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Abstract

This paper focuses on exploring the convergence properties of a generic player’s trajectory
and empirical measures in an N -player Linear-Quadratic-Gaussian Nash game, where Brownian
motion serves as the common noise. The study establishes three distinct convergence rates
concerning the representative player and empirical measure. To investigate the convergence, the
methodology relies on a specific decomposition of the equilibrium path in the N -player game
and utilizes the associated Mean Field Game framework.

1 Introduction

Mean Field Game (MFG) theory was introduced by Lasry and Lions in their seminal paper ([19]),
and by Huang, Caines, and Malhame ([15, 13, 14, 12]). It aims to provide a framework for studying
the asymptotic behavior of N -player differential games being invariant under the reshuffling of the
players’ indices. For a comprehensive overview of recent advancements and relevant applications of
MFG theory, it is recommended to refer to the two-volume book by Carmona and Delarue ([4, 5])
published in 2018 and the references provided therein.

Mean Field Games (MFG) have become widely accepted as an approximation for N -player
games, particularly when the number of players, N , is large enough. A fundamental question that
arises in this context concerns the convergence rate of this approximation. Convergence can be
analyzed from different perspectives, such as convergence in value, the trajectory followed by the
representative player, or the behavior of the mean field term. Each of these perspectives offers
valuable insights into the behavior and characteristics of the MFG approximation. Furthermore,
they raise a variety of intriguing questions within this context.

To be more concrete, we examine the behavior of the triangular array X̂
(N)
t = (X̂

(N)
it : 1 ≤

i ≤ N) as N → ∞, where X̂
(N)
it represents the equilibrium state of the i-th player at time t in

the N -player game, defined within the probability space
(
Ω(N),F (N),F(N),P(N)

)
. Additionally,

we denote X̂t as the equilibrium path at time t derived from the associated MFG, defined in the
probability space (Ω,F ,F,P).

Considering the identical but not independent distribution L(X̂
(N)
it ), the first question pertains

to the convergence of X̂
(N)
1t , which represents the generic path. It can be framed as follows:

(Q1) The Wp-convergence rate of the representative equilibrium path,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−?

)
.
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Here, Wp denotes the p-Wasserstein metric.
The existing literature extensively explores the convergence rate in this context. For (Q1),

Theorem 2.4.9 of the monograph [3] establishes a convergence rate of O(N−1/2) using the W1

metric. More recently, [17] addresses (Q1) by introducing displacement monotonicity and controlled
common noise, and Theorem 2.23 applies the maximum principle of forward-backward propagation
of chaos to achieve the same convergence rate. Within the LQG framework, [18] also provides a
convergence rate of 1/2 for the representative player.

The second question pertains to the convergence of the mean-field term, which is equivalent

to the convergence of the empirical measure ρ(X̂
(N)
t ) = 1

N

∑N
i=1 δX̂(N)

it

of N players. Given the

Brownian motion, denoted as W̃t, to be the common noise, the problem lies in determining the rate
of convergence of the empirical measures to the MFG equilibrium measure

m̂t = L
(
X̂t

∣∣∣FW̃t ) , ∀t ∈ (0, T ].

Thus, the second question can be stated as follows:

(Q2) The Wp-convergence rate of empirical measures in Lp sense,(
E
[
Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣FW̃t ))]) 1
p

= O
(
N−?

)
.

As for (Q2), Theorem 3.1 of [8] provides an answer, stating that the empirical measures exhibit
a convergence rate of O(N−1/(2p)) in the Wp distance for p ∈ [1, 2]. In [8], they also explore a related
question that is both similar and more intriguing, which concerns the uniform Wp-convergence rate:

(Q3) The t-uniform Wp-convergence rate of empirical measures in Lp sense,(
E

[
sup
t∈[0,T ]

Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣FW̃t ))
]) 1

p

= O
(
N−?

)
.

The answer provided by Theorem 3.1 in [8] reveals that the uniform convergence rate, as formulated
in (Q3), is considerably slower compared to the convergence rate mentioned in (Q2). Specifically,
the convergence rate for (Q3) is O

(
N−1/(d+8)

)
when p = 2, where d represents the dimension of

the state space.
In our paper, we specifically focus on a class of one-dimensional Linear-Quadratic-Gaussian

(LQG) Mean Field Nash Games with Brownian motion as the common noise. It is important to
note that the assumptions made in the aforementioned papers except [18] only account for linear
growth in the state and control elements for the running cost, thus excluding the consideration of
LQG. It is also noted that differences between [18] and the current paper lie in various aspects:
(1) The problem setting in our paper considers Brownian motion as the common noise, whereas
[18] employs a Markov chain. This discrepancy leads to significant differences in the subsequent
analysis; (2) The work in [18] does not address the questions posed in (Q2) and (Q3).

Our main contribution is the establishment of the convergence rate of all three questions in
the above in LQG framework. Firstly, the paper establishes that the convergence rate of the
p-Wasserstein metric for the distribution of the representative player is O(N−1/2) for p ∈ [1, 2].
Secondly, it demonstrates that the convergence rate of the p-Wasserstein metric for the empirical
measure in the Lp sense is O(N−1/(2p)) for p ∈ [1, 2]. Lastly, the paper shows that the convergence
rate of the uniform p-Wasserstein metric for the empirical measure in the Lp sense is O(N−1/(2p))
for p ∈ (1, 2], and O(N−1/2 ln(N)) for p = 1.

2



It is worth noting that the convergence rates obtained for (Q1) and (Q2) in the LQG framework
align with the results found in existing literature, albeit under different conditions. Additionally,
it is revealed that the uniform convergence rate of (Q3) may be slower than that of (Q2), which is
consistent with the observations made by [8] from a similar perspective. Interestingly, when consid-
ering the specific case where p = 2 and d = 1, the uniform convergence rate of (Q3) is established
as O(N−1/9) according to [8], while it is determined to be O(N−1/4) within our framework that
incorporates the LQG structure.

Regarding (Q2), if the states (X̂
(N)
it : 1 ≤ i ≤ N) were independent, the convergence rate

could be determined as 1/(2p) based on Theorem 1 of [10] and Theorem 5.8 of [4], which provide
convergence rates for empirical measures of independent and identically distributed sequences.

However, in the mean-field game, the states X̂
(N)
it are not independent of each other, despite

having identical distributions. The correlation is introduced mainly by two factors: One is the
system coupling arising from the mean-field term and the other is the common noise. Consequently,
determining the convergence rate requires understanding the contributions of these two factors to
the correlation among players.

In our proof, we rely on a specific decomposition (refer to Lemma 6 and the proof of the main
theorem) of the underlying states. This decomposition reveals that the states can be expressed as
a sum of a weakly correlated triangular array and a common noise. By analyzing the behavior of
these components, we can address the correlation and establish the convergence rate.

Additionally, it is worth mentioning that a similar technique of dimension reduction in N -player
LQG games have been previously utilized in [16] and related papers to establish decentralized Nash
equilibria and the convergence rate in terms of value functions.

The remainder of the paper is organized as follows: Section 2 outlines the problem setup and
presents the main result. The proof of the main result, which relies on two propositions, is provided
in Section 3. We establish the proof for these two propositions in Section 4 and Section 5. Some
lemmas are given in the Appendix.

