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Shear viscosity expression for a graphene system in relaxation time approximation
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We have gone through the detailed microscopic calculation of the shear viscosity of a 2-dimensional
graphene system in the relaxation time approximation-based kinetic theory framework. After get-
ting its final expressions, we compared it with the shear viscosity expressions of other possible
2-dimensional as well as 3-dimensional nonrelativistic and ultra-relativistic fluid systems. The aim
of the comparison is to reveal - how their different one-body dispersion relations affect their many-
body fluid properties like shear viscosity and the viscosity to entropy density ratio. It is also aimed
to reveal the 3-dimension to the 2-dimension transformation of their mathematical structures. We
have numerically explored the differences in their order of magnitude and dependence on thermody-
namical parameters – temperature and chemical potential. Marking two thermodynamical domains
– Dirac fluid and Fermi liquid – for a 2-dimensional graphene system, we have noticed that shear
viscosity, entropy density as well as their ratios decrease toward saturated values when one goes from
Fermi liquid to Dirac fluid domain. When one shifts from mili-electron volt scales of temperature
and chemical potential in condensed matter physics location to their Mega-electron volt scales in
high energy physics location, then the same results may be expected for hot quark matter case,
where the transition from the neutron star to early universe domains may be considered as Fermi
liquid to Dirac fluid transition.

I. INTRODUCTION

It is known that the mean free path of charge carriers in
metal is generally temperature dependent. The scatter-
ing between electron and lattice imperfections (or “dis-
order”) normally dominates at low temperatures, while
electron-phonon scatterings dominate at high temper-
atures. Concerning these two scattering mechanisms,
another possible scattering is electron-electron scatter-
ing processes, which are generally less effective in many
conventional metals. However, its opposite condition is
possible in some specific systems under specific condi-
tions, where one can apply the electron hydrodynamic
(eHD) theory. For a long time, condensed matter physi-
cists did not aware of such an opposite phase in mate-
rials. Therefore, they used to give less attention to the
possibilities of the hydrodynamics behavior of electrons.
After the experimental observations of eHD in Refs. [1–
18] , the situation has drastically changed in recent years.
See Refs. [19–21] for recent reviews. It is graphene [1–
14], which is identified as the best known such material,
where electron hydrodynamics can be observed. Apart
from these recently discovered hydrodynamic properties
of electrons in graphene, it was quite famous for its mass-
less nature, concluded from the proportional relation be-
tween its energy and momentum. Due to the propor-
tional relation between energy and momentum, electron
motion in graphene will not be Galilean-invariant. On
the other hand, the relativistic effect of electrons can not
also be expected because its velocity (vg ≈ 106 m/s) is
not very close to the speed of light (c ≈ 3 × 108 m/s).
Hence, we cannot claim the Lorentz-invariant property
of electron motion. It opens “unconventional” hydro-
dynamics [20] as neither nonrelativistic hydrodynamics
(NRHD) nor relativistic hydrodynamics (RHD) can be
applicable. We may call this “unconventional” hydrody-
namics as Graphene hydrodynamics (GHD) by imposing

that the graphene (G) case has a unique dispersion or
energy-momentum relation and is different from the non-
relativistic (NR) and relativistic (R) or ultra-relativistic
(UR) cases. Now, whenever fluid dynamics or hydro-
dynamics comes into the picture, then one dissipation
coefficient like the shear viscosity of that fluid, becomes
a very important quantity, which is not at all appeared
in most of the metals or other condensed matter sys-
tems. The present work is aimed at the microscopic
calculation of the shear viscosity of this electron fluid
in a graphene system, which may be called in short as
graphene fluid (GF). When one microscopically calcu-
lates the expression of the shear viscosity of GF, it will
be different from its standard expression for nonrelativis-
tic fluid (NRF) as well as for relativistic fluid (RF) or
ultra-relativistic fluid (URF). So far, from the best of our
knowledge, experimental measurement of this shear vis-
cosity coefficient for GF is missing although experimental
community [1, 9] observed the Poiseuille’s flow pattern of
electrons in graphene, which indirectly reflects the exis-
tence of the non-zero viscosity. From the theoretical side,
we get only Refs. [22–26], where microscopic expressions
of shear viscosity have been addressed. In this context,
one can get a long list of Refs. [27–36] (and references
therein) for microscopical estimations of shear viscosity
for relativistic quark and hadronic matter, expected in
high energy heavy ion collision experiments. Grossly two
classes of frameworks - (1) Kinetic theory approach with
relaxation time approximation (RTA) [27–33] and Kubo
framework [34–36] - are adopted by the heavy ion physics
community. Both frameworks have similar structure at
the final level expressions for shear viscosity coefficients
with two main components. One carries interaction in-
formation, called relaxation time, and the remaining part
may be called as thermodynamic phase-space of shear
viscosity coefficient, which will be function of temper-
ature and chemical potential. If we analyze the shear
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viscosity expression of graphene also from Ref. [22], then
we can identify these two components. Present work has
zoomed in this structure via a systematic calculation of
this shear viscosity of GF in RTA methods and compared
with corresponding structures for NRF and URF. Here,
one of our aims is to compare the thermodynamic phase-
space component of shear viscosity coefficient for these
three cases - G, NR, and UR. After knowing the lower
bound conjecture of shear viscosity to entropy density
(η/s) as ~/(4πkB) or 1/(4π) (in natural unit) [37], sci-
entific communities are curious to know those strongly
coupled systems, which are close to that bounds. Exper-
imentally, the RF, like quark and hadronic matter, pro-
duced in high energy heavy ion collision experiments and
NRF like cold-atom systems [38] are identified as those
strongly coupled systems. On the other hand, GF may
also belong to that category according to the theoretical
prediction from Ref. [22], which is considered as reference
point for tuning our results. So, the present article will
not intend to add any new content on strongly coupled
properties, rather its main goal will intend to find the
differences among GF, NRF, URF in terms of expres-
sions and estimations of shear viscosity. We believe that
it was missing in the literature and very important to
address. The article is organized as follows. In the next
section Sec. (II), the RTA calculation of shear viscosity
η and entropy density s calculations of GF for 2D case
is addressed in detail by mentioning the other cases like
3D-GF, 3D-NR, 3D-UR, 2D-NR, 2D-UR. In Sec. (III),
the comparative results of η, s and η/s of different cases
are discussed. At the end, our findings are summarised
in Sec. (IV) with some conclusive bullet points.

