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Abstract. Chimera dynamics, an intriguing phenomenon of coupled oscillators, is
characterized by the coexistence of coherence and incoherence, arising from a symmetry-
breaking mechanism. Extensive research has been performed in various systems, focusing on a
system of Kuramoto-Sakaguchi (KS) phase oscillators. In recent developments, the system has
been extended to the so-called generalized Kuramoto model, wherein an oscillator is situated
on the surface of an M-dimensional unit sphere, rather than being confined to a unit circle.
In this paper, we exploit the model introduced in [New. J. Phys. 16, 023016 (2014)] where
the macroscopic dynamics of the system was studied using the extended Watanabe-Strogatz
transformation both for real and complex spaces. Considering two-population networks of the
generalized KS oscillators in 2D complex spaces, we demonstrate the existence of chimera
states and elucidate different motions of the order parameter vectors depending on the strength
of intra-population coupling. Similar to the KS model on the unit circle, stationary and
breathing chimeras are observed for comparatively strong intra-population coupling. Here, the
breathing chimera changes their motion upon decreasing intra-population coupling strength
via a global bifurcation involving the completely incoherent state. Beyond that, the system
exhibits periodic alternation of the two order parameters with weaker coupling strength.
Moreover, we observe that the chimera state transitions into a componentwise aperiodic
dynamics when the coupling strength weakens even further. The aperiodic chimera dynamics
emerges due to the breaking of conserved quantities that are preserved in the stationary,
breathing and alternating chimera states. We provide a detailed explanation of this scenario
in both the thermodynamic limit and for finite-sized ensembles. Furthermore, we note that an
ensemble in 4D real spaces demonstrates similar behavior.

1. Introduction

Within the framework of the concept ‘More is different’ [1] or ‘More than the sum’ [2],
collective behavior of systems of nonlinearly coupled objects has been extensively explored in
diverse interdisciplinary fields of science and mathematics, with a particular focus on systems
of coupled oscillators [3, 4]. One notable phenomenon in systems of numerous oscillators is
the emergence of chimera states [5–7], which are characterized by the simultaneous presence
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of coherence and incoherence through the breaking of symmetry. Chimera states were
originally observed in a system of coupled oscillators on a ring geometry as a spatiotemporal
pattern where the system exhibits both a coherently oscillating part and an incoherently
oscillating part along the ring [8]. Later this coexistence pattern was dubbed a chimera state
to highlight its peculiar characteristics [9].

For the exploration of the essential properties of chimera states, Abrams et al. exploited
a simplified model where identical Kuramoto-Sakaguchi (KS) phase oscillators are stationed
in two-population networks [10]. Note that before their work, Montbrió, Kurths, and
Blasius observed chimera states in two-population networks, however, with heterogeneous KS
oscillators [11]. In these studies, the intra- and inter-population connections are considered
to be all-to-all, with different coupling strengths where the former is stronger than the latter.
This configuration effectively emulates a nonlocal coupling scenario on a ring geometry, and
since their introduction extensive research has been conducted on the collective dynamics
in two-population networks of coupled oscillators. Thereby, the two-population network
was considered with identical [10, 12] and heterogeneous [13–15] KS oscillators. Also,
numerous other variations were taken into account, including phase oscillators under higher-
order interaction and planar oscillators [16–23]. In addition, chimera states have been
ceaselessly studied by adopting three- and multi-population networks as underlying system
topology [24–31].

Investigations of the collective dynamics of sinusoidally coupled oscillators, such
as Kuramoto oscillators on the unit circle, have relied heavily on dimension reduction
methods. Notably, the Ott-Antonsen (OA) ansatz [32, 33] and the Watanabe-Strogatz (WS)
transformation [34–36] were extensively employed, including the exploration of chimera
states [37–40]. The introduction of the WS or OA ansatz allows for the description of the
system’s macroscopic dynamics, providing an alternative to the Kuramoto order parameter
which is defined from the microscopic phase information of the system. For details, see
Sec. 2.

Meanwhile, Kuramoto oscillators, originally defined on the unit circle in C1 or R2, have
been extended to so-called generalized Kuramoto oscillators [41–47]. In these models, each
oscillator is represented as a unit vector confined to the surface of a higher-dimensional unit
sphere, and their collective dynamics, such as synchronization of the oscillators, has been
studied. Furthermore, dimension reduction methods like the OA and the WS ansatz were also
developed and employed for the study of the generalized Kuramoto oscillators [48–55]. In
this paper, we exploit, in particular, the model suggested by T. Tanaka in Ref. [55] where the
author proposed the generalized Watanabe-Strogatz transformation as a vector form of a linear
fractional transformation. This projection map allows for the investigation of the macroscopic
dynamics of the system in the thermodynamic limit, considering both real (RM) and complex
(CM) spaces.

The rest of this paper is organized as follows. In Sec. 2, we revisit the generalized
Kuramoto model and the generalized WS transformation introduced in Ref. [55], necessary
for our study. In Sec. 3, we introduce a suitable coupling matrix that determines the Benjamin-
Feir instability point and corresponds to the phase-lag parameter in the standard Kuramoto-
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Sakaguchi model. Then, in Sec. 4, we discuss observable chimera states of the generalized
KS oscillators in two-population networks with a particular focus on the 2D complex spaces
(C2). Therein, the chimera states are investigated in the thermodynamic limit, using the WS
macroscopic variables, and in the finite-sized ensembles, using the Kuramoto order parameter,
respectively. Furthermore, in Sec. 5, we also provide the scenario of emergence of chimera
states in the 4D real spaces (R4) in the thermodynamic limit as a comparison to the 2D
complex spaces. Finally, we summarize our results in Sec. 6. Some useful information will
be given through Appendix A-Appendix C.

2. Dimension Reduction Methods

A system of identical Kuramoto-Sakaguchi phase oscillators is governed by

φ̇ j(t) = ω +2 Im
[

g(t)e−iφ j

]
= ω +

2
N

N

∑
k=1

sin(φk−φ j−α) (1)

for j = 1, ...,N. Each oscillator φ j(t) ∈ T := [0,2π] is defined on a unit circle of C1, i.e.,
by the argument of a complex number eiφ j(t) with unit modulus. The oscillator is influenced
sinusoidally by the mean-field forcing g(t) := e−iαm(t) ∈ C1. Here, the Kuramoto order
parameter m(t) is defined by

m(t) :=
1
N

N

∑
k=1

eiφk(t) ∈ C1 (2)

which serves as the centroid of the phases on the unit circle [56]. The phase-lag parameter
α ∈ [0,2π] determines the Benjamin-Feir instability point [8,57], i.e., αBF =

π

2 : for α < αBF,
the synchronized state {φ j(t) = φ0 + Ωt}N

j=1 is stable whereas it becomes unstable for
α > αBF, where Ω is the common locked frequency. On the other hand, desynchronized
states, e.g., a splay state {φ j(t) = 2π

N j +Ωt}N
j=1, is stable for α > αBF whereas it becomes

unstable for α < αBF [35]. All the oscillators have the same intrinsic frequency ω ∈ R that
can be set to zero due to rotational symmetry.

To investigate the collective behavior of the system, one can exploit the Watanabe-
Strogatz (WS) transformation [35–37], which is a linear fractional transformation [58] that
reads

eiφ j(t) = Mt(eiθ j) :=
b(t)+ eiθ jeiϕ(t)

1+b(t)eiθ jeiϕ(t)
(3)

where ϕ(t) ∈ R and b(t) ∈ C are called the WS variables characterizing the macroscopic
dynamics of the system. The symbol with an overbar represents the complex conjugate.
In particular, the WS variable b(t) quantifies the degree of coherence of the system in a
similar manner (although not precisely the same) as the Kuramoto order parameter, and
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fulfills |b(t)| < 1 for all t [36, 38]. Here, {θ j}N
j=1 is a set of constants of motion obeying

three constraints: ∑
N
k=1 eiθk = 0 in order for b(t) = 0 to be consistent with the incoherent state

m(t) = 0, and the third one can be written as ∑
N
k=1 θk = 0. They are determined by a given

initial condition {φ j(0)}N
j=1 (see Ref. [38]). The WS macroscopic variables are governed by

ḃ =−gb2 +g and ϕ̇ = igb− igb [36].
In the thermodynamic limit (N→∞) with uniform constants of motion, one can approach

the Ott-Antonsen (OA) manifold [32, 33] where the WS variable b(t) exactly coincides with
the Kuramoto order parameter m(t) [37, 38]. To see this, we first consider the uniform
distribution of constants of motion dµ(θ) = 1

2π
dθ together with the Watanabe-Strogatz

transformation φ = T (θ) :=−i logMt(eiθ ) for a fixed t. This transformation pushes-forward
a measure µ to T∗µ and gives d(T∗µ)(φ) = f (φ)dφ where the phase density function

f (φ) :=
1

2π
∂φ T−1(φ)

=
1

2π

1−|b|2

1−2|b|cos(φ − argb)+ |b|2
(4)

is the normalized Poisson kernel [36]. This fact reveals that the oscillators’ phases are
distributed according to the normalized Poisson kernel in the OA manifold [39]. The Poisson
kernel has the Kuramoto order parameter given by

m(t) =
∫
T

Mt(eiθ )dµ(θ) =
∫
T

eiφ d(T∗µ)(φ)

=
∫
T

eiφ 1
2π

1−|b|2

1−2|b|cos(φ − argb)+ |b|2
dφ

= b(t). (5)

As a result, it becomes possible to examine the macroscopic behavior (i.e, the dynamics of
the Kuramoto order parameter) of the system by focusing solely on the dynamics of the WS
variable b(t) within the OA manifold [36, 38, 39].