2 Problem setup and main results

2.1 The formulation of equilibrium in Mean Field Game

In this section, we present the formulation of the Mean Field Game in the sample space Ω.
Let T > 0 be a given time horizon. We assume that W = {Wt}t≥0 is a standard Brownian

motion constructed on the probability space (Ω̄, F̄ = F̄T , P̄, F̄ = {F̄t}t≥0). Similarly, the pro-
cess W̃ = {W̃t}t≥0 is a standard Brownian motion constructed on the probability space (Ω̃, F̃ =
F̃T , P̃, F̃ = {F̃t}t≥0). We define the product structure as follows:

Ω = Ω̄× Ω̃, F , F = {Ft}t≥0, P,

where (F ,P) is the completion of (F̄ ⊗ F̃ , P̄ ⊗ P̃) and F is the complete and right continuous
augmentation of {F̄t ⊗ F̃t}t≥0.

Note that, W and W̃ are two Brownian motions from separate sample spaces Ω̄ and Ω̃, they
are independent of each other in their product space Ω. In our manuscript, W is called individual
or idiosyncratic noise, and W̃ is called common noise, see their different roles in the problem
formulation later defined via fixed point condition (4). To proceed, we denote by Lp := Lp(Ω,P)
the set of random variables X on (Ω,F ,P) with finite p-th moment with norm ‖X‖p = (E [|X|p])1/p

and by LpF := LpF(Ω× [0, T ]) the space of all R valued F-progressively measurable random processes

3



α such that

E
[∫ T

0
|αt|pdt

]
<∞.

Let Pp(R) denote the Wasserstein space of probability measures µ on R satisfying
∫
R x

pdµ(x) <
∞ endowed with p-Wasserstein metric Wp(·, ·) defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
R×R
|x− y|pdπ(x, y)

) 1
p

,

where Π(µ, ν) is the collection of all probability measures on R × R with its marginals agreeing
with µ and ν.

Let X0 ∈ L2 be a random variable that is independent with W and W̃ . For any control α ∈ L2
F,

consider the state X = {Xt}t≥0 of the generic player is governed by a stochastic differential equation
(SDE)

dXt = αtdt+ dWt + dW̃t (1)

with the initial value X0, where the underlying process X : [0, T ]×Ω 7→ R. Given a random measure
flow m : (0, T ]× Ω 7→ P2(R), the generic player wants to minimize the expected accumulated cost
on [0, T ]:

J(x, α) = E
[∫ T

0

(
1

2
α2
s + F (Xs,ms)

)
ds

∣∣∣∣X0 = x

]
(2)

with some given cost function F : R× P2(R) 7→ R.
The objective of the control problem for the generic player is to find its optimal control α̂ ∈

A := L4
F to minimize the total cost, i.e.,

V [m](x) = J [m](x, α̂) ≤ J [m](x, α), ∀α ∈ A. (3)

Associated to the optimal control α̂, we denote the optimal path by X̂ = {X̂t}t≥0.
Next, to introduce the MFG Nash equilibrium, it is useful to emphasize the dependence of

the optimal path and optimal control of the generic player, as well as its associated value, on
the underlying measure flow m. These quantities are denoted as X̂t[m], α̂t[m], J [m], and V [m],
respectively.

We now present the definitions of the equilibrium measure, equilibrium path, and equilibrium
control. Please also refer to page 127 of [5] for a general setup with a common noise.

Definition 1. Given an initial distribution L(X0) = m0 ∈ P2(R), a random measure flow m̂ =
m̂(m0) is said to be an MFG equilibrium measure if it satisfies the fixed point condition

m̂t = L
(
X̂t[m̂]

∣∣∣ F̃t) , ∀0 < t ≤ T, almost surely in P. (4)

The path X̂ and the control α̂ associated with m̂ are called the MFG equilibrium path and equilibrium
control, respectively.

The flowchart of the MFG diagram is given in Figure 1. It is noted from the optimality condition
(3) and the fixed point condition (4) that

J [m̂](x, α̂) ≤ J [m̂](x, α), ∀α

holds for the equilibrium measure m̂ and its associated equilibrium control α̂, while it is not

J [m̂](x, α̂) ≤ J [m](x, α), ∀α,m.

Otherwise, this problem turns into a McKean-Vlasov control problem, which is essentially different
from the current Mean Field Games setup. Readers refer to [7, 6] to see the analysis of this different
model as well as some discussion of the differences between these two problems.
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Figure 1: The MFG diagram.

2.2 The formulation of Nash equilibrium in N-player game

In this subsection, we set up N -player game and define the Nash equilibrium of N -player game in

the sample space Ω(N). Firstly, let W (N) = (W
(N)
i : i = 1, 2, . . . , N) be an N -dimensional standard

Brownian motion constructed on the space (Ω̄(N), F̄ (N), P̄(N), F̄(N) = {F̄ (N)
t }t≥0) and W̃ = {W̃t}t≥0

be the common noise in MFG defined in Section 2.1 on (Ω̃, F̃ , P̃). The probability space for the
N -player game is

(
Ω(N),F (N),F(N),P(N)

)
, which is constructed via the product structure with

Ω(N) = Ω̄(N) × Ω̃, F (N), F(N) =
{
F (N)
t

}
t≥0

, P(N).

where (F (N),P(N)) is the completion of (F̄ (N) ⊗ F̃ , P̄(N) ⊗ P̃) and F(N) is the complete and right

continuous augmentation of {F̄ (N)
t ⊗ F̃t}t≥0.

Consider a stochastic dynamic game with N players, where each player i ∈ {1, 2, . . . , N} controls

a state process X
(N)
i = {X(N)

it }t≥0 in R given by

dX
(N)
it = α

(N)
it dt+ dW

(N)
it + dW̃t, X

(N)
i0 = x

(N)
i (5)

with a control α
(N)
i in an admissible set A(N) := L4

F(N) and random initial state x
(N)
i .

Given the strategies α
(N)
−i = (α

(N)
1 , . . . , α

(N)
i−1 , α

(N)
i+1 , . . . , α

(N)
N ) from other players, the objective

of player i is to select a control α
(N)
i ∈ A(N) to minimize her expected total cost given by

JNi

(
x(N), α

(N)
i ;α

(N)
−i

)
= E

[∫ T

0

(
1

2

(
α

(N)
it

)2
+ F

(
X

(N)
it , ρ

(
X

(N)
t

)))
dt

∣∣∣∣X(N)
0 = x(N)

]
, (6)

where x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) is a RN -valued random vector in Ω(N) to denote the initial

state for N players, and

ρ
(
x(N)

)
=

1

N

N∑
i=1

δ
x
(N)
i

is the empirical measure of the vector x(N) with Dirac measure δ. We use the notation α(N) :=

(α
(N)
i , α

(N)
−i ) = (α

(N)
1 , α

(N)
2 , . . . , α

(N)
N ) to denote the control from N players as a whole. Next, we

give the equilibrium value function and equilibrium path in the sense of the Nash game.
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Definition 2. 1. The value function of player i for i = 1, 2, . . . , N of the Nash game is defined
by V N = (V N

i : i = 1, 2, . . . , N) satisfying the equilibrium condition

V N
i

(
x(N)

)
:= JNi

(
x(N), α̂

(N)
i ; α̂

(N)
−i

)
≤ JNi

(
x(N), α

(N)
i ; α̂

(N)
−i

)
, ∀α(N)

i ∈ A(N). (7)

2. The equilibrium path of the N -player game is the N -dimensional random path X̂
(N)
t =

(X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) driven by (5) associated to the control α̂

(N)
t satisfying the equilibrium

condition of (7).

