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Josephson current flowing through a nontrivial geometry:
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A realistic description of the Josephson effect at finite temperature with ultra-cold Fermi gases
embedded in nontrivial geometrical constraints (typically, a trap plus a barrier) requires appropriate
consideration of pairing fluctuations that arise in inhomogeneous environments. Here, we apply the
theoretical approach developed in the companion article [Pisani et al., Phys. Rev. B 108, 214503
(2023)], where the inclusion of pairing fluctuations beyond mean field across the BCS-BEC crossover
at finite temperature is combined with a detailed description of the gap parameter in a nontrivial
geometry. In this way, we are able to account for the experimental results on the Josephson critical
current, reported both at low temperature for various couplings across the BCS-BEC crossover
and as a function of temperature at unitarity. Besides validating the theoretical approach of the
companion article, our numerical results reveal generic features of the Josephson effect which may
not readily emerge from an analysis of corresponding experiments with condensed-matter samples
owing to the unique intrinsic flexibility of experiments with ultra-cold gases.

I. INTRODUCTION

Most practical applications of superconductors (or,
generically speaking, of fermionic superfluids) require a
detailed consideration of inhomogeneous environments.
In this context, the theoretical description based on the
Ginzburg-Landau (GL) equation for the complex order
parameter has proved quite useful ﬂ] However, the GL
equation is valid only close enough to the critical tem-
perature T, and for weak inter-particle coupling when the
Cooper pair size is much larger than the inter-particle dis-
tance. In fermionic superfluids with strong enough cou-
pling (like ultra-cold Fermi gases) these restrictions are in
general violated and the GL equation cannot be applied.
In these cases, one may revert to solving the Bogoliubov-
deGennes (BdG) equations [2], which are equivalent to
the inhomogeneous version of the BCS theory developed
by Gor’kov B] and can, in principle, be applied for an;
coupling across the BCS-BEC crossover, both at zero @ﬁ
and finite ﬂa] temperature.

In practice, the problem with the BdG equations is
twofold. When solving numerically these two-component
Schrodinger-like equations, difficulties arise in storing the
large number of details contained in the single-particle
wave-functions (from which the order parameter is even-
tually obtained through an averaging procedure that
washes out most of these details). In addition, the BdG
equations do not take into account pairing fluctuations,
whose consideration is required away from the weak-
coupling (BCS) limit of the BCS-BEC crossover |].

In this respect, a first attempt to include exchange
and correlation effects in the BdG equations for spa-
tially inhomogeneous superconductors was proposed in
Ref. ﬂ] in terms of Kohn-Sham-type equations, where
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the practical challenge is to include pairing correlations in
the exchange-correlation free-energy functional. It is for
this reason that most implementations of this proposal
relied on rather pragmatical semi-phenomenological ap-
proaches to that functional [§]. By a related token, a
superfluid local density approximation (SLDA) variant
has expressed the energy density functional at low tem-
perature in terms of three phenomenological parameters,
that could be determined only at unitarity [9] and in
the weak-coupling (BCS) limit [10] by exploiting known
independent results. This method has recently been uti-
lized for studying dissipation effects in the context of the
Josephson effect [11].

This article addresses specifically the question of in-
cluding pairing fluctuations in the BAG equations when
the coupling spans the BCS-BEC crossover and the tem-
perature is below the superfluid critical temperature T.
This enable us to provide a detailed theoretical account
of the experimental results reported in Refs. ﬂﬁ, ] for
the Josephson effect in ultra-cold superfluid Fermi gases

To this end, we adopt the theoretical approach devel-
oped in Refﬁ?]j which is alternative to the approaches
of Refs. [7]-[11] and enables us to conveniently deal with
spatially inhomogeous fermionic superfluids at any cou-
pling across the BCS-BEC crossover and at any tempera-
ture below T.. Moreover, being based on the many-body
Green’s functions theory, this novel approach is amenable
to further improvements through a “modular” inclusion
of additional diagrammatic contributions, like the ex-
tended Gorkov-Melik-Barkhudarov (GMB) approach in
the superfluid phase introduced in Ref. [15].

II. THEORETICAL APPROACH AND
METHODS

The present approach includes pairing fluctuations on
top of a simplified version of the BdG equations, thereby
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overcoming the difficulties described in the Introduction.
Specifically, the present approach succeeds in merging:
(i) The coarse-graining procedure on the BdG equations
introduced in Ref. ﬂﬁ], which results into the local phase
density approximation (LPDA) differential equation for
the complex gap parameter A(r); (ii) A local version of
the t-matrix approximation for fermionic superfluids im-
plemented in Ref. [17]. The merging of (i) and (i) even-
tually transforms the LPDA approach of Ref. ﬁ%] into
the mLPDA approach of Ref. [14], and yields expressions
for the local density and current that take into account
beyond-mean-field pairing fluctuations in the presence
of spatial inhomogeneities. These expressions have the
property to evolve with continuity from a fermionic to
a bosonic two-fluid model when the coupling spans the
BCS-BEC crossover. Following the procedures utilized
in Ref. [1§] for the LPDA equation, the ensuing mLPDA
equation will explicitly be solved for the Josephson effect
in the presence of nontrivial geometrical constraints, like
those utilized experimentally in Refs. m, |E]

