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1 Introduction

This paper is concerned with a singularly perturbed fourth-order boundary value problem in a square

region Ω. The problem is solved by the weak Galerkin (WG) method with a Shishkin mesh, as follows:

ε2∆2u−∆u = f, in Ω, (1.1)

u = 0, on ∂Ω, (1.2)

∂u

∂n
= 0, on ∂Ω, (1.3)

with a positive parameter ε satisfying 0 < ε ≪ 1 and f ∈ L2(Ω). This problem is used for thin elastic

plates clamped in tension. f represents the transverse load, ε symbolizes the ratio of bending stiffness

to tensile stiffness of the plate, and the function’s solution, denoted as u, represents the displacement of

the plate. This problem emerges in the investigation of the linearization of the fourth-order perturbation

associated with the fully nonlinear Monge-Ampère equation[2, 3].

*Corresponding author

ar
X

iv
:2

30
6.

15
86

7v
2 

 [
m

at
h.

N
A

] 
 2

8 
M

ar
 2

02
4

http://crossmark.crossref.org/dialog/?doi=Science China Mathematics Manuscript for review&domain=pdf
math.scichina.com
link.springer.com


2 Author A et al. Science China Mathematics Manuscript for review

A variational formulation for the fourth-order equation (1.1) with the boundary conditions (1.2) and

(1.3) seeks u ∈ H2(Ω) such that

ε2(∆u,∆v) + (∇u,∇v) = (f, v), ∀v ∈ H2
0 (Ω), (1.4)

where H2
0 (Ω) is a subspace of the Sobolev space H2(Ω) consisting of functions with vanishing value and

normal derivative on ∂Ω.

Research into numerical methods for singularly perturbed differential equations commenced in the early

1970s, with the frontier of research continuously expanding ever since. Bakhvalov made an important

early contribution to the optimization of numerical methods by means of special meshes [1] in 1969. In the

early 1990s, G.I. Shishkin proposed piecewise-equidistant meshes [20, 26]. These meshes, characterized

by their very simple structure, are usually easy to analyze. Shishkin meshes for various problems and

numerical methods have been studied since and they are still popular. Numerous scholars have explored

the numerical analysis of analogous problems using various finite element methods, such as the mixed

finite element method in [11], the hp finite element method in [8], the continuous interior penalty finite

element method in [12], the upwind finite volume element method in [36], the conforming finite element

method in [24]. And also some papers consider finite element methods on quasi-uniform meshes: a

continuous interior penalty finite element method in [3] and nonconforming finite element method in

[5, 6, 14,19,23,31,34,38].

In this paper, we employ the WG method with a Shishkin mesh to investigate the convergence behavior

of a fourth-order boundary value problem that exhibits singular perturbation. The WG method proves

to be an effective numerical technique for the partial differential equations(PDEs). The initial proposal

for its application in solving second-order elliptic problems was made by Junping Wang and Xiu Ye in

[28]. The core concept involves establishing distinct basis functions for the interior and boundary of

each partitioned element, and substituting the traditional differential operator with a discretized weak

differential operator. TheWGmethod has been applied to Stokes equations [29,32,37], elasticity equations

[4, 15, 27, 39], Maxwell’s equations [22], biharmonic equations [9, 44], Navier-Stokes equations [16, 18, 43],

Brinkman equations [21, 35, 40], the multigrid approach [7], the incompressible flow [45], the maximum

principle [17,30], the post-processing technique [33] and so on. For singular perturbed value problems, the

WG method has also yielded some results, such as the singularly perturbed convection-diffusion problems

for WG in 1D [42,46] and 2D [41], the singularly perturbed biharmonic equation for WG in uniform mesh

[10].

This paper is organized as follows. In Section 2, we introduce the Shishkin mesh and the assumptions

associated. In Section 3, we give the definitions of the weak Laplacian operator and weak gradient

operator. We also present WG finite element schemes for the singularly perturbed value problem. In

Section 4, we introduce some local L2 projection operators and give some approximation properties. In

Section 5, we establish error estimates for the WG scheme in a H2-equivalent discrete norm. And in

Section 6, we report the results of two numerical experiments.

2 Preliminaries and notations

To solve problem (1.1)-(1.3), we suppose the following assumption holds in [19], which involves structuring

the solution and decomposing u into smooth and layered components.

Assumption 2.1. The solution u to the singularly perturbed fourth-order boundary value problem

(1.1)-(1.3) can be expressed as the sum of its smooth and layered components, as follows:

u = S +

4∑
l=1

El + E12 + E23 + E34 + E41.

In this decomposition, S represents a smooth function, each El corresponds to a boundary layer component

along the sides of Ω̄ in anti-clockwise order, and the remaining components are corner layer parts along
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the corners of Ω̄ in anti-clockwise order. Furthermore, there exists a constant C for all points (x, y) ∈ Ω̄,

which is independent of x and y. This constant satisfies the following conditions for 0 ⩽ i+ j ⩽ k + 1,∣∣∣∣ ∂i+jS

∂xi∂yj

∣∣∣∣ ⩽ C,∣∣∣∣∂i+jE1

∂xi∂yj

∣∣∣∣ ⩽ Cε1−je−
y
ε ,∣∣∣∣∂i+jE4

∂xi∂yj

∣∣∣∣ ⩽ Cε1−ie−
x
ε ,∣∣∣∣∂i+jE41

∂xi∂yj

∣∣∣∣ ⩽ Cε1−i−je−
x
ε e−

y
ε .

Moreover, the other components of the decomposition are bounded in a similar manner.