2.3 Main result

We consider three convergence questions on N -player game defined in Ω(N): The first one is the

convergence of the representative path X̂
(N)
it , the second one is the convergence of the empirical

measure ρ(X̂
(N)
t ), while the last one is the t-uniform convergence of the empirical measure ρ(X̂

(N)
t ).

To be precise, we shall assume the following throughout the paper:

Assumption 1. • E[|X0|q] <∞ for some q > 4.

• The initials X
(N)
i0 of the N -player game is i.i.d. random variables in Ω(N) with the same

distribution as L(X0) in the MFG.

Note that the equilibrium path X̂
(N)
t = (X̂

(N)
it : i = 1, 2, . . . , N) is a vector-valued stochastic

process. Due to the Assumption 1, the game is invariant to index reshuffling of N players and the

elements in (X̂
(N)
it : i = 1, 2, . . . , N) have identical distributions, but they are not independent of

each other.
So, the first question on the representative path is indeed about X̂

(N)
1t in Ω(N) and we are

interested in how fast it converges to X̂t in Ω in distribution:

(Q1) The Wp-convergence rate of the representative equilibrium path,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−?

)
.

The second question is about the convergence of the empirical measure ρ(X̂
(N)
t ) of the N -player

game defined by

ρ
(
X̂

(N)
t

)
=

1

N

N∑
i=1

δ
X̂

(N)
it

.

We are interested in how fast this converges to the MFG equilibrium measure given by

m̂t = L
(
X̂t

∣∣∣ F̃t) , ∀t ∈ (0, T ].

(Q2’) The Wp-convergence rate of empirical measures,

Wp

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t)) = O
(
N−?

)
.

Note that the left-hand side of the above equality is a random quantity and one shall be
more precise about what the Big O notation means in this context. Indeed, by the definition

of the empirical measure, ρ(X̂
(N)
t ) is a random distribution measurable by σ-algebra generated
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by the random vector X̂
(N)
t . On the other hand, L(X̂t|F̃t) is a random distribution measurable

by the σ-algebra F̃t. Therefore, from the construction of the product probability space Ω(N)

in Section 2.2, both random distributions ρ(X̂
(N)
t ) and L(X̂t|F̃t) are measurable with respect to

F (N)
t = F̄ (N)

t ⊗ F̃t. Consequently, Wp(ρ(X̂
(N)
t ),L(X̂t|F̃t)) is a random variable in the probability

space (Ω(N),F (N),P(N)) and we will focus on a version of (Q2’) in the Lp sense:

(Q2) The Wp-convergence rate of empirical measures in Lp sense for each t ∈ [0, T ],(
E
[
Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t))]) 1
p

= O
(
N−?

)
.

In addition, we also study the following related question:

(Q3) The t-uniform Wp-convergence rate of empirical measures in Lp sense,(
E

[
sup

0≤t≤T
Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t))])
1
p

= O
(
N−?

)
.

In this paper, we will study the above three questions (Q1), (Q2), and (Q3) in the framework
of LQG structure with Brownian motion as a common noise with the following function F in the
cost functional (2).

Assumption 2. Let the function F : R× P2(R) 7→ R be given in the form of

F (x,m) = k

∫
R

(x− z)2m(dz) = k(x2 − 2x[m]1 + [m]2) (8)

for some k > 0, where [m]1, [m]2 are the first and second moment of the measure m.

The main result of this paper is presented below. Let us recall that q denotes the parameter
defined in Assumption 1.

Theorem 1. Under Assumptions 1-2, for any p ∈ [1, 2], we have

1. The Wp-convergence rate of the representative equilibrium path is 1/2, i.e.,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−

1
2

)
.

2. The Wp-convergence rate of empirical measures in Lp sense is

E
[
Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t))] = O
(
N−

1
2

)
.

3. The uniform Wp-convergence rate of empirical measures in Lp sense is

E

[
sup

0≤t≤T
Wp
p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t))] =

O
(
N−

1
2 ln(N)

)
, if p = 1,

O
(
N−

1
2

)
, if 1 < p ≤ 2.
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We would like to provide some additional remarks on our main result. Firstly, the cost function
F defined in (6) applies to the running cost for the i-th player in the N -player game, and it takes
the form:

F
(
X

(N)
it , ρ

(
X

(N)
t

))
=

k

N

N∑
j=1

(
X

(N)
it −X(N)

jt

)2
. (9)

Interestingly, if k < 0, although F does satisfy the Lasry-Lions monotonicity ([2]) as demonstrated
in Appendix 6.1 of [18], there is no global solution for MFG due to the concavity in x. On the
contrary, when k > 0, F satisfies the displacement monotonicity proposed in [11] as shown by the
following derivation:

E [(Fx(X1,L(X1))− Fx(X2,L(X2)))(X1 −X2)] = 2k
(
E
[
(X1 −X2)2

]
− (E[X1 −X2])2

)
≥ 0.

3 Proof of the main result with two propositions

Our objective is to investigate the relations between (X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) and X̂t described in

(Q1), (Q2), and (Q3). In this part, we will give the proof of Theorem 1 based on two propositions
whose proof will be given later.

Proposition 1. Under Assumptions 1-2, the MFG equilibrium path X̂ = X̂[m̂] is given by

dX̂t = −2a(t)
(
X̂t − µ̂t

)
dt+ dWt + dW̃t, X̂0 = X0, (10)

where a is the solution of
a′(t)− 2a2(t) + k = 0, a(T ) = 0, (11)

and µ̂ is

µ̂t := E
[
X̂t

∣∣∣ F̃t] = E[X0] + W̃t.

Moreover, the equilibrium control follows

α̂t = −2a(t)
(
X̂t − µ̂t

)
. (12)

Proposition 2. Suppose Assumptions 1-2 hold. For the N -player game, the path and the control
of player i under the equilibrium are given by

dX̂
(N)
it = −2aN (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 dt+ dW
(N)
it + dW̃t, (13)

and

α̂
(N)
it = −2aN (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt


respectively for i = 1, 2, . . . , N , where aN is the solution of

a′ − 2(N + 1)

N − 1
a2 +

N − 1

N
k = 0, a(T ) = 0. (14)

8



3.1 Preliminaries

We first recall the convergence rate of empirical measures of i.i.d. sequence provided in Theorem 1
of [10] and Theorem 5.8 of [4].

Lemma 1. Let d = 1 or 2. Suppose {Xi : i ∈ N} is a sequence of d dimensional i.i.d. random
variables with E[|X1|q] <∞ for some q > 4. Then, the empirical measure

ρN (X) =
1

N

N∑
i=1

δXi

satisfies

E
[
Wp
p

(
ρN (X),L(X1)

)]
=


O
(
N−1/2

)
, if p ∈ (1, 2],

O
(
N−1/2

)
, if p = 1, d = 1,

O
(
N−1/2 lnN

)
, if p = 1, d = 2.

Next, we give the definition of some notations that will be used in the following part. Denote
Cb(Rd) to be the collection of bounded and continuous functions on Rd, and let C1

b (Rd) ⊂ Cb(Rd)
be the space of functions on Rd whose first order derivative is also bounded and continuous.

Lemma 2. Suppose m1,m2 are two probability measures on B(Rd) and f ∈ C1
b (Rd,R), where B(Rd)

is the Borel set on Rd. Then,

Wp(f∗m1, f∗m2) ≤ |Df |0Wp(m1,m2),

where f∗mj is the pushforward measure for j = 1, 2, and |Df |0 = supx∈Rd max{|∂xif(x)| : i =
1, 2, . . . , d}.