The system of Kuramoto-Sakaguchi oscillators (1) defined on a unit circle in C1 or R2

has a sinusoidal form and therefore can be extended to a system of generalized Kuramoto
oscillators that are defined on the surface of a unit sphere in M-dimensional real and complex
spaces [55]. To get a brief glimpse of this, we can write Eq. (1) as

d
dt

eiφ j = iφ̇ jeiφ j = iωeiφ j +2ieiφ jIm
[

g(t)e−iφ j

]
= iωeiφ j + eiφ j

(
g(t)e−iφ j −g(t)eiφ j

)
=−eiφ jg(t)eiφ j + iωeiφ j +g(t) (6)

for j = 1, ...,N. Let us take eiφ j(t) ∈ C1 7→ x j(t) ∈ KM with a constraint x j(t)†x j(t) =〈
x j(t)

∣∣x j(t)
〉
= 1 for all t and j = 1, ...,N where K=R or C is a ground field, and † denotes a

Hermitian adjoint [59]. Then, one can treat x j(t) as an oscillator defined on the surface of the
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unit sphere denoted by SM := {x∈KM|x†x= 1} either for K=R or C. In this consideration,
the oscillators can be assumed to follow

ẋ j =−x jg
†x j +Ωx j +g (7)

for j = 1, ...,N. Here, the mean-field forcing g(t) ∈ KM can be any arbitrary vector that
characterizes an external forcing function or a global coupling of the system. In this paper, we
consider the mean-field forcing g(t) which depends only on the Kuramoto order parameter
(see Sec. 3 for details). The Kuramoto order parameter serves as the center of mass of the
oscillators on SM, which is defined by

m(t) :=
1
N

N

∑
k=1
xk(t) ∈KM. (8)

Furthermore, Ω ∈ KM×M with Ω† = −Ω is an anti-hermitian natural frequency matrix that
corresponds to iω in the above equation. Throughout this paper, we will set Ω to zero
since we only consider identical oscillators. This model and other variants of vector-formed
oscillators, i.e., generalized Kuramoto models have been so far investigated for a variety
of collective dynamics [42–46, 49–51]. In particular, the macroscopic dynamics of the
generalized Kuramoto oscillator system can be investigated based on the generalized WS
transformation introduced in Ref. [55].

Below, we briefly revisit the main focus of Ref. [55] that is necessary for our study.
Therein, the higher-dimensional WS transformation was introduced as a vector form of a
linear fractional transformation

x j(t) = Mt(x0, j) :=
Ax0, j +b

b†Ax0, j +1
(9)

where A(t) ∈ KM×M and b(t) ∈ KM are the WS variables that determine the macroscopic
dynamics of the system. In this context, the initial conditionsx j(0)=:x0, j act as the constants
of motion. To describe the incoherent state consistently, i.e., m(t) = b(t) = 0, the initial
conditions should satisfy 1

N ∑
N
k=1x0,k = 0. This holds, e.g., if they are uniformly distributed on

SM. Under the constraint
〈
x j
∣∣x j
〉
= 1 and with uniform initial conditions, the WS variables

are governed by

Ȧ= gb†A−g†bA

ḃ=−bg†b+g. (10)

Furthermore, one can show that A =H1/2U (polar decomposition) where U ∈ KM×M is a
unitary matrix and H1/2 = V Σ1/2V † with Σ1/2 := (

√
Σi j). Here, V ΣV † is a singular value

decomposition of H := (1−|b|2)IM +bb† where IM ∈ RM×M is the identity matrix. Thus it
follows thatH1/2b= b.

In the thermodynamic limit, without loss of generality, it is possible to set U = IM as
long as x0, j are uniformly distributed on SM. Then, as T. Tanaka showed [55], the Kuramoto
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order parameter can also be expressed in terms of the WS (or OA) variables as

m(t) =
∫
|x0|=1

Mt(x0)dµ(x0) =
1

SM

∫
|x0|=1

x(t)dx0

=
M−1

M 2F1(
1
2
,1;

M+2
2

; |b|2)b(t)

= h(|b|2,M)b(t) (11)

for K = R. Here, 2F1 is the ordinary hypergeometric function [60], SM := 2πM/2

Γ(M/2) is the

surface area of the (M− 1)-sphere, and h(|b|2,M) := M−1
M 2F1(

1
2 ,1; M+2

2 ; |b|2). For K = C,
the Kuramoto order parameter is given by

m(t) =
1

S2M

∫
|x0|=1

x(t)dx0 = b(t) (12)

which means the Kuramoto order parameter exactly coincides with the WS variable b(t). For
the details, see Ref. [55] and Appendix A.

3. Coupling Matrix: Benjamin-Feir Instability Point

To explore chimera states in a system of generalized Kuramoto-Sakaguchi oscillators in
two-population networks, we introduce a suitable coupling matrix in this section, which
corresponds to the phase-lag parameter α in Eq. (1). Moreover, the Benjamin-Feir (BF)
instability point is obtained for this coupling matrix. In the remainder of this paper, we
consider the system below the BF point, in order to follow the previous observations of
chimeras in two-population networks [10, 12, 16–18].

In line with Eq. (1), we define the forcing function as g(t) =Km(t) whereK ∈KM×M

is a coupling matrix and m(t) is the Kuramoto order parameter in Eq. (8). Then, the
microscopic dynamics of the oscillators are given by [55]

ẋ j =−x jg
†x j +g

=−x jm
†K†x j +Km=

1
N

N

∑
k=1

(
Kxk− (x†

kK
†x j)x j

)
(13)

for j = 1, ...,N. In Eq. (1), the phase-lag parameter induces phase rotations of −α to each
oscillator’s phase on the unit circle. Similarly, we introduce a rotation matrix as the coupling
matrix [46, 54]. First, we consider the real space K = R. For a rotation in the real space, we
need to distinguish between even and odd dimensional cases [44, 50]. For odd M, we set the
M-axis (see Appendix A) as the rotational axis; then M⊥-plane is isoclinically rotating with
the same angle. An example is

K =


cosα −sinα 0 0 0
sinα cosα 0 0 0

0 0 cosα −sinα 0
0 0 sinα cosα 0
0 0 0 0 1

 (14)
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for R5. For even M, there is no rotational axis and hence we exploit planes of rotation, in
particular, an isoclinic rotation with the same rotational angle for each plane. An example is

K =


cosα −sinα 0 0
sinα cosα 0 0

0 0 cosα −sinα

0 0 sinα cosα

 (15)

for R4.
To determine the Benjamin-Feir point, we consider the macroscopic WS dynamics in the

thermodynamic limit Eq. (10), but use the notation ψ instead of b to denote the WS variable
for future reference. The WS dynamics is then written as

ψ̇ =−ψg†ψ+g

= h(|ψ|2,M)

(
−ψψ†K†ψ+Kψ

)
(16)

where the order parameter m= h(|ψ|2,M)ψ as in Eq. (11). Using Eq. (16), the dynamics of
the magnitude of the WS variable is given by

∂t |ψ|2 = ∂t(ψ
†ψ)

= h(|ψ|2,M)

(
(−ψ†Kψψ† +ψ†K†)ψ+ψ†(−ψψ†K†ψ+Kψ)

)
= 2h(|ψ|2,M)(1−|ψ|2)

〈
ψ

∣∣∣∣K+K†

2

∣∣∣∣ψ〉 (17)

where ∂t := d
dt . For even M, the last term becomes

〈
ψ
∣∣∣K+K†

2

∣∣∣ψ〉 = cosα|ψ|2. Thus,
Equation (17) is simply written as

∂t |ψ|2 = 2h(|ψ|2,M)(1−|ψ|2)|ψ|2 cosα. (18)

There exist two fixed points: ρ∗ = |ψ| = 0 representing the completely incoherent state, and
ρ∗ = |ψ| = 1, indicating the synchronized state. The stability of these fixed points depends
on the value of α . Specifically, the synchronized state ρ∗ is stable while the incoherent state
ρ∗ is unstable for α < π

2 . Opposite to this, the incoherent state ρ∗ is stable whereas the
synchronized state ρ∗ becomes unstable for α > π

2 . Therefore, the Benjamin-Feir instability
occurs at αBF = π

2 for even M.

