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Abstract

Constant amplitude zero autocorrelation (CAZAC) sequences have modulus one and ideal periodic

autocorrelation function. Such sequences are used in cellular radio communications systems, e.g., for

reference signals, synchronization signals and random access preambles. We propose a new family

CAZAC sequences, which is constructed by interleaving a Zadoff-Chu sequence by a quadratic permu-

tation polynomial (QPP), or by a permutation polynomial whose inverse is a QPP. It is demonstrated

that a set of orthogonal interleaved Zadoff-Chu sequences can be constructed by proper choice of QPPs.

Index Terms

Constant amplitude zero autocorrelation (CAZAC), permutation polynomial, Zadoff-Chu sequence

I. INTRODUCTION

Constant amplitude zero-autocorrelation (CAZAC) sequences are frequently used in waveforms

for radar and for communications systems [1], as they provide constant envelope and have

ideal periodic autocorrelation function. CAZAC sequence constructions include, e.g., Zadoff-

Chu sequences [2], Frank sequences [3], generalized chirp-like (GCL) sequences [4], Björck

sequences [5], extended Björck sequences [6], cubic polynomial phase sequences [7], biphase

sequences [8] and modulatable CAZAC sequences [9]. Moreover, exhaustive search by computers

have been performed to find CAZAC sequences. If the sequence length N is non-prime and

divisible by a perfect square, then there are infinitely many CAZAC sequences. If N is non-

prime and not divisible by a perfect square, it is unknown how many CAZAC sequences there

are [10].
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It has been shown that the CAZAC property is invariant under certain basic mathematical

operations [11]. Herein, we are considering permutations and we are particularly interested in

the properties of a CAZAC sequence being interleaved by a permutation polynomial. Interleavers

based on permutation polynomials have been used for turbo codes [12] [13] and for improving

performance of single-carrier waveforms over fading radio channels [14]. However, it appears

that prior work has not provided insight on how to determine when, or whether, the CAZAC

property is preserved for an arbitrary permutation, or for which CAZAC sequences it could

be preserved. Zadoff-Chu sequences are frequently used in practice, e.g., as random access

preambles, synchronization signals and reference signals in 4G and 5G [15], and generating

large sets of sequences with good correlation properties is a well-known problem. By allocating

signals from different sets to cells and users, the inter-cell and intra-cell interference can be

suppressed. Therefore, in this work, we will consider permutation polynomial interleaved Zadoff-

Chu sequences, as a means to produce more CAZAC sequences. The necessary definitions are

given in Sec. II and the main results are stated in Sec. III. Examples of sets of sequences are

given in Sec. IV while Sec. V concludes the paper.

II. DEFINITIONS

Define the periodic autocorrelation function (PACF) of sequence x[k], k = 0,1, . . . ,N − 1 for

delays d = 0,1, . . . ,N − 1

θ(d) =
N−1

∑
k=0

x[k]x∗[k + d (modN)] (1)

where (modN) is the modulo-N operator and (⋅)∗ denotes complex conjugate. A CAZAC

sequence has constant amplitude, ∣x[k]∣ = 1,∀k, and ideal PACF, i.e., θ(d) = Nδ[d], where the

Kronecker delta function is δ[0] = 1 and δ[k] = 0 for k ≠ 0. If x[k] is a CAZAC sequence, then

y[k] is a CAZAC sequence under the following basic mathematical operations [11] [16]:

i. (Rotation) y[k] = cx[k], for some ∣c∣ = 1
ii. (Translation) y[k] = x[k + f0(modN)], where f0 is an integer

iii. (Decimation) y[k] = x[f1k(modN)], where f1 is an integer being relatively prime to N

iv. (Linear frequency modulation) y[k] =W kn
N x[k], where n is an integer and WN = e−j

2π
N with

j =
√
−1

v. (Conjugation) y[k] = x∗[k]
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A Zadoff-Chu sequence can be defined by [4]

x[k] =W u(k+(N(mod2))+2q)k/2
N (2)

where u is an integer, aka root index, which is relatively prime to N . It could be noted that

the term q in (2) amounts to a linear frequency modulation. We will consider the interleaved

Zadoff-Chu sequence

y[k] = x[π[k]] (3)

where

π[k] = fvkv
+ fv−1k

v−1
+ . . . + f0 (modN) (4)

is a vth degree permutation polynomial, i.e., it produces a permutation of the values in the set

{0,1, . . . ,N − 1} and the coefficients fi ∈ {0,1, . . . ,N − 1}. There exists at least one inverse

permutation polynomial, π−1[k], to each permutation polynomial, such that π−1[π[k]] = k, cf.