Proof. We define a function F (x, y) = (f(x), f(y)) : R2d 7→ R2. Note that, for any π ∈ Π(m1,m2),
F∗π ∈ Π(f∗m1, f∗m2), i.e.,

F∗Π(m1,m2) ⊂ Π(f∗m1, f∗m2).

Therefore, we have the following inequalities:

Wp
p(f∗m1, f∗m2) = inf

π′∈Π(f∗m1,f∗m2)

∫
R2

|x− y|pπ′(dx, dy)

≤ inf
π′∈F∗Π(m1,m2)

∫
R2

|x− y|pπ′(dx, dy)

= inf
π∈Π(m1,m2)

∫
R2d

|f(x)− f(y)|pπ(dx, dy)

≤ |Df |p0 inf
π∈Π(m1,m2)

∫
R2d

|x− y|pπ(dx, dy)

= |Df |p0W
p
p(m1,m2).

Lemma 3. Let {Xi : i ∈ N} be a sequence of d dimensional random variables in (Ω,F ,P). Let
f ∈ C1

b (Rd). We also denote by f(X) the sequence {f(Xi) : i ∈ N}. Then

Wp

(
ρN (f(X)),L(f(X1))

)
≤ |Df |0Wp

(
ρN (X),L(X1)

)
, almost surely

where |Df |0 = supx∈Rd max{|∂xif(x)| : i = 1, 2, . . . , d}.

9



Proof. For any sequence {ci : i ∈ N} in Rd, the empirical measure ρN (c) := 1
N

∑N
i=1 δci satisfies

ρN (f(c)) = f∗ρ
N (c),

since

〈φ, ρN (f(c))〉 =
1

N

N∑
i=1

φ(f(ci)) = 〈φ ◦ f, ρN (c)〉, ∀φ ∈ Cb(Rd).

This implies that
ρN (f(X)) = f∗ρ

N (X), almost surely.

On the other hand, we also have

L(f(X1))(A) = P(f(X1) ∈ A) = P(X1 ∈ f−1(A)) = f∗L(X1)(A), ∀A ∈ B(Rd).

Therefore, the conclusion follows by applying Lemma 2.

3.2 Empirical measures of a sequence with a common noise

We are going to apply lemmas from the previous subsection to study the convergence of empirical
measures of a sequence with a common noise in the following sense.

Definition 3. We say a sequence of random variables X = {Xi : i ∈ N} is a sequence with a
common noise, if there exists a random variable β such that

• X − β = {Xi − β : i ∈ N} is a sequence of i.i.d. random variables,

• β is independent to X − β.

By this definition, a sequence with a common noise is i.i.d. if and only if β is a deterministic
constant.

Example 1. Let q > 4 be a given constant and X = {Xi : i ∈ N} be a 1-dimensional sequence of
Lq random variables with a common noise term β, where

Xi − β = γi + σαi.

In above, {(αi, γi) : i ∈ N} is a sequence of 2-dimensional i.i.d. random variables independent to
β, and σ is a given non-negative constant. Let ρN (X) be the empirical measure defined by

ρN (X) =
1

N

N∑
i=1

δXi .

The first question is

(Qa) In Example 1, where does ρN (X) converge to?

For any test function φ ∈ Cb(R),

〈φ, ρN (X)〉 =
1

N

N∑
i=1

φ(Xi) =
1

N

N∑
i=1

φ(γi + σαi + β).

10



Since β is independent to (αi, γi), by Example 4.1.5 of [9] together with the Law of Large Numbers,
we have

1

N

N∑
i=1

φ(γi + σαi + c)→ E[φ(γ1 + σα1 + c)] = E[φ(γ1 + σα1 + β)|β = c], ∀c ∈ R.

Therefore, we conclude that

〈φ, ρN (X)〉 → E[φ(γ1 + σα1 + β)|β], β − a.s.
= 〈φ,L(γ1 + σα1 + β|β)〉, β − a.s.

Hence, the answer for the (Qa) is

• ρN (X) ⇒ L(X1|β), β-a.s. More precisely, since all random variables are square-integrable,
the weak convergence implies, for all p ∈ [1, 2],

Wp

(
ρN (X),L (X1|β)

)
→ 0, β − a.s.

The next question is

(Qb) In Example 1, what’s the convergence rate in the sense E
[
Wp
p

(
ρN (X),L (X1|β)

)]
?

Since β is independent to γ1 + σα1, by Example 4.1.5 of [9], we have

E[φ(γ1 + σα1 + β)|β = c] = E[φ(γ1 + σα1 + c)], ∀φ ∈ Cb(R), c ∈ R,

or equivalently, if one takes c = β(ω),

L(X1|β)(ω) = L(γ1 + σα1 + β|β)(ω) = L(γ1 + σα1 + c).

On the other hand, with c = β(ω),

ρN (X)(ω) = ρN (X(ω)) =
1

N

N∑
i=1

δγi(ω)+σαi(ω)+c.

From the above two identities, with c = β(ω), we can write

Wp

(
ρN (X)(ω),L(X1|β = c)(ω)

)
= Wp

(
1

N

N∑
i=1

δγi(ω)+σαi(ω)+c,L(γ1 + σα1 + c)

)
. (15)

Now we can conclude (Qb) in the next lemma.

Lemma 4. Let p ∈ [1, 2] be a given constant. For a sequence X = {Xi : i ∈ N} with a common
noise β as of Example 1, we have

E
[
Wp
p

(
ρN (X),L(X1|β)

)]
= O

(
N−

1
2

)
.

Proof. Originally, Xi = γi + σαi + β of Example 1 are dependent due to the common term β. We
apply (49) in Lemma 11 in Appendix to (15) and obtain

Wp

(
ρN (X)(ω),L(X1|β)(ω)

)
= Wp

(
1

N

N∑
i=1

δγi(ω)+σαi(ω)+β(ω),L(γ1 + σα1 + β(ω))

)
= Wp

(
ρN (γ(ω) + σα(ω)),L(γ1 + σα1)

)
.

Now, the convergence of empirical measures is equivalent to the ones of i.i.d. sequence {γi + σαi :
i ∈ N}. The conclusion follows from Lemma 1.
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Next, we present the uniform convergence rate by combining Lemma 3.

Lemma 5. In Example 1, we use X(σ) to denote X to emphasize its dependence on σ. Then,

E

[
sup
σ∈[0,1]

Wp
p

(
ρN (X(σ)),L (X1(σ)|β)

)]
=

O
(
N−

1
2 ln(N)

)
, if p = 1,

O
(
N−

1
2

)
, if 1 < p ≤ 2.

Proof. Note that, by (49) in Lemma 11 in Appendix,

Wp
p

(
ρN (X(σ)),L (X1(σ)|β)

)
= Wp

p

(
ρN (γi + σαi),L (γ1 + σα1)

)
.

Next, applying Lemma 3 with f(x, y) = x+ σy, we obtain

sup
σ∈[0,1]

Wp
p

(
ρN (γi + σαi),L (γ1 + σα1)

)
≤ sup

σ∈[0,1]
max{1, σp}Wp

p

(
ρN ((γ, α)),L ((γ1, α1))

)
= Wp

p

(
ρN ((γ, α)),L ((γ1, α1))

)
.

At last, using Lemma 1 for the 2-dimensional i.i.d. sequence {(γi, αi) : i ∈ N}, we obtain the
desired conclusion.

3.3 Generalization of the convergence to triangular arrays

Unfortunately, (X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) of the N -player’s game does not have a clean structure with

a common noise term β given in Example 1. Therefore, we need a generalization of the convergence
result in Example 1 to a triangular array. To proceed, we provide the following lemma.