On the other hand, for odd M, the last term reads as
〈
ψ
∣∣∣K+K†

2

∣∣∣ψ〉 = |ψ|2 cosα +

(1− cosα)x2
M where xM is the coordinate of ψ along the rotational axis, i.e., the M-axis.

In this case, the synchronized state exists in two distinct spaces: either on the M-axis or
on the M⊥-plane. In the former case, the synchronized state is always stable, regardless of
the value of α since it is governed by ∂t |ψ|2 = 2h(|ψ|2,M)(1− |ψ|2)|ψ|2 on the M-axis.
Note ψ = (0, ...,0,xM)> and |ψ| = xM along the M-axis. For the latter case, the stability of
the synchronized state depends on the parameter α: Equation (17) on the M⊥-plane can be
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written as ∂t |ψ|2 = 2h(|ψ|2,M)(1−|ψ|2)|ψ|2 cosα (here, xM = 0 on the M⊥-plane), which
reveals the synchronized state is stable for α < π

2 and unstable for α > π

2 . Consequently, the
Benjamin-Feir instability also occurs at αBF = π

2 . Note that the synchronized state on the
M⊥-plane is always unstable with respect to a perturbation along the M-axis. See Appendix
B for the 3D real space. A similar result was reported in Refs. [46, 54].

Moving forward, let us explore the higher-dimensional complex space CM. In this
setting, we choose the coupling matrix asK = e−iα IM for all M. Then, the governing equation
reads

ψ̇ =−ψg†ψ+g

=−ψψ†K†ψ+Kψ (19)

since the Kuramoto order parameter exactly coincides with the WS variable, i.e.,m(t) =ψ(t)
as in Eq. (12). Consequently, the magnitude of the WS variable is determined by

∂t |ψ|2 = 2(1−|ψ|2)
〈
ψ

∣∣∣∣K+K†

2

∣∣∣∣ψ〉
= 2(1−|ψ|2)|ψ|2 cosα (20)

Therefore, the synchronized state |ψ|= 1 is stable for α < π

2 whereas it is unstable for α > π

2 ,
and thus αBF = π

2 .

4. Chimera Dynamics in Two-population Networks for C2

Now, we are prepared to investigate chimera states in two-population networks of identical
generalized Kuramoto-Sakaguchi oscillators. The microscopic dynamics of the system is
given by

ẋ
(1)
j =−x(1)

j g
†
1x

(1)
j +g1

ẋ
(2)
j =−x(2)

j g
†
2x

(2)
j +g2 (21)

where the mean-field forcing for each population reads

ga = µKm(a)+νKm(b) =K

(
µ

N

N

∑
k=1
x
(a)
k (t)+

ν

N

N

∑
k=1
x
(b)
k (t)

)
(22)

and the Kuramoto order parameter of each population is defined by

m(a)(t) =
1
N

N

∑
k=1
x
(a)
k (t) (23)

for (a,b) = (1,2) or (2,1). Throughout this work, the inter-population coupling strength is
fixed as µ = 1 and the intra-population coupling strength ν = 1−A where A is the control
parameter. The rotation matrices for K = R in Sec. 3 is employed as the coupling matrix
while it isK = e−iα IM for K= C. Note that in this paper, we fix α = π

2 −0.005 < αBF.
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4.1. Stationary and Breathing Chimeras

In the following, we study the chimera states with a particular focus on the 2D complex
space C2. Recall that for the complex space the Kuramoto order parameter m(a)(t) is
exactly equal to ψa(t) in the thermodynamic limit. Then, the forcing field is written as
ga = µKψa +νKψb whereK = e−iα IM. Therefore, the WS variable ψa is governed by

ψ̇a =−ψag
†
aψa +ga

=−ψa

(
µψ†

aK
† +νψ†

bK
†
)
ψa +µKψa +νKψb (24)

for (a,b) = (1,2) and (2,1) in the thermodynamic limit.
As an initial approach, we examine the dynamics of the magnitude of the order parameter

vectors: |ψa| =
√
〈ψa|ψa〉 for a = 1,2. From Eq. (24), the dynamics of the order parameter

magnitude reads

∂t |ψ1|2 = 2(1−|ψ1|2)
(

µ cosα|ψ1|2 +νRe
[

e−iα 〈ψ1|ψ2〉
])

∂t |ψ2|2 = 2(1−|ψ2|2)
(

µ cosα|ψ2|2 +νRe
[

e−iα 〈ψ2|ψ1〉
])

(25)

and the cross term is governed by

∂t 〈ψ1|ψ2〉= µ
(
(1−|ψ1|2)e−iα +(1−|ψ2|2)eiα)〈ψ1|ψ2〉

+νe−iα(|ψ1|2−〈ψ1|ψ2〉2)+νeiα(|ψ2|2−〈ψ1|ψ2〉2). (26)

From numerical integration [61] of Eq. (24), we find that the cross term can be represented by
〈ψ1|ψ2〉= |ψ1||ψ2|eiΘ where Θ∈R as explained later in this section. Then, setting |ψa|=: ρa

for a = 1,2 and ρ2 = 1, we obtain

∂tρ1 =
1−ρ2

1
ρ1

(
µ cosαρ

2
1 +νρ1 cos(Θ−α)

)
∂tΘ = µ sinα(ρ2

1 −1)+ν

(
−2ρ1 sin(Θ+α)+ sin(Θ−α)

(
− 1

ρ1
−ρ1

))
. (27)

Note that the above equations are equivalent to Eq. (10) in Ref. [10], i.e., the Ott-Antonsen
equation of a system of identical KS oscillators (defined on the unit circle of C1) in two-
population networks. From Eq. (27), we can obtain an overview of some of the observable
chimera states.

In Fig. 1 (a), a bifurcation diagram of chimera states is depicted as the parameter A varies.
Stable (red solid) and unstable (red dashed) stationary chimera states are born/annihilated
at a limiting point (LP) bifurcation for a rather strong intra-population coupling strength.
The stable stationary chimera state undergoes a supercritical Hopf bifurcation (HB) at A =

AHB, and a breathing chimera state (green solid) emerges as a stable limit-cycle solution.
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Figure 1. (a) A bifurcation diagram of stable (solid curve) and unstable (dashed curve)
chimera states from Eq. (27): stationary chimeras (red) and breathing chimera states (green).
LP: limiting point bifurcation, HB: supercritical Hopf bifurcation, and Hom: homoclinic
bifurcation. Lower panels: Time evolution of the magnitude of the order parameter vectors
(the synchronized population |ψ2| in orange and the incoherent population |ψ1| in light blue)
in the left column and time evolution of the modulus of the components of the order parameter
vector for the incoherent population ψ1 = (z1,z2)

> (the first component |z1| in red and the
second component |z2| in blue) in the right column. (b) Stationary chimera states for A = 0.35.
(c) Breathing chimera states for A = 0.46. The presented results are based on data obtained
after disregarding the initial transient behavior for t > 105.

Integrating Eq. (24) numerically, we find stationary and breathing chimera states for the
parameter values according to the bifurcation diagram depicted in Fig. 1 (a). For simplicity,
we assume that the first population is incoherent and the second population is synchronized,
i.e., |ψ1(t)|< 1 and |ψ2(t)|= 1. Also, we use the following notations to denote components
of each order parameter vector: ψ1(t) = (z1(t),z2(t))> and ψ2(t) = (w1(t),w2(t))> where
zi(t),wi(t) ∈ C and θi(t) = argzi(t) ∈ R and φi(t) = argwi(t) ∈ R for i = 1,2.

