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Abstract—Closed-loop control algorithms for real-time cal-
ibration of quantum processors require efficient filters that
can estimate physical error parameters based on streams of
measured quantum circuit outcomes. Development of such filters
is complicated by the highly nonlinear relationship relationship
between observed circuit outcomes and the magnitudes of ele-
mentary errors. In this work, we apply the extended Kalman
filter to data from quantum gate set tomography to provide a
streaming estimator of the both the system error model and
its uncertainties. Our numerical examples indicate extended
Kalman filtering can achieve similar performance to maximum
likelihood estimation, but with dramatically lower computational
cost. With our method, a standard laptop can process one- and
two-qubit circuit outcomes and update gate set error model at
rates comparable with current experimental execution.

Index Terms—Quantum tomography, Kalman filtering, quan-
tum calibration, QCVV

I. INTRODUCTION

Efficient, closed-loop stabilization protocols that utilize active
experimental feedback will be necessary for future quan-
tum processors to enable rapid calibration and to maintain
error rates below the threshold for fault tolerance. A key
element of closed-loop control is a filter that can estimate
model parameters from noisy data in a streaming fashion,
conventionally reffered to as an “online estimator.” However,
standard approaches for estimating error rates in quantum
computers use tomographic estimation techniques that rely
on post-processing large amounts of batched data to obtain
reliable estimates [1]. Recursive filters, such as the Kalman
filter [2], offer a compelling alternative and have a long
history of performing the streaming parameter estimation that
underlies many industrial control techniques. In this work, we
show that quantum gate set tomography (GST) [1] can be
efficiently performed using an extended Kalman filter [3] to
simultaneously estimate error rates in quantum operations and
their uncertainty (see Fig. 1).

GST is a quantum characterization technique that allows for
precise estimation of the rates of elementary errors suffered
by a quantum processor. Unlike randomized characterization
techniques, which can only reliably estimate stochastic noise,
GST can provide high-precision estimates of the coherent
errors that often arise from drift and miscalibration, such as
detunings and over-rotations. GST achieves this precision by

measuring outcome distributions of different quantum circuits
composed of short sequences of gates that are repeated many
times. Data collected from running these circuits is then used
to fit the parameters of an error model, most commonly with
batched maximum likelihood estimation (MLE). Uncertainty
in the resulting estimate can be computed by examining the
shape of the likelihood function around the MLE. Our method
replaces this batched MLE with an online, recursive filter
that updates the estimate and estimated uncertainty after each
circuit that is run, and whose performance in simulation rivals
the fits provided by MLE.

Fig. 1: Closed-loop control techniques benefit from online
filters that can update model parameters in real time as
data is collected. This work adapts the extended Kalman
filter for the purpose of streaming estimation of error rates
(and their uncertainties) in gate-model quantum processors.
This approach offers an alternative to the batched maximum
likelihood estimation utilized in, eg. gate set tomography.

Bayesian inference [4] is a viable alternative to maximum
likelihood estimation that naturally incorporates new infor-
mation in a streaming fashion. However, the full Bayesian
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inference problem without simplification is computationally
complex and ill-suited for real-time characterization within
the short time-scales of quantum gate operation. However,
simplifying model assumptions can greatly reduce the com-
plexity of Bayesian inference [5]. In the case of the extended
Kalman filter, the assumptions of a) a linearized model, b)
Gaussian noise, and c) a Gaussian prior reduce computation
and optimization of the Bayesian posterior to a series of
inexpensive matrix operations [6]. Though the general gate
set tomography problem formally violates the assumption of
linearity and Gaussian noise, we detail several approximations
and experiment design choices that can successfully embed
GST within the framework of Kalman filtering.

We propose Kalman filtering for quantum device charac-
terization as an online protocol that can be implemented on
classical control hardware running concurrently with quantum
circuit execution. In Section II, we review the basics of gate
set tomography and Kalman filtering necessary for this work.
In Section III, we develop a Kalman filter implementation of
GST and emphasize the necessary approximations. We present
numerical results in Section IV that demonstrate extended
filtering can perform comparably to MLE. We finally sumarize
several extensions and alternative approaches to our method
that may be useful in deploying streaming gate set tomography
on real devices.

A. Related work

The study of online estimation using Kalman filters and re-
lated techniques is a well-developed discipline with numerous
introductory textbooks [7], [8]. Since its original formulation
[2] in 1960, the Kalman filter has inspired many reformulations
including sigma point (unscented) [9], ensemble [10], invariant
[11] Kalman-type filters, and H∞ filters [12]. In this work, we
derive an extended Kalman filter for the gate set tomography
estimation problem, which may be seen as a first step towards
more sophisticated techniques.

Online estimation techniques have already been extensively
explored in the context of quantum state and process tomog-
raphy [13], [14]. Some attention has been paid to quantum
Kalman filters in the context of continuous weak quantum
measurement [15]–[18]. In the context of discrete projective
measurements, the regime considered in this work, the Kalman
filter has been used to estimate error bars in quantum state
tomography [19]. More generally, Ref. [20] showed that much
of the classical theory of nonlinear filters is directly applicable
to the estimation problems that arise frequently in quan-
tum computing. To our knowledge, no work has considered
Kalman filtering in the context of gate set tomography.