Lemma 6. Let σ > 0, q > 4, and

XN
i (σ) = γNi + σαNi + ∆N

i (σ) + β, and X̂(σ) = γ̂ + σα̂+ β,

where

• (γN , αN ) = {(γNi , αNi ) : i ∈ N} is a sequence of 2-dimensional i.i.d. random variables with
distribution identical to L((γ̂, α̂)) with (γ̂, α̂) ∈ Lq for some q > 4,

• β ∈ Lq is independent to the random variables (γNi , α
N
i , γ̂, α̂),

• max
i=1,2,...,N

E

[
sup
σ∈[0,1]

|∆N
i (σ)|2

]
= O(N−1).

Let ρN (XN ) be the empirical measure given by

ρN (XN ) =
1

N

N∑
i=1

δXN
i
.

Then, we have the following three results: For p ∈ [1, 2],

Wp

(
L
(
XN

1 (σ)
)
,L
(
X̂(σ)

))
= O

(
N−

1
2

)
, (16)

sup
σ∈[0,1]

E
[
Wp
p

(
ρN
(
XN (σ)

)
,L
(
X̂(σ)

∣∣∣β))] = O
(
N−

1
2

)
, (17)

and

E

[
sup
σ∈[0,1]

Wp
p

(
ρN
(
XN (σ)

)
,L
(
X̂(σ)

∣∣∣β))] =

O
(
N−

1
2 ln(N)

)
, if p = 1,

O
(
N−

1
2

)
, if p > 1.

(18)
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Proof. We will omit the dependence of σ if there is no confusion, for instance, we use X in lieu of
X(σ). Since L(X̂) = L(XN

1 −∆N
1 ), the first result (16) directly follows from

Wp
p

(
L
(
XN

1

)
,L
(
X̂
))
≤ E

[∣∣∆N
1

∣∣p] ≤ (E [∣∣∆N
1

∣∣2]) p
2

= O
(
N−

p
2

)
.

Next, we set Y N
i (σ) = γNi + σαNi + β. By the definition of empirical measures, we have

Wp
p

(
ρN
(
XN

)
, ρN

(
Y N
))
≤ 1

N

N∑
i=1

∣∣XN
i − Y N

i

∣∣p =
1

N

N∑
i=1

∣∣∆N
i

∣∣p . (19)

From the third condition on ∆N
i , we obtain

E
[
Wp
p

(
ρN
(
XN

)
, ρN

(
Y N
))]

= O
(
N−

p
2

)
.

By Lemma 4, we also have

E
[
Wp
p

(
ρN
(
Y N
)
,L
(
X̂
∣∣∣β))] = O

(
N−

1
2

)
.

In the end, (17) follows from the triangle inequality together with the fact that p ≥ 1. Finally, for
the proof of (18), we first use (19) to write

Wp
p

(
ρN
(
XN (σ)

)
,L
(
X̂(σ)

∣∣∣β)) ≤ 2p−1

(
Wp
p

(
ρN
(
Y N (σ)

)
,L
(
X̂(σ)

∣∣∣β))+
1

N

N∑
i=1

∣∣∆N
i (σ)

∣∣p) .
Applying Lemma 5 and the third condition on ∆N

i (σ), we can conclude (18).

3.4 Proof of Theorem 1

For simplicity, let us introduce the following notations:

Et(a) = exp

{∫ t

0
a(s)ds

}
, Et(a,M) =

∫ t

0
Es(a)dMs

for a deterministic function a(·) and a martingale M = {Mt}t≥0. With these notations, one can
write the solution to the Ornstein–Uhlenbeck process

dXt = −atXtdt+ dMt

for a determinant function a in the form of

Et(a)Xt = X0 + Et(a,M). (20)

For MFG equilibrium, we define
X̃t = X̂t − µ̂t.

According to (10) in Proposition 1, X̃ satisfies the following equation:

X̃t = X̃0 −
∫ t

0
2asX̃sds+Wt.

13



Next, we express the solution of the above SDE in the form of

Ỹt := Et(2a)X̃t = X̃0 + Et(2a,W ).

Note that Ỹ and µ̂ are independent. Therefore, X̂ admits a decomposition of two independent
processes as

X̂t = X̃t + µ̂t.

Furthermore, we have

Ŷt := Et(2a)X̂t = X̃0 + Et(2a,W ) + Et(2a)
(
µ̂0 + W̃t

)
.

In the N -player game, we define the following quantities:

X̄
(N)
t =

1

N

N∑
i=1

X̂
(N)
it , W̄

(N)
t =

1

N

N∑
i=1

W
(N)
it ,

and
X̃

(N)
it = X̂

(N)
it − X̄(N)

t .

It is worth noting that, by Proposition 2, we have

X̂
(N)
it = X̂

(N)
i0 −

∫ t

0
2

N

N − 1
aN (s)

X̂(N)
is − 1

N

N∑
j=1

X̂
(N)
js

 ds+W
(N)
it + W̃t

for all i = 1, 2, . . . , N , then the mean-field term satisfies

X̄
(N)
t = X̄

(N)
0 + W̄

(N)
t + W̃t

and the i-th player’s path deviated from the mean-field path can be rewritten by

X̃
(N)
it = X̃

(N)
i0 −

∫ t

0
2âN (s)X̃

(N)
is ds+W

(N)
it − W̄ (N)

t ,

where

âN =
N

N − 1
aN .

Next, we introduce

Ŷ
(N)
it = Et

(
2âN

)
X̂

(N)
it , Ỹ

(N)
it = Et

(
2âN

)
X̃

(N)
it , Ȳ

(N)
t = Et

(
2âN

)
X̄

(N)
t .

Consequently, we obtain the following relationships:

Ỹ
(N)
it = X̃

(N)
i0 + Et

(
2âN ,W

(N)
i − W̄ (N)

)
,

Ȳ
(N)
t = Et

(
2âN

) (
W̄

(N)
t + W̃t + X̄

(N)
0

)
,

and
Ŷ

(N)
it = Ȳ

(N)
it + Ỹ

(N)
it .

14



To compare the process Ŷ
(N)
it with the target process

Ŷt = X̃0 + Et (2a,W ) + Et(2a)
(
µ̂0 + W̃t

)
= X̃0 + σtZt + Et(2a)

(
µ̂0 + W̃t

)
,

(21)

where

σt =

(∫ t

0
Es(4a)ds

)1/2

,

and
Zt = σ−1

t Et (2a,W ) ∼ N (0, 1),

we write Ŷ
(N)
it by

Ŷ
(N)
it = X̃

(N)
i0 + Et

(
2a,W

(N)
i

)
+ ∆

(N)
it + Et(2a)

(
µ̂0 + W̃t

)
= X̃

(N)
i0 + σtZ

(N)
it + ∆

(N)
it + Et(2a)

(
µ̂0 + W̃t

)
,

(22)

where
Z

(N)
it = σ−1

t Et
(

2a,W
(N)
i

)
∼ N (0, 1),

and
∆

(N)
it =

(
Et
(

2âN ,W
(N)
i

)
− Et

(
2a,W

(N)
i

))
− Et

(
2âN , W̄ (N)

)
+
(
Et
(
2âN

)
− Et(2a)

) (
µ̂0 + W̃t

)
+ Et

(
2âN

) (
X̄

(N)
0 − µ̂0 + W̄

(N)
t

)
:= I

(N)
it + II

(N)
t + III

(N)
t + IV

(N)
t .

