2306.17061v5 [cs.CR] 28 Mar 2024

arxXiv

RowPress: Amplifying Read Disturbance in Modern DRAM Chips

Haocong Luo Ataberk Olgun
Meryem Banu Cavlak Joél Lindegger

A. Giray Yaglikci

Yahya Can Tugrul
Mohammad Sadrosadati

Steve Rhyner
Onur Mutlu

ETH Zirich

Abstract

Memory isolation is critical for system reliability, security, and
safety. Unfortunately, read disturbance can break memory isolation
in modern DRAM chips. For example, RowHammer is a well-studied
read-disturb phenomenon where repeatedly opening and closing
(i.e., hammering) a DRAM row many times causes bitflips in physi-
cally nearby rows.

This paper experimentally demonstrates and analyzes another
widespread read-disturb phenomenon, RowPress, in real DDR4
DRAM chips. RowPress breaks memory isolation by keeping a
DRAM row open for a long period of time, which disturbs physi-
cally nearby rows enough to cause bitflips. We show that RowPress
amplifies DRAM’s vulnerability to read-disturb attacks by signifi-
cantly reducing the number of row activations needed to induce a
bitflip by one to two orders of magnitude under realistic conditions.
In extreme cases, RowPress induces bitflips in a DRAM row when
an adjacent row is activated only once. Our detailed characterization
of 164 real DDR4 DRAM chips shows that RowPress 1) affects chips
from all three major DRAM manufacturers, 2) gets worse as DRAM
technology scales down to smaller node sizes, and 3) affects a differ-
ent set of DRAM cells from RowHammer and behaves differently
from RowHammer as temperature and access pattern changes. We
also show that cells vulnerable to RowPress are very different from
cells vulnerable to retention failures.

We demonstrate in a real DDR4-based system with RowHammer
protection that 1) a user-level program induces bitflips by leverag-
ing RowPress while conventional RowHammer cannot do so, and
2) a memory controller that adaptively keeps the DRAM row open
for a longer period of time based on access pattern can facilitate
RowPress-based attacks. To prevent bitflips due to RowPress, we de-
scribe and analyze four potential mitigation techniques, including
a new methodology that adapts existing RowHammer mitigation
techniques to also mitigate RowPress with low additional perfor-
mance overhead. We evaluate this methodology and demonstrate
that it is effective on a variety of workloads. We open source all our
code and data to facilitate future research on RowPress.

1 Introduction

To ensure system reliability, security, and safety, it is critical to
maintain memory isolation: accessing a memory address should
not cause unintended side-effects on data stored in other addresses.
Unfortunately, with aggressive technology node scaling, dynamic
random access memory (DRAM) [24], the prevalent main mem-
ory technology, suffers from increased read disturbance: accessing
(reading) a DRAM cell disturbs the operational characteristics (e.g.,
stored charge) of other physically close DRAM cells.
RowHammer is an example read-disturb phenomenon where
repeatedly opening and closing (i.e., hammering) a DRAM row

(called aggressor row) many times (e.g., tens of thousands times) can
cause bitflips in physically nearby rows (called victim rows) [67, 68].

RowHammer is a critical security vulnerability as attackers can
induce and exploit the bitflips to take over a system or leak private
or security-critical data [1, 10, 12-20, 22, 28, 30-32, 38-40, 43, 45, 52,
53,58, 68,72, 74, 81, 84, 94, 95, 102, 112-114, 117, 118, 124, 131, 132,
145, 146, 148, 149, 153, 154, 156, 160, 170, 173-176]. Prior works [67,
68] experimentally demonstrate that RowHammer significantly
worsens as DRAM manufacturing technology scales to smaller
nodes. For example, the minimum number of total aggressor row
activations to cause at least one bitflip (ACin) has reduced by
14X in less than a decade [67]. To ensure reliable, secure, and safe
operation in modern and future DRAM-based systems, it is critical
to develop a rigorous understanding of read disturbance effects like
RowHammer.

In this paper, we experimentally demonstrate another wide-
spread read-disturb phenomenon, RowPress, in real DDR4 DRAM
chips. We show that keeping a DRAM row (i.e., aggressor row)
open for a long period of time (i.e., a large aggressor row on time,
taggoN) disturbs physically nearby DRAM rows.! Doing so induces
bitflips in the victim row without requiring (tens of) thousands
of activations to the aggressor row. We characterize RowPress in
164 off-the-shelf DDR4 DRAM chips from all three major manu-
facturers, and find that RowPress significantly amplifies DRAM’s
vulnerability to read-disturb attacks (i.e., greatly reduces the mini-
mum number of total aggressor row activations to cause at least
one bitflip, ACpin).

To illustrate this, Fig. 1 shows the distribution of ACp,;p (y-axis)
we measure in 164 DRAM chips across all three major DRAM
manufacturers when the aggressor row stays open as much as
taggON (x-axis) between consecutive activations at 80 °C with one
(single-sided) and two (double-sided) aggressor row(s) in a box-and-
whiskers plot.2 We study the single- and double-sided RowPress
access patterns in detail in §5.2.

The two leftmost boxes in each plot shows the distribution of
ACmin for the conventional single-sided (orange) and double-sided
(blue) RowHammer pattern, where the aggressor row is open for
the minimum amount of time (tAgeoN = tRAS = 36ns)> allowed by
the DRAM specification [56], as done in conventional RowHammer

!The industry is aware that keeping a DRAM row open for a long period of time can
cause read disturbance: Micron mentions “RAS Clobber” in two earlier patents [50, 158],
while Samsung calls this “Passing Gate Effect” in a very recent work placed on arXiv
while our paper has been under review [46]. We name this phenomenon “RowPress”,
which we believe is an intuitive name that immediately shows the difference compared
to RowHammer in a figurative way: we “press” (i.e., keep open for a long period of
time) instead of “hammer” (i.e., repeatedly open and close) the row.

2The box is lower-bounded by the first quartile (i.e., the median of the first half of the
ordered set of data points) and upper-bounded by the third quartile (i.e., the median
of the second half of the ordered set of data points). The interquartile range (IQR) is
the distance between the first and third quartiles (i.e., box size). Whiskers show the
minimum and maximum values.

3Manufacturer-recommended minimum row open time ({g4s) ranges from 32 ns to
35ns in DDR4 [56]. We use a 36 ns minimum taggoN 1) to cover the whole range of

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

RowPress RowPress
(= F

10 B Double-Sided B Double-Sided

105 ;* m Single-Sided l% mm Single-Sided

L e [o= | i

oo ot SRR |l | BB TR

36ns 7.8us 70.2us 30ms 36ns 7.8us 70.2us 30ms 36ns 7.8us 70.2us 30ms
Aggressor row on time (tAggON)

RowPress

B B Double-Sided
;* B Single-Sided

Figure 1: ACy,in distributions of conventional RowHammer
(RH) and three representative cases of RowPress (RP) at 80°C
across 164 DDR4 chips from manufacturers S, H, and M.

attacks [1, 10, 12-20, 22, 28, 30-32, 38—-40, 43, 45, 52, 53, 58, 68, 72,
74,81, 84,94, 95,102, 112-114, 117, 118, 124, 131, 132, 145, 146, 148,
149, 153, 154, 156, 160, 170, 173-176]. We observe that as tAggON
increases, compared to the most effective RowHammer pattern,
the most effective RowPress pattern reduces ACp,in 1) by 17.6X on
average (up to 40.7x) when taggoN is as large as the refresh interval
(7.8 us)*, 2) by 159.4x on average (up to 363.8x) when taggON is
70.2 ps, the maximum allowed tagzoN [56], and 3) down to only one
activation for an extreme taggon of 30 ms (highlighted by dashed
red boxes).

Our detailed characterization results and sensitivity studies sug-
gest that RowPress has a different underlying error mechanism
compared to the RowHammer phenomenon in DRAM [67, 68, 94,
95, 98, 106, 107, 155, 164, 169]. We experimentally demonstrate that
1) only less than 0.013% of the DRAM cells that exhibit RowPress
bitflips also exhibit RowHammer bitflips (§4.3), and 2) RowPress
behaves very differently from RowHammer with temperature (§5.1)
and access pattern (§5.2) changes. We also show detailed results
demonstrating that cells vulnerable to RowPress are very different
from cells vulnerable to retention failures (only less than 0.34%
overlap).

We demonstrate that a user-level program can induce RowPress
bitflips in a real DDR4-based system that already employs RowHam-
mer protection. The program accesses multiple different columns
of the aggressor DRAM row so that the memory controller keeps
the aggressor row open for a longer period of time to serve these
accesses. As a result, the program exercises RowPress and induces
bitflips, while conventional RowHammer cannot, in the presence
of in-DRAM RowHammer mitigation mechanisms (§6). We believe
this program can be the basis of a proof-of-concept RowPress attack.

Our characterization results suggest that DRAM-based systems
need to take RowPress into account to maintain the fundamental
security/safety/reliability property of memory isolation. Based on
our findings, we discuss and evaluate the implications of RowPress
on existing read-disturb mitigation mechanisms that consider only
RowHammer. We propose a methodology to adapt RowHammer
mitigation techniques to also mitigate RowPress with low additional
performance overhead by both 1) limiting the maximum row-open
time, and 2) configuring the RowHammer defense to account for the

tras values and 2) due to the limited DRAM command bus frequency of our testing
infrastructure (i.e., we can only send a DRAM command at every 1.5ns) [101].

4 Refresh interval is the time interval between two consecutive refresh commands that
a DRAM row can be kept open [54, 56].

RowPress-induced reduction in ACp,in. We experimentally demon-

strate that by applying our proposed methodology to two major

techniques (PARA [68] and Graphene [109]), we can mitigate both

RowHammer and RowPress with an average (maximum) additional

slowdown of only 3.6% (13.1%) and —0.63% (4.6%), respectively.
We make the following contributions in this paper:

e To our knowledge, this is the first work to experimentally
demonstrate the RowPress phenomenon and its widespread
existence in real DDR4 DRAM chips from all three major
manufacturers.

e We provide an extensive characterization of RowPress on
164 real DRAM chips. Our results show that RowPress 1) sig-
nificantly amplifies DRAM’s vulnerability to read-disturb
attacks, 2) gets worse as DRAM technology scales down,
and 3) is very different from RowHammer and retention
failures in terms of the DRAM cells it affects and in the way
it behaves as temperature and access pattern changes.

o We demonstrate that a simple user-level program induces
RowPress bitflips on a real DDR4-based system, while a
state-of-the-art RowHammer program cannot.

o We describe, analyze, and evaluate four potential ways to
mitigate read-disturb attacks exploiting RowPress. We in-
troduce a methodology to adapt existing RowHammer mit-
igation techniques to also mitigate RowPress with low ad-
ditional performance overhead.

e We open-source [125] all our infrastructure, test programs,
and raw data to enable 1) reproduction and replication of
our results, and 2) further research on RowPress.

2 Background & Motivation

We provide a high-level introduction to DRAM organization (§2.1),
major DRAM operations (§2.2), DRAM timing parameters involved
in this work (§2.3), and read-disturb mechanisms in DRAM (§2.4).

2.1 DRAM Organization

Fig. 2 shows the hierarchical organization of modern DRAM-based
main memory. The CPU’s memory controller communicates with
a DRAM module over a memory channel. A module contains one
or multiple DRAM ranks that share the memory channel. A rank is
made up of multiple DRAM chips that are operated in a lock-step
manner (i.e., all chips receive and process the same command at the
same time). Each DRAM chip contains multiple DRAM banks @
that can be accessed independently.

DRAM Rank /

@ DRAM Bank
DRAM Chip YA e

© DRAM Cell
Wordline

Memory Channel
Row Decoder

3
E
]
S
5]
z
S
13
3
2

[4] Row Buffer (BLSA)

Figure 2: Hierarchical organization of modern DRAM.

Inside a DRAM bank, DRAM cells are organized into a two-
dimensional array, addressed by rows and columns. A DRAM cell @
consists of 1) a capacitor, which stores one bit of information in the

form of electrical charge level, and 2) an access transistor, which
connects the capacitor to a bitline, controlled by a wordline. When
the row decoder (including wordline drivers) drives a wordline high,
the access transistors of all DRAM cells in the row @ are enabled,
electrically connecting each cell in the row to its corresponding
bitline. DRAM cells in the same column share a bitline, which is
used to read from and write to the cells via the row buffer @ (which
contains bitline sense amplifiers, BLSA).

2.2 Major DRAM Operations

DRAM Access. Accessing DRAM consists of three steps. First, the
memory controller issues an ACT (activate) command together with
a row address to the bank. The row decoder drives the wordline of
that row to open the row (i.e., enables the access transistors). Data is
then transferred from the DRAM cells in the row to the row buffer
through the bitlines. Second, once the data is in the row buffer, the
memory controller can send RD/WR commands to read/write data
from/to the opened row. Third, the memory controller sends a PRE
(precharge) command to close the opened row before accessing
another row in the same bank.

DRAM Refresh. DRAM cells lose charge over time, risking reten-
tion failure induced bitflips if their charge is not restored in time. To
avoid this, the memory controller periodically restores each DRAM
row’s charge levels by sending REF (refresh) commands. Before
issuing a REF command, the memory controller must send a PRE
command to close any open row to prepare the bank for refresh.

2.3 Key DRAM Timing Parameters

To guarantee correct operation, the memory controller must time
DRAM commands according to certain timing parameters [54-57].
Fig. 3 shows a timeline of the key DRAM access operations. We
describe four key timing parameters involved in this work: 1) tras,
2) trp, 3) trEFI, and 4) tREFw-

tras is the minimum time between opening a row with an ACT
command and closing the row with a PRE command (@ in Fig. 3).
trp is the minimum time between sending a PRE command and
opening a row with an ACT command (@ in Fig. 3). trgpy is the
default time interval between consecutive REF commands. trgpw
is the maximum time window between two refresh operations that
target the same row.

© tRAS Pl A tRP »|
Prre D

[Row Open | Row Close | Time

Figure 3: Timeline of key DRAM access operations.

A majority of DRAM timing parameters define lower bounds for
the time intervals between pairs of DRAM commands. For example,
tras is the minimum amount of time that the memory controller
has to wait before issuing a PRE command to close an open(ed)
DRAM row. The memory controller may keep the DRAM row open
longer than tras to serve more RD/WR commands (in anticipation of
future requests to the same row [96, 97, 119, 177]), depending on
the memory controller’s implementation and the workload’s access
pattern. In general, if the memory controller does not postpone

REF commands, a DRAM row can be open for a duration of trgp
before it has to be closed to serve a REF command. Otherwise, a
DRAM row can be open for up to 9% trgpy because the JEDEC DDR4
standard [56] allows postponing up to eight REF commands. Under
normal operating conditions (i.e., within the temperature range of
0°C to 85°C), tregy is 7.8 us for commodity DDR4 chips.

2.4 Motivation

There are three major causes of bitflips in DRAM cell arrays: 1) soft
errors caused by charged and/or energetic particle strikes [11, 75, 90,
100], 2) data retention failures due to the volatile and leaky nature
of DRAM cells [63, 64, 82, 83, 111], and 3) read disturbance (e.g.,
RowHammer [2, 18, 34, 62, 67, 68, 79, 80, 98, 99, 102, 103, 106, 107,
121, 155, 164, 169, 172]) caused by undesirable interactions between
circuit components. Both retention failures and RowHammer get
worse as DRAM technology scales down to smaller node sizes.

Read disturbance has significant implications for system reliabil-
ity, security, and safety because it is a widespread issue and can be
exploited to break memory isolation [1, 10, 12-20, 22, 28, 30-32, 38—
40, 43, 45, 52, 53, 58, 68, 72, 74, 81, 84, 94, 95, 102, 112-114, 117, 118,
124, 131, 132, 145, 146, 148, 149, 153, 154, 156, 160, 170, 173-176].
Therefore, it is important to identify and understand read distur-
bance mechanisms in DRAM. Our goal is to 1) rigorously and
comprehensively characterize and investigate the read disturbance
caused by increased aggressor row on time (taggon), and 2) un-
derstand its implications for secure, reliable, and safe operation of
DRAM-based systems.

3 Methodology

We describe our DRAM testing infrastructure and the real DDR4
DRAM chips tested. We explain the methodology of our characteri-
zation experiments in their respective sections (under §4).

3.1 DRAM Testing Infrastructure

We test commodity DDR4 DRAM chips using an FPGA-based DRAM
testing infrastructure that consists of four main components (as
Fig. 4 illustrates): 1) a host machine that generates the test program
and collects experiment results, 2) an FPGA development board (Xil-
inx Alveo U200 [161]), programmed with DRAM Bender [101, 122]
(based on SoftMC [44, 126]), to execute our test programs, 3) a
thermocouple temperature sensor and a pair of heater pads pressed
against the DRAM chips to maintain a target temperature level, and
4) a PID temperature controller (MaxWell FT200 [89]) that controls
the heaters and keeps the temperature at the desired level.

Figure 4: Our DDR4 DRAM testing infrastructure.

Disabling Interference Sources. To observe RowPress’ effects
at the circuit level, we disable potential sources of interference
following a methodology similar to prior works [43, 67, 103, 164].
First, we disable periodic refresh during the execution of our test
programs to 1) keep the timings of our test programs precise and
2) disable any existing on-die RowHammer defense mechanisms
(e.g., TRR) [32, 43] so as to observe the DRAM chip’s fundamental
read disturbance behavior at the circuit level. Second, we bound
our test programs’ execution time strictly within a refresh win-
dow (i.e., 64ms trgrw) of the tested DRAM chips to prevent data
retention failures from interfering with read-disturb failures. Third,
we ensure that the tested DRAM modules and chips have neither
rank-level nor on-die ECC. Doing so ensures that we directly ob-
serve and analyze all circuit-level bitflips without interference from
architecture-level correction and mitigation mechanisms.

3.2 Commodity DDR4 DRAM Chips Tested

Table 1 shows the 164 (21) real DDR4 DRAM chips (modules) that we
test from all three major DRAM manufacturers. To demonstrate that
RowPress is intrinsic to the DRAM technology and is a widespread
phenomenon across manufacturers, we test a variety of DRAM
chips spanning different die densities and die revisions from each
DRAM chip manufacturer.?

Table 1: Tested DDR4 DRAM Chips.

Mfr. #DIMMs #Chips Density Die Rev. Org. Date
2 8 8Gb B x8 20-53
Mfr. S 1 8 8Gb C x8 N/A
(Samsung) 3 8 8Gb D x8 21-10
2 8 4Gb F x8 N/A
1 8 4Gb A x8 19-46
Mfr. H 1 8 4Gb X x8 N/A
(SK Hynix) 2 8 16Gb A x8 20-51
2 8 16Gb C x8 21-36
1 16 8Gb B x4 N/A
2 4 16Gb B x16 21-26
Mfr. M
M,r 1 16 16Gb E x4 20-14
(Micron) 2 4 16Gb E x16 20-46
1 4 16Gb F x16 21-50

To account for in-DRAM row address mapping [10, 19, 47, 51,
61, 64, 65, 68, 77, 82, 110, 134, 136, 145], we reverse-engineer the
physical row address layout, following the methodology of prior
works [43, 67, 103, 164].

4 Major RowPress Characterization

We characterize RowPress by analyzing 1) how DRAM’s vulnera-
bility to read disturbance changes as taggon increases, and 2) prop-
erties of RowPress bitflips that distinguish them from RowHammer
and retention failure bitflips. We evaluate the sensitivity of Row-
Press biflips to temperature, access pattern, and aggressor row off

5The technology node that a DRAM chip is manufactured with is usually not publicly
available. We assume that two DRAM chips from the same manufacturer have the
same technology node only if they share both the same die density and die revision
code. A die revision code of X indicates that there is no public information available
about the die revision (e.g., the original DRAM chip manufacturer’s markings have
been removed by the DRAM module vendor and the DRAM stepping field in the
SPD is 0x00). More details on the tested chips and a summary of their RowPress and
RowHammer characteristics are in Appendix B.

time (i.e., taggorr) in §5. Appendix §C provides further results and
plots.

4.1 Experiment Methodology

Metric. To characterize how RowPress amplifies DRAM’s vulner-
ability to read disturbance, we examine how ACpi, changes as
taggoN increases. A lower ACpin means more vulnerability to read
disturbance.

Access Pattern. Fig. 5 illustrates our RowPress access pattern
targeting a single aggressor row (single-sided) to induce bitflips.
We 1) activate (ACT) the aggressor row (RO0), 2) keep the aggressor
row on for a certain amount of time (taggoN), and 3) close the row
with a precharge (PRE) command. To respect the timing constraints,
we wait until precharge latency trp is satisfied before repeating the
same access pattern. We sweep tageoN from the minimum possible
value of 36 ns (i.e., the nominal tpag value) up to 30 ms. Note that
for taggon = 36 1s, our single-sided RowPress pattern is identical
to a single-sided RowHammer access pattern.® We test 3072 rows
(the first, the middle, and the last 1024 rows) in bank 1 for each
DRAM module.

| tAggON

tRAS—bI
CcMD

ADDR

tAggON

| 1
tRP tRAS—bI
£ $ >

Figure 5: Single-sided RowPress access pattern used to char-
acterize how ACy,in changes as t AggON increases.

Algorithm. For every tage0n value we evaluate, we find the ACmin
for each tested row using a modified version of the bisection-method
algorithm used by prior works [103, 164]. Instead of a fixed ACpin
accuracy (e.g., 100 in [164] and 512 in [103]), we enable an accu-
racy of 1%, rounded up to the next integer (i.e., we terminate the
search for ACy,i, when the difference between the current and pre-
vious measurements of ACp,in is no larger than 1% of the previous
measurements). We report that we could not induce any bitflip if
the test program’s execution time exceeds 60ms (which is strictly
smaller than the refresh window of 64 ms in DDR4 [56]). For every
tested row, we repeat the ACp,;, search five times and report the
minimum ACp,in value we observe.

Data Pattern. We use a checkerboard data pattern [152] where we
fill the aggressor row with @xAA and victim rows with 0x55. We
consider three adjacent rows on each side of the aggressor row as
victim rows. We use this data pattern for all our characterization
and sensitivity studies. We study the data pattern sensitivity of
RowPress bitflips in detail in §5.3.

Temperature. We maintain the DRAM chip temperature at a nor-
mal operating condition of 50°C. We study the temperature sensi-
tivity of RowPress bitflips in §5.1.

©The RowHammer access pattern activates an aggressor row as frequently as possible,
and thus closes the row (i.e., precharges the bank) as soon as it can, which is 36 ns (=
tras) after the row is opened.

4.2 Vulnerability to Read Disturbance

Fig. 6 shows the ACy;p, distribution (y-axis) of different die revisions
for all three major DRAM manufacturers as we sweep tagzoN (X-
axis) from 36 ns to 30 ms in log-log scale. For each manufacturer (i.e.,
each plot), we group the data based on the die revision (different
colors) and aggregate the ACp,in values from all the rows we test
in all chips with the same die revision. Each data point shows the
mean ACp,in value and the error band shows the minimum and
maximum of ACy,;,, values across all tested rows. We highlight the
taggoN values of 7.8 s (trgrr) and 70.2 ps (9Xtrgrr) on the x-axis,
as they are the two potential upper bounds of taggoN, as dictated
by the JEDEC DDR4 standard [56].7 We mark ACpnin = 1 on the
y-axis. We make three major observations from Fig. 6.