In order to solve the layer structure in the solution of problems (1.1)-(1.3), a well-suited layer-adapted

Shishkin mesh be considered. This mesh is refined in the layers. For a comprehensive discussion on the

construction of Shishkin meshes, please refer to [25].

Consider a positive integer N ⩾ 4 that is divisible by 4. We introduce a mesh transition parameter λ

to determine the location at which the mesh switches from coarse to fine. This parameter is defined by

λ = min

{
αεlnN,

1

4

}
, (2.1)

where α is a positive constant, selected to be k + 1 for the subsequent analysis.

Create a piecewise equidistant mesh for the interval [0, 1] by dividing it as follows: divide [0, λ] into

N/4 subintervals, [λ, 1−λ] into N/2 subintervals, and [1−λ, 1] into N/4 subintervals. The Shishkin mesh

for the problem (1.1)-(1.3) is formed by taking the tensor product of two such one-dimensional meshes,

as illustrated in Figure 1. The fine meshwidth denoted as h and the coarse meshwidth denoted as H in

the Shishkin mesh represented by TN exhibit the following characteristics:

h =
4λ

N
⩽ CεN−1lnN and H = 2

1− 2λ

N
⩽ CN−1 (2.2)

for some constant C. The domain Ω is divided into some subdomains, see Figure 1. Denote Ωl1∪Ωs∪Ωl3

by Ω1
r and Ωl2 ∪ Ωs ∪ Ωl4 by Ω2

r.

Figure 1 A rectangular Shishkin mesh with N = 8 and dissection of Ω.

3 Weak differential operator and WG scheme

To propose the weak Galer-kin method, we introduce some key concepts. Consider a element T belonging

to the partition TN with a boundary denoted by ∂T . Let the set of all edges in TN be represented as
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EN . We define a weak function v = {v0, vb,vg} on the element T , where v0 ∈ L2(T ), vb ∈ H
1
2 (∂T ), and

vg · n ∈ H
1
2 (∂T ), with n representing the outward normal direction on ∂T . Furthermore, the first and

second components, v0 and vb, correspond to values of v in the interior and on the boundary of T . The

third component vg is employed to approximate the gradient of v along the boundary of T . It’s important

to note that each edge e ∈ EN has a unique value for vb and vg. Additionally, it’s worth mentioning that

vb and vg may not necessarily be associated with the trace of v0 and ∇v0 on ∂T .

For any integer k ⩾ 3, we establish a local discrete weak function space for any element T ∈ TN
denoted as Wk(T ):

Wk(T ) =
{
v = {v0, vb,vg} : v0 ∈ Qk(T ), vb ∈ Pk(e),vg ∈ [Pk(e)]

2, e ∈ ∂T
}
,

where e is the edge of ∂T , and Qk is the space of polynomials which are of degree not exceeding k with

respect to each one of the variables x and y. By extending Wk(T ) to encompass all element T ∈ TN , we

introduce the definition of a weak Galerkin space:

VN = {v = {v0, vb,vg} : v|T ∈ Wk(T ),∀T ∈ TN} .

Let V 0
N represent the subspace of Vh where the traces vanish:

V 0
N = {v = {v0, vb,vg} ∈ Vh, vb|e = 0,vg · n|e = 0, e ⊂ ∂T ∩ ∂Ω} .

For any v = {v0, vb,vg} and a fixed integer k ⩾ 3, we define a discrete weak Laplacian operator ∆w,k

as a unique polynomial ∆w,kv ∈ Qk(T ) on T satisfying the following equation:

(∆w,kv, φ)T = (v0,∆φ)T − ⟨vb,∇φ · n⟩+ ⟨vg · n, φ⟩ , ∀φ ∈ Qk(T ), (3.1)

where n is the unit outward normal vector to ∂T . Likewise, a discrete weak gradient ∇w,k is defined on

T as a unique polynomial ∇w,kv ∈ [Qk(T )]
2 satisfying:

(∇w,kv,q)T = − (v0,∇ · q)T + ⟨vb,q · n⟩∂T , ∀q ∈ [Qk(T )]
2
. (3.2)

For simplicity, when there is no confusion, we drop the subscript k in the notations ∆w,k and ∇w,k

for the discrete weak Laplacian and the discrete weak gradient. Additionally, we introduce the following

notations:

(∆wv,∆ww)TN
: =

∑
T∈TN

(∆wv,∆ww)T ,

(∇wv,∇ww)TN
: =

∑
T∈TN

(∇wv,∇ww)T .

Let us introduce a stabilizer, which is a bilinear form for any uN = {u0, ub,ug} and v = {v0, vb,vg} in

the space Vh. It is defined as follows:

s (uh, v) =
∑

T∈TN

(
ε2h−1 ⟨∇u0 − ug,∇v0 − vg⟩∂T (3.3)

+
(
ε2h−2H−1 +H−1

)
⟨u0 − ub, v0 − vb⟩∂T

)
,

where h and H is defined as (2.2).

The following lemma provides a valuable result regarding the finite element space V 0
N .

Lemma 3.1. For any v ∈ V 0
N , let |||v||| be given as follows:

|||v|||2 = ε2(∆wv,∆wv)TN
+ (∇wv,∇wv)TN

+ s(v, v), (3.5)

Then, ||| · ||| defines a norm in V 0
N .
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Algorithm 1 WG Algorithm

To obtain a numerical approximation for (1.1)-(1.3), we seek uN = {u0, ub,ug} ∈ VN that satisfies the

following equation:

ε2(∆wuN ,∆wv)N + (∇wuN ,∇wv)N + s(uN , v) = (f, v), (3.4)

for any v = {v0, vb,vg} ∈ V 0
N .

