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We investigate the non-equilibrium dynamics of a Josephson coupled Jaynes-Cummings dimer in
the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electro-
dynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of
photonic Josephson oscillations and their regime of stability. Different types of transitions between
the dynamical states lead to the self trapping phenomenon, which results in photon population
imbalance between the two cavities. We also study the dynamics quantum mechanically to identify
characteristic features of different steady states and to explore fascinating quantum effects, such as
spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entan-
glement of spin qubits. For a particular ‘self trapped’ state, the mutual information between the
atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising
for generating photon mediated entanglement between two non interacting qubits in a controlled
manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits
phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss
the relevance of the new results in experiments, which can have applications in quantum information
processing and quantum technologies.

I. INTRODUCTION

Recent advancements in cavity and circuit quantum
electrodynamics (QED) have paved the way to study
the non-equilibrium dynamics in quantum systems [1–3],
apart from their potential application to quantum infor-
mation processing [2, 3]. Moreover, such atom-photon
interacting systems exhibit various fascinating phenom-
ena, some of which include quantum phase transition [4–
6], the onset of chaos [5], thermalization [7, 8], and the
formation of quantum scars [9, 10], which has attracted
significant interest in recent years. In addition, a range of
quantum effects associated with photons can also be ex-
plored, for example, the collapse and revival phenomenon
[11–13], formation of Schrödinger’s cat state [14–18] and
non-classical state of light [19–24]. Current experiments
have demonstrated that coupling atomic condensates to
the cavity mode can lead to fascinating phenomena like
the formation of super solid phase [25, 26] and non-
equilibrium transition [27]. It is also important to note
that photon loss and other natural processes are inher-
ent in the above mentioned systems [28, 29], which give
rise to various dissipative effects for sufficiently strong
dissipation [30–34]. In a single cavity, the atom-photon
interacting systems within a specific regime can be effec-
tively described by the Jaynes-Cummings [35] or Tavis-
Cummings model [36], depending on the number of atoms
in it. Moreover, coupling the cavities in an array opens
up the possibility to explore many body physics with light
matter interacting systems [1, 37–50], similar to the Hub-
bard model. A variety of these models can exhibit quan-
tum phase transitions, which have been explored theo-
retically [48, 51–56]. The simplest configuration of such
a many body system is the dimer of two coupled cavities
forming a Jaynes-Cummings Josephson junction (JCJJ),
which has been realized in circuit QED setup [57]. This
system can serve as a test bed to study various non-

equilibrium phenomena [57–59].

In the present work, we investigate the non-equilibrium
dynamics and the various associated quantum phenom-
ena in an atom-photon interacting system described by
JCJJ in the presence of Kerr nonlinearity [60–68]. An in-
sight into the overall dynamical behavior can be gained
from the semiclassical analysis, which is also useful for
identifying a variety of photonic Josephson oscillations
in the JCJJ and transitions between them. Interest-
ingly, this system exhibits a self-trapping phenomenon,
for which photons are dynamically localized in one of the
cavities [57–59, 69]. Apart from this, other self trapped
states also appear as a consequence of Kerr nonlinearity,
which we analyze in detail, focusing on their dynami-
cal origin and regime of stability. On the other hand,
in quantum dynamics, atoms and photons become en-
tangled, which gives rise to interesting quantum effects,
leading to the deviation from classical behavior. Addi-
tionally, the photon field can lose its coherence as a result
of phase fluctuation during the time evolution. It is a
pertinent issue to study the entanglement dynamics and
change in the state of photons due to the combined effect
of interaction and entanglement for different dynamical
states, as well as for a rapid quench to a dynamically un-
stable regime. We also demonstrate how the self-trapping
phenomena can be employed to control the photon medi-
ated correlation between the atomic qubits, which are
otherwise non interacting. Such dynamical manipula-
tion of entanglement between the qubits in the Jaynes-
Cummings dimer model can have potential applications
in quantum information processing.

The paper is organized as follows. In Sec.II, we de-
scribe the JCJJ model and analyze it semiclassically in
Sec.III to obtain different branches of Josephson dynam-
ics, their stability as well as transitions between them.
Quantum dynamics and its comparison with semiclassi-
cal steady states are presented in Sec.IV. Sec.V contains a
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detailed discussion on the quantum nature of the photon
field, particularly phase diffusion and revival phenom-
ena. In this section, we also investigate the entanglement
properties of the spin 1/2 atomic qubits corresponding
to the different steady states, as well as the signature of
phase space mixing of photons in the quench dynamics.
Finally, we summarize the results and conclude in Sec.VI.

II. THE MODEL

The Jaynes-Cummings Josephson junction formed by
coupling two cavities [57], can be described by the Hamil-
tonian,

Ĥ =
∑
i

[
Ĥ(i)

JC +
U

2
n̂i(n̂i − 1)

]
− J

(
â†LâR + h.c.

)
− µM̂

(1)
where, the site index i = L,R indicates the left and right
cavity, which are coupled by the Josephson coupling J .
Each cavity can be modeled by the Jaynes-Cummings
Hamiltonian,

Ĥ(i)
JC = ωn̂i + ω0σ̂

+
i σ̂

−
i + g

(
âiσ̂

+
i + â†i σ̂

−
i

)
, (2)

describing the interaction between an atom and single
mode cavity field with frequency ω, represented by the

annihilation (creation) operators âi(â
†
i ). The two level

atom with energy gap ω0 at each cavity is described

by the Pauli spin operators ⃗̂σi. The last term of Ĥ(i)
JC

describes the atom-photon interaction with strength g.
In addition, we consider the effect of Kerr nonlinearity
[60–68] in each cavity, represented by the second term
in Eq.(1), giving rise to the repulsive interaction of the
photon field with strength U . The JCJJ described by
the Hamiltonian in Eq.(1) preserves the U(1) symmetry
similar to the Jaynes-Cummings model [60], leading to
the conserved total excitation number,

M̂ =
∑

i=L,R

(n̂i + σ̂+
i σ̂

−
i ). (3)

In the grand canonical ensemble, the µ in Eq.(1) repre-
sents the chemical potential corresponding to the number
of excitations. Such a JCJJ has been realized in circuit
QED setup [57], where the strength of interactions and
the photon hopping amplitude can be tuned. Moving
forward, we will discuss the different Josephson oscilla-
tions of the JCJJ, described by the Hamiltonian in Eq.(1)
within the semiclassical method and compare them with
the quantum mechanical dynamics. Throughout the pa-
per, we use units such that ℏ, kB = 1 and have scaled the
energy (time) by J (1/J).

III. SEMICLASSICAL ANALYSIS

In this section, we study the dynamics of the JCJJ
governed by the Hamiltonian given in Eq.(1), using the

time dependent variational method [70]. The photons
and two level atoms in the cavities can be described semi-
classically by their respective coherent states [71], using
which we construct the following time dependent varia-
tional wavefunction,

|ψc(t)⟩ =
∏

i=L,R

|αi(t)⟩ ⊗ |θi(t), ϕi(t)⟩ . (4)

The coherent state of the cavity mode is given by,

|αi⟩ = exp
(
αiâ

†
i − α∗

i âi

)
|0⟩ (5)

where αi is the eigenvalue of âi, representing the photon
field classically. The wavefunction for the two level atoms
can be expressed as follows,

|θi, ϕi⟩ = cos(θi/2) |↑⟩+ sin(θi/2)e
iϕi |↓⟩ , (6)

where |↓⟩(|↑⟩) represents the ground (excited) state
and the canonically conjugate variables ϕi, zi =
cos θi describe the orientation of such a spin 1/2

system on the Bloch sphere, for which ⟨ ⃗̂Si⟩ =
S(sin θi cosϕi, sin θi sinϕi, cos θi) with S = 1/2. The
coherent state representation of the photon field is ap-
propriate for a large number of photons in each cav-
ity, giving rise to the substantial number of conserved
total excitations, that can be written semiclassically as
M =

