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We propose a data-driven framework to describe spatiotemporal climate variability in terms of
a few entities and their causal linkages. Given a high-dimensional climate field, the methodology
first reduces its dimensionality into a set of regionally constrained patterns. Causal relations
among such patterns are then inferred in the interventional sense through the fluctuation-response
formalism. To distinguish between true and spurious responses, we propose a novel analytical null
model for the fluctuation-dissipation relation, therefore allowing for uncertainty estimation at a
given confidence level. We showcase the methodology on the sea surface temperature field from
a state-of-the-art climate model. The usefulness of the proposed framework for spatiotemporal
climate data is demonstrated in several ways. First, we focus on the correct identification of
known causal relations across tropical basins. Second, we show how the methodology allows
us to visualize the cumulative response of the whole system to climate variability in a few
selected regions. Finally, each pattern is ranked in terms of its “causal strength”, quantifying its
relative ability to influence the system’s dynamics. We argue that the methodology allows us to
explore and characterize causal relations in spatiotemporal fields in a rigorous and interpretable way.

This is a post-peer-review, pre-copyedit version of an article published in
Physical Review E. The final authenticated version is available online at:
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.109.044202.

I. INTRODUCTION

The Earth’s climate is a complex dynamical system
composed by many components, such as the atmosphere
and hydrosphere, and their interactions [1]. Such
linkages give rise to nontrivial feedbacks, generating
self-sustained spatiotemporal patterns [2, 3]. An ex-
ample is the El Niño Southern Oscillation (ENSO), a
recurrent pattern of natural variability emerging from
air-sea interaction in the tropical Pacific Ocean [4, 5].
Other examples include the Asian Monsoon, the Indian
Ocean Dipole, and the Atlantic Niño, just to cite a few
[6–8]. Such patterns, commonly referred to as modes
of variability, interact with each other on a vast range
of spatial and temporal scales [9–11]. Spatiotemporal
climate dynamics can then be thought of as a collection
of modes of variability and their linkages, or as com-
monly referred to, a “climate network” [12, 13]. The
identification of such a complex array of interactions and
the quantification of its response to external forcings
(e.g., [14, 15]) is a fundamental (but nontrivial) problem
at the root of our understanding of climate dynamics.
It requires hierarchies of models, theories, observations,
and new tools to analyze and simplify the description of
high-dimensional, complex data [3, 16]. In fact, the ex-
ponential growth of data from models and observations,
together with appropriate and rigorous frameworks,
promise new ways to explore and ultimately understand
climate dynamics [16]. An important step when “learn-
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ing” from climate data is to infer meaningful linkages
among time series, whether among modes of variability
or other features of the system (e.g., global averages).
Traditionally, this has been done by quantifying pairwise
similarities, whether linear or nonlinear (for example
[15, 17, 18] and [19], respectively). Such statistical simi-
larities cannot quantify what we refer to as “causality”,
limiting our ability to discover meaningful mechanisms
in high-dimensional dynamical systems such as climate.
In the context of dynamical systems, the main idea
of causal inference can be informally summarized as
follows: given the time series x1(t), x2(t), ..., xN (t) of
a N -dimensional system x(t) ∈ RN , where t is a time
index, we aim in quantifying (a) to what extent and
(b) at what time scales changes in a variable xj(t) can
influence another variable xk(t+τ) at later times [20, 21].

This study proposes a scalable framework to (a) coarse
grain a spatiotemporal climate field into a set of a few
patterns and (b) infer their causal linkages. Altogether,
the proposed strategy allows us to study complex,
high-dimensional climate dynamics in an interpretable
and simplified way.

Causality is a fundamental topic in science ranging
from foundational questions in physics and philosophy
[22–30] to practical design and implementation of
inference algorithms [31]. In the last decades, there has
been a great interest in developing new methodologies to
infer causal associations directly from data. In the case
of time series data, attempts to infer causal connections
start from the work of Granger [32], who framed the
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problem of causal inference in terms of prediction. The
main idea of Granger causality was to draw a causal
link between two variables xj and xk if the past of
xj would enhance the predictability of the future of
xk. Another attempt, coming from the dynamical
system literature, was based on the concept of transfer
entropy [33, 34]. Crucially, as noted in [21], Granger
causality and transfer entropy give similar information
and are equivalent for Gaussian variables [35]. In the
last decades, new ideas from computer science, mainly
driven by Pearl [31, 36], have given us practical ways
to design and implement causal tools mainly based on
graphical models. Frameworks of such kind have been
recently developed in climate science with contributions
ranging from the work of Ebert-Uphoff and Deng (2012)
in [37] to the newer “PCMCI” method led by Runge
et al. (2019) [38]; see [39] for a review. Additionally,
the Machine Learning (ML) community is actively
interested in causality and applications and we refer to
[40] for details on new developments and open problems
in “Causal ML”.

Recently, it has been noted that linear response theory
[41, 42] serves as a rigorous framework to understand
causality in physical systems [20, 21, 43–46]. The main
rationale is that in physics, causal effects can be identi-
fied by observing the response of the system to external
actions [35, 45]. In the limit of infinitesimally small
external perturbations, the linear response formalism
provides a strategy to compute changes in statistical
properties of a physical system solely from the notion
of the unperturbed dynamics [46, 47]. This allows us to
capture causal relations from data in the interventional
sense [21, 30, 36, 45].

The fluctuation-response formalism [21] differs from
many commonly employed causal algorithms, such as
conditional independence testing [48], Granger causality
[32] and transfer entropy [33], by focusing directly on
the problem of causal effect estimation [31, 49] rather
than causal discovery (i.e., direct causal links) [50].
Many causal questions in climate can be cast into the
paradigm of perturbations and responses as proposed in
[21]. Examples of such questions may in fact be: how
much do changes in fresh water fluxes in Antarctica
affect sea level rise in the North Atlantic? How do
changes in sea surface temperature anomalies in the
Pacific Ocean affect temperatures in the Indian Ocean?
Answering such questions often relies on quantifying the
time-dependent “flow of information” along the under-
lying causal graph rather than discovering the graph
itself [21, 46] (see also [51] in the context of information
theory). Such difference with causal discovery methods
is further explored and discussed in section IID. On the
computational side, causal discovery algorithms such as
the one based on conditional independence, do not scale
to high-dimensional systems [39, 40]. Whereas linear
response theory scales to high-dimensional data and

allows us to write rigorous, analytical relations between
perturbations and responses.

It should be noted that linear response theory is an
active field of research in climate science [2, 20, 52–60].
Such studies, quantifying long-term, forced changes in
climate observables, can be broadly grouped in two
approaches [61]: the one pioneered by Leith (1975) [52],
making use of the fluctuation-dissipation formalism, and
the more general formalism proposed by Ruelle (1998)
[43, 62].

Our work relates to the approach proposed by Leith
(1975) [52] and it is based on the recent contribution of
Baldovin et al. (2020) [21], where the authors presented
a clear strategy to infer causality in multivariate linear
Markov processes through the fluctuation-dissipation
relation. The extension of the proposal of Baldovin et
al. (2020) [21] for studying spatially extended dynamical
systems is contingent on two important steps: (i) a
methodology to reduce the dimensionality of the system
and (ii) a framework for uncertainty estimation. Point
(ii) is particularly important when inferring results from
real-world data.

In this paper, we contribute to (a) dimensionality re-
duction, (b) linear response theory and (c) causality in
climate in the following ways:

a) We introduce a scalable computational strategy to
decompose a large spatiotemporal climate field into
a set of a few regionally constrained modes. The
average time series inside each pattern quantifies
the climate variability of specific regions around the
world. The time-dependent linkages among such
patterns are then inferred through the fluctuation-
dissipation relation. This step allows us to explore
how local (i.e. regional) variability can influence
remote locations.

b) We propose an analytical null model for the
fluctuation-dissipation relation. The model as-
signs confidence bounds to the estimated linear re-
sponses, therefore distinguishing between true and
spurious results. The proposed strategy allows us
for trustworthy statistical inference from real-world
data. The application of this model is general and
not limited to climate applications.

c) We showcase the proposed framework on the
monthly sea surface temperature (SST) field at
global scale. For this step, we consider a 300
years long, stationary integration of a global cou-
pled climate model. Long-distance linkages in the
SST field have been characterized in many previ-
ous studies. It therefore offers a good real-world
test-bed for the methodology. We show how the
proposed framework simplifies the description of
such a complex, high-dimensional system in an in-
terpretable and comprehensive way.
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The paper is organized as follows: in Sec. II we in-
troduce the proposed framework. The data analyzed are
described in Sec. III. The methodology is applied to cli-
mate data in Sec. IV. Sec. V concludes the work.

II. FRAMEWORK

A. Partitioning climate fields into regionally
constrained patterns

Spatiotemporal chaotic fields can be viewed as dynam-
ical systems x(t) ∈ RN living in a N -dimensional state
space [63, 64]. The dimensionality N is theoretically
infinite but in practice equal to the number of grid
cells used to discretize the longitude, latitude and
vertical coordinates (times the total number of variables;
e.g., temperature, velocities etc.) [65]. In the case of
dissipative chaotic systems, such high-dimensional dy-
namics is confined on lower-dimensional objects known
as “inertial manifolds” or “attractors” [64, 66, 67].
The effective dimensionality of the system [68] is then
finite and given by the attractor dimension D. This
is arguably the case of large scale climate dynamics,
where recurrent spatiotemporal patterns, known as
modes of variability (e.g., ENSO, monsoon system,
Indian Ocean modes [8, 15, 69] etc.) are a manifestation
of the low dimensionality of the climate attractor [65, 70].