In Fig. 1 (b), the time evolution of the magnitude of the order parameter vectors for a
stationary chimera state is depicted together with the time evolution of |z1(t)| and |z2(t)|.
Both |ψa| and the components |zi(t)| appear as a fixed point solution. Note that for the
synchronized population, |wi(t)| also shows stationary motion. Furthermore, Equation (24) is
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invariant under a unitary transformation defined by

u=

(
e−iθ1 0

0 e−iθ2

)
(28)

which means Fa(uψa) =uFa(ψa) where Fa(ψa) :=−ψag
†
aψa+ga for a = 1,2. This unitary

transformation is a continuous symmetry corresponding to the phase shift invariance of the
KS model on the unit circle. Therefore, the phase difference Θi(t) := φi(t)−θi(t) for i = 1,2
also shows a stationary motion as a function of time (not shown here). For larger A, Figure 1
(c) displays the time evolution of |ψa| and |zi| for a given A ∈ (AHB,AHom). Each variable
exhibits a periodic motion as a function of time, and the stable breathing chimera appears
indeed as a limit-cycle solution after a supercritical Hopf bifurcation. Further increasing A,
the breathing chimera state disappears via a homoclinic bifurcation (Hom) as the period of it
approaches infinity.

4.2. Alternating and Aperiodic Chimeras

Thus far, the scenario of the emergence of chimera states for C2 bears a strong resemblance
to that observed in the system of identical KS oscillators on the unit circle of C1 (e.g.,
see Refs. [10, 12]). Nevertheless, in the two-dimensional space C2, the order parameter
consists of two complex components, providing additional complexities beyond this. Let
us start with the parameter regime after the homoclinic bifurcation. In Fig. 2 (a), a
chimera state is shown for a given A > AHom. This chimera state can be characterized by
a periodic alternation between the two order parameter vectors. The magnitude of the order
parameter vectors (Fig. 2 (a-1)) seemingly satisfy |ψ1(t)| = |ψ2(t− T

2 )| within the limits of
our numerical capabilities where T denotes their period. Likewise, each component of the
order parameter vectors (Fig. 2 (a-2)) displays |zi(t)| = |wi(t − T

2 )| for i = 1,2. Such an
alternating chimera motion was reported previously for a system of heterogeneous Kuramoto-
Sakaguchi oscillators in two-population networks after the homoclinic bifurcation in which
the breathing chimera state disappeared [14, 15]. A similar motion was also reported in
a system of identical KS oscillators in three-population networks, which as well was born
near a homoclinic bifurcation [26]. Together the three observations suggest that the periodic
alternating chimera dynamics is somehow linked to the breathing chimera states through the
homoclinic bifurcation (see Fig. 4 (c)).

Following A further, we observe a seemingly similar motion to the alternating chimera
dynamics in terms of the magnitude of the order parameters. In Fig. 2 (b), an example
trajectory is shown. The magnitude of the order parameters (Fig. 2 (b-1)) seems similar to
that of the periodic alternating chimera dynamics except for mint>0|ψa(t)|. However, the
componentwise dynamics shows entirely different characteristics. In Fig. 2 (b-2), we plot an
aperiodic time evolution of the first components of the order parameter for both populations.
To investigate the aperiodic chimera dynamics in more detail, in Fig. 3 (a), the Poincaré
map of the trajectory is plotted in the section defined by Re[z2]≡ 0. The aperiodic dynamics
depicted in Fig. 2 (b-2) displays scattered points on the Poincaré section, as anticipated for the
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Figure 2. Left column: Time evolution of the magnitude of the order parameters: |ψ1(t)|
(blue light) and |ψ2(t)| (orange). Right column: Time evolution of the first component of the
order parameter vectors: |z1(t)| (red) and |w1(t)| (blue). (a) Periodic alternating chimera at
A = 0.75. (b) Aperiodic alternating chimera at A = 0.86. The presented results are based on
data obtained after disregarding the initial transient behavior for t > 105.

aperiodic motion. This conjecture is further supported by the Lyapunov exponents along the
reference trajectory in the phase space, following the chimera dynamics in Fig. 3 (a) [62–64].
In Fig. 3 (b) it can be seen that there are two positive Lyapunov exponents that indicate a
sensitive dependence of the trajectory on initial conditions. Also, there are two zero Lyapunov
exponents arising from the two continuous symmetries: time shift (an autonomous equation)
and the unitary transformation in Eq. (28) corresponding to a phase shift invariance. All the
other Lyapunov exponents are negative.

Now, we elucidate how this aperiodic chimera state emerges from the periodic alternating
chimera state as A is increased. In Fig. 4 (a), the bifurcation diagram is replotted with
parameter values indicating where the periodic alternating (AHom) and aperiodic (Ac) chimera
states emerge, respectively. For A<Ac, we numerically obtain two conserved quantities along
the chimera trajectory in phase space. As explained before, the system is invariant under
the unitary transformation in Eq. (28). Using this transformation, we can define the phase
difference of each component between the two order parameter vectors: Θi(t) := φi(t)−θi(t)
for i = 1,2. The first conserved quantity is given by

C1(Θ1,Θ2; t) := sin(Θ1(t)−Θ2(t)). (29)

For this quantity, C1(t) = 0 holds for all t along the chimera trajectory for A < Ac, i.e., the
stationary, breathing and periodic alternating chimera states all preserve C1(t) = 0 along
each trajectory. Furthermore, the numerical integration of Eq. (24) for A < Ac confirms
the relation between the cross term and the magnitude of the order parameter vectors:
〈ψ1|ψ2〉 = |ψ1||ψ2|eiΘ where Θ := Θ1 = Θ2 for C1 = 0. This relation leads to the second
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Figure 3. (a) Poincaré map of the first components of the order parameters: |z1| vs. |w1|
measured on the section defined by Re[z2] ≡ 0. (b) Lyapunov exponents measured along
the reference trajectory in (a): Positive exponents (red), zero exponents (blue) and negative
exponents (orange). (c-d) Time evolution of the broken conserved quantities of the trajectory
in (a) (see main text). The parameter is A = 0.86 and the transient behavior was discarded
(t > 105).

conserved quantity

C2(z1,z2,w1,w2; t) :=
(
|z1(t)||w2(t)|− |z2(t)||w1(t)|

)2 (30)

whereby C2(t) = 0 for all t along the chimera trajectory as long as A < Ac.
However, we find that for A > Ac, C1 and C2 are not conserved any more along the

chimera trajectory. In Fig. 3 (c-d), the time evolution of C1(t) and C2(t) is depicted for
the chimera trajectory in Fig. 2 (b). Both quantities display irregular deviation from zero
as a function of time. Once again, note that for A < Ac, C1(t) = 0 and C2(t) = 0 for all t
along the chimera orbit. To see this clearly, we numerically measure supt∈[t0,t1] |C1(t)| and
supt∈[t0,t1] |C2(t)| with respect to the parameter A where t0 = 2× 104 and t1 = 105. Figure 4
(b) confirms that for A < Ac where the stationary, breathing and periodic alternating chimeras
are observed, the two quantities remain zero. However, from Ac on, the conserved quantities
are broken and begin to show irregular time-evolution along the given chimera trajectory.

Another notable observation is that the breathing chimera state undergoes a global
bifurcation involving the completely incoherent state, i.e., |ψ1| = 0 [14]. In Fig. 4 (c), the
maximum and minimum values of the magnitude of the order parameter vector are depicted
for the incoherent population. For small A, min(|ψincoh|) is decreasing continuously as A
increases up to A = Ag. Then, it touches zero value where the completely incoherent state is
located. From that point on, the minimum value of the order parameter magnitude exhibits
a continuous increase, eventually connecting seamlessly to that of the periodic alternating
chimera state for A > AHom. Further increasing A, we reach Ac where the aperiodic chimera
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Figure 4. (a) A re-plot of the bifurcation diagram in Fig. 1 (a) with the periodic alternating
chimeras and the chaotic chimeras. (b) Conserved quantities as a function of the parameter A:
t0 = 20,000 and t1 = 105. (c) Maximum (blue) and minimum (red) values of the magnitude of
the order parameter vectors as a function of the parameter A. (d) Time evolution of cosΘ2(t)
before (upper, A = 0.52) and after (lower, A = 0.53) the global bifurcation. Ac denotes a
parameter point from which on the chaotic chimera emerges.

emerges and min(|ψincoh|) undergoes a discontinuous change to higher values. At the global
bifurcation Ag, the motion of the breathing chimera changes. Figure. 4 (d) shows the time
evolution of cosΘ(t) for the breathing chimera state before (d-1) and after (d-2) the global
bifurcation. For A < Ag, the phase variable Θ(t) of the breathing chimera states evolves
within some interval smaller than T := [0,2π]. After touching the incoherent state for A > Ag,
the phase Θ(t) of the breathing chimera states monotonically increases as a function of time
thereby sweeping all T. Thus, at the global bifurcation the motion of the order parameter
changes from libration to rotation.