∑
i |αi|2 +(1+ zi)/2. It is evident from the conser-

vation equation that the amplitude of the classical field
αi scales with

√
M . Therefore, for a large number of con-

served excitations, we define αi/
√
M =

√
ni exp(ιψi) =

(xi + ιpi)/
√
2, where, ni ∈ [0, 1] is the scaled photon

number, ψi represents its phase, and xi, pi are the corre-
sponding conjugate variables. In terms of the dynamical
variables x = {ni, ψi, zi, ϕi}, the Lagrangian scaled by
the total excitation number M can be written as,

L =
1

M
⟨ψc| i

∂

∂t
− Ĥ |ψc⟩

=
∑

i=L,R

[
−ψ̇ini +

η

2
ϕ̇izi − (ω − µ)ni −

η

2
(ω0 − µ)zi

− Ũ
2
n2i − g̃

√
ni

√
1− z2i cos(ϕi + ψi)

]
+2

√
nLnR cos(ψL − ψR), (7)

where η = 2S/M and the interaction strengths are scaled

as g̃ = g/
√
M , Ũ = UM . Note that, in general η =

2S/M for a large spin system with magnitude S, which is
considered to be small in the present case of the Jaynes-
Cummings model with S = 1/2 and M ≫ 1. From
the Euler-Lagrange equation d

dt

(
∂L
∂ẋ

)
− ∂L

∂x = 0 of the
dynamical variables x = {ni, ψi, zi, ϕi}, we obtain the
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following equations of motion (EOM),

ṅi = −g̃
√
ni

√
1− z2i sin (ϕi + ψi)

+2
√
nini sin (ψi − ψi) (8a)

ψ̇i = −(ω − µ)− g̃

2
√
ni

√
1− z2i cos (ϕi + ψi)

+

√
ni
ni

cos (ψi − ψi)− Ũni (8b)

ηϕ̇i = η(ω0 − µ)− 2g̃zi√
1− z2i

√
ni cos (ϕi + ψi) (8c)

ηżi = 2g̃
√
ni

√
1− z2i sin (ϕi + ψi) (8d)

where ī ̸= i. Conservation of the total excitation number
yields the constraint,

nL + nR +
η

2

(
zL + zR + 2

)
= 1. (9)

We solve Eq.(8) within the grand canonical ensemble,
where µ is fixed by the Eq.(9). However, in the limit
g̃ → 0, both the photon number and atomic inversion
become conserved individually and therefore, our formal-
ism can not be continued to this limit. Hence, we exclude
the regime of small g̃ from our discussion. First, we in-
vestigate the steady states corresponding to the fixed
point (FP) x∗ = (n∗i , ψ

∗
i , z

∗
i , ϕ

∗
i ) of the EOM given in

Eq.(8), for which ẋ = 0. Next, we perform the linear sta-
bility analysis around the steady states, describing the
evolution of small initial fluctuation δx(0) in the form
δx(t) = δx(0)eiω̃t and determine the frequency ω̃. The
stability of FPs is ensured if the Im(ω̃) = 0 and the ω̃
yields the small amplitude oscillation frequency around
the corresponding steady states. In the JCJJ, the sta-
ble steady states describe the different types of photonic
Josephson oscillations with the frequency that can be ob-
tained from the linear stability analysis mentioned above.
Next, we find the different possible steady states from
Eq.(8) and analyze their stability.

A. STEADY STATE ANALYSIS

In this subsection, we systematically investigate vari-
ous steady states obtained from the EOM in Eq.(8) and
analyze their stability as outlined above. As evident from
Eq.(8)(a,d), the steady states satisfy the conditions,

sin(ϕ∗i + ψ∗
i ) = 0 (10a)

sin(ψ∗
L − ψ∗

R) = 0, (10b)

which correspond to the phase relations ϕ∗i + ψ∗
i = 0, π

and ψ∗
L − ψ∗

R = 0, π, that is used to classify the steady
states. The relative phase of bosons ψ∗

L − ψ∗
R = 0(π)

equivalently describes the (anti)ferromagnetic spin con-
figuration of the cavities in the Sx-Sy plane, correspond-
ing to ϕ∗L − ϕ∗R = 0(π). We categorize the steady states

in these two classes, which are represented schematically
in Fig.1(a,b). Note that the transformations ϕ∗i → ϕ∗i +δ
and ψ∗

i → ψ∗
i − δ leave the steady state equations Eq.(8)

invariant as a consequence of the U(1) symmetry. This
results in a continuous set of FPs lying on circles in the
xi-pi and Six-Siy planes with corresponding radius

√
2n∗i

and
√

1− z∗2i /2, respectively (see Fig.1(a,b)). For a par-

(Ferromagnetic) (Anti-ferromagnetic)

* * * *(a) (b)

FIG. 1. Schematic diagram illustrating the spin orientations
of the various steady states in the Sx-Sy plane: (a) depicts
the steady states corresponding to the ferromagnetic class,
and (b) represents the steady states corresponding to the an-
tiferromagnetic class.

ticular class of spin configuration and a given value of η,
the steady states can be obtained in terms of {n∗i , z∗i }, by
solving Eq.(8)(b,c), subjected to the constraint in Eq.(9),
which conserves the total excitation. The steady states
thus obtained, can be categorized in terms of the rel-
ative photon population f = n∗R/n

∗
L, which we denote

as symmetric (f = 1) and self trapped (f ̸= 1), cor-
responding to equal and unequal photon population in
the cavities. Note that, once the photon population n∗i
is obtained, it also determines the atomic inversion z∗i ,

z∗i =
ξ2η(ω0 − µ)√

η2(ω0 − µ)2 + 4g̃2n∗i
. (11)

It is important to mention that the Hamiltonian given in
Eq.(1) remains invariant under the exchange of the de-
grees of freedom between the two cavities (âL ↔ âR and
ˆ⃗σL ↔ ˆ⃗σR), which indicates the discrete left-right sym-
metry between the cavities. The spontaneous breaking
of this symmetry can give rise to the self trapped state.
Next, we analyze the steady state equations graphically,
which provides a physical picture and qualitative behav-
ior of the steady states as well as the transitions [72, 73]
between them. For small values of η, from Eq.(9), the
total photon number can be approximately written as
n∗L + n∗R = 1− η, which yields,

n∗L =
(1− η)

1 + f
, n∗R =

f(1− η)

1 + f
. (12)

Using these relations, the steady state equations
Eq.(8)(b,c) can be reduced to a single effective equation
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in terms of the relative photon population f ,

Y(f) = ξ1(f − 1)− Ũ(1− η)

(
1− f

f + 1

)√
f

− ξ2g̃
2
√
f

(
1√

FL(f)
− 1√

FR(f)

)
= 0, (13)

where, Fi(f) = η2(ω0 − µ)2 + 4g̃2n∗i (f) and the discrete
variable ξ1 = cos(ψ∗

L − ψ∗
R) = ±1 describes the spin ori-

entation of two qubits while ξ2 = cos(ϕ∗i + ψ∗
i ) = ±1.

For small η, the chemical potential µ is given by,

µ = ω − ξ1
2

(√
f +

1√
f

)
+
Ũ

2
+
ξ2g̃

4

√
1 + f

(
1 +

1√
f

)
.

(14)

Note that, as a consequence of the left-right symmetry
between the cavities, Eq.(13) remains invariant under the
transformation f → 1/f , hence we only consider the
steady state solutions for f ∈ [0, 1]. The roots of Eq.(13)
yield the possible steady states for a given combination
of ξ1, ξ2, which we discuss below.

