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Abstract

We consider a coupled Pólya’s urn scheme for social dynamics on net-
works. Agents hold continuum-valued opinions on a two-state issue and
randomly converse with their neighbors on a graph, agreeing on one of the
two states. The probability of agreeing on a given state is a simple func-
tion of both of agents’ opinions, with higher importance given to agents
who have participated in more conversations. Opinions are then updated
based on the results of the conversation. We show that this system is
governed by a discrete version of the stochastic heat equation, and prove
that the system reaches a consensus of opinion.

1 Introduction

1.1 Statement of Problem and Result

LetG = (V, E) be a simple, connected graph, with each vertex i ∈ V representing
an individual agent. In our model of opinion propagation, agents discuss an
issue with their neighbors, each conversation resulting randomly in either an
agreement on state U or an agreement on state V . If two learners agree on
state U or V , both of the learners increase their propensity to prefer state U or
V , respectively, in the future. We make this precise in the following discussion.

For every vertex i ∈ V and timestep t ∈ N∪ {0}, let the weights (uit, v
i
t) ≥ 0

represent the propensities of vertex i for U and V , respectively, at time t. For
ease of notation, we write (~ut, ~vt), where ~ut, ~vt ∈ RV have components (uit)i∈V
and (vit)i∈V . For convenience, we define the total weight of vertex i and the
fraction of that total weight stored in state U to be

git := uit + vit

xit :=
uit
git
,

respectively. We consolidate notation with ~gt and ~xt, similarly to the above.
We enforce the initial conditions (~u0, ~v0) to be such that ui0 + vi0 =: gi0 > 0 for
all i, and we define ~γt to be a vector with ~γit := 1

git
for later convenience.
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The dynamics are as follows: at every timestep t ≥ 1 choose a random edge
e = (i, j) ∈ E . Increment (only) each the two g values:

git = git−1 + 1

gjt = gjt−1 + 1

with all other gkt = gkt−1 unchanged for k /∈ {i, j}. Define:

pet :=
uit + ujt

git + gjt
=
xitg

i
t + xjtg

j
t

git + gjt
,

as the pooled opinion of agents i and j, and let pet−1 give the probability of i
and j agreeing on state U at time t, given that edge e is chosen at time t. If the
chosen i and j agree on state U, increment each of their u values:

uit = uit−1 + 1

ujt = ujt−1 + 1.

If they agree on opinion V , do not alter the u-values. All other ukt = ukt−1 for
k /∈ {i, j} remain unchanged regardless of the outcome of the conversation along
edge e.

We show that the dynamics of the system are governed by a discrete, stochas-
tic version of the heat equation, with an ”influence matrix” L driving the prop-
agation of opinions. The influence matrix acts like the graph Laplacian, but
gives higher weight to vertices which have high degree, which have more conver-
sations on average and therefore develop strong opinions more rapidly. Similarly
to the graph Laplacian, the influence matrix has right-eigenvector ~1 (the |V|-
dimensional vector with each component equal to 1); let at be the coordinate
of ~xt corresponding to ~1 with respect to a fixed, generalized eigenbasis of L
(discussed below). We will refer to at as the consensus coordinate.

The goal of this paper is to prove the following theorem, which states that
a consensus of opinion is reached in the long-time limit.

Theorem 1.1. There exists a random scalar 0 ≤ a∞ ≤ 1 such that

E[‖~xt − a∞~1‖2]
t→∞−−−→ 0

1.2 Related Work

A similar class of frameworks for opinion propagation, called voter models, also
feature randomly selected pairs of agents exchanging opinions. For example,
in the Deffuant model, pairs of neighbors interact only when their opinions
are within some threshold of one another, with consensus and/or polarization
being driven by threshold size ([1]). Another example of a voter model is the
Hegselmann-Krause model, in which an agent is randomly selected to have their
opinion replaced by some determinstic function of their neighbors’ opinions ([2]).
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The model presented in this paper could perhaps be considered a stochastic
voter model (stochastic in the sense that outcomes of conversations are random).
A unique property of this model, however, is the pooled-experience nature of
conversations, resulting in influences between agents which are random and dy-
namic, but which tend towards a graph-dependent object (the influence matrix).
It should also be noted that this model features continuous opinions (xit ∈ [0, 1])
with discrete actions (agents agree on either U or V ); different combinations of
opinion and action spaces are featured throughout the literature.

This model can also be compared to the DeGroot model for learning, in which
updates are made according to some constant ’trust matrix’ T : ~xt+1 = T~xt ([3]).
The trust matrix can represent how much each agent trusts their neighbors as
well as themself, giving a weighted average of their neighbors’ beliefs and their
own prior opinions. Other, similar models of opinion propagation have been
studied, considering the effects of agents’ self-confidence and network topol-
ogy on long-term behavior ([4, 5, 6, 11]). Yet another related class of models
for opinion propagation are ’probabilistic fuzzy models’ which include agents’
perceptions of some exogenous, albeit ’fuzzy’ (the exact state is unclear) vari-
ables ([12]). We finally note that much of the literature on opinion propagation
focuses on simulation-based studies, while rigorous proofs are less common.

1.3 Outline of Paper

The rest of the paper proceeds as follows. In Section 2, we derive the fact that
the behavior of xt is governed by a discrete-time stochastic heat equation, and
give some important properties of the (stochastic) Laplacian operator driving
the diffusion. In Section 3, we prove convergence of the consensus coordinate of
~xt, and in section 4, we prove the decay of ~xt−at~1 (the disagreement component).
In Section 5, we give a proof of Theorem 1.1, and in Section 6, we provide a
conjecture that may lead to future work.

2 Stochastic Heat Equation

2.1 Preliminaries

At each timestep, an edge is randomly selected to host a ’conversation’ be-
tween its two vertices. The following heuristic is equivalent and useful: let all
edges have conversations, and uniformly at random select one edge to actually
contribute to the dynamics.

Let Ωt = {ωet }e∈E ∈ {0, 1}E be the results of all conversations occuring at
timestep t, with ωet = 1 if opinion U is agreed on, and 0 otherwise. Similarly, let
ψt ∈ E be the edge chosen at time t, and let Set = 1{ψt=e}. Define the filtrations

H1 ⊂ H2 ⊂ H3 ⊂ ...
G1 ⊂ G2 ⊂ G3 ⊂ ...
F1 ⊂ F2 ⊂ F3 ⊂ ...,

3



where Ht = σ(Ωt,Ωt−1, ...,Ω1) corresponds to the information received up
to and immediately after discussions in the tth round, Gt = σ(ψt, ψt−1, ..., ψ1)
corresponds to the information received given all of the chosen edges up to and
including time t, and let Ft = σ(Ht,Gt, ...,H1,G1). Note that Ωt ∈ m(Ht), but
Ωt+1 /∈ m(Ht). Since ψt does not care about the previous edges chosen or the
results of any concurrent or previous conversations, we let σ(ψt) be independent

of σ(Ft−1 ∪ Ht). Furthermore, for e 6= f, we let ωet and ωft be conditionally
independent given Ft−1 (they are not fully independent, since they are both
affected by the history of conversations over the network). Define the full sample
space and sigma-algebra to be

Ω×Ψ :=
(
{U, V }E

)N × EN
F := σ

(
∪t∈N Ft

)
.