The LPDA equation for A(r) reads [16]:

+ To(r) + T () <4V— Al
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where i = 1 and the expressions of the (highly nonlinear)
coefficients Zy(r) and Z; (r) are reported in Appendix [Al
In the context of the BCS-BEC crossover, the scattering
length ap of the two-fermion problem that enters Eq. ()
is combined with the Fermi wave vector kr = (3w%n)'/?
with density n, to obtain the dimensionless coupling
(kpap)~'. This coupling ranges from (krpap)™' < —1
in the weak-coupling (BCS) regime when ap < 0, to
(krpap)™t > +1 in the strong-coupling (BEC) regime
when ar > 0, across the unitary limit (krpapr)™' = 0
when |ar| diverges [6]. In this context, the LPDA equa-
tion recovers both the GL equation in the BCS limit close
to T, and the Gross-Pitaevskii (GP) equation in the BEC
limit at low temperature HE] In addition, in the pres-
ence of a steady supercurrent, in Eq. () one identifies
A(r) = —Qp where the wave vector Qg contributes the
phase 2Qq - r to the gap parameter A(r) in a homoge-
neous environment [2].

When solving numerically the LPDA differential equa-
tion in the presence of a Josephson barrier, in Ref. HE]
the imaginary part of the LPDA equation (IJ) was con-
veniently replaced by the constraint for the supercurrent
to be everywhere uniform. To satisfy this constraint, an
additional local phase 2¢(r) adds to 2Qq - r, whose spa-
tial profile acts to compensate for the local variation of
the magnitude |A(r)| close to the barrier. Correspond-
ingly, the expressions for the local density and current

read [14]:
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Here, 3 = (kgT)~! is the inverse temperature (kg be-
ing the Boltzmann constant),  a positive infinitesimal,
m the fermion mass, w, = (2n + 1)7/B (n integer)
a fermionic Matsubara frequency m], and k a three-
dimensional wave vector. In addition, Gi1(k,w,;q|r) is
the diagonal (“normal”) single-particle Green’s function
in the superfluid phase M], which has now to be consis-
tently obtained in the presence of the supercurrent such
that @ = Qo + V¢(r) in Egs. @) and @) (where the im-
plicit dependence on r originates from the barrier) ﬂﬂ]

In the LPDA approach of Ref. [18], the Green’s func-
tion Gq1 was taken at the mean-field level. As a conse-
quence, the results obtained therein cannot confidently
be extended to the BEC side of the crossover, especially
at finite temperature. Here, we go beyond mean field and
include pairing-fluctuation corrections in the expression
of Gy, in order to span the whole BCS-BEC crossover
successfully. To this end, we resort to the t-matrix ap-
proximation for the self-energy in the superfluid phase, in
the form introduced in Ref. |[17] but now modified so as to
account for the presence of a supercurrent. Once this new
expression of G1; (obtained in Ref. [14] and also reported
in Appendix [A]) is utilized in Eqgs. ) and (), the LPDA
approach of Ref. [16] evolves into the (modified) mLPDA
approach as proposed in Ref. ﬂﬂ] At the same time, the
beyond-mean-field value of the chemical potential cor-
rectly ranges from the Fermi energy Er = k%/(2m) in
the BCS limit to (half) the binding energy of the dimers
that form in the BEC limit [6].

The t-matrix approximation was originally considered
by Galitskii [22] for a repulsive dilute Fermi gas with
krap < 1, by summing a whole series of ladder diagrams
to replace the strength of the (contact) inter-particle in-
teraction by the scattering length ap > 0. Soon af-
ter, Gork’ov and Melik-Barkhudarov (GMB) applied this
treatment to the case of an attractive inter-particle in-
teraction for which arp < 0, albeit still in the BCS limit
where krlap| < 1 [23]. More recently, Nozieres and
Schmitt-Rink extended to the whole BCS-BEC crossover
the range of validity of this (non-self-consistent) ¢-matrix
approximation for an attractive Fermi gas, although only
in the normal phase above T, [24]. Several degrees of
self-consistency for the t-matrix in the normal phase have
since been considered and compared with each other [25].
Extensions of the t-matrix in the superfluid phase be-
low T. have also been implemented, in both partially
self-consistent, [17] and fully self-consistent [26] versions.
Here, we adopt the t-matrix approach of Ref. ﬂﬂ], also
because it fits well with the beyond-t-matrix project, that



was set up for a homogeneous superfluid in Ref. ﬂﬁ] and
preliminary extended to the presence of inhomogeneous
environments in Ref. [14].