Here the goal is to coarse grain a N -dimensional
climate field into a set of very few (order 10) patterns.
Crucially, such components should be regionally con-
strained in longitude-latitude space. Requiring for the
identification of regional patterns is a desirable property
as climate variability can be often thought of as a set of
remote responses driven by local perturbations. A clear
example is given by the climate system’s response to
El Niño events [5]. An El Niño phenomenon is charac-
terized by a build-up of warm sea surface temperature
in the eastern Pacific. Such local warming excites an
atmospheric wave response resulting in the heating of
the whole tropical troposphere [71, 72]. As a result,
an El Niño episode in the Pacific causes a warming in
both the Indian and tropical Atlantic basins at later
times. Therefore, when reducing the dimensionality of
the climate system it is useful to distinguish between
climate phenomena driven by local dynamics or forced
by remote variability. In this paper, we will do so by first
coarse graining the system in terms of regional modes of
variability. At a second step, we will infer their causal
linkages via linear response theory [21].

In this section we show that adding a simple constraint
to community detection methodologies [73, 74] provides
a scalable and practical framework to identify regionally
constrained modes of variability in climate fields. The
strategy proposed here is based on two main steps: first,
given a field saved as a data matrix x ∈ RN,T we infer

a graph between its N time series based on both their
covariability and distance. We then identify communities
in such graph, thus partitioning the original data into
a few components. Communities will consist of sets of
highly correlated time series and will serve as proxies
of climate modes of variability. In Appendix A we
discuss strengths and limitations of current dimensional-
ity reduction methods and further motivate our proposal.

In practice, in this work x ∈ RN,T will be specified by
the sea surface temperature field only. Components of
the field xi(t) will then represent a sea surface temper-
ature time series at grid point i. N will be the number
of grid points and T the length of each time series at a
given temporal resolution. The framework proposed is
however general and can work with multivariate fields.

1. Graph inference

Consider a spatiotemporal field saved as a data matrix
x ∈ RN,T , with N time series of length T . Given a pair
of time series xi(t) and xj(t), scaled to zero mean, we

compute their covariance at lag τ = 0, Ci,j = xi(t)xj(t);

where f stands for the temporal average of function f .
An undirected, unweighted graph can then be encoded
in an adjacency matrix A ∈ RN,N as:

Ai,j =

{
1− δi,j if Ci,j ≥ k and d(i, j) ≤ η

0 otherwise
(1)

Where the Kronecker delta δi,j allows us to remove
“self-links”. The parameter k sets the minimum covari-
ance that two time series must have to be connected.
The parameter d(i, j) is the distance between grid
cells i and j, and η is a distance threshold. The
rationale behind this choice is that we consider two
time series xi(t) and xj(t) linked to each other if
(a) their covariance is larger than a threshold k and
(b) if they are relatively close in the spatial domain
considered. Importantly, d(i, j) is computed using
the Haversine (or great-circle) distance, determining
the angular distance between two points i and j on a
sphere as a function of their longitudes and latitudes [75].

Both thresholds k and η can be specified by the user.
However, their optimal values will largely depend on
the statistics of the field of interest (e.g., sea surface
temperature, cloud fraction) and by the spatial domain
considered (e.g., regional or global domains). We there-
fore propose two heuristics to compute such parameters
as a function of the data matrix x ∈ RN,T .

a. Heuristic for parameter k. Given time series
xi(t) and xj(t): (a) compute covariances Ci,j , ∀i, j; i ̸= j
and (b) set k as a high quantile qk of the distribution
of all covariances Ci,j . To make this idea feasible in
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practice, we can approximate such distribution by ran-
dom sampling Sk pairs of time series xi(t) and xj(t) and
then computing their covariances. k is then estimated
as a high quantile qk of the sampled distribution. A
pragmatic choice of qk is qk = 0.95 as we observed in
different applications that is a good compromise between
the identification of a sparse, but not too sparse, graph.
The sampling size considered here is Sk = 106.

b. Heuristic for parameter η. Given time series
xi(t) and xj(t) embedded at grid points i and j (a)
calculate the Haversine distance d(i, j) and (b) estimate
η as a low quantile qη of the distribution of all distances
d(i, j). As for the parameter k, in practice the distri-
bution of distances can be approximated by random
sampling Sη pairs of locations i and j and computing
their Haversine distance. We choose qη = 0.15, with no
large sensitivity over such value, and Sη = 106.

2. Detecting patterns

Sets of highly correlated time series (i.e., modes) in
the original field x ∈ RN,T correspond to groups of
nodes that are more interconnected to each other than
to the rest of the graph, in other words “communities”
[74]. Fast and scalable community detection algorithms
[73] can be leveraged to reduce the dimensionality of the
graph in Eq. 1. In this study, we consider the Infomap
methodology [76, 77]. Such method is based on the Map
Equation [78, 79] and casts the problem of community
detection as an optimal compression problem [77].
Mainly, Infomap exploits the community structure to
minimize the description of a random walk on the graph
[78]. Such methodology has been found to be the best
performing community detection in different benchmarks
[73], and has shown excellent performance in a previous
climate study [80]. In what follows we are going to refer
to the identified communities as “patterns”, “modes” or
“communities” interchangeably.

The number and size of the identified patterns will
depend on parameters qk and qη introduced in section
IIA 1. A priori knowledge of the system can help setting
the values of parameters qk and qη. As a rule of thumb,
we recommend the interested practitioner to first gain
an intuition about the underlying network structure of
the system by setting qk = 0.95 but without constraints
on distances (this corresponds to setting qη = 1). The
qη parameter is then used to remove long-distance (in
longitude-latitude space) dependencies. We recommend
starting from qη = 0.15 as in this study. If the resulting
patterns are still not regionally constrained, we suggest
to lower qη to slightly smaller values, e.g. qη = 0.1. Fi-
nally, we note that in different applications, ranging from
reducing the dimensionality of sea level to outgoing long-
wave radiation fields, we found no need to change the

values of parameters qk = 0.95 and qη = 0.15.

3. Defining signals (time series)

Given a set of n patterns c = (c1, c2, c3, ...cn) we study
their temporal variability as the average time series in-
side. Formally, for each cj we can define its respective
time series as:

X(cj , t) =
1∑

i∈cj
cos(θi)

∑
i∈cj

xi(t) cos(θi), (2)

where θi is the latitude of xi(t). The term cos(θi)
allows us to implement the area-weighted averaging on
a uniform longitude-latitude grid. We note that another
way to define each signal is the area-integrated anomaly
X(cj , t) =

∑
i∈cj

xi(t) cos(θi). Such definition allows us

to rank different patterns cj with respect to both their
variability and their size, therefore carrying different
weights in the linear response formulas. The definition
of signals through area-integrated anomalies can be
useful in climate change experiments performed with
linear response theory, and it will be considered in future
studies. In this work we adopt the definition in Eq. 2.

In this study, the graph inference step in Eq. 1
considers correlations rather than covariances, therefore
Ci,j = xi(t)xj(t) in Eq. 1 are computed after scaling
xi(t) and xj(t) to zero mean and unit variance. We used
correlations for qualitative comparison with the δ-MAPS
framework [81, 82], but covariances can be considered in
future work.

B. Linear response theory and
fluctuation-dissipation relation

Baldovin et al. (2020) [21], proposed the following
physical definition of causality: given a dynamical sys-
tem x(t) = [x1(t), x2(t), ..., xN (t)] with N time series,
each of length T we say that xj causes xk, i.e. xj → xk,
if a small perturbation applied to variable xj at time
t = 0, i.e. xj(0) + δxj(0), induces on average a change
on variable xk(τ) at a later time t = τ . We note that
the contribution of Lucarini, V. (2018) [20] pursues close
scientific goals to the work of Baldovin et al. (2021) [21].

1. General case

Consider a Markov process x(t) =
[x1(t), x2(t), ..., xN (t)]. Each time series xi(t) is
scaled to zero mean. The system is stationary with
invariant probability distribution ρ(x). We perturb
the system x(t) at time t = 0 with a small, impulse
perturbation δx(0) = [δx1(0), δx2(0), ..., δxN (0)]. We
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aim to answer the following question: how does this
external perturbation δx(0) affect the whole system x(τ)
at time t = τ , on average? Formally, we are interested
in quantifying the following object:

δ⟨xk(τ)⟩ = ⟨xk(τ)⟩p − ⟨xk(τ)⟩, (3)

where the brackets ⟨xk(τ)⟩ indicate the ensemble aver-
ages of xk(τ), i.e. the average over many realizations of
the system, and the subscript p specifies the perturbed
dynamics. Therefore, Eq. 3 defines the difference
between the components xk(τ) of the perturbed and
unperturbed systems in the average sense. Eq. 3 can
be used to study changes δ⟨O(xk(τ))⟩ of a generic ob-
servable O(xk(τ)) (i.e., a measurable quantity, function
of the state space vector x(τ) at time t = τ). To study
causality, here we simply consider the identity case
O(xk(τ)) = xk(τ), see [21].