II. FORMALISM

Let us start our formalism from energy-momentum
tensor (T µν), as practised for RF like quark and hadronic
matter. Here, we will go for GF calculation, so reader
should have to be careful on some particular steps, where
it is different from the RF case. Showing these differ-
ences is one of the core agenda of the present article.
Although, reader can find similarities between most of
steps of GHD of GF and RHD of RF. The T µν has two
parts - the ideal part T µν

0 , related to the knowledge of
thermodynamics and the dissipative part T µν

D , related to
the different dissipation processes. So,

T µν = T µν
0 + T µν

D . (1)

In this dynamic picture of fluid, ideal energy-momentum
tensor and electron number flow can be expressed in
macroscopic form as,

T µν
0 = ǫ

uµuν

v2g
− P

(

gµν − uµuν

v2g

)

,

Nµ
0 = n

uµ

vg
, (2)

in terms of the building blocks - energy density ǫ, pres-
sure P , number density n, fluid (element) velocity uµ

and metric tensor gµν . Here, four-velocity uµ = γg(vg, ~u)
for GHD is designed by following the four velocity struc-
ture uµ = γ(c, ~u) for RHD as done in Ref. [20]. One
can notice that speed of light c in RHD is replaced by
graphene Fermi velocity vg in GHD. So, Lorentz fac-

tor γ = 1/
√

1− u2/c2 in RHD is also converted into

γg = 1/
√

1− u2/v2g in GHD. In static limit (~u → 0),

four velocity, uµ = γg(vg, ~u) → uµ = γg(vg, 0) and

γg = 1/
√

1− u2/v2g → 1. So, Eq. (2) provides a

static electron number flow Nµ
0 ≡ n, and static energy-

momentum tensor,

T µν
0 ≡







ǫ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P






, (3)

which reflects the standard static fluid aspect like Pas-
cal’s law. The macroscopic quantities T µν

0 and Nµ
0 can

be expressed in terms of the microscopic quantities; four-
momentum (pµ) and four-velocity (vµ) of electrons as,

T µν
0 = Ns

∫

d3~p

(2π)3
pµvνf0, (4)

and

Nµ
0 = Ns

∫

d3~p

(2π)3
vµf0, (5)

where Ns = 2 is spin degeneracy factor of electron and
f0 is its Fermi-Dirac (FD) distribution function f0 =
1/{exp (β(E − µ)) + 1}. Here, β = 1/(kBT ) and µ are
the thermodynamic parameter and the chemical poten-
tial of the system, respectively. From these microscopic
expressions of the energy-momentum tensor and electron
current, given in Eqs. (4) and (5), we can write the en-
ergy density ǫ, pressure P and number density n for 2D
graphene (G) case, which is addressed briefly in next sub-
section. We follow natural unit ~ = c = kB = 1 during
the calculation.