Proof. We shall only confirm the positivity property for ||| · |||. Consider v = {v0, vb,vg} ∈ V 0
N with the

assumption that |||v||| = 0. This implies ∆wv = 0 and ∇wv = 0 in each element T , while also satisfying

v0 = vb and ∇v0 = vg on ∂T . Next, we will proof that ∆v0 = 0 in each element T . To this end, for any

φ ∈ Qk(T ), employing the definition (3.1) and the fact that ∆wv = 0, we obtain

0 = (∆wv, φ)T

= (v0,∆φ)T − ⟨vb,∇φ · n⟩∂T + ⟨vg · n, φ⟩∂T
= (∆v0, φ)T + ⟨v0 − vb,∇φ · n⟩∂T + ⟨vg · n−∇v0 · n, φ⟩∂T
= (∆v0, φ)T ,

(3.6)

where we have applied the fact that v0−vb = 0 and ∇v0−vg = 0 in the final equality. The identity (3.6)

indicates that ∆v0 = 0 in each element T . Together with the conditions v0 = vb and ∇v0 = vg on ∂T ,

we conclude that v is a globally smooth harmonic function on Ω. Considering the boundary conditions

vb = 0 and vg · n = 0, we infer that the unique solution is v ≡ 0 on Ω. This concludes the proof.

4 Local L2 projection operators and approximation properties

In this section, we introduce some projection operators for each element T ∈ TN . Consider the L2

projection operator Q0, which projects onto Qk(T ). Additionally, for each edge e ∈ ∂T , we consider the

L2 projection operators Qb and Qg onto local polynomial spaces Pk(e) and [Pk(e)]
2, respectively. We

define a projection QN of u into the finite element space VN such that on each element T

QNu = {Q0u,Qbu,Qg(∇u)} .

Furthermore, let QN represent the local L2 projection onto [Qk(T )]
2. The following lemma demonstrates

that the weak Laplacian ∆w is the polynomial projection of the classical Laplacian ∆.

Lemma 4.1. On each element T ∈ TN , for any v ∈ H2(T ),

∆w(QNv) = Q0(∆v). (4.1)

Proof. For any τ ∈ Qk(T ), we obtain that

(∆wQNu, τ)T = (Q0u,∆τ)T − ⟨Qbu,∇τ · n⟩∂T + ⟨Qg(∇u) · n, τ⟩∂T
= (u,∆τ)T − ⟨u,∇τ · n⟩∂T + ⟨∇u · n, τ⟩∂T
= (∆u, τ)T

= (Q0∆u, τ)T .

This concludes the proof.

A similar lemma holds for the weak gradient ∇w, as indicated in the subsequent lemma.

Lemma 4.2. On each element T ∈ TN , for any v ∈ H2(T ),

∇w(QNu) = QN (∇u). (4.2)
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Proof. For any q ∈ [Qk(T )]
2, from the weak gradient definition and integration by parts, we get

(∇wQNu,q)T = − (Q0u,∇ · q)T + ⟨Qbu,q · n⟩∂T
= − (u,∇ · q)T + ⟨u,q · n⟩∂T
= (∇u,q)T

= (QN∇u,q)T .

This corresponds to identity (4.2).

Now, we introduce notation that will be employed in the following lemmas. Consider any element T

in the partition TN . We define ∂T1 and ∂T2 as the sets of element edges that are parallel to the x and

y axes, respectively. The following lemmas are employed in the convergence analysis, and readers are

directed to [13, chapter 3.1] for a detailed proof process.

Lemma 4.3. Consider ϕ ∈ Hk+1(T ) with k ⩾ 3. Let Q0ϕ denote the L2-projection of ϕ onto Qk(T ).

Then the following inequality estimate holds,

∥ϕ−Q0ϕ∥∂Ti
⩽ C

(
h
k+ 1

2
j ∥∂k+1

j ϕ∥T + hk+1
i h

− 1
2

j ∥∂k+1
i ϕ∥T + h

1
2
j h

k
i ∥∂k

i ∂jϕ∥T
)
, (4.3)

∥∂i(ϕ−Q0ϕ)∥∂Ti ⩽ C
(
hk
i h

− 1
2

j ∥∂k+1
i ϕ∥T + hk−1

i h
1
2
j ∥∂

k
i ∂jϕ∥T + h

k− 1
2

j ∥∂k
j ∂iϕ∥T

)
, (4.4)

∥∂j(ϕ−Q0ϕ)∥∂Ti
⩽ C

(
h
k− 1

2
j ∥∂k+1

j ϕ∥T + hk
i h

− 1
2

j ∥∂k
i ∂jϕ∥T

)
, (4.5)

where i, j ∈ {1, 2}, and i ̸= j.

Lemma 4.4. Let v ∈ Qk(T ) with k ⩾ 3 such that the following inequalities holds,

∥v∥∂Ti ⩽Ch
− 1

2
j ∥v∥T , (4.6)

∥∂iv∥T ⩽Ch−1
i ∥v∥T , (4.7)

where C is a constant only depends on k and i ∈ {1, 2}, i ̸= j.

By applying Lemma 4.3 and Lemma 4.4, we can deduce the following estimates which are valuable for

the convergence analysis of the WG finite element schemes (3.4).