Online approaches for estimating errors in quantum gate
sets have been explored, but to a lesser degree than in state
tomography. Ref. [21] developed a particle filter for online
GST estimation, but due to the computational complexity
of particle filters, it is unlikely such an approach would be
feasible for real-time characterization. More recent work [5],
demonstrated a Fast Bayesian Tomography (FBT) algorithm
capable of real-time characterization of quantum gate sets with

Symbol Description
|ρ⟩⟩ State preparation
Gi Process matrix representation of a gate
⟨Ei| Measurement effect
Ck Quantum circuit (a product of gates)
x Vector of gate set error parameters

s
(k)
j jth categorical random variable sampled from circuit k
yk Observation – average frequency of measurement outcomes
hk Observation model – maps error parameters to predictions
Yk History of observations, y1, y2, ..., yk
x̂k Estimate of error parameters given previous k circuits
Pk Uncertainty estimate given k previous observations

Hk[x̂k−1] Jacobian of hk with respect to x at the prior estimate x̂k−1

vk Observation noise
Rk covariance of the observation noise

TABLE I: Summary of important notation used in this work

a Bayesian inference technique based on a simplified Gaussian
model, which is similar to the method we develop here.
However, the method we develop in this work is independent
and explicitly built on the Kalman filter, which provides a
robust theoretical foundation. There are also some further
technical details in the FBT algorithm, such as the use of
“linearization noise” and sampling in addition to Jacobian
calculations that may make FBT sub-optimal in performance
and resource consumption.

An essential ingredient in our online protocol is model
linearization, where a nonlinear model is approximated by its
first order Taylor expansion. Ref. [22] utilized random circuits
and linearized about the target (ideal) model to develop a fast
estimation algorithm for errors in quantum gates. Their work
used a “design matrix” or the matrix of the first derivative
of model probabilities with respect to parameters, i.e., the
Jacobian. A similar object appears frequently here.

II. INTRODUCTION TO GST AND THE KALMAN FILTER

In this section we provide brief introductions to both gate
set tomography (GST) and the Kalman filter. We cover only
the material necessary to show how Kalman filters can be
applied to GST. For more extensive reviews of GST, see [1].
For Kalman filtering, see [12]. We summarize our notation in
Table I below.

A. Gate set tomography

Gate-model quantum computers implement quantum pro-
grams by executing quantum circuits. While these circuits are
intended to comprise sequences of perfect logic operations,
real-world quantum processors will inevitably suffer errors
that degrade performance and distort the distribution of mea-
surement outcomes. Gate set tomography is an experimental
protocol and data analysis procedure designed to learn a self-
consistent model of the full set of logic operations that can then
be used to predict these distorted distributions for arbitrary
circuits.

In this work, we assume that the gate set consists of: one n-
qubit state preparation, one n-qubit measurement with NE =
2n possible outcomes, and some number NG of distinct n-
qubit quantum gates. The standard model of errors fit by GST
assigns to each of these operations a mathematical object:
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1) State preparation: |ρ⟩⟩ ∈ B(H), a 4n-dimensional (col-
umn) vector that is a vectorized density matrix,

2) Logic gates: {Gi : B(H)→ B(H)}
Ng

i=1, each a 4n× 4n-
dimensional process matrix,

3) Measurement: {⟨⟨Ej | ∈ B(H)∗}NE

j=1, each a 4n-
dimensional dual (row) vector that is a vectorized
measurement effect.

Here B(H) is the space of bounded operators acting on the
2n dimensional Hilbert space H of pure n-qubit quantum
states. GST learns the matrix elements of these objects either
directly or via a parameterized error model M : x 7→{
|ρ⟩⟩, {Gi}, {⟨⟨Ej |}

}
for some parameter vector x.

A convenient and interpretable family of parameterized
models for quantum gates is expressed in terms of error
generators [23]. In these models, a noisy gate Gi is written
as the target operation followed by a small error effect

Gi = e
∑

j [x(Gi)]jLj G̃i, (1)

where G̃i is the ideal unitary action of the gate, x(Gi) is a
vector of (real) error rates for gate Gi, and {Lj} is a basis
for a Lie algebra of trace-preserving gate errors. Additional
inequality constraints may be applied to enforce complete
positivity. When [x(gi)]j = 0 for all j and all Gi, then there
are no errors in the device and the gate set is equal to the target
unitary gate set. In well performing quantum computers, i.e.
those with high gate fidelity and low non-Markovian effects,
the gates generally well approximate their target unitaries, so
real-world error rates (the components of x) are typically≪ 1.
For the purposes of this work, we collect the error rates for
all gates into a single vector x =

⊕
i x(Gi). Knowledge of x

completely describes the gate set model.
GST probes these error rates by defining and repeatedly

running a suitable set of quantum circuits. We define a depth-
d quantum circuit as an instruction to apply d logical gates
in sequence: c(k) =