[17], [18], [19]. The degree of π−1[k] may not be the same as for π[k]. For v = 1, i.e., a linear

permutation polynomial (LPP), it is required that gcd(f1,N) = 1, where gcd(a, b) denotes the

greatest common divisor of a and b. For v = 2 and v = 3, i.e., quadratic permutation polynomial

(QPP) and cubic permutation polynomial (CPP), conditions on the coefficients can be found in

[12] [20]. In general, any N can be represented as N = pn0

0 pn1

1 . . . pnr
r , where pi, i = 0,1, . . . , r are

distinct prime numbers and the multiplicities ni (ni > 0) are integers. From [21], the conditions

on the QPP coefficients are:

If pi = 2, ni = 1 then f1 + f2 ≢ 0 (mod2). (5)

If pi = 2, ni > 1 then f1 ≢ 0 (mod2)and f2 ≡ 0 (mod2). (6)

If pi > 2, ni ≥ 1 then f1 ≢ 0 (mod pi)and f2 ≡ 0 (mod pi). (7)

These conditions may not be feasible for certain N , e.g., for prime numbers. Irreducible QPPs

produce permutations which cannot be obtained from an LPP. Irreducible QPPs do not exist for

all feasible N [22] and it has been shown that a QPP is irreducible if and only if gcd(N,2f2) < N
[12]. According to [21], when the prime factorization of N is such that p0 = 2, n0 = 0,or 1,or 2

and ni = 1, i = 1,2, ..., r, then there are no irreducible QPPs. Two different permutation polyno-

mials can generate the same permutation and the number of irreducible QPPs producing unique

permutations depends on N , which can be computed by formulas given in [21], [22].
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III. ZADOFF-CHU SEQUENCES INTERLEAVED BY PERMUTATION POLYNOMIALS

A. CAZAC Property

For an LPP, it is straightforward to show that (3) will be a CAZAC sequence, since f0 and f1

correspond to the translation and decimation basic mathematical operations, respectively. Thus,

we will focus on irreducible permutation polynomials with a degree v ≥ 2.

Theorem 1: If x[k], k = 0,1, . . . ,N − 1 is a Zadoff-Chu sequence and π[k] is a QPP, then

x[π[k]] is a CAZAC sequence.

Proof: Since f0 is a translation, which is a mathematical operation that preserves the CAZAC

property, we can set f0 = 0 in the proof. Expanding (3) with a QPP with f0 = 0 produces

y[k] =W u(f2

2
k4+2f1f2k3+(f2

1
+f2(N (mod2)+2q))k2)/2)/2

N

×W
u(f1k(N (mod2)+2q))/2
N (8)

so we can rewrite (8) as

y[k] =W −u(q+(N (mod2))q/2
N

×W
u(f2k2+f1k+q+(N (mod2))(f2k2+f1k+q)/2
N (9)

which implies that q introduces a rotation and a translation, which are mathematical operations

that preserve the CAZAC property. Hence, we can set q = 0 in the proof. Inserting (8) with q = 0

in (1) gives the PACF

θ(d) = C0

N−1

∑
k=0

W
−u(g3k3+g2k2+g1k)
N (10)

C0 =W
−u(f2

2
d4+2f1f2d3+f2

1
d2)/2

N W
−u(f2d2+f1d)/2(N (mod2))
N (11)

g3 = 2f 2
2d (12)

g2 = 3f2d(f2d + f1) (13)

g1 = d(2f2d + f1)(f2d + f1) + df2(N (mod2)). (14)

We will show that θ(d) = Nδ[d]. First, we can rewrite (10)

θ(d) = C0

N−1

∑
k=0

W
−u(g3(k+t)3+g2(k+t)2+g1(k+t))
N (15)

for any integer t, because the sum is independent of the order of its terms and since W
−ugsks
N =

W
−ugs(k+N)s

N for s = 1,2,3. Expanding (15) gives

θ(d) = C0

N−1

∑
k=0

W
−u(g3k3+g2k2+g1k)
N W

−u(g3t3+g2t2+g1t)
N
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×W
−ug3(3kt2+3k2t)
N W

−ug22kt
N . (16)

We shall show that when d ≠ 0, there exists an integer t = tc (1 ≤ tc ≤ N − 1) which causes that

C1 =W
−u(g3t3c+g2t

2
c+g1tc)

N W
−ug3(3kt2c+3k

2tc)
N W

−ug22ktc
N (17)

becomes a constant C1 ≠ 1 for ∀k,0 ≤ k ≤ N − 1. Thus, according to (10) and (16)

θ(d) = C1θ(d) (18)

which implies that the solution is θ(d) = 0 for d ≠ 0. To prove that C1 ≠ 1 when d ≠ 0 assume

now that

tc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N/gcd(2g2,N), N ≡ 0 (mod2),N ≢ 0 (mod4),
f2 ≡ 1 (mod2), d ≡ 1 (mod2),

N/gcd(g2,N), otherwise.