Under the assumption of a small perturbation δx(0)
and with ρ(x) sufficiently smooth and non-vanishing, the
following result holds:

Rk,j(τ) = lim
δxj(0)→0

δ⟨xk(τ)⟩
δxj(0)

= −
〈
xk(τ)

∂ ln ρ(x)

∂xj

∣∣∣
x(0)

〉
.

(4)
R(τ) is the linear response matrix and we refer to
section II of Boffetta et al. (2003) [83] for a derivation
of Eq. 4. Rk,j(τ) quantifies the response of a variable
xk(τ) at time t = τ given a small perturbation δxj(0)
applied to variable xj(0) at time t = 0. Eq. 4 is
known as the generalized fluctuation-dissipation relation
(FDR) and valid for both linear and nonlinear systems
[42]. Note that in case of deterministic systems the
invariant measure ρ(x) is singular almost everywhere on
the attractor. Therefore in practice one needs to add
Gaussian noise even to deterministic systems in order to
“smooth” the probability distribution before applying
FDR as proposed here [55].

Eq. 4 is a powerful formula as it allows us to compute
responses to perturbations solely given the gradients of
the probability distribution ρ(x) of the unperturbed sys-
tem. However, the functional form of ρ(x) is not known
a priori and can be highly nontrivial, especially for high-
dimensional systems. To overcome such issue, applica-
tions often focus on the simpler case of Gaussian distri-
butions (see for example [52, 61]). This is the case of
linear systems as shown in the next section.

2. Linear systems and quasi-Gaussian approximation

We now consider a N dimensional stochastic linear
process x(t) = [x1(t), x2(t), ..., xN (t)] governed by the
following equation:

x(t+ 1) = Mx(t) +Bξ(t). (5)

The matrix M ∈ RN,N specifies the deterministic dy-

namics of the system. The term ξ(t) ∈ RN with ξi(t)
iid∼

N (0, 1) represents a delta correlated white noise (i.e.,
⟨ξ(t)ξ(s)⟩ = δt,s). The matrix B ∈ RN,N specifies the
amplitude of the noise (i.e., standard deviation). The
probability distribution ρ(x) is Gaussian and Eq. 4 fac-
torizes to:

R(τ) = M τ = C(τ)C(0)−1. (6)

Where the covariance function Ci,j(τ) = ⟨xi(t+ τ)xj(t)⟩
(xi is assumed to be zero mean). Eq. 6 shows that the
response of a linear system to small external perturba-
tions is a function of covariance matrices computed for
the stationary (i.e., unperturbed) dynamics [83].

Relevance for nonlinear systems. The form of FDR
shown in Eq. 6 has been the one commonly used in
climate applications and it is commonly referred to as
“quasi-Gaussian approximation” [55–58, 84]. Impor-
tantly, it has been shown that such formula performs
well for weakly nonlinear systems. For instance Baldovin
et al. (2020) [21] showed remarkably good results when
analyzing linear responses in a Langevin equation with a
quartic potential. Gritsun et al. (2007) [55] also pointed
out how this formula works well for non-Gaussian
systems with second order nonlinearities. Additionally,
Eq. 6 has been shown to give reliable results in the
case of nonlinear deterministic dynamical systems also
in case of finite perturbations, see Fig. 1 in Boffetta et
al. (2003) [83]. Furthermore, we will show in Appendix
D that the probability distributions considered in this
study can be well approximated by Gaussians, further
justifying the use of this approximation in our context.

Results presented in this section hold in the sense of en-
semble average, therefore covariance matrices C(τ) and
C(0) are computed by averaging over many realizations
of the system. The computation of ensemble averages
gives rise to an additional complication in real-world data
for which we only have access to a single trajectory.

C. A null model for the fluctuation-dissipation
relation

In real-world applications we cannot compute ensem-
ble averages. The common way to overcome this problem
and reconcile data analysis with theory, is through the
assumption of ergodicity [85]. If the system x is ergodic

it holds: O(x) = ⟨O(x)⟩ in the limit T → ∞; where

O(x) is a general observable, O(x) indicates the time
average and T is the length of the trajectory x.

Ergodicity is the main assumption behind any cli-
mate study using the fluctuation-dissipation theorem
(see [57] and references therein). Covariance matri-
ces are then estimated using temporal averages, e.g.



6

Ci,j(τ) = xi(t+ τ)xj(t) (xi is assumed to be zero mean),
but again we are left with the problem of observing
the system over a finite time window. Therefore we
can always expect spurious results when estimating
response functions. Spurious results come from two
main contributors: (a) finite samples (i.e., the length T
of the trajectory is finite) and (b) large autocorrelations
of the underlying time series xi(t).

To the best of our knowledge, an analytical statistical
test to distinguish between spurious and real responses
in the linear response theory formalism has not been
proposed in the literature. Here we fill this gap by
proposing a null model for fluctuation-dissipation
relation and derive its analytical solution. We start
by proposing a null hypothesis for a general stochastic
dynamical system.

a. Null hypothesis. Given a system x(t) =
[x1(t), x2(t), ..., xN (t)] it holds Rk,j(τ) = 0, ∀j, k =
1, ..., N ; with j ̸= k. In the context of causal-
ity this implies that there is no causal link
xj → xk, ∀j, k = 1, ..., N ; j ̸= k.

b. Null model. Given a process saved as a data ma-
trix x ∈ RN,T , we define a new process x̃ ∈ RN,T simu-
lated by a null model. Every time series in x and x̃ are
rescaled to zero mean. The null model takes the following
form:

x̃(t+ 1) = M̃x̃(t) + B̃ξ(t)

with M̃ =


ϕ1 0 · · · 0
0 ϕ2 · · · 0
...

...
. . .

...
0 0 · · · ϕN

 ;

B̃ =


σ̃1 0 · · · 0
0 σ̃2 · · · 0
...

...
. . .

...
0 0 · · · σ̃N

 ;

ξi(t)
iid∼ N (0, 1), i = 1, ..., N.

(7)

Here, ϕi is the lag-1 autocorrelation of the “original”
time series xi(t); σ̃i = σi(1 − ϕ2

i ) is the standard
deviation of the Gaussian noise, where σi is the standard
deviation of the “original” time series xi(t). Therefore,
each time series x̃i(t) has the same mean, variance and
lag-1 autocorrelation of xi(t), however every pair x̃i(t),
x̃j(t) is now independent. Note that the null model in
Eq. 7 is largely inspired by the commonly adopted red
noise test in climate analysis [86–89].

The matrix M̃ , defining the deterministic evolution, is
diagonal; therefore at asymptotic times T → ∞ there is
no causal link among variables. However, for finite time
windows, the response matrix estimated through time
averaged covariance matrices as R(τ) = C(τ)C(0)−1

will give rise to spurious off-diagonal elements. The
distribution of responses of the null process x̃ defines
confidence bounds of responses of the original process x.

To compute the confidence level of the responseRk,j(τ)
at each lag τ we first propose a numerical implementa-
tion. We then solve the problem analytically for the case
T ≫ 1.

1. Confidence bounds of the response matrix: numerical
estimation

Given a field x ∈ RN,T , our goal is to provide an es-
timation of confidence intervals of the response matrix
R(τ) at each lag τ , with τ = 0, 1, ..., τ∞. Such bounds
can be numerically estimated as follows:

i) Generate a new process x̃ ∈ RN,T using the null
model proposed in Eq. 7.

ii) Estimate the response matrix R(τ) of the null
model x̃(t) for lags τ ∈ [0, τ∞].

iii) Repeat the two steps above for B times, (B should
be large, B ≫ 1), therefore creating an ensemble of
null responses.

iv) For each lag τ we obtain a distribution of possible
responses generated by the null model. Confidence
bounds of responses can be estimated as low and
high quantiles of the distribution, or as chosen in
this paper, multiples of its standard deviation.

2. Confidence bounds of the response matrix: analytical
derivation

We note that the analytical form of the response
matrix in the null model in Eq. 7 is trivial and given
by R(τ) = M τ with entries ϕτ

kδk,j ; δk,j being the
Kronecker delta. However, estimating responses from
time series of finite length, will give rise to spurious
results departing from the expected value of M τ .

In this section we present the analytical form of the
probability distribution of responses estimated by the
formula R(τ) = C(τ)C(0)−1 in the case of time series
generated by the null model in Eq. 7. We then refer the
reader to Appendix B for the derivation.

The main assumption is that null responses Rk,j(τ)
follow a Normal distribution. Therefore the expected
value E[Rk,j(τ)] = ⟨Rk,j(τ)⟩ and variance Var[Rk,j(τ)] =
⟨(Rk,j(τ) − ⟨Rk,j(τ)⟩)2⟩ uniquely define the probability
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distribution ρ(Rk,j(τ)). We have:

E[Rk,j(τ)] = ϕτ
kδk,j

Var[Rk,j(τ)] =
ϕ2τ
k − 1

T
+

2

T

(1− ϕτ
kϕ

τ
j

1− ϕkϕj

)
− 2ϕτ

k

T

(
ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk

)
.

(8)

Finally, in the case ϕk = ϕj we substitute the term

ϕk
ϕτ
j −ϕτ

k

ϕj−ϕk
with the limit:

lim
ϕj→ϕk

ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk
= ϕτ

kτ. (9)

Equation 8 assumes that each time series has been
previously normalized to zero mean and unit variance.
In case of non-standardized time series, Eq. 8 becomes
(σ2

k/σ
2
j ) × Eq. 8; σ2

i being the variance of time series
xi(t) (see also Eq. 15 in [21]).