1. Ferromagnetic class (ψ∗
L − ψ∗

R = 0)

For the ferromagnetic orientation of the qubits, ξ1 =
+1 while the other variable can take two values ξ2 = ±1.
When ξ2 = −1, the equation Y(f) has only one root
for f = 1, describing a symmetric steady state corre-
sponding to the ground state configuration (Gs). On the
other hand, ξ2 = 1 is a more interesting scenario since it
gives rise to various non trivial steady states, as shown in
Fig.2(a,b). Similar to the previous case, f = 1 is always
a solution of equation Y(f) describing a symmetric state
with higher energy density (scaled by the total number of
excitation), which is denoted by FP-F. Interestingly, two
new solutions appear above a critical coupling strength,

g̃c1(Ũ) = 2 + 3

(
1 + Ũ

2

)4/3

η2/3 − η

2
, (15)

giving rise to two self trapped states, one of which is un-
stable, as seen from Fig.2(b). The FP with vanishingly
small relative photon population f ≈ 0 corresponds to a
stable perfect self trapped (PST) state [57, 58], describ-
ing a situation where almost all the photons are localized
in one of the cavities. As illustrated in Fig.2(a,b), such
self trapped states arise as a result of a saddle-node bi-
furcation occurring at g̃c1(Ũ), for which non vanishing
small parameter η plays a crucial role. The unstable self
trapped state STu (with larger value of f) undergoes a
subcritical pitchfork bifurcation with FP-F at the critical
point g̃c2(Ũ), which can be approximately written as,

g̃c2(Ũ) =
(√

8 +
√
2Ũ
)
−
(

3√
2
Ũ +

√
2

)
η, (16)

after which the symmetric state FP-F becomes unsta-
ble, as depicted in Fig.2(b). Now we focus on the steady
states corresponding to the anti-ferromagnetic spin con-
figuration.

FIG. 2. Graphical analysis of the function Y(f) to identify
different steady states and their bifurcations: (a) Identifica-
tion of the steady states from the roots of the function Y(f)
and (b) the steady state solutions in terms of f (see the text

for details) are shown as a function of g̃ for Ũ = 3, corre-
sponding to the ferromagnetic class (ξ1 = 1, ξ2 = 1). (c,e)
Graphical representation of Y(f) and (d,f) bifurcation dia-
gram of the FPs in terms of photon population imbalance
Zp for anti-ferromagnetic class (ξ1 = −1) corresponding to
ξ2 = ±1, respectively (see the main text), at g̃ = 1 for differ-

ent Kerr nonlinearity Ũ . The different markers in (a,c,e) indi-
cate the various steady states corresponding to the respective
classes. Solid (dashed) lines in (b,d,f) represent stable (un-
stable) steady states. Inset of (d,f) shows the behavior of Zp

as a function of g̃ for Ũ = 4, 1.5 respectively. Here and in rest
of the figures, we consider excitation number M = 30, equiv-
alently, η = 1/M , unless otherwise mentioned. The energy

E and interaction strengths g̃, Ũ are measured in the units of
hopping amplitude J . We set ℏ, kB = 1 and ω = ω0 = 2 for
all figures.
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2. Anti-ferromagnetic class (ψ∗
L − ψ∗

R = π)

For the anti-ferromagnetic class with ξ1 = −1, the
steady states at higher energies compared to the ground
state and the transitions between them are very intrigu-
ing where the Kerr nonlinearity Ũ plays a crucial role.
The other variable can take two values ξ2 = ±1, and we
discuss the corresponding steady states one by one.

ξ2 = 1 : In this case, a symmetric steady state denoted
by FP-π exists, which undergoes a pitchfork bifurcation
at a critical Kerr nonlinearity, as evident from Fig.2(c,d).
After the bifurcation, FP-π becomes unstable, giving rise
to a stable self trapped state ST1. This bifurcation is
indicated by the solid black line in Fig.3(b). This phe-
nomenon also occurs in the Bose-Josephson junction, in
absence of coupling to the spin (g̃ = 0) [74–77], which has
been detected experimentally [78, 79]. However, in the
present case, the critical Kerr nonlinearity also depends
on the coupling strength g̃, which is given by,

Ũc1(g̃) = 2 +
g̃√
2
+

(
2 +

3g̃

2
√
2

)
η, (17)

for small η. Unlike the perfect self-trapping, the relative
photon population imbalance between the two cavities,

Zp =
nL − nR
nL + nR

(18)

of the self trapped state ST1 increases continuously af-
ter the bifurcation and approaches to unity with increas-
ing Kerr nonlinearity Ũ , which is shown in Fig.2(d). In
contrast, the relative population imbalance Zp decreases
with increasing atom-photon coupling strength g̃ (see the
inset of Fig.2(d)), which serves as a characteristic feature
of this ST1 state for its identification. It is evident from
Eq.(11), for the self trapped state, the photon population
imbalance Zp leads to the atomic population imbalance,

Za =
|zR − zL|

2
, (19)

exhibiting similar behavior with coupling strength.
ξ2 = −1 : A similar type of phenomenon can also be

observed for ξ2 = −1. In this case, another symmetric
state FP-AF exists, which is energetically different from
FP-π but corresponds to the same anti-ferromagnetic
spin orientation. The symmetric state FP-AF undergoes
a pitchfork bifurcation at a critical strength of Kerr in-
teraction,

Ũc2(g̃) = 2− g̃√
2
+

(
2− 3g̃

2
√
2

)
η, (20)

which occurs only for g̃ ≲ 2. Above this critical coupling,
the FP-AF state becomes unstable, giving rise to a new
self trapped state denoted by ST2 (see Fig.2(e,f)). Unlike
ST1, this self trapped state loses its stability above a crit-
ical Kerr nonlinearity ŨI(g̃) (denoted by the black dashed
line in Fig.3(b)) without forming a new steady state, as

FIG. 3. Steady state phase diagram as a function of inter-
action strengths Ũ and g̃: (a) Ferromagnetic and (b) anti-
ferromagnetic class. Here, all the phase boundaries are ob-
tained numerically. The boundary of PST (dashed line)
and instability line of FP-F (dashed-dotted line) in (a) are
described approximately by g̃c1 and g̃c2, respectively, see
Eq.(15,16) of the main text. The bifurcation lines between
FP-AF, ST2 (dashed-dotted line) and FP-π, ST1 (solid line)

in (b) can be written approximately using Ũc1 and Ũc2, as
given by Eq.(17,20) in the main text. The ST2 state becomes

unstable outside the dashed line (ŨI(g̃)) without giving rise
to any new steady state. Note that, the small g̃ regime is kept
blank, since our formalism can not be continued to g̃ = 0 (see
the text for details).

shown in the bifurcation diagram given in Fig.2(f) for a
fixed coupling g̃. Thus ST2 can exist as a stable state
only in the range Ũc2(g̃) ≤ Ũ < ŨI(g̃) and for g̃ ≲ 2.
The relative photon population imbalance Zp for ST2

state increases and approaches unity as both the inter-
action strengths Ũ , g̃ increases (as depicted in Fig.2(f)).
This behavior is strikingly different from that of the ST1,
where Zp diminishes with g̃. Such qualitatively different
features can be employed to distinguish between the two
self trapped states ST1 and ST2 during quantum dynam-
ics, which we will discuss in the next section. Note that,
in addition to ST1 and ST2, other self trapped states can
also appear, exhibiting complicated scenarios, which we
prefer to leave out from the present discussion as they are
less relevant due to their existence within a small range
of parameters. Moreover, the signatures of these states
have not been found in quantum dynamics.

In the limit g̃ → 0, the steady states corresponding to
ξ2 = ±1 become almost identical (see Eq.(13)), with a
small difference of the order of η in the physical quanti-
ties. In this regime, both the self trapped states ST1 and
ST2 become practically identical. However, we exclude
the small g̃ regime from our discussion, as the formal-
ism can not be extrapolated to g̃ = 0, for which both
the atomic excitation and photon number are conserved
separately.

The plethora of steady states obtained from the above
analysis are summarized in the phase diagrams, de-
picted in Fig.3(a,b), separately for ferromagnetic and
anti-ferromagnetic classes, indicating their region of sta-
bility. Here, the phase diagrams are obtained by solving
the steady state equations exactly for a fixed value of η
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(a) (b)

(c) (d)

FIG. 4. Small amplitude oscillations of the different physical
quantities and their characteristic frequencies corresponding
to FP-π state: Dynamics of (a) photon number δnL(t) =
nL(t) − n∗

L, (b) atomic inversion δzL(t) = zL(t) − z∗L, sub-
tracted from their steady state values. The respective Fourier
spectra, δñL(ω̃)/δñL(ω̃0) and δz̃L(ω̃)/δz̃L(ω̃0), scaled by the
amplitude of the lowest frequency are shown in (c) and (d).
The lowest frequency ω̃0 obtained from the linear stability
analysis is present in both the quantities. Here and in the
remaining figures, time t and frequencies ω̃, ω̃0 are scaled by
1/J and J respectively.