(19)

According to Lemma 2 and Lemma 3 in Appendix A, g3tc ≡ 0 (modN) and either g1tc ≢

0 (modN) or g2t2c + g1tc ≢ 0 (modN), so we have

g3t
3
c + g2t

2
c + g1tc ≢ 0 (modN) (20)

which means that

W
−u(g3t3c+g2t

2
c+g1tc)

N ≠ 1. (21)

By defining z[k] =W −ug3(3kt2c+3k2tc)
N W

−ug22ktc
N , we have

z[k + 1]
z[k] =W

−u(g3(3t2c+3tc+6ktc)+g22tc)
N (22)

=W −ug36ktc
N W

−u(g3(3t2c+3tc)+g22tc)
N . (23)

As we established above, g3tc ≡ 0 (modN), so

g36ktc ≡ 0 (modN) (24)

which implies that W
−ug36ktc
N = 1. We further have that

g3(3t2c + 3tc) + g22tc ≡ 3tcg3(tc + 1) + g22tc (modN) (25)

≡ g22tc (modN) (26)

≡ 0 (modN). (27)
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as either g2tc ≡ 0 (modN) or 2g2tc ≡ 0 (modN) according to Lemma 2 and Lemma 3. Hence,

we have W
−u(g3(3t2c+3tc)+g22tc)
N = 1 and therefore z[k+1] = z[k]. Since z[0] = 1, we have z[k] = 1,

so from (17) and (21) it follows that C1 is a constant where C1 ≠ 1. ∎

Theorem 2: If x[k], k = 0,1, . . . ,N − 1 is a Zadoff-Chu sequence and π[k] is a permutation

polynomial and its inverse is a QPP, π−1[k] = h2k2 + h1k + h0 (modN), or an LPP, π−1[k] =
h1k + h0 (modN), then x[π[k]] is a CAZAC sequence.

Proof: Since x[π[k]] is a CA sequence, we only need to show its ZAC property. Define the

discrete Fourier transform (DFT) sequence

X[k] = 1√
N

N−1

∑
m=0

x[π[m]]Wmk
N (28)

and consider Proposition 2.1 in [16], which implies that x[π[m]] is a ZAC sequence if and only

if X[k] is a CA sequence, which is shown as follows,

X[k]X∗[k] = 1√
N

N−1

∑
m=0

x[π[m]]Wmk
N

×
1√
N

N−1

∑
p=0

x∗[π[p]]W −pk
N

(a)
=

1

N

N−1

∑
m=0

x[m]W π−1[m]k
N

N−1

∑
p=0

x∗[p]W −π−1[p]k
N

(b)
=

1

N

N−1

∑
m=0

x[m]W π−1[m]k
N

×

N−1

∑
v=0

x∗[v +m (modN)]W −π−1[v+m]k
N

(c)
=

1

N

N−1

∑
m=0

x[m]W π−1[m]k
N

×

N−1

∑
v=0

x∗[v +m]W −(π−1[v]+π−1[m]+2h2vm−h0)k
N

(d)
=

W h0k
N

N

N−1

∑
v=0

W
−π−1[v]k
N

×

N−1

∑
m=0

x[m]x∗[v +m]W −2h2vmk
N

(e)
=

W h0k
N

N

N−1

∑
v=0

W
−π−1[v]k
N

×W
−uv(v/2+(N (mod2))/2+q)
N

N−1

∑
m=0

W
−vm(u+2kh2)
N

(f)
= W h0k

N W
−π−1[0]k
N
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(g)
= 1.

Step (a) follows from π−1[π[m]] =m. Step (b) is obtained by introducing the change of variable

p = v +m, which just reorders the terms of the sum over p. Step (c) follows from the definition

of π−1[k]. Step (d) is obtained by changing the order of summations. Step (e) follows from the

definition of x[m]. Step (f) follows from the fact that u+2kh2 ≢ 0 (modN) according to Lemma

4 in Appendix B, which makes the inner sum in step (e) equal to zero for any non-zero v. Step (g)

follows from π−1[0] = h0. The above steps can be applied also when π−1[k] = h1k+h0 (modN),
i.e., for an LPP. ∎

It should be remarked that the requirement that π−1[k] is a QPP or an LPP is a sufficient but

not a necessary condition for an interleaved Zadoff-Chu sequence to retain the CAZAC property.