The LPDA differential equation () can be solved with
reasonable numerical efforts even in the presence of non-
trivial geometrical constraints in which the fermionic su-
perfluid is embedded. Here, we describe the experimental
geometry set up of Refs. m, |E], which is utilized to ob-
tain the numerical results presented in Sec. [Vl

IIT. GEOMETRICAL CONSTRAINTS

In addition to a reliable account of the dynamics of
pairing fluctuations in terms of the theoretical approach
described above, what is needed for a correct interpre-
tation of the experimental results of Refs. [12, [13] is a
detailed inclusion of the geometrical constraints there
involved. The experimental geometry utilized in these
references is conveniently summarized in Fig. [l which
provides details of the atomic cloud, the contour map of
the number density, and the density profiles both in the
absence and in the presence of the Josephson barrier. In
the following, we shall refer to this figure when identify-
ing the inhomogeneous environment in which the Fermi
superfluid is embedded.

Specifically, the experimental geometry of Refs. ﬂﬂ, |E]
is reproduced schematically in Fig.[I[(a), where an atomic
cloud initially with a strongly elongated ellipsoidal shape
(purple) is affected by the raising of two walls (dark blue)
near its edges (thus making the ellipsoid to almost resem-
ble a cylinder) and of a barrier (light blue) at the center.
Both the trap and the barrier contribute to the external
potential Vot (r) that enters the local chemical potential
w(r) = p — Vgt (r). In addition, Figs. D(b) and (c) show
the contour maps of the ensuing number density profiles,
respectively, at the positions of the walls (red circle) and
at the barrier center (green circle), thus showing how the
presence of the barrier strongly reduces the density lo-
cally. Finally, Fig. [[l(d) reports, at the left the density
profile integrated along the y coordinate in the absence
of the barrier, at the center the shape of the experimental
barrier, and at the right the corresponding density profile
in the presence of the barrier centered at z = 0, shown
for symmetry only along the positive side of the barrier
(these plots cover only 1/7 of the distance from the bar-
rier center to the wall at positive x, where the density
profiles recover their asymptotic values). All these pro-
files are calculated by the mLPDA approach of Ref. ﬂﬂ]

The trapping potential of Fig. [[a) has the standard
form of an anisotropic harmonic potential

1
Virap (@, 2) = 5m (wga” +wiy” +w22%) o (4)

with experimental values wy ,, , = 27(12,165,140)H z in
Ref. [12] and wy . = 27(17,300,290)H 2z in Ref. Nﬁ] In
both cases w, < wy, ~ w,, such that the particle density
acquires the cigar-shaped form shown in Fig. [Ii(a).
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FIG. 1. (a) Atomic cloud (purple) with two walls (dark blue)
near its edges and a barrier (light blue) at its center. Contour
maps of the number density, (b) at the position z of the wall
(red circle) and (c) at the barrier center (green circle). (d)
Left: Density profile in the absence of the barrier. Center:
Typical shape of the barrier here considered. Right: Density
profile in the presence of the barrier.

In addition, in the above experiments two walls where
raised at positions +z along the major axis of the ellip-
soid (as shown in Fig.[d(a)), where kbx,, = 187.1 [12] and
kt.xy = 253.3 ﬂﬁ] in units of the trap Fermi wave vec-
tor kb = \/2mFE?%, associated with the trap Fermi energy
Bt = wo(3N)/3, where wy is the average trap frequency
and N the total number of fermionic (°Li) atoms before
the raising of the walls (we set i = 1 throughout).

As a consequence, in both cases the total external po-
tential, acting on the fermionic atoms before the subse-
quent raising of the Josephson barrier, can be taken of
the form:

‘/cxt (I; Y, Z) = ‘/trap(-rv Y, Z)

+ 12 % 10°EL {0](kh (v — 2)] + 0]—(Ko(z + 24)]} -

Here, the pre-factor multiplying the unit step functions is
chosen large enough that the atoms cannot leak through
the walls. In this way, the total number of fermionic
trapped atoms is reduced from N = 2.6 x 10° m, @]
and N = 3.0 x 10° [13,[27] before the raising of the walls,
to Ny = (1.0 = 1.4) x 10° [12, 27] and Ny, = 1.6 x 10°
[13,27] after the raising of the walls. These values of Ny,



are reported in Figs. Bl and @ below.

Finally, a Josephson barrier, raised at the center of
the major axis of the ellipsoid (cf. Fig. [Ild)), adds to
Vext (2, y,2) of Eq. (). This barrier is Gaussian along z,
uniform along y, and decays with a linear power law for
large z:

Vi .00 = o(2) 0 (<2 ) (@

with
Vo
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In the experiments, the three parameters (Vp,zg,wo)
take the following values: Vp/E%L = (0.38,0.455,0.53)
[12] (corresponding to the panels of Fig. B below) and
Vo/EL = 0.411 [13]; kb2 = 14.24 [12] and kb2 = 26.07
I; ktawg = 2.54 [12] and ktwe = 3.44 [13].