5 F — —_— s
10 [—— 4Gb F-Die —— 4Gb A-Die —— 8Gb B-Die

105 M 8Gb B-Die a6b x-ie |55 16Gb B-Die
- — 8ab c-Die [[[—— 16Gb A-Die —— 16Gb E-Die
104 | ? — 8Gb D-Die|| |- — 16Gb c-Die || |- = — 16Gb F-Die

5103- \ + \ - \
] \ - \ : \
10°

s i | s i | o 5 1

o

o o O & o o
ESRENAES: SR &
X A® /\Q’.v o

o & o o & & o o
(O X AX & & N AY
T AP, O A

Aggressor row on time (tAggON)

Figure 6: ACmin as taggon increases; single-sided RowPress
at 50°C.

Obsv. 1. RowPress significantly reduces ACmin as taggon in-
creases.

For example, for almost all (10 of 12) die revisions from all three
DRAM manufacturers,® we observe that ACyi, reduces by 21x on
average when tage0N increases from 36 ns to 7.8 pus. For modules
with 8Gb B-Dies from Mfr. S, the reduction in mean AC,yi, can reach
up to 59X. If taggoN increases from 36 ns to 70.2 s, the reduction
in mean ACp,ip is 190X, and the maximum reduction reaches 537X,
as observed in modules with 8Gb B-Dies from Mfr. S.

Obsv. 2. In extreme cases, RowPress causes bitflips with only
one aggressor row activation (i.e., ACpmin= 1).

We observe that for almost all die revisions from all three manu-
facturers, 1) we can always induce bitflips as we continue to increase
taggoN until 30 ms, and 2) for 13.1% of the tested rows that expe-
rience bitflips, only a single activation of an aggressor row (i.e.,
ACmin= 1), is needed to induce bitflips when taggon is 30 ms at
50°C. We conclude that, unlike RowHammer, RowPress does not
have to rely on repeatedly accessing the aggressor row many times
to induce bitflips.

Obsv. 3. RowPress is a common DRAM vulnerability across all
three major DRAM manufacturers.

We observe that the ACy,i, trends across almost all die revisions
from all three major DRAM manufacturers follow a consistent pat-
tern. First, ACmin decreases slowly as tageon starts to increase.

"Whether 7.8 ps or 70.2 s is the upper bound for taggoN depends on the memory
controller’s implementation. If the memory controller does not allow any refresh
commands to be postponed, the upper bound is 7.8 ps. Otherwise, because the JEDEC
DDR4 standard [56] allows up to eight refresh commands to be postponed (Section
4.26 in [56]), the upper bound can be as high as 70.2 ps.

8The only exceptions are Mfr. H’s 4Gb A-Dies and Mfr. M’s 8Gb B-Dies, none of which
exhibit any bitflips when taggon is larger than 336 ns with the single-sided RowPress
pattern at 50°C.

For example, when tagg0oN increases by 5.17x from 36 ns to 186 s,
ACmin reduces on average by only 1.17X, 1.04%, and 1.08x for Mfr.
S, H, and M, respectively. Second, as tAggON continues to increase
(e.g., beyond 7.8 ps), ACpin decreases drastically for all three manu-
facturers, following an approximately straight line in log-log scale.
We find that the ACpi, trend lines when tageon = 7.8 ps for all
three manufacturers have very similar slopes: —1.020, —1.013, and
—1.013 for Mfr. S, H, and M, respectively. Given the similarity in
ACpn,in reduction with increasing tAggON across all tested die revi-
sions from all three major manufacturers spanning 164 chips, we
conclude that RowPress is an intrinsic read-disturb phenomenon
to the DRAM technology.

Note that a slope close to —1 in log-log scale does not mean that
ACmin reduces linearly as taggon reduces. Fig. 7 shows a portion of
the ACpin distribution from Fig. 6 with a smaller range of tageoN
values (from 7.8 ps to 70.2 ps) in linear-linear scale.

7500 | —— 4Gb F-Die | [+

| 8Gb B-Die | |4
—— 8Gb C-Die
—— 8Gb D-Die

— acbADie ||
4Gb X-Die

—— 8Gb B-Die
16Gb B-Die

— 16Gb ADie | H
—— 16Gb C-Die

—— 16Gb E-Die
—— 16Gb F-Die

6000
<
£ 4500
o
< 3000

1500 [+

ol il | il | I H

O 2 ° 2 o2 ® ° 2 0P ® ° >
IS O PSR ¥ PREE O o

Aggressor row on time (tAggON)

Figure 7: ACmin for taggon between 7.8 us and 70.2 s in linear-
linear scale; single-sided RowPress at 50°C.

We observe that as tpgzoN increases, the reduction rate of ACmin
decreases. The average ACy,in reduction for Mfr. S, H, and M when
taggoN increases from 7.8 us to 15 ps are —0.37 ps™!, —0.41ps71,
and —0.39 us~!, respectively, but only —0.021ps™!, —0.023 ps~1,
and —0.021 ps™!, respectively, when taggoN increases from 30 ps to
70.2 ps. We conclude that ACp,in does not reduce linearly as tageon
increases.

Fig. 8 shows the fraction of the tested rows that have at least one
RowPress bitflip (y-axis) as we sweep taggon (¥-axis). Each plot
corresponds to a different manufacturer. Each curve represents a
different DRAM module and is colored by its die revision.

—— 4GbF-Die — 8GbCDie| [— 4GbADie — 16GbADie| [— 8GbBDie —— 16Gb E-Die
8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
"]
g 1.00
n
x£2 075} H +
Sic | odoee
2 0s0f L ™A Fetoso—es oy
om
EE 0.25 | I - I
8% oo [T L |
= 00— Pl | i il | s i
& & o O & < o e & & &
S S & X AN & & S &
£ 5 A P I A% o ERX A% «Q’} A

Aggressor row on time (tAggON)

Figure 8: The fraction of rows that experience at least one
bitflip; single-sided RowPress at 50°C.

Obsv. 4. RowPress worsens as DRAM technology node scales
down.

In general, the more advanced the technology node® (as indicated

by the die revision), the more rows are vulnerable to RowPress. For
example, for the three 8Gb Dies from Mfr. S, as taggON increases,
almost 100% of the tested rows of the D-Dies experience RowPress
bitflips, which drops to below 80% for the C-Dies and below 60%
for the B-Dies.
Takeaway 1. RowPress 1) is a common read-disturb phenome-
non in DRAM chips that exacerbates DRAM’s vulnerability to
read disturbance and 2) gets worse as DRAM technology scales
down to smaller node sizes.

To further understand the relationship between tagzon and ag-
gressor row activation count (AC) of RowPress, we examine the
minimum tAgeON (tAggONmin) to induce at least one bitflip for a
given activation count using the single-sided RowPress pattern.
Fig. 9 shows how tage0Nmin changes as we sweep activation count
from 1 to 10K. The error band shows the minimum and maximum
tAggONmin Values. We highlight the two potential upper-bound
taggoN values of 7.8 us (trerr) and 70.2 ps (9Xtrgrr) on the y-axis.

— acbroie || [— acbadie ||| — 8Gb B-Die

8Gb B-Die \ 4Gb X-Die \ 16Gb B-Die
104 \ 10ms — 8Gb c-Die || |-+ 10ms — 16Gb A-Die 10ms —— 16Gb E-Die

—— 8Gb D-Die |—— 16Gb C-Die —— 16Gb F-Die
10° | H H

|:70.2us

| 70.2us S |:70.2us

7.8us

7.8us

7.8us

™

tAggONmin(ps)
g

7

M H

>]

L] TN
L T i s L T i Fisl | L T i

10 10! 102 10° 10 10° 10" 102 10° 10* 10° 10' 102 10° 10%
Aggressor Row Activation Count (AC)

Figure 9: tAggONmin as aggressor row activation count (AC)
increases; single-sided RowPress at 50°C.

l ObsvV. 5. tAgzONmin Significantly decreases as AC increases. ‘

As AC increases from 1 to 10000, the average tAgeONmin de-
creases from 43.3ms to 4.3 ps, from 48.3 ms to 4.8 ps, and from
44.5ms to 4.5 ps for Mfr. S, H, and M, respectively.'® The decreasing
tAggONmin trend lines are very similar across all three manufactur-
ers. Their slopes are -1.000, -0.999, and -1.000 for Mfr. S, H, and M,
respectively, in Fig, 9.11

Obsv. 6. In extreme cases, RowPress can induce bitflips for
taggoN values less than 10 ms with only a single aggressor row
activation (i.e., AC = 1).

We observe that, for the Mfr. S 8Gb D-Dies, the Mfr. H 16Gb
C-Dies, and the Mfr. M 16Gb E-Dies, there are one, two, and two
rows out of the 3072 rows we test experience bitflips with AC =1
at a tAgeONmin value less than 10 ms (highlighted with dashed red
lines). The minimum tagzoNmin Observed for these three dies are
9.2ms, 9.8 ms, and 9.0 ms, respectively.

4.3 Distinguishing Characteristics of RowPress

Cells Vulnerable to RowPress vs. RowHammer and Reten-
tion Failure. We compare the set of DRAM cells that experience

°For a given manufacturer and die density, the later in the alphabetical order the die
revision code is, the more likely the chip has a more advanced technology node.
10%e observe no bitflips in modules with Mfr. H 4Gb A-Die and Mfr. M 8Gb B-Die in
this experiment.

"Note that for Mfr. M’s 16Gb F-Die (colored red), when AC = 10*, we observe a
minimum taggoNmin Of only 66 ns (cropped in Fig. 9).

bitflips from our search for ACmin as we sweep tagzon beyond
36 ns (i.e., for each tagsoN, the set of cells that experience bitflips
with the minimum number of aggressor row activations that causes
bitflips for that tageon) With two other sets of cells: 1) the set of
cells that experience RowHammer bitflips (i.e., when tageon equals
tras 36 ns), and 2) the set of cells that exhibit bitflips in a data re-
tention failure test.!? Fig. 10 shows how increasing taggON (x-axis)
changes the fraction of RowPress-vulnerable cells (y-axis) that also
experience RowHammer (retention) failure in the first (second)
row of subplots. Similar to Fig. 8, each curve represents a different
DRAM module, color-coded based on its die revision.

~—— 4Gb F-Die —— 8Gb C-Die ——— 4Gb A-Die —— 16Gb A-Die ——— 8Gb B-Die —— 16Gb E-Die
8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
3 - - -
g0 Vs
75 | F F
£
28 050} + -
=T
8% 025 = H
o
& 000k il | S il | it 1
< - - -
o W77 A
L2 0.15 I I
2% o0} L L
8g ™ et
QE 0.05 | H sa=sg=s3-1H
O 0.00 [y oo 2 | o it o | o B e 1
s & o @ o & & o © o & & o o &
& & ¥ ¥ R N & ¥ 4 S
P P A? «e’.‘/ ERC A% «0'} S A® }\Q'.P BN

Aggressor row on time (tAggON)

Figure 10: Overlap ratio of RowPress-vulnerable cells @
ACpin with RowHammer-vulnerable cells @ AC,in, (first row
of plots) and retention failures (second row of plots).

Obsv. 7. An overwhelming majority of the DRAM cells vulner-
able to RowPress are not vulnerable to RowHammer or data
retention failures.

For taggoN 2 7.8 s, on average, only less than 0.013% of DRAM
cells vulnerable to RowPress overlap with those vulnerable to
RowHammer, and less than 0.34% overlap with retention failures.
Therefore, an overwhelming majority of RowPress bitflips are dif-
ferent from those caused by RowHammer and retention failures.!3
These results suggest that different failure mechanisms lead to
RowPress and RowHammer bitflips.

Fig. 11 shows the overlap ratio of the set of cells that experience
bitflips when we activate the aggressor row as many times as pos-
sible (i.e., at ACmax) for each taggon value with the RowHammer-
vulnerable cells (also at ACpqx, first row of plots) and retention
failures (second row of plots). Similar to Fig. 10, we observe that
the overlap between RowPress-vulnerable cells and RowHammer
vulnerable cells significantly decreases as tpggoN increases.
Bitflip Direction. Fig. 12 shows the fraction of 1 to 0 bitflips across
all the bitflips we observe (y-axis) as we sweep tageoN (X-axis).
Similar to Fig. 8, each curve represents a different DRAM module,
color-coded based on its die revision.

Obsv. 8. RowPress and RowHammer bitflips have opposite di-
rections.

With the checkerboard data pattern we test, the dominant bitflip
direction for RowHammer (i.e., when taggoN is 36 ns) is 0 to 1. As

12\We initialize the DRAM rows with the same checkerboard data pattern as in §4.2,
and disable auto-refresh for four seconds at 80 °C to induce retention-failure bitflips,
similar to prior work [111].

BPrior works [67, 68] already show that RowHammer bitflips have little overlap with
retention failure bitflips.

— 4GbFDie — 8GbCDie| [— 4GbADie — 16GbADie| [— 8GbB-Die —— 16Gb E-Die
8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
£+ 1.00F [[
£9 M. 5 M H) Mt ™|
SE 075} H H
ot
g8 050 H -
= Lo 1 e soted
FEREE - -
>3 o]
ox 0.00 Lo 1 I | 1 I | 1 1
< o02F F F
Sc M. 5) [Mfr. H) M ™
306 015f H H
-
&g 010F K e A~
39 oosf L |
S A R e
o 0.00 L 1 i | n i | n 1
< d O & o & & < o o O o o J &
& & X AN & R AN & N AN &
P ALY RN AN RN AN Y

Aggressor row on time (tAggON)

Figure 11: Overlap ratio of RowPress-vulnerable cells @
ACpax with RowHammer-vulnerable cells @ ACpqx (first
row of plots) and retention failures (second row of plots).

—— 4Gb F-Die —— 8Gb C-Die —— 4Gb A-Die —— 16Gb A-Die —— 8Gb B-Die —— 16Gb E-Die
8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
w
w8 1.00F F F
5=
ek 0751 5 I S0 Raa = anmed
&
o=
=0 050 I [eeee
t =]
Eg 0.25 k- L |seesids”
£s 02 [
- 000 il | wrnamn i | it :
o & & & o & & o o o O & o &
S & X ¥ o & ¥ C & ¥ ¥ &
P A% @'} N A 4& R ,\e'-" X

Aggressor row on time (tAggON)

Figure 12: Fraction of 1 to 0 bitflips.
taggoN increases (i.e., for RowPress), for almost all die revisions
from Mfr. S and H (except for Mfr. H’s 4Gb A-Die chips that do not

show any bitflip), the dominant bitflip direction changes to 1 to 0.

For example, the fraction of 1 to 0 bitflips reaches 100% for tageon
> 7.8 us. Similarly, the fraction of 1 to 0 bitflips in Mfr. M’s 16Gb
B-Die and F-Die chips reaches 75% in this region of t AggON.14 As an
exception, Mfr. M’s 16Gb E-Die chips show an opposite trend: the
fraction of 1 to 0 bitflips decreases as taggoN increases. The reason
for this opposite behavior could be a different layout of true- and
anti-cells compared to that in other chips.!

Takeaway 2. RowPress has a different failure mechanism from
RowHammer and data retention failures in DRAM. There is
almost no overlap between RowPress, RowHammer, and data
retention bitflips, and the directionality of RowHammer and
RowPress bitflips show opposite trends.

5 RowPress Sensitivity Study

We examine the sensitivity of RowPress bitflips to 1) temperature,
2) access pattern, and 3) aggressor row off time (taggoFF). We study
the repeatability of RowPress bitflips in Appendix E.

5.1 Temperature

Methodology. To investigate how RowPress bitflips change as
DRAM chip temperature changes, we repeat the ACpin, experiments

41n a concurrent work [46], DRAM engineers from Samsung claim that the bitflips
caused by RowHammer and the passing gate effect (caused by increased taggon) have
opposite directionality because RowHammer injects electrons into the victim cell while
the passing gate effect attracts electrons from the victim cell. We call for more detailed
device-level modeling and analysis on this topic.

15A fully charged (discharged) DRAM cell does not necessarily imply that the stored
value is 1 (0). A cell is called true (anti) cell if a fully charged state represents a value
of 1(0) [82].

(as described in 4.1) except we increase the temperature from 50°C
to 80°C. Fig. 13 shows the mean ACp,;,, values we observe at 80°C
normalized to 50°C as we sweep taggoN at 80°C in linear (y-axis) -
log (x-axis) scale.

—— 4Gb F-Die —— 8Gb C-Die —— 4Gb A-Die — 16Gb A-Die| [— 8GbB-Die —— 16Gb E-Die
%) 8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
=3
n
g 1005
@+
22 sl | i i
N oso = L 3 ——-—:é
§Tonl St e e
€ o2sf 3 H
SEonp i) i ljia .
2 o & o o O & R P R &
F & NS C &
S ’f’b «@)/\ X ’))Q@ S ’1,:’@ ,\‘,b‘} /\Q’}Q /’)Q@ S 'f’b /\ijAQ’}Q /,,0&

Aggressor row on time (tAggON)

Figure 13: ACpin at 80°C normalized to 50°C; single-sided
RowPress.

Obsv. 9. As temperature increases, RowPress reduces ACpin
more.

We observe that for all die revisions vulnerable to RowPress,
ACpmin consistently reduces for the same tagzoN value as temper-
ature increases from 50°C to 80°C. For example, when taggoN is
7.8 us, the average ACpin at 80°C is only 0.55X%, 0.32X, and 0.59x
of that at 50°C, for Mfr. S, H, and M, respectively. Across all manu-
facturers, ACpin reduces by 48X on average (up to 122X%, observed
in 8Gb B-Dies from Mfr. S) when taggon increases from 36 ns to
7.8 us at 80°C. When tageoN increases from 36 ns to 70.2 us, ACmin
reduces by 438X on average (up to 1106x) at 80°C. In contrast, at
50°C, the reduction in ACp,jy is only 21X on average (up to 59X)
when taggoN increases from 36 ns to 7.8 ps and 190X (up to 537x)
when tagzoN increases from 36 ns to 70.2 ps. For a taggon of 30 ms,
82.8% of the rows with bitflips experience an ACy,in of only one
(not shown in Fig. 13) at 80°C (only 13.1% at 50°C). We provide
more results involving ACp,;p, at 65°C in Appendix F.

Fig. 14 shows the fraction of rows that have at least one RowPress
bitflip as we sweep tagzoN at 80°C.

—— 4Gb F-Die —— 8Gb C-Die —— 4Gb A-Die —— 16Gb A-Die —— 8Gb B-Die —— 16Gb E-Die
) 8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
3
S v 1.00
[}
s E 0.75 | I I
o 050 M. S} LA | [Mfr. ™)
2@ g5t 5 -
-1
§3 0.00 Pl | i v | et i
'S o & o o O & d o o o & & & & &
& & ¥ ¥ CE & ¥ ¥ C & ¥ ¥ &
T AN S D ST S AP S

Aggressor row on time (tAggON)

Figure 14: Fraction of rows that experience at least one bitflip
at 80°C; single-sided RowPress.

Obsv. 10. Fraction of rows that have at least one RowPress
bitflip significantly increases as temperature increases.

We observe that almost all die revisions from all three manufac-
turers that are vulnerable to RowPress have their fractions of rows
with at least one bitflip increase to almost 100% at 80°C. Note that,
for 4Gb A-Die from Mfr. H where we observe no bitflips at all for
tAggON > 336 ns at 50°C, we are able to observe bitflips in a small
fraction of rows (on average, 0.86% of all tested rows) with larger
taggON Values up to 30 ms at 80°C.

To study the effect of increasing temperature on taggoNmin (i-€.,
the minimum tageoN to induce at least one bitflip) when AC = 1,
we sweep temperature from 50°C to 80°C with a step size of 5°C
and show the results in Fig. 15.1° The error band shows the standard
deviation of tAggONmin-

60 F F F

=Sl

{
30 : —— 4Gb A-Die

8Gb B-Die ! 4Gb X-Die
20 1

—— 16Gb A-Die —— 16Gb E-Die
1o [I= bo0e

—— 8Gb B-Die
16Gb B-Die

tAggONmin(ms)

T leeon T e ron
50 60 70 80 50 60 70 80 50 60 70 80
Temperature (°C)

Figure 15: tAggoNmin When AC = 1 as we sweep temperature
from 50°C to 80°C with 5°C steps; single-sided RowPress.

Obsv. 11. As temperature increases, tAgsONmin Significantly
decreases.

We observe that tagzoNmin significantly decreases as we grad-
ually increase temperature from 50°C to 80°C. For Mfr. S, H, and
M, the average (minimum) tAgeoNmin reduces by 1.78X (1.90x),
2.84x% (3.24x), and 1.64x% (1.95x), respectively, going from 50°C to
80°C. For example, for 16Gb A-Dies from Mfr. H, across all tested
rows, the average (minimum) tageONmin is 47.4ms (14.3ms) at
50°C, and reduces to only 13.0 ms (3.0 ms) at 80°C. Note that for
Mfr. H’s 4Gb A-Die, where we could not induce any bitflip even
when AC = 10000 at 50°C (Fig. 9), we are able to induce RowPress
bitflips when AC = 1 at temperatures > 65°C.

Takeaway 3. RowPress gets significantly worse as temperature
increases. This behavior is very different from how RowHammer
bitflips change with temperature [68, 103].

5.2 Access Pattern

Methodology. To investigate how the bitflips induced by RowPress
change as access pattern changes, we repeat the ACy,;, experiments
(described in §4.1) except we use a double-sided RowPress pattern
involving two aggressor rows, as shown in Fig. 16. In the double-
sided RowPress pattern, we replace the row address of every other
aggressor row activation in the single-sided access pattern (shown
in Fig. 5) from RO to R2. We treat the row R1 between R0 and R2
and three adjacent rows before RO (i.e., R-1, R-2, R-3) and after R2
(i.e., R3, R4, R5) as the victim rows. We conduct the test at both
50°C and 80°C.

tAggON —b)e— tRP —pfe— taggON —p]e— trP
ovo @ PRE ACT PRE ACT

ADDR

tAggON —

Figure 16: Double-sided RowPress access pattern.

We show how ACp,in changes with the double-sided RowPress
pattern at 50°C as we sweep tagooN in Fig. 17. The error band
shows the minimum and maximum ACy,;, values.

16We do not sweep the temperature with the fine-grained step size 5°C for the other
experiments because of the prohibitively long experiment times.

6 ———— — ——
10 —— 4Gb F-Die —— 4Gb A-Die —— 8Gb B-Die

s Lo 8Gb 8-Die || | acbxDie || |beeatas, 16Gb B-Die
10 M — scb Coie — 166b A-Die e — 16Gb E-Die
g0tk — o[— 100 coie | [EEEEES — iecroe
S 10k \ F \\ 3 ™
< 102 | R + . -
10! [-[Mfr. 5] || H) - fr. ™)
100 B3 s | S i | S !
" o O " o o O & o & & < o &
R C & @ Y SIS N «
P AT Y R N A B AT Y EX

Aggressor row on time (tAggON)

Figure 17: ACyin of double-sided RowPress; 50°C.

Obsv. 12. As tageoN increases, double-sided RowPress exhibits
a similar decreasing ACp,in trend as single-sided.