Example 1: It can be verified by computing (1) with (3), that using the irreducible CPP

π[k] = 8k3 + 2k2 + k (mod32) results in a CAZAC sequence. This CPP has two QPP inverses:

π−1[k] = 6k2 + k (mod32) and π−1[k] = 22k2 + 17k (mod32). Moreover, using the irreducible

CPP π[k] = 2k3+k (mod32) also results in a CAZAC sequence. However, it does not have a QPP

inverse, but 4 CPP inverses: π−1[k] = 10k3 + 17k (mod32), π−1[k] = 10k3 + 16k2 + k (mod32),
π−1[k] = 26k3 + k (mod32), π−1[k] = 26k3 + 16k2 + 17k (mod32).

Based on Theorem 2, we can formulate the following construction of CAZAC sequences.

Corollary 1: If x[k], k = 0,1, . . . ,N − 1 is a Zadoff-Chu sequence and π[k] is a QPP with an

inverse permutation polynomial π−1[k], then x[π−1[k]] is a CAZAC sequence.

We have exhaustively evaluated (1) with (3) to determine whether the CAZAC property is

preserved for CPPs in general. We found that for certain N all CPPs work, but for some N no

CPP works, and for other N a subset of the CPPs works. Table I shows how many CPPs there

are in total, how many unique permutations these CPPs generate, how many of these unique

CPP permutations preserve the CAZAC property, and how many permutations out of total N !

permutations preserve the CAZAC property.

Furthermore, it should be noted that there exist QPPs with inverse permutation polynomials

of degree larger than of a CPP. For example, QPPs with quartic (v = 4) inverse permutation

polynomial were given in [13]. These could also be used according to Corollary 1.

B. Uniqueness of the Interleaved Zadoff-Chu Sequences

The uniqueness of a permutation polynomial interleaved Zadoff-Chu sequence can in general

not be guaranteed. The first reason for this is the term k2 in its exponent.
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TABLE I

TOTAL NUMBER OF CPPS, NUMBER OF UNIQUE CPP PERMUTATIONS, NUMBER OF UNIQUE CPP PERMUTATIONS WHICH

PRESERVE THE CAZAC PROPERTY AND NUMBER OF PERMUTATIONS OUT OF N ! WHICH PRESERVE THE CAZAC PROPERTY.

N Total #CPPs #CPP permutations #CPP CAZAC permutations #CAZAC permutations

3 12 6 6 6

4 16 8 8 8

5 100 100 20 40

6 120 12 12 24

7 0 0 0 168

8 384 128 128 256

9 810 324 324 2592

10 880 240 80 320

11 1210 1210 0 1760

12 480 48 48 6912

Example 2: If N = 8, the QPPs π0[k] = 2k2 + k (mod8) and π1[k] = 2k2 + 3k (mod8)
generate two distinct permutations, π0[k] ≢ π1[k], k ≠ 0,4. However, it can be verified that

π2
0[k] ≡ π2

1[k] (mod8),∀k, which implies that x[π0[k]] = x[π1[k]].
A second reason for this is the inherent central symmetry of the Zadoff-Chu sequences when

q = 0, such that x[k] = x[N −k] when N is even and x[k] = x[N −1−k] when N is odd. Hence,

even if π2
0[k] ≢ π2

1[k], it is still possible that x[π0[k]] = x[π1[k]]. The central symmetry also

implies that there could potentially be very many permutations, which are not obtained through

QPPs or CPPs, that preserve the CAZAC property.

Furthermore, it is possible that a QPP interleaved Zadoff-Chu sequence becomes equivalent to

a non-interleaved but manipulated Zadoff-Chu sequence, e.g., obtained by the basic mathematical

operations listed in Sec. II. That is, there may exist a root index u2 ∶ gcd(u2,N) = 1, a translation

d ∈ {0,1, . . . ,N − 1}, a rotation a ∈ {0,1, . . . ,2N − 1}, a linear frequency modulation sequence

W vk
N , v = 0,1, . . . ,N − 1 and a complex conjugate operation s ∈ {−1,1} such that

W
u1(f2k

2+f1k+(N (mod2)))(f2k
2+f1k)/2

N =

W vk
N W

su2(k+d+(N (mod2)))(k+d)/2+a/2
N , k = 0,1, . . . ,N − 1. (29)