IV. JOSEPHSON CONDITIONS

We now consider the specific treatment of the Joseph-
son effect, whereby a steady current impinges on the fixed
barrier of Fig. [[(d), say, from negative x.

To mimic what occurs in the experimental setups of
Refs. ﬂﬁ, ], where the atomic cloud is at rest and the
barrier steadily moves across it, we impose the condition
that no current flows in the transverse (y and z) direc-
tions. We have obtained this information from an in-
dependent numerical simulation performed in the BEC
limit of the crossover with the time-dependent Gross-
Pitaevskii equation @], whereby the current flow lines
are seen not to bend away from the longitudinal (z) axis.
With this provision, the current flow can be treated as
locally uniform for given values of the transverse coor-
dinates y and z. This enables us to apply the methods
developed in Ref. ﬂﬁ] to deal with the Josephson effect
for a system which is fully homogeneous in the direc-
tions transverse to the current flow (with the essential
difference, however, that we now include explicitly pair-
ing fluctuations over and above the approach of Ref. [18]).

In practice, owing to the negligible value of the density
in the outer edge of the truncated ellipsoid of Fig. [(a),
we further neglect the slight transverse bulge and assim-
ilate the truncated ellipsoid to a cylinder. This cylinder
is then partitioned into a bundle of (at most 441) tubular
filaments, in each one of which the approach of Ref. [18] is
locally implemented, with boundary conditions specified
by the local values of the gap parameter and density at
the positions of the walls in Fig. [[{a). Finally, by fixing
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FIG. 2. The local Josephson characteristics for the current
density are shown for three filaments with transverse coordi-
nates y and z, with the trap coupling parameter (k}ap)fl =
—0.52 and temperature T/T}. = 0.06 where T}, is the trap
Fermi temperature corresponding to E%. The inset shows
the corresponding global Josephson characteristic for the to-
tal current. The local jr = kr(zw,y,2)n(zw,y,z)/m nor-
malizes the current density j for each filament (m being the
fermion mass), while the global I = k% [dydzn(zw,y,z)/m
normalizes the total current I (needed when comparing with
the experimental data).

the difference §¢ of the phase of the gap parameter be-
tween the walls in Fig. Ii(a), which is due to the presence
of the barrier, the “local” Josephson characteristics j vs
0¢ for the current density are calculated for each tubular
filament and then integrated over all filaments across the
transverse directions. This procedure yields eventually
the “global” Josephson characteristic 1(d¢) for the total
current [.

A typical example of the above procedure is shown in
Fig. [ for the value —0.52 of trap coupling parameter
(kt.ap)~1 on the BCS side of the crossover and the tem-
perature T'/TF = 0.06, with the barrier corresponding to
Fig. Bl below. Three different local Josephson character-
istics are shown, corresponding to the filaments specified
by the transverse coordinates y and z reported in the
figure, which have been selected in order to differentiate
the corresponding Josephson characteristics as much as
possible. In addition, the dashed lines correspond to the
universal fitting function for the Josephson characteris-
tics given by Eq. (14) of Ref. [18], which is of help in
drawing the “right” branches of the Josephson charac-
teristics (known to be unstable - cf. Sec. V of Ref. [4]).
Recall that, not only the heights and widths of the bar-
rier, but also the local Fermi wave vectors associated with
the local density n (2, y, z) are different for each filament
(where xy, is the coordinate specified in Fig.[Il(a) above).
Changes of these quantities from an inner to an outer fil-
ament are expected to have different effects on the shape
of the local Josephson characteristics.

As it was shown in Fig. 5 of Ref. HE], where the effects
on the Josephson characteristics due to changes of the
barrier height and width were disentangled from each



other, an increase of either the barrier height or width
shifts the maximum of the Josephson characteristics to
the right, while changes of the Fermi wave vector do not
provide clear indications to where this maximum would
shift. This is even more so in the present trapped case,
where the values of the local Fermi wave vector and the
barrier height are maximum at the trap center and de-
crease away from it, while the width of the barrier is min-
imum at the trap center and increases away from it. To
the extent that it is not possible to disentangle these ef-
fects from each other, only the overall shape of the global
Josephson characteristic for the total current is physically
meaningful. This global Josephson characteristic is what
is shown in the inset of Fig.