In this paper, confidence bounds are always defined by
E[Rk,j(τ)]± 3

√
Var[Rk,j(τ)] (i.e., ±3σ confidence level).

Finally, we note that the analytical confidence bounds
proposed in Eq. 8 overcome an important problem in
climate applications of linear response theory. Previous
studies such as [55, 56, 58] focused on evaluating the inte-
gral

∫∞
0

dτ R(τ). In practice, the upper bound of the in-
tegral needs to be specified by a τ∞ much larger than the
characteristic time of the response. However, responses
at larger lags are affected by spurious results and τ∞ has
been set to values as low as 30 days in some studies (e.g.,
[55, 90]) or it has been tuned to have the best perfor-
mance of FDR in others [58]. The confidence bounds
proposed in this section can then be leveraged to neglect
spurious terms, study responses at longer time scales and
obtain results largely independent of τ∞.

D. A simple example

We test the confidence bounds proposed in section IIC
in the context of a simple linear Markov model. We
choose the same test model used in [21] in order to com-
pare results and show differences between approaches.
The system considered is the following:

x(t+ 1) = Mx(t) +Bξ(t)

with M =

a ϵ 0
a a 0
a 0 a

 ;

B =

b 0 0
0 b 0
0 0 b

 ;

ξi(t)
iid∼ N (0, 1), i = 1, 2, 3.

(10)

As in [21], we set a = 0.5 and b = 1; we then set ϵ = 0.04.
Note that here [x1, x2, x3] correspond to [x, y, z] in [21].
In this simple model, a small perturbation applied on
variable x2 would propagate through the system and
cause a change first at variable x1 and then at x3 [21].
However, a perturbation in x3 cannot reach either x1 or
x2; this is clear by looking at the underlying graph in
Fig. 1(a). We first focus on the true responses Rk,j(τ),
here computed as Rk,j(τ) =

σj

σk
[M τ ]k,j and shown in

Fig. 1. The links x2 → x3 (i.e, R3,2(τ)) and x3 → x2

(i.e, R2,3(τ)) are correctly captured: the first nonzero
response R3,2(τ) is identified at lag τ = 2 and responses
R2,3(τ) are found to be zero for any lag τ (see Fig.
1(b,c)). Note that such results cannot be inferred with
correlations only. For example, the estimation of the
link x3 → x2 via correlations will give non-zero values
because of the confounder x1. We refer to Baldovin et al.
(2020) [21] for a thorough comparison with correlation
analysis.

Let us briefly note here the main conceptual differ-
ence between the fluctuation-response formalism and
methods for causal discovery. Causal discovery methods
used in climate and based on conditional independence
such as [48] aim in discovering the underlying causal
graph in Fig. 1(a) given time series data. Therefore,
the link x2 → x3 would not be identified as a causal
link. The same holds for Granger causality and transfer
entropy [32, 33] as shown in [21]. However, in a physical
experiment an intervention over variable x2 would cause
a change in variable x3. Such “interventional” view of
causation is the one considered here and can be correctly
captured by linear response theory in a straightforward
way, see Fig. 1(b). We refer to section IIIA of [21] for
an in-depth discussion.

In real-world cases we deal with time series of finite
length. We then simulate the system in Eq. 10 for
T = 105 time steps and estimate the causal links xj → xk

using the response formalism Rk,j (i.e., formula 6 after
standardizing each xi to unit variance)using temporal av-
erages. As expected, in this case our results are affected
by spurious terms, see blue dashed lines in Fig. 1. The
null model proposed in Eq. 7 is then leveraged to assign
confidence bounds to the estimated responses. In Fig. 1b
and 1c, we report both the numerically estimated and an-
alytically derived (Eq. 8) confidence bounds. Responses
inside the confidence bounds in Fig. 1 can be considered
as spurious. The confidence bounds correctly identify
the non-zero responses R3,2(τ) for τ = 1 and large lags
as spurious results, see Fig. 1(b). Additionally, the test
allows us to disregard the spurious link x3 → x2, see Fig.
1(c). Responses Rk,j(τ), i.e. links xj → xk, and confi-
dence bounds for every j and k are reported in Appendix
C.
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FIG. 1. Panel (a): Graph representing the Markov model in
Eq. 10. This is the same simple system considered in Bal-
dovin et al. (2020) [21] (where here [x1, x2, x3] correspond
to their [x, y, z] in [21]). Panel (b): response of variable x3

when perturbing x2, i.e. testing for link x2 → x3. Panel (c):
response of variable x2 when perturbing x3, i.e. testing for
link x3 → x2. All time series have been rescaled to zero mean
and unit variance before computing responses. The response
ground truths are shown as solid orange lines. Dashed blue
lines are responses estimated through temporal averages: for
this step we use a long trajectory of length T = 105 simu-
lated by system in Eq. 10. Red dots indicate the confidence
bounds computed numerically using B = 104 ensemble mem-
bers of the null model as shown in IIC 1. In each panel, the
dot-dashed black line is the analytical solution as in Eq. 8.
Bounds correspond to the ±3σ confidence level. All estimated
responses (i.e. blue curves) in between the confidence bounds
are here considered as spurious.

E. Metrics

The framework allows us to identify any causal inter-
action xj → xk given the definition of causality presented
in [21]. Given N time series this means N2 links at each

time-lag τ . Analyzing all interactions in such network
gets infeasible with larger N . We then introduce a few
metrics to analyze such causal graphs. In [21], the au-
thors proposed a simple “cumulative degree of causation”
of each link xj → xk as a Kubo formula [91]. Here we
consider the same formula while summing over the sta-
tistically significant responses Rk,j(τ

∗), defined at lags
τ∗. We compute respones Rk,j(τ) up to a maximum lag
τ∞; theoretically, the summation would be up to ∞, in
practice we choose a τ∞ much longer than the charac-
teristic time of the response. The “cumulative degree of
causation” considered here is then defined as follows:

Dj→k =

τ∞∑
τ∗

Rk,j(τ
∗) (11)

Since responses can be negative and positive, the degree
of causation such as in Eq. 11 can be zero even in the
presence of causal links. It can be therefore useful to
consider a modified version of Eq. 11 by summing over
the absolute value of responses as follows:

D∗
j→k =

τ∞∑
τ∗

| Rk,j(τ
∗) | (12)

Equations 11 and 12 quantify the cumulative response
of any variables xk to perturbations at xj , i.e. the
“strength” of the causal link xj → xk.

Finally, we rank each variable xj by defining its “causal
strength” as follows:

Dj =

N∑
k=1

D∗
j→k ; j ̸= k (13)

Eq. 13 allows us to rank nodes in the climate network
in regards to their ability to causally influence other
nodes. Informally, large values of Dj would mean that
perturbations in xj will be able to affect a large portion
of the system.

Note that in case of comparisons with other datasets,
Dj→k, D∗

j→k can be normalized by 1/τ∞; Dj can be

normalized by the number of variables as 1/(N − 1).
These steps are not needed in this study.

Link and strength maps. Finally, for a given pattern
j identified by the dimensionality reduction strategy pro-
posed in section IIA, it is possible to plot the cumulative
causal links Dj→k and D∗

j→k (Eq. 11 and 12) with any
other pattern k as a map. Given a pattern j we will of-
ten refer to such map as “link map” Dj→k for simplicity.
Similarly, the “causal strength” Dj of each node j as de-
fined in Eq. 13 can be plotted as a map, referred to as
“strength map”.
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III. DATA

To explore and showcase the proposed causal frame-
work we consider a long, stationary integration of the
state-of-the-art coupled climate model GFDL-CM4 [92].
The ocean component of CM4, named MOM6, has an
horizontal grid spacing of 0.25◦ and 75 vertical layers [93].
The atmospheric/land component is the AM4 model
[94, 95] with horizontal grid spacing of roughly 1◦ and
33 vertical layers. We consider the sea surface temper-
ature field (SST) at global scale. The simulation con-
sidered, referred to as “piControl”, is a 650 years long,
stationary integration with constant CO2 forcing set to
preindustrial level. In this work we consider the last 300
years of this simulation. Even with stationary CO2 forc-
ing, the climate system can display variability at a vast
range of time scales coming from the internal dynam-
ics of the system. Importantly, especially at higher lati-
tudes the system can display significant oscillations up to
10–100 years time scales, i.e. “multidecadal oscillations”
[96]. Even in a 300 years long run such low frequency
oscillations are sampled only a few times. Therefore,
to simplify the interpretation of results, in this work we
high-pass filter every time series with a cut-off frequency
of f = 1/(10 years) and focus on interannual variability
only. Importantly, as shown in Appendix D, the distri-
butions obtained after high-pass filtering each time se-
ries are well approximated by Gaussians, justifying the
methodology proposed in section II B 2. Furthermore,
the analysis will focus on SST anomalies after removing
the seasonal cycle (i.e., subtracting to each month its cli-
matology). In this study we consider temporal resolution
of 1 month as a reasonable time scale to observe prop-
agation of signals among modes of variability at global
scale.