As taggoN increases, ACmin significantly decreases with the
double-sided RowPress pattern. The slopes of the overlapping ACnin
trend lines in Fig. 17 for taggon > 7.8 ps of Mfr. S, H, M are —1.015,
—1.010, and —1.011, respectively. Compared to the single-sided
RowPress pattern, the decrease in ACpip, is much larger with the
double-sided RowPress pattern. For example, on average, when
taggON increases from 36 ns to 186 ns, ACpin reduces by 1.62X,
1.56X, and 1.64X for Mfr. S, H, and M, respectively, with the double-
sided pattern, compared to only 1.17X, 1.04X, and 1.08x of the
single-sided pattern.

To comprehensively investigate how the access pattern and the
temperature of the DRAM chip affect ACy;n, we plot the differ-
ence between single- and double-sided ACp,;n, (i-€., ACmin (single) -
ACpmin(double)) at 50°C (first row) and 80°C (second row) in Fig. 18.
A data point below 0 means that the single-sided RowPress pattern
needs fewer aggressor row activations in total to induce a bitflip
compared to double-sided.

£ 104 — 4Gb A-Die — 8Gb B-Die
S 10 1660 ADI lech £ Die
— e ||l — 1660 E-Die
2 . T e che N e

5 3 0 "7- M

93T -10% [U.ﬁs I \,.-4 B

3% 10t f M. 550°0) ||| FfeAsoeq || [MfeM50°Q)

Q0

9
K

83 o [

22 1w 3 +

o 0

-l

£5 10 H I antl ,-‘f
&5 —102 b L L

B¢ P M5 80°C)

) r- Lo (v | o]
= o O o O o O & o o O & o L &
€ & ¥ ¥ Cf & ¥ W e o ¥ ¥ «
5 R P AN ST E AT P ST AP EN

Aggressor row on time (tAggON)

Figure 18: Single-sided AC,;; minus double-sided ACy,;,, at
50°C (first row) and 80°C (second row).

Obsv. 13. Single-sided RowPress becomes more effective at
inducing bitflips as tageon increases beyond a certain value
compared to double-sided RowPress.

We observe that, as taggoN increases, double-sided RowPress is
initially more effective compared to single-sided at 50°C (e.g., the
single-sided pattern requires at least 10* more aggressor row acti-
vations to cause bitflips for almost all die revisions when taggoN <
1536 ns). However, as taggoN continues to increase beyond 1536 ns,
single-sided RowPress becomes more effective compared to double-
sided for some die revisions. For example, for taggon = 1536 ns,
single-sided RowPress requires 4210 less aggressor row activations
on average to induce bitflips compared to double-sided for the
8Gb B-Dies from Mfr. S at 50°C. As temperature increases from
50°C to 80°C, we observe that: 1) single-sided RowPress becomes

even more effective, for example, for the 8Gb B-Dies from Mfr. S,
the single-sided RowPress pattern needs 8699 less aggressor row
activations on average for ACp,in = 1536 ns compared to the double-
sided RowPress pattern, and 2) for almost all die revisions from
all manufacturers, single-sided ACp,in is consistently smaller than
double-sided for tpgsoN values larger than 7.8 us. We provide more
results involving ACp;p, at 65°C in Appendix F.

Note that this behavior is very different from RowHammer,
where double-sided RowHammer is strictly more effective at in-
ducing bitflips than single-sided [68]. Fig. 1 summarizes the ACpin
results we observe for single-sided and double-sided patterns for
RowHammer and RowPress at 80°C.

Takeaway 4. RowPress behaves very differently from RowHam-
mer as we change the access pattern from single-sided to double-
sided. As taggoN increases beyond a certain value, RowPress
needs fewer aggressor row activations to induce bitflips with
the single-sided pattern compared to the double-sided pattern.

5.3 Data Pattern

Methodology. To investigate how RowPress bitflips are affected by
the data pattern of the victim and aggressor rows (i.e., what is the
most effective data pattern to induce RowPress bitflips?), we repeat
the ACyin experiments with more data patterns, summarized in
Table 2. We denote the inverse of a data pattern with the suffix “T".
Due to the large search space of all tagzon values, we test a set
of representative tpgzoN Vvalues: 36 ns (=tras), 66 ns, 636 ns, 7.8 us
(=trprr), 9X7.8 s, 300 ys, and 6 ms.

Table 2: Tested data patterns

Row Tvpe Data Pattern
YP® CheckerBoard (I) RowsStripe (I) ColStripe (I)
Aggressor OXAA (0x55) OxFF (0x00) 0x55 (0xAA)
Victim 0x55 (OXAA) 0x00 (OXFF) 0x55 (OxAA)

Metric. To quantify the effectiveness of different data patterns for a
die revision, we normalize their average ACpin (across all rows we
test) to the average ACp,in value of the CheckerBoard (CB) pattern.
A value lower (higher) than 1.00 means the data pattern is more
(less) effective than the CB pattern at inducing bitflips.

Fig. 19 shows the normalized ACp,i, values of different data
patterns (y-axis) at different taggon values (x-axis) from three rep-
resentative die revisions from the three manufacturers!'’ using a
single-sided access pattern at 50°C (left column) and 80°C (right
column). A red (blue) cell means at a given x taggoN, the y data
pattern is less (more) effective at inducing bitflips compared to the
baseline CheckerBoard pattern. Certain data patterns could not
induce any bitflip at certain taggon values, even with the maximum
possible activation count (within 60ms, which is strictly smaller
than the 64ms refresh window). We mark these cases as “No Bitflip”
(white cell) in the figure. We make the following two observations.

Obsv. 14. CheckerBoard pattern is in general the most effective
RowPress data pattern among the ones tested.

7We find that the remaining die revisions behave similarly to one of the three repre-
sentative die revisions.

50°C 80°C
CB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cBl 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.00 1.04 1.00 1.01

cs [10 120 135 20 00 EEEEEETAEIETIEER
co BRI o om0 o o7 A DRI

RS 0.86 0.87 1.08 nosifip nositfip Nositfiip Nositip 0.88 0.95 I no sitfiip No Bitflip No Bitflip No Bitlip

=
©

Mfr. S 8Gb B-Die

RSI '1.23 1.21 0.96 0.95 0.95 0.96 096 1.16 1.05 0.86 0.86 0.87 0.86 0.87

CB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(]

l:T CBl 1.00 1.00 1.00 1.00 0.99 1.00 1.01 1.00 1.00 1.02 1.00 1.01 0.97 0.97
3 Cs 1.11 1.12 1.12 1.01 1.00 1.01 0.97 1.15 1.23
g CSI 1.11 1.12 1.09 0.81 0.79 0.82 0.82 1.15 1.24
i RS 0.93 0.93 1.16 nositfip Nositip Nositfip Nogitip 0.93 0.96 [P nositfip NoBitfip No Bitflip No Bitfip
‘E RSI 1.03 1.04 1.04 1.04 1.04 1.12 1.10 1.10 1.07 1.05
o CB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E CBl 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 0.99 0.99 1.02 0.99 0.97 1.04
g CS 1.06 1.06 1.12 wositip Nositfip NoBitfip NoBitip 1.06 1.07
g CSI 1.06 1.06 1.12 nosifip Nositiip NoBittiip Noiip 1,06 1.07
E RS 0.98 0.97 0.97 1.04 1.04 1.04 1.03 0.97 0.97 1.03 1.19 1.18 1.14 1.17
E RSI 1.14 1.13 1.13 1.01 1.02 1.02 1.01 1.14 1.13 1.10 1.11 1.07 1.05 1.09

& & &

o © o o o o o o o 2 o
AN NS AN AN AN Qo
A& S @,ﬁ ST Y E

Figure 19: ACin of different data patterns normalized to
the CB data pattern at different tagson values from three
representative die revisions from the three manufacturers;
Single-sided access pattern; 50°C (left column) and 80°C (right
column); A value lower (higher) than 1.00 means the data
pattern is more (less) effective than the CB pattern at induc-
ing bitflips, colored as blue (red).

We observe that, in most cases, the CheckerBoard pattern is the
most effective at inducing RowPress bitflips among the tested data
patterns for the following two reasons. First, we can always induce
bitflips with the CheckerBoard pattern as we increase tpggoN- In
comparison, although the RowStripe pattern in Mfr. S 8Gb B-Die
and Mfr. H 16Gb A-Die is more effective with low tpggon values (i.e.,
up to 13% smaller ACmin When taggoN is 66 ns), it cannot induce
any bitflip for taggon larger than 636 ns. Second, compared to the
other data patterns, the CheckerBoard pattern is less affected by the
increase in temperature. For example, although the ColumnStripel
pattern is the most effective for large tagzon values (> 7.8 ys) for
Mfr. S 8Gb B-Die and Mfr. H 16Gb A-Die at 50°C (up to 29% smaller
AChmin), it becomes the least effective (up to 267% increase in ACpin)
at 80°C.

Obsv. 15. The most effective RowHammer data pattern is not
necessarily the most effective RowPress pattern.

For all three representative die revisions shown in Fig. 19, Row-
Stripe is the most effective data pattern to induce Rowhammer
bitflips (i.e., taggon = 36 ns). However, as we increase taggoN, it
becomes significantly less effective compared to the other patterns.
For Mfr. S 8Gb B-Die and Mfr. H 16Gb A-Die, the RowStripe pattern
cannot induce any bitflip for tag;on > 636 ns, even at 80°C.

Fig. 20 shows the normalized ACy,;, values of different data pat-
terns from Mfr. S 8Gb B-die using a double-sided access pattern

at 50°C and 80°C. We observe that the effectiveness of Column-
Stripe and ColumnStripel patterns increases as taggon increases
in the double-sided access pattern, in contrast to the decreasing
effectiveness as we show in Fig. 19. Note that this is the only case
where we observe any major difference comparing single-sided
to double-sided. The other die revisions behave similarly for the
double-sided access pattern compared to single-sided.
50°C 80°C

CB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CBI 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.00 1.01 1.00 1.02 1.02 1.01

cs NoBitip No it o Bitip No Bl 121
csl NoBifip No Bitflp No Bitfp No Bl fE7Y 1.00 1.02 1.03 1.05

RS 0.90 0.91 0.92 wositfip Nositnip Nositnip Nosiip 0.90 0.91 1.00 wositfiip NoBitfip Noitflip No Bitflip
RSI '1.26 1.26 1.20 1.00 1.00 1.00 1.00 1.21 1.22 0.98 0.88 0.89 0.90 0.90

Mfr. S 8Gb B-Die

&

o
& N
o ,5@

o o g & & 4 o] o
& X Y X & [OOSR IR \g
P @ G AT VS e € & A¥ o

Figure 20: Normalized ACy,;,, of different data patterns of Mfr.
S 8Gb B-Die; Double-sided access pattern; 50°C (left column)
and 80°C (right column).

We believe the data pattern dependence of RowPress and RowHam-
mer require more and deeper study to fully understand and model
the effect on the two read disturbance phenomena.

5.4 tAggON vs tAggOFF

Prior works on device-level mechanisms of RowHammer [105, 169]
show that increasing tagzon has little impact on DRAM read dis-
turbance, while doing the opposite, increasing taggorr (i-e., the
aggressor row off time), worsens read disturbance. This seems to
contradict our results in §4.2 and §5.2. However, the methodology
of those prior works [105, 169] is limited because they only test 1) a
very small range of tageoN and taggoFF values (up to 50 ns in [169]
and 72.5 ns in [105]), and 2) a single-sided access pattern.

Access Pattern. To compare RowPress to the read-disturb mecha-
nisms discussed in prior works [105, 169], we design the RowPress-
ONOFF access pattern shown in Fig. 21, based on the pattern pro-
posed in [105]. In this pattern, we can adjust taggon and taggoFr by
changing: 1) when we issue the PRE command to close the aggressor
row, and 2) when we issue the ACT command to open the aggressor
row. We denote the time interval between two consecutive ACT
commands as taza. Notice that since taza = taggoN + taggorr, the
minimum possible value of taza is min(tageon) + min(taggorr) =
tras + trp = tre-

| tA2A ! tA2A
tAggON tAggOFF tAggON tAggOFF = «.e
cMD —

Figure 21: The RowPress-ONOFF pattern.

Methodology. We fix the activation frequency of a row by fixing
taza. We increase taza beyond tre by Ataza = {240, 600, 1200,
2400, 6000} ns. For each ta24 value, we sweep the fraction of Atasa
that contributes to taggon from 0% to 100% (with a step size of 25%).
For example, 25% means taggoN = 25% Afaza + tras, and taggOFF =
75% Atazp + trp. For all configurations, we activate the aggressor

10

row(s) as many times as possible to induce the most number of
bitflips without exceeding the experiment time limit of 60 ms. We
conduct the experiments at 50°C and 80°C.

Metric. We measure the bit error rate (BER), i.e., the fraction of
DRAM cells in a DRAM row that experience bitflips. We repeat the
experiment five times and report the highest BER to evaluate the
worst-case scenario.

Fig. 22 shows the BER (y-axis) for both single-sided (top row)
and double-sided (bottom row) RowPress-ONOFF pattern for a
representative'® die revision (8Gb D-Die from Mfr. S). We sweep
Atpga (different lines in each plot) and the percentage of Ataga
that contributes to tageoN (X-axis) at 50°C (left column) and 80°C
(right column). The error band shows the standard deviation of
BER. We make the following three observations.

| AtA2A (ns): 240 —— 600 —— 1200 =—— 2400 —— 6000

1072 F F
[80°C]

50°C

1073

BER

1074

107°

107t
1072
1073
1074

BER

Double-Sided Single-Sided

0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

105

[* p——— 4
0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 22: BER of the representative Mfr. S 8Gb D-Die; single-
(top row) and double-sided (bottom row) RowPress-ONOFF
pattern at 50°C (left column) and 80°C (right column).

Obsv. 16. For the single-sided access pattern, increasing tageoN
(i-e., decreasing taggorr) With small (large) Atz values miti-
gates (exacerbates) read disturbance.

For Atpga values < 1200 ns (i.e., the upper three lines in the top
two plots), we observe that BER decreases as we increase tageON
(and thus decrease taggorr) With the single-sided pattern. This
agrees with prior device-level works [106, 169]!° that test a small
range of tagzON/tAggOFF Values (up to 50ns in [169] and 72.5ns
in [105], respectively). As Ataoa takes larger values (e.g., 2400 ns
and 6000 ns), we observe an opposite trend to what we observe with
smaller ta4 values: BER increases as we increase taggon (and thus
decrease taggoFF)- This is neither observed nor explained by prior
device-level works [106, 169].

Obsv. 17. For the single-sided access pattern, increasing temper-
ature exacerbates read disturbance for large Atasa and tageon
values.

For the single-sided pattern, we observe that as temperature
increases from 50°C to 80°C, BER significantly increases (remains

18We observe a similar trend for almost all other die revisions. We show only one
representative die revision to illustrate the results more clearly. We show all other die
revisions in Appendix §C.1.

Injected charge (from diffused channel electrons [106] and charge traps [169]) needs
sufficient amount of time to be recombined at the victim cell and fully exhausted after
the row is closed (i.e., longer taggoFF)

almost unchanged) for large (small) Ata24 and taggon values. For
example, the average BER increases by 7.5X (only 1.04x) from
50°C to 80°C when Atasa = 6000 ns (240 ns) and 100% of Atasa
contributes to tageoN- At the inflection point of Atapa = 1200 ns,
when 50% to 100% of Ataza contributes to taggon, BER decreases
at 80°C, in contrast to increasing at 50°C. This observation is not
fully explained by prior device-level works [106, 169] because they
do not change Ataza, taggoN; and tageorr When investigating the
effect of temperature on read disturbance.

Obsv. 18. For the double-sided pattern, read disturbance consis-
tently worsens as tageoN increases and tageoFr decreases.

For all At a4 values we test with the double-sided access pattern,
we observe that BER consistently increases as taggon increases (ie.,
as taggOFF decreases), unlike the single-sided case where we observe
opposite trends for small and large Atao4 values. Such a difference
in the bit error rate behavior of single-sided and double-sided access
patterns is not covered by prior device-level works [106, 169]. Our
observations indicate that access pattern plays an important role
in RowPress’s device-level failure mechanisms and further device-
level investigation is necessary to develop a better understanding
of RowPress.

Takeaway 5. RowPress is a read-disturb phenomenon that
existing device-level studies do not fully explain. We call for
more device-level research to provide fundamental lower-level
understanding of the RowPress phenomenon.

6 Real System Demonstration of RowPress

We experimentally demonstrate that a simple user-level C++ pro-
gram can induce RowPress bitflips on a real DDR4-based system
despite the existence of periodic auto-refresh and in-DRAM target
row refresh (TRR) mechanisms employed by the manufacturer.

6.1 Experimental Setup

System Configuration. We use an Ubuntu 18.04 system (Linux
kernel 5.4.0-131-generic [76]) with an Intel i5-10400 (Comet Lake)
processor [48] and a 16GB dual rank DDR4 DRAM module [129]
from Mfr. S (Samsung). This DRAM module has target row refresh
(TRR) [32, 43], a widely adopted in-DRAM RowHammer mitigation
mechanism employed by DRAM manufacturers.

Memory Address Mapping. We reverse engineer the proces-
sor’s address mapping from physical memory addresses to DRAM
rank, bank, row, and column addresses using DRAMA [112], simi-
lar to prior works (e.g., [22, 32, 53]). We allocate a 1GB page using
hugepage support [147] to directly manipulate the least significant
30 physical address bits that contain all of the DRAM rank and
bank address bits and part of the row address bits. We carefully
generate pointers to aggressor and victim rows within the 1GB
page to precisely place them in physically adjacent DRAM rows.%0

6.2 RowPress on Real Systems

Challenges. We face two challenges in inducing RowPress bitflips
in a real system. First, TRR can detect aggressor rows in a RowPress

20 Although we leverage a 1GB hugepage for this real-system demonstration of Row-
Press, hugepages are not necessary for allocating physically adjacent DRAM rows and
inducing bitflips, as prior works [72, 74, 81, 174] on system-level RowHammer attacks
experimentally demonstrate. One can extend our real-system demonstration program
to avoid using hugepages.

11

access pattern and prevent us from inducing bitflips by refreshing
the victim rows. However, TRR mechanisms typically keep track of
only a few aggressor rows [32, 43] and these mechanisms can be
bypassed by certain access patterns that access many other dummy
aggressor rows (called dummy rows [32, 43]) besides the real ag-
gressor rows. Such access patterns aim to trick a TRR mechanism
into detecting only the dummy rows and allow the real aggressor
rows to remain undetected.

Second, the memory controller needs to keep the aggressor row

on for a long duration (i.e., large taggon) such that we can perform
RowPress. Ensuring that a DRAM row remains open for a large
taggoN Vvalue is not straightforward because we do not have fine-
grained control over the timing parameters used and the command
sequences scheduled by the memory controller in a real system (in
contrast to our real chip characterization setup in §3.1). However,
carefully-designed access patterns can make the memory controller
keep the DRAM row open for a long duration. For example, if a
DRAM row is open, the memory controller can serve memory re-
quests that target different cache blocks in the row at high data
transfer rates [56]. Therefore, if an access pattern issues memory
requests to different cache blocks in the same DRAM row, we hy-
pothesize that the memory controller will keep the DRAM row
open to serve subsequent memory requests in the access pattern
(we verify this hypothesis in §6.3).
Test Program. Algorithm 1 shows the key part of our test pro-
gram. We mark the input parameters of the program in red. To
overcome the first challenge, the program is based on an access
pattern described in [43], which can induce RowHammer bitflips
in the presence of TRR. This access pattern uses 16 dummy rows
that are activated shortly after the aggressor rows?! to prevent
the in-DRAM TRR mechanism from detecting the aggressor row
activations [22, 32, 43, 53]. To overcome the second challenge and
use large taggoN values, we access multiple (i.e., NUM_READS) cache
blocks in each aggressor row. In every iteration, the access pattern 1)
activates the two aggressor rows adjacent to a victim row multiple
(i-e., NUM_AGGR_ACTS in line 7) times (i.e., performs double-sided
RowPress with varying tagzon), and 2) activates each of the 16
dummy rows four times (line 17) [43].

find two neighboring aggressor rows based on physical address mapping
AGGRESSOR1, AGGRESSOR? = find_aggressor_rows(VICTIM);
initialize the aggressor and the victim rows
initialize(VICTIM, 0x55555555);
initialize(AGGRESSOR1, AGGRESSOR2, 0xAAAAAAAA);
Synchronize with refresh
for (iter = 0 ; iter < NUM_ITER ; iter++):
for (i=0;i<NUM_AGGR_ACTS ; i++):

access multiple cache blocks in each aggressor row

R N N

10 to keep the aggressor row open longer

11 for (j = 0; j < NUM_READS ; j++): AAGGRESSOR1[j];
12 for (j=0;j < NUM_READS ; j++): AAGGRESSOR2[j];
13 flush the cache blocks of each agg
14 for (j =0;j < NUM_READS ; j++):

15 clflushopt (AGGRESSOR1([j]);

16 clflushopt (AGGRESSORZ2[j]);

17 mfence ();

18 activate_dummy_rows();

19 record_bitflips[VICTIM] = check_bitflips(VICTIM);

SSOI TOW

Algorithm 1: RowPress test program.

The test program first initializes the victim and the aggressor
rows using the same checkerboard data pattern we evaluated in our

' Dummy rows are placed at least 100 rows away from the victim row [43] to ensure
that activating them does not cause bitflips on the victim row.

DRAM chip characterization studies (lines 4-5). We use this data
pattern as it is reported [67] to have the highest average read distur-
bance error coverage across DDR4 chips from three manufacturers.
Second, the test program executes one or multiple (depending on
the NUM_READS parameter) memory load instructions targeting dif-
ferent cache blocks of each aggressor row (lines 10, 11). Executing
multiple memory load instructions to different cache blocks keeps
an aggressor row open for a long time, whereas switching between
different aggressor rows opens and closes the two aggressor rows
as they are in the same bank (§2). Third, the program executes
one or multiple c1flushopt instructions to flush the cache blocks
of each aggressor row to DRAM (lines 13-15). Doing so ensures
that subsequent memory accesses (i.e., using load instructions) to
the aggressor rows will access DRAM instead of processor caches.
Fourth, the program executes an mfence instruction (line 16) to
ensure that the data is fully flushed before any subsequent memory
load instruction is executed [68]. Fifth, the program accesses the 16
dummy rows, four times each, to bypass TRR (line 17). For every
victim row, we execute this access pattern for 800K iterations (i.e.,
NUM_ITER=800K in line 6) to gather statistically significant results
and record the bitflips in the victim row (line 18).

Methodology. We run our program using NUM_AGGR_ACTS
={1,2,3,4},and NUM_READS={1,2,4,16,32,48,64,80,128}%% on
1500 arbitrarily selected victim rows. To reduce experiment time, we
do not test NUM_READS>48(80@) for NUM_AGGR_ACTS=4(3) because
the access pattern would not fit in a trgpr window. We synchronize
our access pattern with the refresh commands, similarly to prior
works [22, 53], to increase the chance of bypassing TRR.