(23)

To apply Lemma 6 to the processes of (22) and (21), we only need to show the second moment

on supt∈[0,T ] ∆
(N)
it is O(N−1) for each i = 1, 2, . . . , N . In the following analysis, we will utilize the

explicit solution of the ODE:

• Let c, d > 0 be two constants. The solution of

v′(t)− c2v2(t) + d2 = 0, v(T ) = 0

is

v(t) =
d

c
· 1− e2dc(t−T )

1 + e2dc(t−T )
. (24)

We will employ this solution to derive the second-moment estimations of supt∈[0,T ] ∆
(N)
it .

1. From (24), we have an estimation of∣∣aN (t)− a(t)
∣∣ =

k|T − t|
N

+ o
(
N−1

)
. (25)

Therefore, we have ∣∣Et(2âN )− Et(2a)
∣∣ =

2t(T − t)
N

+ o
(
N−1

)
(26)
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and thus by Burkholder-Davis-Gundy (BDG) inequality

E

[
sup
t∈[0,T ]

(
I

(N)
it

)2
]

= E

[
sup
t∈[0,T ]

(∫ t

0

(
Es
(
2âN

)
− Es (2a)

)
dW

(N)
is

)2
]

≤ CE

[(∫ T

0

(
Es
(
2âN

)
− Es (2a)

)
dW

(N)
is

)2
]

for some constant C > 0

= C

∫ T

0

(
Es
(
2âN

)
− Es (2a)

)2
ds

= O
(
N−2

)
.

2. Since âN is uniformly bounded by
√
k/2, II

(N)
t is a martingale with its quadratic variance

[II(N)]T =
1

N

∫ T

0
Es(4âN )ds = O

(
N−1

)
.

So, we have

E

[
sup
t∈[0,T ]

(
II

(N)
t

)2
]

= O
(
N−1

)
.

3. From the estimation (26), we also have

E

[
sup
t∈[0,T ]

(
III

(N)
t

)2
]

= O
(
N−2

)
.

4. By the assumption of i.i.d. initial states, we have

E

[
sup
t∈[0,T ]

(
IV

(N)
t

)2
]

= ET
(
4âN

)(
V ar

(
X̄

(N)
0

)
+ E

[
sup
t∈[0,T ]

(
W̄

(N)
t

)2
])

= O
(
N−1

)
.

As a result, we have the following expression:

E

[
sup
t∈[0,T ]

(
∆

(N)
it

)2
]

= O
(
N−1

)
, ∀i = 1, 2, . . . , N. (27)

By combining equations (21), (22), and (27), we can conclude Theorem 1 by applying Lemma 6.

4 Proposition 1: Derivation of the MFG path

This section is dedicated to proving Proposition 1, which provides insights into the MFG solution.
To proceed, in Subsection 4.1, we begin by reformulating the MFG problem, assuming a Markovian
structure for the equilibrium. Then, in Subsection 4.2, we solve the underlying control problem
and derive the corresponding Riccati system. Finally, in Subsection 4.3, we examine the fixed-point
condition of the MFG problem, leading to the conclusion.
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4.1 Reformulation

To determine the equilibrium measure, as defined in Definition 2, one needs to explore the infinite-
dimensional space of random measure flows m : (0, T ] × Ω → P2(R) until a measure flow satisfies
the fixed-point condition mt = L(X̂t|F̃t) for all t ∈ (0, T ], as illustrated in Figure 1.

The first observation is that the cost function F in (8) is only dependent on the measure m
through the first two moments with the quadratic cost structure, which is given by

F (x,m) = k(x2 − 2x[m]1 + [m]2).

Consequently, the underlying stochastic control problem for MFG can be entirely determined by
the input given by the R2 valued random processes µt = [mt]1 and νt = [mt]2, which implies that
the fixed point condition can be effectively reduced to merely checking two conditions:

µt = E
[
X̂t

∣∣∣ F̃t] , νt = E
[
X̂2
t

∣∣∣ F̃t] .
This observation effectively reduces our search from the space of random measure-valued processes
m : (0, T ]× Ω 7→ P2(R) to the space of R2-valued random processes (µ, ν) : (0, T ]× Ω 7→ R2.

It is important to note that if the underlying MFG does not involve common noise, the afore-
mentioned observation is adequate to transform the original infinite-dimensional MFG into a finite-
dimensional system. In this case, the moment processes (µ, ν) become deterministic mappings
[0, T ] → R2. However, the following example demonstrates that this is not applicable to MFG
with common noise, which presents a significant drawback in characterizing LQG-MFG using a
finite-dimensional system.

Example 2. To illustrate this point, let’s consider the following uncontrolled mean field dynamics:
Let the mean field term µt := E[X̂t|F̃t], where the underlying dynamic is given by

dX̂t = −µtW̃tdt+ dWt + dW̃t, X̂0 = X0.

Here are two key observations:

• µt is path dependent on entire path of W̃ , i.e.,

µt = µ0e
−

∫ t
0 W̃sds + e−

∫ t
0 W̃sds

∫ t

0
e
∫ s
0 W̃rdrdW̃s.

This implies that the (t, W̃ ) 7→ µt is a function on an infinite dimensional domain.

• µt is Markovian, i.e.,
dµt = −µtW̃tdt+ dW̃t.

It is possible to express the µt via a SDE with finite-dimensional coefficient functions of (t, µt).

To make the previous idea more concrete, we propose the assumption of a Markovian structure
for the first and second moments of the MFG equilibrium. In other words, we restrict our search
for equilibrium to a smaller spaceM of measure flows that capture the Markovian structure of the
first and second moments.

Definition 4. The spaceM is the collection of all F̃t-adapted measure flows m : [0, T ]×Ω 7→ P2(R),
whose first moment [mt]1 := µt and second moment [mt]2 := νt satisfy a system of SDE

µt = µ0 +

∫ t

0
(w1(s)µs + w2(s)) ds+ W̃t,

νt = ν0 +

∫ t

0

(
w3(s)µs + w4(s)νs + w5(s)µ2

s + w6(s)
)
ds+ 2

∫ t

0
µsdW̃s,

(28)

for some smooth deterministic functions (wi : i = 1, 2, . . . , 6) for all t ∈ [0, T ].
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Figure 2: Equivalent MFG diagram with µ0 = [m0]1 and ν0 = [m0]2.

The MFG problem originally given by Definition 1 can be recast as the following combination
of stochastic control problem and fixed point condition:

• RLQG(Revised LQG):

Given smooth functions w = (wi : i = 1, 2, . . . , 6), we want to find the value function V̄ =
V̄ [w] : [0, T ]× R3 → R and optimal path (X̂, µ̂, ν̂)[w] from the following control problem:

V̄ (t, x, µ̄, ν̄) = inf
α∈A

E
[∫ T

t

(
1

2
α2
s + F̄ (Xs, µs, νs)

)
ds

∣∣∣∣Xt = x, µt = µ̄, νt = ν̄

]
with the underlying process X of (1) and (µ, ν) of (28) and with the cost functions: F̄ : R3 7→
R given by

F̄ (x, µ̄, ν̄) = k(x2 − 2xµ̄+ ν̄),

where µ̄, ν̄ are scalars, while µ, ν are used as processes.

• RFP(Revised fixed point condition):

Determine w satisfying the following fixed point condition:

µ̂s = E
[
X̂s

∣∣∣ F̃s] and ν̂s = E
[
X̂2
s

∣∣∣ F̃s] , ∀s ∈ [0, T ]. (29)

The equilibrium measure is then N (µ̂t, ν̂t − µ̂2
t ).