(
c
(k)
d c

(k)
d−1 . . . c

(k)
2 c

(k)
1

)
. The quantum

process Ck implemented by c(k) is modeled as the product
of the d process matrices corresponding to each layer of the
circuit: Ck = G

c
(k)
d

G
c
(k)
d−1

· · ·G
c
(k)
2

G
c
(k)
1

. The probability of

observing outcome j after running circuit c(k) is predicted to
be:

Pr(Ej |Ck) = ⟨⟨Ej | Ck |ρ⟩⟩ . (2)

In the language of the Kalman filter, this relationship defines
the model observation function. It is a map hk : Rm → R2n

from the vector of model parameters to the vector of modeled
probabilities that is defined component-wise:

[hk(x)]j = ⟨⟨Ej | Ck |ρ⟩⟩ (3)

The particular class of circuits used by GST is designed to
amplify all error parameters in a model. This is accomplished
by choosing a list of fiducial sequences of gates that rotate
the native state preparation and measurement effects into an
informationally complete set of effective state preparations
and measurements. Additionally, we select a set of short
gate sequences called germs that, when repeated, collectively

amplify all observable parameters of the error model. We
construct circuits from these ingredients by sandwiching a
repeated germ sequence between fiducial state preparation
and measurement sequences. GST circuits thus take the form
Fmeas
c Gp

bF
prep
a , where F prep

a is a state preparation fiducial
sequence, Fmeas

c is a measurement fiducial sequence, and Gp
b

is a p-fold repeated germ sequence. Circuits are constructed
for each germ and fiducial pair, and germ-powers are typically
selected to be powers of two from 1 up to a maximum length
dictated by both the desired estimation precision and quality
of the logic operations (if the gates are good, we need long
circuits to observe any errors).

The ith run of a circuit c(k) yields a single n-bit outcome
string s

(k)
i that is a categorical random variable sampled from

the circuit’s true outcome distribution. After running a particu-
lar circuit N times, we compute the empirical distribution (the
observed frequency of each n-bit string), which we denote as
a 2n-dimensional vector yk. We define yk component-wise:

[yk]j =
1

N

N∑
i=1

1j(s
(k)
i ). (4)

Here 1j(s) is the indicator function. In the infinite shot limit,
the observations yk converge almost surely [4] to the true
circuit outcome distributions. The goal of GST is to find a
parameter estimate x̂GST that brings all the model predictions
hk(x̂GST) as close to the observations yk as possible, typically
as captured by the likelihood function:

L(x|y1, y2, ..., yk) =
K∏

k=1

Pr(yk|hk(x)) (5)

∝
K∏

k=1

N∏
j=1

⟨⟨Ej | Ck |ρ⟩⟩N [yk]j , (6)

where the proportionality constant is a multinomial coefficient
based on the count vector Nyk.

1) Gauge freedom: A significant drawback of the error
generator parameterization is that it is not unique—for any
given model instance, there exist infinitely many equivalent
models that all predict identical outcome probabilities for each
circuit. Given one model parameterization, we may apply a
gauge transformation that defined by an arbitrary invertible
4n × 4n matrix M :

|ρ⟩⟩ 7→M |ρ⟩⟩ ,

Gi 7→MGiM
−1,

⟨⟨Ej | 7→ ⟨⟨Ej |M−1.

The predictions of the original model ⟨⟨Ej | Ck |ρ⟩⟩ are the
same as the transformed model, even though the two models
may appear completely different. While this gauge freedom
does not impact the predictivity of the model, it does limit
its interpretability and observability, as there are now extra
“gauge parameters” in a model that do not correspond to any
physically observable error process.
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The lack of observability of gauge parameters has significant
impact on the performance of an online estimation algorithm.
The role of observability in filtering theory was first introduced
by Kalman [24], and in the context of linear, time invariant
systems it is straightforward to derive a canonical observation
form that decouples the observable parameters from the un-
observable parameters. Given a canonical observation form,
one simply estimates the observable parts and ignores the
unobservable parts. However, for nonlinear systems, such as
GST, the problem of observability is much more difficult [25].
We resolve the convergence issues cause by unobservable
parameters by basing our filtering algorithms on first-order
gauge-invariant (FOGI) models [26] that ensure the parameters
are observable.

FOGI models are constructed by considering small gauge
transformations and separating out the gauge transformation’s
trivial null space from the non-trivial row space at the target
model. A convenient sparse basis may then be found through
various techniques. As discussed below, we have found that
basing our estimation procedure on FOGI models seems to
dramatically increase the robustness of our estimation algo-
rithm and decrease the sensitivity of the filter to its initial
point estimate.