A. Entropy density in two-dimensional Graphene

For Graphene, the dispersion relation is given by

E = pvg . (6)

The total number of fermions at any value of temperature
is given by,

N =

∫ ∞

0

D (E) dEf0, (7)

where D (E) dE is number of energy states in energy
range E to E+dE. After plugging the value of D (E) dE
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(see Appendix A) in the above Eq. (7) and f0, the total
number of electrons in graphene is,

N = Ns

2πa

(2π)
2
v2g

∫ ∞

0

E

A−1eβE + 1
dE,

where A = exp (βµ) is the fugacity and a is the area of
the system, respectively. After converting this integral
into the Fermi integral function (see Appendix B), we
get the expression of number density as

n2D
g =

N

a
=

Ns

2πv2g
f2 (A)T

2. (8)

Now from the Eq. (4), the energy density for (2D)
graphene system is,

ǫ2Dg = T 00
0 = Ns

∫

d2p

(2π)2
(E) f0. (9)

After using the graphene dispersion relation and plugging
the value of f0, we get

ǫ2Dg =
1

πv2g

∫ ∞

0

E2

A−1eβE + 1
dE (10)

and after replacing this integral in terms of Fermi inte-
gral function, the final expression of the energy density
is given by

ǫ2Dg =
Ns

πv2g
f3 (A)T

3. (11)

Now again from the Eq. (4), the pressure can be ex-
pressed as

P 2D
g = T 11

0 = Ns

∫

d2p

(2π)
2

(

E

2

)

f0, (12)

since ~px~vx ≈ |~p|√
2

|~vg |√
2
= E

2 . After solving this expression

as similar to the energy density, we get

P 2D
g =

Ns

2πv2g
f3 (A) T

3. (13)

In terms of number density, energy density, and pressure,
we can write the entropy density from the Euler thermo-
dynamic relation in 2D graphene system:

s =
S

a
=

ǫ+ P − µn

T
. (14)

After substituting the value of energy density (ǫ2Dg ), pres-

sure (P 2D
g ), and number density (n2D

g ) in Eq. (14), we get

s2Dg =
Ns

2πv2g
T 2

[

3f3 (A)−
µ

T
f2 (A)

]

. (15)

B. Shear viscosity in two-dimensional graphene

Next, let us come to dissipative part of T µν
D , where only

shear stress tensor πµν will be considered for calculating
shear viscosity coefficient (η). The detailed description of
relativistic hydrodynamics for calculating transport coef-
ficients can be found in Refs. [27, 29, 34], whose graphene
or unconventional version (neither relativistic nor non-
relativistic) is considered here. The dissipative term of
energy-momentum tensor includes shear stress πµν and
bulk pressure Π as

T µν
D = πµν +Π∆µν . (16)

Here, we have assumed Landau-Lifshitz definition of flow,
where T µν

D will be orthogonal to fluid velocity uµ, i.e.
uµT

µν
D = 0. These shear stress πµν and bulk pressure Π

have proportional relations with fluid velocity gradient
as

πµν = ηUµν ,

Π = ζUζ , (17)

where proportional constants are shear viscosity η and
bulk viscosity ζ. Their respective fluid velocity gradients
are

Uµν
η = Dµuν +Dνuµ − 2

3
∆µν∂ρu

ρ. (18)

and

Uζ ≡ ∂ρu
ρ, (19)

where ∆µν = −gµν + uµuν is projection tensor normal
to uµ and Dµ = ∂µ − uµuρ∂ρ is derivative normal to uµ.
They are designed such a way that we can get ∆µν ≡ δij

and Dµ ≡ ∂i in fluid rest frame uµ ≡ (1,~0). Usually,
greek index like µ ≡ (0, i) takes values 0 for the tempo-
ral component and i = 1, 2, 3 for the spatial component
for 3D system but here for 2D system, we will consider
µ ≡ (0, i = 1, 2) because z-component i = 3 will not be
considered. During the transition from µ-index to spa-
tial component i, one can get disspative part of energy
momentum tensor as

T ij
D = πij +Πδij

= η(∂iuj + ∂jui − 2

3
δij∇ · u) + ζδij∇ · u, (20)

which ensure that diagonal part (i = j) is linked with
bulk viscosity ζ and off-diagonal part (i 6= j) is linked
with shear viscosity η. Present work will focus only on
shear viscosity coefficients, so we will not proceed with
discussion of bulk viscosity further.
The microscopic theory describes shear stress tensor in

terms of particle velocity v and momentum p as,

πµν = Ns

∫

d2~p

(2π)2
pµvνδfη, (21)
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where we are assuming that equilibrium distribution
function f0 gets a small deviation δf , which can be con-
sidered as first-order Taylor series expansion equilibrium
distribution function:

δf ∝ ∂f0
∂E

= φη

∂f0
∂E

= AµνUµν

∂f0
∂E

. (22)

Considering the relation vν = (E/p2)pν , macroscopic
πµν = ηUµν and microscopic Eq. (21) can be connected
as,

πµν = η Uµν

= Ns

∫

d2~p

(2π)2

(

E

p2

)

pµpνAαβUαβ

∂f0
∂E

. (23)

The four-momentum of an electron can be defined as
pµ = (E/vg, ~p) in unconventional notation. Considering
energy as a static limit of pνuν , we can write FD as,

f0 =
1

exp
(

pνuν−µ(x)
T (x)

)

+ 1
. (24)

