
Improving Code Performance Using LLMs in
Zero-Shot: RAPGen

Spandan Garg∗, Roshanak Zilouchian Moghaddam† and Neel Sundaresan‡
Microsoft Corporation

Email: ∗spgarg@microsoft.com, rozilouc@microsoft.com, ‡neels@microsoft.com

Abstract—Performance bugs are non-functional bugs that can
even manifest in well-tested commercial products. Fixing these
performance bugs is an important yet challenging problem. In
this work, we address this challenge and present a new approach
called Retrieval-Augmented Prompt Generation (RAPGen). Given
a code snippet with a performance issue, RAPGen first retrieves
a prompt instruction from a pre-constructed knowledge-base of
previous performance bug fixes and then generates a prompt
using the retrieved instruction. It then uses this prompt on
a Large Language Model in zero-shot to generate a fix. We
compare our approach with the various prompt variations and
state of the art methods in the task of performance bug fixing.
Our empirical evaluation shows that RAPGen can generate
performance improvement suggestions equivalent or better than a
developer in ∼60% of the cases, getting ∼42% of them verbatim,
in an expert-verified dataset of past performance changes made by
C# developers. Furthermore, we conduct an in-the-wild evaluation
to verify the model’s effectiveness in practice by suggesting fixes
to developers in a large software company. So far, we have shared
performance fixes on 10 codebases that represent production
services running in the cloud and 7 of the fixes have been accepted
by the developers and integrated into the code.

I. INTRODUCTION

Performance bugs are inefficient code snippets in
software that can unnecessarily waste time and re-
sources. Unlike functional bugs, performance bugs do
not usually cause system failure. They tend to be
harder to detect [Attariyan et al.(2012)], [Dean et al.(2014a)],
[Dean et al.(2014b)], [Jovic et al.(2011)] and fix compared
to functional bugs [Nistor et al.(2013)], [Song and Lu(2014)]
and are usually fixed by expert developers [Chen et al.(2019)]
and often manifest through large inputs or specific execu-
tion configurations [Nistor et al.(2013)], [Olivo et al.(2015)].
Therefore, they can sometimes go undetected for a long
periods of time [Dean et al.(2014b)], [Jovic et al.(2011)]. As
a result, better tool support is needed to fix performance
bugs, specially for novice developers. For such a tool to
be applicable in practice, it should also support a wide-
range of performance bugs. However, the existing fixing
approaches usually target specific kinds of performance bugs,
such as repeated computations [Della Toffola et al.(2015)],
software misconfigurations [Iqbal et al.(2021)], loop inefficien-
cies [Nistor et al.(2013)]. The majority of these approaches
are also rule-based analyzers, with high maintenance cost
[Bielik et al.(2017)]. Recently, to address this challenge, Garg
et al. developed a deep-learning based performance fix tool
called DeepDev-PERF [Garg et al.(2022)] that supports a

variety of performance bugs and does not require maintaining
explicit rules or an expert system. Our approach builds on
that work by showing the cost of building and maintaining
such a tool can be further improved through the use of prompt
engineering as opposed to intensive fine-tuning.

Fig. 1: A C# code snippet with an expensive LINQ query
(highlighted in red) from a performance bug fix commit on
GitHub. LINQ tends to get misused by developers and can
often lead to performance issues, such as the one above. In
this case, the LINQ methods Where and FirstOrDefault are
used to iterate over a collection to find all entries matching
a predicate, when only the first match is needed and the
search could potentially stop early. Depending on the size
of the collection and how frequently this code gets invoked,
this may become a performance hot-spot in an application.
The screenshot below shows flamegraph corresponding to this
application, with the relevant section highlighted. The call-
stack shows the FirstOrDefault (its corresponding frame being
highlighted in yellow) as being the most expensive line within
the Undo method.

With the rising adoption of tools such as Github copi-
lot [Chen et al.(2021)] by developers, large language models
are showing a promising success as productivity tools. Ad-
ditionally, a promising paradigm for few-shot and zero-shot
learning has emerged where a pre-trained large language model
is adapted to various downstream tasks by conditioning it on
natural language prompts. This paradigm has also been applied
to a variety of tasks in Software Engineering, including the task
of bug-fixing [Pearce et al.(2021b)], [Xia and Zhang(2022)].

ar
X

iv
:2

30
6.

17
07

7v
2 

 [
cs

.S
E

] 
 2

8 
M

ar
 2

02
4



Building upon this prior work, we present an approach called
RAPGen that uses large language models (LLMs) in zero-
shot, for the task of generating fixes for performance bugs
using prompt engineering. Given a line of code that contains
a performance bug (i.e. the buggy line), we compare this line
with a pre-constructed knowledge-base to retrieve a prompt
instruction that can be used to convey what change needs to
be made to a LLM. The index contains patterns of buggy API
usages extracted from a data-set of past performance fixes,
along with an instruction explaining the fix transformation.
Given a method with a performance issue and the corresponding
buggy line within the method, we first retrieve an instruction
from the knowledge-base and then construct an input prompt
for the model, containing the buggy method, followed by the
instructive comment and the method signature, coaxing the
model to output the fixed version of the method. This type
of zero-shot bug-fixing experience is desirable because (1) it
avoids an expensive fine-tuning step, (2) alleviates the need
to find a large high-quality labeled data-set of performance
fixes for training such a model, and (3) fixes a wide-range of
performance problems and could easily be extended to more
bugs (by growing the number of commits used to build the
knowledge-base) or other languages (by collecting relevant
commits from other languages), without needing to train a
separate model.

Evaluation and Effectiveness. We evaluated our approach
on the most recent performance bug fix data set used in
the DeepDev-PERF study [Garg et al.(2022)]. Experimental
results show that our approach is indeed able to generate
correct suggestions for 60% of the dataset, often within the
very first suggestion, and out-performs DeepDev-PERF and
other baselines for single method performance fixes. While
designing an optimal prompt is still an open problem and
remains elusive as ever, we also compare our approach with
various prompt variations to demonstrate our design choices
and our experiments with recent ideas such as reasoning-
based prompting [Wei et al.(2022)]. Furthermore, through our
"In-the-wild" evaluation, we show real-world evidence that
RAPGen generates suggestions that lead to actual performance
improvements to real .NET service codebases within a large
company that are currently in production. These changes were
validated and adopted by real developers.

II. MOTIVATING EXAMPLE

In this section, we provide an overview of RAPGen
using a motivating example. Figure 1 shows a C# code
method with a performance bug in the form of an expensive
LINQ [Pialorsi and Russo(2007)] query (highlighted in red).
The query iterates over a collection, finding all entries that
match the predicate passed to the LINQ method Where, finally
using FirstOrDefault to get the first such entry for further
processing. While other languages have equivalent concepts,
LINQ is specific to C# and is known to inherent allocations
associated with its use. As a result, LINQ usage on the
application’s hot-path can lead to excessive allocations, which
can cause unwanted symptoms such as spikes in garbage

collection (GC), depriving the application of CPU resources,
and reducing its throughput.