4.3. Chimera States in the Microscopic Dynamics

In this section, we investigate the microscopic dynamics of the system of generalized
Kuramoto-Sakaguchi oscillators in two-population networks. Here, we directly perform
numerical integrations of Eq. (21) for C2.

In Fig. 5 (a-d), the time evolution is depicted for the magnitude of the Kuramoto order
parameter |m(a)(t)| defined in Eq. (23) for 30 oscillators in each population a = 1,2. All the
results are obtained from random initial conditions of x(a)

j satisfying
〈
x
(a)
j (0)

∣∣∣x(a)
j (0)

〉
= 1
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Figure 5. (a-d) Time evolution of the magnitude of the order parameter vectors defined in
Eq. (23) from solving Eq. (21) with N = 30: the first population |m(1)(t)| (light blue) and
the second population |m(2)(t)| (orange). (a) The stationary chimera state with A = 0.35. (b)
The breathing chimera state with A = 0.55. (c) The periodic alternating chimera state with
A = 0.75. (d) The chimera state of the broken conserved quantities with A = 0.86. Insets
of (c-d): Time evolution of m(1)

1 (t) (blue) and m(2)
1 (t) (red). (e) Snapshot of the oscillators

with N = 100. Blue dot: synchronized oscillators x(2)
j . Red dots: incoherent oscillators

x
(1)
j . Blue curve: m(2)(t). Red curve: m(1)(t). (f) The histogram of the distribution of the

phases
{

arg
( 1
|ψ1|
ψ†

1x
(1)
j

)}N
j=1 for N = 500 and A = 0.35. Red curve indicates the normalized

Poisson kernel in Eq. (35). The presented results are based on data obtained after disregarding
the initial transient behavior for t > 104.

for j = 1, ...,N and a = 1,2. For a given A ∈ (ALP,AHB), the microscopic dynamics
shows a motion of the order parameter vector corresponding to the stationary chimera state
(Fig. 5 (a)). Due to the finite-size effect and random initial conditions, we observe a
fluctuation in the magnitude of the Kuramoto order parameter. Likewise, in Fig. 5 (b), for
A∈ (AHB,AHom), the order parameter obtained from the breathing chimera state exhibits small
fluctuation superimposed to a simple periodic variation. Furthermore, for A ∈ (AHom,Ac),
the microscopic dynamics as well forms alternating chimeras, manifesting themselves in
alternating motion of the magnitude and also of each component of the order parameter
vectors between two populations (see Inset of Fig. 5 (c)). In the microscopic dynamics,
we numerically found that the chimera states of these three types also possess conserved
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quantities along the trajectory. More precisely, C1(t) = 0 and C2(t) = 0 with

C1(t) := sin(Θ1(t)−Θ2(t))

C2(t) :=
(
|m(1)

1 (t)||m(2)
2 (t)|− |m(2)

2 (t)||m(1)
1 (t)|

)2 (31)

Here, m(1) = (m(1)
1 ,m(1)

2 )> ∈ C2 and m(2) = (m(2)
1 ,m(2)

2 )> ∈ C2 are the Kuramto order
parameters in Eq. (23), and Θi = argm(1)

i − argm(2)
i for i = 1,2. As in the thermodynamic

limit, increasing the parameter to be A > Ac, C1 and C2 become time-dependent. In Fig. 5
(d), the time evolution of the order parameters is depicted for an example trajectory for
A > Ac where the conserved quantities are broken. Also, the components of the order
parameter vectors do not show the periodic alternation between two populations but rather
they exhibit aperiodic dynamics (see Inset of Fig. 5 (d)). Consequently, our observation of
chimera states in the thermodynamic limit can be also verified in the ensembles of a finite
number of oscillators. In Fig. 5 (e), a snapshot of a stationary chimera state in a system of
100 oscillators is shown, obtained from Eq. (21). The synchronized oscillators (blue dots)
behave alike altogether along the trajectory of the order parameter m(2)(t) (blue curve). The
incoherent oscillators (red dots) are distributed in the phase space and the order parameter
m(1)(t) (red curve) has lower magnitude thanm(2)(t).

Concerning the distribution of the oscillators in the incoherent population, one can at
least study the distribution of the incoherent oscillators along the direction of ψ1 as follows.
Here, we assume the stationary chimera state for a given A ∈ (ALP,AHB) for which ψ1 is
saturated at a stationary value after a transient behavior. First, define an angular variables of
the incoherent oscillators along the order parameter direction:

eiϕ :=
1
|ψ1|

ψ†
1x

(1) and eiϕ0 :=
1
|ψ1|

ψ†
1x

(1)
0 (32)

in the thermodynamic limit. Using the generalized Watanabe-Strogatz transformation in
Eq. (9), we obtain

eiϕ :=
1
|ψ1|

ψ†
1x

(1) =
1
|ψ1|

ψ†
1Ax

(1)
0 + |ψ1|2

|ψ1|eiϕ0 +1

=
1
|ψ1|

ψ†
1x

(1)
0 + |ψ1|2

|ψ1|eiϕ0 +1
=

eiϕ0 + |ψ1|
|ψ1|eiϕ0 +1

(33)

withA=H1/2U andH1/2ψ1 =ψ1 where we can set U = IM as long as x(1)
0 are uniformly

distributed on SM. Algebraically rearranging Eq. (33) and following the same argument in
Sec. 2, we obtain

eiϕ0 =
eiϕ −|ψ1|

1−|ψ1|eiϕ . (34)

Denoting ϕ = T (ϕ0) and ϕ0 = T−1(ϕ) (inverse transformation), one obtains d(T∗µ)(ϕ) =
f (ϕ)dϕ where f (ϕ) := 1

2π
∂ϕT−1(ϕ) is the phase distribution function, and dµ(ϕ0) =

1
2π

dϕ0



17

since x(1)
0 are uniformly distributed on SM. Then, we obtain

f (ϕ) =
1

2π
∂ϕT−1(ϕ) =

1
2πi

(
ieiϕ

eiϕ −|ψ1|
+

i|ψ1|eiϕ

1−|ψ1|eiϕ

)
=

1
2π

1−|ψ1|2

1−2|ψ1|cosϕ + |ψ1|2
(35)

which is the normalized Poisson kernel distribution. This reminds us of the Ott-Antonsen
manifold for the KS oscillators on the unit circle of C1 where oscillators’ phases are
distributed according to the normalized Poisson kernel in Eq. (4). For the higher dimensional
case C2, we also find that the phase distribution along the generalized WS variable satisfies
the normalized Poisson kernel. In Fig. 5 (f), the histogram of the distribution (blue bars) of
{ϕ j := 1

|ψ1|ψ
†
1x

(1)
j }N

j=1 is shown for N = 500 and A = 0.35. The numerical results for the
finite-sized ensemble fits well to the analytical prediction (red curve) in Eq. (35).

From the above results, it is anticipated that the oscillators on SM are distributed
according to the higher-dimensional Poisson kernel in CM. Assume that the oscillators on
SM are distributed by

fcomplex(x,ψ; t) =
1

S2M

1−|ψ|2

|ψ−x|2M (36)

for ψ ∈ CM and for x ∈ SM. Then, we obtain for the Kuramoto order parameter

m(t) =
∫
|x|=1

x f (x,ψ)dx

=
1−|ψ|2

S2M

∫
|x|=1

x

(1+ |ψ|2−2Re〈ψ|x〉)M dx

=
1−|ψ|2

S2M

∫
|η |≤1

∫
|n|=
√

1−|η |2
ηψ̂+n

(1+ |ψ|2−2Re〈ψ|x〉)M dn
1√

1−|η |2
dη (37)

where ψ̂ := ψ
|ψ| is a unit vector and 〈n|ψ〉 = 0. Here, we decompose the unit vector on the

sphere into x= ηψ̂+n [55]. Then, the integral can be written as

m(t) =
1−|ψ|2

S2M
ψ̂
∫
|η |≤1

∫
|n|=
√

1−|η |2
η

(1+ |ψ|2−2|ψ|Reη)M dn
1√

1−|η |2
dη

=
S2M−2

S2M
(1−|ψ|2)ψ̂

∫
|η |≤1

η

(1+ |ψ|2−2|ψ|Reη)M dn
(1−|η |2) 2M−3

2√
1−|η |2

dη

=
S2M−2

S2M
(1−|ψ|2)ψ̂

∫ 1

0

∫ 2π

0

reiθ

(1+ |ψ|2−2|ψ|r cosθ)M (1− r2)M−2rdθdr

=ψ(t) (38)

which is consistent with the result above, i.e., m(t) = ψ(t) for the complex space. Thus, we
can expect that the oscillators for the complex spaces are distributed according to Eq. (36),