Here, we have to consider the local thermalization con-
cept, where thermodynamical quantities T (x), µ(x) as
well as fluid velocity uµ(x) are assumed to be functions
of x ≡ xµ = (x0, xi). To find the unknown coefficient
Aαβ , we will use Boltzmann transport equation (BTE)

∂f

∂t
+ vµ

∂f

∂xµ
+ Fµ ∂f

∂pµ
=

(

∂f

∂t

)

Col

, (25)

where
(

∂f
∂t

)

Col
is the collision term that leads the sys-

tem out of equilibrium. Fµ is represented as all external
forces, and vµ is the velocity of the fluid particles. Us-
ing velocity expression in terms of E and p for graphene,
vµ = ( E

p2 )p
µ, we get:

(

E

p2

)

pµ∂µf =

(

∂f

∂t

)

Col

, (26)

where we ignore ∂f
∂t

and Fµ ∂f
∂pµ as they will not con-

tribute in shear dissipation. Using the Relaxation Time
Approximation (RTA) method, the collision term can be
considered as,

(

∂f

∂t

)

Col

= −δf

τc
, (27)

where τc is the relaxation time. Putting f ≈ f0 in the
left-hand side (lhs) of BTE,

(

E

p2

)

pµ∂µf0 = −δf

τc
. (28)

Using the Eq. (24), the lhs of the above Eq. (28) can be
expanded as,
(

E

p2

)

pµ∂µf0 = −f0(1− f0)
[

(

E

p2

)

pµpν

T
∂µuν(x)

]

= −f0(1− f0)

(

E

p2

)

pµpν

2T
(∂µuν + ∂νuµ)

= −f0(1− f0)

(

E

p2

)

pµpν

T
Uµν , (29)

and right hand side (rhs) of Eq. (28) can be written as

−δf

τc
=

f0(1− f0)

T

1

τc
AµνUµν . (30)

So, equating lhs and rhs of Eq. (28), we get Aµν =
(− E

p2 p
µpντc). Transforming temporal+spatial to only

spatial index, we can write the shear stress tensor as

πij = ηUij ,

= Ns

∫

d2~p

(2π)2

(

E

p2

)2

τc(pipjpkpl)Uklβf0(1− f0)

=
Ns

8

∫

d2~p

(2π)2
E2τcβf0(1− f0)Uij , (31)

where, we used < pipjpkpl >= ~p4

8

(

δijδkl+ δikδjl+ δilδjk
)

(see Appendix C), and we have the two Eqs;

βf0 (1− f0) = −∂f0
∂E

(32)

and

−∂f0
∂E

= β
eβ(E−µ)

(

eβ(E−µ) + 1
)2 =

∂

∂µ

(

1

eβ(E−µ) + 1

)

. (33)

Finally, the expression for shear viscosity is,

η =
Ns

8

∫

d2~p

(2π)2
E2τcβf0(1− f0). (34)

After using the Eqs. (32) and (33) and converting the
momentum terms into energy using dispersion relation
(6), the Eq. (34) becomes

η =
Ns

16πv2g
τc

∂

∂µ

∫ ∞

0

E3

A−1eβE + 1
dE. (35)

After solving this integration by using the identity of the
Fermi integral function, the expression of shear viscosity
for 2D graphene (using subscript and superscript nota-
tion to distinguish the expressions of different systems)
is

η2Dg =
3Ns

8πv2g
τcf3 (A)T

3. (36)

Now, on taking the ratio of the shear viscosity (36) and
entropy density (15), we get

η2Dg
s2Dg

=
3

4
τc

[

3f3 (A)−
µ

T
f2 (A)

]−1

f3 (A)T. (37)
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After doing a similar way of calculation, the expressions
of entropy density, shear viscosity, and the ratio of shear
viscosity and entropy density for a nonrelativistic elec-
tron fluid (i.e. E = p2/(2m)) 2-dimensional system are
given by

s2DNR =
NsmT

2π

[

2f2 (A)−
µ

T
f1 (A)

]

, (38)

η2DNR =
Nsm

8π
τcf2 (A)T

2, (39)

η2DNR

s2DNR

=
1

4
τc

[

2f2 (A)−
µ

T
f1 (A)

]−1

f2 (A) T. (40)

Most of the fluids or liquids (e.g., water) used in our daily
life follow nonrelativistic fluid dynamics, whose fluid con-
stituent particles obey E = p2/(2m) dispersion relation.
However, for the purpose of comparing, we may assume
a hypothetical 2D NR system showing fluid behavior,
which may be difficult to be found in the real world. By
this comparison (given details in the results section), our
aim is to encourage the scientific community to use the
expressions of G-case, given in Eqs. (36), (37) instead
NR-case, given in Eqs. (39), (40) when they are describ-
ing eHD in graphene system.
If we consider graphene as a 3-dimensional (3D) sys-

tem, following the dispersion relation E = pvg, then it
may be again a hypothetical example but a good example
for comparison purpose. Modifying our above calculation
with replacement of