(equivalently, a fixed number of excitations M). The nu-
merically obtained phase boundaries of the steady states
PST, FP-F, (shown in Fig.3(a)) and the transition lines
between FP-π to ST1 as well as FP-AF to ST2, (depicted
in Fig.3(b)) are in good agreement with the analytical re-
sults given in Eq.(15,16,17,20) for small values of η. The
appropriate parameter regimes can be identified from the
phase diagrams for observation of different dynamical be-
havior and transitions.

B. CLASSICAL DYNAMICS

To this end, we investigate the classical dynamics cor-
responding to the different steady states illustrated in
the phase diagram of Fig.3, which provides useful in-
formation about various photonic Josephson oscillations
and transitions between them. The time evolution is
performed by solving the EOM given in Eq.(8) numer-
ically for an appropriately chosen initial condition. In
general, if the initial condition is chosen close to a sta-
ble fixed point, the photon number and other physical
quantities oscillate around the steady state, with oscilla-
tion frequencies obtained from the linear stability anal-
ysis. We illustrate the oscillation around the symmetric
state FP-π by computing the deviation of photon number
δni(t) = ni(t)−n∗i and atomic inversion δzi(t) = zi(t)−z∗i
from the corresponding steady state values, which ex-
hibits small amplitude oscillation around zero, shown in
Fig.4(a,b). Numerically, the Fourier transform of the
time evolution of photon population and atomic inver-
sion yields the relevant frequencies present in the dynam-

(a)

(c)

(d)

(e)

(b)

FIG. 5. Classical phase portrait and variation of oscillation
frequency across the transition between FP-π and ST1 states:
Dynamics of photon field in xL-pL plane of left cavity corre-
sponding to the (a) stable regime with (g̃, Ũ) = (1.0, 1.5) and

(b) unstable regime with (g̃, Ũ) = (1.0, 6.5), of FP-π state.
The red (blue) trajectory in (b) is obtained by starting the
dynamics near the stable ST1 (unstable FP-π) state. (c) Time
evolution of the relative phase of photon ψr = ψL − ψR for
stable FP-π state. (d) Dynamics of the relative photon pop-
ulation imbalance Zp in the unstable regime of FP-π. The
colored lines carry the same meaning as in (b). (e) Variation
of the lowest frequency ω̃0 (of small amplitude oscillation)

with Ũ across the transition, for g̃ = 1. The black circles and
the solid lines denote the lowest frequency obtained from the
Fourier transform of the dynamics, and the linear stability
analysis, respectively.

ics. As observed from Fig.4(c,d), the lowest frequency ω̃0

obtained from the linear stability analysis of the steady
state FP-π corresponds to the highest amplitude of the
Fourier transform, indicating its dominant role in both
the photon and spin (atom) dynamics. However, as evi-
dent from Fig.4(d), the higher frequency modes also con-
tribute to the spin degree with small amplitude, resulting
in fast dynamics (see Fig.4(b)). Such dynamics around a
stable fixed point as depicted in Fig.4(a,b), usually lie on
an invariant KAM torus [80] with off resonant frequen-
cies. Consequently, a trajectory over a long duration of
time densely fills the region around the ring of FPs.

It is fascinating to study the dynamics across the bi-
furcation of the steady states, particularly the emergence
of the self trapped states. Here, we focus on the classical
dynamics across the pitchfork bifurcation of the symmet-
ric state FP-π to the self trapped state ST1, which occurs
by tuning the Kerr nonlinearity Ũ . Before the bifurca-
tion, since the stable FP-π is a symmetric state, we study
the dynamics of the photon field in x-p plane for one of
the cavities, depicted in Fig.5(a). As mentioned before,
due to the U(1) symmetry, the continuous FPs lie on a
circle in the x-p plane of the photon field (black line in
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(a) (b)

(c) (d)

FIG. 6. Classical dynamics around different self trapped
states: (a,b) Relative photon population imbalance Zp and
(c,d) atomic imbalance Za for the ST1 and ST2 states, respec-
tively, at different coupling strengths g̃. The Kerr interaction
strength for the dynamics of ST1 and ST2 are Ũ = 5 and
Ũ = 2, respectively. The horizontal lines with different line
styles indicate the classical steady-state values of both Zp as
well as Za.

Fig.5(a)). Ideally, the small amplitude dynamics is ex-
pected to be confined around one of the FPs, which only
occurs if we consider the initial condition for ϕ+ψ to be
the same as the value of the FPs, without any fluctua-
tion around it. However, for an arbitrary initial condition
around one of the FPs, the trajectory surrounds all the
fixed points on the ring, as depicted in Fig.5(a). As the
main characteristic feature of the FP-π mode, the rela-
tive phase of photons ψr = ψL−ψR oscillates around the
value π, which is shown in Fig.5(c). Above the critical

coupling Ũc1, FP-π becomes unstable, and depending on
the initial condition, the dynamics is attracted towards
one of the stable self trapped states. It is evident from
Fig.5(b) that the trajectory is repelled from the FP-π
state and attracted towards the ring of FPs correspond-
ing to the ST1 state. Consequently, the photon imbalance
Zp oscillates around a finite value corresponding to the
steady state (see Fig.5(d)). The signature of this transi-
tion can be observed from the oscillation frequencies of
FP-π and ST1 state, both of which vanish at the critical
coupling strength Ũc1, as evident from Fig.5(e). A simi-
lar phenomenon also occurs for the bifurcation of FP-AF
to ST2 state. Such behavior is similar to the mode soft-
ening phenomenon associated with the quantum phase
transition [81].

Next, we focus on the dynamics of the self trapped
states ST1 and ST2. As a distinguishing feature between
them, the relative photon population imbalance Zp de-
creases with increasing atom-photon coupling g̃ for ST1

(see Fig.6(a)) whereas it increases for ST2, as depicted
in Fig.6(b). Since the atomic inversion is directly re-

lated to the photon population in each cavity, as given
in Eq.(11), the relative photon population imbalance Zp

can also induce an atomic inversion imbalance, Za for the
self trapped states. The variation of Za with g̃ can also
distinguish between the two self trapped states ST1 and
ST2, exhibiting opposite behavior, which is illustrated in
Fig.6(c,d). However, its variation is small for the ST2

state as compared to that of ST1.
So far, we have analyzed the classical dynamics based

on a simplified description, neglecting the atom-photon
correlation. Hence, it is important to investigate the sig-
nature of such dynamical states in quantum dynamics
and the effect of atom-photon entanglement, which we
consider in the next sections.

IV. QUANTUM DYNAMICS

In this section, we study the full quantum dynamics of
the JCJJ and compare them with the classical dynamics
to investigate the effect of Kerr nonlinearity as well as
the atom-photon correlation. We evolve the initial state
|Ψ(0)⟩, with a fixed number of excitations M , within the
Schrödinger prescription, which is performed numerically
by truncating the basis up to a sufficiently large number
Nmax. To compare with classical dynamics, we choose
the initial state as the product of coherent states of pho-
tons and spins, described in Eq.(5,6) respectively which
represents the classical phase space point. To investi-
gate the signature of different branches of the dynamical
states, we time evolve the appropriately chosen initial
state and obtain the dynamics of different physical quan-
tities such as the population of photons and the atom
in different cavities as well their imbalance, characteriz-
ing those states. The parameters are also chosen from
the stability region of the corresponding states from the
phase diagram, given in Fig.3.
First, we study the dynamics of the symmetric states

FP-F and FP-AF corresponding to the ferromagnetic
and the anti-ferromagnetic classes respectively. To
characterize these states quantum mechanically, we ob-
tain the photon population imbalance, Zp = (⟨n̂L⟩ −
⟨n̂R⟩)/(⟨n̂L⟩ + ⟨n̂R⟩) where ⟨n̂i⟩ is computed from the
time evolved state |Ψ(t)⟩ starting from the initial coher-
ent state. For both FP-F and FP-AF states, we ob-
tain the time evolution of Zp and compare them with
that obtained from the classical dynamics, as shown in
Fig.7(a,b). It is clear from Fig.7(a,b) that the simple clas-
sical analysis is able to capture the full quantum dynam-
ics reasonably well, however, there are certain deviations
as t increases. To reveal the relative spin orientation in
the two cavities, we introduce the quantity