IV. CAUSALITY IN CLIMATE FIELDS

A. Applicability of fluctuation-response theory in
climate studies

The main theoretical ideas justifying the application
of methods in section II B in climate, trace back at least
to the work of Hasselmann, K. (1976) [97]. The main
intuition of the “Hasselmann’s program” [3] relies on
thinking of processes with enough time scale separation
between short and long time scales in terms of Brownian
motion. Frankignoul and Hasselmann (1977) [98] first
showed that the statistical properties of sea surface tem-
perature (SST) variability can be in fact explained (at
first order) by linear stochastic models with white noise
representing the fast atmospheric variability. Such ideas
were further explored and convincingly demonstrated by
Penland, C. (1989) [99] and Penland and Sardeshmukh
(1995) [100] and motivated recent work on coupling
functions as in [101] and [102].

The aforementioned studies justify the application of
concepts introduced in section II B to explore causality
in climate fields. Specifically, this work will focus on the
SST fields. Physically, this means that we will make the
(rather strong) simplification of considering SST variabil-
ity as a deterministic process and treat higher-frequency
phenomena (e.g., atmospheric variability) as noise as
done in [97]. Focusing only on sea surface temperature
is however a limitation of this work and should be taken
into account when analyzing the results. The extension
to a multivariate framework is left for future work.

B. Relation to previous climate studies

We briefly present the main relationship between
fluctuation-dissipation response studies investigated in
the climate literature [47, 52, 55, 56, 58] and the causal-
ity framework explored here. Climate studies focused on
studying the response δ⟨x(t)⟩ of a dynamical system x
perturbed by a small time-dependent forcing f as follows:

δ⟨x(t)⟩ =
∫ t

0

dτ R(τ)f(t− τ). (14)

Where R(t) is the linear response operator. In this study
we consider stationary fields and impulse perturbations
and therefore the forcing can be written as a delta func-
tion δ(t− τ). In such case, Eq. 14 reduces to:

δ⟨x(t)⟩ =
∫ t

0

dτ R(τ)δ(t− τ) = R(t), (15)

and the operator R(t) alone allows us to study causal
links.

In what follows, responses in Eq. 15 are computed by
(a) using the quasi-Gaussian approximation as shown in
Eq. 6 and (b) by first standardizing every time series to
zero mean and unit variance. The operator R(t) itself
will be non-dimensional.

C. Application to global sea surface temperature

1. Dimensionality reduction and causal inference

We now focus on sea surface temperature (SST) vari-
ability at global scale. We consider the latitudinal range
60oS-60oN at 1o resolution accounting for N = 31141
time series. The SST field is saved as monthly averages
for 300 years for a total of T = 3612 time steps. As a first
step we aim in reducing the dimensionality of the field
from N = 31141 to fewer components. First, we apply
the community detection algorithm without constraining
for the identification of regionally constrained patterns;
in other words, the graph in Eq. 1 is inferred solely by
the correlations between each time series xi(t) and xj(t)
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(i.e., term Ci,j ≥ k in Eq. 1). Applying the community
detection algorithm without constraining on distances
as proposed in this work results in patterns that are not
regionally constrained as shown in Fig. 2. Fig. 2(a),
shows the Indian Ocean, eastern Pacific and part of the
Southern Ocean as part of the same pattern. The re-
gional variability of such distant regions is indeed linked
by physical processes (i.e., “teleconnection” patterns);
for example at interannual time scales, Indian Ocean
variability is forced by the tropical Pacific through
an atmospheric wave response to El Niño events [11].
Consequently, the sea surface temperature variability in
such regions is often grouped under the same cluster by
dimensionality reduction algorithms. The constraint on
distances proposed here, d(i, j) ≤ η in Eq. 1, allows us
for the identification of local and spatially contiguous
patterns as shown in Fig. 2(b), so that the Indian
Ocean, eastern Pacific and part of the Southern Ocean
are now all captured as different clusters. Therefore, the
additional constraint d(i, j) ≤ η introduced in Eq. 1 is
a simple but important step when coarse graining the
system. The proposed dimensionality reduction method
allows us to reduce the dimensionality from N = 31141
to N = 19 time series. The patterns identified are re-
gionally constrained, therefore allowing us to answer the
following question: how does the climate system respond
to local perturbations? To answer such question, we
leverage the tools presented in section II B.

We consider the fluctuation-dissipation relation in its
quasi-Gaussian approximation as shown in Eq. 6. In the
Appendix, section D we show that the time series of each
pattern (i.e., mode) follows approximately a Gaussian
distribution, therefore justifying the quasi-Gaussian
approximation. We infer causality up to a τ∞ = 10
years and show the causal strength Dj (Eq. 13) in Fig.
2(c). The strongest mode of variability at interannual
time scales is in the tropical Pacific, as expected [5].
Physically, results in Fig.2(c) imply that the variability
in the tropical Pacific is able to influence a larger part
of the world compared to other regions with smaller
strength. In what follows we are going to refer to this
region as “ENSO region”.

2. Investigation of causal interactions

We further analyze the links between three com-
ponents of the system. Specifically, we focus on the
interaction of ENSO, the Indian Ocean (IO) and South
Tropical Atlantic (STA). ENSO is known to drive
climate variability outside the tropical Pacific through
teleconnection patterns and has been studied in many
contributions. The way in which Indian and Atlantic
variability drive SST in the Pacific has been less ap-
preciated in the past and it is currently debated in the
community [103]. Quantification of such linkages is
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60°N SST Patterns(a)
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60°N

0° 90°E 180° 90°W0°

SST Patterns (regionally constrained)(b)

60°S
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0°

30°N
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j (ENSO = 40.2)(c)

0 2 4 6 8 10 12 14

FIG. 2. Sea surface temperature (SST) patterns in the lati-
tude range [60oS-60oN] and at monthly temporal resolution.
Panel (a): an undirected graph is inferred through Eq. 1
but without the proposed constraint d(i, j) ≤ η. Then the
community detection method Infomap is applied; see IIA.
Panel (b): same as panel (a) but the undirected graph is in-
ferred through the newly proposed Eq. 1. Panel (c): causal
strengths as defined by Eq. 13. As expected the “ENSO”
region is the strongest mode in the inferred causal network.
Its strength is reported in the plot title. The response func-
tions are computed up to τ∞ = 10 years. Only the statistical
significant responses contribute to the strength metrics shown
in Eq. 13. Confidence bounds are quantified through Eq. 8
at the ±3σ level.

important to better understand climate variability and
to improve seasonal forecasting.

During an El Niño phase, the anomalous temperature
in the tropical Pacific excites waves in the atmosphere.
Such waves, known as eastward-propagating Kelvin and
westward-propagating Rossby waves, drive changes in
temperature in the whole tropical band [11]. Such causal
links are identified in Fig. 3(a,b), with positive responses
of both the IO and STA regions to perturbations in the
ENSO regions. As expected such positive lead of ENSO
is the strongest in magnitude and much larger than the
other responses in Fig. 3. Interestingly, we find a (weak)
negative link between ENSO and IO in Fig. 3(b) around
τ = 30 months, suggesting the emergence of positive
anomalies in the Indian Ocean ∼ 3 years after La Niña
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events, and viceversa for El Niño events. The positive
response around 10 years in Fig. 3(b) is considered as a
False Positive.

Fig. 3(c) shows that the anomalies in the STA region,
mainly linked to the dynamics of the Atlantic Niño
[104] (see also discussion in [16]), lead on average to
the development of anomalies of the opposite sign in
the eastern Pacific as recently argued in the literature
[105–107].

The IO pattern in our study (see pattern z in Figure
3) mainly identifies what is known as the Indian Ocean
Basin (IOB) mode [69]. The IOB mode has been
traditionally considered as simply forced by ENSO.
Nonetheless, recent studies have revealed how the IOB
can also drive ENSO variability. Specifically, it has
been demonstrated how a strong IOB warming can in
fact contribute to central Pacific cooling further driving
a transition to a La Niña state [103, 108, 109]. Such
negative link is correctly identified by the proposed
framework (see Fig. 3(d)) but does not show up in
correlation-only analyses (see for example Fig. 11(b) in
[82]). As discussed also in [103] these results suggest an
increase in potential predictability of ENSO variability
when considering the non-local interactions with the
Indian Ocean and tropical Atlantic basins. We note
that the results shown here come from a climate model
which, as any models, it is far from perfect. The causal
links shown in Fig. 3 agree with the existing literature in
terms of directionality of the links and sign, however the
leading of the tropical Pacific to the Indian and Atlantic
basins in this model may be overestimated as shown in
another climate model (by correlation analysis-only) in
Falasca et al. (2019) [82]. Future work may focus on the
proposed framework to compare model and reanalyses
data, similar to what was done in Falasca et al. (2019)
[82].

Finally, in Fig. 4 we show the cumulative response
of the whole system to the climate variability in four
regions: ENSO region, Indian Ocean (IO), South and
North Tropical Atlantic (STA and NTA respectively).
Such “link maps”, introduced at the end of section II E,
allow us to visualize the cumulative degree of causation
Dj→k (Eq. 11) up to a time lag τ∞, here chosen as
τ∞ = 6 months. Fig. 4(a) quantifies the cumulative
response of any region given perturbations in the ENSO
region. We notice that such map is qualitatively similar
to the first Empirical Orthogonal Function of global SST
(see for example Fig. 4 in [110]). The framework allows
us to examine causal linkages from/to any region of the
system. Figures 4(b,c,d) show the cumulative degree of
causation respectively from IO, STA and NTA regions
to any other region in the world. In other words, such
link maps allow us to summarize the cumulative response
of the whole system, given small, local perturbations to
any region xj of choice, offering a useful and simplified

approach to explore climate dynamics from data.