∫

d2p →
∫

d3p and pxvx ≈ pvg
3 = E

3 ,
we get the expressions of entropy density, shear viscosity,
and their ratio as

s3Dg =
NsT

3

π2v3g

[

4f4 (A)−
µ

T
f3 (A)

]

, (41)

η3Dg =
4Ns

5π2v3g
τcf4 (A)T

4, (42)

η3Dg
s3Dg

=
4

5
τc

[

4f4 (A)−
µ

T
f3 (A)

]−1

f4 (A)T. (43)

Now we have a 3-dimensional nonrelativistic (3D-NR)
system of fermions. After applying the same methodol-
ogy to this system, we get all the expressions of entropy
density, shear viscosity, and the ratio of shear viscosity
to entropy density,

s3DNR = Ns

(m

2π

)
3

2

T
3

2

[

5

2
f 5

2

(A)− µ

T
f 3

2

(A)

]

, (44)

η3DNR =
Ns

4

(m

2π

)
3

2

τcf 5

2

(A) T
5

2 , (45)

η3DNR

s3DNR

=
1

4
τc

[

5

2
f 5

2

(A)− µ

T
f 3

2

(A)

]−1

f 5

2

(A)T. (46)

This 3D-NR system, showing fluid behavior, can be appli-
cable for most of the fluids or liquids (e.g. water) used in
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FIG. 1. Location of condensed matter physics (CMP) domain
and the high energy physics (HEP) domain in T -µ diagram.

our daily life. One can consider the above shear viscosity,
entropy density, and their ratio for the water molecule,
where water molecule obeying NR dispersion relation,
E = p2/(2m) with effective mass m, but that will be not
a good example to compare with the same expressions
for eHD in graphene case. So, we can again consider a
hypothetical example - 3D eHD NR case.
We can also compare the above expressions for 2D,

3D eHD of G and NR cases with the same for ultra-
relativistic (UR) case. A good example is hot QGP,
where RHD can be applicable. According to the latest
understanding [39], RHD is quite successful in describing
QGP phenomenology. Again to make our comparison on
equal footing, we will consider the hypothetical case of
2D, 3D-UR electron fluid. If the Fermi velocity of elec-
trons in graphene vg is replaced by the factor 1 (as c = 1
in natural unit), then all expressions of the G-case will
be converted to corresponding expressions of UR case.

III. RESULTS

After addressing the final expressions of η, s, and its
ratio for different systems like 2D, 3D-NRF, GF and URF
in the formalism section, here we will discuss their nu-
merical estimations through different graphs.
Let us first come to the entropy density results. In

the early universe scenario, a hot quark-gluon plasma
(QGP) state around temperature T = 400 MeV or T =
700 MeV and zero quark chemical potential (µ = 0) is
expected just after a few microseconds from the big bang.
Due to the very high temperature of the medium, the
constituent particle average momenta become so large
that we can ignore its mass term, and it can be considered
a UR case. UR case is famous for photon gas or black
body radiation example where internal energy density or
Intensity (they have connecting relation) follows T 4 law,
popularly known as Stefan-Boltzmann (SB) law. QGP
thermodynamics at high temperatures reaches that SB
limits. Eq. (41) can be converted to UR case by replacing
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vg = c = 1 and by putting µ = 0, we can get SB limit
expression for 3D case,

sSB =
NsT

3

π2

[

4×
{7

8
ζ4

}

]

, (47)

where the Fermi integral function can be converted into
Riemann zeta function f4 = 7

8ζ4 for µ = 0 condition, fol-

lowing the general relation fn =
(

1 − 1
2n−1

)

ζn. For the

QGP case, quark degeneracy factors will have to be put
into the Ns, and gluon contribution must be added sepa-
rately. Since two-flavor quark has a degeneracy factor of
24 and gluon has a degeneracy factor of 16, so massless
QGP entropy density or SB limits of QGP will be

sQGP
SB =

24T 3

π2

[

4×
{7

8
ζ4

}]

+
16T 3

π2

[

4× ζ4

]

. (48)

When we plan to compare graphene entropy density with
this SB limit, we have to understand that the tempera-
ture range (few hundred mega electron volt (MeV), which
is equivalent to 1012 0K ) of QGP is too much larger than
temperature range (1-23 milli-electron volt (meV), which
is equivalent to 15-300 0K ) of graphene system. Fig. (1)
has addressed nicely about these two domains. It is ba-
sically T vs. µ plots in log scale to cover a broad band
of T and µ range. We marked the condensed matter
physics (CMP) domain, covering T ≈ 1 − 23 meV and
µ ≈ 0−10 eV. We know that metal Fermi energy remains
within the range µ = 2− 10 eV, which is marked as yel-
low. Unlike metal, graphene system Fermi energy can
be changed via doping methods, and its µ/T ≪ 1 and
µ/T ≫ 1 domains are called Dirac fluid (DF) or Dirac
liquid (DL) and Fermi liquid (FL) domains, respectively,
marked by arrows in Fig. (1). Similar to DF and FL do-
mains for electrons, we may call early universe QGP as
DF domain of quark and quark matter, expected in the
core of neutron star as FL domain of quark. A rectangu-
lar domain within T = 1 − 400 MeV and µ = 0 − 1000
MeV is marked as high energy physics (HEP) domain for
quark. Reader can easily visualize the gap between CMP
and HEP domains. After realizing the scale gap in T -µ
plane between URF of quark and GF of electrons, one
should understand that we must consider a hypotheti-
cal electron URF to make an equal footing comparison.
Within the temperature (T = 0−0.023 eV) and chemical
potential (µ = 0−10 eV) range, entropy density of URF,