Example 3: For N = 8, it can be verified by evaluating (29) that there are 12 QPPs and 8

of them generate interleaved Zadoff-Chu sequences which cannot be obtained from the basic
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operations of (29): f2 ∈ {2,6} and f1 ∈ {1,3,5,7}.
We have exhaustively evaluated (29) with all combinations of u1, u2, d, a, v, s for N ≤ 128 to

determine whether the QPP interleaved sequences are unique. The results are contained in Fig. 1

and Fig. 2. In Fig. 1, we show the fraction of QPPs for which the interleaved sequence is unique

compared to the total number of QPPs. For many N , a substantial amount of QPPs give unique

sequences. For some N all the QPPs give unique sequences. We can identify these values as N ∈

{25,49,121,125} and we additionally could evaluate and verify that N ∈ {169,343} also only

give unique sequences. Thus, we conjecture that only unique sequences are obtained when N = pn

where p (p > 3) is a prime number and n (n > 1) is an integer. There is also a set of values N for

which none of the interleaved sequences are unique, i.e., N ∈ {9,18,36,45,63,90,99,117,126}.
Fig. 2 shows the maximum number of unique sequences x[π[k]] which can be obtained from

different QPPs (with f0 = 0) and a single root index u, as well as the maximum number of

sequences which can be obtained from a single non-interleaved Zadoff-Chu sequence by using

all feasible root indices. This demonstrates that for many N , QPP interleaving results in more

unique sequences.

C. Relation to GCL Sequences

A further question is the relation between the interleaved Zadoff-Chu sequences and GCL

sequences, i.e., modulated Zadoff-Chu sequences. We can equivalently write (3) as a GCL

sequence

y[k] = w[k]x[k] (30)

where the modulation sequence is

w[k] = x[π[k]]x∗[k]. (31)

For q = 0, w[k] is given by (32). Moreover, from (32), we can decompose w[k + δ] as (33) for

any integer δ. If w[k] has period δ = T , it is required that w[k + T ] = w[k]. In [4], it has been

shown that if N = sm2, where s and m are integers, then (30) is a CAZAC sequence for any

unimodular sequence w[k (modm)] with period T = m. The modulation sequences (31) based

on QPP can have period T ≠m and are thus not necessarily equal to the construction in [4].

Example 4: Consider N = 2n0 with f2 = 2v,0 < v < n0, f1 = 1 and f0 = 0 as the coefficients of

a QPP. If n0 = 5, inserting δ = N/f2 in (33) results in w[k+δ] = w[k], i.e., the period of w[k] is
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Fig. 1. Fraction of QPPs which produce an interleaved Zadoff-Chu sequence which cannot be obtained by basic mathematical

operations on a non-interleaved Zadoff-Chu sequence.

T = 2n0−v, and thus T ∈ {2,4,8,16}. On the other hand, the possible values of m are m ∈ {2,4}
since N = 8 ⋅ 22 = 2 ⋅ 42.

IV. SET OF ORTHOGONAL INTERLEAVED ZADOFF-CHU SEQUENCES

From the decomposition (30) a set of orthogonal interleaved Zadoff-Chu sequences {yi[k],0 ≤
i ≤ I − 1} obtained by different QPPs can be defined as

yi[k] = wi[k]x[k]. (34)

From (34) it follows that the periodic cross-correlation function (PCCF) of two interleaved

Zadoff-Chu sequences can be expressed as [23, Eq. (16)]

θij(d) =
N−1

∑
k=0

yi[k]y∗j [k + d (modN)] (35)
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Fig. 2. Maximum number of unique sequences constructed by using different QPPs or by not using any QPPs but using different

root indices u.

w[k] =W u(f2

2
k4+2f1f2k3+(2f2f0+f2

1
−1)k2+(2f1f0+(f1−1)(N (mod2))k+f0(f0+(N (mod2))))/2

N (32)

w[k + δ] = w[k]w[δ]W u(2δf2k
3+3f2δ(f2δ+f1)k2+δ(2f2δ2+3f1f2δ+f2

1
−1+2f2f0)k−f0(f0+(N (mod2))))

N (33)

= C(d)
N−1

∑
k=0

wi[k]w∗j [k + d]W −dk
N (36)

where C[d] = W
−(d+N (mod2)+2q)d/2
N . We have exhaustively generated all QPP interleaved se-

quences for N ≤ 128 and Fig. 3 contains the magnitude of the PCCF at d = 0 for the cases

where ∣θij(0)∣ < N . This shows that for some N , it is possible to find QPPs such that the

sequences wi[k] become orthogonal (∣θij(0)∣/N = 0). Notably, Fig. 3 also shows that there are

cases, e.g., N = 98, where no QPPs could be found to generate orthogonal sequences.
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w0[k (mod16)] = [1, 1√
2
−