Lemma 4.5. Let k ⩾ 3, u ∈ Hk+1(Ω). There exists a constant C such that the following estimates

hold true,

∑
i=1,2

( ∑
T∈TN

∥∆u−Q0∆u∥2∂Ti

) 1
2

⩽ C
(
N−(k− 3

2 ) + ε−1N−(k− 3
2 ) lnk−

3
2 N + ε−1N

1
2−α

)
, (4.8)

∑
i=1,2

( ∑
T∈TN

∥∇ (∆u−Q0∆u) ∥2∂Ti

) 1
2

⩽ C
(
N−(k− 5

2 ) + ε−2N−(k− 5
2 ) lnk−

5
2 N + ε−2N

3
2−α

)
, (4.9)

∑
i=1,2

( ∑
T∈TN

∥∇u−QN∇u∥2∂Ti

) 1
2

⩽ C
(
N−(k− 1

2 ) +N−(k− 1
2 ) lnk−

1
2 N +N

1
2−α

)
, (4.10)

∑
i=1,2

( ∑
T∈TN

∥∇(Q0u− u)∥2∂Ti

) 1
2

⩽ C
(
N−(k− 1

2 ) +N−(k− 1
2 ) lnk−

1
2 N +N

3
2−α

)
, (4.11)

∑
i=1,2

( ∑
T∈TN

∥Q0u− u∥2∂Ti

) 1
2

⩽ C
(
N−(k+ 1

2 ) + εN−(k+ 1
2 ) lnk+

1
2 N + εN

1
2−α

)
. (4.12)

Proof. To derive (4.8), we estimate
∑

T∈T N ∥∆u − Q0∆u∥∂Ti
by breaking down the function u in

Assumption 2.1. Each term in the decomposition will be considered individually. To begin, we can apply
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inequality (4.3) to obtain(∑
T∈Ωc

∥∆S −Q0∆S∥2∂Ti

) 1
2

⩽Chk− 3
2 ·N · h ⩽ CN−(k− 3

2 ),

(∑
T∈Ωs

∥∆S −Q0∆S∥2∂Ti

) 1
2

⩽CHk− 3
2 ·N ·H ⩽ CN−(k− 3

2 ),

(∑
T∈Ωl

∥∆S −Q0∆S∥2∂Ti

) 1
2

⩽CN · h
1
2
1 h

1
2
2

(
h
k− 3

2
j + h

− 1
2

j hk−1
i + h

1
2
j h

k−2
i

)
⩽CN−(k− 3

2 ),

where we have used the fact that hi = h in the domain Ωc and hi = H in the domain Ωs, for i = 1, 2.

Next, we provide estimates only for the sets of element edges parallel to the x axis, as the orther part

follows a similar way. Considering the boundary layer E1, we obtain(∑
T∈Ωc

∥∆E1 −Q0∆E1∥2∂T1

) 1
2

⩽Chk− 3
2 · ε−k

(∫
Ωc

e−
2y
ε dxdy

) 1
2

⩽Cε−k · hk− 3
2 · ε ln

1
2 N

⩽Cε−
1
2N−(k− 3

2 ) lnk−1 N,(∑
T∈Ωl

∥∆E1 −Q0∆E1∥2∂T1

) 1
2

⩽C ( ε2−kh
k− 3

2
2 + εhk−1

1 h
− 1

2
2 + hk−2

1 h
1
2
2 + ε−kh

k− 3
2

2

+ ε−1hk−1
1 h

− 1
2

2 + ε−2hk−2
1 h

1
2
2 )

(∫
Ωl

e−
2y
ε dxdy

) 1
2

⩽Cε−
3
2N−(k− 3

2 ) lnk−
3
2 N · ε 1

2

⩽Cε−1N−(k− 3
2 ) lnk−

3
2 N,

where we have used the inequality (4.3). As for the region Ω2
r that remains in the partition, by applying

inequality (4.6), we derive∑
T∈Ω2

r

∥∆E1 −Q0∆E1∥2∂T1

 1
2

⩽C
∑
T∈Ω2

r

∥∆E1∥∂T1
+
∑
T∈Ω2

r

h
− 1

2
2 ∥Q0∆E1∥T

⩽C(ε+ ε−1)

(
N

∫ 1

0

e−
2y
ε dx

) 1
2

+H− 1
2 ∥∆E1∥Ω2

r

⩽C
(
ε−1N

1
2−α +H− 1

2 (ε
3
2N−α + ε−

1
2N−α)

)
⩽Cε−1N

1
2−α.

A similar bound can be readily obtained for E2, E3, and E4. Let’s focus on estimating E41 for the concer

layers, as the other concer layers in the decomposition from Assumption 2.1 follow a similar way. By

applying inequalities (4.3) and (4.6), we arrive at(∑
T∈Ωc

∥∆E41 −Q0∆E41∥2∂Ti

) 1
2

⩽Cε−khk− 3
2 ·
(∫

Ωc

e−
2x
ε e−

2y
ε dxdy

) 1
2

⩽Cε−
1
2N−(k− 3

2 ) lnk−
3
2 N.∑

T∈Ω1
r

∥∆E41 −Q0∆E41∥2∂T1

 1
2

⩽C
∑
T∈Ω1

r

(
∥∆E41∥∂T1

+ h
− 1

2
2 ∥Q0∆E41∥T

)
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⩽Cε−1

(
N

∫ 1−λ

λ

e−
2x
ε e−

2y
ε dx

) 1
2

+ h− 1
2 ∥∆E41∥Ω1

r

⩽C
(
ε−1 · ε 1

2N
1
2−α + h− 1

2 ·N−α
)

⩽Cε−
1
2N

1
2−α,∑

T∈Ω2
r

∥∆E41 −Q0∆E41∥2∂T1

 1
2

⩽C
∑
T∈Ω2

r

(
∥∆E41∥∂T1

+ h
− 1

2
2 ∥Q0∆E41∥T

)

⩽Cε−1

(
N

∫ 1

0

e−
2x
ε e−

2y
ε dx

) 1
2

+H− 1
2 ∥∆E41∥Ω2

r

⩽C
(
ε−1 · ε 1

2N
1
2−α +H− 1

2 ·N−α
)

⩽Cε−
1
2N

1
2−α.