B. Linear Kalman filters and their extension

As mentioned above, Bayesian inference is a natural tech-
nique to investigate for online estimation, but without sim-
plifying assumptions, the utility of Bayesian approaches is
hampered by significant computational burden. Kalman fil-
ters overcome this computational burden by assuming linear
dynamics and Gaussian priors and noise distributions, which
ensures all distributions used in the estimation algorithm can
be treated analytically and require no sampling. The linear
Kalman filter is optimal when a system is linear and the
noise is Gaussian. In the case of gate set tomography, the
model is non-linear and the observation noise is multinomial.
However, we employ a series of approximations to cast the
GST estimation problem in such a way that we may employ an
extension of the Kalman filter that benefits from a significant
computational speedup and retains excellent performance in
simulation.

The linear Kalman filter is widely used to estimate a hidden,
possibly evolving state x and noisy observations y that are
linear functions of the state perturbed by Gaussian noise. The
dynamics and observations are thus linear Gaussian models.
The system model may be cast as either continuous or discrete,
and it can be adapted to include the effect of changes in control
parameters. Because quantum operations are typically discrete
entities, we focus here on the discrete time formulation. The
most general linear Gaussian evolution of a state is

xk+1 = Fkxk +Bkuk + wk (7)

where the state transition matrix Fk models known system
dynamics, uk is a control input vector, Bk models the effects
of controls, and wk is a zero mean Gaussian random vari-
able with covariance Qk that models stochastic noise in the

evolution of the state. In the context of GST, the state will
capture the error rates of the system, so this general form of
the state transition function could be used to model drift, non-
Markovianity, and changes in control inputs. However, in this
work we consider only static noise models, so we can restrict
the dynamic model and assume that xk is static in time, i.e.,
that Fk is the identity and uk and wk are zero vectors. In the
context of GST estimation, the assumption of static dynamics
corresponds to an assumption that the device is Markovian
and that we never change the control inputs. Future work
will investigate scenarios with non-Markovian dynamics or
changing controls, which would allow for dynamic calibration
of drift in a quantum processor. Because we assume a static
state, we may write x without subscript to refer to the “true”
state, i.e., throughout the rest of this work

xk+1 = xk ≡ x.

While the assumption of static dynamics may appear very
strong at first, this assumption is the usual one in quantum
tomography, where we assume that one may prepare identical
copies of the state without drift or changes in the controls used
to prepare the states.

A Kalman filter for static state estimation further assumes
a linear Gaussian observation model of the form

yk = Dkx+ vk (8)

where Dk is a the observation model, or in the language of [22]
the design matrix, that models the linear relationship between
the state and the observation and vk is a zero mean Gaussian
random variable with covariance Rk that models stochastic
noise in the observation. The subscript k here indicates that at
each time step we can choose from among the various types
of observations that we may make of the hidden state x, each
corresponding to a distinct GST circuit used to interrogate the
system.

The goal of Kalman filtering is to produce an estimate x̂k of
the hidden state x, as well as the uncertainty in the estimate Pk,
given a iterative sequence of observations Yk ≡ y1, ..., yk. The
uncertainty Pk is quantified as a covariance matrix between
the estimate and the true parameters

Pk = E
[
(x̂k − x)(x̂k − xk)

T
]

where the expectation is conditioned on the sequence of
previous observations Yk.

Given a discrete time, linear Gaussian model, there are
various ways to derive the Kalman filtering equations, e.g.
from the perspective of minimum expected mean square error
[2], jointly Gaussian random variables [6], or simply by
multiplying out a Gaussian prior and likelihood per Bayes rule.
Because our formalism assumes partial observations of a static
state x, the Kalman filter equations will reduce to a somewhat
simpler form than usual. We defer writing their explicit form
until we have introduced the extended Kalman filter, which is
actually used in this work.

The extended Kalman filter applies to systems governed by
a nonlinear dynamical and/or observation model. Assuming
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that that the state is static, as above, then there is no time
evolution in x and the estimation algorithm is based only on
partial, nonlinear observations of the state

yk = hk(x) + vk (9)

where hk is a nonlinear observation function that replaces the
role of the linear design matrix Dk in the linear Kalman filter
and vk is the same observation noise as in the linear filter.

In order to pass from a nonlinear observation to a linear
form amendable to the assumptions of the Kalman filter, the
extended Kalman filter linearizes the observation function hk

about the prior estimate x̂k−1. Linearization means calculating
a design matrix Hk[x̂k−1] that is the Jacobian of hk with
respect to the parameter vector at the prior estimate

Hk[x̂k−1] ≡
[
∂hk

∂x

∣∣∣∣
x̂k−1

.

Whenever we write a design matrix Hk without an argument,
it should be assumed that the linearization is taken at the prior
estimate x̂k−1.

Equipped with a notion of linearization, we may now
write out the extended Kalman filter equations that form
the backbone of our estimation algorithm. The Kalman filter
updates a prior estimate and covariance x̂k−1 and Pk−1 into
a posterior estimate and covariance x̂k and Pk according to

x̂k = x̂k−1 +Kk(yk − hk(x̂k−1)) (10)

Pk = (I −KkHk)Pk−1 (11)

where the Kalman gain Kk is defined as

Kk = Pk−1H
T
k (HkPk−1H

T
k +Rk)

−1, (12)

and Rk and Hk are, as before, the observation noise covariance
and the Jacobian of the observation function with respect to
the model parameters at the prior estimate.