V. COMPARISON WITH EXPERIMENTS

Quite generally, an important piece of information that
can be extracted from the Josephson characteristics is
the value of the critical current I., which corresponds to
the maximum value of the supercurrent that is able to
flow across a given barrier. The experiments reported
in Refs. ﬂﬁ, ﬁ have obtained values of I., respectively,
at low temperature for several barriers and various cou-
plings across the BCS-BEC crossover and as a function
of temperature at unitarity. We are now in a position to
compare in detail the experimental values for the critical
current given in Refs. ﬂﬁ, |E] with our numerical results
for I., obtained by calculating the Josephson character-
istics for the total current which adds the contributions
from the local currents carried by the tubular filaments
as described above. This comparison will enable us to
obtain a stringent test on our theoretical approach.

Figure [3] shows an extensive comparison between the
coupling dependence of the critical current I, obtained
experimentally in Ref. ﬂﬂ] and theoretically by solving
the LPDA and mLPDA equations, that is, without and
with the inclusion of beyond-mean-field pairing fluctua-
tions, respectively [29]. Here, we have followed the con-
vention of Ref. [12] and identified the coupling in terms of
the Fermi wave vector kb, = /2mE% associated with the

trap Fermi energy E% = wo(3N)'/?3, where N is the total
number of atoms and wy the average trap frequency as-
sociated with the ellipsoidal-shaped atomic cloud before
the walls are raised (cf. Fig. Il above). Correspondingly,
I% is the global current defined in terms of k% and the
total particle density integrated over the spatial direc-
tions transverse to the current flow (cf. Fig. 2l above)).
This comparison is reported at low temperature for three
barriers with increasing height and for several couplings
from the BCS to the BEC side of unitarity.

The overall agreement, obtained over a quite extended
range of coupling, between the results of the mLPDA
calculations and the experimental data appears rather
remarkable. It points out, in particular, the crucial role
played by pairing fluctuations in the crossover region,
thereby explicitly validating the mLPDA approach over
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FIG. 3. Critical current I. (in units of of I%) vs the trap cou-
pling (k%ar)~!, for three barriers with the same width and
different heights. The experimental data from Ref. [1d] (dots
with error bars) are compared with the theoretical results ob-
tained by solving both LPDA and mLPDA equations. The
theoretical results are obtained for different temperatures and
different values of the total number of atoms N, contained
in the atomic cloud after raising the walls, which correspond
to the experimental ranges of temperature and Ny , ]
Consideration of these ranges gives rise to the shaded areas
spanned by the numerical calculations. On the BEC side,
where the GP equation applies @], results obtained with
bosonic scattering lengths ap = 2.0ar (magenta triangles)
and ap = 0.6ar (green triangles) are reported. In panel (a),
the filled and empty black diamonds correspond to a simpli-
fied version of the extended GMB approach (see the text).

wide physical conditions. Figure Bl also shows the re-
sults obtained by an independent calculation with the
GP equation for composite bosons in the BEC limit of the
crossover, to which both the LPDA and mLPDA equa-
tions reduce in this limit, by considering either the exact
value ap = 0.6ar of the bosonic scattering length ﬂ&_ﬂ] or
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FIG. 4. Temperature dependence (in units of the trap critical
temperature 77) of the critical current I. (in units of E%) at
unitarity. The theoretical results obtained by the mLPDA
approach with Ny, = 160k (green diamonds) are compared
with the experimental data, taken both from the main text
(blue dots with error bars) and from the supplemental mate-
rial (red squares with error bars) of Ref. ﬂﬁ] The inset shows
the critical velocity of superfluid “He (normalized to its zero-
temperature value), as extracted from Fig. 12 of Ref. [36].

its Born approximation value ap = 2.0ar [30].

A distinctive feature of many-body diagrammatic ap-
proaches (like the one we adopt here) is that, being mod-
ular in nature, they are amenable to improvement by
adding diagrammatic terms relevant to the physics of
the problem at hand (provided, of course, they can be
implemented with reasonable numerical efforts). In the
present context, these diagrams are related to the ex-
tended GMB approach of Ref. ﬂﬁ], whose importance has
recently been certified in different experimental contexts,
both at low temperature in the superfluid phase @] and
at the critical temperature ﬂﬁ] Full implementation of
the extended GMB approach, however, would not only
require us to include in the LPDA equation () (a local
version of) the bosonic-like self-energy terms identified
in Ref. [15], but also to calculate them in the presence
of a supercurrent. This program exceeds the objectives
of the present work. Nevertheless, we give here a proof-
of-principle for the role played by the extended GMB
approach in the present context, by adopting the simpli-
fied procedure described in Sec. IV-D of Ref. [14]. The
ensuing numerical results are shown in Fig. Bla) by the
position of the black filled and empty diamonds, which
delimit the experimental data better than the original
red filled and empty diamonds obtained by the mLPDA
approach, thus improving the comparison with the ex-
periment.