V. CONCLUSIONS AND DISCUSSION

This work introduces a novel framework for causal
inference in spatiotemporal climate fields. The method
relies on two independent steps: dimensionality re-
duction and causal inference. The causal inference
step, based upon ideas of Baldovin et al. [21] frames
the problem of causality in the formalism of linear
response theory [91]. Here, we further developed these
ideas by proposing an analytical null model for the
fluctuation-dissipation relation. The model allows us to
distinguish between true and spurious response func-
tions estimated from finite data, with applicability not
restricted to climate. Causality is inferred after reducing
the dimensionality of the system into a few regional
patterns, i.e., proxies of “modes” of variability. Such
“modes” are defined as regionally constrained sets of
time series with large average pairwise correlation. The
dimensionality reduction and the causal inference steps
allow to study how local perturbations can propagate
through the system and impact remote locations.

We discuss a few important limitations and caveats
that may hinder interpretations of results in future
studies.

a. The case of hidden variables. The fluctuation-
dissipation formalism identifies causal links when we
have access to the whole state vector x. However, often
in real-world cases we can access only a few variables. A
solution is to include the proper variables for the phe-
nomena we want to explain [21]. In this work, we based
our analysis on sea surface temperature building on ideas
first proposed by Hasselmann, K. (1977) [3, 98] where
the fast atmospheric variability can be considered as
noise, forcing the slower deterministic ocean dynamics.
Therefore, given the sea surface temperature field, the
size of the spatial patterns considered and their temporal
resolution (i.e., ∆T = 1 month) we assume the system
to be approximately Markovian. However, the focus on
sea surface temperature only is a great simplification
and should be considered when interpreting results. The
question of how many variables are enough to consider
the system as Markovian is an old problem with warnings
discussed at least since Onsager and Machlup (1953)
[111]; see also section IVB in [21]. Quite interestingly,
[21] also showed that applying Takens theorem [112] to
reconstruct the state space vector may not always help.
The main reason is that Takens embedding theorem,
proven for deterministic systems [112], fails for general
stochastic processes [21]. More recent versions of Takens
theorem have been proved for stochastic systems and
could be potentially explored in future studies, see for
example [113, 114]



12

x y xz

−0.1

0.0

0.1

0.2

0.3
x --> y(a)

Confidence Bounds

−0.2

0.0

0.2

0.4

0.6
x --> z(b)

0 20 40 60 80 100 120

lag τ (1 month)

−0.1

0.0

0.1

y --> x(c)

0 20 40 60 80 100 120

lag τ (1 month)

−0.2

−0.1

0.0

0.1

z --> x(d)

FIG. 3. x: ENSO mode. y: South Tropical Atlantic. z: Indian Ocean. Panel (a,c): causal link x → y and y → x. Panel
(b,d): causal link x → z and z → x. Response functions have been computed up until τ∞ = 10 years. Confidence bounds are
quantified through Eq. 8 at the ±3σ level. Responses in between the confidence bounds are here considered as spurious.
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b. Computation of the inverse covariance matrix
C(0)−1. Consider a dynamical system x ∈ RN,T , N is
its dimensionality and T is the length of each time series
xi(t). If N > T , the covariance matrix C(0) ∈ RN,N will
not be full rank, and therefore it will not have an inverse.
Generally, the covariance matrix can be ill-conditioned
and the computation of the inverse C(0)−1 will result in
large errors [55, 58, 115, 116]. Therefore, the proposed
framework should be applied for systems x ∈ RN,T with
T ≫ N , i.e., the number of samples much larger than
the dimensionality of the system. As a simple test, when
computing responses with the quasi-Gaussian approx-
imation R(τ) = C(τ)C(0)−1 we recommend to check
R(0) = I (at least up to a certain numerical accuracy),
I being the Identity matrix. In general, dimensionality
reduction schemes (as proposed in this paper) reduce
the number of time series N to values much smaller than
T , allowing for trustworthy computations of C(0)−1 [55].

c. Quasi-Gaussian approximation. The fluctuation-
dissipation relation used in this study is valid for linear
systems and it has been shown to work well also for
weakly nonlinear systems, see discussion in section II B 2.
However, before applying the methodology proposed
here we suggest careful analysis of the data distribution
to avoid misleading results. An example is the work
shown in [117], where the authors analyzed the causal
link between CO2, temperature (T ) and insolation in the
last 800 kyr using the Fluctuation-Response formalism
[21]. Distributions of both CO2 and T in the last 800
kyr are strongly non-Gaussian. The solution was to
high-pass filter the data and focus on high-frequency
variability, with the hypothesis of slow time scales
being linked to the external forcing and faster time
scales to the internal variability of the system. The
temporal filtering was shown to be enough to recover
Gaussian distributions [117]. In this work, we also
high-pass filtered the data with a cut-off frequency of
f = 1/(10 years). The probability distributions obtained
after the filtering can be reasonably approximated by
Gaussians (see Appendix D), justifying the application
of the methodology shown in section II B. A general-
ization to nonlinear systems is provided by formula 4,
as long as the probability distribution ρ(x) is known.
In specific cases, we note that it is possible to apply
transformations to strongly non-Gaussian fields and still
use the quasi-Gaussian approximation explored here. An
example is the precipitation field, where a logarithmic
scaling can help recover Gaussian-like distributions [118].

The methodology proposed here can be applied
to study the dynamics of any climate field, at least
given the assumptions and limitations listed above. It
serves as a useful, rigorous framework to simplify the
description of complex, high-dimensional dynamical
systems in terms of a few entities and their linkages,
aiming to better understand the system’s dynamics.
Unlike other methods for causal discovery adopted in

climate, the proposed scheme scales to high-dimensional
datasets; in fact Fluctuation-Dissipation formulas have
been shown to scale to thousands of time series in
climate applications (e.g., [55]). Moreover, the causal
inference method and the proposed null model have a
clear physical interpretation, they are formalized via
analytical formulas and they can be easily implemented
without the need for many heuristics and parameters.

The application explored in section IVC allowed
us to detect well-known links in climate, such as the
influence of tropical Pacific variability onto other basins,
as well as other linkages, such as the lead of sea surface
temperature variability in the Indian Ocean to the
Pacific basin, which received less attention in the liter-
ature [103]. Additionally, we showed how the “strength
maps” and “link maps” as shown in Fig. 2(c) and
Fig. 4 summarize cumulative causal interactions across
time and space in a comprehensive and interpretable way.

We focused on the sea surface temperature field as the
statistics of modes of variability and their linkages in this
field have been investigated in many previous studies,
therefore offering a good test-case for the methodology.
Importantly, climate studies often focus on a few modes
at a time (e.g. [103] and references therein). Here we
showed that the methodology allows us to study causal
linkages among regions in a comprehensive framework,
where all modes of variability and their interactions are
studied simultaneously.

Examples of future work range from studying the evo-
lution of climate modes and their linkages in paleoclimate
simulations, with time-dependent orbital and trace-gases
forcings (e.g., [15]), to replacing expensive Green’s func-
tion approaches to diagnose relationships among vari-
ables and their sensitivity to external forcings [119]. Fi-
nally, the proposed framework also offers a way to eval-
uate new generations of climate models in terms of their
emergent causal structure; for example, by assessing the
impact of new sub-grid parametrizations onto the large
scale dynamics.
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Appendix A: Dimensionality reduction in climate.
Limitations of current methods and proposal

1. Two goals in dimensionality reduction studies

We note that the use of dimensionality reduction in
applications of linear response theory can be leveraged
with at least two different goals in mind. In the case of
very high dimensional systems as a General Circulation
Model (GCM), applications of the fluctuation-dissipation
response formalism is practically impossible. The usual
solution in the climate literature has been to construct re-
sponse operators in a low-dimensional space spanned by
many Empirical Orthogonal Functions (EOFs or Princi-
pal Components) [120]; usually, order 103 EOFs in order
to explain at least 90% of the total variance. Results com-
puted in the low dimensional space are then transformed
back to the original space [55, 56, 58]. This computa-
tional strategy has been shown to be successful in many
applications (see [55, 56]). A second possible goal of di-
mensionality reduction is to simplify the problem in hand
in terms of very few components and apply the linear re-
sponse formalism directly on those entities. In this case
we are interested in studying directly the coarse-grained
version of the system. This adds to interpretability and
to a first order understanding of the system’s dynamics.
This second case is the one considered in this paper.

2. Few limitations of common methods and
proposal

Traditionally, dimensionality reduction in climate
studies is done through Principal Component Analysis
(PCA) [120]. PCA, or Empirical Orthogonal Function
(EOF) analysis [121] is a useful, first order way to
reduce the dimensionality of the system based on the
singular value decomposition (see e.g., [122]) of the data
matrix. However, the resulting patterns suffer from a
few drawbacks: first, EOFs are orthogonal by definition.
Such constraint hamper their interpretation and make
it difficult to distinguish between physical or purely
statistical modes [80, 123]. A possible solution has been
to rotate the EOFs, such as in [124]. Rotated-EOFs
have been found to be sensitive to the rotation criterion,
normalizations and number of loadings (see [80, 121]).