1√
2
j,−1, j,1,

1√
2
+

1√
2
j,−1,−1,1,−

1√
2
+

1√
2
j,−1,−j,1,−

1√
2
−

1√
2
j,−1,1] (37)

w1[k (mod16)] = [1,− 1√
2
−

1√
2
j,1,−j,1,−

1√
2
+

1√
2
j,1,−1,1,

1√
2
+

1√
2
j,1, j,1,

1√
2
−

1√
2
j,1,1] (38)

w2[k (mod16)] = [1,− 1√
2
+

1√
2
j,−1,−j,1,−

1√
2
−

1√
2
j,−1,1,1,

1√
2
−

1√
2
j,−1, j,1,

1√
2
+

1√
2
j,−1,−1] (39)

w3[k (mod16)] = [1, 1√
2
+

1√
2
j,1, j,1,

1√
2
−

1√
2
j,1,1,1,−

1√
2
−

1√
2
j,1,−j,1,−

1√
2
+

1√
2
j,1,−1] (40)

Example 5: Consider N = 2n0 with n0 ≥ 2 and the two QPPs, π0[k] = 2k2 + k (modN) and

π1[k] = 2k2 + (N
2
+ 1)k (modN). By inserting (32) in (36) with d = 0 and with these QPPs, we

obtain after some simplifications ∣θ01[0]∣ = ∑N−1
k=0 (−1)k2 = 0, i.e., w0[k] and w1[k] are mutually

orthogonal.

For a given sequence length N , the size I of a set of orthogonal interleaved Zadoff-Chu

sequences obtained by different QPPs was always such that I < N for those values of N (N ≤
128) we have evaluated. For example, when N = 25 we found I = 15 and when N = 81 we

found I = 16. Hence, we anticipate that a full set of orthogonal sequences (when I = N) cannot

be found by merely using different QPPs.

Example 6: For N = 32 it can be confirmed by evaluating (36) that a set of I = 4 orthogonal

sequences can be formed from the QPPs π0[k] = 2k2 + k (mod32), π1[k] = 2k2 + 3k (mod32),
π2[k] = 2k2 + 17k (mod32) and π3[k] = 2k2 + 19k (mod32). Letting u = 1 and q = 0, the

modulation sequences (31) have period of 16 elements and are equal to (37)-(40)

V. CONCLUSIONS

A new family of CAZAC sequences is constructed from the permutation polynomial inter-

leaved Zadoff-Chu sequences. This construction enriches the set of methods that can be used

to generate CAZAC sequences. Interleaving of Zadoff-Chu sequences based on QPPs, or based

on their inverse permutation polynomials, always preserves the CAZAC property. Permutation

polynomials of order larger than two could be used as well, albeit the CAZAC property is not

maintained generally. A set of orthogonal sequences can, in many cases, be obtained by using

different QPPs. The interleaving of other families of CAZAC sequences might be an interesting
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Fig. 3. Values of the magnitude of the normalized cross-correlation ∣θij(d)∣/N at d = 0 for different N , for the interleaved

Zadoff-Chu sequences constructed by using different QPPs and a common Zadoff-Chu sequence.

topic for further research, as we observed that the Frank sequences [3] preserve the CAZAC

property when interleaved by QPP permutations.

APPENDIX A

LEMMAS FOR THEOREM 1.

Lemma 1: If α is a positive integer, then

gcd(αf2d + f1,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2, N ≡ 0 (mod2),N ≢ 0 (mod4),
f2 ≡ 1 (mod2), d ≡ 0 (mod2)

1, gcd(pi, f2) ≠ 1,0 ≤ i ≤ r.

(41)

Proof: Suppose (5) applies, then N ≡ 0 (mod2), N ≢ 0 (mod4). From (5) and the condition

f2 ≡ 1 (mod2) it follows that f1 ≡ 0 (mod2), i.e., gcd(f1,2) ≠ 1 while (7) ensures that it is only
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2 that divides both f1 and N , so we have gcd(f1,N) = 2. With the condition d ≡ 0 (mod2) it

follows that gcd(αf2d + f1,N) = 2.

Suppose (5) applies with f2 ≡ 0 (mod2), or that (6) applies. Then (5)-(7) give that f2 ≡

0 (mod pi), i.e., gcd(pi, f2) ≠ 1,0 ≤ i ≤ r. Therefore, it further follows from (5)-(7) that f1 ≢

0 (mod pi), i.e., gcd(pi, f1) = 1,0 ≤ i ≤ r. Hence pi∣f2, pi ∤ f1 and pi ∤ αf2d+f1, i.e., gcd(αf2d+
f1,N) = 1. ∎

Lemma 2: If gcd(pi, f2) ≠ 1,0 ≤ i ≤ r and

t = N/gcd(g2,N) (42)

then,

g3t ≡ 0 (modN) (43)

g2t ≡ 0 (modN) (44)

g1t ≢ 0 (modN) (45)

where

g3 = 2f 2
2d (46)

g2 = 3f2d(f2d + f1) (47)

g1 = d(2f2d + f1)(f2d + f1) + df2(N (mod2)). (48)

Proof: To prove (43) we have

t =
N

gcd(3f2d(f2d + f1),N) (49)

=
N

gcd(3f2d,N) (50)

where the second equality follows from Lemma 1. Then we obtain

gcd(3f2d,N) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gcd(f2d,N), gcd(3,N) = 1
3gcd(f2d,N/3), gcd(3,N) ≠ 1.