Remark 1. It is important to highlight that the Markovian structure for the first and second
moments of the MFG equilibrium in this manuscript differs significantly from that presented in
[18]. In [18], the processes µt and νt are pairs of processes with finite variation, while in our case,
they are quadratic variation processes.

Specifically, in [18], the coefficient functions depend on the common noise Y , whereas in (28),
the coefficient functions (wi : i = 1, 2, . . . , 6) are independent of the common noise W̃ . Instead, the
first and second moments of the MFG equilibrium are only influenced by the common noise through
an additive term.

4.2 The generic player’s control with a given population measure

This section is devoted to the control problem RLQG parameterized by w.

18



4.2.1 HJB equation

To simplify the notation, let’s denote each function wi(t) as wi for i ∈ {1, 2, . . . , 6}. Assuming
sufficient regularity conditions, and according to the dynamic programming principle (refer to [20]
for more details), the value function V̄ defined in the RLQG problem can be obtained as a solution
v of the following Hamilton-Jacobi-Bellman (HJB) equation

∂tv + inf
a∈R

(
a∂xv +

1

2
a2

)
+ (w1µ̄+ w2) ∂µ̄v +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄v + ∂xxv +

1

2
∂µ̄µ̄v

+∂xµ̄v + 2µ̄2∂ν̄ν̄v + 2µ̄∂µ̄ν̄v + 2µ̄∂xν̄v + k(x2 − 2µ̄x+ ν̄) = 0,

v(T, x, µT , νT ) = 0.

Therefore, the optimal control has to admit the feedback form of

α̂(t) = −∂xv
(
t, X̂t, µt, νt

)
, (30)

and then the HJB equation can be reduced to
∂tv −

1

2
(∂xv)2 + (w1µ̄+ w2) ∂µ̄v +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄v + ∂xxv +

1

2
∂µ̄µ̄v

+∂xµ̄v + 2µ̄2∂ν̄ν̄v + 2µ̄∂µ̄ν̄v + 2µ̄∂xν̄v + k(x2 − 2µ̄x+ ν̄) = 0,

v(T, x, µT , νT ) = 0.

(31)

Next, we identify what conditions are needed for equating the control problem RLQG and the
above HJB equation. Denote S to be the set of v such that v ∈ C∞ satisfies(
1 + |x|2

)−1
(|v|+ |∂tv|) + (1 + |x|+ |µ|)−1 (|∂xv|+ |∂µv|) + (|∂xxv|+ |∂xµv|+ |∂µµv|+ |∂νv|) < K

for all (t, x, µ, ν) for some positive constant K.

Lemma 7. Consider the control problem RLQG with some given smooth functions w = (wi : i =
1, 2, . . . , 6).

1. (Verification theorem) Suppose there exists a solution v ∈ S of (31). Then v(t, x, µ̄, ν̄) =
V̄ (t, x, µ̄, ν̄), and an optimal control is provided by (30).

2. Suppose that the value function V̄ belongs to S, and then V̄ (t, x, µ̄, ν̄) solves HJB equation
(31). Moreover, α̂ of (30) is an optimal control.

Proof. 1. First, we prove the verification theorem. Since v ∈ S, for any admissible α ∈ H4
F, the

process Xα is well defined and one can apply Itô’s formula to obtain

E [v(T,XT , µT , νT )] = v(t, x, µ̄, ν̄) + E
[∫ T

t
Gα(s)v(s,Xs, µs, νs)ds

]
,

where

Gaf(s, x, µ̄, ν̄) =
(
∂t + a∂x + ∂xx + (w1µ̄+ w2) ∂µ̄ +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄

+
1

2
∂µ̄µ̄ + 2µ̄2∂ν̄ν̄ + ∂xµ̄ + 2µ̄∂µ̄ν̄ + 2µ̄∂xν̄

)
f(s, x, µ̄, ν̄).
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Note that the HJB equation actually implies that

inf
a

{
Gav +

1

2
a2

}
= −F̄ ,

which again yields

−Gav ≤ 1

2
a2 + F̄ .

Hence, we obtain that for all α ∈ H4
F,

v(t, x, µ̄, ν̄)

= E
[∫ T

t
−Gα(s)v(s,Xs, µs, νs)ds

]
+ E [v(T,XT , µT , νT )]

≤ E
[∫ T

t

(
1

2
α2(s) + F̄ (Xs, µs, νs)

)
ds

]
= J(t, x, α, µ̄, ν̄).

In the above, if α is replaced by α̂ given by the feedback form (30), then since ∂xv is Lipschitz
continuous in x, there exists corresponding optimal path X̂ ∈ H4

F. Thus, α̂ is also in H4
F.

One can repeat all the above steps by replacing X and α by X̂ and α̂, and ≤ sign by = sign
to conclude that v is indeed the optimal value.

2. The opposite direction of the verification theorem follows by taking θ → t for the dynamic
programming principle, for all stopping time θ ∈ [t, T ],

V̄ (t, x, µ̄, ν̄)

= E
[∫ θ

t

(
1

2
α2
s + F̄ (Xs, µs, νs)

)
ds+ V̄ (θ,Xθ, µθ, νθ)

∣∣∣∣Xt = x, µt = µ̄, νt = ν̄

]
,

which is valid under our regularity assumptions on all the partial derivatives.

4.2.2 LQG solution

It is worth noting that the costs F̄ of RLQG are quadratic functions in (x, µ̄, ν̄), while the drift
function of the process ν of (28) is not linear in (x, µ̄, ν̄). Therefore, the stochastic control problem
RLQG does not fit into the typical LQG control structure. Nevertheless, similarly to the LQG
solution, we guess the value function to be a quadratic function in the form of

v(t, x, µ̄, ν̄) = a(t)x2 + b(t)µ̄2 + c(t)ν̄ + d(t) + e(t)x+ f(t)µ̄+ g(t)xµ̄. (32)

Under the above setup for the value function v, for t ∈ [0, T ], the optimal control is given by

α̂t = −∂xv(t, X̂t, µt, νt) = −2a(t)X̂t − e(t)− g(t)µt, (33)

and the optimal path X̂ isdX̂t =
(
−2a(t)X̂t − e(t)− g(t)µt

)
dt+ dWt + dW̃t,

X̂0 = X0.
(34)
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To proceed, we introduce the following Riccati system of ODEs for t ∈ [0, T ],

a′ − 2a2 + k = 0,

b′ − 1

2
g2 + 2bw1 + cw5 = 0,

c′ + cw4 + k = 0,

d′ − 1

2
e2 + fw2 + cw6 + 2a+ b+ g = 0,

e′ − 2ae+ w2g = 0,

f ′ − eg + w1f + 2bw2 + cw3 = 0,

g′ − 2ag + w1g − 2k = 0,

(35)

with terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = g(T ) = 0. (36)

Lemma 8. Suppose there exists a unique solution (a, b, c, d, e, f, g) to the Riccati system of ODEs
(35)-(36) on [0, T ]. Then the value function of (RMFG) is given by

V̄ (t, x, µ̄, ν̄) = v(t, x, µ̄, ν̄)

= a(t)x2 + b(t)µ̄2 + c(t)ν̄ + d(t) + e(t)x+ f(t)µ̄+ g(t)xµ̄
(37)

for t ∈ [0, T ] and the optimal control and optimal path are given by (33) and (34), respectively.