III. KALMAN FILTERS AND GATE SET TOMOGRAPHY

The Kalman filtering equations 10 and 11 provide the back-
bone of our estimation routine, and Fig. 2 provides the detailed
algorithmic structure of our method. In applying Kalman
filtering to GST estimation, there are some key assumptions
and approximations that we must make, which we address in
this section. In particular, we discuss 1) the selection of an
initial Gaussian prior, 2) the Gaussian approximation to the
likelihood, and 3) the linearization of the observation model.

A. Definition of initial priors

A Kalman filter estimation routine requires initialization
with an initial point estimate x̂0 that represents the initial
guess and an initial covariance estimate P0 that represents the
estimated error in the guess. There are many choices for the
initial point estimate, including starting at the target model,
i.e. setting x̂0 = 0, or seeding the filter with an estimate
derived by linear regression or MLE on some smaller set of
circuits (such as those of linear GST [1]). One may also use a
random Gaussian initial point centered about the target model

with a predefined covariance. Other, more sophisticated tech-
niques are also possible based on the outcome of randomized
benchmarking data, such as the procedure used in [5]. In our
numeric experiments, we found that estimating FOGI models
is relatively robust to the choice of the initial point, and we
are able to achieve good fits starting from the target model.

The Kalman filter is relatively robust to over-estimation of
the initial uncertainty, so there is some freedom in choosing
the initial covariance estimate P0. If P0 is too small, then the
filter may fail to converge, and if P0 is too large, then the
filter will explore more of parameter space early on in the
estimation algorithm and thus converge more slowly. Ideally,
the initial covariance should reflect the mean square error in
the initial estimate.

In our examples, we set P0 to be equal to a scalar multiple
of the identity matrix. We determined the magnitude of the
covariance based on the outcome of a randomized bench-
marking (RB) experiment, using the RB rate r that estimates
the average gate infidelity. Explicitly, we chose the initial
covariance such that its trace is equal to r. In this fashion,
we run a single RB experiment before we deploy streaming
GST, which adds a constant overhead to the protocol. More
sophisticated schemes to determine P0 could likely be derived
and is left for future work.

B. Gaussian likelihoods

In the context of Kalman estimation for GST, the ob-
servations are the observed frequencies of circuit outcomes.
In order to employ a Kalman filter, we must describe our
observations as nonlinear functions of the state, perturbed by
additive Gaussian noise as in Equation 9. To do so we appeal
to the central limit theorem [4]. In the limit of many circuit
repetitions, M , the multinomial-distributed observations yk
will be well approximated as a multivariate Gaussian random
variable centered at the true circuit probability distribution
hk(x) (the observation function evaluated at the true error
parameters) with covariance

yk ∼ N (hk(x), Rk). (13)

where

Rk ≡
diag(hk(x))− hk(x)hk(x)

T

M

The fact that our observations are Gaussian distributed
in the limit of many circuit repetitions means that we may
approximate the likelihood function for a given circuit as:

Pr(yk|hk(x)) ∝ exp
(
− 1

2
(yk − hk(x))

TR−1
k (yk − hk(x))

)
.

where 2n is the size of the output space and we omit the
standard multivariate Gaussian normalization constant. Thus
observation likelihoods are approximately Gaussian when the
number of samples taken is sufficiently large. The precise
number of samples that must be taken will generally depend
on the number of qubits and the dimension of the output space.

In practice, we do not know a circuit’s true probability
distribution hk(x), so we require an estimate of the observation
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Algorithm 1 Kalman iteration

Initialization:
Gate set error model
Initial point estimate x̂0

Initial uncertainty P0

Output:
Streaming estimate x̂k

Streaming uncertainty Pk

Iteration:
for Each new circuit Ck do
Take data yk
xk ← xk−1 +Kk(yk − hk(x̂k−1))
Pk ← (I −KkHk)Pk−1

end for

Fig. 2: Kalman update algorithm structure and outline

covariance in order to perform Kalman filtering in practice.
The approach we take is to use the covariance of the conjugate
Dirichlet distribution, as described in Ref. [19]. Given a
multinomial distribution over M trials with average sample
vector y, then the conjugate Dirichlet distribution whose mode
is equal to y is uniquely defined as the Dirichlet distribution
with pseudo-counts α equal to the observed count vector s plus
the vector of all ones 1, i.e. α = s + 1, as in Laplace’s rule
of succession. The resulting Dirichlet distribution will have
covariance

Rk ≈
1

M + d+ 1

(
diag(α)
M + d

− ααT

(M + d)2

)
(14)

where M is the number of samples and d is the dimension
of the probability vector space. In this fashion, we match the
covariance of our observations with the covariance of the con-
jugate Dirichlet distribution for the multinomial observation.
It is important to note that this covariance is singular, which
comes from the fact that the total counts is fixed, so we must
use the pseudo-inverse in place of the usual matrix inverse.
This singularity can pose some issues in filter design and we
discuss methods to deal with the singularity of the Dirichlet
covariance in Section V.