By combining the aforementioned proofs, we establish inequality (4.8). Likewise, for inequalities (4.9),

(4.10), (4.11), and (4.12), the proof follows a similar way as above. Therefore, we omit the detailed

explanation.

5 Error estimate

In this section, the objective is to provide error estimates for the WG solution uN obtained from (3.4).

5.1 Error equation

We introduce notation used in error analysis to represent the error between the finite element solution

and the L2 projection of the exact solution, as follows

eN = QNu− uN = {e0, eb, eg}.

The convergence analysis relies on the error equation, and in the following lemma, we will establish an

equation that the error eN satisfies.

Lemma 5.1. Suppose u and uN = {u0, ub,ug} ∈ VN represent the solutions of (1.1) and (3.4),

respectively. Then for any v ∈ V 0
N , we have

a(eN , v) = l1(u, v)− l2(u, v) + l3(u, v) + s(QNu, v), (5.1)

where

l1(u, v) =
∑

T∈TN

ε2 ⟨∆u−Q0∆u, (∇v0 − vg) · n⟩∂T ,

l2(u, v) =
∑

T∈TN

ε2 ⟨∇ (∆u−Q0∆u) · n, v0 − vb⟩∂T ,

l3(u, v) =
∑

T∈TN

⟨(∇u−QN∇u) · n, v0 − vb⟩∂T .

Proof. Using the definition of weak Laplacian (3.2), integration by parts and Lemma 4.1, for any

v ∈ V 0
N , we yield

(∆wQNu,∆wv)T

= (v0,∆(∆wQNu))T + ⟨vg · n,∆wQNu⟩∂T − ⟨vb,∇ (∆wQNu) · n⟩∂T
= (∆v0,∆wQNu)T + ⟨v0,∇ (∆wQNu) · n⟩∂T − ⟨∇v0 · n,∆wQNu⟩∂T
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+ ⟨vg · n,∆wQNu⟩∂T − ⟨vb,∇ (∆wQNu) · n⟩∂T
= (∆v0,∆wQNu)T + ⟨v0 − vb,∇ (∆wQNu) · n⟩∂T − ⟨(∇v0 − vg) · n,∆wQNu⟩∂T
= (∆v0,Q0∆u)T + ⟨v0 − vb,∇ (Q0∆u) · n⟩∂T − ⟨(∇v0 − vg) · n,Q0∆u⟩∂T
= (∆u,∆v0)T + ⟨v0 − vb,∇ (Q0∆u) · n⟩∂T − ⟨(∇v0 − vg) · n,Q0∆u⟩∂T ,

which implies that∑
T∈Th

(∆u,∆v0)T =(∆wQNu,∆wv)N −
∑
T∈Th

⟨v0 − vb,∇ (Q0∆u) · n⟩∂T

+
∑
T∈Th

⟨(∇v0 − vg) · n,Q0∆u⟩∂T .
(5.2)

Likewise, we deduce from integration by parts and Lemma 4.2 the following

(∇wQNu,∇wv)T = − (v0,∇ · ∇wQNu)T + ⟨vb,∇wQNu · n⟩∂T
= (∇v0,∇wQNu)T + ⟨vb − v0,∇wQNu · n⟩∂T
= (∇v0,QN∇u)T + ⟨vb − v0,QN∇u · n⟩∂T
= (∇v0,∇u)T − ⟨v0 − vb, (QN∇u) · n⟩∂T ,

which implies that∑
T∈Th

(∇u,∇v0)T = (∇wQNu,∇wv)N +
∑
T∈Th

⟨v0 − vb,QN∇u · n⟩∂T . (5.3)

Test equation (1.1) with the vector v0 of v = {v0, vb,vg} ∈ V 0
N , we find

ε2
(
∆2u, v0

)
− (∆u, v0) = (f, v0) .

Using the boundary conditions that vg ·n and vb vanish on ∂Ω, along with integration by parts, we derive

ε2
(
∆2u, v0

)
− (∆u, v0) =

∑
T∈Th

[
ε2 (∆u,∆v0)T − ε2 ⟨∆u,∇v0 · n⟩∂T + (∇u,∇v0)T

+ ε2 ⟨∇(∆u) · n, v0⟩∂T − ⟨∇u · n, v0⟩∂T
]

=
∑
T∈Th

[
ε2 (∆u,∆v0)T − ε2 ⟨∆u, (∇v0 − vg) · n⟩∂T + (∇u,∇v0)T

+ ε2 ⟨∇(∆u) · n, v0 − vb⟩∂T − ⟨∇u · n, v0 − vb⟩∂T
]
.

Upon applying the previously mentioned equation together with (5.2) and (5.3), we get

ε2 (∆wQNu,∆wv)N + (∇wQNu,∇wv)N = (f, v0) + l1(u, v)− l2(u, v) + l3(u, v).

By adding s (QNu, v) to both sides of the above equation, we arrive at

a (QNu, v) = (f, v0) + l1(u, v)− l2(u, v) + l3(u, v) + s (QNu, v) . (5.4)

Subtracting (3.4) from (5.4) yields the error equation as follows

a(eN , v) = l1(u, v)− l2(u, v) + l3(u, v) + s(QNu, v),

for all v ∈ V 0
N . This completes the derivation of (5.1).
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5.2 Error estimate

The following theorem is the estimate for the error function eN in the triple-bar norm (3.5), which is an

H2-equivalent norm in V 0
N .

