirit, the bounds (36) and equation (40) yield:

E
((
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p)
⩽

p∑
k=0
k odd

(
p

k

)
(C

√
δ)k

k!

2k/2(k/2)!
(Cδ1−1/ℓ)p−k

⩽ Cp
√
δ
p
p!

p∑
k=0
k odd

1

(p− k)!(k/2)!2k/2

⩽ C(Cδ)p/2p!.

Hence for δ < C−1:

E

(∑
p⩾3

1

p!

(
ϕ̂(X̂1, Ŷ1)− ϕ̂(x, y)

)p)
⩽ C

(Cδ)3/2

1− Cδ
= o(δ).

Finally, using that Û = U and Ŵ = | · |2/2 on Hδ,ℓ, we get that for all (x, y) ∈ Hδ,ℓ:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
− V̂b(x, y) = V̂b(x, y)

(
δ
LVb(x, y)

Vb(x, y)
+ o(δ)

)
, (41)

where o(δ) is uniform in (x, y). Hence, from equation (37), we have δ0 > 0 such that for all
(x, y) ∈ Hδ,ℓ \K1, δ < δ0:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ (1− αδ)Vb(x, y),

for some α > 0. The map LVb/Vb is continuous on the compact set K1, hence is bounded, and
inequality (41) yields that there exists C > 0 such that for (x, y) ∈ K1:

E(x,y)

(
V̂b(X̂1, Ŷ1)

)
⩽ Vb(x, y) + Cδ

which concludes the proof.
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This Lyapunov structure has an immediate corollary: the numerical scheme will stay away
from the singularities uniformly on δ, even though its forbidden area is a level set depending
on δ.

Corollary 13. Under Assumptions 1 and 2, there exist δ0, ℓ0 > 0 such that for all 0 < b < β,
0 < ℓ < ℓ0, z ∈ X :

sup
0<δ<δ0

sup
n∈N

Ez

(
ebH(Z̄n)

)
<∞.

Moreover, for all z ∈ X , there exists C, c > 0 such that for all a > 0, 0 < δ < δ0, 0 < ℓ < ℓ0
and n ∈ N:

Pz

(
H(Z̄n) ⩾ a

)
⩽ Ce−ca.

Proof. Fix b < b′ < β. The second Lyapunov property of Lemma 12 implies that:

Ez

(
ebH(X̄n,Ȳn)

)
⩽ CEz

(
Vb′
(
X̄n, Ȳn

))
,

for some C > 0, whereas an induction argument using the third property yields

Ez

(
Vb′
(
X̄n, Ȳn

))
⩽ max (Vb′(x, y), K) .

Both inequality combined then gives the first point of the Corollary. The second point is a
direct application of Markov inequality.

The next lemma will allow us to do series expansion of Pt(Z̄n) to prove Theorem 2. We
write for z1, z2 ∈ R2d, [z1, z2] = {tz1 + (1− t)z2, t ∈ [0, 1]}.

Lemma 14. For all κ > 0, there exists C, δ0 > 0 such that for all 0 < δ < δ0, z1, z2 ∈
{H ⩽ κ ln 1/δ}, and |z1 − z2| ⩽ δ

2
3 , all z ∈ [z1, z2]:

H(z) ⩽ H(z1) + C

Proof. Fix z1, z2 ∈ {H ⩽ κ ln 1/δ}, such that |z1− z2| ⩽ δ
2
3 . We have that [z1, z2] ⊂ B(z1, δ

2
3 ).

We first show that
B(z1, δ

2
3 ) ⊂ {H ⩽ κ′ ln 1/δ} ,

for some κ′ > 0. To this end, fix z ∈ B(z1, δ
2
3 ), and write for 0 ⩽ s ⩽ 1:

φ(s) = U(z1 + s(z − z1)).

Thanks to Assumption 1, we have that φ is finite and smooth for s < s0 small enough. We
show at the same time that we may have s0 = 1 and that φ(1) ⩽ κ′ ln(1/δ). We have:

φ′(s) = ∇U(z1 + s(z − z1)) · (z − z1)

⩽ |∇U(z1 + s(z − z1))||(z − z1)| ⩽ δ
2
3

√
c0φ

2+ 2
η0 + d0 ⩽ δ

2
3
√
c0

(
φ+

(
d0
c0

) η0
2+2η0

)1+ 1
η0

.