CLR =
⟨ŜLxŜRx + ŜLyŜRy⟩√(

1
4 − ⟨ŜLz⟩2

)(
1
4 − ⟨ŜRz⟩2

) , (21)

which in the classical limit takes the value -1(+1) cor-
responding to the (anti)ferromagnetic class of steady
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Comparison between quantum dynamics of the sym-
metric states FP-F and FP-AF: The small amplitude oscilla-
tion of the photon imbalance Zp around (a) FP-F, (b) FP-AF,
are compared with their respective classical dynamics (black
dashed lines). The spin orientations of these states are de-
scribed by CLR in (c,d) respectively. The spin trajectory in

the ⟨ŜLx⟩-⟨ŜLy⟩ plane of the left cavity is shown for (e) FP-F
and (f) FP-AF state. The black dashed circles in (e,f) repre-
sent the ring of classical FPs. The evolution of spins around
the FP-AF state exhibits dephasing phenomenon. Parameter
chosen: (g̃, Ũ)=(0.5, 0.5).

states. As shown in Fig.7(c,d), the quantum dynamics
of CLR also approaches these values for FP-F and FP-
AF, which is consistent with their classification based
on classical analysis. On the other hand, in quantum
dynamics, the correlation (entanglement) between spins
and photons gives rise to interesting effects leading to the
deviation from classicality. In the spin dynamics of the
FP-F state, the average values of the spin components
in the x-y plane evolve around a circle corresponding to
the classical FPs. Whereas for the FP-AF state, the spin
trajectory deviates from the ring of classical FPs and
spirals to the center corresponding to ⟨Ŝx⟩ = ⟨Ŝy⟩ = 0,
exhibiting spin dephasing phenomena [82], as seen from
Fig.7(f). Typically for spin 1/2 qubits, the classical de-
scription fails due to the enhanced quantum fluctuations
and entanglement with photons, which we analyze later.

Next, we investigate different types of self-trapping
phenomena from quantum dynamics. We search for a
perfect self trapped state, where almost all the photons
become localized in one of the cavities. It is evident
from the classical phase diagram that atom-photon in-
teraction is crucial for perfect self-trapping of photons.
For small Kerr nonlinearity, we identify the perfect self
trapped state quantum mechanically, for which the rela-
tive imbalance of photon Zp remains close to unity for a
sufficiently long time (see the red line in Fig.8(a)). How-
ever, for sufficiently large Kerr nonlinearity, the imbal-
ance becomes significantly lower than unity and decays

(a) (b)

FIG. 8. Quantum dynamics corresponding to the perfect self
trapped state PST: (a) Time evolution of the relative photon
population imbalance Zp for g̃ = 5 and different Kerr nonlin-
earity Ũ . The imbalance decays above a certain large value
of Kerr interaction strength. (b) Variation of the decay rate

Γ of the imbalance with Ũ .

with time, which is shown in Fig.8(a). The rate of ex-
ponential decay Γ can be obtained by numerically fitting
the time evolution of the imbalance. The variation of the
decay rate with Kerr nonlinearity exhibits an interesting
feature as it grows rapidly above certain Kerr nonlinear-
ity, which is depicted in Fig.8(b). This indicates that
sufficiently large Kerr nonlinearity induces an instability
in perfect self-trapping. Although, classically, the stable
perfect self trapped state exists for g̃ > g̃c1, the suffi-
ciently large Kerr nonlinearity gives rise to instability in

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Comparison between the quantum dynamics of the two
distinct self trapped states ST1 and ST2: The plots (a,c,e) and
(b,d,f) correspond to dynamics of various quantities around

ST1 and ST2 states for Ũ = 5 and Ũ = 2, respectively. Time
evolution of the (a,b) relative photon imbalance Zp and (e,f)
atomic imbalance Za, for different coupling strength g̃. (c,d)
Dynamics of the spin correlation function CLR at g̃ = 1.2.
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such a state during quantum dynamics.
We also analyze the self trapped states ST1 and ST2

of the anti-ferromagnetic class, shown in Fig.9(a,b). As
a characteristic feature of these states, we study the dy-
namics of the photon imbalance Zp for increasing val-
ues of atom-photon coupling strength g̃. As depicted
in Fig.9(a), for ST1, the imbalance decreases with g̃,
whereas, it increases for ST2 (see Fig.9(b)), which is con-
sistent with the classical analysis and can be used to dis-
tinguish between these two self trapped states. Since
both these states belong to the anti-ferromagnetic class,
during dynamics, the quantity CLR acquires a negative
value for both states, however, its deviation from the
classical value is large for ST2 (depicted in Fig.9(c,d)).
We also study the dynamics of the atomic imbalance
Za = |⟨ŜLz⟩ − ⟨ŜRz⟩|, which decreases with increasing
coupling strength g̃ for ST1, as shown in Fig.9(e), that is
in agreement with the classical analysis (see Fig.6). For
the ST2 state, the evolution of Za always saturates to a
very small value, exhibiting a weak variation with g̃ (see
Fig.9(f)), which is in stark contrast with the ST1 state.
The above analysis reveals that the deviation from classi-
cality is significantly large for the ST2 state as compared
to ST1. In spite of such quantitative differences, the main
features of the semiclassical steady states are observed in
the quantum dynamics.

It is worth mentioning that new effects in dynamics
can arise, since dissipation is inevitable in such systems,
specifically due to photon loss and spontaneous emission
from atoms, which can however be controlled by the ap-
propriate experimental setup [83–86]. For weak dissipa-
tion, it is expected that in JCJJ the photonic oscillations
corresponding to the symmetric states will be damped,
nevertheless, their signature can be detected from the
oscillation frequency. Similarly, the self-trapping phe-
nomenon can still be detected within its lifetime due to
a decay in the photonic imbalance. Even in the pres-
ence of dissipation, the self trapping phenomenon has
already been observed in different experimental setups
[57, 78, 87]. It is possible to stabilize the steady states
through the incoherent pumping processes, balancing the
photon loss [34, 59].

In addition to the characteristic features of the steady
states, it is crucial to investigate other quantum effects
manifested in the dynamics. These include the genera-
tion of entanglement between the qubit and the photonic
degree of freedom, as well as the quantum state of the
photon field, which we discuss in the next section.

V. ENTANGLEMENT AND QUANTUM
FLUCTUATIONS

The semiclassical formalism presented in Sec.III is
based on the product coherent state representation,
which is appropriate for describing the phase coherent
photonic Josephson dynamics. However, the presence
of interactions and Kerr nonlinearity can destroy such

(a) (b)

FIG. 10. Classical-quantum correspondence for the symmet-
ric states FP-F and FP-π: Quantum dynamics of the small
amplitude oscillation of the relative phase ψr = ⟨ψ̂L⟩ − ⟨ψ̂R⟩
of the photon field corresponding to (a) FP-F and (b) FP-π

states for the coupling strengths (g̃,Ũ)=(0.5,0.5). The black
dashed lines represent the classical dynamics around these
states.

coherent dynamics due to enhanced phase fluctuations,
which in turn gives rise to the deviation from classicality
due to a change in the nature of the quantum state. To
this end, we study the phase fluctuations of the photon
field by constructing the phase states [79, 88],

|ψm⟩ = 1√
Nmax + 1

Nmax∑
n=0

exp(inψm) |n⟩ (22)

with ψm = ψ0 +2πm/(Nmax +1), where m is an integer
m ∈ [0, Nmax] and ψm ∈ [−π, π]. These phase states are

eigenstates of the phase operator ψ̂, as given by,

exp
(
±iψ̂

)
|ψm⟩ = exp(±iψm) |ψm⟩ . (23)

The phase distribution corresponding to the photon field
in one of the cavities (i = L,R) is given by,

P(ψi
m) = Tr(ρ̂ip |ψm⟩ ⟨ψm|) (24)

with
∑

m P(ψi
m) = 1, where ρ̂ip is the reduced density ma-

trix corresponding to the photon field of the ith cavity,
obtained by tracing out the other degrees. The average
value and the fluctuation of the phase of the photon field
in each cavity can be computed from the phase distribu-
tion as,