s3DUR =
NsT

3

π2

[

4f4 (A)−
µ

T
f3 (A)

]

, (49)

has to be plotted with a normalization by sSB, given in
Eq. (47). This normalized estimation is sketched by the
blue dotted line in the left panel of Fig. (2), which shows
that s3DUR ≈ sSB in the domain µ/T ≪ 1, as expected. In-
terestingly, we noticed that the main µ/T dependence in
entropy density is coming beyond the µ/T = 1. Reader
can understand that the terms with Fermi integral func-
tion are the main source of µ/T dependence. Next, using

Eq. (41), the graphene entropy density for the Fermi ve-
locity vg = 0.006 is plotted (red solid). From Ref. [40], we
can get knowledge about a broad range of Fermi velocity
vg = 1−3×106 m/s or vg = 0.003−0.01 (in natural unit)
in graphene system. As charge career density or µ de-
creases, vg will increase and approach towards Dirac fluid
(DF) or strongly coupled electron-electron domain. We
have considered in-between constant values vg = 0.006.
We can understand that the µ/T dependence of entropy
density for URF and GF are the same but GF ≫ URF
due to the 1/v3g ≈ 5 × 106 term. Next, we use Eq. (44)
to draw the entropy density of NRF to plot (green dash
line) in the left panel of Fig. (2). Reader can understand
its different trend of µ/T dependence for NRF is because

of the term
[

5
2f 5

2

(A)− µ
T
f 3

2

(A)
]

.

A similar trend we can notice for 2D case with similar
ranking URF≪ GF≪ NRF. Only for the transition from
3D to 2D, their orders of magnitude are shifted toward
lower values.
Next, let us come to the shear viscosity results. Here

also, we can expect SB limit type simple expression for
UR case at µ = 0:

ηSB =
4Ns

5π2
τc
7

8
ζ4T

4, (50)

from the general η(T, µ) expression for URF:

η3DUR =
4Ns

5π2
τcf4 (A) T

4, (51)

by putting vg = c = 1 in Eq. (42). For massless QGP
at µ = 0 case, by replacing degeneracy factors of quarks
and gluons in Ns, we get

ηQGP
SB = 24

[ 4

5π2
τc.

{7

8
ζ4

}

T 4
]

+ 16
[ 4

5π2
τc.ζ4T

4
]

. (52)

Again, this QGP is a realistic example of URF but for
comparison, we have to consider electron URF. When
we plan to compare the shear viscosity of URF, GF, and
NRF, then we should use Eqs. (51), (42), (45) and for SB
limit, we will use Eq. (50). Similar to normalized entropy
density by its SB limit in Fig. (2), we have plotted nor-
malized shear viscosity by its SB limit in Fig. (3), where
3D and 2D estimations are plotted in left and right pan-
els respectively. Shear viscosity expression carries two
kinds of information. One is relaxation time τc, and an-
other is the remaining thermodynamic phase-space part
as a function of T and µ. During the normalization, τc
information is canceled, and we can only see their ther-
modynamic phase-space part of shear viscosity. Interest-
ingly, it follows a similar trend to other thermodynamical
quantities like entropy density - which shows two types of
µ/T dependence in the domain µ/T ≪ 1 and µ/T ≫ 1,
which are commonly assigned as DF and FL.
Now, let us come to the shear viscosity to entropy

density ratio η/s, which is a more important quantity
than only η to measure the fluidity of the system. In the
D.F domain, the extreme situation (mathematically) is
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case respectively

µ → 0. In this limit, η and s carry quite similar terms,
so when we take their ratio, we will get very simplified
expressions:

η

s
=

τcT

5
for 3D URF/GF, (53)

η

s
=

τcT

10
for 3D NRF, (54)

η

s
=

τcT

4
for 2D URF/GF, (55)

η

s
=

τcT

8
for 2D NRF. (56)