Figure 4 shows the steps in our approach to generate fixes
for a given buggy method and expensive line of code. To fix
this code, we first compare the line of code containing the bug
(that can be found easily using a profiler [Gayhardt(2019)]),
by abstracting out project-specific details and querying a pre-
built knowledge-base containing past buggy API usages, which
includes the buggy usages of FirstOrDefault. This gives
us a prompt instruction in English language telling how this
bug should be fixed, which we then use to construct the
prompt as shown in Figure 2. The prompt includes the buggy
method itself as a comment, followed by the prompt instruction,
telling the model to re-write the preceding method without the
FirstOrDefault call, implying that it should be replaced
with cheaper alternatives, which in this case would be an inlined
foreach loop. To further ensure that the the model completion
contains the commented method, the prompt also includes the
signature of the buggy method, followed by an open curly
brace, at the end of prompt. This is to coax the model into
outputting a completion of that same method. Figure 3 shows
the completion generated by the LLM to this prompt, which
indeed replaces the LINQ query with an explicit foreach
loop.

/*
public override void Undo(Params param) {

foreach (Container obj in containers) {
Beatmap copy =
Beatmap.GenerateCopy(obj.objectData);

param.collections.Where(x => x.Type ==
copy.Type)

.FirstOrDefault()?.SpawnObject(copy,
out _);

if (obj is EventContainer e &&
e.eventData.IsRotationEvent)
param.tracksManager.RefreshTracks();

}
}
*/
/* PERF: Rewrite the above method without
FirstOrDefault. */

public override void Undo(Params param) {

Fig. 2: Model input prompt used to generate a fix for the
method in Figure 1. The prompt consists of (i) the commented
original buggy method, (ii) an instruction telling the model
how to fix the issue, and (iii) the starting fragment of the buggy
method.

III. OUR APPROACH

In this section, we explain the approach behind RAPGen
and how we use it at inference time to fix performance bugs.
The basis of our approach is building a code transformation
knowledge-base with a code change specific retrieval algorithm,
which we use to access the relevant prompt instruction for a
given buggy code and construct the prompt.

2



public override void Undo(Params param) {
foreach (Container obj in containers)
{

Beatmap copy =
Beatmap.GenerateCopy(obj.objectData);

foreach (var collection in param.collections)
{

if (collection.Type == copy.Type)
{

collection.SpawnObject(copy, out _);
if (obj is EventContainer e &&

e.eventData.IsRotationEvent)
param.tracksManager.RefreshTracks();

break;
}

}
}

}

Fig. 3: Suggestion generated by the LLM when asked to
complete the prompt in 2. The suggested fix is to unroll the
LINQ query in favour of a foreach loop, which can stop early
when a matching entry is found. This fix closely matches the
developer fix and saves other potential LINQ overheads such
as the allocations and GC.

Fig. 4: The fix generation pipeline followed by RAPGen,
showing how it is used at inference time to fix a performance
issue given a buggy method and corresponding expensive line.

A. Code Transformation Knowledge-base

The first step of our proposed approach is to build a
knowledge-base of performance code transformations and
corresponding instructions, which can be used to coerce the
language model into applying the same code transformation
towards fixing a given bug. Below we describe how we collect
the relevant data for building such a knowledge-base, as well as
the processing steps needed to extract the necessary information
to build this knowledge-base.

Data Collection We first collect all repositories with ≥5
stars on GitHub, whose primary language is C# and had
a commit within the last 5 years. We crawl the commit
history of the main branch in each of these repos. A commit
typically contains a commit message and a changeset or
diff representing the difference between current and previous
version of files modified within that commit. From these repos,
we collect the set of commits whose titles begin with "PERF:"
or "[PERF]". This is a convention [com(2019)] that’s often used
by developers to indicate that their commit contains primarily
performance-related changes. This results in ∼1500 commits
with clean code changes pertaining to performance.

Extracting Performance Bug Patterns. For each commit,

Algorithm 1 Abstract Impact Line

Input: AST node, Array ret
if IsLeaf(node) then

if IsKeyword(node) or IsSyntax(node) then
ret = Append(ret, node)

else if IsCommonIdentifier(node) then
ret = Append(ret, node)

else
ret = Append(ret,Node∅)

end if
end if
for child ∈ node.Children do
childArr = AbstractImpactLine(child)
if ContainsCommonIdentifier(childArr) then

ret = Concatenate(ret, childArr)
else

ret = Append(ret,Node∅)
end if

end for

we take the changeset, D = [(fi, f
′
i)]

N
i=1, where fi and f ′

i are
the before and after versions of the ith file modified in the
commit. We parse the code files, fi and f ′

i , and extract all
pairs of methods, [(mi,m

′
i)]

M
i=1, such that mi and m′

i are the
before and after versions of a given method as modified by
the commit, respectively.

Given a method from the diff, mi with K statements [sj ]Kj=1,
and its corresponding modified version, m′

i with K ′ statements
[s′k]

K′

k=1, we extract the statements sj that appear in mi, but
not in m′

i. In other words, we find the set of statements, Sd =
{sj | 1 ≤ j ≤ K and sj /∈ Sm′

i
}, where Sm′

i
is the set of

statements in m′
i. We then use Algorithm 1 to process all

the statements in Sd. The goal of this algorithm is to remove
any project-specific identifiers, such as variable names or user-
defined function names, replacing them with placeholders. This
yields a set of L abstracted performance bug patterns [pi]

L
i=1,

where pi = f(sj) and sj ∈ Sd.
This leaves us templates of modified usages of common

C# API, containing only tokens corresponding to language
syntax/keywords and common literals/identifiers in C#. This
type of statement abstraction allows us to pick up patterns in
changes that get repeated across projects and may correspond
to common performance issues. To further avoid any project-
specific change patterns, we only keep patterns occur in at
least 2 projects.

Below is an example of one such transformation made by
the abstraction algorithm:

Foo().Where(x => x.Bar()).FirstOrDefault();
↓

<Node∅>.Where(<Node∅>).FirstOrDefault();

The first line contains a possible statement modified as
part of a commit. The abstraction algorithm traverses the AST
corresponding to this statement and replaces all project-specific
identifiers/literals (e.g. Foo and Bar) or any subtrees, none
of whose descendants are known common identifiers in C#,

3



with a placeholder node (<Node∅>). We then traverse the
code corresponding to this abstracted tree to get the code with
project-specific details abstracted out. In the above example, the
identifiers Where and FirstOrDefault are retained because
these are frequently used .NET library functions in C# projects.
The above pattern specifically, is an example (Figure 1) of
a known inefficient usage pattern where functions, Where
and FirstOrDefault, are chained together inefficiently. This
could be re-written to be more optimal by condensing the query
to remove the Where call or simply unrolling the query into
an explicit loop.

Creating a Code Transformation Instruction Now for
each extracted performance bug pattern pi, we find all the K
before-after pairs of methods, [(mk,m

′
k)] from performance

improvement commits, CPERF , such that the buggy statement,
s, which is the concrete version of pi, is contained within mk

and not in m′
k.

For each such before-after pair, we would like to create
an instruction tk that explains the code transformation taking
place as part of the change. To do this, we find (Imk

, Im′
k
),

which are the sets of common C# identifiers added and/or
removed as part of this code transformation, respectively.