18

i.e., the higher-dimensional normalized Poisson kernel. However, for the real spaces, RM, the
normalized Poisson kernel is given by

freal(x,ψ; t) =
1

SM

1−|ψ|2

|ψ−x|M
(39)

such that the Kuramoto order parameter reads

m(t) =
1−|ψ|2

SM

∫
|x|=1

x

(1+ |ψ|2−2〈ψ|x〉)M/2 dx

=
1−|ψ|2

SM

∫ 1

−1

∫
|n|=
√

1−η2

ηψ̂+n

(1+ |ψ|2−2〈ψ|x〉)M/2 dn
dη√
1−η2

=
SM−1

SM
(1−|ψ|2)ψ̂

∫ 1

−1

η

(1+ |ψ|2−2|ψ|η)M/2
(1−η2)

M−2
2√

1−η2
dη

=ψ(t) (40)

which is inconsistent with Eq. (11). This implies that the distribution of the oscillators on
SM for RM is not given by Eq. (39) with the given ψ, i.e., the higher-dimensional normalized
Poisson kernel. It was reported that the real oscillators distributed according to the higher-
dimensional Poisson kernel with a given WS variable ψ in the thermodynamic limit satisfy
the OA equations introduced in Refs. [49,50]. Therein, the spherical harmonics expansion was
exploited for the oscillator distribution function, as Ott and Antonsen used Fourier expansion
for 2D real space [32, 33]. For example, in Ref. [49], the distribution of 3D real oscillators
was assumed to be

freal(θ ,φ ; t) =
∞

∑
l=0

l

∑
m=−l

flmYlm(θ ,φ)

=
1
S3

(
1+4π

∞

∑
l=0

l

∑
m=−l

ρ
lYlm(Θ,Φ)Ylm(θ ,φ)

)
(41)

where flm = ρ lYlm(Θ,Φ) is taken as a generalied OA ansatz and Ylm(θ ,φ) are spherical
harmonics [60]. To obtain the phase distribution function, one can use

4π

2l +1

l

∑
m=−l

Ylm(ŷ)Ylm(x̂) = Pl(x̂ · ŷ) and
∞

∑
l=0

ylPl(x) =
1√

1+ y2−2xy
(42)

where Pl(x) are Legendre polynomials. Using the above relations, we can reach

freal(θ ,φ ; t) =
1
S3

(
1+4π

∞

∑
l=1

2l +1
4π

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2

∞

∑
l=0

lρ lPl(r̂ · ρ̂)+
∞

∑
l=0

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2ρ

∂

∂ρ

∞

∑
l=0

ρ
lPl(r̂ · ρ̂)+

∞

∑
l=0

ρ
lPl(r̂ · ρ̂)

)
=

1
S3

(
2ρ

∂

∂ρ

1√
1+ρ2−2r̂ · ρ̂

+
1√

1+ρ2−2r̂ · ρ̂

)
(43)
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where ρ= ρ(sinΘcosΦ,sinΘsinΦ,cosΘ)> ∈R3 is the OA variable (in our notation,ψ(t) =
ρ(t)) and the microscopic oscillator is represented as r= (sinθ cosφ ,sinθ sinφ ,cosθ)> ∈ S3

in the thermodynamic limit. Finally, the oscillator distribution is given as [49]

freal(θ ,φ , t) =
1

4π

1−ρ2

(1+ρ2−2ρρ̂ · r̂)3/2 =
1
S3

1−|ρ|2

|ρ−r|3
(44)

as in Eq. (39). However, it was reported in Ref. [49,50] that the OA variable is then governed
by

ρ̇= Ωρ+
1
2
(1+ |ρ|2)(KΓ)−

[
ρ>(KΓ)

]
ρ (45)

which looks different from Eq. (10). For the higher dimensional real space, see the OA
equation in Ref. [50]. In conclusion, both for the higher-dimensional complex and real
spaces, the oscillators are distributed according to the higher-dimensional Poisson kernel in
the Ott-Antonsen manifold. For the complex oscillators, the model and the generalized WS
transformation in Ref. [55] give the correct way, and the Kuramoto order parameter exactly
coincides with the OA variable. However, to obtain the Poisson kernel distribution for the real
spaces in the OA manifold, we need to consider the spherical harmonics expansion and the
governing equations reported in Refs. [49, 50] for the real spaces, and in that manifold, the
Kuramoto order parameter exactly equals to the OA variable. Nevertheless, we will exploit
the model in Ref. [55] for the higher dimensional real spaces below.

5. Chimera Dynamics in Two-population Networks for R4

In this section, as a comparison, we investigate the system of identical generalized Kuramoto-
Sakaguchi oscillators in two-population networks for K=R in the thermodynamic limit. The
WS variables ψa(t) ∈ RM are governed by

ψ̇a =−ψag
†
aψa +ga

=−ψag
>
a ψa +ga (46)

for a = 1,2 where † = > (i.e., hermitian adjoint=transpose) for K = R. In this system,
the mean-field forcing should be different since the Kuramoto order parameter not exactly
coincides with the WS variable as in Eq. (11), i.e.,ma(t) = h(|ψa|2,M)ψa(t). Thus, we have
to consider

ga := µKh(|ψa|2,M)ψa(t)+νKh(|ψb|2,M)ψb(t) (47)

for (a,b) = (1,2) or (2,1). Here, the coupling matrix K is a suitable rotational matrix
introduced in Sec. 3. In this section, we use following notations: ψ1 = (x1, ...,xM)> and
ψ2 = (y1, ...,yM)> where xi,yi ∈ R for i = 1, ...,M.

To get an overview of the observable chimera states, we first investigate the reduced
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Figure 6. (a) Bifurcation diagram of stable (solid curve) and unstable (dashed curve) chimera
states in two-population networks. Red: stationary chimeras and Green: breathing chimera
states. LP: limiting point bifurcation, HB: supercritical Hopf bifurcation, Hom: homoclinic
bifurcation, and Ac from which on a chaotic chimera appears. (b) Conserved quantities as a
function of the parameter A. t0 = 20,000 and t1 = 105. (c) Maximum and minimum values
of the magnitude of the WS variable ψ1 as a function of the parameter A. All the results are
obtained for R4. (d) Bifurcation points ALP and AHB as a function of the dimension M.

dynamics, i.e., the dynamics of the magnitude of ψa. Considering Eq. (46), we obtain

ρ̇1 =
1−ρ2

1
ρ1

(
µh(ρ2

1 ,M)ρ2
1 cosα +νh(ρ2

2 ,M)ξ
)

ρ̇2 =
1−ρ2

2
ρ2

(
µh(ρ2

2 ,M)ρ2
2 cosα +νh(ρ2

1 ,M)
(
ξ cos2α + sin2α

√
ρ2

1 ρ2
2 −ξ 2

))
ξ̇ = µh(ρ2

1 ,M)

(
ξ (1−ρ

2
1 )cosα + sinα

√
ρ2

1 ρ2
2 −ξ 2

)
+µh(ρ2

2 ,M)

(
ξ (1−ρ

2
2 )cosα− sinα

√
ρ2

1 ρ2
2 −ξ 2

)
+νh(ρ2

1 ,M)

(
(ρ2

1 −ξ
2)cos2α− sin2α

√
ρ2

1 ρ2
2 −ξ 2

)
+νh(ρ2

2 ,M)(ρ2
2 −ξ

2) (48)

where ρa := |ψa| for a = 1,2 and ξ := 〈ψ1|K|ψ2〉 indicates the cross term. For the derivation
of Eq. (48), see Appendix C. Note that the dynamics of the magnitude of ψa here depends on
the dimension M whereas it is independent of M for the complex space as in Eq. (27).