From the String theory-based calculation [37], it was
conjectured that η/s has a lower bound, well known as
KSS bound, which gives an inequality η

s
≥ ~

kB

1
4π = 1

4π

(in natural unit). Though classically one may expect
τc → 0 ⇒ η

s
→ 0, but quantum mechanically, relaxation

or scattering time τc or mean free path λc ≈ vτc can
not be lower than de-Brogile range of time or wavelength
scale. This simple quantum mechanical concept also sug-
gests a lower bound of η

s
, sometimes called a quantum

lower bound. By imposing this bound η
s
= 1

4π , we can

get a rough expression lower bound of τc as

τc =
5

4πT
for 3D URF/GF, (57)

τc =
10

4πT
for 3D NRF, (58)

τc =
4

4πT
for 2D URF/GF, (59)

τc =
8

4πT
for 2D NRF. (60)

This KSS bound conjecture [37] makes the scientific com-
munity curious to find such fluid whose η/s is close to
this bound. In other words, if we write η/s = n/(4π),
where n ≥ 1, then fluid with n = 1 − 5 may be con-
sidered as those special fluids and may be called nearly
or close to perfect fluid. Empirically, QGP is the evi-
dence of such perfect fluid (n ≈ 1 − 2) in the relativis-
tic domain, while close to perfect fluid (n ≈ 5) example
for NR case is cold atom systems [38]. According to
Eqs. (60), we can expect gross values of relaxation time
for QGP and cold atom systems as τc ≈ 5

4πT -
10
4πT and

τc ≈ 50
4πT respectively. Similarly, according to the theo-

retical prediction from Ref. [22], GF may also belong to
this close-to-perfect fluid category. So far, to the best
of our knowledge, no experimental measurement of η/s
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vs. T plot is available, so the theoretical plot of η/s vs.
T in Ref. [22] is considered as our reference to guess or
tune order of magnitude for τc ≈ n

πT
. In the left panel

of Fig. (4), we can get guidance that τc ≈ n
πT

within
n = 3-5 can cover the order of magnitude of η/s in the
temperature range T = 35-150◦K, predicted by Müller
et al. [22]. By considering an average value τc ≈ 4

πT
,

we have plotted η/s of 2D GF or URF (red solid line)
and 2D-NRF (green dash line) against µ/T -axis in the
right panel of Fig. (4). We notice that η/s in DF domain
becomes lower than in the FL domain, mainly because of
the thermodynamical phase-space part of η/s. In terms
of Fermi integral function, this part for GF can be iden-

tified as
[

3f3 (A)− µ
T
f2 (A)

]−1

f3 (A) from Eq. (37). We

have put the NRF case for reference, but 2D-NRF for
electrons may be possible in a hypothetical situation. So
present study indicates that dropping η/s values and sat-
urating towards constant values may be found during the
transition from FL to DF domains in the graphene sys-
tem. Although we have a limitation in that we have con-
sidered τc ∝ 1/T , which may be changed in the actual
microscopic calculation of τc, and so the trend of η/smay
also be changed. It demands more theoretical studies on
these η/s estimations as well as the explicit measurement
of this quantity from the experimental side.

The inversely proportional relation (τc =
α2

T
, where α

is effective fine structure constant) between τc and T can
also be noticed in the work of Müller et al. [22], which
reflects that the KSS bound inspired expression of re-
laxation time τc ∝ 1

T
is also in good agreement with

microscopic calculations [22]. A proportional relation
τc ∝ T is also estimated from the AdS/CMT based calcu-
lations [41–43], whose m of expression τc = 1/Γ = 4πT

m2 is
basically an effective mass parameter for some of the met-
ric fluctuations in the gravitational theory. However, one
may get τc = 1/Γ = 4π

T
∝ 1

T
dependence in the condition

m ∝ T . In searching for the exact T -dependence of relax-
ation time τc(T ) of electrons for graphene systems, more
microscopic calculations in different directional (may be
model dependent) attempts may be needed for enriching
the understanding of this field.

IV. SUMMARY

We can summarize our investigation in the following
steps. First, we introduce a brief macroscopic descrip-
tion of electron fluid in graphene, then we focus on its
microscopic description. Our dealing quantity is consid-
ered as energy-momentum tensor, whose ideal part rep-
resents energy density and pressure in the static limit
picture of fluid dynamics. Using those thermodynam-
ical quantities, our destination from the ideal part of
the energy-momentum tensor becomes entropy density,
which will be used to be normalized with shear viscos-
ity. From the dissipative part of the energy-momentum
tensor, shear viscosity coefficients of electron fluid are
calculated based on the kinetic theory approach with re-
laxation time approximation. Temperature and chemical
potential-dependent general expressions of shear viscos-
ity, entropy density, and the shear viscosity to entropy
density ratio has been calculated and plotted for differ-
ent cases of electron fluid like nonrelativistic, graphene
and ultra-relativistic cases. For completeness of compar-
ison, we considered both 3D and 2D systems. Analyzing
the results of different cases, we get a comparative un-
derstanding and conclusions, which are addressed briefly
in bullet points:

1. The µ/T dependence of shear viscosity η as well
as entropy density s for URF and GF are exactly
similar but a little different from the NRF.