Finally, Fig. Ml compares the temperature dependence
of the critical current I, obtained experimentally at uni-
tarity in Ref. [13] with the theoretical results of the
mLPDA equation. This comparison is shown over the full
temperature range, from low temperature up to the trap
critical temperature T!. Here, for internal consistency

the theoretical value of T? is calculated like in Ref. [34],
while, lacking a reliable experimental estimate for T, the
temperatures of the experimental data are normalized
to the value of T obtained by the fully-self-consistent
t-matrix calculation of Ref. [35] Even in this case, the
agreement between the experimental data and the re-
sults of the mLPDA approach appears extremely good.
A feature to be emphasized is the linear trend of the
theoretical results, which appears to be consistent with
the experimental data. In Ref. ﬂﬂ] this linear behavior
is shown to be intermediate between a (slightly) convex
behavior in the BCS regime and a (slightly) concave be-
havior in the BEC regime. In addition, the inset of Fig. @]
shows that a linear temperature behavior is shared by the
critical velocity of superfluid He, as taken from Fig. 12
of Ref. [36]. The similarity between the behavior of the
unitary Fermi gas and *He has been repeatedly noted
over the years, ranging from the superfluid fraction ﬂﬁ]
to the sound propagation [3§].

VI. CONCLUSIONS

In this article, we have considered the so far unsettled
issue of combining the many-body dynamics of beyond-
mean-field pairing fluctuations, which is relevant to a
fermionic superfluid undergoing the BCS-BEC crossover,
with the presence of nontrivial geometrical constraints
that may substantially affect the superfluid flow. In
the case of the Josephson effect, we have succeeded in
dealing with these two aspects on the same footing, by
implementing the novel mLPDA approach developed in
Ref. [14]. The favorable comparison of our numerical re-
sults, with the recently available experimental data in
ultra-cold Fermi gases under a variety of circumstances,
should accordingly be regarded as a stringent test for the
validity of the approach of Ref. ﬂﬂ] In addition, this
approach, being based on the many-body Green’s func-
tions theory, offers further perspectives for improvement,
by adding diagrammatic contributions over and above
those explicitly considered in Ref. ﬂﬂ] A preliminary
test along these lines has already provided promising re-
sults.
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Appendix A: A SHORT SUMMARY ABOUT
THE LPDA and mLPDA APPROACHES

The LPDA differential equation for the (complex) gap
parameter A(r) was introduced in Ref. |16]. Tt reads:

V2 Alr)
— =
4m m

(A1)
where m is the fermion mass, ap the fermionic scattering
length, A(r) the vector potential, and

m
4WGF

dk (1—2fr(E2(Kr)) m
R R T

and

0 = 5 [ i {3 (1~ 2r(EA )]

E(klr) Ofr(E2(K|r))

T EMn?  0BA M) (A3)
k-A(r) 1 Ofp(EA(K|r)) }
A(r)? E(kr) 0EA(kr) J°

In these expressions, {(k|r) = % — a(r), Eklr) =
VEKEPZ AP, and E(klr) = E(klr) — <25,
where the local chemical potential fi(r) = p — Vexe(r) —
A(r)?/(2m) accounts for the presence of an external po-

tential Vixe(r).

The LPDA equation () has to be supplied by the ex-
pressions for the local number density n(r) and current

gflf(ka Wn; q) = .

density j(r). They read [16]:

A r
)= [ o {1~ iy [ 22000
(A4)
and
i) = - (Volr) - A)) nlr)
w2 [ (B M) . (a9

In these expressions,

ke 1

EMKIE) = o = ) + 5 (Vo) — A(K)° |

EA(Kr) = (/€A(KIr)2 + AP,

2m

BAKE) = BA(K)+ < (Vo(r) ~ A)  (A6)
where now p(r) = i — Voxt (r) contains only the external
potential and 2¢(r) is the phase of the gap parameter
such that A(r) = |A(r)]e?2?(),

For the Josephson effect of concern in the present ar-
ticle, A(r) — —Qp where Qg accounts the superfluid
flow before a barrier is raised to split the fermionic su-
perfluid in two (left and right) parts [18]. In this case,
o(r) = Qo - r + ¢(r) in the phase of the gap parameter,
where ¢(r) at the right side is now the additional phase
contributed by the presence of the barrier.

The expressions (A4) and (AD) hold within a mean-
field decoupling. They can, however, be modified to in-
clude pairing fluctuations (pf) beyond mean field. This
can conveniently be done by introducing a local version
GPH (K, wn; qlr) of the diagonal (normal) single-particle
Green’s function G (k,wy;q), which has, in turn, to ac-
count in a consistent way for the presence of a superfluid
flow specified by the wave vector q. This Green’s func-
tion reads [14]:

1

iw, —E(k+q) — &Y

with the diagonal (normal) single-particle self-energy

iQ 1

G?i(kvwn;q):_/m E ZFll(Qaﬂu;q) ginlf(Q - kuQV - wn;q) .