⟨ψ̂i⟩ =
∑
m

ψmP(ψi
m) (25a)

(∆ψ̂i)
2 =

∑
m

(ψm − ⟨ψ̂i⟩)2 P(ψi
m). (25b)

Using the above prescription, we compute the mean

phase difference between the cavity modes ψr = ⟨ψ̂L⟩ −
⟨ψ̂R⟩ and its time evolution. The dynamics of the relative
phase of the photon modes for the symmetric FP-F and
FP-π states are shown in Fig.10(a) and (b) respectively,
which exhibit coherent oscillations around their steady
state values 0 and π. To quantify the degree of coher-
ence, we calculate the normalized phase fluctuation of
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photons (∆ψi)
2
N = (∆ψi)

2/(∆ψi)
2
max in one of the cav-

ities (i = L,R) where the maximum phase fluctuation
(∆ψi)

2
max = π2/3 corresponds to a uniform phase dis-

tribution [79]. For the FP-π state, the phase fluctua-
tion remains small during time evolution, as illustrated
in Fig.11(a), due to which the coherent phase oscillation
is retained. However, the phase fluctuation of the FP-π
state increases slowly, and after a sufficiently long time,
it approaches the maximum value. On the other hand,
an enhancement in the growth of phase fluctuation can
be observed for the self trapped state ST1, arising for
large Ũ , as seen from Fig.11(b). In general, the phase
fluctuation increases with Kerr nonlinearity, which is ev-
ident from the above comparison. Such enhanced phase
fluctuation during the time evolution is associated with
the broadening of the phase distribution, indicating the
deviation of the photon field from its classical represen-
tation in terms of the coherent state. Spreading of the
phase distribution of FP-π and ST1 states during time
evolution is apparent from Fig.11(c,d). Even though the
phase fluctuation attains its maximum value almost im-
mediately for the ST1 state, the appearance of dips in the
time evolution of (∆ψL)

2
N, as observed from Fig.11(b),

corresponds to the revival of the phase of the photon
field, which we discuss later.

Apart from the phase fluctuation, the entanglement
between the photon field and spins during the time evo-
lution gives rise to interesting quantum effects and de-
viation from classicality. Starting from the total density
matrix ρ̂ = |Ψ(t)⟩ ⟨Ψ(t)|, computed from the full wave-
function |Ψ(t)⟩, the reduced density matrix of a subsys-
tem (such as the spin/photon field of each cavity) can

(a) (b)

(c) (d)

FIG. 11. Phase diffusion dynamics: Time evolution of the
relative phase fluctuation (∆ψ)2N for (a) symmetric state FP-

π with (g̃, Ũ) = (1.0, 0.5) and (b) self trapped state ST1 for

(g̃, Ũ) = (1.0, 6.5). The horizontal dashed line indicates the
maximum value (∆ψ)2N = 1. (c,d) Snapshots of the corre-
sponding phase distributions at different times.

(a) (b)

(c) (d)

(e) (f)

FIG. 12. Entanglement entropy of the spin degree for vari-
ous dynamical states: Dynamics of the scaled entanglement
entropy SL of the spin in the left cavity corresponding to
(a) FP-F and (b) FP-AF for (g̃, Ũ) = (0.5, 0.5). Entangle-
ment entropy of the spins in both the cavities corresponding
to (c) ST1 state for (g̃, Ũ) = (0.5, 5.0) and (d) ST2 state for

(g̃, Ũ) = (1.2, 2.0). (e,f) Variation of the relative entangle-
ment entropy ∆S = SL − SR with coupling strength g̃ for
ST1 and ST2 states, respectively. The Kerr nonlinearity in
(e,f) is chosen the same as that in (c,d).

be obtained by integrating out the rest of the degrees of
freedom. Following this prescription, we compute the en-
tanglement entropy of the subsystem (corresponding to
the cavities) as,

Si = −
∑
l

λil log
(
λil
)

(26)

where, λil represents the eigenvalue with index l of the re-
duced density matrix corresponding to the subsystem de-
noted by i (for example, i = L,R is the cavity index). In
a similar manner, we can also compute the reduced den-
sity matrix and entanglement entropy SLR for the total
photon and spin degree separately. Ideally, Si vanishes
for product state, but due to atom-photon interactions,
the entanglement entropy increases during time evolu-
tion. We obtain the entanglement entropy Si of the spin
in each cavity, corresponding to the symmetric states FP-
F and FP-AF, which are compared in Fig.12(a,b). Unlike
the FP-F state, Si grows rapidly and saturates to its max-
imum value kB ln 2 for the FP-AF state, due to which the
spin dynamics deviates from the classical steady states,
exhibiting dephasing phenomenon (see Fig.7(f)), as dis-
cussed in Sec.IV.



11

(a) (b)

FIG. 13. Photon mediated correlation between the spins in the
different cavities for the ST1 state: The dynamics of (a) mu-
tual information I and (b) relative entanglement entropy ∆S
between the spins in the cavities for different Kerr strengths
Ũ . The saturation value of the photon population imbalance
Zp obtained after long time, corresponding to these values of
Ũ are mentioned in the figure. Here, we set g̃ = 1.

We also compare the entanglement entropy of spins
in both the cavities for the self trapped states ST1 and
ST2, which reveals contrasting features between them.
For ST2, the Si is almost the same for both the cavities
and saturates to the maximum value. On the contrary,
for ST1, the entanglement entropy is larger, correspond-
ing to the cavity containing more number of photons, as
seen from Fig.12(c,d). In addition, we also study the
difference between the entanglement entropy of spins in
the two cavities ∆S = SL − SR and their variation with
coupling strength g̃, as shown in Fig.12(e,f). For ST1

state, similar to the photon imbalance Zp, the saturation
value of ∆S decreases with increasing g̃, which is in stark
contrast to ST2 state, for which ∆S vanishes over time,
irrespective of the values of g̃. However, the timescale
at which ∆S vanishes exhibits a weak variation with g̃
within a small range. Such contrasting feature of entan-
glement dynamics of two qubits can also distinguish the
self trapped states ST1 and ST2.
Apart from the interaction induced entanglement be-

tween spins and photons in each cavity, two apparently
non interacting spins can also be entangled, which is me-
diated by photons. Such photon induced hidden correla-
tion between two spins can be analyzed from the mutual
information [89–94],

I = SL + SR − SLR, (27)

which reveals very interesting behavior for the self
trapped states. For the ST2 state, both ∆S and I are
very small, exhibiting almost no variation with interac-
tion strengths, which indicates that the reduced density
matrix corresponding to the two spins approaches to the
maximally mixed state [89]. On the other hand, in the
case of ST1, increasing the photon population imbalance
leads to an increase in ∆S, while the mutual informa-
tion I decreases, as evident from Fig.13. Such tunability
of quantum correlations between the two non interacting
spins in the cavities can have potential applications in
quantum information processing. Additionally, for the
ST1 state, the mutual information I exhibits dip and

spike like structure during the time evolution, as seen
from Fig.14(a). Such dips in the mutual information cor-
respond to the phase revival phenomenon [11–13, 95],
resulting in a sudden drop in phase fluctuation, as seen
in Fig.14(b). This revival cycle can be analyzed from the
evolution of the semiclassical phase space density of the
photon field, described by the Husimi distribution,

Q(α, α∗) =
1

π
⟨α| ρ̂pi |α⟩ , (28)

where ρ̂pi represents the reduced density matrix of the
photon field in the cavities. In order to compare the
Husimi distribution with the corresponding classical dy-
namics, we introduce the scaled phase space variables
xi = (αi + α∗

i )/
√
2M and pi = (αi − α∗

i )/i
√
2M , where

M represents the conserved total excitation number as-
sociated with the initial state. Initially, the density is
localized around one of the FPs, exhibiting the coher-
ent structure of the photon field. As time evolves, the
phase space density spreads over the ring of fixed points,
describing the loss of coherence and finally, it is recon-
structed at a point in the phase space when another dip
in (∆ψ)2N occurs, exhibiting the revival phenomenon (see
Fig.14(c)). Interestingly, in the middle of the cycle, the
phase space density splits and becomes localized around
two diagonally opposite phase space points. Although
such bimodal phase space distribution of photons resem-
bles that of a cat state [14–18, 60], they differ in terms