Another drawback comes from linearity. Mani-
fold learning algorithms aim in addressing this issue
by identifying low-dimensional representations of a
high-dimensional system accounting for nonlinearities
(curved manifolds) [125]. Examples range from the
Isomap algorithm [126] to the more recent t-SNE
[127], UMAP [128] to the PHATE algorithm [129] and
ROCK-PCA [130]. Finally, deep learning tools such as
autoencoders can be explored for dimensionality reduc-
tion [131] and found applications in climate science [132].

Dependent on the goal in mind (see section A1),
a possible limitation shared by all these tools when
applied to global climate data is that they decompose
a field in terms of global (in longitude-latitude maps)
modes. However, physically, climate dynamics can be
often thought of as a set of remote connections driven
by local phenomena (perturbations). Given so, common
practice in climate science has been to define “climate
indices” as time series averaged in specified regions (i.e.,
“boxes”). Known examples are the Niño3.4, the Indian
Ocean Dipole (IOD) index etc. However, a framework
for automated identification of proxies of such indices
is needed as the locations of such regions, or “boxes”,
may be not relevant for the study of future (or past)
climates. An example can be found in [15, 133, 134]
where the authors showed the emergence of an El
Niño-like variability in the Indian Ocean during the Last
Glacial Maximum, the last 6000 years and in future
projections. In this sense, known indices identified in
the current climate are potentially less meaningful in
past and future climates.

A method proposed to automatically identify proxies
for climate indices is δ-MAPS [81]. Given a climate
fields, δ-MAPS identifies spatially contiguous clusters.
The method has proven to be useful in climate stud-
ies with applications ranging from model evaluation
[82, 135], shifts in climate modes in the last 6000 years
[15, 18], sea level budget at regional scale [136], marine
ecology [137] and ecosystem dynamics [138]. In the case
of relatively low dimensional fields (e.g., global fields
at 2◦ by 2◦ spatial resolution) δ-MAPS shows excellent
performance. However, a known drawback is that it
does not scale well with high-dimensional datasets (i.e.,
large number of grid cells). Additionally, exploratory
tests are needed to explore the sensitivity to parameter
choices in the domain identification step.

When working with very high dimensional fields, it is
often useful to consider fast and scalable algorithms. In
the last two decades, climate data analysis have focused
on fast methodologies stemming from the complex
network literature [74]. An example is the work of [80]
where the authors focused on the community detection
method “Infomap” [76, 77, 139] to identify communities
in the HadISST [140] sea surface temperature dataset.
Such methods allow us to find patterns that are not

https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
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necessarily orthogonal. Furthermore, they are fast,
memory efficient and scale well with the dimensionality
of the dataset. The main issue is that, similar to
manifold learning algorithms, community detection algo-
rithms are not constrained to be spatially contiguous [81].

In this paper we showed that adding a simple con-
straint on spatial distances is enough to enforce the iden-
tification of “local” patterns (see section IIA 1). This
allows us to leverage computationally fast and robust
methods such as community detection for dimensionality
reduction strategies in climate. Differently from δ-MAPS
[81], the identified patterns cannot overlap with each
other. We find however that conclusions found in previ-
ous studies using δ-MAPS (see [82] for example) may not
be strongly dependent on clustering overlapping, at least
when focusing on the sea surface temperature field. The
framework proposed here in section IIA is then leveraged
as a much simpler (and therefore more robust), practical
framework to the problem of identification of regionally
constrained modes.

Appendix B: A null model for the
Fluctuation-Dissipation relation. Analytical

derivation of the confidence bounds

This work proposes a novel null model for the
Fluctuation-Dissipation relation (see 7). In the null
model, every variable xj and xk is independent,
and therefore the expected value of each response
E[Rk,j(τ)] = 0 for j ̸= k by construction. Nonetheless,
estimating such responses by R(τ) = C(τ)C(0)−1 (see
II B 2) using time series of finite length T simulated by
the null model, will give rise to spurious results diverg-
ing from the expected value E[Rk,j(τ)]. In Eq. 8 of the
main text we showed the analytical probability distri-
bution of Rk,j(τ). The main assumption in this deriva-
tion is that responses Rk,j(τ) follow a Normal distribu-
tion. Therefore the expected value E[Rk,j(τ)] and vari-
ance Var[Rk,j(τ)] uniquely define the probability density
ρ(Rk,j(τ)). Here we present the derivation of such for-
mula.

1. Notation adopted in this section

In order to simplify and ease the derivation, it is use-
ful to adopt a simpler and more appropriate statisti-
cal formalism. The symbols adopted in this section re-
late to the ones used in the previous ones as follows:
E[X] = ⟨X⟩ represents the expected value of a random
variable X. This is equal to the ensemble average con-
sidered in the previous sections. Consequently, Var[X] =
E[(X−E[X])2] represents the variance of a random vari-
able X. Finally, Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]
represents the covariance of two random variables X
and Y . We are going to refer to the null process as

x = [x1(t), x2(t), ..., xN (t)] (rather than x̃ as in 7). Fi-
nally, each time series xj(t) is here considered to be scaled
to zero mean and unit variance. This step greatly sim-
plifies the derivation. At the end of this section, we pro-
vide the general formula for processes that are not unit-
variance.

2. Analytical derivation

Consider a long trajectory x ∈ RN,T defined by the
forward iteration of the null model in Eq. 7. The
true mean, and covariances at lag τ of each individ-
ual time series in x are given by E[xj(t)] = 0 and
E[xk(t + τ)xj(t)] = ϕτ

kδk,j respectively. Where ϕk is
the lag-1 autocorrelation of time series xk(t) and the
Kronecker delta δk,j differs from zero only in the case
j = k.

We note that the numerical estimation of both C(τ)
and C(0)−1 will lead to spurious terms in R(τ). We then
rewrite the covariance matrix C(τ) estimated through
time averages as a sum of the expected value E[C(τ)]

plus some small Gaussian residual Ĉ(τ) as:

C(τ) = E[C(τ)] + Ĉ(τ) = Dτ
ϕ + Ĉ(τ). (B1)

Where Dτ
ϕ is a diagonal matrix with component (i, j) de-

fined as (Dτ
ϕ)i,j = ϕτ

i δi,j . The decomposition (Eq. (B1))

applies to the matrix C(0) as well with D0
ϕ = I where

I is the Identity matrix. The main difficulty is that we
are not interested in C(0) but in its inverse C(0)−1. By
assuming relatively small residuals (true for time series
with T ≫ 1), we can approximate an inverse of the esti-
mated covariance matrix C(0)−1 using Neumann series
[141] as:

C(0)−1 = (I + Ĉ(0))−1 ≈ I − Ĉ(0). (B2)

Where we only retained the first term in the Neu-
mann series. An estimator of the null response R(τ) =
C(τ)C(0)−1 can be then written as

R(τ) = C(τ)C(0)−1 ≈ C(τ) +Dτ
ϕ(I −C(0)). (B3)

Where we neglected the term Ĉ(τ)Ĉ(0), a reasonable
step in the presence of small residuals, true for time series
with length T ≫ 1. To derive the statistical properties
of the estimator in Eq. B3, it is useful to rewrite such
formula in terms of each component j and k.

Rk,j(τ) ≈ Ck,j(τ) + δk,jϕ
τ
k − ϕτ

kCk,j(0). (B4)

The final step is to derive the expected value E[Rk,j(τ)]
and Var[Rk,j(τ)] of Eq. B4, thus uniquely defining the
probability distribution of Rk,j(τ), under the assumption
of Gaussian statistics.
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a. Expected value and variance of the response estimator

The expectation of the response estimator proposed in
B4 can be derived as

E[Rk,j(τ)] = E[Ck,j(τ)] + δk,jϕ
τ
k − ϕτ

kE[Ck,j(0)]

= δk,jϕ
τ
k + δk,jϕ

τ
k − ϕτ

kδk,j

= δk,jϕ
τ
k.

(B5)

The variance of the response estimator proposed in B4
can be derived as

Var[Rk,j(τ)] = Var[Ck,j(τ)− ϕτ
kCk,j(0)]

= Var[Ck,j(τ)] + ϕ2τ
k Var[Ck,j(0)]

− 2ϕτ
kCov[Ck,j(τ), Ck,j(0)].

(B6)

We remind the reader the following useful equality: the
covariance Cov[X,Y ] of two random variables X and Y
can be rewritten as Cov[X,Y ] = E[XY ]−E[X]E[Y ]. We
now compute the variance of the response estimator in
Eq. B6. To do so, we first need to provide an expression
to terms Var[Ck,j(τ)] and Cov[Ck,j(τ), Ck,j(0)]. Such
terms can be computed as follows:

Var[Ck,j(τ)] = E[Ck,j(τ)Ck,j(τ)]− δk,jϕ
2τ
k

=
1

T 2

T∑
t′,t′′=1

E[xk(t
′ + τ)xj(t

′)xk(t
′′ + τ)xj(t

′′)]− δk,jϕ
2τ
k

=
1

T 2

T∑
t′,t′′=1

(
E[xk(t

′ + τ)xk(t
′′ + τ)]E[xj(t

′)xj(t
′′)]

+ E[xk(t
′ + τ)xj(t

′)]E[xk(t
′′ + τ)xj(t

′′)]

+ E[xk(t
′ + τ)xj(t

′′)]E[xj(t
′)xk(t

′′ + τ)]
)
− δk,jϕ

2τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

2τ
k + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
j

)
− δk,jϕ

2τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
j

)
.