Hence there is c1, c2 > 0 independent of z1, z and δ such that for s ⩽ s0:

φ′(s)

(φ+ c2)
1+ 1

η0

⩽ c1δ
2
3 .
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Integrating this last inequation yields:
η0

(φ(s) + c2)
1/η0

⩾
η0

(φ(0) + c2)
1/η0

− c1δ
2
3 s.

Whether η0 < 0 or η0 > 1, because φ(0) ⩽ κ ln(1/δ), we have that there exists δ0, κ′ > 0 such
that for all 0 < δ < δ0, φ(1) ⩽ κ′ ln(1/δ). Hence using Assumption 2 again, we have that

∀ z ∈ B(z1, δ
2
3 ), |∇U(z)| ⩽ κ′′(ln(1/δ))

1+ 1
η0 ,

for some κ′′ > 0. Using a Taylor expansion on φ, we get that for all z1 ∈ {H ⩽ κ ln 1/δ} and
z ∈ B(z1, δ

2
3 ):

U(z) ⩽ U(z1) + κ′′δ
2
3 (ln 1/δ)

1
η0 ,

and this concludes the proof with C = sup0<δ<δ0 κ
′′δ

2
3 (ln 1/δ)

1
η0 .

Proof of theorem 2. As in [28], we only prove the case k = 1 for simplicity, since for k > 1,
the proof is the same. Fix some function f ∈ P(U), and write u(t, x, y) = Ptf(x, y). Recall
that u is solution to: {

∂tu = Lu,

u(t = 0, ·) = f,
(42)

where L is the generator defined by (15). For the sequel of the proof, fix t > 0. For all n ∈ N,
δ > 0 is such that nδ = t. We can write the total error made by the numerical scheme as:

Ez

(
f
(
Z̄n

))
− Ez (f (Zt)) = Ez

(
u
(
0, Z̄n

)
− u (nδ, z)

)
=

n−1∑
p=0

Ez

(
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
.

To make a series expansion of the expectations in the sum, we need to distinguish between
three cases. Fix some κ > 0 to be determined later, n, p ∈ N, p ⩽ n, and denote:

A1 =
{
Zn−p, Zn−(p+1) ∈ {H ⩽ κ ln(1/δ)} , |Zn−p − Zn−(p+1)| ⩽ δ2/3

}
,

A2 =
{
Zn−p, Zn−(p+1) ∈ {H ⩽ κ ln(1/δ)} , |Zn−p − Zn−(p+1)| ⩾ δ2/3

}
,

A3 = {Zn−p /∈ {H ⩽ κ ln(1/δ)}} ∪
{
Zn−(p+1) /∈ {H ⩽ κ ln(1/δ)}

}
.

The event A1 is the event on which we may do a series expansion of

u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

)
,

thanks to Lemma 14. Let’s first show that the two other event have very low probability as δ
goes to 0. Theorem 1 yields the existence of some 0 < b < β, C, q > 0 such that:

|u−
∫
X
fdµ| ⩽ Ce−qtebH .

Fix q1, q2 ⩾ 1 such that
1/q1 + 1/q2 = 1, bq1 < β.

Using Holder inequality we get:∣∣Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A2

)∣∣
⩽ Ce−qpδ

((
Ez

(
ebq1H(Z̄n−p)

))1/q1
+
(
Ez

(
ebq1H̄(Zn−(p+1))

))1/q1)
(P (A2))

1/q2 .
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On the event
{
H
(
Z̄n−(p+1)

)
⩽ κ ln(1/δ)

}
, there is some c > 0 such that

|∇U
(
X̄n−(p+1)

)
|+ |Yn−(p+1)| ⩽ C (ln(1/δ))c

and ∣∣Z̄n−k − Z̄n−(k+1)

∣∣ ⩽ Cδ ln(1/δ)c +
√
δ |G|

where G is a standard Gaussian random variable. Hence for δ small enough, there is c, C > 0
such that:

P (A2) ⩽ P
(
G ⩾ cδ1/6

)
⩽ Ce−cδ1/6 ,

and finally ∣∣Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A2

)∣∣ ⩽ Ce−cδ1/6 .