In these expressions, &(k) = k?/(2m) — u, B = (kgT)~*
is the inverse temperature (kp being the Boltzmann con-
stant), w, = (2n+1)7/8 (n integer) and Q, = 2vn /S (v
integer) are fermionic and bosonic Matsubara frequen-
cies Nﬁ], respectively, and Aq is the associated magni-

{(ka Wn; q) -

A3
iwn+€(k—q)+6P (k,—wn;q)

(A8)

tude of the gap parameter. In addition, I'11(Q,Q.,;q)
is the diagonal element of the particle-particle ladder in
the broken-symmetry phase, which has also to take into
account the presence of a superfluid flow ﬂﬂ]

With a suitable prescription to obtain from the form



@D of G (k,wy; q) its local version G¥! (k,w,; q|r) (for
whose details we refer to the companion article &]), the
expressions for the local particle density and current that
include pairing fluctuations beyond mean field read:

2 Wnn dk 1% .
n(r) = 3 ; e /(2#)3 Ghi(k,waiqlr)  (A9)
= (Qo + Vo(r) n(r)

2 Ak k
+ 2 > ezwnﬂ/(27r>3 = GPF (k, wn; qlr) (A10)

71 being a positive infinitesimal. These expressions reduce

to the LPDA results (A4)) and (AL when the self-energy
(A3 is set to zero in the expression (A7) of the Green’s
function.

The (modified) mLPDA approach, introduced in
Ref. ﬂﬂ] and utilized in the present article to account for
the experimental results of Refs. [12, [13], is obtained by
supplementing the LPDA differential equation (I) with
the expressions (A9) and (AT0) for the local particle den-
sity and current, in the place of the expressions (A4)) and
(AR) that were originally used in the LPDA approach in
Ref. [16].

[1] M. Tinkham, Introduction to Superconductivity (Mc-
Graw Hill, New York, 1975).

[2] P. G. de Gennes, Superconducting of Metals and Alloys
(Benjamin, New York, 1966).

[3] L. P. Gor’kov, On the energy spectrum of superconduc-
tors, Sov. Phys. JETP 34, 505 (1958) [Zh. Eksp. Teor.
Fiz. 34, 735 (1958)].

[4] A. Spuntarelli, P. Pieri, and G. Calvanese Strinati, So-
lution of the Bogoliubov-deGennes equations at zero tem-
perature throughout the BCS-BEC crossover: Josephson
and related effects, Phys. Rep. 488, 111 (2010)

[5] S. Simonucci, P. Pieri, and G. Calvanese Strinati, Tem-
perature dependence of a vortex in a superfluid Fermi gas,
Phys. Rev. B 87, 214507 (2013).

[6] G. Calvanese Strinati, P. Pieri, Gerd Ropke, P. Schuck,
and M. Urban, The BCS-BEC crossover: From ultra-
cold Fermi gases to nuclear systems, Phys. Rep. 738, 1
(2018).

[7] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Density-
functional theory for superconductors, Phys. Rev. Lett.
60, 2430 (1988).

[8] P. RiBmann and S. Bliigel, Density functional
Bogoliubov-de Gennes analysis of superconducting Nb
and Nb(110) surfaces, Phys. Rev. B 105, 125143 (2022),
and references therein.

[9] A. Bulgac, Local-density-functional theory for superfluid
fermionic systems: The unitary gas, Phys. Rev. A 76,
040502 R (2007).

[10] A. Boulet, G. Wlazlowski, and P. Magierski, Local en-
ergy density functional for superfluid Fermi gases from
effective field theory, Phys. Rev. A 106, 013306 (2022).

[11] G. Wlaztowski, K. Xhani, M. Tylutki, N. P. Proukakis,
and P. Magierski, Dissipation mechanisms in fermionic
Josephson junction, Phys. Rev. Lett. 130, 023003 (2023).

[12] W. J. Kwon, G. Del Pace, R. Panza, M. Inguscio, W.
Zwerger, M. Zaccanti, F. Scazza, and G. Roati, Strongly
correlated superfluid order parameters from dc Josephson
supercurrents, Science 369, 84 (2020).

[13] G. Del Pace, W. J. Kwon, M. Zaccanti, G. Roati, and F.
Scazza, Tunneling transport of unitary fermions across
the superfluid transition, Phys. Rev. Lett. 126, 055301
(2021).

[14] L. Pisani, V. Piselli, and G. Calvanese Strinati, Inclusion
of pairing fluctuations in the differential equation for the
gap parameter for superfluid fermions in the presence of

nontrivial spatial constraints, Phys. Rev. B 108, 214503
(2023).

[15] L. Pisani, P. Pieri, and G. Calvanese Strinati, Gap equa-
tion with pairing correlations beyond the mean-field ap-
prozimation and its equivalence to a Hugenholtz-Pines
condition for fermion pairs, Phys. Rev. B 98, 104507
(2018).

[16] S. Simonucci and G. Calvanese Strinati, Equation for the
superfluid gap obtained by coarse graining the Bogoliubov-
deGennes equations throughout the BCS-BEC' crossover,
Phys. Rev. B 89, 054511 (2014).