Below, we focus on the dynamics for R4 unless stated otherwise. In Fig. 6 (a), a
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bifurcation diagram from Eq. (48) is depicted as the parameter A varies by assuming again
ρ2 = 1. As similar to Fig. 4 (a), a stable (red, solid) and unstable (red, dashed) stationary
chimeras emerge in a limiting point (LP) bifurcation, however, at rather larger value of ALP

compared to that of C2. Then, the stable stationary chimera state undergoes a supercritical
Hopf bifurcation, producing a stable limit-cycle solution, i.e., a breathing chimera state (green,
solid). The breathing chimera undergoes a homoclinic bifurcation as its period increases
indefinitely. The dynamics of the magnitude of the WS variable in Eq. (48) only shows
this scenario. However, we also observe the periodic alternating chimera state in the full
component-dynamics from Eq. (46). For a given A ∈ (AHom,Ac), a periodic alternating
chimera state can be observed, apparently following ψ1(t) =ψ2(t− T

2 ) and xi(t) = yi(t− T
2 )

for i= 1, ...,4 where T is the period ofψa for a= 1,2. Likewise, we numerically find that there
are two conserved quantities along the trajectory of the stationary, breathing and periodically
alternating chimera states. The conserved quantities are similar to those in the complex space.
First, we define angular variables θ1 := tan−1 x2

x1
, θ2 := tan−1 x4

x3
, φ1 := tan−1 y2

y1
, φ2 := tan−1 x4

x3
.

Then, Equation (46) is invariant under the rotational transformation such as

Q :=

(
R(−θ1) 0

0 R(−θ2)

)
where R(θ) =

(
cosθ sinθ

−sinθ cosθ

)

where Q∈R4×4, R(θ)∈R2×2, and 0 ∈R2×2 is the zero-matrix. Therefore, we can define the
phase difference Θ1 := φ1−θ1 and Θ2 := φ2−θ2. The first conserved quantity is

C1 := sin
(
Θ1−Θ2

)
(49)

and one can obtain C1(t) = 0 for all t for A < Ac along a chimera trajectory. We also find
numerically another conserved quantity that reads

C2 :=
4

∑
k=1

x2
k

4

∑
k=1

y2
k−
(√

x2
1 + x2

2

√
y2

1 + y2
2 +
√

x2
3 + x2

4

√
y2

3 + y2
4

)2

(50)

which arises from the relation

〈ψ1|ψ2〉= |ψ1||ψ2|cosΘ

=
√

x2
1 + x2

2

√
y2

1 + y2
2 cosΘ+

√
x2

3 + x2
4

√
y2

3 + y2
4 cosΘ (51)

where Θ :=Θ1 =Θ2 since C1 = 0. In Fig. 6 (b), supt∈[t0,t1]C1(t) and supt∈[t0,t1]C1(t) are shown
as the parameter A varies for t0 = 2×104 and t1 = 105. This numerically verifies that the two
quantities are indeed conserved along a chimera trajectory for A < Ac. On the other hand, we
observe the chimera state that breaks the two conserved quantities for A> Ac (Fig. 6 (b)). This
chimera state, similar as for C2 (cf. Fig. 3), also shows aperiodic motion of the components
of the WS variables ψa for a = 1,2 (not shown here). Hence, for R4, we observe as well that
aperiodic chimera dynamics appears via breaking the conserved quantities in Eqs. (49-50).

Furthermore, also in the real space, a global bifurcation appears involving the completely
incoherent state. However, this global bifurcation is observed for the periodic alternating
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chimera state for A > AHom rather than the breathing chimeras, which is somewhat different
from the case of the complex space (Fig. 4). In Fig. 6 (c), the maximum and the minimum
values of |ψincoh| are depicted with the parameter A changed. As A increases, for breathing
chimera state, min|ψincoh| continuously decreases, and then seamlessly connects to that of the
periodic alternating chimera state for A > AHom. The phase variables Θ(t) of these chimeras
evolve within some interval smaller than T, similar to Fig. 4 (d-1). Further increasing A, the
alternating chimera state touches the completely incoherent state of |ψ1| = 0 and its phase
variable monotonically increases as a function of time as in Fig. 4 (d-2).

Finally, we note that the dynamics of the magnitude of the WS variables depends on
the dimension M. For small A, the scenarios of the emergence of the chimera states in
low-dimensional real spaces reveals that the stationary chimera state is born/annihilated at a
limiting point bifurcation (ALP) and it undergoes a supercritical Hopf bifurcation at A = AHB.
However, Figure 6 (d) displays the parameter interval between the limiting point and the Hopf
bifurcation, i.e., (ALP,AHB). It decreases as M increases. This indicates that for the higher-
dimensional real systems, it becomes harder to obtain stationary chimera states. Not only for
the stationary chimeras, but other chimera states also are hardly observed within our numerical
ability for higher dimensional spaces.

6. Summary and Outlook

In this paper, we explored a system of identical generalized Kuramoto-Sakaguchi oscillators
defined on the surface of the unit sphere in two-population networks. We exploited the model
proposed in Ref. [55] to take advantage of the extended Watanabe-Strogatz transformation that
describes the macroscopic dynamics of the system. First, we introduced a suitable coupling
matrix both for the real and complex spaces, in line with the standard KS model defined on the
unit circle and its phase-lag parameter, which becomes relevant to determine the Benjamin-
Feir instability point. For the 2D complex space C2, particularly in the thermodynamic
limit, stationary chimeras are created/destroyed at a limiting point bifurcation, and the stable
chimera undergoes a supercritical Hopf bifurcation that produces a stable breathing chimera
state. In this system, the breathing chimera states undergo a global bifurcation involving the
completely incoherent state, which changes their dynamics in terms of the phase variables.
Beyond this global bifurcation, the periodic alternating chimera dynamics appears seamlessly
connecting to the breathing chimeras in terms of the minimum value of the order parameter
magnitude. These three types of chimera states possess two conserved quantities along
their trajectory in phase space. However, when the coupling strength is further weakened,
the chimera trajectory shows componentwise aperiodic dynamics via the breaking of the
conserved quantities.

To back up this further, we also explore a finite-sized ensemble of identical
generalized KS oscillators in two-populations for C2. The finite-sized system exhibits
states corresponding to each chimera state mentioned above in terms of the Kuramoto order
parameter. Furthermore, the microscopic dynamics conserves the quantities defined by the
components of the Kuramoto order parameters, which then break for larger parameter values



23

of A. Finally, we compared this result of C2 to the dynamics for R4 in the thermodynamic
limit. The chimera states in the real space again follow a similar scenario, including stationary
and breathing chimeras, conserved quantities, and also the breaking of the latter to induce
componentwise aperiodic chimera dynamics. However, in this case, the global bifurcation
occurs for the alternating chimera states rather than for the breathing chimera states.

A system of coupled oscillators in two-population networks has been considered by
many researchers for the study of chimera states, as well as many variations of this
topology. Accordingly, one might explore chimera states of generalized Kuramoto-Sakaguchi
oscillators in three- and multi-population networks. To consider more realistic situations,
heterogeneities on the system could be imposed on the oscillator ensemble. It would be
also an interesting application to study chimeras of heterogeneous generalized KS oscillators.
For the heterogeneous natural frequency distribution, one should consider the macroscopic
dynamics in Refs. [50, 55] for complex and real spaces, respectively. Furthermore, it is also
possible to arrange the generalized Kuramoto oscillators along a ring geometry with nonlocal
coupling, and then investigate chimera states [65]. Apart from these, there could be many
other applications of the generalized Kuramoto-Sakaguchi model that provides us with further
understandings of chimera dynamics.

Appendix A. Derivation of Eqs. (11-12)

In Ref. [55], the author obtained Eqs. (11-12) by directly calculating the definition of
the order parameter in the thermodynamic limit. In this Appendix, we adopt a different
approach to obtain the same result, following a similar method as introduced by Pikovsky
and Rosenblum. [37, 38]. Consider the order parameter defined in Eq. (8) with the WS
transformation in Eq. (9):

m(t) =
1
N

N

∑
k=1
xk(t) =

1
N

N

∑
k=1

Ax0,k +b

b†Ax0,k +1
.