(51)

If gcd(3,N) ≠ 1, it follows from (7) that f2 ≡ 0 (mod3). Hence, from (50) and (51), we have

g3t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2f2
f2d

gcd(f2d,N)
N, gcd(3,N) = 1

2 f2
3

f2d

gcd(f2d,N/3)
N, gcd(3,N) ≠ 1

(52)

≡ 0 (modN). (53)
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The proof of (44) follows directly from g2t =
g2N

gcd(g2,N)
≡ 0 (modN).

To prove (45), we can first write

g1t =
g1

d

d

gcd(3f2d,N)N (54)

and we should show that g1
d

d
gcd(3f2d,N)

is not an integer. Lemma 1 gives gcd((2f2d + f1)(f2d +
f1),N) = 1 and therefore, gcd(g1/d,N) = gcd((2f2d + f1)(f2d + f1) + f2,N) = 1. Thus,

gcd(g1/d,gcd(3f2d,N)) = gcd(gcd(g1/d,N),3f2d) = 1, which implies it is sufficient to show

that d
gcd(3f2d,N)

is not an integer.

If gcd(d,N) = 1, then gcd(d,gcd(3f2d,N)) = gcd(gcd(d,N),3f2d) = 1 which implies that

d/gcd(3f2d,N) is not an integer, i.e., g1t ≢ 0 (modN).
If gcd(d,N) ≠ 1, suppose N = pn0

0 . . . pnr
r with ni > 0. Any valid 0 < d ≤ N − 1 can be

defined by d = d′pα0

0 . . . pαr
r with αi ≥ 0 and gcd(d′,N) = 1. Moreover, any f2 can be defined by

f2 = f ′p
β0

0 . . . p
βr
r with gcd(f ′,N) = 1, where βi > 0 due to (7). Then gcd(3f2d,N) = pγ00 . . . p

γr
r

with γi = min(αi+βi, ni) if pi ≠ 3 and γi = min(αi+βi+1, ni) if pi = 3. To prove g1t ≢ 0 (modN),
it should be shown that d

gcd(3f2d,N)
= d′pα0−γ0

0 . . . p
αr−γr
r is not an integer. If γi = αi+βi and pi ≠ 3,

or γi = αi + βi + 1 and pi = 3, then αi < γi since βi > 0. If γi = ni and if there is a j for which

αj ≥ γj , then there exists at least one i (i ≠ j) for which αi < γi. This follows from d < N , which

implies that there exists at least one i for which αi < ni, and thus γi > αi. Hence, d
gcd(3f2d,N)

is

not an integer and thus g1t ≢ 0 (modN). ∎

Lemma 3: If N ≡ 0 (mod2), N ≢ 0 (mod4), f2 ≡ 1 (mod2) and

t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N/gcd(g2,N), d ≡ 0 (mod2)
N/gcd(2g2,N), d ≡ 1 (mod2)

(55)

then,

g3t ≡ 0 (modN) (56)

2g2t ≡ 0 (modN) (57)

g2t
2
+ g1t ≢ 0 (modN) (58)

where

g3 = 2f 2
2d (59)

g2 = 3f2d(f2d + f1) (60)
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g1 = d(2f2d + f1)(f2d + f1) + df2(N (mod2)). (61)

Proof: To prove (56) for d ≡ 1 (mod2), we have

t =
N

gcd(6f2d(f2d + f1),N) (62)

=
N

2gcd(3f2d,N/2) (63)

where (63) follows directly from gcd(f2d+f1,N) = 1, which holds because gcd(f2d,2) = 1 and

gcd(f1,N) = 2 according to (5) and (7). If gcd(3,N) ≠ 1, it follows from (7) that f2 ≡ 0 (mod3)
and we obtain

g3t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f2
f2d

gcd(f2d,N/2)
N, gcd(N,3) = 1

f2
3

f2d

gcd(f2d,N/6)
N, gcd(N,3) ≠ 1

(64)

≡ 0 (modN). (65)