C. Linearization and circuit selection constraints

Successful application of the extended Kalman filter re-
quires accurately approximating the model observation hk

with a linear expansion in the error parameters x. The tech-
nique of model linearization expands the observation function
hk(x) about the prior estimate x̂k−1:

hk(x) = hk(x̂k−1) +Hk[x̂k−1](x− x̂k−1) +O(|x− x̂k−1|2).
(15)

In order for this approximation to hold, it must be the case
that higher order variations in hk are negligible. However,
the degree of nonlinearity in hk grows as a circuit’s depth

increases. Our heuristic for dealing with the increasing non-
linearity of hk is to start estimating with short circuits then
feed in increasingly longer circuits as the expected estimate
error shrinks. This way the observation function can be made
to appear linear over the principle support of the prior, see
Fig. 3.

Filtering on circuits in order from shortest to longest also
addresses a particular kind of nonlinearity that arises in the
GST circuit likelihoods. These likelihood functions can be
approximately periodic in Hamiltonian error rates. This can
violate the Gaussian assumption of Kalman filtering if the
principle support of the prior (say the 95% confidence region)
spans more than a single period of the oscillation, see Fig. 3.
This issue also arises in robust phase estimation (RPE) [27]
as longer circuits provide increased accuracy but only when
one can use shorter circuits to identify the principle domain
of the phase. By feeding in our circuits from shortest to
longest, we ensure that the priors shrink at a rate comparable
to the decrease in the period of the oscillation of longer circuit
likelihoods.

IV. NUMERICAL RESULTS

To test and demonstrate the performance of extended filter-
ing for online GST estimation, we have developed a Python
class that interates with the pyGSTi [28] package to estimate
gate set model parameters in a streaming fashion. In this
section, we present numerical experiments that indicate that
extended Kalman filtering is a promising candidate for real-
time characterization of quantum processors. We estimate the
parameters of tomographically complete 1-qubit and 2-qubit
FOGI noise models using both iterative extended Kalman
filtering and batched MLE. We find that the Kalman filter is
able to achieve estimation accuracy that compares favorably
with MLE on the two simulations presented here, as well as on
numerous other simulations performed with different random
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Fig. 3: Influence of the prior distribution on Bayesian updates.
The top two plots show the prior and likelihood for a short
and a long circuit for a simplified 1-parameter model, and the
bottom two plots show the resulting posterior when calculated
via Bayes rule. In the case of the short circuit, the wide circuit
prior moves closer to the true value than the narrow circuit
prior. In the case of the long circuit, the wide prior produces a
multi-modal distribution when multiplied with the likelihood,
which violates the assumptions of the Kalman filter, and the
narrow prior results in a unimodal distribution that can be
well approximated as a Gaussian. This example illustrates that,
in order to assume Gaussian priors and Gaussian likelihoods
needed for Kalman filtering, the length of the circuit should be
selected such that the likelihood is unimodal on the principle
support of the prior.

noise models. We provide our code [29], and invite the reader
to test our methods on models of their choosing.

The numerical experiments presented here follow the same
basic steps summarized below:

1) A particular gate set is chosen.
2) A data generating model is chosen randomly.
3) An GST experiment design is computed.
4) Experimental data is simulated using the data generating

model.
5) The Kalman filter is applied to simulated observations

from each circuit in turn.
Our simulations are based on a 1-qubit gate set of X-

and Y -rotations by π/2, and a 2-qubit gate set consisting
of the same single-qubit gates and an additional controlled
not (CNOT) gate from qubit 1 to 2. For convenience, we
use a reduced H+S error model [23] consisting solely of
Hamiltonian and Pauli-stochastic errors, and reparameterize

it using a FOGI representation. The restriction to an H+S
model is not necessary, but simplifies our demonstration. We
then generate a random data generating model with fixed
Hamiltonian and stochastic error rates. We check that the
model is completely positive and trace preserving (CPTP) and
ensure that the average gate set infidelity is comparable to
current devices. To highlight the ability of the Kalman filter
to learn coherent errors, we also ensure that the coherent error
rates contribute significantly to the infidelity. The choice of the
initial covariance matrix was determined based on the outcome
of a Clifford randomized benchmarking experiment [30], as
described above.

Circuits were selected based on standard GST practice per
the discussion in Sec. II. In practice, we found it useful feed
in circuits from a batch of fixed germ power to the Kalman
filter in a random order. GST experiment designs have inherent
structure, such as many circuits for which the same germ is
run with different fiducials, or that include only single-qubit
gates. We found this structure caused distracting artifacts in
the trajectory of the point estimate. However, we found no
qualitative difference in the limiting behaviour of the estimate
for randomized circuit batches and structured circuit batches.