Results. Fig. 23 shows the total number of bitflips (left) and the
number of rows with bitflips (right) for different number of cache
blocks read per aggressor row activation (NUM_READS; x-axis) when
we activate each aggressor row four (top plots), three (middle plots),
and two (bottom plots) times per iteration. We do not plot NUM_-
AGGR_ACTS=1 because we do not observe any bitflips for all NUM_-
READS we test. The leftmost bar in each graph shows the number
of conventional RowHammer-induced bitflips, where we read only a
single cache block per aggressor row activation, as done in prior
works that induce RowHammer bitflips (e.g., via proof-of-concept
programs [68] and RowHammer attacks [1, 10, 12-20, 22, 28, 30—
32, 38-40, 43, 45, 52, 53, 58, 72, 74, 81, 84, 94, 95, 102, 112-114, 117,
118, 124, 131, 132, 145, 146, 148, 149, 153, 154, 156, 160, 170, 173~
176]), such that the aggressor row is kept open for a short time.
Remaining bars in each graph show results for RowPress-induced
bitflips (with an increasing number of cache block reads from left
to right, such that the aggressor row is kept open for an increasing
amount of time).

Obsv. 19. Our test program leveraging RowPress induces bitflips
when RowHammer cannot.

Obsv. 20. Our test program leveraging RowPress induces many
more bitflips compared to RowHammer, at the same aggressor
row activation count.
Our test program leveraging RowPress induces a significant
number of bitflips in many DRAM rows while RowHammer cannot
induce any bitflip when NUM_AGGR_ACTS={2, 3} (i.e., the program

22 A DRAM row in the module we test has 128 cache blocks.

12

Total Number of Bitflips Number of Rows with Bitflips

< 300 PEg 250

J" 2501 % RowPress 2001 & RowPress 191

G 2001 £ E

< E 1501 &

€1501 £ z

2100 3 10073

s sol ° 32 504 31

H 8 | 10 13 18 8 | 10 13 18

z 0 et 0
1 2 4 8 16 32 48 1 2 4 8 16 32 48

m 500 75T 350

" = RowPress 3001 = RowPress 285

0 4001 @]

5 £ 2501 €

$3007 8 2001 5
I I

2001 % 1501 %

< 4 1001 =

g 100 50 21

2 ,lolo 1 2 22 1 1 0 ololo 1 2 2 1 1 0
1 2 4 8 16 32 48 64 80 1 2 4 8 16 32 48 64 80

~ 100 = 100

. 8045 RowPress 8045 RowPress 79

5 E > 60 £ > 59

< 601 E 601 E

g I I

8 4013 4013

< & &

3

s 20 11 20 11

2 ,loJo o000 0 0 0/o 0o 0 0 0 0
1 2 4 8 16 32 48 64 80 128 1 2 4 8 16 32 48 64 80 128

Number of Cache Block Reads
Per Aggressor Row Activation (NUM_READS)

Number of Cache Block Reads
Per Aggressor Row Activation (NUM_READS)

Figure 23: Number of RowHammer vs. RowPress bitflips (left)
and number of rows with bitflips (right) we observe after
running our test program with four (top), three (middle), and
two (bottom) activations per aggressor row per iteration.

activates each aggressor row two/three times per iteration). The
program induces up to 83 bitflips in 79 rows when NUM_AGGR_-
ACTS=2 and NUM_READS=64 (i.e., the program reads 64 cache blocks
per aggressor row activation), and up to 436 bitflips in 285 rows
when NUM_AGGR_ACTS=3 and NUM_READS=32.

When NUM_AGGR_ACTS=4, our test program leveraging RowPress
induces significantly more bitflips compared to RowHammer. For
example, the program induces up to 258 bitflips in 191 rows when
NUM_READS=16. In comparison, RowHammer induces only 8 bitflips
in 8 rows with the same aggressor row activation count.

Takeaway 6. Leveraging RowPress, a user-level program 1)
induces bitflips when RowHammer cannot, and 2) induces many
more bitflips compared to RowHammer, at the same aggressor
row activation count.

Obsv. 21. In a real system, our test program does not always
induce more bitflips as the number of cache blocks read per
aggressor row activation increases.

We observe that the number of bitflips and DRAM rows with
bitflips first increases significantly as we increase NUM_READS, but
then decreases significantly after NUM_READS reaches a certain point.
For example, when NUM_AGGR_ACTS=4, the number of bitflips (rows
with bitflips) keeps increasing from 8 (8) to 258 (191) as NUM_READS
increases from 1 to 16, but then decreases to 18 (18) when NUM_-
READS is 32, and only 2 (2) when NUM_READS is 48.

We attribute the increase in the number of bitflips and rows with
bitflips when NUM_READS increases to two reasons. First, the increase
in NUM_READS causes the memory controller keep the DRAM row
open for a longer period of time, which leads to an increase in
taggoN- Second, the increase of NUM_READS reduces the activation
frequency of the real aggressor rows compared to the dummy rows,
which reduces the probability of real aggressor rows being detected
by the TRR mechanism. We hypothesize that the reasons for the
decrease in the number of bitflips and rows with bitflips after NUM_-
READS increases beyond a certain value are that 1) the access pattern

becomes too long, making it difficult to synchronize with the refresh
commands, and 2) the activation frequency of the aggressor rows
becomes too low to induce a large number of bitflips.

We conclude that, with a user-level program on a real DDR4-
based Intel system with TRR protection, 1) RowPress induces bitflips
when RowHammer cannot, 2) RowPress induces many more bitflips
than RowHammer, and 3) increasing taggon up to a certain value
increases RowPress-induced bitflips and number of rows with such
bitflips. Thus, read-disturb-based attacks on real systems (e.g., [32,
53]) can leverage RowPress to be more effective.

We investigate a variant of our RowPress test program that
induces even more bitflips in more rows in Appendix §G.

6.3 Verifying taggson Increase

We assumed in our real system experiment in the previous section
that accessing different cache blocks in a DRAM row can keep the
row open for a long time. We now briefly describe how we verify
that this is indeed the case. We develop a simple program that 1)
flushes all cache blocks of a tested DRAM row from the processor’s
caches using c1f1lushopt instructions?3, 2) accesses a different row
in the same bank as the tested row to ensure that the memory
controller sends a precharge command to close the open row, and
3) records how many processor cycles it takes to access each cache
block in the tested DRAM row. We run this program 100K times to
collect statistically significant results.

Fig. 24 shows the frequency histogram of latency values (ob-
served using Intel time stamp counter [49]) for 1) accessing the
first cache block (green bars) and 2) accessing the subsequent (i.e.,
the remaining 127) cache blocks (blue bars). We mark the median
latency values for these two types of accesses with dashed red lines.

I- Subsequent Accesses to Remaining Cache Blocks I Access to First Cache Blockl

0.20

30 cycles

2 0.15
g
3 0.10
T

[
& 0.05

0.00

=190 200 210 220 230

Latency (Cycles)

240 250

=260

Figure 24: Histogram of the latency of the first and remaining
cache block accesses to the same DRAM row.

We observe that the median latency values of accessing the
first cache block and the other cache blocks are 30 cycles apart.
Accessing the first cache block takes significantly longer than ac-
cessing other cache blocks. This happens because the first access
requires activation of the DRAM row but the remaining ones do
not. We conclude that, in the system we test, accessing consecutive
cache blocks in an activated row causes the memory controller
to keep the DRAM row open. Thus, existing memory controllers
that behave similarly (e.g., using adaptive row buffer management

ZWe disable all hardware prefetchers of the processor by modifying model-specific
register values [49] before running the verification program. Doing so, together with
the c1flushopt instructions that flushes all cache blocks in the tested DRAM row in
the program, makes sure subsequent accesses to the remaining cache blocks (i.e., after
accessing the first cache block) of the row are served from DRAM.

13

policies [5, 26, 59, 97, 108, 119, 120, 130, 162, 177]) can facilitate
future attacks leveraging RowPress.

7 Mitigating RowPress

We examine four potential ways to mitigate RowPress bitflips: 1) us-
ing error correcting codes (ECC), 2) decoupling the row buffer from
the opened DRAM row, 3) limiting the maximum row-open time,
and 4) adapting existing RowHammer mitigations to account for
RowPress. We believe the fourth way is the most effective among
the four. §7.1, §7.2, and §7.3 explain why the first three approaches
are either ineffective or undesirable mitigations for RowPress. §7.4
describes and evaluates our proposed adaptations of RowHammer
mitigations, using Graphene [109] and PARA [68] as examples.
Appendix §D provides detailed evaluation results with more bench-
marks, analyses, and graphs.

7.1 Error Correcting Codes (ECC)

We examine the capability of ECC, which is widely used in modern
memory systems to correct memory errors, in mitigating RowPress.
We analyze the number of bitflips in every 64-bit word for both
single- and double-sided RowPress for a taggon of 7.8 us. To maxi-
mize the number of bitflips at this tagzoN, We activate the aggressor
row(s) as many times as possible within 60 ms at 80°C. Fig. 25 is a
box-and-whiskers plot that shows the distribution of the number of
erroneous 64-bit words with 1) at most two bitflips (1-2), 2) at least
three and at most eight bitflips (3-8), and 3) more than eight bitflips
(>8) across all tested modules from every manufacturer (x-axis).

Single-Sided

[sitflip counts: = 1-2 mmm 3-8 mmm >8]

é@ ﬁ_

Mfr. S

Double-Sided

[sitflip counts: = 12 mem 3-8 mmm >8]

=

Mfr. S

106
10°
10*
102
102
10!
100

Mfr. H Mfr. H Mfr. M

Number of 64-bit Words

Figure 25: Number of 64-bit words with different bitflip
counts for single-sided (left) and double-sided (right) Row-
Press.

We make two key observations from our analysis. First, there are
up to 25 RowPress bitflips (not shown) in a 64-bit data word. ECC
schemes that are widely used in memory systems (e.g., SECDED [41]
and Chipkill [23, 85, 91]?*) cannot correct or detect all RowPress
bitflips we observe, which can lead to silent data corruption [29,
104, 143]. Even a (7, 4) Hamming code (correcting one bitflip in a
4-bit data word) [41] with 75% DRAM storage overhead (3 parity
bits for every 4 data bits), is not capable of correcting 25 bitflips
in a 64-bit data word. Other ECC schemes that can correct all
RowPress bitflips require prohibitively large storage overheads.
Thus, relying on ECC alone to prevent all RowPress bitflips is a
very expensive solution. Second, for all three manufacturers (Mfrs.

24Chipkill [23, 85, 91] can correct one-symbol errors and detect two-symbol errors.
Because we observe up to 25 bitflips in a 64-bit data word, at least seven (four, two),
symbols (i.e., data from seven, four, two DRAM chips, for x4, x8, and x16 chips, respec-
tively) will be erroneous. Therefore, Chipkill cannot provide guaranteed mitigation
against RowPress.

A, B, and C), a significant fraction (up to 0.99%, 35.77%, and 10.08%
for taggon = 7.8 us, respectively) of 64-bit data words exhibit at
least three RowPress bitflips. This makes RowPress bitflips costly
to prevent using techniques like memory page retirement (where
erroneous DRAM rows are not used in the system) [92, 144] since
such techniques could render up to 35.77% of storage capacity
useless.

Fig. 26 shows the same distribution of the number of erroneous
64-bit words as Fig. 25 for tageon = 70.2 pus. We make similar ob-
servations and conclusions as for Fig. 25.

Single-Sided

[itflip counts: =3 1-2 mmm 3-8 mmm >8]
106 L

== I
104 F I

| - -

102 - -
Mfr. S

Double-Sided

[Bitflip counts: == 1-2 mmm 35 mmm >8]

10! + 3
100 -

Mfr. S Mfr. H Mfr. M

Mfr. M

Number of 64-bit Words

Mfr. H

Figure 26: Number of 64-bit words with different bitflip
counts for single-sided (left) and double-sided (right) Row-
Press when taggoN is 70.2 ps.

7.2 Decoupling the Row Buffer from the Row

Prior works [133, 142] on improving DRAM performance and en-
ergy efficiency propose to decouple the row buffer from the DRAM
row by disconnecting the DRAM row from the row buffer and
de-asserting the wordline once the charge restoration process is
completed after row activation. Doing so can potentially aid with
RowPress mitigation because it limits taggon to the minimum pos-
sible value (tras) regardless of the number of read requests sent
to the DRAM row. However, there are at least three issues with
this solution. First, it requires non-trivial changes in cost-sensitive
DRAM chips. Second, to prevent write requests from increasing
taggON, the row needs to be reconnected to the row buffer (by
re-asserting the wordline) only for the last write request, which fur-
ther complicates DRAM chip design and memory controller request
scheduling [142]. Third, row buffer decoupling does not provide
mitigation against RowHammer. We leave a detailed evaluation of
using row buffer decoupling to mitigate RowPress to future works.

7.3 Limiting the Maximum Row-Open Time

Since RowPress is caused by keeping a DRAM row open for a
long period of time, limiting the maximum row-open time (tmro)
by modifying the memory controller’s row policy (i.e., forcing the
closing of a row after t,;,,, even if there are requests in the memory
controller ready to be served from the opened row) may appear to
be a mitigation for RowPress. However, it is not effective because
closing the row does not mitigate the read disturbance already
caused by the longer activation, unless ;- is set to its minimum
possible value, tras (as we show in Fig. 17, ACpin, decreases as
soon as taggoN is higher than tras). Having such a row policy that
immediately closes an opened row after tpag causes two issues.
First, it may turn a benign workload with high row-buffer locality
to a potential RowHammer attack as the same DRAM row may have

14

to be activated more times. Second, it can cause large slowdown as
it increases the average memory access latency by reducing the row
buffer hit rate (up to 34.1% single-core performance degradation,
as we show in Appendix §D.1). We show in §7.4 that mitigating
RowPress is possible by co-designing a row policy that enforces
tmro together with an enhanced RowHammer mitigation technique.

Some existing row policy proposals adapt ¢, based on row
access patterns (e.g., keep the row open for longer when the row is
predicted to be accessed soon in the future) [5, 26, 59, 108, 120, 130,
162]. Such row policies cannot mitigate RowPress as tyro can be
controlled by an attacker to be set to larger values than trag, as we
show in §6.

7.4 Adapting Existing RowHammer Mitigations

Adaptation Methodology. We propose a simple yet effective
methodology to adapt existing RowHammer mitigation mecha-
nisms to also mitigate RowPress with low additional area overhead.
The key idea is, based on device characterization (§4, §5), to 1) quan-
tify the worst-case (across different temperatures, access patterns,
and data patterns) read disturbance caused by longer row-open
time and translate it into an equivalent reduction in the RowHam-
mer threshold (Trpy), defined as the minimum number of aggressor
row activations needed to cause a RowHammer bitflip, and 2) also
limit the maximum row-open time (¢,,,r0). For example, if the device
characterization shows that for a taggon of Xns, ACmin reduces by
a maximum of Y%, then the adapted RowHammer mitigation mech-
anism will have TIIQH = (1 - Y%) TRy, and the memory controller
must close the opened row after Xns even if there are requests
ready to be served by the row.

Security Analysis. Assuming the original RowHammer mitigation
is secure (i.e., it issues preventive refreshes to the victim rows before
any DRAM row is activated Ty times within the refresh window)
and the DRAM device is properly characterized to uncover the
worst-case RowPress vulnerability, our adapted mitigation mecha-
nism 1) still mitigates RowHammer because the adapted mitigation
is more aggressive than the original mitigation (i.e., TI’?H is strictly
smaller than Trp), and 2) mitigates RowPress because the limited
maximum row-open time ensures that at least Tl/?H activations to
a DRAM row are needed to induce RowPress bitflips, which the
adapted mitigation already properly prevents (i.e., a preventive
refresh is issued before a row is activated TI,?H times).
Configuration and Evaluation. Our adaptation methodology is
applicable to a wide range of RowHammer mitigations. We demon-
strate this by applying it to two major ones: Graphene [109], a
low performance overhead mechanism, and PARA [68], a low area
overhead mechanism. We denote the adapted versions of Graphene
and PARA as Graphene-RowPress (RP) and PARA-RowPress (RP),
respectively. We use the characterization results of the 8Gb B-Die
from Mfr. S to configure Graphene-RP and PARA-RP with a base-
line Try of 1K using the methodology provided in [68, 109], as
shown in Table 3. We perform a sensitivity study of their respec-
tive performance overheads over Graphene and PARA? with these

%5 Measured by the weighted speedup [27, 137] of Graphene-RP (PARA-RP) normalized
to Graphene (PARA).

configurations using Ramulator [71, 123] with a realistic baseline
system configuration®® and show the results in Table 3.

Table 3: Graphene-RP and PARA-RP evaluations.

tmro (11S) 36 (=tras) 66 96 186 336 636

T}’?H 1000 (=Trp) 809 724 619 555 419
Graphene-RP T 333 269 241 206 185 139
Avg. Perf. Overhead 1.3% -0.43% -0.63% -0.49% -0.14% 0.60%
Max. Perf. Overhead 10.2% 6.6% 6.4% 5.0% 50% 4.6%
PARA-RP p 0.034 0.042 0.047 0.054 0.061 0.079
Avg. Perf. Overhead 3.2% 3.6% 4.5% 6.0% 7.9% 12.9%
Max. Perf. Overhead 23.8% 13.4% 13.1% 147% 194% 31.6%

We make two major observations from the results. First, Graphene-
RP and PARA-RP can mitigate RowPress at low additional per-
formance overhead. Compared to Graphene (PARA), Graphene-
RP (PARA-RP) has an average slowdown of only —0.63% (3.2%)
when tpro is 96ns (36ns). When tp,r0 is 636ns (96ns), Graphene-RP
(PARA-RP) causes a maximum slowdown of only 4.6% (13.1%) over
Graphene (PARA). The reason for the small negative slowdowns
(i.e., speedups) is that some t,,,-o values improve fairness between
cores in a way that increases weighted speedups (similar to [96, 97]).
Second, the performance overheads of Graphene-RP and PARA-RP
change differently with different t,,,,-, configurations. For Graphene-
RP, having a tp,r, value that is either smaller or larger than 96ns
increases the performance overhead. This is because row-buffer
locality reduces at a smaller f,,,, and more preventive refreshes
are issued at a larger ty,o. For PARA-RP, any ty,,, value larger
than 36ns increases the performance overhead. The reason is that
PARA’s performance overhead does not scale well with smaller
T}%H [67, 109, 166], and thus the benefit of longer row-open time
is outweighed by the performance overhead of more preventive
refreshes. We conclude that existing RowHammer mitigations can
be relatively easily adapted to mitigate RowPress at low additional
performance overhead. We expect future work to introduce new
mitigation mechanisms, as it has been happening analogously for
RowHammer.

We provide more evaluations and analyses of our proposed miti-
gation mechanisms in Appendix §D.2.

8 Related Work

To our knowledge, this is the first work to experimentally demon-
strate and characterize RowPress, a widespread read-disturb phenom-
enon in real DRAM chips. Our analysis of RowPress (especially in
§4.3, §5.1 and §5.2) shows that RowPress is different from RowHam-
mer. This section highlights the most relevant works.

RowHammer with Increased taggon- A recent experimental
characterization of real DRAM chips [103] and prior device-level
studies [106, 169] provide preliminary results on how increasing
taggoN by small amounts affects RowHammer bitflips. These works
treat this phenomenon the same as RowHammer and do not identify
a DRAM read-disturb phenomenon different from RowHammer
because they do not: 1) test a wide range of taggoN values (only up

264 GHz out-of-order core, dual-rank DDR4 DRAM [56], FR-FCFS [119, 177] scheduling,
open-row policy. 58 four-core multiprogrammed workloads from SPEC CPU2017 [140],
TPC-H [150], and YCSB [21]. We find similar performance results for single-core
workloads, as shown in our extended version [86].

15

to 154.5ns1in [103], 50 ns in [169], and 72.5 ns in in [106], as opposed
to up to 30 ms in our work), 2) study sensitivity of increased tageoN
to temperature and access pattern, and 3) study the properties of
the bitflips they induce. As such, these works attribute the bitflips
to RowHammer. In contrast, our work clearly shows that RowPress
bitflips have almost no overlap with RowHammer bitflips and thus
RowPress is a different phenomenon from RowHammer.

RAS Clobber. Two patents from Micron [50, 158] very briefly
mention a “RAS Clobber” effect similar to RowPress. They only
describe RAS Clobber as “the selected word line is driven to the
active level continuously for a considerably long period” [50], and
“stress applied to adjacent word lines by a word line being on for an
extended duration” [158]. These patents do not provide any eval-
uation, analysis or demonstration of this effect, and they do not
clearly distinguish this effect from RowHammer. We show through
detailed real DRAM chip characterization that RowPress is different
from RowHammer (§4, §5), and demonstrate that RowPress can be
leveraged to induce bitflips in a real system (§6). [50] describes a
sampling-based read disturbance mitigation mechanism which they
claim can handle both RowHammer and RAS Clobber. We introduce
a general methodology that adapts existing RowHammer mitiga-
tion mechanisms to also mitigate RowPress (§7.4). [158] proposes to
lower the wordline voltage after row activation and charge restora-
tion to mitigate RAS Clobber. However, it does not demonstrate
that reduced wordline voltage eliminates the read disturbance effect
of increased taggoN- Neither patent [50, 158] evaluates or analyzes
its proposed mitigation mechanisms at the system-level.
One-Location RowHammer. A prior work [38] proposes a single-
sided RowHammer technique called “One-Location Hammering”
that “continuously re-opens the same DRAM row.” However, it
is unclear whether the bitflips this work observes are caused by
increased taggoN or conventional single-sided RowHammer. The
access pattern in this work does not consider on-die RowHammer
mitigations (e.g., TRR [32, 43]), unlike our real-system demonstra-
tion (§6).

Other DRAM Read Disturbance Mitigation Techniques. Many
works (e.g., [3, 4, 6-9, 15, 25, 33, 36, 37, 42, 56, 60, 66, 68, 73, 78,
109, 115, 116, 121, 128, 135, 138, 154, 157, 159, 163, 166—168, 171])
propose techniques to mitigate RowHammer bitflips. None of these
take RowPress into account.?’” We describe a methodology to adapt
such techniques to mitigate both RowHammer and RowPress and
evaluate it on two example prior works [68, 109] (§7.4).

9 Conclusion

We demonstrated and experimentally analyzed a widespread read-
disturb phenomenon called RowPress in modern DRAM chips: keep-
ing a row open for a long time disturbs physically nearby rows
enough to cause bitflips. Our experimental characterization of 164
real DRAM chips reveals that RowPress 1) has a different underly-
ing mechanism from the well-studied RowHammer phenomenon,
2) greatly amplifies DRAM’s vulnerability to read disturbance by
reducing the number of activations to induce a bitflip by one to
two orders of magnitude (and in extreme cases to only a single

2TTwo recent works [87, 88] discuss at a high level how to handle increased vulnerabil-
ity due to small increases in taggoN (as reported by [103]) by modifying their proposed
RowHammer mitigation mechanisms. However, these works do not evaluate their
modified mechanisms.

activation), and 3) becomes worse as DRAM technology node size
reduces. We demonstrate that a user-level program causes Row-
Press bitflips in a real system, even in the presence of in-DRAM
read-disturb mitigation mechanisms, much more so than the bit-
flips RowHammer can induce. We describe a methodology to adapt
existing read-disturb mitigation mechanisms that only consider
RowHammer to also mitigate RowPress, enabling strong protec-
tion against RowPress with low additional performance overhead.
We hope that the findings reported in this work lead to further
examination of and new solutions to the RowPress phenomenon at
multiple levels of the computing stack. To this end, we open source
all our infrastructure, test programs, and raw data at [125].