Using the notation established above, we have the following update rule for g
and u:

git+1 − git :=
∑
e�i

Set+1

uit+1 − uit :=
∑
e�i

Set+1ω
e
t+1,

where e� i means that edge e is incident to vertex i, and we are summing over
all such edges.

Decompose ωet into a Ft−1-measurable random variable and a mean-0 σ(Ft−1,Ht)-
measurable fluctuation:

ωet = pet−1 + w̃et ,

so that

w̃et =

{
1− pet−1 with probability pet−1
−pet−1 with probability 1− pet−1.

Let wit :=
∑
e�i w̃

e
tS

e
t . From here forward, we will use the notation Et[Z] :=

E[Z|Ft] to represent conditional expectation with respect to the sigma-algebra
Ft. Note that

Et−1[wit] =
∑
e�i

E[w̃etS
e
t |Ft−1]

=
∑
e�i

E
[
E[w̃etS

e
t |σ
(
Ft−1 ∪Ht

)
]|Ft−1

]
=
∑
e�i

E
[
w̃etE[Set |σ

(
Ft−1 ∪Ht

)
]|Ft−1

]
=

1

|E|
∑
e�i

E
[
w̃et |Ft−1

]
= 0,
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where in the second, third, and fourth equalities we’ve used the tower property,
’taken out what was known’, and used that Set ⊥ σ(Ft−1 ∪Ht), respectively.

For later convenience, we present here a consolidated list of definitions of
important quantities, and the earliest sigma-algebra F with respect to which
they are measurable:

Definition 1 (Important Quantities).

• Total weight: git ∈ mFt, γit = 1
git

• Weight on opinion U : uit ∈ mFt

• Proportion of weight on U : xit =
uit
git
∈ mFt

• Initial conditions: ui0, g
i
0 > 0

• Mutual weight on U : pet =
uit+u

j
t

git+g
j
t

∈ mFt, where e = (i, j)

• Mean-0 fluctuation of conversation result: w̃et ∈ mFt

• Result of conversation: ωet = pet−1 + w̃et ∈ mFt

• Edge to play: ψt ∈ mFt, Set = 1{ψt=e} ∈ mFt

We now define a Hadamard (elementwise) product between a vector and a
matrix. Unless otherwise noted, the symbol ‖ · ‖ will refer to the Euclidean
norm for vectors, and the operator norm between Euclidean vector spaces for
matrices. We carry this convention through the end of the paper.

Definition 2 (Hadamard Product). The left-Hadamard product between an
m-dimensional row vector b and (m × n) matrix A is a (m × n) matrix with
entries given as follows:

(b ◦L A)ij := biAij .

Similarly, the right-Hadamard product between an n-dimensional column vector
and (m× n) matrix A is an (m× n) matrix with entries as follows:

(A ◦R b)ij = Aijbj .

We will omit subscripts L and R when it is clear from the context what is
meant. It can readily be shown that the Euclidean norms are sub-multiplicative
with respect to the right-Hadamard product. For an m × n matrix A and an
n-column vector b,

‖A ◦ b‖ ≤ ‖A‖‖b‖.

and similarly for left-products. Another important property of Hadamard mul-
tiplication is its associativity with matrix multiplication. For an (m×n) matrix
A1, an n× p matrix A2, and an n−column vector b,

A1(bT ◦L A2) = (A1 ◦R b)A2.
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2.2 Deriving the Stochastic Heat Equation

Fix an arbitrary vertex i ∈ V . We now consider the quantity uit+1 − uit, which
represents the increase in the propensity of vertex i to play move u after timestep
t+ 1.

uit+1 − uit =
∑
e�i

Set+1ω
e
t+1 =

∑
e�i

Set+1

(
pet + w̃et+1

)
We use the equation above to write down the change in xi between timesteps t
and t+ 1:

xit+1 − xit =
uit+1

git+1

− uit
git

=
1

git+1

(
uit+1 − uit −

git+1 − git
git

uit

)
=

1

git+1

(∑
e�i

Set+1

(
pet + w̃et+1

)
− (git+1 − git)xit

)
=
wit+1

git+1

+
1

git+1

([∑
j∼i

Sijt+1

xitg
i
t + gjtx

j
t

git + gjt

]
− (git+1 − git)xit

)
=

1

git+1

(
wit+1 +

(
Lt~xt

)i)
,

where Lt is defined as follows:

Definition 3 (The Diffusion Matrix). The diffusion matrix Lt ∈ mFt+1 is
a |V| × |V| matrix with entries:

Lijt =


Sijt+1

gjt
git+g

j
t

i 6= j, i ∼ j

−
∑
j∼i S

ij
t+1

gjt
git+g

j
t

i = j

0 else

We also define Λt ∈ mFt+1 to be a |V| × |V| matrix as follows:

Λt = I + γTt+1 ◦ Lt.

Note that Lt will have exactly four non-zero entries, and takes the following
form: 

0 · · · · · · · · · · · · · · · 0
...

. . . · · · · · · · · · · · ·
...

... · · · −a · · · a · · ·
...

... · · · · · ·
. . . · · · · · ·

...
... · · · b · · · −b · · ·

...
... · · · · · · · · · · · ·

. . .
...

0 · · · · · · · · · · · · · · · 0


for some a, b > 0.
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Although Lt is sparse, its expectation given the previous timestep, Et[Lt],
is worthy of mention. It represents the aggregate effects after many rounds of
conversations:

Et[Lt]ij =


1
E

gjt
git+g

j
t

i 6= j, i ∼ j

− 1
E
∑
j∼i

gjt
git+g

j
t

i = j

0 else.

We also note that each git−gi0 is a binomial random variable with mean equal
to tdiE , where di is the degree of vertex i. We thus expect the leading order terms
of Et[Lt] to look like 1

E times the following influence matrix, a graph dependent
constant, defined below. BREAK

Definition 4 (Influence Matrix). The influence matrix L is a |V|×|V| matrix
with entries:

Lij =


dj/di
di+dj

i 6= j, i ∼ j
−
∑
j∼i

dj/di
di+dj

i = j

0 else.

We also define At to be a |V| × |V| matrix as follows:

At = I +
1

t
L

The influence matrix corresponds to the graph Laplacian matrix for the
weighted, directed graph I(G) :=

(
V, I(E)

)
, where (i, j) ∈ E ⇐⇒ (i, j), (j, i) ∈

I(E), and the edge weight from j to i is defined to be Lij (see Figure 1). Note
that edge weights from j to i are high when dj is large relative to di. We think
of j as having more ’influence’ than i in this case.

With these definitions in place, we present the Stochastic Heat Equation
(abbreviated SHE), derived above:

Proposition 1 (Stochastic Heat Equation). We present the differential form
of the Stochastic Heat Equation (SHE):

∂txt = γTt ◦ (Lt−1~xt−1 +Wt),

and its solution:

~xt =

t∑
j=0

[Πt−1
k=jΛk](γTj ◦Wj)

where ∂t~xt := ~xt − ~xt−1 and ~W0 := ~u0.
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(a) G

1 2 3
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3

1
6

1
6

2
3

(b) I(G)

Figure 1: A graph G and the directed, weighted graph I(G) associated to G

Throughout the paper, we will use the convention that Π- products of ma-
trices have older matrices to the right, for example:

Πt
k=1Λk = ΛkΛk−1 · · · Λ2Λ1.