SubstitutingA=H1/2U andH1/2b= b into the above equation, we obtain

b†m=
1
N

N

∑
k=1

(b†H1/2Ux0,k + |b|2)
1

1+b†Ux0,k

=
1
N

N

∑
k=1

(b†Ux0,k + |b|2)
∞

∑
`=0

(−1)`(b†Ux0,k)
`

=− 1
N

N

∑
k=1

∞

∑
`=0

(−1)`+1(b†Ux0,k)
`+1 + |b|2 1

N

N

∑
k=1

∞

∑
`=0

(−1)`(b†Ux0,k)
`

= |b|2
(

1+(1−|b|−2)
∞

∑
`=2

(−1)`C`

)
(A.1)
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where C` := 1
N ∑

N
k=1(b

†Ux0,k)
` and C1 = 0. Taking the thermodynamic limit with uniformly

distributed constants of motion, we can set U = IM and write C` as

C` =



1
SM

∫
|x0|=1

(b†x0)
`dx0, for K= R

1
S2M

∫
|x0|=1

(b†x0)
`dx0, for K= C

(A.2)

Let us first consider the real space, i.e., K = R. Using the spherical coordinate
systems, one can write a position of an oscillator on the surface of the unit ball in
RM as x1 = sinθ1 sinθ2 · · ·sinθM−2 cosφ , x2 = sinθ1 sinθ2 · · ·sinθM−2 sinφ , ..., xM−2 =

sinθ1 sinθ2 cosθ3, xM−1 = sinθ1 cosθ2, and xM = cosθ1 where θ1, ...,θM−2 ∈ [0,π] and
φ ∈ [0,2π]. Here, xM corresponds to the z-axis, for example, in the 3D space. We call this
axis the M-axis and we refer to the plane perpendicular to the M-axis as the M⊥-(hyper)plane
throughout this paper. Without loss of generality, we can assume that b is aligned along the
M-axis, i.e., b= |b|x̂M. Consequently, we obtain

C` =
1

SM
|b|`

∫
|x0|=1

cos`θ1dMV =
|b|`

SM
SM−1

∫
cos`θ1 sinM−2

θ1dθ1

= |b|`1+(−1)`

2
√

π

Γ
(
`+1

2

)
Γ
(M

2

)
Γ
(
`+M

2

)
which leads to

∞

∑
`=2

(−1)`C` = |b|2
Γ
(M

2

)
2Γ
(
1+ M

2

) 2F1(1,
3
2

;
M+2

2
; |b|2).

Finally, Equation (A.1) can be written as

b†m= |b|2
(

1+
|b|2−1

M 2F1(1,
3
2

;
M+2

2
; |b|2)

)
= b†b

M−1
M 2F1(

1
2
,1;

M+2
2

; |b|2).

Hence, we can assume that

m(t) =
M−1

M 2F1(
1
2
,1;

M+2
2

; |b|2)b(t). (A.3)

For K= C, obtainingm(t) = b(t) is straightforward as the coefficients C` = 0 for ` 6= 0.

Appendix B. Benjamin-Feir Instability Point for R3

In this section, we provide an example of stability analysis for the synchronized state in R3.
First, consider the synchronized state on the M-axisψ∗=(0, ...,0,±1)>, i.e., the north and the
south poles, respectively. In fact, the dynamics asymptotically approaches this solution as t→
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Figure B1. (a) A time-parametric plot shows a trajectory initiated close to the origin on the
M⊥-plane (blue). This trajectory gradually converges towards a limit-cycle solution on the
unit circle within the M⊥-plane, indicating a synchronized solution. If a slight perturbation
is introduced along the M-axis, the trajectory is abruptly redirected towards the north pole
(red). (b) The plot illustrates the time evolution of the components of the WS variable ψ∗⊥(t).
The rotation occurs at a tangential speed of sinα . Blue: (ψ∗⊥)1, Orange: (ψ∗⊥)2 and Green:
(ψ∗⊥)3 = 0.

∞ since h(|ψ|2,M) = |ψ|−(1−|ψ|
2) tanh−1 |ψ|
|ψ|3 for M = 3 and tanh−1(1) =∞ while h(|ψ|2,M)→ 1

as |ψ|→ 1−. To study the stability of this solution, letψ∗=(0,0,1−δ )>. Then, the trajectory
approaches this fixed point solution on the north pole: limδ→0+ F(ψ∗) = (0,0,0)> where
F(ψ) :=−ψg†ψ+g. The Jacobian matrix evaluated at this solution is given by

lim
δ→0+

J
∣∣∣∣
ψ∗

=

−1+ cosα −sinα 0
sinα −1+ cosα 0

0 0 −2

 (B.1)

and its eigenvalues are λ1 = −2,λ± = −1+ e±iα . Hence, the synchronized solution on the
north pole is always a stable solution regardless of α . If the trajectory starts slightly outside the
M⊥-plane, the solution asymptotically approaches the north pole (or the south pole, depending
on whether it initiates above or below the plane.) as time goes on (Fig. B1 (a)).

Next, we find a trajectory starting on the M⊥-plane for α < π

2 asymptotically approaching
a limit-cycle solution rotating around the great circle on x1x2-plane (Fig. B1 (a-b)). The
limit-cycle solution can also be interpreted as the synchronized state, as the magnitude
of the WS variable is equal to unity. First, letting ψ∗⊥(t) = ε(cosθ(t),sinθ(t),0)>

gives limε→1− F(ψ∗⊥) = sinα(−sinθ(t),cosθ(t),0)>. This demonstrates that the
trajectory asymptotically converges to the synchronized limit-cycle trajectory, which rotates
counterclockwise along the unit circle with a tangential speed of sinα . Due to its rotational
symmetry, we can set the synchronized solution as a fixed point on the unit circle like ψ∗⊥ =

limε→1− ε(1,0,0)>. Subsequently, the eigenvalue of the Jacobian matrix, evaluated at this
solution, with the corresponding eigendirection along the M-axis, is given by λ3 = 1− cosα .
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Thus, the synchronized limit-cycle solution is always unstable along the M-axis, while it
remains stable on the M⊥-plane for α < αBF.

Appendix C. Derivation of Eq. (48)

To obtain Eq. (48), we consider

∂t |ψ1|2 = ∂t(ψ
†
1ψ1)

=−µh1
(
ψ†

1Kψ1ψ
†
1−ψ

†
1K

†)ψ1−νh2
(
ψ†

1Kψ2ψ
†
1−ψ

†
2K

†)ψ1

−µh1ψ
†
1
(
ψ1ψ

†
1K

†ψ1−Kψ1
)
−νh2ψ

†
1
(
ψ1ψ

†
2K

†ψ1−Kψ2
)

= 2(1−|ψ1|2)
(

µh1

〈
ψ1

∣∣∣∣K+K†

2

∣∣∣∣ψ1

〉
+νh2 〈ψ1|K|ψ2〉

)
∂t |ψ2|2 = ∂t(ψ

†
2ψ2)

= 2(1−|ψ2|2)
(

µh2

〈
ψ2

∣∣∣∣K+K†

2

∣∣∣∣ψ2

〉
+νh1

〈
ψ1

∣∣∣K†
∣∣∣ψ2

〉)
∂t 〈ψ1|K|ψ2〉=−µh2

(
|ψ1|2 cosα 〈ψ1|K|ψ2〉−〈ψ1|ψ2〉

)
−νh2

(
〈ψ1|K|ψ2〉2−|ψ2|2

)
−µh2

(
|ψ2|2 cosα 〈ψ1|K|ψ2〉−

〈
ψ1
∣∣K2∣∣ψ2

〉)
−νh1

(
〈ψ1|K|ψ2〉

〈
ψ1

∣∣∣K†
∣∣∣ψ2

〉
−|ψ1|2 cos2α

)
(C.1)

where ha := h(|ψa|2,M) for a = 1,2. Then, we consider the cross term with the coupling
matrix as a variable, i.e., ξ := 〈ψ1|K|ψ2〉= |ψ1||ψ2|cosθ leads to

〈ψ1|ψ2〉= |ψ1||ψ2|cos(θ −α) = ξ cosα + sinα

√
|ψ1|2|ψ2|2−ξ 2〈

ψ1

∣∣∣K†
∣∣∣ψ2

〉
= |ψ1||ψ2|cos(θ −2α) = ξ cos2α + sin2α

√
|ψ1|2|ψ2|2−ξ 2〈

ψ1
∣∣K2∣∣ψ2

〉
= |ψ1||ψ2|cos(θ +α) = ξ cosα− sinα

√
|ψ1|2|ψ2|2−ξ 2. (C.2)

Note that for even M, we can easily find
〈
ψa

∣∣∣K+K†

2

∣∣∣ψa

〉
= cosα|ψa|2. However, for odd M,

we find that chimera states only live on M⊥-plane and hence we assume
〈
ψa

∣∣∣K+K†

2

∣∣∣ψa

〉
=

cosα|ψa|2 for a = 1,2. Finally, plugging Eq. (C.2) into Eq. (C.1), we obtain Eq. (48) in
Sec. 5.
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