Acknowledgments

We thank the anonymous reviewers of ISCA 2023 for feedback. We
thank the SAFARI Research Group members for valuable feedback
and the stimulating intellectual environment they provide. We
acknowledge the generous gift funding provided by our industrial
partners (especially Google, Huawei, Intel, Microsoft, VMware),
which has been instrumental in enabling the decade-long research
we have been conducting on read disturbance in DRAM in particular
and memory systems in general. This work was in part supported
by the a Google Security and Privacy Research Award and the
Microsoft Swiss Joint Research Center.

References

[1] M.T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go Bad: Ex-
ploiting Anti-DoS Measures to Accelerate Rowhammer Attacks,” in HOST, 2017.

[2] S. Agarwal, H. Dixit, D. Datta, M. Tran, D. Houssameddine, D. Shum, and
F. Benistant, “Rowhammer for Spin Torque based Memory: Problem or not?” in
INTERMAG, 2018.

[3] B. Aichinger, “DDR Memory Errors Caused by Row Hammer,” in HPEC, 2015.

[4] Apple Inc., “About the Security Content of Mac EFI Security Update 2015-001,
https://support.apple.com/en-us/HT204934, 2015.

[5] M. Awasthi, D. W. Nellans, R. Balasubramonian, and A. Davis, “Prediction Based
DRAM Row-Buffer Management in the Many-Core Era,” in PACT, 2011.

[6] Z.B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin,
“ANVIL: Software-Based Protection Against Next-Generation Rowhammer At-
tacks,” in ASPLOS, 2016.

[7] K. Bains and J. Halbert, “Row Hammer Monitoring Based on Stored Row Ham-
mer Threshold Value,” U.S. Patent 9384821, 2016.

[8] K. Bains, J. Halbert, C. Mozak, T. Schoenborn, and Z. Greenfield, “Row Hammer
Refresh Command,” U.S. Patent 9117544, 2015.

[9] K.S.Bains and J. B. Halbert, “Distributed Row Hammer Tracking,” U.S. Patent

9299400, 2016.

A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-Only Reverse

Engineering of Physical DRAM Mappings for Rowhammer Attacks,” in IVSW,

2018.

R. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Tech-

nologies,” IEEE TDMR, 2005.

S. Bhattacharya and D. Mukhopadhyay, “Curious Case of Rowhammer: Flipping

Secret Exponent Bits Using Timing Analysis,” in CHES, 2016.

Bhattacharya, Sarani and Mukhopadhyay, Debdeep, “Advanced Fault Attacks

in Software: Exploiting the Rowhammer Bug,” Fault Tolerant Architectures for

Cryptography and Hardware Security, 2018.

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory

Deduplication as an Advanced Exploitation Vector,” in S&P, 2016.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t Touch

This: Software-Only Mitigation Against Rowhammer Attacks Targeting Kernel

Memory,” in USENIX Security, 2017.

W. Burleson, O. Mutlu, and M. Tiwari, “Invited: Who is the Major Threat to

Tomorrow’s Security? You, the Hardware Designer,” in DAC, 2016.

S. Carre, M. Desjardins, A. Facon, and S. Guilley, “OpenSSL Bellcore’s Protection

Helps Fault Attack,” in DSD, 2018.

Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren,

and Y. Yarom, “HammerScope: Observing DRAM Power Consumption Using

Rowhammer,” in CCS, 2022.

L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu, “Are We

Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,”

(16]
(17]

(18]

(19]

16

[20]

[21]

[22]

[23]

[24]
[25

[26]
[27]
[28]
[29]

[30]

[31

[32]

[33]
[34]
[35]
[36]

[37

[38

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47
[48

[49

[50

[51
[52

in S&P, 2020.

L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes:
On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P,
2019.

B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
Cloud Serving Systems with YCSB,” in SoCC, 2010.

F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH:
Synchronized Many-Sided Rowhammer Attacks from JavaScript,” in USENIX
Security, 2021.

T.J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC for PC Server
Main Memory,” IBM Microelectronics Division, 1997.

R. H. Dennard, “Field-Effect Transistor Memory,” U.S. Patent 3387286, 1968.

F. Devaux and R. Ayrignac, “Method and Circuit for Protecting a DRAM Memory
Device from the Row Hammer Effect,” U.S. Patent 10885966, 2021.

J. M. Dodd, “Adaptive page management,” U.S. Patent 7076617B2, 2005.

S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled,
D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al, “When Frodo Flips:
End-to-End Key Recovery on FrodoKEM via Rowhammer,” CCS, 2022.

D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell,
“Detection and Correction of Silent Data Corruption for Large-Scale High-
Performance Computing,” in SC, 2012.

A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting Hardware
Vulnerabilities to Attack Embedded System Devices: A Survey of Potent Mi-
croarchitectural Attacks,” Electronics, 2017.

P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,” in S&P, 2018.

P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutluy, C. Giuffrida, H. Bos,
and K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,”
in S&P, 2020.

S. Gautam, S. Manhas, A. Kumar, M. Pakala, and E. Yieh, “‘Row Hammering
Mitigation Using Metal Nanowire in Saddle Fin DRAM,” IEEE TED, 2019.

P.R. Genssler, V. M. van Santen, J. Henkel, and H. Amrouch, “On the Reliability
of FeFET On-Chip Memory,” TC, 2022.

S. Ghose, T. Li, N. Hajinazar, D. S. Cali, and O. Mutlu, “Demystifying Complex
Workload-DRAM Interactions: An Experimental Study,” in SIGMETRICS, 2019.
H. Gomez, A. Amaya, and E. Roa, “DRAM Row-Hammer Attack Reduction
Using Dummy Cells,” in NORCAS, 2016.

Z. Greenfield and T. Levy, “Throttling Support for Row-Hammer Counters,” U.S.
Patent 9251885, 2016.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.
D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in Javascript,” arXiv:1507.06955 [cs.CR], 2016.

Gruss, Daniel and Maurice, Clementine and Mangard, Stefan, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,” arXiv:1507.06955 [cs.CR],
2015.

R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell System
Technical Journal, 1950.

H. Hassan, M. Patel, J. S. Kim, A. G. Yaglik¢i, N. Vijaykumar, N. Mansouri Ghiasi,
S. Ghose, and O. Mutlu, “CROW: A Low-Cost Substrate for Improving DRAM
Performance, Energy Efficiency, and Reliability,” in ISCA, 2019.

H. Hassan, Y. C. Tugrul, J. S. Kim, V. v. d. Veen, K. Razavi, and O. Mutlu, “Un-
covering in-DRAM RowHammer Protection Mechanisms: A New Methodology,
Custom RowHammer Patterns, and Implications,” in MICRO, 2021.

H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee,
O. Ergin, and O. Mutlu, “SoftMC: A Flexible and Practical Open-Source Infras-
tructure for Enabling Experimental DRAM Studies,” in HPCA, 2017.

S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal Brain
Damage: Exposing the Graceless Degradation in Deep Neural Networks Under
Hardware Fault Attacks,” in USENIX Security, 2019.

S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “DSAC: Low-Cost
Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting
Algorithm,” arXiv:2302.03591, 2023.

M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
Intel, “Intel Core i5-10400 Processor,” https://ark.intel.com/content/www/us/
en/ark/products/199271/intel-core-i1510400-processor- 12m- cache-up- to-4-
30-ghz.html.

Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual — Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4,” https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html, 2022.

Y. Ito and Y. He, “Apparatus and Methods for Refreshing Memory,” U.S. Patent
11062754B2, 2019.

K. Itoh, VLSI Memory Chip Design. ~ Springer, 2001.

Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack,” in SOSP, 2017.

https://support.apple.com/en-us/HT204934
https://ark.intel.com/content/www/us/en/ark/products/199271/intel-core-i510400-processor-12m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199271/intel-core-i510400-processor-12m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199271/intel-core-i510400-processor-12m-cache-up-to-4-30-ghz.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

(53]

(73]

(74]
[75]

[76

[77

(78]

(79]

(80]

(81]

(82]

P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith: Scalable
Rowhammering in the Frequency Domain,” in SP, 2022.

JEDEC, JESD79-3: DDR3 SDRAM Standard, 2012.

JEDEC, JESD209-4B: Low Power Double Data Rate 4 (LPDDR4) Standard, 2017.
JEDEC, JESD79-4C: DDR4 SDRAM Standard, 2020.

JEDEC, JESD79-5: DDR5 SDRAM Standard, 2020.

S.Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted
Bit Flips on Rowhammer Attacks,” in ASIACCS, 2019.

0. Kahn and J. Wilcox, “Method for Dynamically Adjusting a Memory Page
Closing Policy,” 2004.

I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive Tree, Time
Window Optimized for DRAM Row-Hammer Prevention,” IEEE Access, 2020.
B. Keeth and R. Baker, DRAM Circuit Design: A Tutorial. Wiley, 2001.

M. N. I Khan and S. Ghosh, “Analysis of Row Hammer Attack on STTRAM,” in
ICCD, 2018.

S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

S. Khan, D. Lee, and O. Mutlu, “PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM,” in DSN, 2016.

S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “De-
tecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current
Memory Content,” in MICRO, 2017.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for Mitigating
Row Hammering in DRAM Memories,” CAL, 2015.

J. S. Kim, M. Patel, A. G. Yaglikei, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu,
“Revisiting RowHammer: An Experimental Analysis of Modern Devices and
Mitigation Techniques,” in ISCA, 2020.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM
Simulator,” CAL, 2016.

A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler,
and D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX
Security, 2022.

R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and
K. Razavi, “ZebRAM: Comprehensive and Compatible Software Protection
Against Rowhammer Attacks,” in OSDI, 2018.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits in
Memory Without Accessing Them,” in S&P, 2020.

L. Lantz, “Soft Errors Induced by Alpha Particles,” in IEEE Transactions on
Reliability, 1996.

Launchpad, “linux 5.4.0-131.147 source package in Ubuntu,” https://launchpad.
net/ubuntu/+source/linux/5.4.0-131.147, 2022.

D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,
V. Seshadri, and O. Mutlu, “Design-Induced Latency Variation in Modern DRAM
Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” in
SIGMETRICS, 2017.

E. Lee, I. Kang, S. Lee, G. Edward Suh, and J. Ho Ahn, “TWiCe: Preventing
Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

H. Li, H.-Y. Chen, Z. Chen, B. Chen, R. Liu, G. Qiu, P. Huang, F. Zhang, Z. Jiang,
B. Gao, L. Liu, X. Liu, S. Yu, H.-S. P. Wong, and J. Kang, “Write Disturb Analyses
on Half-Selected Cells of Cross-Point RRAM Arrays,” in IRPS, 2014.

C. Lim, K. Park, and S. Baeg, “Active Precharge Hammering to Monitor Dis-
placement Damage Using High-Energy Protons in 3x-nm SDRAM,” TNS, 2017.
M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, and L. Lam-
ster, “Nethammer: Inducing Rowhammer Faults Through Network Requests,”
arXiv:1805.04956 [cs.CR], 2018.

J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, J. Liu, B. Jaiyen, Y. Kim,
C. Wilkerson, and O. Mutlu, “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices,” in ISCA, 2013.

J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” in ISCA, 2012.

L. Liu, Y. Guo, Y. Cheng, Y. Zhang, and J. Yang, “Generating Robust DNN with
Resistance to Bit-Flip based Adversarial Weight Attack,” IEEE Transactions on
Computers, 2022.

D. Locklear, “Chipkill Correct Memory Architecture,” Dell Enterprise Systems
Group, Technology Brief, 2000.

H. Luo, A. Olgun, A. G. Yaglikey, Y. C. Tugrul, S. Rhyner, M. B. Cavlak, J. Lindeg-
ger, M. Sadrosadati, and O. Mutlu, “RowPress: Amplifying Read Disturbance in

17

[87]
[88]

[89
[90]

[91]

[92]

[93]
[94]

[95
[96]

[97]
[98]
[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]
[109]

[110

[118]

[119

[120]

Modern DRAM Chips,” arXiv, 2023.

M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “ProTRR: Principled yet Optimal
In-DRAM Target Row Refresh,” in S&P, 2022.

M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “REGA: Scalable Rowham-
mer Mitigation with Refresh-Generating Activations,” in S&P, 2023.

Maxwell, “FT20X,” https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf.
T. May and M. Woods, “Alpha-Particle-Induced Soft Errors in Dynamic Memo-
ries,” in IEEE Transactions on Electron Devices, 1979.

1. C. Memory, “Advanced ECC Memory for the IBM Netfinity 7000 M10,” En-
hancing IBM Nethnity Server Reliability.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting Memory Errors in Large-
Scale Production Data Centers: Analysis and Modeling of New Trends from the
Field,” in DSN, 2015.

T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-Core Systems,” in USENIX Security, 2007.

O. Mutly, “The RowHammer Problem and Other Issues We May Face as Memory
Becomes Denser,” in DATE, 2017.

O. Mutlu and J. S. Kim, “RowHammer: A Retrospective,” TCAD, 2019.

O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” in MICRO, 2007.

——, “Parallelism-Aware Batch Scheduling: Enhancing Both Performance and
Fairness of Shared DRAM Systems,” in ISCA, 2008.

O. Mutlu, A. Olgun, and A. G. Yaglik¢i, “Fundamentally Understanding and
Solving RowHammer,” in ASP-DAC, 2023.

K. Nj, X. Li, J. A. Smith, M. Jerry, and S. Datta, “Write Disturb in Ferroelectric
FETs and Its Implication for 1T-FeFET AND Memory Arrays,” IEEE EDL, 2018.
T. O’Gorman, in The Effect of Cosmic Rays on the Soft Error Rate of a DRAM at
Ground Level, 1994.

A. Olgun, H. Hassan, A. G. Yaglikci, Y. C. Tugrul, L. Orosa, H. Luo, M. Patel,
0. Ergin, and O. Mutlu, “DRAM Bender: An Extensible and Versatile FPGA-based
Infrastructure to Easily Test State-of-the-art DRAM Chips,” arXiv:2211.05838,
2022.

L. Orosa, U. Rithrmair, A. G. Yaglikci, H. Luo, A. Olgun, P. Jattke, M. Patel, J. Kim,
K. Razavi, and O. Mutlu, “SpyHammer: Using RowHammer to Remotely Spy on
Temperature,” arXiv:2210.04084, 2022.

L. Orosa, A. G. Yaglikei, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim,
and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,”
in MICRO, 2021.

G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnerability
stack: Transient fault effects across the layers,” in ISCA, 2021.

K. Park, S. Baeg, S. Wen, and R. Wong, “Active-Precharge Hammering on a
Row-Induced Failure in DDR3 SDRAMs Under 3x nm Technology,” in IIRW,
2014.

K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root Cause Analysis for
Active-Precharge Hammering Fault in DDR3 SDRAM under 3xnm Technology,”
Microelectronics Reliability, 2016.

K. Park, D. Yun, and S. Baeg, “Statistical Distributions of Row-Hammering
Induced Failures in DDR3 Components,” Microelectronics Reliability, 2016.

S.-L. Park and L.-C. Park, “History-Based Memory Mode Prediction For Improv-
ing Memory Performance,” in ISCAS, 2003.

Y. Park, W. Kwon, E. Lee, T.]. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong
yet Lightweight Row Hammer Protection,” in MICRO, 2020.

M. Patel, J. Kim, T. Shahroodi, H. Hassan, and O. Mutlu, “Bit-Exact ECC Recovery
(BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data
Retention Characteristics (Best Paper),” in MICRO, 2020.

M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,”
in ISCA, 2017.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks,” in USENIX Security, 2016.

D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Résler, “Attacking
Deterministic Signature Schemes using Fault Attacks,” in EuroS&P, 2018.

R. Qiao and M. Seaborn, “A New Approach for RowHammer Attacks,” in HOST,
2016.

M. Qureshi, “Rethinking ECC in the Era of Row-Hammer,” DRAMSec, 2021.
M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling Low-
Overhead Mitigation of Row-Hammer at Ultra-Low Thresholds via Hybrid
Tracking,” in ISCA, 2022.

A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced
Model Extractions Leveraging Efficient Weight Stealing in Memories,” in SP,
2022.

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng
Shui: Hammering a Needle in the Software Stack,” in USENIX Security, 2016.
S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

T. G. Rokicki, “Method and computer system for speculatively closing pages in
memory,” U.S. Patent 6389514B1, 2002.

https://launchpad.net/ubuntu/+source/linux/5.4.0-131.147
https://launchpad.net/ubuntu/+source/linux/5.4.0-131.147
https://www.maxwell-fa.com/upload/files/base/8/m/311.pdf

[121]

[122]
[123]
[124]

[125]

=

[128]

[129]

[130]

[131]

[132]

[133

[134]

[135]

[136]

[137]
[138]

[139

[140

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]
[149]

[150

S.-W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T.-S. Jang, M. Yoo, Y. Kim,
and S. Hong, “Overcoming the Reliability Limitation in the Ultimately Scaled
DRAM using Silicon Migration Technique by Hydrogen Annealing,” in IEDM,
2017.

SAFARI Research Group, “DRAM Bender — GitHub Repository,” https://github.
com/CMU-SAFARI/DRAM-Bender.

SAFARI Research Group, “Ramulator — GitHub Repository,” https://github.com/
CMU-SAFARI/ramulator.

SAFARI Research Group, “RowHammer — GitHub Repository,” https://github.
com/CMU-SAFARI/rowhammer.

SAFARI Research Group, “RowPress Artifact — GitHub Repository,” https://
github.com/CMU-SAFARI/RowPress.

——, “SoftMC — GitHub Repository,” https://github.com/CMU-SAFARI/softmc.
SAFARI Research Group, “RowPress Artifact — Zenodo Repository,” https:
//doi.org/10.5281/zenodo.7750890, 2023.

G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized Row-Swap:
Mitigating Row Hammer by Breaking Spatial Correlation Between Aggressor
and Victim Rows,” in ASPLOS, 2022.

Samsung Electronics, “288pin Unbuffered DIMM based on 8Gb C-
die; https://download.semiconductor.samsung.com/resources/data-
sheet/DDR4_8Gb_C_die_Unbuffered_DIMM_Rev1.4_Apr.18.pdf.

B. Sander, P. Madrid, and G. Samus, “Dynamic Idle Counter Threshold Value
for Use in Memory Paging Policy,” 2005.

M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain
Kernel Privileges,” http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html, 2015.

Seaborn, Mark and Dullien, Thomas, “Exploiting the DRAM Rowhammer Bug
to Gain Kernel Privileges,” Black Hat, 2015.

O. Seongil, Y. H. Son, N. S. Kim, and J. H. Ahn, “Row-buffer Decoupling: A Case
for Low-Latency DRAM Microarchitecture,” in ISCA, 2014.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.
S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating Wordline Crosstalk
Using Adaptive Trees of Counters,” in ISCA, 2018.

R. T. Smith, J. D. Chlipala, J. F. M. Bindels, R. G. Nelson, F. H. Fischer, and T. F.
Mantz, “Laser Programmable Redundancy and Yield Improvement in a 64K
DRAM. JSSC, 1981.

A. Snavely and D. M. Tullsen, “Symbiotic Job Scheduling for A Simultaneous
Multithreaded Processor,” in ASPLOS, 2000.

M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against Row
Hammering,” in DAC, 2017.

Standard Performance Evaluation Corp., “SPEC CPU 2006, http://www.spec.
org/cpu2006/.

Standard Performance Evaluation Corp., “SPEC CPU 2017, http://www.spec.
org/cpu2017/.

L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” TPDS,
2016.

L. Subramanian, K. Vaidyanathan, A. Nori, S. Subramoney, T. Karnik, and
H. Wang, “Closed yet Open DRAM: Achieving Low Latency and High Per-
formance in DRAM Memory Systems,” in DAC, 2018.

M. B. Sullivan, N. R. Saxena, M. O’Connor, D. Lee, P. Racunas, S. Hukerikar,
T. Tsai, S. K. S. Hari, and S. W. Keckler, “Characterizing and Mitigating Soft
Errors in GPU DRAM,” IEEE Micro, 2022.

D. Tang, P. Carruthers, Z. Totari, and M. Shapiro, “Assessment of the Effect of
Memory Page Retirement on System RAS Against Hardware Faults,” in DSN,
2006.

A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations
Against Rowhammer: A Surgical Precision Hammer,” in RAID, 2018.

A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi,
“Throwhammer: Rowhammer Attacks Over the Network and Defenses,” in
USENIX ATC, 2018.

The Linux Kernel Archives, “Summary of Hugetlbpage Support,” https://www.
kernel.org/doc/Documentation/vm/hugetlbpage.txt, 2022.

Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Com-
bining Spectre and Rowhammer for New Speculative Attacks,” in SP, 2022.

M. C. Tol, S. Islam, B. Sunar, and Z. Zhang, “Toward Realistic Backdoor Injection
Attacks on DNNs using RowHammer,” arXiv:2110.07683v2 [cs.LG], 2022.
Transaction Processing Performance Council, “TPC-H,” https://www.tpc.org/
tpch.

18

[151]
[152]

[153]

[154]

[155]

[156]

[165]

[166]

[167]

[168]

=
J o
S22

[171]
[172)
[173]

[174]

[175

[176]

[177]

D. Tullsen and J. Brown, “Handling Long-Latency Loads in a Simultaneous
Multithreading Processor,” in MICRO, 2001.

A. van de Goor and L. Schanstra, “Address and Data Scrambling: Causes and
Impact on Memory Tests,” in DELTA, 2002.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms,” in CCS, 2016.

V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel,
H. Bos, and K. Razavi, “GuardION: Practical Mitigation of DMA-Based Rowham-
mer Attacks on ARM,” in DIMVA, 2018.

A.J. Walker, S. Lee, and D. Beery, “On DRAM RowHammer and the Physics on
Insecurity,” IEEE TED, 2021.

Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and B. Sunar,
“JackHammer: Efficient Rowhammer on Heterogeneous FPGA-CPU Platforms,”
arXiv:1912.11523 [cs.CR], 2020.

M. Wi, J. Park, S. Ko, M. J. Kim, N. Sung Kim, E. Lee, and J. H. Ahn, “SHADOW:
Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling,” in
HPCA, 2023.

G. D. Wolff, “Word Line Cache Mode,” U.S. Patent 10366733B1, 2019.

J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and Secure Row-Swap: Efficient
and Safe Row Hammer Mitigation in Memory Systems,” in HPCA, 2023.

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation,” in USENIX Security,
2016.

Xilinx, “Xilinx Alveo U200 FPGA Board,” https://www.xilinx.com/products/
boards-and-kits/alveo/u200.html, 2021.

Y. Xu, A. Agarwal, and B. Davis, “Prediction in Dynamic SDRAM Controller
Policies,” in SAMOS, 2009.

A. G. Yaglikey, J. S. Kim, F. Devaux, and O. Mutlu, “Security Analysis of the
Silver Bullet Technique for RowHammer Prevention,” arXiv:2106.07084 [cs.CR],
2021.

A. G. Yaglikcy, H. Luo, G. F. Oliveira, A. Olgun, M. Patel, J. Park, H. Hassan,
J. S. Kim, L. Orosa, and O. Mutlu, “Understanding RowHammer Under Reduced
Wordline Voltage: An Experimental Study Using Real DRAM Devices,” in DSN,
2022.

A. G. Yaglik¢i, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and
O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of
Off-the-Shelf DRAM Chips,” in MICRO, 2022.