As intuition may suggest, the steady-state solution to the above heat equa-
tion is consensus: all xit will converge to the same (random) constant. At the
heart of this idea is the Perron-Frobenius Theorem, which says that the eigen-
vector ~1 of I+L which represents consensus has strictly dominant eigenvalue 1.
We first state the Perron-Frobenius theorem for nonnegative matrices (Lemma
2.1), along with another necessary technical ingredient (Lemma 2.2).

Lemma 2.1. [13, 14] Let M be a square, nonnegative, irreducible, primitive
matrix (i.e., there exists k > 0 such that Mk > 0 elementwise) with spectral
radius ρ. Then the following hold:

• ρ is an algebraically simple eigenvalue of M , and the corresponding nor-
malized eigenvector ~v is unique and positive

• Any nonnegative eigenvecor of M is a multiple of ~v

• All other eigenvalues of M have absolute value strictly smaller than ρ

Lemma 2.2. [15] Let M be an n× n matrix, and define Γ(M) to be a digraph
with vertex set V = {1, ..., n} and directed edge set E = {(i, j) : Mij 6= 0}. If
Γ(M) is strongly connected, and every vertex i of Γ(M) has a self-loop, then M
is primitive.

Having stated the above two ingredients, we now apply Perron-Frobenius to
our system in the lemma below.
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Lemma 2.3. For all k ≥ 1, 1 is a simple eigenvalue of Ak := I + 1
kL. Fur-

thermore, there exists 0 < λ < 1 such that for all k ≥ 1, and for all eigenvalues
λ(k) 6= 1 of Ak:

|λ(k)| ≤ 1− λ

k
.

Proof. First notice that, for each row i and for all times t,
∑
j L

ij =
∑
j(~γ

T
t+1 ◦

Lt)
ij = 0. From this it immediately follows that 0 is an eigenvalue of both

matrices with corresponding right-eigenvector

~1 :=


1
·
·
·
1

 ,

and thus that ~1 is a right-eigenvector of Ak with eigenvalue 1. Next, label the
eigenvalues µi of L such that µ1 = 0. Notice that for any k ≥ 1, the eigenvalues

λ
(k)
i of Ak are given by λ

(k)
i = 1 + µi

k , numbered such that λ
(k)
1 = 1 for all k. It

remains to show that 1 is a simple eigenvalue of Ak and the bound given above.
We invoke the Perron-Frobenius theorem for irreducible non-negative matri-

ces on Ak := I + 1
kL. Ak is nonnegative since it is clear that all off-diagonal

elements are nonnegative, and for all i,

Lii = −
∑
j∼i

deg(j)
deg(i)

deg(i) + deg(j)
> −

∑
j∼i

1

deg(i)
= −1.

This gives that Aiik > 0 and thus that Ak is nonnegative.
In order to show that Ak is irreducible, we consider its associated weighted

digraph Γ(Ak), which has vertex set V, a complete edge set V × V, and weights
W : V × V → R≥0. By the definition of L, we have that for all i ∼ j in
the original graph, there are edges with non-zero weights flowing from i to j
and from j to i. Since the original graph V is connected, this implies that
the weighted digraph associated to Ak is strongly connected, giving that Ak
is irreducible. Also note that since the diagonal elements of Ak are all strictly
positive, each vertex in Γ(Ak) has a self-loop, and thus Ak is primitive by Lemma
2.2. Thus Ak satisfies the assumptions of the Lemma 2.1. Since the eigenvector
1̂ has components which are all positive, Perron-Frobenius gives that associated
eigenvalue 1 of Ak is simple, that the spectral radius of Ak is 1, and that all
other eigenvalues of Ak have modulus strictly less than 1.

Let λ represent the spectral gap of A1 (unless the spectral gap is 1, in which
case we can arbitrarily set λ = 1

2 ):

λ :=

{
1−maxi>1 |λ(1)i | if maxi>1 |λ(1)i | 6= 0
1
2 else

9



This gives that, for all k ≥ 1 and i > 1,

|λ(k)i | = |1 +
µi
k
| = 1

k
|µi + k| ≤ 1

k
|λ(1)i |+

k − 1

k
≤ k − λ

k
= 1− λ

k
.

From here forward, we let λ represent the number guaranteed by the above
lemma. The next lemma shows that L is similar to a symmetric matrix and
hence is diagonalizable, which simplifies the long-time analysis involving prod-
ucts of L.

Lemma 2.4. L is diagonalizable, and can be written L = PDP−1, where the
first column of P is ~1, and D11 = 0.

Proof. Let E be the diagonal matrix with diagonal elements equal to the degree
of each vertex:

Eij =

{
di i = j

0 i 6= j
.

Note that E has strictly positive entries on the diagonal and is therefore invert-
ible with

(E−1)ij =

{
1
di

i = j

0 i 6= j
.

Then note that ELE−1 is symmetric, because(
ELE−1

)ij
=
∑
k,`

EikLk`(E−1)`j

=
di
dj
Lij .

Now, by definition of L: if i � j, then (ELE−1)ij = (ELE−1)ji = 0, and if
i ∼ j, then (ELE−1)ij = 1

di+dj
= (ELE−1)ji. Thus (ELE−1) is symmetric and

therefore diagonalizable. Since L is similar to a diagonalizable matrix, it is itself
diagonalizable.

From here forward, we fix P and D as given in Lemma 2.4. The above two
lemmas make a powerful combination, in the following sense. Note that the so-
lution to the SHE (Proposition 1) involves a product of the Λ matrices: Πt−1

k=jΛk.
In the discussion below, we show that this large product can be approximated
by the following product of constant matrices: Πt−1

k=jAk, which can in turn is

similar to a product of diagonal matrices: Πt−1
k=jDk, where Dk = P−1AkP . Now,

while the first entry of each of the Dk is 1 (corresponding to consensus), the
other entries are bounded by 1− λ

k (due to Lemma 2.3). The last ingredient of
this section is an application of the theory of gamma functions, due to Gautschi,
which shows that while these eigenvalues approach 1 from below as k →∞, the
approach is slow enough for their product to approach 0.

10



Lemma 2.5. [16] For 0 < s < 1:

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s

Lemma 2.6. For all 1 ≤ j ≤ t and for 0 < λ < 1,(j − 1

t+ 1

)λ
≤ Πt

k=j(1−
λ

k
) ≤

(j
t

)λ
Proof. We write

Πt
k=j(1−

λ

k
) =

Πt
k=j(k − λ)

Πt
k=j(k)

=
Γ(j)

Γ(j − λ)

Γ(t+ 1− λ)

Γ(t+ 1)
,

and apply Gautschi’s inequality (Lemma 2.5).

3 Convergence of the Consensus Coordinate

Let ~p be the first row of P−1, i.e. the left-eigenvector of L with eigenvalue
0, and let at := p · xt be the coordinate corresponding to ~p in the eigenbasis
expansion of L (where the eigenbasis is given by the columns of P ). The goal
of this section is to show the following lemma.