Next, using Holder’s inequality again:

Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A3

)
⩽ Ce−qpδ

((
E
(
ebq1H(Z̄n−p)

))1/q1
+
(
E
(
ebq1H̄(Zn−(p+1))

))1/q1)
(P (A3))

1/q2 .

Fix b′ < β. We have, using Markov inequality:

P (A3) ⩽ 2 sup
n

P
(
eb

′H(Zn) ⩾ e−b′κ ln(1/δ)
)
⩽ 2 sup

n
E(eb′H(Zn))δb

′κ = Cδb
′κ.

We can now fix κ > 3q2/b
′ to get that:

Ez

((
u
(
pδ, Z̄n−p

)
− u

(
(p+ 1)δ, Z̄n−(p+1)

))
1A3

)
= O(δ3).

On the event A1, we may use Lemma 14 to make a series expansion of u. For 0 ⩽ s ⩽ 1, write

φ(s) = u
(
(p+ 1− s)δ, Z̄n−(p+1) + s(Z̄n−p − Z̄n−(p+1)

)
.

Then:

(φ(1)− φ(0))1A1 =

(
5∑

r=1

φ(r)(0)

r!
+
φ(6)(θ)

6!

)
1A1 ,

for some 0 ⩽ θ ⩽ 1. Theorem 1 yields that there is C > 0, 0 < b < β such that:

|φ(6)(θ)|1A1 ⩽ C
(
δ3G6 + δ7/2G5 ln(1/δ) + · · ·+ δ6(ln(1/δ))6

)
ebH(Z̄)

1A1

for some Z̄ ∈ [Z̄n−p, Z̄n−(p+1)]. However, Lemma 14 also yields that

H(Z̄)1A1 ⩽ H
(
Z̄n−p

)
+ C.

Hence, Holder’s inequality yields:

E
(
|φ(6)(θ)|1A1

)
⩽ Cδ3 sup

n
E
(
eq1bH(Z̄n)

) 1
q1 = C ′δ3.

Using Holder’s inequality as in the bound for the event A2 and A3, we get that:

E

(
1A1

5∑
r=1

φ(r)(0)

r!

)
= E

(
5∑

r=1

φ(r)(0)

r!

)
+O(δ3) = δ2E

(
ψ
(
(p+ 1)δ, Z̄n−(p+1)

))
+O(δ3),
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where

ψ(s, z) = (∇U + γy) · (∇y/2−∇x)u+
1

2
∂2t u−

1

2
y · ∇x∂tu+

1

2
(∇U + γy) · ∇2

yy (∇U + γy)

− 1

2
y · ∇2

x,y (∇U + γy) + γβ−1

d∑
i=1

∂xi
∂yiu−

2

3
γβ−1∂t∆yu

− 7

12
γβ−1 (∇U + γy) · ∇y∆yu+

1

3
γβ−1y · ∇x∆yu

+
1

2

(
γβ−1

)2 d∑
i=1

∂4yiu+
1

6

(
γβ−1

)2 d∑
i ̸=j=1

∂2yi∂
2
yj
u.

The expression of ψ is found using the fact that u solves (42). Finally, we have that:

Ez

(
f
(
Z̄n

))
− Ez (f (Zt)) = δ2E

(
n∑

p=1

ψ
(
pδ, Z̄n−p

))
+O(δ2).

The rest follows as in the proof of Talay and Tubaro [28], which we write for the sake of
completeness. As ψ is a function of the derivative of u, Theorem 1 yields that:

∣∣Ez

(
f
(
Z̄n

))
− Ez (f (Zt))

∣∣ ⩽ Cδ2

(
n∑

p=1

e−qpδEz

(
ebH(Z̄n−p

)
+ 1

)
⩽ Cδ2

(
1

δ
+ 1

)
⩽ Cδ. (43)

The function s→ Ez (ψ(s, Zt−s)) is smooth and is bounded, hence the weak convergence (43)
and classical Riemann summation results yield that:∣∣∣∣∣δE

(
n∑

p=1

ψ
(
pδ, Z̄n−p

))
−
∫ t

0

Ez (ψ(s, Zt−s) ds

∣∣∣∣∣ = O(δ),

which concludes the proof.