For d ≡ 0 (mod2),

t =
N

gcd(3f2d(f2d + f1),N) (66)

=
N

gcd(6f2d,N) (67)

where (67) comes from gcd(f2d + f1,N) = 2 according to Lemma 1. Hence, we obtain

g3t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f2
2f2d

gcd(2f2d,N)
N, gcd(N,3) = 1

f2
3

2f2d

gcd(2f2d,N/3)
N, gcd(N,3) ≠ 1

(68)

≡ 0 (modN). (69)

To prove (57), we directly obtain

2g2t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2g2N
gcd(2g2,N)

, d ≡ 1 (mod2)
2 g2N
gcd(g2,N)

, d ≡ 0 (mod2)
(70)

≡ 0 (modN). (71)

To prove (58) for d ≡ 1 (mod2), it suffices to show that

g2t
2
+ g1t ≢ 0 (mod2) (72)

since N ≡ 0 (mod2) and thus g2t2 + g1t must be divisible by 2, if it is divisible by N .
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To prove (72), we start from g2 = 3f2d(f2d + f1) ≡ 1 (mod2), since f2 ≡ 1 (mod2) and

d ≡ 1 (mod2). We also have t = N
gcd(2g2,N)

= N/2
gcd(g2,N/2)

≡ 1 (mod2) since N/2 is odd. Thus

g2t2 ≢ 0 (mod2). As f2 ≡ 1 (mod2), from (5) it follows f1 ≡ 0 (mod2), so from (61) we obtain

g1 ≡ 0 (mod2). Thus, it follows g2t2 + g1t ≢ 0 (mod2).
For d ≡ 0 (mod2), we have g2t =

g2N

gcd(g2,N)
≡ 0 (modN) and therefore g2t2 ≡ 0 (modN).

Thus, it remains to show that g1t ≢ 0 (modN). Lemma 1 gives (2f2d+f1)(f2d+f1) = 4ǫ where

gcd(ǫ,N) = 1. Thus from (61) and (67) we obtain

g1t = ǫ
4d

gcd(6f2d,N)N. (73)

It should be shown that 4d
gcd(6f2d,N)

is not an integer. According to the assumptions of Lemma

3, N = 2pn0

1 . . . pnr
r with ni > 0 and pi ≠ 2 for i = 1,2, . . . , r. Any even d where 0 < d ≤ N −1 can

be defined by d = d′2α0pα1

1 . . . pαr
r with αi ≥ 0 and α0 > 0, and gcd(d′,N) = 1. According to the

condition of Lemma 3, we consider any odd f2 which can be defined by f2 = f ′p
β1

1 . . . p
βr
r with

pi ≠ 2, gcd(f ′,N) = 1 where βi > 0 due to (7). Then (73) becomes

g1t = ǫd′
2α0+1pα1

1 . . . pαr
r

gcd(3pβ1

1 . . . p
βr
r pα1

1 . . . pαr
r , pn0

1 . . . pnr
r )

N (74)

= ǫd′2α0+1p
α1−γ1
1 . . . pαr−γr

r N (75)

with γi =min(αi+βi, ni) if pi ≠ 3 and γi =min(αi+βi+1, ni) if pi = 3. If γi = αi+βi and pi ≠ 3,

or γi = αi + βi + 1 and pi = 3, then αi < γi since βi > 0. If γi = ni and if there is a j for which

αj ≥ γj , then there exists at least one i (i ≠ j) for which αi < γi. This follows from d < N and

d ≡ 0 (mod2), which implies that there exists at least one i for which αi < ni, and thus γi > αi.

Hence, 2α0+1pα1−γ1
1 . . . pαr−γr

r is not an integer and g1t ≢ 0 (modN). ∎

APPENDIX B

LEMMA FOR THEOREM 2.

Lemma 4: If π−1[k] = h2k2+h1k+h0 (modN) is a permutation polynomial and gcd(u,N) = 1,

then u + 2kh2 ≢ 0 (modN) for any integer k.

Proof: It follows from the conditions on the QPP coefficients (5)-(7) that there exists at least

one pi for which

h2 ≡ 0 (mod pi), (76)

which implies that

gcd(h2,N) ≠ 1. (77)
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Assume that u + 2kh2 ≡ 0 (modN), which implies that there exists an integer s such that

u + 2kh2 = sN (78)

which means that (sN−2kh2)/gcd(h2,N) is an integer, which implies that gcd(u,gcd(h2,N)) ≠
1. However, we have

gcd(u,gcd(h2,N)) = gcd(gcd(u,N), h2) (79)

= gcd(1, h2) (80)

= 1 (81)

which is a contradiction. Hence, u + 2kh2 ≠ sN . ∎
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