Lemma 3.1. There exists a random constant a∞ such that at → a∞ in L2.

We decompose at as follows:

at = a0 +

t−1∑
j=0

(aj+1 − aj)

= a0 + ~p ·
t−1∑
j=0

(~xj+1 − ~xj)

= a0 + ~p ·
t−1∑
j=0

~γTj+1 ◦ Lj~xj + γTj+1 ◦ ~wj+1

= a0 + ~p ·
t−1∑
j=0

(~γTj+1 ◦ Lj −
1

j + 1
L)~xj +

1

j + 1
L~xj + ~γTj+1 ◦ ~wj+1

= a0 + ~p ·
t−1∑
j=0

(~γTj+1 ◦ Lj −
1

j + 1
L)~xj + ~γTj+1 ◦ ~wj+1

where we’ve used the SHE update in the third line, and the fact that ~p is a left
0-eigenvector of L in the fifth.
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Now, there are two main differences between the dampened diffusion matrix
~γTj+1◦Lj and the dampened influence matrix 1

j+1L. The first is that the diffusion
matrix only involves a random edge, while the influence matrix considers all
edges. The second is that the gt are random functions of the ψ variables, while
L is a constant. We separate out these two differences by adding and subtracting
Ej [~γTj+1 ◦ Lj ]:

at = a0 +mt + st,

where

mt := ~p ·
t−1∑
j=0

(γTj+1 ◦ Lj − Ej [γTj+1 ◦ Lj ])~xj + ~γTj+1 ◦ ~wj+1

st := ~p ·
t−1∑
j=0

∆j~xj

∆j := Ej [~γTj+1 ◦ Lj ]−
1

j + 1
L

We consider each of st (which stands for ’small’) and mt (which stands for
martingale) separately; in order to show Lemma 3.1, it suffices to show that
each of st and mt converge in L2. While st is nonzero due to the randomness of
gt, we show that each term is small in expectation and therefore that the sum
is convergent, while mt is shown to be a martingale, on which we will invoke
the martingale convergence theorem.

Before proceeding, we state a useful lemma which allows us to rigorously
pass from sums to integrals:

Lemma 3.2. Let f(k) be nonnegative on [t1, t2], non-decreasing on [t1, x] and
non-increasing on [x, t2] for some x ∈ [t1, t2]. Then

t2∑
k=t1

f(k) ≤
∫ t2

t1

f(k)dk + 2f(x)

Proof. In the below, we take sums with lower endpoint strictly greater than
upper endpoint to be 0. We have:

t2∑
k=t1

f(k) ≤ 2f(x) +

bxc−1∑
k=t1

f(k) +

t2∑
k=dxe+1

f(k)

≤
∫ bxc
t1

f(k) +

∫ t2

dxe
f(k) + 2f(x)

≤
∫ t2

t1

f(k)dk + 2f(x).

12



3.1 st : Fluctuations of ~gt

Recall that

Et[~γTt+1 ◦ Lt]ij =


1

E(git+1)

gjt
git+g

j
t

i ∼ j

−
∑
k∼i

1
E(git+1)

gkt
git+g

k
t

i = j

0 i � j.

Now, the random variable git is equal to gi0 plus a binomial random variable
resulting from t trials with probability di

E of success for each trial. Thus we

expect each git to grow like di
E t, with standard deviation proportional to

√
t.

This gives the heuristic that E[‖∆j‖] = O(t−
3
2 ). This idea is supported by the

following concentration inequality for the binomial random variable, which can
be used to show that the probability of git − gi0 deviating from its mean by t

1
2+ε

is exponentially small in t.

Lemma 3.3. [17] Let B ∼ Bin(n, p) be a binomial random variable, and let
a > 0. Then

P(|B − np| > a) < 2 exp(−2a2

n
).

The above statement serves as the main tool for showing that ∆j is indeed
small. In particular, we use prove the following Lemma, which will be used to
show that st converges in L2. From here forward, we use the notation f(t) . g(t)
to mean that there exists a constant c, independent of t, such that f(t) ≤ cg(t).

Lemma 3.4. For sufficiently large s, t:

E[‖∆s‖‖∆t‖] .
1

(st)
5
4

+
s

t
5
4

exp(− 2

|E|2
s1/2) + st exp(− 2

|E|2
t1/2)

Proof. Define

Ct := {
∣∣|E|git − gi0

t
− di

∣∣ ≤ 1

t
1
4

: ∀i ∈ V}

δit := |E|g
i
t − gi0
t

+ |E|g
i
0

t
− di,

and note that |E| g
i
0

t − di ≤ δit ≤ |E|(gi0 + 1) − di almost surely. Note also that

using a = t3/4

|E| in Lemma 3.3 produces

P(Cct ) < 2|V| exp(− 2

|E|2
t
1
2 ).
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Now, for fixed i ∼ j, we have that:

(t+ 1)∆ij
t =

t+ 1

|E|(git + 1)

gjt

git + gjt
−

dj
di

di + dj

=
1 + 1

t

(δit + di + |E|
t )

δjt + dj

δjt + dj + δit + di
− dj
di(di + dj)

=
(1 + 1

t )(di + dj)(δ
j
t + dj)di − dj(δit + di + |E|

t )(δjt + dj + δit + di)

di(di + dj)(δit + di + |E|
t )(δjt + dj + δit + di)

Almost surely:

(t+ 1)|∆ij
t | ≤

c1|δit|+ c2|δjt |+ c3
1
t

(di + δit)(dj + δjt )

for some t-independent constants c1, c2, c3. Further, on Ct, |δit| . 1
t1/4

for all i.
So, on Ct for sufficiently large t,

|∆ij
t | .

1

t5/4
.

It’s also easy to see that, almost surely (in particular, on Cct ),

|∆ij
t | . t

Further, since ∆t is row-stochastic for all t, we can drop the requirement that
i ∼ j for the above two inequalities on |∆ij

t | (perhaps at the cost of a larger
constant).

Now, for s 6= t,

E[‖∆s‖max‖∆t‖max] = E[max
i,j,k,`

|∆ij
s ∆k`

t ||Cs ∩ Ct]P(Cs ∩ Ct)

+ E[max
i,j,k,`

|∆ij
s ∆k`

t ||Ccs ∩ Ct]P(Ccs ∩ Ct) + E[max
i,j,k,`

|∆ij
s ∆k`

t ||Cct ]P(Cct )

.
1

(st)
5
4

+
s

t
5
4

exp(− 2

E2
s1/2) + st exp(− 2

E2
t1/2),

where ‖A‖max := maxi,j |Aij |. Finally, note that ‖∆t‖ . ‖∆t‖max. This gives
the desired result for s 6= t.

When s = t, we have:

E[max
i,j
|∆ij

t |2] ≤ E[max
i,j
|∆ij

t |2||Ct]P(Ct) + E[max
i,j
|∆ij

t |2|Cct ]P(Cct )

.
1

t
5
2

+ t2 exp(− 2

|E|
t1/2),

and again we use that ‖∆t‖ . ‖∆t‖max.
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This allows us to prove the desired convergence of st.