(a) (b)

(c)
1
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FIG. 14. Evolution of the quantum state and its signature in
the phase fluctuation and mutual information: Dynamics of
(a) mutual information I of the spins and (b) relative phase
fluctuation (∆ψL)

2
N of the photon field, corresponding to ST1

state. (c) Husimi distribution Q in the xL-pL plane of the
photon field at different time instances of the revival cycle,
marked in (a,b) by different symbols. The white dashed lines
in (c) represent the ring of FPs corresponding to the ST1

state. Parameter chosen: (g̃, Ũ) = (1.0, 6.5).
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FIG. 15. Quench dynamics under sudden change in the Kerr
nonlinearity Ũ : The initial state is prepared corresponding to
the stable FP-π state for Ũ = 0.5 before the quench. (a,c,e)
and (b,d,f) correspond to the dynamics after a quench to the

stable regime of FP-π with Ũ = 1.5 and unstable regime at
Ũ = 6.5, respectively. (a,b) the time evolution of the scaled
potential and kinetic energies, PE = mω⟨x̂2L⟩/2ℏM (red) and
KE = ⟨p̂2L⟩/2ℏmωM (blue), respectively. (c,d) depicts the dy-
namics of scaled photon number variance (∆nL)

2/⟨nL⟩. The
pink dashed line in (c,d) represents (∆nL)

2/⟨nL⟩ = 1, cor-
responding to the coherent state. (e,f) Husimi distribution
Q of the photon field in the left cavity at time t = 4. The
white dashed line in (e) represents the ring of steady states
corresponding to the FP-π state. Parameter chosen: g̃ = 0.5.

of their coherence property, which can be captured from
the Wigner function, as discussed in Appendix.A. Such
structure of phase space density is associated with the
appearance of a spike in the mutual information, as seen
from Fig.14(a).

The above analysis elucidates fascinating quantum ef-
fects and entanglement associated with the evolution of
the quantum state, corresponding to different dynamical
branches, which can also be relevant in the context of
quantum information processing. Such quantum effects
give rise to the deviation from classicality, nevertheless,
the qualitative behavior of the system can still be cap-
tured from the coherent state description. Apart from
the steady state dynamics, it would also be interesting
to investigate the evolution of the quantum state, partic-
ularly that of the photon field, when the system is driven
to the unstable regime.

Quench dynamics to unstable regime: Next, we inves-
tigate the quench dynamics corresponding to an abrupt
change in the Kerr nonlinearity Ũ , starting from the
initial coherent state corresponding to the stable FP-

π state. First, we consider a small change in Ũ , for
which the FP-π state remains stable. Under this sudden
change, the system still follows the stable FP-π branch,
exhibiting oscillations around it. After quench, the ini-
tial coherent state begins to move around the ring of
FPs, as depicted in Fig.15(e). During the time evolu-
tion, the wavefunction initially remains fairly localized
and then slowly spreads along the ring of FPs. As a
consequence, the scaled potential energy (PE) and ki-
netic energy (KE)

(
mω⟨x̂2i ⟩/2ℏM, ⟨p̂2i ⟩/2ℏmωM

)
of the

photon field in each cavity oscillate coherently, keeping
the average photon number fixed (see Fig.15(a)). More-
over, the photon phase fluctuation increases slowly and
finally saturates to its maximum value after a sufficiently
long time, while its phase space density remains localized
around the ring of FPs.
On the contrary, when the interaction strength Ũ

is quenched above the transition point where the π-
mode becomes unstable, the system exhibits incoherent
dynamics, dominated by large fluctuations, instead of
following any stable branch of the self trapped state.
After quenching, the photon field loses its coherence
rapidly, as the phase fluctuation attains the maximum
value (See inset of Fig.16(b)). Moreover, the scaled ki-
netic and potential energies approach the same steady
value, without exhibiting large amplitude oscillations (see
Fig.15(b)), analogous to the equipartitioning of energy.
In this regime, the reduced density matrix of the photon
field in each cavity exhibits a predominant contribution
from the diagonal elements. Simultaneously, the associ-
ated Husimi distribution spreads widely across the phase
space, revealing substantial fluctuations in photon num-
ber (∆ni)

2 = ⟨n̂2i ⟩ − ⟨n̂i⟩2 ≫ ⟨ni⟩, notably in contrast to
the initial coherent state for which (∆ni)

2 = ⟨ni⟩. The
entanglement entropy of the photon field grows linearly
with time and finally saturates, as seen from Fig.16(b).
Moreover, the reduced density matrix of the spins in two
cavities approaches the maximally mixed state. Such sce-
narios of quench dynamics to an unstable regime resem-
ble thermalization, which led us to compare the state of
the photon field with that of thermal gas.

The density matrix of the thermal photon gas is given
by [96],

ρ̂Th =

∞∑
n=0

⟨n̂⟩n

(1 + ⟨n̂⟩)1+n
|n⟩ ⟨n| , (29)

where ⟨n⟩ is the average number of photons. The cor-
responding Husimi distribution of thermal photons ex-
pressed in terms of the dimensionless classical variables
x, p takes the form of a symmetric Gaussian function,
which can be written as,

QTh =
1

π(1 + ⟨n⟩)
exp

(
− r2

2(1 + ⟨n⟩)

)
, (30)

where r2 = M(x2 + p2). For a comparison with the
thermal state, we obtain the angular averaged Husimi
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Quench to 
unstable regime

Thermal

FIG. 16. Comparison of the photon field with the thermal
state, after the quench to the unstable regime. (a) Angular
averaged Husimi distribution of the photon field in the left
cavity Q(rL) (solid red line) compared with the thermal dis-
tribution (black dashed line) at time t = 4. (b) Dynamics of
the entanglement entropy Sp

L of the photon field in the left
cavity. The entropy of the thermal state is marked by the
black dashed line. The inset of (b) shows the time evolution
of the relative phase fluctuation (∆ψ)2N, which saturates to
unity.

function Q(r) =
∫ 2π

0
Q(r, θ)dθ of the photon field after

the quench dynamics. Although the spread in the phase
space distribution is comparable to that of the thermal
state, their detailed structure differs, which is illustrated
in Fig.16(a). Notably, a peak appears in the phase space
distribution of the photon field near the ring of fixed
points. Interestingly, such a scenario indicates the re-
tention of memory of the underlying steady states, even
when they become unstable after quench, which is simi-
lar to scarring phenomena [9, 10, 97, 98]. Consequently,
the entanglement entropy Sp

L saturates to a slightly lower
value compared to the entropy of the thermal state, as
depicted in Fig.16(b).

The approach to a thermal state can be investi-
gated experimentally through non-equilibrium dynamics
of photon field in JCJJ by initially preparing identical
coherent states in both cavities with a total energy cor-
responding to the π mode. A subsequent quench to the
unstable domain of π mode can be performed by suitably
choosing the strength of Kerr nonlinearity or photon hop-
ping. Both the cavity and circuit QED can serve as ideal
platforms to achieve such tunable parameters [37, 67].
Moreover, the optomechanical systems can also be used
to generate Kerr nonlinearity in a controlled manner [68].
In this context, it is noteworthy that the thermalization
of the photonic gas has already been observed in ex-
perimental setups such as optical microwave resonators
[20, 99]. Apart from the coherence properties, such non-
equilibrium dynamics of the photon fields can also reveal
interesting phenomena, which can be probed in experi-
ments [25, 27].