To extract the identifiers, we compare the sets of statements
in m and m′, i.e. Sm and Sm′ , respectively. For every statement
in the diff i.e. statements that appear in m and not in m′, or ones
that appear in m′ and not in m, in other words, (Sm \ Sm′)∪
(Sm′ \ Sm), we extract any common C# identifiers used within
these lines. These common literals/identifiers that correspond to
popular library functions in C# and can be found by looking for
literals and identifiers that repeat across multiple projects. We
consider the set of common C# identifiers found in (Sm \ Sm′)
and (Sm′ \ Sm). We then remove any identifiers that are found
to be common among the two sets. We call the resulting disjoint
sets of identifiers Im and Im′ , respectively.

To create tk, we focus on the following code fix transfor-
mations that involve adding or removing identifiers (or APIs):

• Identifier Addition: In this case, Imk
= ∅ and Im′

k
̸= ∅

and tk = "PERF: Rewrite the above method with <X>.".
This represents an instruction to re-write the code with
some additional identifiers (or APIs) needed to resolve
the performance issue, which, in terms of code-changes,
may be a new function call or an additional parameter
added to an existing call, etc.

• Identifier Removal: In this case, Imk
̸= ∅ and Im′

k
= ∅

and tk = "PERF: Rewrite the above method without
<X>.". This represents an instruction to remove the usage
of some identifiers (or APIs), which may correspond to
removal of the use of some inefficient APIs, within the
code. The example in Figure 2 falls within this category.

• Identifier Addition and Removal: In this case, Imk
̸= ∅

and Im′
k
̸= ∅ and tk = "PERF: Use <X> instead of

<Y> in the above method.". This instruction is meant to
represent the case where the model should replace one
set of identifiers (or APIs) with another, i.e., situations
where one set of API must be swapped out for another,
which are more appropriate for the situation.

In each case, we replace the placeholders in the template tk,
i.e. <X> and <Y>, with a string containing the comma-delimited
list of identifiers in Im and Im′ , respectively.

Knowledge-base Creation Finally, taking all the buggy
usage patterns and their corresponding before-after pairs and
instructions, we create a knowledge-base to store all the
(p, (m,m′, t)), where p serves as the lookup key to find the
set of triples, (m,m′, t), where m and m′ are the before-after
methods, respectively, and t is the derived instruction from this
particular before-after pair. This knowledge-base is essentially
a mapping between abstracted performance bug patterns and
instructions on appropriate code transformations to fix those
bugs. In the following section, we describe our retrieval process,
to fetch the right instruction from the knowledge-base.

B. Generating the Prompt

We are given buggy method, mb, containing an expensive
line of code, l, which causes the performance bug. We first
abstract the expensive line using Algorithm 1 and get the ab-
stracted pattern pb. We then perform a lookup in our knowledge-
base using the pb, as the query. This results in a list of Kp

code change and instruction triples, i.e. [(mk,m
′
k, tk)]

Kp

k=1,
where mk and m′

k are the before and after versions of a
method, where a similar buggy line was fixed and tk is the
code transformation instruction constructed based on changes
made to the identifiers in the before-after pair. Since we want
to find the entry that’s closest to mb, we use a code-search
technique [Luan et al.(2019)] to rank each before method, mi,
based on similarity to mb. We take the entry corresponding
to the most similar before method, (mj ,m

′
j , tj) and construct

the prompt using the retrieved code transformation instruction
tj .

Now we fill the template in Figure 5 to build the final prompt,
which will be given to the model. We include the buggy method,
mb, itself surrounded by C-style comments, followed by tj
and the signature of mb and an open curly-brace, which in C#
indicates the start of the method body.

/*
<Commented Buggy Method>
*/
/* PERF: <Prompt Message> */
<Method Signature> {

Fig. 5: High level prompt template followed by the prompts
generated by RAPGen. They consist of the buggy method
itself, followed by the prompt instruction retrieved from the
KB using the buggy line within the buggy method and finally
the signature of the method itself, proceeded by an open curly
brace.

Figure 2 shows a concrete example of one such prompt
following the above template.

C. Generating Fixes

Generating the fix itself is relatively simple. We use the
constructed prompts to generate completions using the gpt-3.5-

4



turbo [ope(2023)] model through OpenAI’s REST API. Since
it is difficult to tell the model when to stop, it will likely go on
outputting code even after it has generated the fixed method.
We parse out the completion corresponding to the method by
extracting the code until curly braces are balanced and discard
the rest of the output.

IV. EMPIRICAL EVALUATION

In this section, we present our empirical evaluation we
conducted on understanding our prompt design choices and
assessing the effectiveness of our approach. We first describe
our experimental setup, i.e. our dataset, metrics and baselines
for our empirical evaluation.

A. Experimental Setup

Dataset We leverage the dataset containing past performance
fixes from the DeepDev-PERF study [Garg et al.(2022)]. This
dataset consists of 132 instances of performance fixes, which
were manually reviewed and confirmed to be performance-
related changes by performance experts after examining a broad
set of C# commits on GitHub. Furthermore, it was shown
that this dataset covers a wide-range of performance bugs.
Therefore, a good accuracy over this dataset would demonstrate
the effectiveness of a model for this task.Each example in this
dataset is of the form (m,m′), where m and m′ are the before
and after versions, respectively. These are also mostly single
method performance improvement fixes, making them ideal
for our scenario.

Adding Bug Localization Information Our approach
assumes that bug localization information, i.e. the expensive
line, is included as part of the input. In practice, one can
leverage performance bug localization using profiling data to
find the expensive line [Garg et al.(2021)]. However, for the
purpose of evaluating our approach, we used a heuristic to
localize bugs in the above dataset. We examine the diff between
the before and after methods, m and m′ and take the first line
lb ∈ m that does not match the corresponding line in m′, when
compared in order, as the buggy line.

Inference Hyperparameters We generate 100 suggestions/-
fixes for each example in the dataset, using a relatively large
temperature of 0.7 to achieve sufficient variety within the fixes
generated. We also use a max token limit of 1024 tokens,
so that the model has enough token bandwidth to generate
the entire method for longer suggestions. Finally, we take the
model output and parse out the fix as described in the previous
section.

Automated Metrics We use the following three automated
metrics for measuring the effectiveness of our approach:

• Verbatim Match %: This metric considers a prediction
to be correct only if the generated fix exactly matches
the human fix in the test set. This metric usually presents
a lower bound as two pieces of code can be equivalent,
despite not matching verbatim. This metric is also sensitive
to identifier names and order of code statements.

• Abstracted Match %: In this metric, we abstract
out variable names using a placeholder name (such as

"VAR_{i}", e.g. "VAR_0", "VAR_1", "VAR_2" ...), where
i is determined based on the order, in which we encounter
the variables during a traversal of the AST of the method.
Using the traversal order, ensures that two code snippets
with the same control flow and no major changes except
variable names, will have the same abstracted variable
names. But, even this presents us with a lower bound on
the approach’s true capabilities in fixing bugs as a fix may
have different control-flow from ground truth, but still be
correct.