Theorem 5.2. Consider the weak Galerkin finite element solution from (3.4), denoted as uN ∈ VN .

Assuming that u ∈ Hk+1(Ω), it follows that there exists a constant C such that

|||eN ||| ⩽ C
(
N−(k−1) lnk−

3
2 N

)
. (5.5)

Proof. Upon substituting v = eN into the error equation (5.1), we derive the following equation,

|||eN |||2 = l1(u, eN )− l2(u, eN ) + l3(u, eN ) + s(QNu, eN ). (5.6)

Using the Cauchy-Schwarz inequality, the meshwidth characteristics (2.2) and the inequality (4.8), we

derive

l1 (u, eN ) =
∑

T∈TN

ε2 ⟨∆u−Q0∆u, (∇e0 − eg) · n⟩∂T

⩽
∑
i=1,2

( ∑
T∈TN

ε2h∥∆u−Q0∆u∥2∂Ti

) 1
2
( ∑

T∈TN

ε2h−1∥∇e0 − eg∥2∂Ti

) 1
2

⩽ Cεh
1
2

∑
i=1,2

( ∑
T∈TN

∥∆u−Q0∆u∥2∂Ti

) 1
2

|||eN |||

⩽ Cεh
1
2

(
N−(k− 3

2 ) + ε−1N−(k− 3
2 ) lnk−

3
2 N + ε−1N

1
2−α

)
|||eN |||

⩽ C
(
εN−(k−1) + ε

1
2N−(k−1) lnk−1 N + ε

1
2N

1
2−α

)
|||eN |||.

(5.7)

From both the Cauchy-Schwarz inequality and (2.2) and the inequality (4.9), it can be deduced that

l2 (u, eN ) =
∑

T∈TN

ε2 ⟨∇ (∆u−Q0∆u) · n, e0 − eb⟩∂T

⩽
∑
i=1,2

( ∑
T∈TN

ε2h2H∥∇ (∆u−Q0∆u) ∥2∂Ti

) 1
2
( ∑

T∈TN

ε2h−2H−1∥e0 − eb∥2∂Ti

) 1
2

⩽ CεhH
1
2

∑
i=1,2

( ∑
T∈TN

∥∇ (∆u−Q0∆u) ∥2∂Ti

) 1
2

|||eN |||

⩽ CεhH
1
2

(
N−(k− 5

2 ) + ε−2N−(k− 5
2 ) lnk−

5
2 N + ε−2N

3
2−α

)
|||eN |||

⩽ C
(
εN−(k−1) +N−(k−1) lnk−

3
2 N +N1−α

)
|||eN |||.

(5.8)

Similarly, it follows from the Cauchy-Schwarz inequality and (2.2) and (4.10) that

l3 (u, eN ) =
∑

T∈TN

⟨(∇u−QN∇u) · n, e0 − eb⟩∂T

⩽
∑
i=1,2

( ∑
T∈TN

H∥∇u−QN∇u∥2∂Ti

) 1
2
( ∑

T∈TN

H−1∥e0 − eb∥2∂Ti

) 1
2

⩽ CH
1
2

∑
i=1,2

( ∑
T∈TN

∥∇u−QN∇u∥2∂Ti

) 1
2

|||eN |||

⩽ CH
1
2

(
N−(k− 1

2 ) +N−(k− 1
2 ) lnk−

1
2 N +N

1
2−α

)
|||eN |||

⩽ C
(
N−k +N−k lnk−

1
2 N +N−α

)
|||eN |||.

(5.9)
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In the same way, considering s(QNu, eN ), it follows from the Cauchy-Schwarz inequality and (2.2) and

(4.11)-(4.12) that∣∣∣∣ ∑
i=1,2

∑
T∈TN

ε2h−1 ⟨∇Q0u−Qg∇u,∇e0 − eg⟩∂Ti

∣∣∣∣
⩽
∑
i=1,2

( ∑
T∈TN

ε2h−1∥∇Q0u−∇u∥2∂Ti

) 1
2
( ∑

T∈TN

ε2h−1∥∇e0 − eg∥2∂Ti

) 1
2

⩽ Cεh− 1
2

∑
i=1,2

( ∑
T∈TN

∥∇Q0u−∇u∥2∂Ti

) 1
2

|||eN |||

⩽ Cεh− 1
2

(
N−(k− 1

2 ) +N−(k− 1
2 ) lnk−

1
2 N +N

3
2−α

)
|||eN |||

⩽ C
(
ε

1
2N−(k−1) + ε

1
2N−(k−1) lnk−1 N + ε

1
2N2−α

)
|||eN |||, (5.10)∣∣∣∣ ∑

i=1,2

∑
T∈TN

ε2h−2H−1 ⟨Q0u−Qbu, e0 − eb⟩∂Ti

∣∣∣∣
⩽
∑
i=1,2

( ∑
T∈TN

ε2h−2H−1∥Q0u− u∥2∂Ti

) 1
2
( ∑

T∈TN

ε2h−2H−1∥e0 − eb∥2∂Ti

) 1
2

⩽ Cεh−1H− 1
2

∑
i=1,2

( ∑
T∈TN

∥Q0u− u∥2∂Ti

) 1
2

|||eN |||

⩽ Cεh−1H− 1
2

(
N−(k+ 1

2 ) + εN−(k+ 1
2 ) lnk+

1
2 N + εN

1
2−α

)
⩽ C

(
N−(k−1) + εN−(k−1) lnk−

1
2 N + εN2−α

)
, (5.11)

and ∣∣∣∣ ∑
i=1,2

∑
T∈TN

H−1 ⟨Q0u−Qbu, e0 − eb⟩∂Ti

∣∣∣∣
⩽
∑
i=1,2

( ∑
T∈TN

H−1∥Q0u− u∥2∂Ti

) 1
2
( ∑

T∈TN

H−1∥e0 − eb∥2∂Ti

) 1
2

⩽ CH− 1
2

∑
i=1,2

( ∑
T∈TN

∥Q0u− u∥2∂Ti

) 1
2

|||eN |||

⩽ CH− 1
2

(
N−(k+ 1

2 ) + εN−(k+ 1
2 ) lnk+

1
2 N + εN

1
2−α

)
⩽ C

(
N−k + εN−k lnk+

1
2 N + εN1−α

)
. (5.12)