A. G. Yaglikc1, M. Patel, J. S. Kim, R. Azizibarzoki, A. Olgun, L. Orosa, H. Hassan,
J. Park, K. Kanellopoullos, T. Shahroodi, S. Ghose, and O. Mutlu, “BlockHammer:
Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM
Rows,” in HPCA, 2021.

C. Yang, C. K. Wei, Y. J. Chang, T. C. Wu, H. P. Chen, and C. S. Lai, “Suppression
of RowHammer Effect by Doping Profile Modification in Saddle-Fin Array
Devices for Sub-30-nm DRAM Technology,” IEEE Transactions on Device and
Materials Reliability, 2016.

C.-M. Yang, C.-K. Wei, H.-P. Chen, J.-S. Luo, Y. J. Chang, T.-C. Wu, and C.-S. Lai,
“Scanning Spreading Resistance Microscopy for Doping Profile in Saddle-Fin
Devices,” IEEE Transactions on Nanotechnology, 2017.

T. Yang and X.-W. Lin, “Trap-Assisted DRAM Row Hammer Effect,” EDL, 2019.
F. Yao, A. S. Rakin, and D. Fan, “DeepHammer: Depleting the Intelligence of
Deep Neural Networks Through Targeted Chain of Bit Flips,” in USENIX Security,
2020.

J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory
Locality,” in DAC, 2019.

D. Yun, M. Park, C. Lim, and S. Baeg, “Study of TID Effects on One Row Ham-
mering using Gamma in DDR4 SDRAMs,” in IRPS, 2018.

Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai, “Trig-
gering Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES, 2018.
Z.Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PThammer: Cross-
User-Kernel-Boundary Rowhammer through Implicit Accesses,” in MICRO,
2020.

Z. Zhang, W. He, Y. Cheng, W. Wang, Y. Gao, D. Liu, K. Li, S. Nepal, A. Fu,
and Y. Zou, “Implicit Hammer: Cross-Privilege-Boundary Rowhammer through
Implicit Accesses,” IEEE Transactions on Dependable and Secure Computing, 2022.
M. Zheng, Q. Lou, and L. Jiang, “TrojViT: Trojan Insertion in Vision Transform-
ers,” arXiv:2208.13049, 2022.

W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That
Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” U.S. Patent 5630096, 1997.

https://github.com/CMU-SAFARI/DRAM-Bender
https://github.com/CMU-SAFARI/DRAM-Bender
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/RowPress
https://github.com/CMU-SAFARI/RowPress
https://github.com/CMU-SAFARI/softmc
https://doi.org/10.5281/zenodo.7750890
https://doi.org/10.5281/zenodo.7750890
https://download.semiconductor.samsung.com/resources/data-sheet/DDR4_8Gb_C_die_Unbuffered_DIMM_Rev1.4_Apr.18.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/DDR4_8Gb_C_die_Unbuffered_DIMM_Rev1.4_Apr.18.pdf
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2017/
http://www.spec.org/cpu2017/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.tpc.org/tpch
https://www.tpc.org/tpch
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

A Artifact Description Appendix
A.1 Abstract

Our artifact [125, 127] contains the data, source code, and scripts
needed to reproduce our results, including all figures in the pa-
per. We provide: 1) original characterization data from our real-
chip characterization (§4, §5) and source code of the DRAM Ben-
der [101, 122] program used to perform the characterization, 2) the
source code of our real-system demonstration (§6), and 3) the source
code of the Ramulator [71, 123] implementation of our proposed
RowPress mitigation (§7.4). We provide Python scripts and Jupyter
Notebooks to analyze and plot the results for all three parts (referred
to as Characterization, Demonstration, and Mitigation, respectively).

A.2 Artifact Check-list (Meta-information)

Parameter Value
C++ program

Program Python3 scripts/Jupyter Notebooks
Shell scripts

Compilation C++17 compiler (tested with GCC 9)

Ubuntu 20.04 (or similar) Linux

Ubuntu 18.04 (with Linux kernel 5.4.0-131-generic [76]), used for
reproducing Demonstration results

Python 3.9+

DRAM Bender [101]

Boost 1.71+

Xilinx Vivado 2020.2+

Slurm 20+

x86 machine w/ PCle 3.0 x16 slot

FPGA development board supported by DRAM Bender

Run-time environment

Hardware (e.g., Xilinx Alveo U200)
Temperature control setup for DRAM modules under test
(e.g., Maxwell FT200)
Output Data and execution logs in plain text and plots in pdf and png format

Perform characterizations (simulations), aggregate results, and

run analysis scripts on the results

Possible. See §A.7.1 for details

~ 1TB

~ 1 day

~ 3 hours (Reproduce characterization figures with provided raw data)
3 to 4 weeks per DRAM module (Replicate characterization results)
~ 5 days (Demonstration)

~ 1 day (Mitigation)

Zenodo (https://doi.org/10.5281/zenodo.7750890)

Github (https://github.com/CMU-SAFARI/RowPress)

MIT

Experiment workflow

Experiment Customization
Disk space requirement

Workflow preparation time

Experiment completion time

Publicly available?

Code licenses

A.3 Description
A.3.1 How to Access

The artifact is available on Zenodo with DOI https://doi.org/10.5281/
zenodo.7750890. The live repository is at https://github.com/CMU-
SAFARI/RowPress.

A.3.2 Hardware Dependencies

Characterization. To reproduce our real-DRAM characterization
results (figures) using the provided raw data from our experiments,
a Linux workstation with 1TB free disk space is required (the data
size is about 800GB before compression). To replicate our results,
the reader needs a similar setup as shown in Fig. 4:

e A host x86 machine with a PCIe 3.0 x16 slot.

e An FPGA board with a DIMM/SODIMM slot supported by
DRAM Bender [101, 122] (e.g., Xilinx Alveo U200 [161]).

e Heater pads attached to the DRAM module under test.

19

e A temperature controller (e.g., MaxWell FT200 [89]) con-
nected to the heater pads and programmable by the host
machine.

Demonstration. To reproduce our real-system demonstration of
RowPress, the reader needs a system with an Intel Core i5 10400

(Comet Lake-S) [48] processor and a Samsung M378A2K43CB1-CTD

DDR4 DRAM module with the 8Gb C-Dies from Mfr. S (K4A8G085WC-
BCTD) [129]. We describe how to adapt our demonstration program

to replicate our results on systems with a different processor and

DRAM module in §A.7.2.

Mitigation. The Ramulator [71, 123] implementation of our pro-
posed RowPress mitigation can be run on a Linux workstation. We

recommend using a machine or a compute cluster with many CPU

cores and large main memory to parallelize the simulation tasks.

A.3.3 Software Dependencies
e GNU Make, CMake 3.710+
e C++17 build toolchain (tested with GCC 9)
e boost 1.71+
e Xilinx Vivado 2020.2+
o pigz for fast decompression of raw characterization data
e Python 3.9+ with Jupyter Notebook
e pip packages: pandas, scipy, matplotlib, and seaborn
e Slurm 20+
e Ubuntu 18.04 (Linux kernel 5.4.0-131-generic [76]) for re-

producing Demonstration

A.4 Installation

To reproduce our results, no system-level installation is needed for
Characterization and Mitigation. For Demonstration, 1GB hugepage
support is required to simplify the process of finding neighboring
DRAM rows in a real system.

To replicate our real-DRAM characterization, please follow the
instructions in DRAM Bender’s Github repository [122] to install
all dependencies to run DRAM Bender programs.

A.5 Experiment Workflow

A.5.1 Characterization (Reproducing Figures)

We describe how to reproduce all figures related to our real- DRAM
characterization using the raw data from the artifact. For readers
who wish to replicate our characterization results using their own
infrastructure and DRAM modules, please see §A.7.1 for details.

(1) Extract raw characterization data (= 800GB):

$ tar -I pigz -pxvf rowpress_characterization_data.tar.gz
(2) Process the raw data into pandas dataframes:

$ cd characterization/analysis/scripts

$ DATA_ROOT=<path-to-data>

$./process_data_slurm.sh ${DATA_ROOT}

The processed characterization data will be placed at character-
ization/analysis/processed_data/. To reproduce all figures
related to Characterization, open characterization/analysis/-
plots/paper_plots. ipynb and run all code blocks. We use Mark-
down blocks in the notebook to clearly mark and explain all figures.
The generated figures can be viewed both in the notebook and in
characterization/analysis/plots/output/.

https://doi.org/10.5281/zenodo.7750890
https://doi.org/10.5281/zenodo.7750890
https://doi.org/10.5281/zenodo.7750890
https://github.com/CMU-SAFARI/RowPress
https://github.com/CMU-SAFARI/RowPress

A.5.2 Demonstration

(1) Build the demonstration program:

$ cd demonstration/

$ make

Run the program with root privilege (required only for
accessing the hugepage) and analyze the bitflip results:

@)

$ sudo ./mount_hugepage.sh # Should print 1 if successful
$ sudo demo --num_victims 1500 > bitflips.txt
$ python3 analyze.py bitflips.txt > parsed_results.txt
Openreal_system_bitflips.ipynbandrunall code blocks
to analyze the results and reproduce Fig. 23.

(3) Verify that taggon increases (§6.3):
$ sudo ./disable_prefetching.sh
$ sudo demo --verify
Open real_system_access. ipynb and run all code blocks
to reproduce Fig. 24.

A.5.3 Mitigation

Our artifact contains: 1) a modified version of Ramulator where
we implement our proposed RowPress mitigation, 2) traces used to
form workloads, and 3) scripts that automatically generate simula-
tion configurations. The following instructions assume the reader
is using Slurm to schedule a large number of parallelizable sim-
ulation jobs. Alternatively, readers can find the command lines
for individual simulation jobs in the form of mitigation/run_-
cmds/<config>-<workload>. sh after executing step 2 to be used
for their own job scheduler.

(1) Build ramulator:
$ cd mitigation/ramulator/
$./build.sh
(2) Generate simulation configurations and submit jobs:
$ python3 gen_jobs.py
$./run.sh

Executing the above generates Ramulator statistics files from the
simulations inmitigation/results. The reader can then open the
mitigation/analyze.ipynb Jupyter notebook and run all code
blocks to reproduce our results in Table 3.

A.6 Evaluation and Expected Results

Running each of the experiments described in §A.5 is sufficient to
reproduce all of 1) our real-chip characterization results (Fig. 1, Fig. 6
to Fig. 15, Fig. 17 to Fig. 20, Fig. 22, and Fig. 25), 2) real-system
demonstration of RowPress (Fig. 23 and Fig. 24), and 3) simulation
results of our proposed RowPress mitigation (Table 3).

A.7 Experiment Customization

A.7.1 Characterization

The source code of our RowPress characterization program is at
characterization/DRAM-Bender/sources/apps/RowPress/. A
python script characterization/run.py automates the experi-
ments. Note that this script is tightly coupled to our internal DRAM
testing infrastructure to provide ad-hoc functionalities (e.g., ex-
periment and infrastructure status book-keeping, communicating
with the temperature controller). Readers who wish to replicate

20

our characterization on their own infrastructure can modify char-
acterization/run_bare.py, which includes the infrastructure-

independent experiment parameters, with characterization/run.

as a reference to perform the experiments on their own testing in-
frastructure. Performing all experiments for a single DRAM module
takes about three to four weeks.

Our RowPress characterization program is highly configurable
to test different DRAM modules, data and access patterns, aggressor
row activation counts, taggON/taggOFF Values, etc. Note that it is
the responsibility of the reader’s own DRAM testing infrastructure,
not our characterization program, to control the temperature of
the DRAM chips. We explain some key options in Table 4, and
encourage the reader to refer to the help messages of the program
for all options and their explanations.

Table 4: Key Options of RowPress Characterization Program

Option Explanation
--help Print all available options and their explanations.
0 (Bitflips for given access pattern and activation count)
. 1 (ACmin for given access pattern)
--experiment

Retention failures for given refresh-idle time)

3(
5 (Bitflips for given RowPress-ONOFF pattern and activation count)

Path to a file specifying the data pattern and

--pattern_fil . .
pattern_tiie spatial layout of the aggressor and victim rows.

--hammer_count

--RAS_scale

The number of activations per aggressor row.

The increase in taggon beyond tras (1 unit = 30ns).

--extra_cycles A taza for the RowPress-ONOFF pattern (1 unit = 6ns).

--RAS_ratio Fraction of A taa that contributes to tagson

A.7.2 Demonstration

On the system described in §A.3.2, the reader can change the num-
ber of victim rows to be tested using the demonstration program
with the command line option --num_victims. The number of
cache blocks accessed per aggressor row activation can be config-
ured by modifying the no_reads_arr array in line 635 of main. cpp.

To successfully run the demonstration program on a different
system (i.e., different processor and/or DRAM module) from that
described in §A.3.2, the reader needs to perform the following:

(1) Reverse engineer the DRAM address mapping of the mem-

ory controller of the processor.
Obtain a baseline access pattern (e.g., using U-TRR [43])
that can bypass the existing on-die RowHammer mitigation
mechanism.
Profile the system to obtain a threshold memory access
latency that can be used to decide whether a DRAM refresh
is happening (used to synchronize the access pattern with
DRAM refresh).
We explain these steps and how to modify the demonstration pro-
gram in demonstration/README . md.

@

®)

A.7.3 Mitigation

The provided configurations can be evaluated with user-provided
Ramulator traces. To include more traces in the job generation script,
please modify the list of traces in mitigation/gen_jobs.py.

py

$9p02 23ep Y] HMOQU.— 9M o[npour 9y} JO [9qe[3} UO payIew se AONON TRk JO Yoom

"3[NPOT € JO [aqe] Y} UO PIX;IBW ST dJep OU JT /N, 110daI 9p\ "S[2qe[9} U0 payreur ajep ATUO 9y ST JT 9SNIA(JULIOJ TBIA-YJUOW [} UT /S PUE 9S SI[NPOW JO

_Em

G U} UI PAINJOBJNUEW ST S[NPOW Y[} SUBSWI £6-0Z “9'T) JBWLIO} X X-M A Y} UI d[npowr Wy E JO 9pod a3ep ay 110dar am ‘Sased Jsour uf .,

"PAYTIUAPT 39 10U P[NOD UOTSTASX
31p 3y} SNy} PUE I0pudA d[pow Wyd Y} Aq paaowra axe a8exed sdiyp)Ny a3 uo sSun{rew [eursLio ay) sueaw X, JO UOISIAI dIp v “(S[qe[rea J1) dSexped dryd Wy 243 U0 PadIew UoIsIad1 o1p ayj 110dax ap g,

[snoet| snEoest |sn@ors|swmeneos| @se | @owre | Ce®dos | (snuec | GwDMeo | Ow)die |oW| osTz 91X 409T 4 FELI0-AIOIDIVORLN 142OE-ZHPIOLILVFVIN
Sn(g0) 9T | sw (9%) 8'ST |sn(60) §°€ | Sw (0'6) 9E (29) 682 (919) 92 OI11) MLE (ze1) 019 012 A9°S OIn) Mov | SW b0z ot 4991 4 TEI0-CIOIOIVORLN 106 ZHFOSTALVIVIN
SN (80) 62 | SW (2'L) 1'6Z |sn(LT) 2's | sw (T°LT) €2 (zot) 89% (526) M1'% (101) M¥e (5¥2) 9%L 0122) M0°L Orer) M9e | PN 4 ’
[sn@nsz|swe)ese [sn@Eo)es|swsees| (o)svs | @)xey | Gudes | Qo | owdder | Coodp |sw| -0z vx g9 4 TAZ90-O(FOPVORLIN TH692-Zd2LO8ISYIEVIN (W HIN)
U1
SN (87) ' [s (2'82) 0°SS | SN (8'G) 6'S | SW (8'96) 85 (6L€) 18L 0I5°€) M0°L (Mez) MoTT (129) S8L 0159 M0°L (192) 81T | 2N W
e o e o o ") e e 9z-12 91X QD91 4 €H290-OY9IDTVOPLIN 292DE-ZHPIDTALVIVIN
Sn(QT) 6% | SW (8'12) S'FY | S0 (F7€) §°S | SW (2'6E) 0°SS (652) 689 O12) M9 (1€2) MS0T (€0¥) ¥8L OILE) MT'L OF2) MPIT | TN
&EE Oz digarg oN _&EE Oz_ diprg oN _ dryiig oN _ dgarg oN _ (3108) ML9E _ dryiig ON _ dgarg oN _ (1L8) M98¢ _oz V/IN ¥X 998 4 FHERO-AMPOTVOPLIN 19€DZ-ZdeLOZISYEIVIN
SIOEEILY INFXOPAIND
Sn(g0) ¥ | sWw(I'p) 661 |sn(272) €6 | Sw (812) §'€S (€5) 652 (69%) M€ (112) M91T (652) ¥SL O17'2) M89 (102) M6IT |SH| V/N 8X dOF X V/IN (esi00)
P/8SLTEPTIAN
sn(87) 'S | sw (2'g2) 8°0S | dipug oN | digg oN (50€) 61L 01L2) 959 (168) MELE dryirg oN digarg oN (l€8) Mege | ¥H | 9p-61 8X qOF VvV OHN-YIVYNSOYNVSH (wors3ury)
i (H YW
s (90) €2 | sw(0°9) 9722 [Sn(0T) 'S | sw (8°6) €S (28) 927 (6£L) M6°€ (I191) M9L (S€T) 8°L OIE'T) ML9 OCILD) M8L | €H 61z gx aor 5 NXAUDONSOVNVEH NX-NSULLOOPYYINE XTukH M§
SN(8'0) € | SW(§°4) 022 | S0 (S2) 'S | SW (¥'62) 6'1S (so1) 2z (656) 8¢ OILD) MSL (91€) 9€L (18'2) ML9 O ML | 2H 4
S0 (9°0) 9T | sw (9°6) 6'ST | sn(62) ¥'S | Sw (2'82) €S (9) 662 (Lz9)NLe (3152) 801 (892) 6SL O1F72) M6'9 O1F2) MSIT | TH
o . posye e o . R 1502 8X qO91I v NX-M[VNSOVNVSH NX-N84[VINOrVVINH
sn(€0) 0°T | sw (0°¢) 0°0T | SN (F'1) 9% | sW (€F1) 2'9% (€¥) 061 (08€) MLT (192) Mert (002) 089 OI18'1) M1°9 (112) 611 | 0H
Sn(G'0) ST | sw(8%) vl |sn(B1) ¥ | sw(SET) §'1F (52) 162 (289) 92 (3M22) Moet (991) 159 OIS'T) M6°S (Mee) ozt | LS LNOS-SLID00¥Z-d
) o) /- T g o7 o .) g IZTeN 8X QO d ALO-IMS80DPVEI .
SN(L°0) 8T | SW(L°6) L'LT | SN (LT) 6% | Sw (0°ST) S8 (19) 82¢ (0sv) M0°€ O112) ML1T (L¥1) €0L O 1) M9 (102) X911 | 9 (IMIs0)
sn(9°0) 62 | SW(§S) ppe | sn(0°1) 6°¢ | Sw(2'6) L'8E (L) oLv (e1L) ey (IET) Mgh (86) L09 (2€6) MS'S (IST) 1% SS
sn(£0) L2 | Sw(9°9) 692 SN (0T) 6°€ | SW (9°6) L'8E (18) €67 (TeL) v (IeT) e (2ot) 909 010°T) MS°S CIED)Mer | #S | o1-1z 8x 998 a ALOI-AMS80O8YF ALD-2dASHITVSLEW S W)
SN(L0) ¥ | SW(89) p'e2 S0 (2°T) I'F | SW (¥11) L'0F (62) L¥Y (5€8) M0¥ OIST) Mev (L¥1) L29 OIET) ML'S Clen My | €S Sunsures
S (8°0) 2 S (6°L) 6°€E _m= (€1) 6% _mE (0°€1) Hi_ (201) 06§ _ 010°1) M€'S _ (1€2) M801 _ (6L1) 80L _ 019°1) X9 _ O1¥2) Mott _ S| VIN 8 998 O ALO9-OMS80D8VHM ALO-THOEHMZVSLEW
SN (80) 62 | SW(9°9) 0°62 | S0 (F'1) 6% | SW (I'F1) ¥ 6% (68) 98% (808) M5¥ (IT%) 2782 (£81) 00L OIL'T) €9 (18€) 29z | 1S
poy o) o R g . e €5-00 8X QD8 q ALOF-9MSE80D8VH ALO-THIEPNTVECEW
sn(9°0) 62 | SW (2'9) b2 |Sn(ET) L'F | sw (321) €LY (28) Lzv (9LL) 6°€ (319%) Ms62 (9L1) 289 O19°1) M1°9 (ILP) M6Lz | 0S
o1= - o1= - (LATdI%6) (1474 (svay) (1dEI%6) (14993 (Svay)
A0T=0v v 0r=0v v sngQL= NOS3vy sng'/= NO33v, sugg= NO33v, sngoL= NOS3vy sng'/= NO33v, sugg= NO33v,
0
0008 7 9008 9,08 7 2008 7 «22P°0 frsuaq g, a0u
(um) Sy () Say ™ eq 0a o1 o1 Hed WVIA 1ed WWIA W
(OV 2anejuasaiday @) uu NOS3Yy NO%3v, aanejuasarday @ Uy
Anpqeroump Anpqerdump Anprqeraunp Anpqerdump
ssaIgMOY IR MOy $SaIIMOY IR MOy

‘JUNO0D UOTJBAT}O® MO 10SS3IFTe UIAIS © 0]
dipirq suo 3ses] 3¢ sonpur 03 (NOFV) “341) awury uo mou 40ssa43Fp wnwiunw oy st W NOS3V) pue ‘dIfjirq SUo 15BS] ¥ 2ONPUT 0 PIPIIU SUOIJBATIOR MOI T0ssa1Te
€103 JO JqUINU WNWIUTW 3} ST YU Jey} [[299)] IOUIUECMOY PUE SSIIJMOY JO SUOISIIA PIPIS-I[qNOP pUE PIPIS-o[SUIs WIOLJ 9AIsq0 am (HWNOS3VY)
unLy raqrewrs ay3 3rodarx app .AEEZOMMeJV Uity 30 SULId) UT SITHIqRIIUTNA SSIIJMOY/IWTEIMOY] JI3Y} pue sa[npowr Y P23591 [[& Jo Arewruing :G d[qe],

Sa[NpPO WV P23S3L [[V JO SOIISLId)ORIRY)) JOUIWEMOY PUE SSIIJMOY JO S9[qe], Arewring ¢

21

"3[NPOT € JO [aqe] Y} UO PIX;IBW ST dJep OU JT /N, 110daI 9p\ "S[2qe[9} U0 payreur ajep ATUO 9y ST JT 9SNIA(JULIOJ TBIA-YJUOW [} UT /S PUE 9S SI[NPOW JO
$9p00 91Ep 31} 110ddI I “D[MPOL BY]} JO [2q[DY} UO PIXIBW SE (0Z0Z TeIA JO JPdM |,/ €G DY} UT PAINIIEJNUB ST J[MPOUI A} SUBIUI £G-0Z “9T) JEULIOJ X X-A A AU} UI 9[NPOW WY J(€ JO PO d1EP 9y} 110do1 9M ‘SIS JSOW U] ¢

"PAYTIUAPT 39 10U P[NOD UOTSTASX

31p 3y} SNy} PUE I0pudA dnpow Wy d Y} Aq paaowar axe a8exed sdiyp)Ny a3 uo sSun{rew [eursLio ay) sueaw X, JO UOISIAI dIp v “(S[qe[reae J1) dSexped diyd Wy 243 U0 PadIew UoISIAI J1p Y3 110da1 am