2. We notice a huge difference among URF, GF, and
NRF in terms of the order of magnitude of η and s
with ranking URF ≪ GF ≪ NRF.

3. During transiting from 3D to 2D, order of magni-
tude of η and s shift towards lower values.

4. When we go from Fermi Liquid (µ/T ≫ 1) to Dirac
Liquid (µ/T ≪ 1) domain, values of η, s and η/s
ratio decrease towards a saturated values.

5. Interesting ranking for η/s becomes URF = GF ≥
NRF.
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The present comparative study on the microscopic cal-
culation of shear viscosity may be considered as a good
documentation of master formulas of different cases from
3D-URF, GF, NRF to 2D-URF, GF and NRF. In the
future, it may be useful for actual graphene system es-
timation, where one should go with some first principle
or model-dependent calculation of relaxation time. Also,
one should deal with electron-hole plasma with appro-
priate degeneracy factor in the Dirac Fluid domain for
the actual graphene system but the present work sticks
with electron description only due to observing the esti-
mations for its different dispersion relations. Our imme-
diate future plan is to concentrate on the actual graphene
phenomenology on the viscous aspects.

ACKNOWLEDGMENTS

This work was partly (CWA and TZW) supported by
the Doctoral Fellowship in India (DIA) program of the
Ministry of Education, Government of India. The au-
thors thank the other members of eHD club - Sesha P.
Vempati, Ashutosh Dwibedi, Narayan Prasad, Bharat
Kukkar, and Subhalaxmi Nayak.

Appendix A: Density of States

The density of states is nothing but the total number
of energy states per unit energy interval. If the total
number of energy states in energy range E to E+dE are
D (E) dE, then the density of states will be

g (E) =
D (E) dE

dE
. (A1)

Now, here are some expressions of the number of energy
states for different-different cases expressed as

Case:1. for 3D-Graphene,

D (E) dE = Ns

4πV

h3v3g
E2dE, (A2)

Case:2. for 3D nonelativistic,

D (E) dE = Ns2πV

(

2m

h2

)
3

2 √
EdE, (A3)

Case:3. for 2D Graphene,

D (E) dE = Ns

2πa

h2v2g
E dE, (A4)

Case:4. for 2D Nonrelativistic,

D (E) dE = Ns

2πa

h2
mdE. (A5)

In the above expressions, V represents the volume in po-
sition space.

Appendix B: Fermi-Dirac Integral

We have the integral form as

fν(A) =
1

Γ(ν)

∫ ∞

0

xν−1

A−1ex + 1
dx, (B1)

where fν(A) is known as the Fermi-Dirac integral and
x = βE. And the expression in terms of energy can be
written in terms of x as

∫ ∞

0

Eν−1

A−1eβE + 1
dE =

1

βν

∫ ∞

0

xν−1

A−1ex + 1
dx

=
1

βν
Γ(ν)fν(A). (B2)

Appendix C: Average Angular Integral in 2D

We have the integral form as

∫

pipjpkpld
2p = pdp

∫

pipjpkpldθ. (C1)

Since

~p = pn̂,

where

n̂ = cos θ î+ sin θĵ,

and

pi = ~p.êi = p (n̂.êi) = pni,

the integral becomes

∫

pipjpkpld
2p = pdp, p4

∫

ninjnknl dθ. (C2)

Now, we have to calculate

∫

ninjnknl dθ =?

Case:1. The above integral becomes

∫

n2
1n

2
2 dθ =

∫ 2π

0

cos2 θ sin2 θ dθ (C3)

= 4

∫ π
2

0

cos2 θ sin2 θ dθ. (C4)

Now, using the Beta function, we know that

B (u, v) = 2

∫ π
2

0

(cos θ)
2u−1

(sin θ)
2v−1

dθ (C5)

⇒B (u, v) =
ΓuΓv

Γ (u+ v)
. (C6)
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Applying this, we get

∫

n2
1n

2
2 dθ =

2π

8
. (C7)

Case:2.
∫

n3
1n2 dθ =

∫

n1n
3
2 dθ (C8)

=

∫ 2π

0

cos3 θ sin θ dθ = 0. (C9)

Case:3.

∫

n4
1 dθ =

∫

n4
2 dθ (C10)

=

∫ 2π

0

sin4 θ dθ (C11)

= 2B

(

5

2
,
1

2

)

=
3π

4
. (C12)

Now, the above integral can be written as

∫

n4
1 dθ =

∫

n4
2 dθ =

2π

8
× 3, (C13)

Now, the integral can be expressed as

∫

ninjnknl dθ =
2π

8
(δijδkl + δikδjl + δilδjk) (C14)

and

∫

pipjpkpl d
2p = 2π p dp

p4

8
(δijδkl + δikδjl + δilδjk) .

(C15)

Now, the average final expression will be

< pipjpkpl >=
p4

8
(δijδkl + δikδjl + δilδjk) . (C16)
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