• CodeBLEU: Our final metric is Code-
BLEU [Ren et al.(2020)], which is a variation of
the popular NLP metric, BLEU [Papineni et al.(2002)].
In addition to n-gram matching, it also takes code
characteristics like abstract syntax tree (AST) and
data-flow similarity into account, when comparing
programs. Similar to the DeepDev-PERF study,
we use the hyper-parameters that had the highest
correlation to human scores in the CodeBLEU study, i.e.
α, β, γ, δ = 0.1, 0.1, 0.4, 0.4.

Human Evaluation Metrics In addition to the above
automated metrics, we also conduct a human evaluation of the
suggestions with two performance experts (not on the author
list). We use the following metric:

• Closest Match Top-K Accuracy % Due to there
being too many suggestions to go through one by one,
we use the state of the art code search technique,
Aroma [Luan et al.(2019)], to find the suggestion closest
to the ground truth. The most similar suggestion is shown
to two performance experts, who are then asked whether
they consider the model suggestion to be equivalent or
better that the developer fix in terms of performance. We
consider a suggestion to be correct, if it is found to be
correct by both experts. This allows us to get a lower-
bound on the model’s actual Top-K accuracy, if one were
to exhaustively go through every suggestion.

Prompt Variants To better understand our prompt design
choices, we investigate the following prompt variations in
addition to RAPGen:

• Static Prompt Message. This prompt follows the template
in Figure 6a. We first add the buggy method, mb itself
as a C-style comment, followed by a static comment
expressing an intent to improve performance and, finally,
the signature of the buggy method with an open curly
brace. The purpose behind including this prompt is to
contrast with our approach where we provide a prompt
message containing information regarding where the bug
is and hints on how to fix it, to show whether providing
the model with additional information regarding the bug
helps it come up with more fixes.

• Retrieval-based One-shot Prompt. This prompt follows the
structure in Figure 6b. We first provide the model with the
retrieved before-after pair, (mj ,m

′
j) (from Section III-B)

where mj contains a line, lmj
, whose abstracted version

matches the abstracted buggy line, lb in mb. Similar to

5



/*
<Commented Buggy Method>
*/
/* PERF: Improve performance of
the above method. */

<Buggy Method Signature> {

(a) Static Prompt Template

/*
<Commented Retrieved Buggy Method>
*/
<Retrieved Fixed Method>
/*
<Commented Buggy Method>
*/
<Buggy Method Signature> {

(b) Retrieval-based One-Shot Prompt Template

/*
<Commented Buggy Method>
*/
/* PERF: <X> is on the
hot-path in the above
method. We can do better
by ...

(c) Reasoning-based Prompt Template

Fig. 6: Prompt templates for various prompt variations we tried in our evaluation.

RAPGen prompts, we then provide the model with the
buggy method as a comment, followed by the signature
of the buggy method, coaxing it into outputting a fixed
version of that method. Our reason for including this
prompt is to show the impact of providing a raw fix
example, as opposed to giving the model the instruction
derived from the same code-change.

• Reasoning-based Prompt Message. Recent work on prompt
engineering suggests letting LLMs generate an interme-
diate reasoning about a problem can greatly improve
performance on a given task [Wei et al.(2022)]. As our
final variant, we designed a reasoning-based prompt that
follows the structure in Figure 6c. This prompt also
includes the buggy method, mb, followed by an incomplete
comment telling the model what call is being expensive,
and coaxing the model to reason about the problem and
then generate a possible fix. The main idea is that we
first get the model to reason about the problem and come
up with a description of the possible fix by completing
the prompt message itself, before it generates the fixed
code. We do this by giving the model the buggy method,
followed by the prompt message. We let the model
complete the rest of the comment (i.e. continuing in place
of the ellipsis) and then have it generate a fix as well.
The prompt follows structure in Figure 6c.

B. Comparing with Other Prompt Variants

Table I shows the results of our automated and human
evaluation metrics, achieved by RAPGen and other prompt
variants. Our approach is able to achieve a ∼42% verbatim
match and a ∼41% abstracted verbatim match score over the
dataset, which is higher than any of the other prompt variants.
We also see that in the human evaluation, our approach is able
to suggest valid improvements for up to ∼63% suggestions
within just 100 sampling attempts, higher than all our other

prompt variant. We discuss these results and possible reasons
behind them in more detail below.

Fig. 7: Closest Match Top-K Accuracy plot of our prompts on
the test set. We can see that RAPGen achieves the best score
among the 4 prompt variants.

Effect of adding instruction conveying the bug location
and possible fix. We first compare the results of the RAPGen’s
prompts with the Static prompts (Figure 6a). These two prompts
are almost identical except for the prompt message following
the commented buggy method. RAPGen’s prompt includes a
fix instruction based on past fixes to bugs of similar nature,
which tells the model what function call within the method
body is expensive, as well as a possible fix. On the other hand,
the Static Prompt uses the same generic fix instruction for
each bug. We see that RAPGen performs significantly better
in terms of both the number of exact matches it finds, >10%
more, as well as, achieves a higher Top-K score (by >25%)
compared to static prompts. Figure 9 shows an example of

6



TABLE I: Summary of the results of our approach against other prompt variants.

Model Verbatim Match % Abstracted Match % CodeBLEU Closest Match Top-K Accuracy %
1 10 100

Static Prompt 26.5 27.3 67.6 4.5 13.6 33.3
Retrieval-based One-shot Prompt 28.8 29.5 69.7 6.1 14.4 37.9
Reasoning-based Prompt 21.2 31.1 53.6 1.5 9.1 43.2
RAPGen 42.4 45.5 72.0 17.4 28.8 60.6

TABLE II: Summary of the results of our approach against other models.

Model Verbatim Match % Abstracted Match % CodeBLEU Closest Match Top-K Accuracy %
1 10 100 500

DeepDev-PERF 34.3 37.3 70.7 8.3 18.2 34.1 53.0
RAPGen 42.4 45.5 72.0 17.4 28.8 60.6 -

a case where RAPGen was able to find a fix, whereas the
Static prompt wasn’t. Since this was a relatively long method,
which required a non-trivial fix consisting of a data-structure
change, Static prompt fails to come up with a fix. Whereas,
RAPGen prompt is guided by the prompt instruction based on
past fixes, which is better able to guide the model to the right
fix. Intuitively, this makes sense because RAPGen’s prompt
message includes information about the location of the bug as
well.

Effect of extracting instruction from retrieved example.
Prior work has shown that providing an example in a few shot
setting usually results in better performance in a downstream
task than providing an instruction[Brown et al.(2020)]. It likely
has less to do with the example but more with specificity of
the instructions The Retrieval-based One-Shot prompt gives the
model the same retrieved before-after pair that the instruction
is derived from. However, comparing the results of RAPGen
with the One-Shot prompt, we can see that going the extra
step of extracting an instruction from the retrieved before-after
pair improves the results significantly. We believe that this may
be because, given the raw before-after method pair, the model
has to perform the diff implicitly and infer the instruction by
itself, before applying the change to the unseen method. It is
possible for it misunderstand the change and make mistakes in
understanding the nature of the fix. We see that our prompts
find more exact matches (by >10%) and achieves a higher Top-
K accuracy score (by >20%), compared to retrieval prompts.
For the example shown in Figure 9, both the One Shot and
RAPGen prompts were able to generate the right fix in our
evaluation. However, the One Shot prompt took almost twice
as many attempts before arriving at the right fix, compared
to RAPGen. The likely reason RAPGen is able to generate a
correct suggestion more quickly may be due to a possible fix
being readily available as part of the instruction, without the
model having to perform in-context learning from a raw code
change example and infer the underlying transform.