[17] P. Pieri, L. Pisani, and G. Calvanese Strinati, BCS-BEC
crossover at finite temperature in the broken-symmetry
phase, Phys. Rev. B 70, 094508 (2004).

[18] V. Piselli, S. Simonucci, and G. Calvanese Strinati,
Josephson effect at finite temperature along the BCS-
BEC crossover, Phys. Rev. B 102, 144517 (2020).

[19] A. L. Fetter and J. D. Walecka, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York, 1971).

[20] J. R. Schrieffer, Theory of Superconductivity (Benjamin,
New York, 1964).

[21] The only place where V¢(r) does not appear is in the lo-
cal expression of the particle-particle ladder (cf. Ref.[14]).

[22] V. M. Galitskii, The energy spectrum of a non-ideal
Fermi gas, Sov. Phys. JETP 7, 104 (1958) [Zh. Eksp.
Teor. Fiz. 34, 151 (1958)].

[23] L. P. Gorkov and T. M. Melik-Barkhudarov, Contribution
to the theory of superfluidity in an imperfect Fermi gas,
Sov. Phys. JETP 13, 1018 (1961) [Zh. Eksp. Teor. Fiz.
40, 1452 (1961)].

[24] P. Nozieres and S. Schmitt-Rink, Bose condensation in
an attractive fermion gas: From weak to strong coupling
superconductivity, J. Low Temp. Phys. 59, 195 (1985).

[25] M. Pini, P. Pieri, and G. Calvanese Strinati, Fermi
gas throughout the BCS-BEC crossover: A comparative
study of t-matrix approaches with various degrees of self-
consistency, Phys. Rev. B 99, 094502 (2019).

[26] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger,
Thermodynamics of the BCS-BEC' crossover, Phys. Rev.
A 75, 023610 (2007).

[27] G. Roati, private communication.

[28] S. Simonucci, V. Piselli, L. Pisani, and G. Calvanese Stri-
nati, Josephson effect with a realistic barrier in the BEC
limit of an ultra-cold Fermi gas, unpublished.

[29] In Fig. 26 in Ref. [1§], the rescaling of the theoretical re-



(30]

(31]

(32]

sults by the factor Kk = E}/Ej.);7 between the trap Fermi
energy F% and the value E% at the trap center as drawn
from the experimental values from Ref. [19], was erro-
neously taken like s 2 instead of 2. Correcting for this
mistake would worsen the agreement shown in that fig-
ure between the experimental values and the results of
the LPDA calculation. Here, this mistake is automati-
cally corrected by relying on our independent calculation
of the density profile in the trap, that no longer requires
use of the above rescaling.

P. Pieri and G. Calvanese Strinati, Derivation of the
Gross-Pitaevskii equation for condensed bosons from the
Bogoliubov—de Gennes equations for superfluid fermions,
Phys. Rev. Lett. 91, 030401 (2003).

I. V. Brodsky, M. Y. Kagan, A. V. Klaptsov, R.
Combescot, and X. Leyronas, Fzxact diagrammatic ap-
proach for dimer-dimer scattering and bound states of
three and four resonantly interacting particles, Phys.
Rev. A 73, 032724 (2006).

H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen,
G. M. Bruun, T. Lompe, and H. Moritz, Fxcitation spec-
trum and superfluid gap of an ultracold Fermi gas, Phys.
Rev. Lett. 128, 100401 (2022).

33]

(34]

(35]

(36]

37]

(38]

M. Link, K. Gao, A. Kell, M. Breyer, D. Eberz, B. Rauf,
and M. Kohl, Machine learning the phase diagram of
a strongly interacting Fermi gas, Phys. Rev. Lett. 130,
203401 (2023).

A. Perali, P. Pieri, L. Pisani, and G. Calvanese Strinati,
BCS-BEC crossover at finite temperature for superfluid
trapped Fermi atoms, Phys. Rev. Lett. 92, 220404 (2004).
M. Pini, P. Pieri, M. Jager, J. Hecker Denschlag, and G
Calvanese Strinati, Pair correlations in the normal phase
of an attractive Fermi gas, New J. Phys. 22, 083008
(2020).

E. Varoquaux, Anderson’s considerations on the flow of
superfluid helium: Some offshoots, Rev. Mod. Phys. 87,
803 (2015).

L. A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L.
Pitaevskii, and S. Stringari, Second sound and the super-
fluid fraction in a Fermi gas with resonant interactions,
Nature 498, 78 (2013).

C. C. N. Kuhn, S. Hoinka, I. Herrera, P. Dyke, J. J.
Kinnunen, G. M. Bruun, and C. J. Vale, High-frequency
sound in a unitary Fermi gas, Phys. Rev. Lett. 124,
150401 (2020).