Lemma 3.5. st converges in L2.

Proof. It suffices to show Cauchy in L2, i.e. that for any ε > 0, there exists T
such that for all t1, t2 > T, E[(st1 − st2)2] ≤ ε. Note that

(st2 − st1)2 .
t2−1∑
j,k=t1

‖∆j‖2‖∆k‖2 .
t2−1∑
j=t1

j∑
k=t1

‖∆j‖2‖∆k‖2

Taking expectations and using the lemma,

E[(st2 − st1)2] .
t2−1∑
j=t1

j∑
k=t1

1

(jk)
5
4

+
k

j
5
4

exp(− 2

|E|2
k1/2) + jk exp(− 2

|E|2
j1/2).

It’s now clear, for example from Lemma 3.2, that the lemma follows.

3.2 mt: Martingale Convergence

The goal of the subsection is to prove that mt converges. We begin by stating
the L2 martingale convergence theorem without proof.

Lemma 3.6. [18] Let yt be a martingale with yt ∈ L2 for all t. Further assume
that supt ‖yt‖L2 <∞. Then yt converges in L2.

Lemma 3.7. mt converges in L2.

Proof. We first show that mt is a martingale. It is clearly an adpated process.
Next, consider

Et−1[mt−mt−1] = ~p ·Et−1
[
~γTt ◦Lt−1−Et−1[~γTt ◦Lt−1]

]
~xt−1 + ~p ·Et−1[~γTt ◦ ~wt].

The first term is clearly 0. We next note that:

Et−1[(~γTt ◦ ~wt)i] =
∑
e�i

E[
1

git
w̃etS

e
t |Ft−1]

=
∑
e�i

E[
1

git
SetE[W̃ e

t |σ(Ft−1, σ(ψt))]|Ft−1]

= 0.

Lastly, note that
mt = at − a0 − st,

so that
‖mt‖L2 ≤ ‖at‖L2 + ‖a0‖L2 + ‖st‖L2 .

a0 is a constant, at is a.s. bounded by virtue of 0 ≤ xt ≤ 1, and ‖st‖L2

is bounded since st converges in L2. Thus mt is bounded in L2, proving the
theorem.
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4 Decay of Disagreement

The goal of this section is to show that the component of ~xt corresponding to any
differing opinions converges to 0. Let ~zt := ~xt − at~1 represent this component
of the opinion vector. We would like to show that

Lemma 4.1.
E[‖~zt‖2]→ 0

4.1 Preliminary Discussion

We develop our approach to a proof as follows. With Q := diag(0, 1, ..., 1), it’s
clear that ~zt = PQP−1~xt, where P is the matrix of eigenvectors of L. Further,
using the sum-product solution of the SHE from Proposition 1, we have that

~zt =

t∑
j=0

PQP−1[Πt−1
k=jΛk](~γTj ◦ ~wj).

The intuition for why ~zt is small is as follows: at each past timestep j ≤ t,
a random ’blip’ ~γTj ◦ ~wj was introduced. In subsequent time steps k ≥ j, this
blip was smoothed by repeated application of the Λk matrices. Now, as argued
in the previous section (see Lemma 3.4), E[Λk] ≈ Ak. Using PQP−1 to project
out the Perron-Frobenius eigenvalue 1 of Ak (corresponding to consensus), we
get eigenvalues whose products decay sufficiently rapidly. So, sufficiently old
blips are dampened by products of small eigenvalues with many factors, while
newer blips will be small because the vector norm of ~γj is expected to decrease
as j increases.

An issue with the above heuristic, however, is that random draws of ~γTk+1◦Lk
are not close to 1

kL (even though they approximately agree in expectation). This
is circumvented by noting that the ~γTk+1 ◦ Lk are Cesàro-summable with limit

proportional to L: we expand the product Πt−1
k=jΛk = Πt−1

k=j(I+~γTk+1 ◦Lk), show
that the leading order terms (i.e. those linear in the dampened diffusion matrix)
are proportional to L due to a law of large numbers effect, and show that the
lower order terms decay sufficiently rapidly because they have many factors of
~γ.

More precisely: we group the t − j factors in the product Πt−1
k=jΛk into

subgroups of size τ := dt1/4e. This τ is large enough for the law of large numbers
to kick in (allowing us to replace the group’s average of the ~γTk+1 ◦ Lk with a
matrix proportional to L), but small enough so that there are enough factors
of L for the decay of the product of the non-dominant eigenvalues to be severe.
Note that j needs to be sufficiently small so that we have enough factors of Λ to
work with. With this in mind, we will separate the sum defining zt into j ≤ j0
and j > j0 (for a value of j0 to be specified later). The j ≤ j0 sum witnesses
PQP−1[Πt−1

k=jΛk] to have sufficiently small operator norm, while the j > j0 sum
is small because we expect ~γj to be small at such late values of j. This heuristic
is illustrated in Figure 2.
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Λ7 Λ7 Λ7 Λ7 Λ7 Λ7 Λ7 Λ7 γ8

Λ6 Λ6 Λ6 Λ6 Λ6 Λ6 Λ6 γ7

Λ5 Λ5 Λ5 Λ5 Λ5 Λ5 γ6

Λ4 Λ4 Λ4 Λ4 Λ4 γ5

Λ3 Λ3 Λ3 Λ3 γ4

Λ2 Λ2 Λ2 γ3

Λ1 Λ1 γ2

Λ0 γ1

γ0

τ

τ

τ

j

k

j = j0

Figure 2: Schematic for the solution to the SHE: ~xt =
∑t
j=0[Πt−1

k=jΛk](~γTj ◦ ~wj).
k parametrizes the factors in the product, j parametrizes the terms in the sum.
See the discussion above. We write γ instead of γ ◦ w to save space.
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For fixed t, define r to be the remainder of t divided by τ , define j0 := r+τ2,
and let Hk,t represent the aggregate effects of the Λ factors from the τ -window
indexed by k. That is, for 1 ≤ k ≤ t−r

τ :

Hk,t = [Πr+kτ
j=r+(k−1)τ+1Λj ]

so that, for sufficiently large t and j ≤ j0,

Πt
k=jΛk =

[
Π
t−r
τ

k=τ+1Hk,t

][
Πj0
k=jΛk

]
4.2 Good and Bad Events

The above intuition only holds on ’good events’ where the long-term randomness
of the ψ variables is close to expectation. In particular, we use this assumption
when we assume ~γj to be small for large j, and that the Cesàro mean of ~γTk+1◦Lk
is roughly proportional to L. For the rest of the paper we fix ε � 1

2 , and for
τ + 1 ≤ k ≤ t−r

τ , we define these good events as follows:

Ak,t =
{
|gis − gi0 −

di
E
kτ | ≤ (kτ)

1
2+ε : ∀i ∈ V, ∀s ∈ {(k − 1)τ + r + 1, ..., kτ + r}

}
Bk,t = {|(

kτ+r∑
s=(k−1)τ+r+1

Ses)− 1

E
τ | ≤ τ 1

2+ε : ∀e ∈ E}

Et = ∩
t−r
τ

k=τ+1(Ak,t ∩Bk,t).