Effect of letting the model reason about the problem
on its own. Both Reasoning-based and RAPGen’s prompts
include information about where the buggy line is within the
method. The main difference between them is that we do not
provide the model with any hints on how to fix the bug in
Reasoning-based prompts and instead allow it to reason about
the problem and come up with a possible fix itself. During the

human evaluation, we noticed that with such a reasoning-based
prompt, the model is more likely to come up with high-level
changes (introducing caching, memoization, adding a fast-path,
etc.), modifying the control flow or the algorithm itself rather
than an API-level fix. Figure 8 shows an example of one such
change suggested for a reasoning based prompt, during our
evaluation. Since high-level changes can be more complex
to make, the model is more likely to create an incorrect or
over-complicated fix. Therefore, it cannot arrive at the correct
fix right away resulting in a flatter plot in the Figure 7, despite
given the problematic function call.

C. Comparison with State-of-the-art
Finally, we compare our approach with the current state of

the art approach for performance bug fixing for C#: DeepDev-
PERF [Garg et al.(2022)]. DeepDev-PERF uses a sequence to
sequence transformer model, BART [Lewis et al.(2020)] and
finetunes it for the task of generating performance bugs. The
model can output entire patches, as opposed to just completions,
allowing it to generate fixes spanning the entire class. In
contrast, our approach is intended to fix single method bugs
only. Therefore, we only compare our model with DeepDev-
PERF’s ability to fix single method fixes, using the dataset
they provide.

Table II shows that RAPGen outperforms DeepDev-PERF
both in automated and human evaluation metrics. This result
is quite encouraging given that RAPGen only leverages our
novel prompting approach in zero-shot, while DeepDev-PERF
relies on expensive fine-tuning steps over a large dataset.
Furthermore, it is also important to note that in DeepDev-PERF,
the authors allow their model 2000 attempts for each example,
and use the top-500 (based on average token likelihoods) for
their evaluation, whereas, we only sample 100 completions
per example. Despite the much fewer sampling attempts, our
approach is still able to out-perform their finetuned model. One
reason for this gap may be that our model includes information
regarding buggy line, within the prompt, whereas the input
to DeepDev-PERF doesn’t localize the bug beyond just the
buggy method. Therefore, their model may need to suggest
many possible fixes before it finds the right one.

V. IN-THE-WILD EVALUATION

To see the effectiveness of our approach in practice, we
conducted an evaluation on existing .NET projects to verify

7



/*
public IServiceProvider
CreateContainer(ShellSettings settings)

{
// ...
foreach (var dependency in
blueprint.Dependencies)

{
foreach (var interfaceType in
dependency.GetInterfaces())

{
_logger.LogDebug("Type: {0},
Interface Type: {1}",
dependency.Type, interfaceType);

// ...
}
*/
/* PERF: LogDebug is on the hot-path in the
above method. We can do better by ...

using LogDebug only when logging is enabled. */
public IServiceProvider
CreateContainer(ShellSettings settings)

{
foreach (var dependency in
blueprint.Dependencies)

{
foreach (var interfaceType in
dependency.GetInterfaces())

{
if(_logger.IsEnabled(LogLevel.Debug))
{

_logger.LogDebug("Type: {0},
Interface Type: {1}",
dependency.Type, interfaceType);

}
// ...

}

Fig. 8: A relatively high-level suggestion generated by the
Reasoning-based prompt. The code on top (simplified) con-
tains the commented out the buggy method, followed by an
incomplete comment letting the model know about where the
problem is, which, in this case, happens to be excessive calls to
LogDebug. The suggestion at the bottom finishes the incomplete
the comment with a message, showing that the model did
indeed reason about the problem presented and came up with
a possible fix. The suggestion that follows wraps the LogDebug

calls with a Logger.IsEnabled checks. This was also the fix
made by the developer.

the effectiveness of our approach in helping developers fix real
world performance problems.

A. Experimental Setup

1) Finding real world problems to fix: We start with 50
codebases, internal to a large company, that are associated with
existing services running in the cloud. Each of these services
is being profiled by Microsoft Application Insights Profiler
[Gayhardt(2019)]. The collected profiles are then analyzed by
a performance bug detection service called Code Optimizations
[cod(2023)] that continuously analyzes profiler traces from

Fig. 9: An API change suggested by RAPGen for one of
the examples in the testset. The code on the top (shortened
for brevity) shows the commented out buggy method with
performance issues caused by the use of List.Contains() (a
O(N) search) within a for-loop. The instruction retrieved
from the knowledge-base is to replace List.Contains() with a
Dictionary.ContainsKey() (an O(1) lookup). RAPGen prompt
also includes the signature of the method, followed by an open
curly brace to coax the model into outputting the same method.
The second code snippet shows the completion generated by
the model for this prompt, which is indeed to replace the
List instansiation with that of a Dictionary and updating the
calls within the loop to use ContainsKey. This change was also
semantically equivalent to the fix made by the developer.

a given application in the cloud and finds performance
bottlenecks.

Each bottleneck is of the form (b, p), where b in the
bottleneck method that’s usually an API method and p the
calling method from the user’s codebase. We look at the insights
generated by Code Optimizations over CPU profiler traces. For
each service, we find bottlenecks (b, p) that meet the following
criteria:

• The bottleneck takes up more than >5% of the applica-
tion’s CPU. We set this threshold because we want to fix
issues that take up a substantial amount of resources and
are worth fixing. These are the issues that a developer
would typically look into when improving the performance
of their application.

• b is present in the RAPGen knowledgebase (Section III-A)
• A call to the method b is present in the code for the

parent method p. For example, if the bottleneck method
b is Dictionary.ContainsKey, we look for a call
to ContainsKey in the parent method body. We need

8



Fig. 10: An email sent as part of our "In-the-wild" Evaluation.
The email contains a fix for a performance bottleneck found
using Code Optimizations [cod(2023)] in a Microsoft service.
Along with the fix, we also include information regarding the
bottleneck, i.e. the bottleneck method and the calling parent
method (both highlighted in yellow) and current CPU usage
of the bottleneck. At the end of the email, we ask the users to
answer a few questions regarding the fix (Section V-A2).

to confirm this because, this is often not the case when
there is inlining of methods or the code uses syntactic
sugar (e.g. use of special characters like "+" to perform
String.Concat when concatenating strings). III-A)

2) Reaching out to developers: We take 10 random bot-
tlenecks that meet the above criteria and each come from a
different service. We then locate the code associated with each
bottleneck in the corresponding codebase and use RAPGen
to generate a fix. We communicate the generated fix to the
engineers working on the project via email (Figure 10). In
the email, we ask them to respond to the following questions
regarding the fix:

• (Q1) Does the code change provide any performance
improvement? (Yes / No)

• (Q2) Did you need to make any significant modifications
to the proposed fix? (Yes / No)

• (Q3) How satisfied are you with the coding standards and
practices used in the bug fix? (Very Satisfied / Somewhat
Satisfied / Neither Satisfied or Dissatisfied / Somewhat
Dissatisfied / Very Dissatisfied)

• (Q4) How would you rate the overall quality of the code
in the bug fix? (Excellent / Good / Average / Poor)

B. Results

We were able to secure responses to 8 of the emails i.e. a
80% response rate. 7 of the 8 respondents confirmed that the
changes would improve the performance of the code. 1 of the
respondents rejected the fix. 6 in 7 respondents who accepted
the fix confirmed that the changes could be accepted without
any modifications. One of the respondents who accepted needed
to make a minor change to the code.