Substituting (5.7)-(5.12) into (5.6) yields

|||eN |||2 ⩽ C
(
N−(k−1) lnk−

3
2 N

)
|||eN |||.

which implies (5.5). This completes the proof of the theorem.

6 Numerical Experiments

In this section we compute two numerical examples where we select α = k + 1 for creating the Shishkin

mesh. Consider the singularly perturbed fourth-order problem that seeks solution u = u(x, y) satisfying

ε2∆2u−∆u = f, in Ω,
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u = ∂nu = 0, on ∂Ω,

where Ω = (0, 1)2, f and ε will choose later. Tables 1-6 display the errors |||QNu − uN ||| for several

different ε and N .

Example 6.1. Choose f(x, y) such that the exact solution is u(x, y) = g(x)g(y), where

g(x) =
1

2

[
sin(πx) +

πε

1− e−1/ε

(
e−x/ε + e(x−1)/ε − 1− e−1/ε

)]
.

The numerical results are shown in Table 1-3.

In the case of k = 3, the error and the order of convergence on Shishkin mesh and uniform mesh are

listed in Table 1 and Table 2, respectively. Compared with the numerical results of the WG method for the

problem on uniform mesh, our results with Shishkin mesh are better and an ε-independent asymptotically

optimal order of convergence is achieved in all cases.

Table 1 Numerical results for Example 6.1 on Shishkin mesh.

ε N = 8 N = 16 N = 32 N = 64 N = 128

1e-00 1.01e-03 2.61e-04 6.58e-05 1.65e-05 4.12e-06

1.96 1.99 2.00 2.00 –

1e-01 3.77e-03 1.06e-03 2.75e-04 6.94e-05 1.74e-05

1.83 1.95 1.99 2.00 –

1e-02 1.17e-02 6.43e-03 3.03e-03 1.25e-03 4.59e-04

0.86 1.09 1.28 1.44 –

1e-03 3.81e-03 2.08e-03 9.73e-04 4.00e-04 1.46e-04

0.87 1.10 1.28 1.45 –

1e-04 1.22e-03 6.59e-04 3.08e-04 1.27e-04 4.64e-05

0.89 1.10 1.28 1.45 –

1e-05 4.18e-04 2.09e-04 9.75e-05 4.01e-05 1.47e-05

1.00 1.10 1.28 1.45 –

1e-06 2.09e-04 6.71e-05 3.09e-05 1.27e-05 4.64e-06

1.64 1.12 1.28 1.45 –

1e-07 1.74e-04 2.44e-05 9.84e-06 4.01e-06 1.47e-06

2.84 1.31 1.29 1.45 –

In the case of k = 4, the numerical results are shown in Table 3, which has yielded the asymptotically

optimal order.

Example 6.2. Let g(x) be as in Example 6.1 and set

p(y) = 2y(1− y2) + ε

[
ld(1− 2y)− 3

q

l
+

(
3

l
− d

)
e−y/ε +

(
3

l
+ d

)
e(y−1)/ε

]
,

with l = 1 − e−1/ε, q = 2 − l and d = 1/(q − 2εl). Then choose f(x, y) such that the exact solution of

(1.1) is u(x, y) = g(x)p(y). The numerical results are shown in Table 4-6.

The error and the order of convergence on Shishkin mesh and uniform mesh with k = 3 are listed in

Table 4 and Table 5, respectively. And also we get better results on Shishkin mesh than uniform mesh.

In the case of k = 4, the numerical results are shown in Table 6, which has also yielded the

asymptotically optimal order, independent of ε.

Remark: The numerical examples show that we obtain the asymptotically optimal error estimate. In

fact, the lnk−
3
2 N in the error results will have an impact on the convergence order, and with the refinement
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Table 2 Numerical results for Example 6.1 on uniform mesh.

ε N = 8 N = 16 N = 32 N = 64 N = 128

1e-00 1.01e-03 2.61e-04 6.58e-05 1.65e-05 4.12e-06

1.96 1.99 2.00 2.00 –

1e-01 3.77e-03 1.06e-03 2.75e-04 6.94e-05 1.74e-05

1.83 1.95 1.99 2.00 –

1e-02 3.87e-02 2.06e-02 8.03e-03 2.62e-03 7.53e-04

0.91 1.36 1.62 1.80 –

1e-03 1.24e-02 1.60e-02 1.73e-02 1.44e-02 8.63e-03

-0.37 -0.12 0.26 0.74 –

1e-04 1.30e-03 1.83e-03 2.57e-03 3.56e-03 4.74e-03

-0.49 -0.49 -0.47 -0.41 –

1e-05 1.33e-04 1.85e-04 2.62e-04 3.70e-04 5.21e-04

-0.47 -0.50 -0.50 -0.49 –

1e-06 1.96e-05 1.87e-05 2.62e-05 3.71e-05 5.25e-05

0.07 -0.49 -0.50 -0.50 –

1e-07 1.30e-05 2.24e-06 2.63e-06 3.71e-06 5.25e-06

2.54 -0.23 -0.50 -0.50 –

Table 3 Numerical results for Example 6.1 on Shishkin mesh.