Ak,t corresponds to the event that, for all s in the τ -window indexed by k, gs−g0
is close to the expectation of g at the point kτ (which lies in the window). The
event Bk,t represents that, within the τ window indexed by k, the amount of
conversations each edge hosts is close to its expectation. Et is the intersection
of the A and B events for all windows τ + 1 ≤ k ≤ t−r

τ .
We first establish that the union of the bad events have exponentially small

probability in t.

Lemma 4.2. For ε < 1
2 , there exist positive constants c1 and c2 such that, for

sufficiently large t,
P(Ect ) ≤ c1 exp(−c2τ2ε).

Proof.

P(Ect ) = P
(
(∩kmax

k=kmin
(Ak,t ∩Bk,t))c

)
= P

(
(∪kmax

k=kmin
(Ack,t ∪Bck,t))

)
≤

kmax∑
k=kmin

(
P(Ack,t) + P(Bck,t)

)
,

where we’ve invoked a union bound in the last line.
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Now, for all t ≥ 0, k ≥ 1:

P(Bck,t) ≤ 2|E| exp(−2τ2ε).

This follows directly from Lemma 3.3, with union bound.
Similarly, for t sufficiently large and k ≥ τ :

P(Ack,t) ≤ 4|V| exp(−1

4
(kτ)2ε) ≤ 4|V| exp(−1

4
τ4ε).

The proof of this claim is as follows: Note that

Ak,t = {gis0−g
i
0−

di
E
kτ ≥ −(kτ)

1
2+ε : ∀i ∈ V}∩{gis1−g

i
0−

di
E
kτ ≤ (kτ)

1
2+ε : ∀i ∈ V}

where s0 and s1 represent the endpoints for a particular τ -window:
s0 = (k − 1)τ + r + 1 and s1 = kτ + r. Now, we have that

P
(
{gis0 − g

i
0 −

di
E
kτ ≥ −(kτ)

1
2+ε : ∀i ∈ V}c

)
≤ |V|P

(
{gis0 − g

i
0 −

di
E
kτ ≤ −(kτ)

1
2+ε}

)
= |V|P

(
{gis0 − g

i
0 −

di
E
s0 ≤ −(kτ)

1
2+ε +

di
E

(τ − r − 1)}
))

≤ |V|P
(
{gis0 − g

i
0 −

di
E
s0 ≤ −

1

2
(kτ)

1
2+ε}

)
≤ 2|V| exp(−1

4
(kτ)2ε)

Similarly, for the second event,

P
(
{gis1 − g

i
0 −

di
E
kτ ≤ (kτ)

1
2+ε : ∀i ∈ V}c

)
≤ |V|P

(
{gis1 − g

i
0 −

di
E
kτ ≥ (kτ)

1
2+ε}

)
= |V|P

(
{gis1 − g

i
0 −

di
E
s1 ≥ (kτ)

1
2+ε − di

E
r}
))

≤ |V|P
(
{gis1 − g

i
0 −

di
E
s1 ≥

1

2
(kτ)

1
2+ε}

))
≤ 2|V| exp(−1

4
(kτ)2ε).

This concludes the proof of the above claim. We now finish by noting that(
P(Ack,t) + P(Bck,t)

)
≤ 4(|V|+ |E|) exp(−1

4
τ2ε),
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so that, for sufficiently large t:

P(Ect ) ≤

t−r
τ∑

k=τ+1

(
P(Ack,t) + P(Bck,t)

)
≤ 4(|V|+ |E|) t

τ
exp(−1

4
τ2ε)

≤ 4(|V|+ |E|) exp(−1

8
τ2ε)

4.3 Law of Large Numbers for Iterated Diffusion

We now show that, on good events, Hk,t (representing the time-evolution over
the τ -window indexed by k) window is close to Ak. We begin by analyzing the
leading-order terms in the product. The following lemma shows that, on good
events, the dampened Laplacian matrices are Cesàro-summable, with average
close to the influence matrix.

Lemma 4.3. Fix ε� 1
2 . There exists a constant c such that, for t sufficiently

large, k ≥ τ and on Ak,t ∩Bk,t:

‖
( kτ+z∑
j=(k−1)τ+z+1

~γTj+1 ◦ Lj
)
− 1

k
L‖ ≤ c

kτ1/2−ε

Proof. Fix vertices i ∼ `, and consider outcomes on Ak,t ∩ Bk,t only. In the
below, the constant c may change from line to line, but will never depend on t
or k.

( kτ+z∑
j=(k−1)τ+z+1

γTj+1 ◦ Lj
)i`

=

kτ+r∑
j=(k−1)τ+r+1

1

gij+1

Si`j+1

g`j
gij + g`j

≤ 1
di
|E|kτ − (kτ)

1
2+ε + gi0

d`
|E|kτ + (kτ)

1
2+ε + g`0

d`+di
|E| kτ − 2(kτ)

1
2+ε + gi0 + g`0

kτ+r∑
j=(k−1)τ+r+1

Si`j+1

≤ 1
di
|E|kτ − (kτ)

1
2+ε + gi0

d`
|E|kτ + (kτ)

1
2+ε + g`0

d`+di
|E| kτ − 2(kτ)

1
2+ε + gi0 + g`0

( τ
|E|

+ τ
1
2+ε + 1

)
≤ |E|
kτ

(Li` +
c

(kτ)
1
2−ε

)
( τ
|E|

+ τ
1
2+ε + 1

)
= (Li` +

c

(kτ)
1
2−ε

)
(1

k
+

c

kτ
1
2−ε

)
≤ 1

k
Li` +

c

kτ
1
2−ε

.
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The opposite-direction inequality can be proven similarly, giving that

|
( kτ+r∑
j=(k−1)τ+r+1

~γTj+1 ◦ Lj
)i` − 1

k
Li`| ≤ c

kτ
1
2−ε

.

From this the lemma easily follows.

We now use the above lemma to show that the H product matrix over the
kth τ -window is indeed close to Ak (sub-leading order terms included). Define
the difference Θk,t := Hk,t −Ak

Lemma 4.4. Fix ε � 1
2 . There exists a constant c such that, for sufficiently

large t, k ≥ τ and on Ak,t ∩Bk,t:

‖Θk,t‖ ≤
c

kτ1/2−ε

Proof. The matrix Hk,t = Πkτ+r
j=(k−1)τ+r+1(I + ~γTj+1 ◦ Lj) has τ factors in the

product. It can be expanded as a sum:

Hk,t =

τ∑
n=0

hk,t,n

where hk,t,n collects the terms in the expansion with exactly n factors of the
dampened laplacian matrix ~γT ◦L. Now, on good events, and for all s0 ≤ j ≤ s1
and for all i ∈ V, we have that

gis & kτ.

It’s also to see that, almost surely, we have that ‖Lj‖ . 1. Then, using the
submultiplicativity of the operator norm with respect to the Hadamard product,
we have that, on good events,

‖~γTj+1 ◦ Lj‖ ≤
c

kτ

for some constant c. So, collecting all terms with n such matrices as factors in
the binomial expansion (there are

(
τ
n

)
of them), we have that

‖hk,t,n‖ ≤
(
τ

n

)( c
kτ

)n ≤ 1

n!