For the next question, we asked the developer to rate
their satisfaction by picking from the following options: Very
Satisfied, Somewhat Satisfied, Neither Satisfied or Dissatisfied,
Somewhat Dissatisfied and Very Dissatisfied. 6 in 7 developers
responded with Very Satisfied. The final developer responded
with Satisfied because they had to make slight modifications
to the code. As our final question, we asked the developer to
pick from the following options: Excellent, Good, Average,
Poor. 6 in 7 developers rated the overall quality of the fix as
Excellent, except for one developer who responded with Good.
Overall, this in-the-wild evaluation confirms the usefulness of
our approach for fixing perf bugs in real life applications.

VI. THREATS TO VALIDITY

In this work, we focus only on the subset of performance
issues caused by misuse of common .NET APIs. However, it’s
possible to have performance problems that are due to non-
API related reasons [Garg et al.(2022)], such as unnecessary
computation in a loop that could be hoisted out or excessive
allocations of a given type, etc. We also limit our scope to
performance issues that can be fixed by changes to a single
file and class. However, it’s possible for fixes to span multiple
classes, files or folders. This would require a much larger
context window as we would need to pass code from multiple
classes and the model would then decide which need to be
modified in order to fix the issue. A concrete example of this
could be a fix that requires making changes to a class that’s
used in multiple locations in a given code-base. The fix may
require changes to not only the problematic class, but the
usages as well. We plan to explore this in future work.

Additionally, we only explore fixing performance issues
and assume that there already exists a way to identify
expensive parts of a code-base, down to the exact line
number. In .NET, this is indeed possible. One could use a
profiler [Gayhardt(2019)] and .NET’s Source Link [sou(2018)]
technology, which adds metadata containing line number,
commit, branch, etc. to a given profiler trace. We have not yet
explored this for other languages like Java, python, etc., but
we assume that similar technologies exist there as well. We
leave this exploration to future work.

9



Finally, we were unable to run the code fixes suggested to the
benchmark dataset. This is because many of the GitHub projects
these examples were drawn from were not buildable, for variety
of reasons such as, requiring proprietary packages to build,
custom build steps or simply compiler errors. However, since
our human evaluation showed that the fixes were equivalent to
those proposed by the developer, we believe that our changes
would result in performance gain as well. In practice, one could
add an additional step to run benchmark tests to verify the
change improves performance. Furthermore, the benchmark
test could itself be generated using an LLM. We leave this
exploration to future work. There already exists work that
has already explored generating unit tests using these models
[Tufano et al.(2020)].

VII. RELATED WORK

Next we discuss the work closely related to ours.

A. Automated Program Repair

Traditional automated program repair (APR) techniques
usually require test suits or logic assertions as a specification
of correctness. For example, GenProg [Weimer et al.(2009)]
uses genetic programming to generate code fixes that pass
a supplementary suite of test cases. Pattern-based Automatic
program Repair (PAR) [Kim et al.(2013)] leverages manually
created fix templates based on patterns in existing devel-
oper patches to guide the genetic search. Similarly, CapGen
[Wen et al.(2018)] attempts to generate patches at finer granu-
larity (AST node level) using context-aware prioritization of
genetic mutation operations, and VarFix [Wong et al.(2021)]
further extends GenProg by using variational execution
[Austin and Flanagan(2012)]. One of the major challenges
with these APR approaches is overfitting [Ye et al.(2021)] and
high maintenance cost. They also usually require a significant
amount of effort on modeling program semantics. To fill this
gap, our approach leverages prompt engineering on LLMs and
therefore fixes a wide-range of performance bugs with low
training and maintenance cost.

B. Neural Code Fix Generation

Recent advancements in deep learning, which automatically
learn patterns from unstructured data, have driven a shift
in APR techniques away from genetic programming and
towards learning-based methods. Machine learning-based APR
approaches leverage generative deep learning models that
directly output patched versions of faulty code. For example,
[Tufano et al.(2018)] uses an RNN encoder-decoder model
to generate fixes for bugs on GitHub projects. DeepDebug
[Drain et al.(2021)] trained a backtranslation model to generate
synthetic buggy versions of code to fine-tune a bug patch model.
Stack traces for these generated bugs, as well as supplementary
context through code skeletons, are used to finetune a bug
patch generation model. Similarly, VRepair [Chen et al.(2022)]
trains a vanilla Transformer to automatically repair security
vulnerabilities using transfer learning. The model is initially
pretrained on bug-fix pairs from GitHub and fine-tuned on

security vulnerability-fix pairs. VulRepair [Fu et al.(2022)]
builds on VRepair by replacing the vanilla Transformer with
a T5 [Raffel et al.(2020)] architecture with BPE tokenization.
TFix [Berabi et al.(2021)] is a transformer-based model that
fixes bugs found with a static analyzer. More recently, studies
have shown that Codex [Chen et al.(2021)] can also generate
patches to vulnerable code snippets [Pearce et al.(2021a)].
Similarly, [Prenner et al.(2022)] explored the viability of using
Codex in a zero-shot setting to fix bugs in the QuixBugs
benchmark [Lin et al.(2017)]. In this setting, Codex was indeed
able to generate bug fixes, although fix performance was
heavily dependent on the prompts fed to the model, which were
created manually. While the majority of the work is focused on
general bug fixing or vulnerability fixes, our work uses prompt
engineering for fixing performance bugs specifically.

C. Prompting and Prompt Engineering

With the rise of LLMs prompt engineering [Liu et al.(2023)]
has emerged as a process to come up with the best prompt
for a downstream task. A high quality prompt is often
necessary to elicit the correct response from a language model.
However, coming up with the optimal prompt is no trivial
task [Jiang et al.(2020)]. Prior work have explored various
prompt engineering approaches including manually engineering
suitable prompts [Petroni et al.(2019)], [Brown et al.(2020)],
few-shot prompting, and optimizing the ordering of prompt
examples [Lu et al.(2021)] among others. Similarly, con-
tinuous prompts have emerged as an automated prompt
learning approach [Li and Liang(2021)], [Liu et al.(2021)],
[Lester et al.(2021)]. Continuous prompts directly prompt the
embedding space of the model and usually require labeled data.
Our work uniquely contributes to prior work by introducing
a new prompt generation method called RAPGen, which
leverages a knowledge-base of instructions to guide the
generation of the prompt.