(%£0) %01 _ (%¥°0) %01 _ (%€72) %9'8 7 (%100°0) %10°0 _ (%20°0) %100 _ (%2'€2) %T'L _.ws; 0S-12 91X 4O 9I 4 LH290-9L9IOTVOPLIN 1d2D€-ZHPIOTILVFVIN
(%0'1) 49T (%21) %92 | (%Teh) %h11 (%10°0) %90°0 (%20°0) %90°0 (%8'6£) %98 | SW
- . 99-0z 91X 9D 9T 4 THC90-MI9IDIVOPLIN T42DE-ZHP9OTILVYVIIN
(%90°0) %¥°0 (%100 %50 | (6L€P) BETT | (%500°0) %6000 | (%100°0) %1000 | (%0°TH) %06 [N
(%£0°0) %1°0 7 (%¥0°0) %1°0 7 (%E$'Th) %€°6 7 (%200°0) %£00°0 7 (%600°0) %£00°0 7 (%2°65) %¥'L TE $1-02 X qDOIT q THZ90-D[FOPVOPLIN - TH6D2-Zd2LOSISYISVIIN - (W “TJIN)
UOIIIN
(%200°0) %5000 | (%200°0) %£00°0 | (%821) %91 | (diard ON) %200°0 | (d1prg ON) %2000 | (%021) %€T |2
) . . : i .) . . 9z-12 91X 4O 9T 4 €HC90-DYIIDIVOFLIN 2deOE-ZHPIOTILYIVIN
(%500°0) %€0°0 | (%900°0) %€0°0 | (%2°€1) %LT | (%200°0) %5000 | (%200°0) %S000 | (%021)%ZT |IW
dryird ON _ digarg oN _ (%0°€) %€0 7 diarg oN _ digig oN _ (%92) %€0 _cE VIN ¥ qD8 4 €HEB0-AMPOCVOPLIN T14EDZ-Zd2LOTASYSIVIN
STOEETZYINFXOVAINOD
(%8°1) %8°€ (%9°1) %0°% (%8'6) %L1 (%200°0) %5000 | (%200°0) %5000 (%06) %60 |SH| V/N 8% qOF X V/N (si00)
$/8SLTIPTIAN
(%200°0) %£00°0 | (%200°0) %€00°0 | (%2'1) %20 drgarg oN drag oON (%1T) %20 |PH| 9p-61 8X qOF V OHN-4IVNSOYNVSH (worsSury)
: (H YW
(%1°0) %¥°0 (%1°0) %¥°0 (%091) %02 | (%200°0) %£000 | (%200°0) €000 | (%0°€1) %02 |€H X1ukH M§
-) - . - 9¢-12 8X qDII o) NX-9[ONSOVNVSH NX-NSY[OLNOPYVIWH
(%1°0) %50 (%1°0) %50 (%0°ST) %9°C (%200°0) %200°0 (%200°0) %2000 | (%0%1)%2C |CH
(%€°1) %6'S (%¥'1) %6°€ (%8°01) LT | (%200°0) %9000 | (%200°0) %8000 (%9°6) 21’1 | TH
. : . . - - ; 16-0z 8X 999 A NX-4(VNSOVNVSH NX-N$[VINOYYVINH
(%LS) %¥°6 (%LS) %¥°6 (%L°01) %82 (%10°0) %£0°0 (%10°0) %€0°0 (%€6) 20T | OH
(%£°0) %01 (%£°0) %60 (%2'L) %90 (%10°0) %20°0 (%10°0) %£0°0 (%9'L) %50 | LS LND8-SL1D00¥2-bd
. 12N 8X qD¥ d ALOF-AMS80DFVH .
(%£0) %870 (%£0) %L°0 (%9°'L) %90 (%10°0) %20°0 (%10°0) %20°0 (%6°L) %50 | 9S (Imis™D)
(%L0°0) %£°0 (%L00) €0 | (%0°€€) %08 (%10°0) %900 (%10°0) %900 (%6°€€) 8L | SS
(%70°0) %2°0 (%500) %20 | (%0°0€) %6'S (%20°0) %700 (%420°0) %¥0°0 (%0°0§) %2'S | ¥S | o1-1z 8% qO8§ d dLO9-amssoosvid ALO-2ddsyITVSLEW B
(%1°0) %90 (%2°0) %90 (%52¢) %28 (%10°0) %80°0 (%10°0) %L0°0 (%1¢e) LL | €S
Sunsureg
(%20°0) %1°0 _ (%20°0) %1°0 _ (%0'6) %80 7 (%£00°0) %20°0 _ (%€00°0) %20°0 _ (%5°6) %L°0 _Nm V/N 8X 9O8 o) ALOI-OMS8008VH ALO-TEOEPICVELEN
(%£0°0) %L0°0 | (%£0°0) %L0°0 (%8°€) %270 (%£00°0) %800°0 (%£00°0) %800°0 (%€%) %20 | 1S
. ; : . : . . €6-02 8% qD8 q ALOF-AMS80D8VP ALO-TIEPNIVECEN
(%70°0) %600 | (%70°0) %600 | (%9°€) %10 (%500°0) %6000 | (%500°0) %6000 (%8°€) %10 | 0S
(12AI%6) (199 (svar) (LITUI%6) (13 (svar)
sng'0,=NO33V) | sng-,~-NO33V) | suge-NO33V) | snz-9,-NO3V, sng',=NO%3V) | suge-NO33V,
05
7 2008 7 2 7 1£2P0O Apsuaq a0y
(pap1s-a1qnoq) papis-a[Surs U Seq 00 g e HEdWVEd HEd WWIT YW

Juno) uoneanoy wnuixey pue NO3BY) sanejussardoy @ 21ey 1011y J1g WnWIXey

Ayiqersunp Ayqersumnp Ayqersunp
q T q T q T

ssaIgmoy

Ayrqesdunp

ssaIIMOY IPweHMoy IPweMoy

‘SUIQ9 UIY}IM JUNOD UOTBAT}O® UINUIIXEW 91} Ym sonea NO33Vy oanjejuasardar je ajer 10119 31q
WINWIXEW 37} }10daI 9p\ *9e JOLID JIq WNWIXEUI JO SULId) UT SINI[IGRIdUINA SSIIJMOY/ISWM R MOY I3} pue sa[npowr H Y P21591 [[¢ Jo Areurwng :9 a[qeL

22

C Extended Characterization Results

C.1 Extended Characterization Results of the
RowPress-ONOFF Pattern

We plot the bit error rate (BER) for both single-sided (top row of
plots) and double-sided (bottom row of plots) RowPress-ONOFF
pattern for all die revisions using the same methodology in §5.4
in the following figures (i.e., Fig. 27 to Fig. 37). We sweep Ataza
(different lines in each plot) and the percentage of Atp24 that con-
tributes to taggoN (x-axis) at 50°C (left column) and 80°C (right
column). The error band shows the standard deviation of BER.

| AtA2A (ns): 240 —— 600 —— 1200 —— 2400 — 6000|
°
[}
2
g
Om
2]
£
0
°
g 1072
e
s
5 107
o
[=]
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——> <—— tAggOFF Higher tAggON ——>
Percentage of AtA2A that contributes to tAggON
Figure 27: Mfr. S 4Gb F-Die.
| AtA2A (ns): 240 =~ 600 =—— 1200 = 2400 —— 6000

k] 5

9

e -

L,

o

£

[
°
g Eog
2 10t I
L
QW
S0 104} I
F
o
a 05k T L 1 L i

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——> <—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 28: Mfr. S 8Gb B-Die.

23

1074

BER

1075

1072

BER

1074

Double-Sided Single-Sided

1072

BER

1074

Double-Sided Single-Sided
BER

BER
=
o

L

Double-Sided Single-Sided
BER

| AtA2A (ns): 240 -~ 600 =—— 1200 = 2400 =—— 6000

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<«—— tAggOFF Higher tAggON ——> <«—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 29: Mfr. S 8Gb C-Die.

| AtA2A (ns): 240 -~ 600 =—— 1200 = 2400 =—— 6000

[Eog

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——> <—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 30: Mfr. S 8Gb D-Die.

| AtA2A (ns): 240 -—— 600 -—— 1200 -—— 2400 =-—— 6000

L gog

: ’ i ¢ ? H ! H H H
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——> <—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 31: Mfr. H 4Gb X-Die.

Double-Sided Single-Sided

Double-Sided

Double-Sided Single-Sided

BER

BER

BER

BER

BER

1075

1072

1074

1073

1074

Single-Sided
BER

| AtA2A (ns): 240 - 600 =—— 1200 = 2400 =—— 6000

—

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<«—— tAggOFF Higher tAggON ——> <«—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 32: Mfr. H 16Gb A-Die.

| AtA2A (ns): 240 - 600 =—— 1200 = 2400 =—— 6000

| 5o°q | 9

0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 33: Mfr. H 16Gb C-Die.

[aw2a (ns): 240 — 600 — 1200]
i I i i i I i i i i
I

: : : H H
0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

: : : H H
0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 34: Mfr. M 8Gb B-Die.

BER

Double-Sided Single-Sided
BER

BER

Double-Sided Single-Sided
BER

BER

Double-Sided Single-Sided
BER

1074

107°

1072

1074

1072

1074

1072

1074

1072

1074

1072

1074

| AtA2A (ns): 240 -~ 600 =—— 1200 = 2400 =—— 6000

\

0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 35: Mfr. M 16Gb B-Die.

| AtA2A (ns): 240 -~ 600 =—— 1200 = 2400 =—— 6000

B9 -

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——> <—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 36: Mfr. M 16Gb E-Die.

| AtA2A (ns): 240 -—— 600 -—— 1200 -—— 2400 =-—— 6000

e H
75% 100%
tAggON ——>

? ’ ?
0% 25% 50%
<—— tAggOFF Higher

It 1 - 1 1 1
0% 25% 50% 75% 100%
<—— tAggOFF Higher tAggON ——>

Percentage of AtA2A that contributes to tAggON

Figure 37: Mfr. M 16Gb F-Die.

D Extended Evaluation Results

D.1 Limiting the Maximum Row-Open Time

We evaluate 61 workloads from SPEC CPU2006 [139], SPEC CPU-
2017 [140], TPC-H [150], and YCSB [21] using Ramulator [71, 123]
with a realistic baseline system configuration, as shown in Table 7.
We compare the increase in the number of activations to each
individual DRAM row in a 64 ms (trgrw) time window and the
performance overhead with the minimally-open-row policy to those
of the baseline open-row policy [119].

Table 7: Simulated system configuration.

4 GHz Out-of-Order core,
4-wide issue, 128-entry instruction window.
8 MSHRs per core, 2MiB LLC per core

Processor

64-entry read/write request buffer,

Memory Controller FR-FCFS request scheduling [119, 177], open-row policy [119]

DDR4 [56] 3200MT/s,
1 channel, 2 rank, 4 bankgroups, 4 banks per bankgroup
JEDEC DDR4-3200W Speedbin [56]

DRAM

Fig. 38 shows the maximum increase in the number of activations
to each individual DRAM row within trgpyw. For clarity, we only
plot the workloads with a maximum increase over 50X.

B72

SE%

o 50 300x| 260949

@083 250x 201

g5 200, 5

00> 150x 118 30 114

E? 1ok k 92 101 86

35 SOX |_| 55 74|_|63 64 62 56|—| 67 64 76

% x [

HEH 0
o [< a x 90 9 9 m 5 5 5 55
3353t Egceggyereey
] T 5 = s £ > 883 :zzz 2 2
ntgeosfs B EEIE08388¢
g ISE 28 8ch §EaR Y % g 09 YT Q
8 o~ < 6T o8 o @ < o o o a o a
S o © X O i S m © o R]
gw S oo N o £ 85 25
o 2R

Figure 38: Maximum increase in the number of activations
to each individual DRAM row in trgpw with the minimally-
open-row policy, compared to an open-row policy baseline.

We observe that using a minimally-open-row policy signifi-
cantly increases the number of activations to a single DRAM row
within trgpw for a large group of workloads (i.e., 21 out of 58 work-
loads have at least 50X increase), by up to 372X (from only 1 to
372 activations for 483.xalancbmk). We also observe that, across
all the rows accessed by the workloads, using a minimally-open-
row policy significantly increases the number of activations to
the most activated DRAM row. For example, the most activated
row in 510.parest is only activated 497 times within trgpw for the
open-row policy, but this increases to 3808 times for the minimally-
open-row policy. We find that 436.cactusADM, jp2_decode, 505.mcf,
471.omnetpp, and 483.xalancbmk also have their most-activated
row activation count increased from less than 1000 to over 1000,
which is used by many prior works (e.g., [67, 109, 116, 165, 166])
as a projected RowHammer threshold (Try), defined as the min-
imum number of aggressor row activations needed to cause a
RowHammer bitflip, in the near future. We conclude that using

25

a minimally-open-row policy can potentially turn benign work-
loads into a RowHammer attack [1, 10, 12-20, 22, 28, 30-32, 38—
40, 43, 45, 52, 53, 58, 68, 72, 74, 81, 84, 94, 95, 102, 112-114, 117, 118,
124, 131, 132, 145, 146, 148, 149, 153, 154, 156, 160, 170, 173-176].

Fig. 39 shows the instruction per cycle (IPC) of the workloads
with the minimally-open-row policy, normalized to the open-row
policy baseline. For clarity, we only plot the workloads with a
normalized IPC smaller than 0.95. We do not observe any workload
with a normalized IPC higher than 1.0.

1.0 |-

0.940.94 0.95 0.950.94 0.950.95
oo b 0.919:930.91 0.920.920.92 0.930.91 0.900.90
' 0.84

0.8 [~ 0.77

1

0.7 | 0.66

0.6 | |_|

£
]
c
&
>
T

Normalized IPC

p

433.milc
505.mcf
bfs_dbl
bfs_ny
tpch17
wc_8443

wc_map0

510.parest
grep_map0

2
a

434.zeusmp
437.leslie3d
482.sphinx3
507.cactuBSSN
bfs_cm2003
h264_decode
ycsb_bserver
ycsb_cserver
ycsb_dserver
ycsb_eserver

N
©
<

Figure 39: IPC of workloads when using the minimally-open-
row policy, normalized to the baseline open-row policy.

We observe that using the minimally-open-row policy can signif-
icantly reduce the performance of workloads with high row buffer
locality. For example, the IPC of 462.libquantum reduces by 34.1%,
as its row buffer misses per kilo instructions (RBMPKI) increases by
110% from only 0.91 to 1.90. The performance of 510.parest reduces
by 23.2%, as its RBMPKI increases by 62%. We conclude that using
the minimally-open-row policy can significantly reduce system
performance by reducing the row buffer hit rate.

Some existing row policy proposals adapt ¢, based on row
access patterns (e.g., keep the row open for longer when the row
is predicted to be accessed soon in the future) [5, 26, 59, 108, 120,
130, 162]. Such row policies cannot securely mitigate RowPress as
tmro can be controlled by an attacker to be set to larger values than
tras, as we show in §6. We believe securely mitigating RowPress
requires co-designing existing RowHammer mitigations with a row
policy that enforces ty,ro, as §7.4 describes and evaluates.

D.2 Adapting Existing RowHammer Mitigations

Evaluation Methodology. We perform a sensitivity study of
the performance overheads of Graphene-RP and PARA-RP over
Graphene and PARA with the configurations shown in Table 8
using Ramulator [71, 123] with the same baseline system config-
uration in §7.3 on both single- and four-core multiprogrammed
workloads. We evaluate both 1) homogeneous four-core workloads
where we run four copies of each single-core workload on four
cores, and 2) heterogeneous four-core workloads where we run
different workloads on each core. To create the heterogeneous
four-core workloads, we categorize the memory-intensity of the
single-core workloads using two metrics: last-level cache misses
per kilo instructions, LLC-MPKI, and row buffer misses per kilo
instructions, RBMPKI. We group the single-core workloads into
high-memory-intensity (i.e., LLC-MPKI > 1 and RBMPKI > 1), de-
noted as “H”, and low-memory-intensity, (i.e., LLC-MPKI < 1 and
RBMPKI < 1), denoted as “L”. We evaluate five different groups

1.1
1.0 [y

|

505.mcf

o
3 M - ;
8 H I H
H 0.9
£ 0.8 tmro (nS)
207 — 36
= 3 66
o 061 - - - - =3 9%
1.1 == 186
a1 = 336
e T =
¥ 0.9 o - o . 636
& O
€ 0.8
£ o7
0.6 (] [l il [l |
o ~
- 5 5 g 3
1<)) £ =
R = !
< 0 o
E)

429.mcf
433.milc
450.soplex

473.astar

437.leslie3d !
I)

462.libquantum
482.sphinx3

434.zeusmp
436.cactusADM !
459.GemsFDTD

471.omnetpp
483.xalancbmk
507.cactuBSSN

510.parest

bfs_dblp
bfs_ny
tpchl7
wc_8443
_map0

520.omnetpp
549.fotonik3d
bfs_cm2003
h264_decode
jp2_decode
wc_ma
GeoMean

Figure 40: IPC of Graphene-RP and PARA-RP of single-core workloads (LLC-MPKI > 5) with different t,,,, configurations,

normalized to Graphene and PARA, respectively.

of heterogeneous workloads, denoted as HHHH, HHHL, HHLL,
HLLL, and LLLL. For example, HHHH means all four workloads are
from the “H” category, and HHLL means two workloads are from
“H” and the other two are from “L”. For each group, we evaluate
eight different randomly picked workload mixes for a total of 40
heterogeneous four-core workloads. We use instruction per cycle
(IPC) as the performance metric for single-core workloads, and
weighted speedup [151] for four-core workloads.

Table 8: Graphene-RP and PARA-RP configurations for dif-
ferent t,,,, values.

tmro (1S) 36 (=tras) 66 96 186 336 636
Ty 1000 (=Tgry) 809 724 619 555 419
Graphene-RP T 333 269 241 206 185 139
PARA-RP p 0.034 0.042 0.047 0.054 0.061 0.079

Evaluation Results. Fig. 40 shows the IPC of different Graphene-
RP (top row) and PARA-RP (bottom row) configurations on the
single-core workloads, normalized to Graphene and RP, respectively.
For clarity, we only plot the workloads with more than five last-
level-cache misses per kilo-instruction (LLC-MPKI > 5). We show
the average (geometric mean) normalized IPC across all single-core
workloads. We make the following observations.

First, Graphene-RP can mitigate RowPress with a slightly higher
performance compared to Graphene. For single-core workloads,
Graphene-RP slightly outperforms Graphene for all ;o > 66ns,
by up to 0.46% on average when t;,o = 336ns. The reason for the
small speedups of Graphene-RP over Graphene is that enforcing a
tmro increases the performance of workloads with low row buffer
hit rate. For example, the performance of 429.mcf (baseline RBMPKI
= 68.6) increases significantly (normalized IPC increases from 0.97
to 1.06) as tyro decreases from 636ns to 36ns. On the other hand,
enforcing a f,,ro reduces the performance of workloads with high
row buffer hit rate. For example, the performance of 462.libquantum
(baseline RBMPKI of only 0.91) decreases significantly (as low as
0.66 when tp,;, is 36ns) over Graphene for all of the -, values
we evaluate.

26

Second, PARA-RP can mitigate RowPress at low additional per-
formance overhead for single-core workloads. For example, PARA-
RP performs the best when t,,, = 186ns, with an average slow-
down of only 7.3%. The reason for PARA-RP’s consistent slow-
down across different t,;,-o values over PARA is that PARA does
not track aggressor rows deterministically (like Graphene). As a
result, any extra row activations (i.e., even if the activations are
not concentrated on a small number of rows) caused by the en-
forced ty,ro will increase the number of (false-positive) preventive
refreshes?? issued by PARA. For example, when tp,,, is 636ns, the
number of preventive refreshes issued by PARA-RP (427074) is
17.6X more than Graphene-RP (23006), even though both PARA-RP
and Graphene-RP have similar numbers of extra row activations
(191447 for PARA-RP and 117229 for Graphene-RP) compared to
the open-row baseline.

Fig. 41 shows the geometric means of the normalized weighted
speedups of different Graphene-RP (top row) and PARA-RP (bottom
row) configurations on homogeneous (left column) and heteroge-
neous (right column) four-core workloads. The error bars mark the
lowest and highest normalized weighted speedups observed within
a workload group. We make the following two observations.

Homogenous Heterogeneous
Workloads Workloads
w
22 115
T 110
£8 105
£5 1.00 o tro (S)
s E 095 3 36
© 2 0.90 3 66
=3 9%
n = 186
B ‘ | | ‘ | . 336
&3 10 - 1 f i . 636
N
E% 0.9
£E 08
207
GeoMean HHHH HHHL HHLL HLLL LLLL GeoMean

Figure 41: Geometric means of the normalized Weighted
speedups of Graphene-RP and PARA-RP for homogeneous
and heterogeneous four-core workloads with different t,,,,
configurations.

32 A DRAM row is preventively refreshed to prevent bitflips before its adjacent row is
activated too many times (i.e., Tryy times).

First, both Graphene-RP and PARA-RP have small performance
overhead compared to Graphene and PARA, respectively. For homo-
geneous workloads, Graphene-RP outperforms Graphene by 0.67%
when tyro is 96ns, and PARA-RP performs the best with only 3.8%
slowdown over PARA when t,,0 is 36ns. Across all heterogeneous
workloads, Graphene-RP outperforms Graphene by 2.3% when t,,,0
is 66ns, and PARA-RP can perform PARA by 0.03% when t;0 is
36ns. We notice that when ty,, is 36ns, both Graphene-RP and
PARA-RP significantly improve the performance of certain work-
loads. For example, PARA-RP (Graphene-RP) has a speedup of 31.3%
(28.8%) over PARA (Graphene) for a HHLL workload containing
h264_encode. This is because h264_encode has a very high row
buffer hit rate (87.0%) in the baseline, and thus gets unfairly prior-
itized by the memory controller’s FR-FCFS [119, 177] scheduling
and open-row policy.?3 A low to value thus improves fairness be-
tween cores by allowing other workloads to progress and increases
the weighted speedup.

Second, in contrast to single-core workloads, the performance
overhead of PARA-RP always reduces as t,;, increases beyond
36ns. The reason is that PARA’s performance overhead does not
scale well with reducing TI/QH [67, 109, 166], and thus the perfor-
mance benefits of longer row-open time and incrased row-buffer hit
rate is outweighed by the performance overheads of the increased
preventive refreshes.

We summarize our performance evaluation results of Graphene-
RP and PARA-RP in Table 9. We conclude that existing RowHammer
mitigations can be easily adapted to mitigate RowPress at low addi-
tional performance overhead. We expect future work to introduce
and discuss new mitigation mechanisms in detail, as it has been
happening analogously with RowHammer.