ε N = 8 N = 16 N = 32 N = 64

1e-00 3.07e-05 3.90e-06 4.89e-07 6.12e-08

2.98 3.00 3.00 –

1e-01 3.92e-04 5.35e-05 6.84e-06 8.61e-07

2.87 2.97 2.99 –

1e-02 6.08e-03 2.56e-03 8.25e-04 2.11e-04

1.25 1.63 1.97 –

1e-03 1.98e-03 8.29e-04 2.66e-04 6.77e-05

1.26 1.64 1.97 –

1e-04 6.28e-04 2.63e-04 8.43e-05 2.15e-05

1.26 1.64 1.97 –

1e-05 1.99e-04 8.32e-05 2.67e-05 6.79e-06

1.26 1.64 1.97 –

1e-06 6.33e-05 2.63e-05 8.44e-06 2.24e-06

1.27 1.64 1.91 –
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Table 4 Numerical results for Example 6.2 on Shishkin mesh.

ε N = 8 N = 16 N = 32 N = 64 N = 128

1e-00 1.66e-04 4.24e-05 1.07e-05 2.67e-06 6.67e-07

1.97 1.99 2.00 2.00 –

1e-01 6.48e-03 1.82e-03 4.72e-04 1.19e-04 2.99e-05

1.83 1.94 1.99 2.00 –

1e-02 2.10e-02 1.16e-02 5.44e-03 2.24e-03 8.25e-04

0.86 1.09 1.28 1.44 –

1e-03 6.86e-03 3.74e-03 1.75e-03 7.20e-04 2.64e-04

0.87 1.10 1.28 1.45 –

1e-04 2.18e-03 1.19e-03 5.55e-04 2.28e-04 8.35e-05

0.88 1.10 1.28 1.45 –

1e-05 7.13e-04 3.76e-04 1.76e-04 7.22e-05 2.64e-05

0.92 1.10 1.28 1.45 –

1e-06 2.87e-04 1.20e-04 5.56e-05 2.28e-05 8.36e-06

1.27 1.11 1.28 1.45 –

1e-07 2.00e-04 4.01e-05 1.76e-05 7.29e-06 2.64e-06

2.32 1.19 1.27 1.46 –

Table 5 Numerical results for Example 6.2 on uniform mesh.

ε N = 8 N = 16 N = 32 N = 64 N = 128

1e-00 1.66E-04 4.24E-05 1.07E-05 2.67E-06 6.67E-07

1.97 1.99 2.00 2.00 –

1e-01 6.48E-03 1.82E-03 4.72E-04 1.19E-04 2.99E-05

1.83 1.94 1.99 2.00 –

1e-02 6.96E-02 3.70E-02 1.44E-02 4.71E-03 1.35E-03

0.91 1.36 1.62 1.80 –

1e-03 2.22E-02 2.88E-02 3.12E-02 2.60E-02 1.56E-02

-0.37 -0.12 0.26 0.74 –

1e-04 2.35E-03 3.30E-03 4.63E-03 6.41E-03 8.54E-03

-0.49 -0.49 -0.47 -0.41 –

1e-05 2.37E-04 3.34E-04 4.72E-04 6.66E-04 9.38E-04

-0.49 -0.50 -0.50 -0.49 –

1e-06 2.85E-05 3.35E-05 4.73E-05 6.69E-05 9.45E-05

-0.23 -0.50 -0.50 -0.50 –

1e-07 1.45E-05 3.62E-06 4.73E-06 6.69E-06 9.46E-06

2.00 -0.39 -0.50 -0.50 –
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Table 6 Numerical results for Example 6.2 on Shishkin mesh.

ε N = 8 N = 16 N = 32 N = 64

1e-00 3.84e-06 4.86e-07 6.09e-08 7.62e-09

2.98 3.00 3.00 –

1e-01 6.93e-04 9.45e-05 1.21e-05 1.52e-06

2.87 2.97 2.99 –

1e-02 1.09e-02 4.60e-03 1.48e-03 3.79e-04

1.25 1.63 1.97 –

1e-03 3.57e-03 1.49e-03 4.79e-04 1.22e-04

1.26 1.64 1.97 –

1e-04 1.13e-03 4.74e-04 1.52e-04 3.87e-05

1.26 1.64 1.97 –

1e-05 3.58e-04 1.50e-04 4.81e-05 1.22e-05

1.26 1.64 1.97 –

1e-06 1.14e-04 4.74e-05 2.53e-05 3.90e-06

1.26 0.90 2.70 –

of the Shishkin mesh, the influence of lnk−
3
2 N on the convergence order will gradually become smaller.

The convergence order is reduced by about half order when k = 3 and by one order in the case of k = 4.

Our numerical results also confirm this well.

7 Conclusion

In this paper, we use the weak Galerkin finite element method to solve the singularly perturbed fourth-

order boundary value problem in 2D domain. By constructing the Shishkin mesh which is suitable for

the problem, we give the corresponding numerical algorithm and the error estimate in the H2 discrete

norm. Compared with solving the problem on the uniform mesh, the WG method obtains better results

on the Shishkin mesh, which is verified by the numerical results. Moreover, the results of our numerical

experiments are consistent with the error estimation theory, and the asymptotically optimal convergence

order is obtained.
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