VIII. CONCLUSION

In this work, we presented Retrieval Augmented Prompt
Generation (RAPGen), a novel prompt engineering approach
for fixing performance bugs using LLMs. RAPGen uses past
performance fixes to construct a knowledge-base instructions
encoding the changes made within these fixes. When given a
code snippet with a performance issue and the corresponding
expensive line, RAPGen leverages this knowledge-base to
construct a prompt and generates fixes using LLMs in zero-shot.
Being zero-shot and entirely prompt-driven enables RAPGen
to leverage the capabilities of LLMs for Code without the
cost of fine-tuning. Our extensive empirical evaluation shows
that about 40% of the fixes produced by RAPGen match
the developer’s fix and in ∼60% of the cases, it is able to
generate a fix that is equivalent or better than the developer fix.
Our "in-the-wild" evaluation shows that the model is capable
of producing fixes for performance problems in real world
applications that are considered useful by developers. While
we only explored our approach for the task of performance
bug fixing, our knowledge-base creation and retrieval methods

10



are not specific to performance bugs and can be extended to
other types of bugs as well. We believe that our work uniquely
contributes to the area of prompt engineering, specially for
code-related downstream tasks.

REFERENCES

[sou(2018)] 2018. SourceLink. https://github.com/dotnet/sourcelink
[com(2019)] 2019. Conventional Commits. https://www.conventionalcommits.

org/en/v1.0.0/
[ope(2023)] 2023. Azure OpenAI Models. https://learn.microsoft.com/en-us/

azure/cognitive-services/openai/concepts/models
[cod(2023)] 2023. Code Optimizations. https://

techcommunity.microsoft.com/t5/azure-observability-blog/
announcing-the-public-preview-of-code-optimizations/ba-p/3824757

[Attariyan et al.(2012)] Mona Attariyan, Michael Chow, and Jason Flinn.
2012. X-ray: Automating {Root-Cause} Diagnosis of Performance
Anomalies in Production Software. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). 307–320.

[Austin and Flanagan(2012)] Thomas H. Austin and Cormac Flanagan. 2012.
Multiple Facets for Dynamic Information Flow. SIGPLAN Not. 47, 1
(jan 2012), 165–178. https://doi.org/10.1145/2103621.2103677

[Berabi et al.(2021)] Berkay Berabi, Jingxuan He, Veselin Raychev, and
Martin Vechev. 2021. Tfix: Learning to fix coding errors with a text-
to-text transformer. In International Conference on Machine Learning.
PMLR, 780–791.

[Bielik et al.(2017)] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2017.
Learning a static analyzer from data. In International Conference on
Computer Aided Verification. Springer, 233–253. https://doi.org/10.
48550/arXiv.1611.01752

[Brown et al.(2020)] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are
few-shot learners. Advances in neural information processing systems
33 (2020), 1877–1901.

[Chen et al.(2021)] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harrison Edwards, Yura Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Pet-
roski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol,
Igor Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew Carr, Jan
Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew M. Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever,
and Wojciech Zaremba. 2021. Evaluating Large Language Models
Trained on Code. ArXiv abs/2107.03374 (2021).

[Chen et al.(2019)] Yiqun Chen, Stefan Winter, and Neeraj Suri. 2019.
Inferring Performance Bug Patterns from Developer Commits. In 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 70–81.

[Chen et al.(2022)] Zimin Chen, Steve James Kommrusch, and Martin
Monperrus. 2022. Neural Transfer Learning for Repairing Security
Vulnerabilities in C Code. IEEE Transactions on Software Engineering
(2022), 1–1. https://doi.org/10.1109/TSE.2022.3147265

[Dean et al.(2014a)] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang,
Junghwan Rhee, Nipun Arora, and Geoff Jiang. 2014a. Perfscope:
Practical online server performance bug inference in production cloud
computing infrastructures. In Proceedings of the ACM Symposium on
Cloud Computing. 1–13.

[Dean et al.(2014b)] Daniel J. Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang,
Junghwan Rhee, Nipun Arora, and Geoff Jiang. 2014b. PerfScope:
Practical Online Server Performance Bug Inference in Production Cloud
Computing Infrastructures. In Proceedings of the ACM Symposium on
Cloud Computing (Seattle, WA, USA) (SOCC ’14). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.
1145/2670979.2670987

[Della Toffola et al.(2015)] Luca Della Toffola, Michael Pradel, and
Thomas R. Gross. 2015. Performance Problems You Can Fix: A Dynamic
Analysis of Memoization Opportunities. SIGPLAN Not. 50, 10 (oct 2015),
607–622. https://doi.org/10.1145/2858965.2814290

[Drain et al.(2021)] Dawn Drain, Colin B. Clement, Guillermo Serrato, and
Neel Sundaresan. 2021. DeepDebug: Fixing Python Bugs Using Stack
Traces, Backtranslation, and Code Skeletons. ArXiv abs/2105.09352
(2021). https://doi.org/10.48550/arXiv.2105.09352

[Fu et al.(2022)] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Trung Le,
Van Nguyen, and Dinh Phung. 2022. VulRepair: A T5-Based Automated
Software Vulnerability Repair. https://doi.org/10.1145/3540250.3549098

[Garg et al.(2022)] Spandan Garg, Roshanak Zilouchian Moghaddam, Colin B.
Clement, Neel Sundaresan, and Chen Wu. 2022. DeepDev-PERF: A
Deep Learning-Based Approach for Improving Software Performance
(ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 948–958. https://doi.org/10.1145/3540250.3549096

[Garg et al.(2021)] Spandan Garg, Roshanak Zilouchian Moghaddam, Neel
Sundaresan, and Chen Wu. 2021. PerfLens: a data-driven performance
bug detection and fix platform. In Proceedings of the 10th ACM SIGPLAN
International Workshop on the State Of the Art in Program Analysis.
19–24.

[Gayhardt(2019)] Lauryn Gayhardt. 2019. app insights overview. https://docs.
microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

[Iqbal et al.(2021)] Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali
Javidian, Baishakhi Ray, and Pooyan Jamshidi. 2021. CADET: De-
bugging and Fixing Misconfigurations using Counterfactual Reasoning.
https://doi.org/10.48550/arXiv.2010.06061

[Jiang et al.(2020)] Zhengbao Jiang, Frank F. Xu, Jun Araki,
and Graham Neubig. 2020. How Can We Know What
Language Models Know? Transactions of the Association
for Computational Linguistics 8 (07 2020), 423–438. https:
//doi.org/10.1162/tacl_a_00324 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf

[Jovic et al.(2011)] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth.
2011. Catch Me If You Can: Performance Bug Detection in the Wild.
SIGPLAN Not. 46, 10 (oct 2011), 155–170. https://doi.org/10.1145/
2076021.2048081

[Kim et al.(2013)] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun
Kim. 2013. Automatic patch generation learned from human-written
patches. In 2013 35th International Conference on Software Engineering
(ICSE). 802–811. https://doi.org/10.1109/ICSE.2013.6606626

[Lester et al.(2021)] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691 (2021).

[Lewis et al.(2020)] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoy-
anov, and Luke Zettlemoyer. 2020. BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880. https:
//doi.org/10.18653/v1/2020.acl-main.703

[Li and Liang(2021)] Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190 (2021).