4.2 Expansion for the invariant measure of the numerical scheme
with rejection

To establish an expansion of the invariant measure of the numerical scheme, we first need to
prove its existence, and ergodicity of the scheme. For this purpose, we define a metric on
M1

(
R2d
)
. Fix some 0 < b < β, and write for z1, z2 ∈ R2d:

d(z1, z2) = 1z1 ̸=z2 (1 + Vb(z1) + Vb(z2)) ,

where Vb is the Lyapunov function from Lemma 12. For any two probability measures µ, ν,
we call (Z1, Z2) a coupling of µ and ν if the law of Z1 (resp. Z2) is µ (resp. ν). From the
distance d on R2d, we define the corresponding Kantorovich distance on M1(R2d) by:

Wd(µ, ν) = inf {E (d(Z1, Z2)) , (Z1, Z2) coupling of µ and ν} .

This distance makes M1(R2d) complete. Hence, if we show that the map Law(z) 7→ Law(Z̄k),
where Z̄k is the numerical scheme given by (7) with initial condition z, for some k ∈ N, is a
contraction, then this would imply the existence of a unique stationary measure, as well as
exponentially fast convergence towards it for this Kantorovitch distance. It can be shown that
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convergence for such a distance would imply ergodicity of the numerical scheme, in the sense
of the convergence of the average

lim
n→∞

1

n

n∑
k=1

E(x,y)

(
f
(
X̄k, Ȳk

))
= µ(f). (44)

Write K2 = {H ⩽ K}, where K is the constant from Lemma 12. Because Vb is a Lyapunov
function, we only need to show that there exists c > 0, k ∈ N, such that for all z ∈ K2, we
have the following Doeblin condition:

Pz

(
Z̄k ∈ ·

)
⩾ cλ, (45)

where λ stands for the Lebesgue measure, see for example [9, Theorem 24]. In other words,
we want to show that the numerical scheme creates density.

Lemma 15. Under Assumptions 1 and 2, there exists δ0, ℓ0 > 0 such that for all 0 < δ < δ0,
0 < ℓ < ℓ0, the numerical scheme (7) admits a unique stationary measure µδ ∈ M1(R2d), and
for all (x, y) ∈ Hδ,ℓ and f : Hδ,ℓ → R continuous:

lim
n→∞

1

n

n∑
k=1

E(x,y)

(
f
(
X̄k, Ȳk

))
= µδ (f) .

Proof. As explained before, it suffices to show the so-called Doeblin condition (45). To achieve
such inequality, we first begin by showing, using a controllability argument, that this is locally
true, in the sense that: there exits c > 0 such that for all z ∈ K2, z0 ∈ B(z, δ) and A ⊂ B(z, δ),

Pz0

(
Z̄2 ∈ A

)
⩾ cλ(A).

To this end, we want to show that there exists (g0, g1) such that if
√

2γβ−1δ(G0, G1) = (g0, g1)
and Z̄0 = z0, then Z̄2 = z1. Since Gaussian random variables have a density with respect to
the Lebesgue measure, then if z1 7→ (g0, g1) is a diffeomorphism, the result will hold. Fix
z0, z1 ∈ B(z, δ) and write:

F (x, y) = (x+ δ (y − δ∇U(x)− δγy) , y − δ∇U(x)− δγy) ,

and G(g0, g1) = (G1(g0, g1),G2(g0, g1)) where

G1(g0, g1) = δ(2− δγ)g0 − δ2∇U (x0 + δ (y0 − δU(x0)− δγy0 + g0)) + δg1,

and
G2(g0, g1) = (1− δγ)g0 − δ∇U (x0 + δ (y0 − δU(x0)− δγy0 + g0)) + g1.