( c
k

)n
So, using the previous LEMMA (which says that ‖hk,t,0 +hk,t,1−Ak‖ ≤ c′

kτ1/2−ε
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for some constant c′:

‖Hk,t −Ak‖ ≤
c′

kτ1/2−ε
+

τ∑
n=2

1

n!

( c
k

)n
≤ c′

kτ1/2−ε
+
( c
k

)2 τ∑
n=0

( c
k

)n
≤ c′

kτ1/2−ε
+

( ck )2

1− c
k

≤ c′

kτ1/2−ε
+

2c2

kτ1/2−ε

=
c′ + 2c2

kτ1/2−ε
,

where we’ve used that τ is large, for example, enough to have c
τ ≤

1
2 , and that

k ≥ τ.

4.4 Decay of Operator Norm

Now, recall that

Πt
k=jΛk =

[
Π
t−r
τ

k=τ+1Hk,t

][
Πj0
k=jΛk

]
.

The late (k > j0) Λk matrices in the product are encapsulated in the H matrices,
while we ’chop off’ the early (k ≤ j0) Λk matrices. We remove them because
t−j may not be divisible by τ (and thus that we cannot successfully partition all
Λ into groups of equal size). Note, however, that in the above decomposition,
we chop off more than the remainder of t − j divided by τ ; this is for later
convenience.

The next Lemma guarantees that these extra, ’loose’ factors of Λ have
bounded norm. We present a straightforward proof which makes use of some
simple matrix calculations. It can be noted, however, that this lemma can also
be proven by noting that a discrete dynamical system driven by the Λ matrices
(with no random blips W ) represent a version of the heat equation where the
only randomness is in the edge selection, rather than in the outcome in the
conversation, and long-term solutions must be bounded.

Lemma 4.5. For all 0 ≤ j ≤ t,

‖Πt
k=jΛk‖ ≤

√
|V|

almost surely.

Proof. We first aim to prove that Λk is nonnegative. The offdiagonal elements
are obviously nonnegative, so we focus only on the diagonal. Let k be arbitrary.
For any i,

Λiik = 1− 1

gik+1

∑
j∼i

Sijk+1

gjk
gik + gjk

.
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Now, if Sijk+1 = 0 for all j ∼ i, then it’s clear that Λiik = 1. Otherwise, let

Sijk+1 = 1 for some j ∼ i. Note that this will be the only nonzero term in the

sum. In this case, we are guaranteed that gik+1 = gik + 1 > 1. So:

Λiik = 1− 1

gik+1

gjk
gik + gjk

> 1−
gjk

gik + gjk
> 0.

This gives that Λk is nonnegative.
Fix j, t as above, arbitrary. Note that

Aj,t := Πt
k=jΛk

is row stochastic, as it is the product of row stochastic matrices. It’s also
nonnegative. So, let ~v be an aribtrary unit vector. Note that for all j, |vj | ≤ 1
so:

|(Aj,tv)i| = |
∑
k

(Aj,t)
ikvk| ≤

∑
j

(Aj,t)
ik = 1.

where we’ve used thatA is nonnegative. Thus for arbitrary unit vector, ‖Aj,tv‖2 =∑
k

(
(Aj,tv)k

)2 ≤∑k 1 = |V|. This proves that, for arbitrary 0 ≤ j < t, almost

surely, ‖Aj,t‖ ≤
√
|V|.

Before tackling the main lemma of this section (Lemma 4.7), we note the
useful fact that for a square matrix A, the `2 operator norm is equivalent to the
max of the vector norms of the rows.

Lemma 4.6. Let A be an n×n matrix, and let Ai represent the ith row of A.
We then have the following two inequalities, for arbitrary 1 ≤ i ≤ n:

‖Ai‖ ≤ ‖A‖
‖A‖ ≤

√
nmax

j
‖Aj‖

Note that for 1× n matrices, the matrix norm coincides with the vector norm.

Proof. Let 1 ≤ i ≤ n be arbitrary. We prove the first inequality. If Ai = ~0, we

are done. Otherwise, define the vector ~x to have components xj := Aij

‖Ai‖ . Then

we have
‖A‖ ≥ ‖A~x‖ ≥ ‖Ai‖,

where the second inequality follows because the ith entry of A~x is equal to
Ai · x = ‖Ai‖.

Next we prove the second inequality. Let ~x be an arbitrary unit vector. We
have

‖A~x‖2 =
∑
j

(Aj · ~x)2 ≤
∑
j

‖Aj‖2 ≤ nmax
j
‖Aj‖2.

Taking the square root of both sides, we have the desired inequality.
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We now add the main ingredient in the proof of Lemma 5.1, which says that
for sufficiently small j and on good events, the product of diffusion matrices
(with consensus projected out) decays with t.

Lemma 4.7. There exists α > 0 such that, on Et, and for all j ≤ j0 := r+ τ2,

‖QP−1[Πt
k=jΛk]P‖ . 1

tα
,

Proof. Define kmin := τ+1, kmax = t−r
τ , Θ′k,t := P−1Θk,tP , and Dk = P−1AkP

(the diagonal matrix consisting of eigenvalues of Ak). Now,[
Πkmax

k=kmin
Hk,t

][
Πj0
k=jΛk

]
.

‖QP−1[Πt
k=jΛk]P‖ ≤ ‖QP−1[Πt

k=j0+1Λk]P‖‖P−1[Πj0
k=jΛk]P‖

. ‖QP−1[Πt
k=j0+1Λk]P‖

= ‖QP−1[Πkmax

k=kmin
Hk,t]P‖

= ‖QP−1[Πkmax

k=kmin
(Ak + Θk,t)]P‖

= ‖Q[Πkmax

k=kmin
(Dk + Θ′k,t)]‖

. max
i6=1
‖[Πkmax

k=kmin
(Dk + Θ′k,t)]

i‖

= max
i6=1
‖Rikmax,kmin,t‖

where we’ve used Lemma 4.6 in the second to last line and we’ve defined

Rk1,k2,t := Πk2
k=k1

(Dk + Θ′k,t).

We have, for a constant c, for ε < 1
2 , and for all i 6= 1 (dropping primes on

Theta for ease of notation),

Rikmin,kmax,t = Θi
kmax,tRkmin,kmax−1,t + |λ(kmax)|Rikmin,kmax−1,t

‖Rikmin,kmax,t‖ ≤
c

kmaxτ1/2−ε
+ (1− λ

kmax
)‖Rikmin,kmax−1,t‖,

where λ(k) 6= 1 is an eigenvalue of Ak, and we’ve used Lemma 4.5, Lemma 4.4,
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and Lemma 2.3. By iterating the above, we obtain

‖Rikmin,kmax,t‖ ≤ Πkmax

k=kmin
(1− λ

k
) +

c

τ1/2−ε

kmax∑
j=kmin

1

j
Πkmax

k=j+1(1− λ

k
)

≤
( kmin

kmax

)λ
+

c

τ1/2−ε

kmax∑
j=kmin

1

j

(j + 1

kmax

)λ
≤
( kmin

kmax

)λ
+

c

kλmaxτ
1/2−ε

kmax∑
j=kmin

jλ−1

≤
( kmin

kmax

)λ
+

c

τ1/2−ε

.
1

tλ/2
+

1

t1/8−ε/4
,

where in the second and fourth inequalities, we used Lemma 2.6 and Lemma
3.2, respectively, and the value of c can change from line to line. Setting ε = 1

4
(for example) concludes the proof of the lemma.