Figs. 4a and 4b display the evolution of the mean square
error (MSE) in the filter model’s mean point estimate as well
as in the MLE point estimate, and Figs 4c and 4d display the
mean absolute error. We also plot the expected MSE and the
expected MAE in the estimate, which correspond to the trace
of the covariance matrix Pk and the trace of the square root
of Pk, respectively. We find that the Kalman filter converges
to the true model at a rate comparable to maximum likelihood
estimation, and that the expected MSE and MAE evaluations
are also consistent with the actual evolution. Our results
indicate that Kalman filtering can achieve similar performance
to batched MLE estimate.

To further illustrate the potential utility of our estimation
algorithm for calibrations, we plot the evolution of a filter’s
estimate of specific Hamiltonian gate errors over time in Figs.
4e and 4f. In the case of single qubit gates, we plot on-axis
over-rotation errors, e.g., for a π/2 rotation about X , the
corresponding over-rotation error is an additional ϵ rotation
about X . In the case of the CNOT gate, we plot the over-
rotation of the ZX Hamiltonian term. These results indicate
that our filter is able to accurately estimate coherent, gate-
specific errors, which are the types of errors that can be
fixed with improved calibration and control. In particular, our
technique also provides real-time uncertainty estimates of the
errors, which will be useful in deriving real time calibration
methods.

An unexpected advantage of our approach is that that
filter was able to process circuit outcome data at a relatively
fast rate. We could process about 2-25 1-qubit circuits per
second and 2-5 2-qubit circuits per second on a Dell xps
laptop with an i5-8250U×8 processor. The processing rate
goes down as the length of the circuit increases because
of the increased complexity in recomputing Jacobians for
longer circuits. However, we expect that the implementation
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Numerical performance of streaming GST. Plots (a)-(d) compare the convergence rates of the Kalman filter’s point
estimate with batched MLE point estimates under a metric of mean square error (MSE) and mean absolute error (MAE)
between the point estimate and the parameters of the data generating model. The x-coordinates of the gray lines correspond
to batches of germs of fixed power, and the batched MLE point estimates are calculated based on the observations from all
data up-to and including the current batch. These plots also compare the evolution in the filters’ MSE and MAE with their
expected evolution given by Tr(Pk) and Tr(

√
Pk) respectively. MSE is the natural metric for a Kalman filter since Kalman

filters minimize the square of the expected error in the estimate, but MAE is a stronger performance metric that is more
sensitive to small differences in parameters. Plots (e) and (f) display error in the estimate of particular Hamiltonian parameters
that correspond to the types of errors we expect could be reduced with improved calibration. The dotted lines denote the “true”
parameters that were used to generate the data.

efficiency could be significantly improved by exploiting the
structure of GST circuits.

V. EXTENSIONS AND ALTERNATIVE APPROACHES

There are a number of alternative approaches and extensions
to our core method that may be useful in future applications
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either in deploying on embedded hardware or in developing
more refined filtering techniques, which we present here. In
particular, we summarize techniques to (a) explicitly resolve
the singularity of the Dirichlet covariance (rather than relying
on a pseudo-inverse), (b) treat non-Markovian noise in the
device, (c) speed up the estimation procedure with a significant
increase in the required memory, and (d) increase the estima-
tion precision when memory is limited. We have additionally
investigated the sigma point (or unscented) Kalman filter [9],
and found that it achieves comparable performance to the
extended Kalman filter.

The Dirichlet covariance matrix that we use to model
observation noise Rk is singular. This singularity means that
we must employ a more expensive pseudo-inverse in our
estimation routine and that useful matrix factorizations, such
as the Cholesky decomposition, cannot be applied. We see
two potential amendments to our method so as to deal only
with invertible matrices: 1) project out the singularity and
consider only the invertible part of the covariance matrix,
or 2) base our covariance estimate for the observation on a
Poisson rather than Dirichlet distribution. Details of the first
approach may be found in [19], where the explicit form of the
required projection operators is provided. The second approach
is inspired by a Poisson Kalman filter that was derived to
estimate disease transmission rates [31]. The Poisson Kalman
filter replaces our definition of Rk in Equation 14 with the
form

Rk =
diag(α)
(M + d)2

(16)

where, again, the pseudo-counts vector α is the observed
counts plus a vector of all 1’s, M is the number of samples,
and d is the dimension of the output space. As a diagonal
positive matrix, the Poisson covariance estimate is clearly
invertible. The key difference between the Dirichlet and the
Poisson covariance estimates is that the Poisson covariance
does not subtract the dyad ααT , which is the cause of the
singularity in the Dirichlet covariance. The Poisson form
assumes that the samples in a batch are uncorrelated with one
another, while the Dirichlet covariance includes information
about correlations that arise due to the fixed shot count. We
tested the Poisson form of the covariance in simulation and
found little practical difference in the convergence rates of the
point estimates of the two different filters, but more work is
needed to fully understand the impact of this change.