Table 9: Additional performance overhead of Graphene-RP
and PARA-RP over Graphene and PARA for single-core and
multi-core workloads.

tmro (ns) 36(=tras) 66 96 186 336 636

Average Graphene-RP Perf. Overhead Over Graphene

3.7%
1.7%
-1.2%

0.8%
-0.3%
-2.3%

0.5%
-0.7%
-2.0%

-0.4%
-0.5%
-1.7%

-0.5%
-0.2%
-1.0%

-0.05%
0.6%
-0.2%

Single-core
Homogeneous Multi-core
Heterogeneous Multi-core

Average PARA-RP Perf. Overhead Over PARA

10.4%
3.8%
-0.0%

8.0%
4.0%
1.1%

7.9%
4.8%
2.5%

7.3%
6.5%
4.9%

7.4%
8.4%
7.5%

9.9%
14.0%
14.3%

Single-core
Homogeneous Multi-core
Heterogeneous Multi-core

3Such (un)fairness and resulting performance issues are well-studied by prior
works [35, 69, 70, 93, 96, 97, 141].

27

E Repeatability of RowPress Bitflips

We study the repeatability of RowPress bitflips across all five itera-
tions of our experiments. We define repeatability as the number of
occurrences of a bitflip across all five iterations (i.e., ranges from 1
to 5, the higher the number of occurrences, the higher the repeata-
bility). Fig. 42 is a histogram of the distribution of the repeatability
of RowPress bitflips from our experiments described in §4.2. The
y-axis shows the percentage of bitflips with different repeatabil-
ity (from 1 to 5, x-axis). We plot representative taggoN Vvalues in
different rows of plots.

Mfr. S Mfr. H Mfr. M
100
== 4Gb F-Die =3 4Gb A-Die
75 HE=2 8Gb B-Die [4Gb X-Die
= 8Gb C-Die [16Gb A-Die
50 =9 8Gb D-Die [16Gb C-Die [16Gb F-Die

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=36ns (RowHammer)

100
3 B 4Gb F-Die [4Gb A-Die B 8Gb B-Die
<, 75 He== scbeDie =1 4Gb X-Die =1 16Gb B-Die
(8- =33 8Gb C-Die =1 16Gb A-Die = 16Gb E-Die
€ =1 86b 0-Die = 166 C-Die = 16Gb F-Die
=% 50
q:, @
-
go 25 F
]
o
0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=336ns
100
=3 4Gb F-Die =3 4Gb A-Die =3 8Gb B-Die
75 H== scbs-Die =1 4Gb X-Die =1 16Gb B-Die
=3 8Gb C-Die [16Gb A-Die [16Gb E-Die
50 [[=1 86bD-Die [16Gb C-Die [16Gb F-Die

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=1.5us
100
=3 4Gb F-Die =3 4Gb A-Die == 8Gb B-Die

[4Gb X-Die [16Gb B-Die
3 16Gb A-Die 3 16Gb E-Die

[16Gb C-Die [16Gb F-Die I

75 HE=1 8Gb B-Die
== 8Gb C-Die
=3 8Gb D-Die

50

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=7.8us
100
=3 4Gb F-Die =3 4Gb A-Die == 8Gb B-Die
=1 4Gb X-Die =1 16Gb B-Die

75 HE== 8cb B-Die
== 8Gb C-Die
=3 8Gb D-Die

=3 16Gb A-Die
[16Gb C-Die

=3 16Gb E-Die
[16Gb F-Die

50

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=70.2pus
100
3 4Gb F-Die [4Gb A-Die [8Gb B-Die
75 HE=3 8Gb B-Die =1 4Gb X-Die =1 16Gb B-Die

=3 8Gb C-Die
= 8Gb D-Die

[16Gb A-Die
[16Gb C-Die

[16Gb E-Die
= 16Gb F-Die

Percentage (%)
of Bitflips
o
o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 50°C), tAggON=30ms

Figure 42: Repeatability of the single-sided RowPress
(RowHammer) bitflips; 50°C

We observe that the majority of the RowPress bitflips are repeat-
able across all five iterations. For all tpggon values we test and for
almost all die revisions from all three major DRAM manufacturers,
at least 50% of the bitflips occurs in all five iterations. Even when

taggON is 30ms, the lowest percentage of bitflips that occur in all
five iterations is still 61.9% (observed from 16Gb B-Dies from Mfr.
M). We conclude that RowPress bitflips are repeatable, similar to
RowHammer bitflips [68].
Obsv. 22. RowPress bitflips are repeatable, i.e., if they occur
once in a cell, they are likely to occur again and again.

Fig. 43, Fig. 44, and Fig. 45 show the percentage of bitflips (y-axis)
with different repeatability (x-axis) based on the single-sided access
pattern at 80°C, double-sided access pattern at 50°C, and double-
sided access pattern at 80°C, respectively. We plot representative
taggoN values in different rows of the plots. The lowest percentage
of bitflips that occur in all five iterations is 56.8% (observed from
16Gb C-Dies from Mfr. H) for the single-sided pattern at 80°C. For
the double-sided pattern, the lowest percentage of bitflips that occur
in all five iterations is 33.3% at 50°C (observed from 16Gb B-Dies
from Mfr. M) and 47.2% at 80°C (observed from 16Gb E-Dies from
Mfr. M). We conclude that RowPress bitflips are repeatable with
both single-sided and double-sided access patterns and at a higher
temperature of 80°C.

28

Mfr. M
B 8Gb B-Die

[16Gb B-Die
3 16Gb E-Die
[16Gb F-Die

[16Gb C-Die

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 80°C), tAggON=36ns (RowHammer)

[8Gb B-Die
=1 16Gb B-Die
[16Gb E-Die
[16Gb F-Die

[0 4Gb F-Die [0 4Gb A-Die

B 16Gb C-Die

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 80°C), tAggON=336ns

=3 8Gb B-Die
=1 16Gb B-Die
[16Gb E-Die
[16Gb F-Die

=3 4Gb A-Die
=1 4Gb X-Die
[16Gb A-Die
[16Gb C-Die

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 80°C), tAggON=1.5us

== 8Gb B-Die
[16Gb B-Die
3 16Gb E-Die
[16Gb F-Die

100

(=3 4Gb F-Die
3 8Gb B-Die
== 8Gb C-Die
= 8Gb D-Die

= 4Gb A-Die
[4Gb X-Die

3 16Gb A-Die
[16Gb C-Die

75

50

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 80°C), tAggON=7.8us

': 8Gb B-Die

=1 16Gb B-Die
3 16Gb E-Die
[16Gb F-Die

100
== 4Gb F-Die
=1 8Gb B-Die
== 8Gb C-Die
= 8Gb D-Die

=3 4Gb A-Die
[0 4Gb X-Die

3 16Gb A-Die
[16Gb C-Die

75

50
25
0 l"- oo oopn ol
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Bitflip Repeatability (Single-Sided, 80°C), tAggON=70.2us

Percentage (%)
of Bitflips

=
o
S

[8Gb B-Die
=1 16Gb B-Die
[16Gb E-Die
[16Gb F-Die

[4Gb F-Die
=1 8Gb B-Die
== 8Gb C-Die
=3 8Gb D-Die

[4Gb A-Die
=1 4Gb X-Die
[16Gb A-Die
[16Gb C-Die

~
o

N
o

Percentage (%)
of Bitflips
o
o

o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Single-Sided, 80°C), tAggON=30ms

Figure 43: Repeatability of the single-sided RowPress
(RowHammer) bitflips; 80°C

Mfr. S Mfr. H Mfr. M
100
3 4Gb F-Die =3 4Gb A-Die =31 8Gb B-Die
75 HE=1 8Gb B-Die [4Gb X-Die 1 16Gb B-Die
=1 8Gb C-Die =1 16Gb A-Die [16Gb E-Die
[8Gb D-Die [16Gb C-Die [16Gb F-Die

25

Percentage (%)
of Bitflips
w
o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 50°C), tAggON=36ns (RowHammer)

4Gb F-Die
8Gb B-Die
8Gb C-Die
8Gb D-Die

[4Gb A-Die =3 8Gb B-Die
=1 16Gb B-Die
=3 16Gb E-Die

B 16Gb F-Die

B 16Gb C-Die

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 50°C), tAggON=336ns

100
== 4Gb F-Die =1 4Gb A-Die =1 8Gb B-Die

3
g w 75 8Gb B-Die =1 4Gb X-Die =1 16Gb B-Die
(=3 8Gb C-Die [16Gb A-Die [16Gb E-Die
2 8Gb D-Die [16Gb C-Die = 16Gb F-Die
=X 50
c@
% 25
o
a

0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Bitflip Repeatability (Double-Sided, 50°C), tAggON=1.5us

': 4Gb A-Die ': 8Gb B-Die

[4Gb X-Die [16Gb B-Die

= 16Gb A-Die 3 16Gb E-Die

[16Gb C-Die 3 16Gb F-Die
5

1 2 3 4 5 1 2 3 4 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 50°C), tAggON=7.8us

100
=1 4Gb F-Die

75 8Gb B-Die
8Gb C-Die
8Gb D-Die

50

25

Percentage (%)
of Bitflips

9 4Gb F-Die == 4Gb A-Die =3 8Gb B-Die
<, 8Gb B-Die =1 4Gb X-Die =1 16Gb B-Die
0o 8Gb C-Die 16Gb A-Die == 16Gb E-Die
25 8Gb D-Die [16Gb C-Die [16Gb F-Die
tm

-
£o I
I}
e lepm) o ol |

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Bitflip Repeatability (Double-Sided, 50°C), tAggON=70.2us

9 4Gb F-Die [4Gb A-Die =3 8Gb B-Die
<, 8Gb B-Die 4Gb X-Die =1 16Gb B-Die
2 8Gb C-Die 16Gb A-Die =3 16Gb E-Die
S E 8Gb D-Die [16Gb C-Die [16Gb F-Die
]
c@

w-
go
o
a

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Bitflip Repeatability (Double-Sided, 50°C), tAggON=15ms

Figure 44: Repeatability of the double-sided RowPress
(RowHammer) bitflips; 50°C

29

Mfr. S Mfr. H Mfr. M

100
(== 4Gb F-Die == 8Gb B-Die
75 HE=3 8cb B-Die =1 16Gb B-Die
== 8Gb C-Die 3 16Gb E-Die
= 8Gb D-Die [16Gb C-Die [16Gb F-Die

25

Percentage (%)
of Bitflips
”
o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=36ns (RowHammer)

100

[8Gb B-Die
=1 16Gb B-Die
[16Gb E-Die
[16Gb F-Die

4Gb F-Die
8Gb B-Die
8Gb C-Die
8Gb D-Die

[4Gb A-Die
75

B 16Gb C-Die

50

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=336ns

=3 8Gb B-Die
=1 16Gb B-Die
[16Gb E-Die
[16Gb F-Die

100

4Gb F-Die
8Gb B-Die
8Gb C-Die
8Gb D-Die

=3 4Gb A-Die
=1 4Gb X-Die
[16Gb A-Die
[16Gb C-Die

75

50

25

Percentage (%)
of Bitflips

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=1.5us

100
31 4Gb A-Die == 8Gb B-Die

[4Gb X-Die [16Gb B-Die
3 16Gb A-Die 3 16Gb E-Die
[16Gb C-Die [16Gb F-Die

4Gb F-Die
8Gb B-Die
8Gb C-Die
8Gb D-Die

75

Percentage (%)
of Bitflips

50
25 I
0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=7.8us
100
== 4Gb F-Die =3 4Gb A-Die == 8Gb B-Die
75 H== 8cb B-Die =1 4Gb X-Die =1 16Gb B-Die
== 8Gb C-Die 16Gb A-Die 3 16Gb E-Die
= 8Gb D-Die [16Gb C-Die [16Gb F-Die

N
o

Percentage (%)
of Bitflips
o
o

o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=70.2us

100
g 4Gb F-Die [4Gb A-Die [8Gb B-Die
Sh 75 8Gb B-Die =1 4Gb X-Die =1 16Gb B-Die
gs 8Gb C-Die [16Gb A-Die [16Gb E-Die
8% 8Gb D-Die [16Gb C-Die [16Gb F-Die
=% 50
ca
-
2o 25 I
]
o
0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Bitflip Repeatability (Double-Sided, 80°C), tAggON=15ms

Figure 45: Repeatability of the double-sided RowPress
(RowHammer) bitflips; 80°C

F Extended Results on the Effect of
Temperature on RowPress Bitflips

We conduct further experiments to characterize RowPress bitflips
at 65°C to strengthen our observations that RowPress gets worse as
temperature increases (Obsv. 9), and behaves differently compared
to RowHammer as temperature and access pattern changes (Obsv.
13). Fig. 46 (Fig. 47) shows the mean ACp,;, values we observe
at 65°C (80°C) normalized to 50°C (65°C) as we sweep taggoN in
linear (y-axis) - log (x-axis) scale, using the same experimental
methodology as described in §5.1. A data point below ACpin = 1
(highlighted with dashed red lines) means that for a given tpggoN;, it
requires less aggressor row activations to induce at least one bitflip
at a higher temperature.

Mfr. S Mfr. H Mfr. M
—— 4GbFDie — 8GbCDie| [— 4GbADie — 16GbADie| [— 8GbB-Die —— 16GbE-Die
o 8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
o
2 oveuy
[SLER
08 1.00 5% 3 o
@3 075 ===t __.”/ L
! S DU
s8N 50} L NN | X
g5
< E o2 I L
H L 1 | | - i
2 o & o o o & & o o o o © o o o
& & X AY & & N AN & & & X AY &
P AT Y S AT QY R AN R

Aggressor row on time (tAggON)

Figure 46: ACy,in at 65°C normalized to 50°C; single-sided
RowPress.

Mfr. S) Mfr. M
—— 4GbFDie — 8GbCDie| [— 4GbADie — 16GbADie| [— 8GbBDie —— 16GbEDie
o 8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
n
9 100
S e
R [|\ T
@'ﬁ', . S === o]
e N
£2 os0f s L
UEm
< E o2 I L
H L il | P b |
2 o & o o & & o & 6 b & o © o
& & NG & & N AN & & & R AN &
P AT SR AT Y R AN S

Aggressor row on time (tAggON)

Figure 47: ACy,in at 80°C normalized to 65°C; single-sided
RowPress.

We observe that for all die revisions vulnerable to RowPress,
ACin consistently reduces for the same taggon value as tempera-
ture increases from 50°C to 65°C, and then from 65°C to 80°C (i.e.,
Obsv. 9 still holds when we consider three different temperatures,
50°C, 65°C, and 80°C).

Fig. 48 shows the difference between single- and double-sided
ACpin (i.e., ACmin(single) - ACmin(double)) at 50°C (first row),
65°C (second row) and 80°C (third row), using the same experimen-
tal methodology as described in §5.2. A data point below 0 means
that the single-sided RowPress pattern needs fewer aggressor row
activations in total to induce a bitflip compared to double-sided. We
observe that, at 65°C, the single-sided RowPress pattern still needs
fewer aggressor row activations in total to induce a bitflip compared
to double-sided (i.e., Obsv. 13 still holds when we consider three
different temperatures, 50°C, 65°C, and 80°C).

30

Mfr. S Mfr. H Mfr. M
—— 4Gb F-Die —— 8Gb C-Die —— 4Gb A-Die —— 16Gb A-Die —— 8Gb B-Die —— 16Gb E-Die
8Gb B-Die —— 8Gb D-Die 4Gb X-Die —— 16Gb C-Die 16Gb B-Die —— 16Gb F-Die
£ 100 ;an\ 50°C][50°C = 50°C
O 102 H H H \
: 0 e A
c W
e L e | L |
25 -10° b | I | L
Do g0t 65°C | 65°C | |[E=x 65°C
23 102 | L L
g3 o
£€q
25 -10% 1 \\.‘»“/ I U*"M I L//
Oc -10% 4 T | I | L
Ea
8y 10 80°c [80°C | |[G& 80°C
R i HEA
W o102 H Il | e [m et
-10° by | S o | S ool i
& @ & PSS & PSSR & &
P A /\Q’} B P S \0’} AL AP 40’} S

Aggressor row on time (tAggON)

Figure 48: Single-sided ACp,;, minus double-sided AC,;, at
50°C (first row), 65°C (second row) and 80°C (third row).

G Inducing Even More Bitflips on the Real

System

Algorithm 2 shows a variant of our real system RowPress test
program (i.e., Algorithm 1 in §6) that changes the program order of
the accesses to the cache blocks and the c1flushopt instructions
to flush them from the cache. In the original Algorithm 1, we flush
the cache blocks only after accessing all cache blocks from both
aggressor rows (in program order, lines 11-16 in Algorithm 1). In
Algorithm 2, we immediately flush each cache block after each
cache block access (in program order, lines 13-18 in Algorithm 2).

1 // find two neighboring ressor rows based on physical address mapping

2 AGGRESSOR1, AGGRESSOR? = find_aggressor_rows(VICTIM);

3 // initialize the aggressor and the victim rows

4 initialize(VICTIM, 0x55555555);

5 initialize(AGGRESSOR1, AGGRESSOR2, 0xAAAAAAAA);

6 // Synchronize with refresh

7 for (iter = 0 ; iter < NUM_ITER ; iter++):

8 for (i=0;i<NUM_AGGR_ACTS ; i++):

9 access multiple cache blocks in each a
10 to keep the aggressor row open longer

gEressor row

12 MODIFIED PART START #
13 for(j=0;j<NUM READS ; j++):
14 +*AGGRESSORI1[j];

15 clflushopt (AGGRESSOR1[j]);
16 for(j=0;j < NUM_READS ; j++):
17 +*AGGRESSOR2([j];

18 clflushopt (AGGRESSOR2[j]);
19 MODIFIED PART END

20 /] wrrrrrans

21 mfence ();

22 activate_dummy_rows();
23 record_bitflips[VICTIM] = check_bitflips(VICTIM);

Algorithm 2: A variant of our RowPress test program that
can induce many more bitflips than the test program in
Algorithm 1.

We run this variant of the test program (i.e., Algorithm 2) us-
ing the same methodology on the same system as described in §6.
We plot the total number of bitflips (left) and the number of rows
with bitflips (right) from both Algorithm 2 (purple bars) and Al-
gorithm 1 (blue bars)3* for different numbers of cache blocks read
per aggressor row activation (NUM_READS; x-axis) when we acti-
vate each aggressor row four (top plots), three (middle plots), and
two (bottom plots) times per iteration in Fig. 49. We do not plot
NUM_AGGR_ACTS=1 because we do not observe any bitflips for all
NUM_READS we test. The leftmost bar in each graph shows the num-
ber of conventional RowHammer-induced bitflips, where we read
only a single cache block per aggressor row activation, such that
the aggressor row is kept open for a short time. Remaining bars
in each graph show results for RowPress-induced bitflips (with an
increasing number of cache block reads from left to right, such that
the aggressor row is kept open for an increasing amount of time).
We make the following major observation from Fig. 49.

34The number of bitflips and the number of DRAM rows with bitflips from Algorithm
1 depicted in Fig. 2 differ slightly from what we show in Fig. 23 in §6 because these
figures depict results from different runs of our test program with Algorithm 1 on the
real system. Low-level events that are transparent to the program (e.g., the dynamic
process scheduling decisions by the operating system and different synchronization
points with the DRAM refresh commands) cause slight variations in the experimental
results across different runs of the same program.

31

Total Number of Bitflips Number of Rows with Bitflips
[Algorithm 1 == Algorithm z] [Algorithm 1 mmmAlgorithm 2]

3000 500 =5

u 25004 » | RowPress 2371 + | RowPress

£ 2000 £ e —

g 2000

20007 3001 &

[1500 ‘E :g:

£,10001 8 s 20012 1

£ 500 ‘ 100 S

z olesle 611152527 10100000 o [EHBJEKS B 0100000
1 2 4 8 16 32 48 64 80 128 1 2 4 8 16 32 48 64 80 128

- 5000 750

] . | RowPress D + | RowPress

n 4000 E > 600 uE) :542

<3000 { £ 450 £

g T T

200013 300{ %

<, < -4

£ 1000 150

2 40

z olooloo 11 222143 10000000 oloofoo 1t R 10000000
1 2 4 8 16 32 48 64 80 128 1 2 4 8 16 32 48 64 80 128

500 500

v RowPress 435 RowPress

p 4001 5 | 4001 g | 2208

2300 £ 3001 E 281

] 200 13: 200 :3:

2‘ 2 2 ® s

£'100 100 :

= oloolooooooe 0k 0loo 0000 0113 28

‘ 0 00
0
1 2 4 8 16 32 48 64 80 128 1 2 4
Number of Cache Block Reads
Per Aggressor Row Activation (NUM_READS)

8 16 32 48 64 80 128
Number of Cache Block Reads
Per Aggressor Row Activation (NUM_READS)

Figure 49: Number of RowHammer vs. RowPress bitflips (left)
and number of rows with bitflips (right) we observe after
running our proof of concept test programs with Algorithm
1 (blue bars) and Algorithm 2 (purple bars) with four (top),
three (middle), and two (bottom) activations per aggressor
row per iteration.

Obsv. 23. With Algorithm 2, the proof of concept test program
induces significantly more bitflips in many more DRAM rows
in a real system.

With Algorithm 2, our test program induces significantly more
bitflips in significantly more DRAM rows. For example, when NUM_-
AGGR_ACTS=4 and NUM_READS=32, with Algorithm 2, the test pro-
gram induces 2371 bitflips in 429 DRAM rows, compared to only
24 bitflips in 20 rows with Algorithm 1, amounting to an increase
of 98.79% and 21.45X, respectively. When NUM_AGGR_ACTS=3 and
NUM_READS=32, Algorithm 2 induces 4190 bitflips in 542 DRAM
rows, compared to 1065 bitflips in 450 DRAM rows with Algorithm
1, amounting to an increase of 3.93x and 1.20X, respectively. We
hypothesize that the memory access pattern of Algorithm 2 causes
the aggressor rows to be open longer than that of Algorithm 1,
leading to many more bitflips in many more DRAM rows. Our re-
sults call for more investigation of how DRAM row open time is
(and should be) handeled in modern memory controllers. To aid
such research, we open source all our proof of concept programs
(including Algorithm 2) in our Github repository at [125].

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 DRAM Organization
	2.2 Major DRAM Operations
	2.3 Key DRAM Timing Parameters
	2.4 Motivation

	3 Methodology
	3.1 DRAM Testing Infrastructure
	3.2 Commodity DDR4 DRAM Chips Tested

	4 Major RowPress Characterization
	4.1 Experiment Methodology
	4.2 Vulnerability to Read Disturbance
	4.3 Distinguishing Characteristics of RowPress

	5 RowPress Sensitivity Study
	5.1 Temperature
	5.2 Access Pattern
	5.3 Data Pattern
	5.4 tAggON vs tAggOFF

	6 Real System Demonstration of RowPress
	6.1 Experimental Setup
	6.2 RowPress on Real Systems
	6.3 Verifying tAggON Increase

	7 Mitigating RowPress
	7.1 Error Correcting Codes (ECC)
	7.2 Decoupling the Row Buffer from the Row
	7.3 Limiting the Maximum Row-Open Time
	7.4 Adapting Existing RowHammer Mitigations

	8 Related Work
	9 Conclusion
	References
	A Artifact Description Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	B Summary Tables of RowPress and RowHammer Characteristics of All Tested DRAM Modules
	C Extended Characterization Results
	C.1 Extended Characterization Results of the RowPress-ONOFF Pattern

	D Extended Evaluation Results
	D.1 Limiting the Maximum Row-Open Time
	D.2 Adapting Existing RowHammer Mitigations

	E Repeatability of RowPress Bitflips
	F Extended Results on the Effect of Temperature on RowPress Bitflips
	G Inducing Even More Bitflips on the Real System