Our final ingredient is the summability of E[‖~γt‖2].

Lemma 4.8. The sum
∞∑
t=0

E[‖~γt‖2]

converges.

Proof. For sufficiently large t:

E[‖~γt‖2] = E[‖~γt‖2|At, t−rτ ]P(At, t−rτ
) + E[‖~γt‖2|Act t−rτ ]P(Ac

t, t−rτ
)

. E[‖~γt‖2|At, t−rτ ] + P(Ac
t, t−rτ

)

.
1

t2
+ exp(−1

4
τ4ε)

.
1

t2

4.5 Proof of Lemma 4.1

In the proof of Lemma 4.1, we make use of the following simple comparison
between a nonnegative random variable’s conditional and total expectation:

Lemma 4.9. Let X be an almost-surely nonnegative random variable with
E[X] <∞, and let E be an event with P(E) ≥ 1

2 . Then

E(X|E) ≤ 2E[X]
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Proof.

E[X|E] =
1

P[E]
(E[X]− E[X|Ec]P(Ec)) ≤ 2E[X].

Proof of Lemma 4.1: We aim to show that

E[‖~zt+1‖2]→ 0,

where

~zt+1 =

t+1∑
j=0

PQP−1
[
Πt
k=jΛk

]
~γTj ◦ ~wj .

Expanding the square:

‖~zt+1‖2 =

t+1∑
j=0

‖PQP−1
[
Πt
k=jΛk

]
~γTj ◦ ~wj‖2

+ 2
∑

0≤j1<j2≤t+1

〈PQP−1
[
Πt
k1=j1Λk1

]
~γTj1 ◦ ~wj1 , PQP

−1[Πt
k2=j2Λj2

]
~γTj2 ◦ ~wj2〉

We now take the expectation of the cross-terms. For 0 ≤ j1 < j2 ≤ t+ 1:

E[〈PQP−1
[
Πt
k1=j1Λk1

]
~γTj1 ◦ ~wj1 , PQP

−1[Πt
k2=j2Λj2

]
~γTj2 ◦ ~wj2〉]

= E
[
E[〈PQP−1

[
Πt
k1=j1Λk1

]
~γTj1 ◦ ~wj1 , PQP

−1[Πt
k2=j2Λj2

]
~γTj2 ◦ ~wj2〉|σ(Fj2−1,Gt+1)]

]
= E

[(
PQP−1

[
Πt
k1=j1Λk1

]
~γTj1 ◦ ~wj1

)T
PQP−1

[
Πt
k2=j2Λj2

]
(~γTj2 ◦ E[~wj2 |σ(Fj2−1,Gt+1)

]
= 0,

where we’ve used independence of σ(ψt) and σ(Ft−1, σ(Ωt)) as well as the fact
that Et−1[~wt] = 0.

We now deal with the expectation of the ’diagonal’ elements:

E[‖~zt‖2] =

t+1∑
j=0

‖PQP−1
[
Πt
k=jΛk

]
~γTj ◦ ~wj‖2

.
t+1∑
j=0

E[‖PQP−1
[
Πt
k=jΛk

]
‖2‖~γj‖2]

=

r+τ2∑
j=0

E
[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2

]
+

t+1∑
j=r+τ2+1

E
[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2

]
We show that each of the above two terms goes to zero. Let α > 0 be the
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number guaranteed by Lemma 4.7. The first term:

r+τ2∑
j=0

E
[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2

]
.
r+τ2∑
j=0

E
[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2|Et

]
+ E

[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2|Ect

]
P(Ect )

.
r+τ2∑
j=0

1

tα
E
[
‖~γj‖2|Et

]
+ P(Ect )

.
r+τ2∑
j=0

1

tα
E
[
‖~γj‖2

]
+ P(Ect )

.
1

tα
+ (r + τ2) exp(−cτ2ε)

→ 0,

where in the second inequality we used Lemmas 4.7 and 4.5, in the third in-
equality we used Lemma 4.9, and in the fourth inequality we used Lemmas 4.8
and 4.2.

And in the second term of the expansion of the diagonal sum:

t+1∑
j=r+τ2+1

E
[
‖PQP−1

[
Πt
k=jΛk

]
‖2‖~γj‖2

]
.

t+1∑
j=r+τ2+1

E
[
‖~γj‖2

]
,

where we’ve used Lemma 4.5. The right-hand side goes to 0 By Lemma 4.8,
since the lower bound of the sum goes to ∞.

5 Proof of Theorem

Proof of Theorem 1.1. Let a∞ be the limit of at = ~p · ~xt, established in Lemma
3.1. Using the triangle inequality, we have:

E[‖~xt − a∞~1‖2] = E[‖~xt − at~1 + at~1− a∞~1‖2]

≤ E[‖at~1− a∞~1‖2] + E[‖~xt − at~1‖2] + 2E[‖~xt − at~1‖‖at~1− a∞~1‖].

We now show that each term goes to 0. In the first term, we have that

‖at~1− a∞~1‖2 = (at − a∞)2‖~1‖2,

the expectation of which goes to 0 by virtue of Lemma 3.1. Similarly, the second
term goes to 0 due to Lemma 4.1.

27



To see that the last term goes to 0, note that ‖~xt − at~1‖ is almost surely
bounded, so that

E[‖~xt − at~1‖‖at~1− a∞~1‖] . E[‖at~1− a∞~1‖] = ‖~1‖E[|at − a∞|] . ‖at − a∞‖L1 .

Finally, since at → a∞ in L2, convergence also holds in L1, so that this term
goes to 0 as well.
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Figure 3: The blue curve represents the average of 1000 trajectories of ‖~xt −
at~1‖22, for gi0 ≡ 1 and ~x0 = (1, 1, 0, 0, 0) for the graph I5.
The red curve is 2.02

t2∗0.185667

(note: for I5, λ = 13−
√
73

24 ≈ 0.185667).

6 Future Work

Future work might consider the rate of convergence, for example of the disagree-
ment component ~zt to 0. Simulations inspire the following conjecture:

Conjecture 1.

E[‖~zt‖2] .

{
1
t2λ

λ ≤ 1
2

1
t λ > 1

2

.

In the case of parallel updates (i.e. all edges converse with all of their
neighbors simultaneously in each time step), the above conjecture can be proven
readily using the techniques from Lemma 4.7. With the appropriate choice of
τ(t), bounds on the decay rate can be proven for the present case (though these
bounds seem loser than what simulation demonstrates). This discussion has
been omitted because the bounds do not seem empirically tight, and the choice
of τ(t) = dt1/4e is convenient.

Figure 3 shows the decay of disagreement, averaged over 1000 runs for the
interval graph I5 = (V, E), where V = {1, 2, 3, 4, 5}, and (i, j) ∈ E if and only if
|i− j| = 1.
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