[Lin et al.(2017)] Derrick Lin, James Koppel, Angela Chen, and Armando
Solar-Lezama. 2017. QuixBugs: A multi-lingual program repair bench-
mark set based on the Quixey Challenge. In Proceedings Companion
of the 2017 ACM SIGPLAN international conference on systems,
programming, languages, and applications: software for humanity. 55–
56.

[Liu et al.(2023)] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language
processing. Comput. Surveys 55, 9 (2023), 1–35.

[Liu et al.(2021)] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie
Qian, Zhilin Yang, and Jie Tang. 2021. GPT understands, too. arXiv
preprint arXiv:2103.10385 (2021).

[Lu et al.(2021)] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered prompts and where to
find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786 (2021).

[Luan et al.(2019)] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and
Satish Chandra. 2019. Aroma: Code recommendation via structural
code search. Proceedings of the ACM on Programming Languages 3,
OOPSLA (2019), 1–28. https://doi.org/10.1145/3360578

[Nistor et al.(2013)] Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Dis-
covering, reporting, and fixing performance bugs. 2013 10th Working

11

https://github.com/dotnet/sourcelink
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/concepts/models
https://techcommunity.microsoft.com/t5/azure-observability-blog/announcing-the-public-preview-of-code-optimizations/ba-p/3824757
https://techcommunity.microsoft.com/t5/azure-observability-blog/announcing-the-public-preview-of-code-optimizations/ba-p/3824757
https://techcommunity.microsoft.com/t5/azure-observability-blog/announcing-the-public-preview-of-code-optimizations/ba-p/3824757
https://doi.org/10.1145/2103621.2103677
https://doi.org/10.48550/arXiv.1611.01752
https://doi.org/10.48550/arXiv.1611.01752
https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1145/2670979.2670987
https://doi.org/10.1145/2670979.2670987
https://doi.org/10.1145/2858965.2814290
https://doi.org/10.48550/arXiv.2105.09352
https://doi.org/10.1145/3540250.3549098
https://doi.org/10.1145/3540250.3549096
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://doi.org/10.48550/arXiv.2010.06061
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1145/2076021.2048081
https://doi.org/10.1145/2076021.2048081
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/3360578


Conference on Mining Software Repositories (MSR) (2013), 237–246.
https://doi.org/10.1109/MSR.2013.6624035

[Olivo et al.(2015)] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static
detection of asymptotic performance bugs in collection traversals. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 369–378.

[Papineni et al.(2002)] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation of Machine
Translation. In Annual Meeting of the Association for Computational
Linguistics.

[Pearce et al.(2021a)] Hammond Pearce, Benjamin Tan, Baleegh Ahmad,
Ramesh Karri, and Brendan Dolan-Gavitt. 2021a. Examining Zero-
Shot Vulnerability Repair with Large Language Models. https:
//doi.org/10.48550/ARXIV.2112.02125

[Pearce et al.(2021b)] Hammond A. Pearce, B. Tan, Baleegh Ahmad, Ramesh
Karri, and Brendan Dolan-Gavitt. 2021b. Can OpenAI Codex and
Other Large Language Models Help Us Fix Security Bugs? ArXiv
abs/2112.02125 (2021).

[Petroni et al.(2019)] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian Riedel. 2019.
Language models as knowledge bases? arXiv preprint arXiv:1909.01066
(2019).

[Pialorsi and Russo(2007)] Paolo Pialorsi and Marco Russo. 2007. Introduc-
ing microsoft® linq. Microsoft Press.

[Prenner et al.(2022)] Julian Aron Prenner, Hlib Babii, and Romain Robbes.
2022. Can OpenAI’s Codex Fix Bugs?: An evaluation on QuixBugs. In
2022 IEEE/ACM International Workshop on Automated Program Repair
(APR). 69–75. https://doi.org/10.1145/3524459.3527351

[Raffel et al.(2020)] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu,
et al. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res. 21, 140 (2020), 1–67.

[Ren et al.(2020)] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and Shuai Ma. 2020.
CodeBLEU: a Method for Automatic Evaluation of Code Synthesis.
ArXiv abs/2009.10297 (2020). https://doi.org/10.48550/arXiv.2009.10297

[Song and Lu(2014)] Linhai Song and Shan Lu. 2014. Statistical debugging
for real-world performance problems. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications. 561–578. https://doi.org/10.1145/2660193.
2660234

[Tufano et al.(2020)] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy,
Shao Kun Deng, and Neel Sundaresan. 2020. Unit Test Case Generation
with Transformers. ArXiv abs/2009.05617 (2020). https://doi.org/10.
48550/arXiv.2009.05617

[Tufano et al.(2018)] Michele Tufano, Cody Watson, Gabriele Bavota, Mas-
similiano di Penta, Martin White, and Denys Poshyvanyk. 2018. An
Empirical Investigation into Learning Bug-Fixing Patches in the Wild
via Neural Machine Translation. In 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 832–837.
https://doi.org/10.1145/3238147.3240732

[Wei et al.(2022)] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain of Thought
Prompting Elicits Reasoning in Large Language Models. ArXiv
abs/2201.11903 (2022).

[Weimer et al.(2009)] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. 2009. Automatically finding patches using genetic
programming. In 2009 IEEE 31st International Conference on Software
Engineering. 364–374. https://doi.org/10.1109/ICSE.2009.5070536

[Wen et al.(2018)] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-
Chi Cheung. 2018. Context-Aware Patch Generation for Better Automated
Program Repair. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). 1–11. https://doi.org/10.1145/3180155.
3180233

[Wong et al.(2021)] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner,
and Claire Le Goues. 2021. VarFix: Balancing Edit Expressiveness and
Search Effectiveness in Automated Program Repair. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 354–366. https://doi.org/10.1145/3468264.3468600

[Xia and Zhang(2022)] Chunqiu Steven Xia and Lingming Zhang. 2022. Less
Training, More Repairing Please: Revisiting Automated Program Repair
via Zero-Shot Learning. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 959–971.
https://doi.org/10.1145/3540250.3549101

[Ye et al.(2021)] He Ye, Matias Martinez, Thomas Durieux, and Martin
Monperrus. 2021. A comprehensive study of automatic program repair
on the QuixBugs benchmark. Journal of Systems and Software 171
(2021), 110825.

12

https://doi.org/10.1109/MSR.2013.6624035
https://doi.org/10.48550/ARXIV.2112.02125
https://doi.org/10.48550/ARXIV.2112.02125
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.48550/arXiv.2009.10297
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.48550/arXiv.2009.05617
https://doi.org/10.48550/arXiv.2009.05617
https://doi.org/10.1145/3238147.3240732
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3468264.3468600
https://doi.org/10.1145/3540250.3549101

	Introduction
	Motivating Example
	Our Approach
	Code Transformation Knowledge-base
	Generating the Prompt
	Generating Fixes

	Empirical Evaluation
	Experimental Setup
	Comparing with Other Prompt Variants
	Comparison with State-of-the-art

	In-The-Wild Evaluation
	Experimental Setup
	Finding real world problems to fix
	Reaching out to developers

	Results

	Threats To Validity
	Related Work
	Automated Program Repair
	Neural Code Fix Generation
	Prompting and Prompt Engineering

	Conclusion
	References