(B7)

Cov[Ck,j(τ), Ck,j(0)] = E[Ck,j(τ)Ck,j(0)]− δk,jϕ
τ
k

=
1

T 2

T∑
t′,t′′=1

E[xk(t
′ + τ)xj(t

′)xk(t
′′)xj(t

′′)]− δk,jϕ
τ
k

=
1

T 2

T∑
t′,t′′=1

(
E[xk(t

′ + τ)xk(t
′′)]E[xj(t

′)xj(t
′′)]

+ E[xk(t
′ + τ)xj(t

′)]E[xk(t
′′)xj(t

′′)]

+ E[xk(t
′ + τ)xj(t

′′)]E[xj(t
′)xk(t

′′)]
)
− δk,jϕ

τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

τ
k + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−t′′|
j

)
− δk,jϕ

τ
k

=
1

T 2

T∑
t′,t′′=1

(
ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j + δk,jϕ

|t′+τ−t′′|
k ϕ

|t′−t′′|
j

)
.

(B8)

The computation of Equations B7 and B8 re-
quires to compute the following three terms:

∑T
t′,t′′=1 ϕ

|t′−t′′|
k ϕ

|t′−t′′|
j ,

∑T
t′,t′′=1 ϕ

|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
j

and
∑T

t′,t′′=1 ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j . To solve such terms we
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point out that a summation of type
∑T

t′,t′′=1(ϕkϕj)
|t′−t′′|

will result in T points with value (ϕkϕj)
0, 2(T − 1)

points with value (ϕkϕj)
1 up to 2(T − t) points with

value (ϕkϕj)
t. The summation can be then rewritten

as:
∑T

t′,t′′=1(ϕkϕj)
|t′−t′′| = T +

∑T−1
t=1 (ϕkϕj)

t2(T − t).
Similar reasoning can be applied for all the terms above.

b. Computation of each summation

Sum(I) :

T∑
t′,t′′=1

ϕ
|t′−t′′|
k ϕ

|t′−t′′|
j = T +

T−1∑
t=1

(ϕkϕj)
t2(T − t)

=
T − T (ϕkϕj)

2 + 2(ϕkϕj)(ϕ
T
k ϕ

T
j − 1)

(−1 + ϕkϕj)2
.

(B9)

Sum(II) :

T∑
t′,t′′=1

ϕ
|t′+τ−t′′|
k ϕ

|t′−τ−t′′|
j

=

T−1∑
t=1−T

ϕ
|t+τ |
k ϕ

|t−τ |
j (T− | t |)

=

T−1∑
t=1

ϕ
(t+τ)
k ϕ

|t−τ |
j (T − t)︸ ︷︷ ︸

Sum(a)

+
0∑

t=1−T

ϕ
|t+τ |
k ϕ

(−t+τ)
j (T + t)︸ ︷︷ ︸

Sum(b)

(B10)

Both summation Sum(a) and Sum(b) can be further split
in sums of simple geometric series:

Sum(a) :

T−1∑
t=1

ϕ
(t+τ)
k ϕ

|t−τ |
j (T − t)

= ϕτ
kϕ

τ
jT

τ∑
t=1

(ϕkϕ
−1
j )t − ϕτ

kϕ
τ
j

τ∑
t=1

(ϕkϕ
−1
j )t · t

+ Tϕτ
kϕ

−τ
j

T−1∑
t=τ+1

(ϕkϕj)
t − ϕτ

kϕ
−τ
j

T−1∑
t=τ+1

(ϕkϕj)
t · t.

(B11)

Sum(b) :

0∑
t=1−T

ϕ
|t+τ |
k ϕ

(−t+τ)
j (T + t)

= Tϕ−τ
k ϕτ

j

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t

+ ϕ−τ
k ϕτ

j

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t · t

+Tϕτ
kϕ

τ
j

0∑
t=−τ+1

(ϕkϕ
−1
j )t

+ ϕτ
kϕ

τ
j

0∑
t=−τ+1

(ϕkϕ
−1
j )t · t.

(B12)

Sum(a) and Sum(b) are composed by geometric series
and can be easily solved.

Sum(III) :
T∑

t′,t′′=1

ϕ
|t′+τ−t′′|
k ϕ

|t′−t′′|
j

=

T−1∑
t=1−T

ϕ
|t+τ |
k ϕ

|t|
j (T− | t |)

=

T−1∑
t=1

ϕt+τ
k ϕt

j(T − t)︸ ︷︷ ︸
Sum(c)

+

0∑
t=1−T

ϕ
|t+τ |
k ϕ−t

j (T + t)︸ ︷︷ ︸
Sum(d)

(B13)

Sum(c) and Sum(d) are composed by geometric series
and can be easily solved.

Sum(c) :

T−1∑
t=1

ϕt+τ
k ϕt

j(T − t)

= Tϕτ
k

T−1∑
t=1

(ϕkϕj)
t − ϕk

T−1∑
t=1

(ϕkϕj)
t · t.

(B14)

Sum(d) :

0∑
t=1−T

ϕ
|t+τ |
k ϕ−t

j (T + t)

= Tϕ−τ
k

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t + ϕ−τ
k

−τ∑
t=1−T

(ϕ−1
k ϕ−1

j )t · t

+ Tϕτ
k

0∑
t=−τ+1

(ϕkϕ
−1
j )t + ϕτ

k

0∑
t=−τ+1

(ϕkϕ
−1
j )t · t.

(B15)

Sum(c) and Sum(d) are composed by geometric series and
can be easily solved.
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c. Final result

We aim in computing the variance of the response esti-
mator Var[Rk,j(τ)] as shown in Eq. B6. We rewrite the
expression in function of the three summations Sum(I),
Sum(II) and Sum(III) solved in the previous section.

Var[Rk,j(τ)] =
1

T 2

(
Sum(I)

+ ϕ2τ
k · Sum(I)(τ = 0)

− 2ϕτ
k · Sum(III)

)
+

δk,j
T 2

(
Sum(II)

+ ϕ2τ
k Sum(II)(τ = 0)

− 2ϕτ
k · Sum(III)

)
.

(B16)

Where Sum(I)(τ = 0) and Sum(II)(τ = 0) evaluate
Sum(I) and Sum(II) in τ = 0.

We focus on the asymptotic case T ≫ 1 and remind
the reader that |ϕkϕj | < 1. The leading order of the
solution is as follows:

Var[Rk,j(τ)] =
ϕ2τ
k − 1

T
+

2

T

(1− ϕτ
kϕ

τ
j

1− ϕkϕj

)
−2ϕτ

k

T

(
ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk

)
.

(B17)
Finally, we note that in the case of ϕk = ϕj in Eq. B17

we substitute the term ϕk
ϕτ
j −ϕτ

k

ϕj−ϕk
with the limit:

lim
ϕj→ϕk

ϕk

ϕτ
j − ϕτ

k

ϕj − ϕk
= ϕτ

kτ. (B18)

Equation B17 assumes that each time series has been
previously normalized to zero mean and unit variance. In
case of non-standardized time series, Eq. B17 becomes
(σ2

k/σ
2
j ) × Eq. B17; σ2

i being the variance of time series
xi(t) (see also Eq. 15 in [21]).

Appendix C: Confidence bounds. Numerical vs
analytical

We consider the system in Eq. 10 and show all the
estimated responses Rk,j , their ground truths and the
confidence bounds in Figure 5. Importantly, we compare
the analytical confidence bounds presented in Eq. 8 with
their numerical estimation as shown in section IIC 1. All
bounds are set to ±3σ.
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FIG. 5. Comparing the confidence bounds estimated numerically as in section IIC 1 and the analytical solution as shown in
Eq. 8 for the simple linear Markov model shown in Eq. 10. Each panel shows the response Rk,j representative of the causal
link xj → xk. All time series have been rescaled to zero mean and unit variance before computing responses. The response
ground truths are shown as solid orange lines. Dashed blue lines are responses estimated through temporal averages: for this
step we use a long trajectory of length T = 105 simulated by system in Eq. 10. Red dots indicate the confidence bounds
computed numerically using B = 104 ensemble members of the null model as shown in IIC 1, see section IIC 1. In each panel,
the dot-dashed black line is the analytical solution as in Eq. 8. Confidence bounds are set to ±3σ. All estimated responses
(i.e. blue curves) in between the confidence bounds are here considered as spurious.



20

Appendix D: Histograms of each mode xi(t) in the
global SST field

In Fig. 6, we show the histogram of each signal X(i, t)
correspondent to pattern i in Fig. 2(b). Each X(i, t)
has been computed as in Eq. 2 and it has been then
centered to zero mean and standardized to unit variance.
A Gaussian distribution with same mean and variance of
each X(i, t) is shown in red. The plot shows that the
quasi-Gaussian approximation shown in II B 2 is indeed
relevant for the system studied.
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FIG. 6. Probability distributions of each sea surface temperature signal xi(t) for each pattern i shown in Fig. 2(b). Each
signal xi(t) is first centered to zero mean and standardized to unit variance; therefore the x-axis represents degC per standard
deviation. Each pattern (i.e., mode) is here referred to as “Mode i”. A Gaussian fit is shown in red on top of each histogram.
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