VI. CONCLUSION

To summarize, we explore the non-equilibrium dynam-
ics of the Jaynes-Cummings dimer model in the presence

of Kerr nonlinearity, focusing on the quantum states of
photons as well as entanglement properties correspond-
ing to the different dynamical states. Within the semi-
classical approach, we systematically study the dynamics
to chart out a variety of steady states and their regime
of stability for different atom-photon coupling strengths
and Kerr nonlinearity. Moreover, the stability analysis
yields the frequency of photonic Josephson oscillation
that can be probed in experiments. The various branches
of dynamical states are categorized based on the rela-
tive spin orientation and photon population imbalance
between the cavities. Self trapped states with unequal
photon populations in the two cavities emerge as a con-
sequence of the different transitions. Apart from a per-
fect self trapped state, arising from a saddle-node bifur-
cation, we also identify two different self trapped states
for which the Kerr interaction plays an important role.
From quantum dynamics, we also observe the character-
istic features of different steady states obtained semiclas-
sically. However, interactions and atom-photon entan-
glement give rise to intriguing quantum effects, leading
to a deviation from classicality. In contrast to the clas-
sical motion, dephasing is observed in spin dynamics as
a result of relatively large quantum fluctuations in the
spin 1/2 qubits. During the time evolution, the state of
the photon field deviates from the initial coherent state
and gradually loses its coherence due to phase fluctua-
tion, which is typically enhanced by the Kerr nonlinear-
ity. Apart from the phase fluctuations, we identify a pe-
riodic revival phenomenon for the self trapped state, ex-
hibiting fascinating phase space structures of the photon
field, particularly the appearance of a bimodal density
distribution, resembling a cat state of the photon. In-
terestingly, photon mediated entanglement between the
two atomic qubits, which are otherwise non interacting,
makes JCJJ a promising candidate for quantum informa-
tion processing. Using mutual information, we demon-
strate how the quantum correlation between the atomic
qubits in the two cavities can be manipulated by changing
the photon population imbalance. Finally, we investigate
the quench dynamics starting from a stable steady state
to an unstable regime, which results in the formation of
an incoherent gas of photons spread over the phase space,
resembling a thermal state.

The Jaynes-Cummings dimer has already been real-
ized in a circuit QED setup [57], as well it can be engi-
neered by coupling the optical cavities [37, 39, 42]. The
signature of the self-trapping phenomena has also been
observed experimentally in micro-cavities [87], which is
promising for the observation of different types of pho-
tonic Josephson oscillations discussed in this work. The
Kerr nonlinearity can be realized in circuit QED [62, 67]
as well as in optical cavities [63–66], which is the key in-
gredient for the observation of various quantum phenom-
ena related to the steady states, such as the revival cycle
in self trapped regimes. A rich variety of collective phe-
nomena can also be observed in cavities containing many
atoms, which have been implemented in experiments by
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coupling the condensates of ultracold atoms with a cavity
mode [25–27].

Since dissipation is inherent in such atom-photon inter-
acting systems, they serve as an ideal platform to explore
out of equilibrium dissipative phenomena [30–34], which
has gained momentum due to recent experiments [28, 29].
Consequently, the dynamical states of JCJJ can acquire
a finite lifetime, primarily due to weak dissipation arising
from photon loss, which requires further investigation.

In conclusion, the Josephson coupled Jaynes-Cumming
dimer can serve as a test bed to study the fascinating
non-equilibrium phenomena, as well as manipulation of
entanglement between the two atomic qubits, which can
have potential applications in quantum information pro-
cessing.
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Appendix A: Comparison between the cat state and
dynamically generated bimodal distribution of

photons

Here, we present a comparison between the photonic
cat state and the bimodal phase space distribution of
photons, which appears during the revival cycle of the
self trapped (ST1) state, shown in Fig.14(c) of Sec.V. The
Husimi distribution corresponding to this photonic state
in a particular cavity exhibits sharply peaked densities at
the diametrically opposite points in phase space, which
resembles the probability distribution of a cat state [14–
18, 60] given by,

|ψcat⟩ =
|α⟩+ |−α⟩√
2(1 + e−2|α|2)

, (A1)

where the density is peaked at the two phase space points
α,−α. Although the cat state is a superposition of two
coherent states, their interference effect in the probability
distribution almost disappears when they are far apart

in phase space with |α|2 ≫ 1. On the other hand, the
Wigner function of the cat state reveals the interference
pattern at the center, as seen in Fig.17(b).
In contrast, the Wigner function of the density ma-

trix representing the dynamical state of the photons in
a particular cavity does not exhibit any interference pat-
tern. Nevertheless, it is localized at two diagonally oppo-
site points in the phase space, similar to a cat state (see
Fig.17(a)). Furthermore, the reduced density matrix of
the photon field in each cavity represents a mixed state,
as well as the phase fluctuation approaches close to its
maximum limit (See Fig.14(b)). Consequently, due to
the lack of coherence, such a dynamical state of the pho-
tons can not be described by a simple linear combination
of two coherent states similar to the cat state. Instead,
this photonic state closely resembles an incoherent mix-
ture of two coherent states represented by the density
matrix,

ρ̂mi =
|αi⟩ ⟨αi|+ |−αi⟩ ⟨−αi|

2
, (A2)

which exhibits the bimodal phase space distribution
without any interference pattern (see inset of Fig.17(b)).

0.00

0.04

0.08

0.12

(a) (b)

FIG. 17. Distinguishing the dynamical state of the photon field
from the cat state in terms of the Wigner function: The dis-
tribution (a) corresponds to the quantum state representing
the photon field in the left cavity in the middle of the phase
revival cycle (at a time marked by a square in Fig.14 of the
main text) and (b) the cat state given in Eq.(A1). The inset
of (b) represents the Wigner function of the mixed density
matrix ρ̂mL given in Eq.(A2), which does not show any coher-
ent oscillation between the two peaks, unlike the cat state.
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Pelster, Phys. Rev. A 92, 063832 (2015).
[35] E.T. Jaynes, F.W. Cummings, Proc. IEEE. 51 (1):

89–109 (1963).
[36] M. Tavis and F. W. Cummings, Phys. Rev. 170, 379

(1968).
[37] M. Hartmann, F. G. S. L. Brandão and M. B. Plenio,

Nature Phys 2, 849–855 (2006).
[38] A. Greentree, C. Tahan, J. Cole et al., Nature Phys 2,

856–861 (2006).
[39] G. Lepert, M. Trupke, M. J. Hartman, M. B. Plenio, and

E. A. Hinds, New J. Phys. 13, 113002 (2011).
[40] Michael J. Hartmann, J. Opt. 18, 104005 (2016).
[41] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299

(2013).

[42] D. L. Underwood, W. E. Shanks, Jens Koch and A. A.
Houck, Phys. Rev. A 86, 023837 (2012).

[43] P. Leboeuf and S. Moulieras, Phys. Rev. Lett. 105,
163904 (2010).

[44] L. Dominici, R. Carretero-González, A. Gianfrate et al.,
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Houck, Phys. Rev. X 4, 031043 (2014).
[58] S. Schmidt, D. Gerace, A. A. Houck, G. Blatter, and H.
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[64] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[65] H. Rokhsari and K. J. Vahala, Opt. Lett. 30, 427 (2005).
[66] S. Rebic, S. M. Tan, A. S. Parkins, and D. F. Walls, J.

Opt. B 1, 490 (1999).
[67] M. Kounalakis, C. Dickel, A. Bruno, N. Langford, and

G. Steele, npj Quantum Inf. 4, 38 (2018).
[68] Z. R. Gong, H. Ian, Yu-xi Liu, C. P. Sun, and F. Nori,

Phys. Rev. A 80, 065801 (2009).
[69] H. Shapourian and D. Sadri, Phys. Rev. A 93, 013845

(2016).
[70] P.A.M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930); J. Frenkel, Wave Mechanics, Claredon Press, Ox-
ford, 1934.

[71] J. M. Radcliffe, J. Phys. A: Gen.Phys., 4, 313 (1971).
[72] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J.

Young, J. R. K. Cline, A. M. Rey, and J. K. Thomp-
son, Nature 580, 602 (2020).

[73] S. A. Weidinger, M. Heyl, A. Silva, and M. Knap, Phys.
Rev. B 96, 134313 (2017).

[74] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy,
Phys. Rev. Lett. 79, 4950 (1997).

[75] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy,

http://arxiv.org/abs/1710.03179


16

Phys. Rev. A 59, 620 (1999).
[76] E. Boukobza, M. Chuchem, D. Cohen, and A. Vardi,

Phys. Rev. Lett. 102, 180403 (2009).
[77] E. Boukobza, M. G. Moore, D. Cohen, and A. Vardi,

Phys. Rev. Lett. 104, 240402 (2010).
[78] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cris-
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