Now, the goal is to show that there exists g0, g1 ∈ Rd such that:

H (F (z0) + (δg0, g0)) ⩽ δ−ℓ, (46)

and

G(g0, g1) = z1 − z0

+
(
δ2(2− γδ)∇U(x0)− δ(2− 3δγ + (δγ)2)y0, δ(1− γδ)∇U(x0) + (2γδ − (γδ)2)y0

)
. (47)

We have:
G = G̃

(
Id + δḠ

)
,

29



where G̃ is the invertible matrix:

G̃ =

(
2δId δId
Id Id

)
, G̃−1 =

(
δ−1Id −Id
−δ−1Id 2Id

)
,

and where Ḡ and its derivative are bounded on B(0, ρ), for all ρ > 0, uniformly with respect
to δ < δ0 and z0 ∈ K2. Write h = Id + δḠ. The goal now is to show that for all ρ2 > 0,
there exists ρ1 > 0 such that h is a diffeomorphism from a neighborhood W ⊂ B(0, ρ1) of 0
to B(h(0), ρ2), by following the proof of the local inverse theorem. To this end, for v, g ∈ R2d,
write:

ϕv(g) = g − (d0h)
−1(h(g)− v).

There exists δ0 > 0 such that, for all z0 ∈ K2 and 0 < δ < δ0, this function is well defined,
i.e. d0h is invertible. For all ρ1 > 0, there exists δ0 > 0 such that for all δ < δ0, g ∈ B(0, ρ1),
|||dgϕv||| ⩽ 1/2. Hence for g, g′ ∈ BR2d(0, ρ1), we have

|ϕv(g)− ϕv(g
′)| ⩽ 1

2
|g − g′|.

For all ρ2 > 0, v ∈ B(h(0), ρ2), and δ small enough we have that

|(d0h)−1(h(0)− v)| < 2ρ2.

This implies that if ρ1 > 4ρ2, then for all g ∈ B(0, ρ1), we have ϕv(g) ∈ B(0, ρ1):

|ϕv(g)| ⩽ |ϕv(g)− ϕv(0)|+ |ϕv(0)| ⩽
1

2
|g|+ 2ρ2 < ρ1.

Hence we may apply Banach fixed point theorem to get that for all v ∈ B(0, ρ2), there exists
gv ∈ B(0, ρ1) such that ϕv(gv) = gv, or equivalently h(gv) = v. The fact that v 7→ gv is smooth
is proved in the same way as in the proof of the inverse function theorem. Thus, for all ρ > 0,
there exists δ0, r > 0 such that for all z0 ∈ K2, 0 < δ < δ0, there exists a bounded neighborhood
W ⊂ BR2d(0, r) of 0, such that G is a diffeomorphism from W to BR2d(G(0, 0), ρδ). We fix

ρ > 3 + 2 sup
(x,y)∈K2

|y|+ |∇U(x)|.

Write I(z0, z1) for the left hand side of Equation (47). For δ small enough, I ∈ B(G(0, 0), ρδ)
for all z0, z1 ∈ B(z, δ), so that Equation (47) has a solution G−1(I(z0, z1)). The fact that
W ⊂ B(0, r) yields condition (46) for δ < ∆/r, where ∆ is the distance between K2 and Dc.
Finally, because (G0, G1) has a positive density, for z0 ∈ B(z, δ) and A ⊂ B(z, δ) we have:

Pz0

(
Z̄2 ∈ A

)
⩾ P

(
(G0, G1) ∈ G−1 ◦ I(·, z0)(A)

)
⩾ c

∫
G−1◦I(·,z0)(A)

dz′ = c

∫
A

| det(∇G ◦ I(z′, z0))|−1dz′ ⩾ c′λ(A).

Now we are able to show condition (45). Fix δ small enough so that the local Doeblin condition
holds true. Since K2 is compact, there exists z1, · · · , zN such that K2 = ∪N

i=1B(zi, δ). For all
measurable A ⊂ K2, we have that

λ(A) ⩽
N∑
i=1

λ(A ∩B(zi, δ)).

Hence we may restrict ourselves to A ⊂ B(zj, δ), for some j ∈ J1, NK. Up to increasing the
value of K, we may suppose that K2 is connected. In this case, there exists k ∈ N and ε > 0
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such that for all z ∈ B(zi, δ) and A ⊂ B(zj, δ), there exists a finite sequence z′0, z′1, . . . , z′k ∈ K2

satisfying the following condition: z′0 = z, z′k ∈ B(zj, δ), and for all 0 ⩽ p ⩽ k − 1, there is ip
such that B(zp, ε), B(zp+1, ε) ⊂ B(zip , δ). Hence we have:

P
(
Z2(k+1) ∈ A

)
⩾ P

(
Z2p ∈ B(z′p, ε), 1 ⩽ p ⩽ k, Z2(k+1) ∈ A

)
⩾ (cw)kλ(A),

where w is the volume of BR2d(0, ε), and this concludes the proof.