In this work, we developed a Kalman filter for parameter
estimation of static GST parameters. However, error rates in
real devices often display some amount of drift. To capture
this drift, or even to provide robustness against more general
non-Markovianity, we must relax the assumption of static
dynamics. The Kalman filter conveniently has this ability
already baked into its framework. Recall the Q covariance
matrix introduced in Section II-B models stochastic drift in
the state. We previously assumed this covariance to be the all
zeros matrix to reflect the fact that the gate set parameters were
not changing over time. However, it would be straightforward
to implement an extended estimation algorithm with a non-

zero Q matrix, which would explicitly allow for the possibility
of Brownian parameter drift in the model assumptions. The
exact form of the Q matrix would naturally be specific to each
particular system, and techniques for determining its form are
left for future work.

The most expensive step in our filtering routine is the
calculation of observation function Jacobians, which must be
reevaluated at the current estimate for each new circuit. The
lattency of our algorithm may be significantly improved by
approximating these first derivatives by a second-order Taylor
expansion about some reference state. In this approach, the
Jacobian at a point x̂ may be approximated per

Hk[x̂k−1] ≈ Hk[x̂ref] +Ak[x̂ref](x̂k−1 − x̂ref) (17)

where Ak[x̂ref] is the Hessian or second order variations
calculated at a reference point x̂ref. Instead of calculating
Hk[x̂k−1] every time we observe a circuit, we can precompute
Hk and Ak at our chosen reference point and approximate
the desired Jacobian with inexpensive matrix operations. One
may envision a hybrid approach wherein a Kalman filter is run
on batches of circuits and the model matrices are calculated
for the next batch while the current batch is running, with
a particular schedule that would naturally depend on the
specifics of the system. Such a procedure would significantly
the runtime latency of the estimation algorithm at the cost
of increased prior computation and memory resources. If
the available memory resources are not sufficient to store
the Hessians, then one may consider using singular value
compression on the Hessians, which, for GST circuits, will
have a small subset of large singular values.

The sigma point (or unscented) Kalman filter is a viable
alternative to extended Kalman filtering that is particularly
useful when model Jacobians are prohibitively expensive to
calculate. We ran simulations using sigma point filtering and
found that it achieved comparable estimation accuracy to
extended Kalman filtering and with similar computational
latency. In developing a sigma point Kalman filter, one may
find difficulties employing the usual sigma point sampling
algorithm, as the covariance of the Dirichlet distribution is
singular. One may overcome these difficulties by either using
a non-singular covariance for the observations, employing one
of the techniques previously discussed in this section, or basing
the sigma point sampling algorithm on the square root of the
covariance instead of the Cholesky factor.

In practice, we envision deploying our techniques on em-
bedded hardware, where memory resources may be limited.
When running a Kalman filter on real hardware such as an
FPGA, it may be preferable to base an estimation protocol
on the square root Kalman filter [32], which uses a Cholesky
factor in place of the usual covariance matrix that appears
in the estimation protocol. Because a Cholesky factor has
a quadratically better condition number than a covariance
matrix, the square root Kalman filter has a quadratically better
estimation precision in the presence of limited memory. While
some technical details of the estimation procedure change
between the usual and the square root form of a Kalman
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filter, the higher level discussion and practical considerations
discussed in this work should not change.

VI. DISCUSSION

In this work, we developed an extended Kalman filter for
quantum gate set tomography estimation. We demonstrated
in simulation that our method can achieve similar estima-
tion accuracy as the standard technique of batch maximum
likelihood estimation. Our method additionally produces error
bars for the estimate as a natural byproduct of the estimation
procedure with no additional computation. Error bars in MLE
analysis require expensive calculations based on Hessians of
the likelihood function, which can take many hours or even
days to calculate. We demonstrated that Kalman filtering based
on first-order gauge invariant (FOGI) models without gauge
degrees of freedom can reliably estimate model parameters
even when seeded at the target model.

Adapting the extended Kalman filter to gate set tomog-
raphy estimation required several key modifications to the
GST experiment design, namely: (1) using a large number
of samples per circuit to ensure approximately Gaussian
observation noise, (2) ordering circuits by increasing depth
to ensure that the model can be accurately linearized under
the current uncertainty in the filter, and (3) using randomized
benchmarking results to construct an initial Gaussian prior.
These approximations also point to interesting future research
questions including whether filters can be designed based on
single shot circuit outcomes and investigating the validity of
the linear approximation as a function of circuit length.

Streaming gate set tomography based on the extended
Kalman filter provides online model feedback, which is a
key component in any closed-loop control framework. With
our method, the user can use individual circuit outcome
distributions to update an estimate the parameters of a gate
set error model along with their uncertainty. Our protocol can
be deployed on real devices and can process circuit outcomes
at rates comparable with current circuit execution.

This work represents a first step towards a unified closed-
loop control algorithm for quantum processors. Towards this
goal, our next steps include developing techniques for adaptive
circuit selection that select the next circuit based on the current
uncertainty in the filter, applying the filter in cases where the
noise parameters change over time, and deriving control maps
between changes in control parameters and changes in state
parameters. These advances would then pave the way to a
unified closed-loop control framework for arbitrary gate set
quantum processors.
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