All function f ∈ P(U) are continuous on Hδ,ℓ, thus we do indeed have the convergence (44)
for such function. To prove Theorem 3, we first need weak convergence of the stationary
measure of the numerical scheme, for functions that depends on time.

Lemma 16. Let g ∈ C∞ (R+ ×X ,R) be such that for all α ∈ N2d, there exists Cα, qα > 0 and
bα < β such that:

|∂αg(t, z)| ⩽ Cαe
−qαtebαH(z).

Under Assumption 1, 2 and 3, there exists C > 0 such that for δ small enough:

|µδ(g(t, ·))− µ(g(t, ·))| ⩽ Ce−qtδ.

Proof. The proof is very close to the proof Theorem 2, hence we will omit some details. We fix
g satisfying the assumptions of Lemma 16, t > 0, and we write u(s, z) = Ez(g(t, Zs)), where
Z = (X, Y ) is the continuous process (4). g(t, ·) ∈ P(U), and we have for any n ∈ N:

1

n

n∑
k=1

Ez

(
u
(
0, Z̄k

)
− u (kδ, z)

)
=

1

n

n∑
k=1

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
. (48)

Lemma 15 yields that:

1

n

n∑
k=1

Ez

(
u
(
0, Z̄k

))
=

1

n

n∑
k=1

Ez

(
g
(
t, Z̄k

))
→

n→∞
µδ(g(t, ·)).

The continuous process is also ergodic, as shown by Theorem 4. Hence we have:

1

n

n∑
k=1

Ez (u (kδ, z)) =
1

n

n∑
k=1

Pkδg(t, ·)(z) →
n→∞

µ(g(t, ·)).

As in the proof of Theorem 2, a Taylor expansion yields:∣∣∣∣∣
k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))∣∣∣∣∣ ⩽ Ce−qtδ,

and letting n go to infinity in (48) concludes the proof.

Proof of Theorem 3. Fix f ∈ P(U) and write u(t, z) = Ez(f(Zt)), where Z = (X, Y ) is the
continuous process (4). We write a Taylor expansion of higher order than in the proof of
Lemma 16 to get:

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
= δ2

k−1∑
p=0

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2),
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where the term O(δ2) is independent of k. Hence we may write:

1

n

n∑
k=1

k−1∑
p=0

Ez

(
u
(
pδ, Z̄k−p

)
− u

(
(p+ 1)δ, Z̄k−(p+1)

))
=

1

n

n∑
k=1

k−1∑
p=0

δ2Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2)

=
δ2

n

n∑
i=1

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
− δ2

n

n∑
k=1

n∑
p=k

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))
+O(δ2).

Using Theorem 1 and Corollary 13, we bound:∣∣∣∣∣ 1n
n∑

k=1

n∑
p=k

Ez

(
ψ
(
(p+ 1)δ, Z̄k−(p+1)

))∣∣∣∣∣ ⩽ 1

n

n∑
k=1

n∑
p=k

Ez

(
Ce−q(p+1)δebH(Z̄k−(p+1))

)
⩽
C ′

n

n∑
k=1

∞∑
p=k

e−q(p+1)δ

⩽
C ′′

n

n∑
k=1

e−qkδ →
n→∞

0.

Ergodicity of the numerical scheme yields that

1

n

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
→

n→∞
µδ (ψ(iδ, ·)) ,

and Theorem 1 and Corollary 13 that:∣∣∣∣∣ 1n
n∑

j=0

Ez

(
ψ
(
(iδ, Z̄j

))∣∣∣∣∣ ⩽ Ce−qiδ.

Hence the dominated convergence theorem yields that:

1

n

n∑
i=1

n∑
j=0

Ez

(
ψ
(
(iδ, Z̄j

))
→

n→∞

∑
i⩾0

µδ (ψ(iδ, ·)) .

Now Lemma 16 and Riemann sum tells us that:∑
i⩾0

µδ (ψ(iδ, ·)) =
∫ ∞

0

µ(ψ(t, ·))dt+O(δ).

Letting n go to infinity in Equation (48) (with g(t, ·) = f) then concludes the proof.
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