Proof. With the form of value function v given in (32) and the conditional first and second moment
of X̂t under the σ-algebra F̃t given in (28), we have

∂tv = a′(t)x2 + e′(t)x+ b′(t)µ̄2 + f ′(t)µ̄+ g′(t)xµ̄+ c′(t)ν̄ + d′(t),

∂xv = 2xa(t) + e(t) + g(t)µ̄,

∂xxv = 2a(t),

∂µ̄v = 2b(t)µ̄+ f(t) + g(t)x,

∂ν̄v = c(t),

∂µ̄µ̄v = 2b(t),

∂xµ̄v = g(t),

∂µ̄ν̄v = ∂ν̄ν̄v = ∂xν̄v = 0.

Plugging them back to the HJB equation in (31), we get a system of ODEs in (35) by equating x,
µ̄, ν̄-like terms in each equation with the terminal conditions given in (36).

Therefore, any solution (a, b, c, d, e, f, g) of a system of ODEs (35) leads to the solution of HJB
(31) in the form of the quadratic function given by (37). Since the (a, b, c, d, e, f, g) are differentiable
functions on the closed set [0, T ], they are also bounded, and thus the regularity conditions needed
for v ∈ S is valid. Finally, we invoke the verification theorem given by Lemma 7 to conclude the
desired result.
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4.3 Fixed point condition and the proof of Proposition 1

Returning to the ODE system (35), there are 7 equations, whereas we need to determine a total of
13 deterministic functions of [0, T ]× R to characterize MFG. These are

(a, b, c, d, e, f, g) and (wi : i = 1, 2, . . . , 6).

In this below, we identify the missing 6 equations by checking the fixed point condition of RFP.
This leads to a complete characterization of the equilibrium for MFG in Definition 1.

Lemma 9. With the dynamic of the optimal path X̂ defined in (34), the fixed point condition (29)
implies that the first moment µ̂s := E[X̂s|F̃s] and the second moment ν̂s := E[X̂2

s |F̃s] of the optimal
path conditioned on F̃t satisfy

µ̂s = µ̄+

∫ s

t
((−2a(r)− g(r)) µ̂r − e(r)) dr + W̃s,

ν̂s = ν̄ +

∫ s

t

(
2− 4a(r)ν̂r − 2e(r)µ̂r − 2g(r)µ̂2

r

)
dr +

∫ s

t
2µ̂rdW̃r,

(38)

for s ≥ t, and thus the coefficient functions w = (wi : i = 1, 2, . . . , 6) in (28) satisfy the following
equations:

w1 = −2a− g, w2 = −e, w3 = −2e, w4 = −4a, w5 = −2g, w6 = 2, ∀t ∈ [0, T ]. (39)

Proof. With the dynamic of the optimal path X̂ given by (34), we have

X̂t = X0 +

∫ t

0

(
−2a(s)X̂s − e(s)− g(s)µ̂s

)
ds+Wt + W̃t,

and since the functions a, e, g are continuous on [0, T ], then we can change of order of integration
and expectation and it yields

µ̂t = E
[
X̂t

∣∣∣ F̃t]
= E

[
X0| F̃t

]
+

∫ t

0
(−2a(s)µ̂s − e(s)− g(s)µ̂s) ds+ E

[
Wt| F̃t

]
+ E

[
W̃t

∣∣∣ F̃t]
= E

[
X0| F̃t

]
+

∫ t

0
(−2a(s)µ̂s − e(s)− g(s)µ̂s) ds+ W̃t.

Similarly, applying Itô’s formula, we obtain

X̂2
t = X2

0 +

∫ t

0

(
2− 4a(s)X̂2

s − 2e(s)X̂s − 2g(s)µ̂sX̂s

)
ds+

∫ t

0
2X̂sdWs +

∫ t

0
2X̂sdW̃s,

and it follows that

ν̂t = E
[
X̂2
t

∣∣∣ F̃t]
= E

[
X2

0

∣∣ F̃t]+

∫ t

0

(
2− 4a(s)ν̂s − 2e(s)µ̂s − 2g(s)µ̂2

s

)
ds+ E

[∫ t

0
2X̂sdWs

∣∣∣∣ F̃t]+ E
[∫ t

0
2X̂sdW̃s

∣∣∣∣ F̃t]
= E

[
X2

0

∣∣ F̃t]+

∫ t

0

(
2− 4a(s)ν̂s − 2e(s)µ̂s − 2g(s)µ̂2

s

)
ds+

∫ t

0
2µ̂sdW̃s.

Thus the desired result in (38) is obtained. Next, comparing the terms in (28) and (38), to satisfy
the fixed point condition in MFG, we require another 6 equations in (39) for the coefficient functions
w = (wi : i = 1, 2, . . . , 6).
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Using further algebraic structures, one can reduce the ODE system of 13 equations composed
by (35) and (39) into a system of 4 equations.

Proof of Proposition 1. Let the smooth and bounded functions {wi : i = 1, 2, . . . , 6} be given,
the functions (a, b, c, d, e, f, g) in (35) is a coupled linear system, and thus their existence, uniqueness
and boundedness is shown by Theorem 12.1 in [1].

Plugging the 6 equations in (39) to the ODE system (35), we obtain

a′ − 2a2 + k = 0,

b′ − 1

2
g2 − 4ab− 2bg − 2cg = 0,

c′ − 4ac+ k = 0,

d′ − 1

2
e2 − ef + 2c+ 2a+ b+ g = 0,

e′ − 2ae− eg = 0,

f ′ − eg − 2af − gf − 2be− 2ce = 0,

g′ − 4ag − g2 − 2k = 0,

with the terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = g(T ) = 0.

Let l = 2a+ g, and it easily to obtain

l′(t)− l2(t) = 0, l(T ) = 0,

which implies that l(t) = 2a(t) + g(t) = 0 for all t ∈ [0, T ]. This gives the result that g = −2a and
it yields e′ = 0. Then with e(T ) = 0, we have e(t) = 0 for all t ∈ [0, T ] and thus one can obtain
f ′ = 0, which indicates that f(t) = 0 for all t ∈ [0, T ] as f(T ) = 0. Therefore the ODE system (35)
can be simplified to the following form about (a(t), b(t), c(t), d(t) : t ∈ [0, T ]):

a′(t)− 2a2(t) + k = 0,

b′(t)− 2a2(t) + 4a(t)c(t) = 0,

c′(t)− 4a(t)c(t) + k = 0,

d′(t) + b(t) + 2c(t) = 0,

(40)

with the terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = 0. (41)

The unique solvability of the Riccati system (40)-(41) is proven in Lemma 12 in the Appendix.
Note that the solution a of (11) is consistent with the solution of the Riccati system given by
equations (40)-(41).

In this case, since 2a + g = 0 and e = 0 for all t ∈ [0, T ], it follows that µ̂s = µ̄ + W̃s for all
s ∈ [t, T ] from the fixed point result (38). Similarly,

ν̂s = ν̄ +

∫ s

t

(
2 + 4a(r)µ̂2

r − 4a(r)ν̂r
)
dr +

∫ s

t
2µ̂r dW̃r, ∀s ∈ [t, T ].
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Plugging e = 0 and µ̂s = µ̄+ W̃r back to (33), we obtain the optimal control by

α̂s = 2a(s)(µ̄+ W̃s − X̂s).

Moreover, since e = f = 0 and g = −2a for s ∈ [t, T ], the value function can be simplified from
(32) to

v(t, x, µ̄, ν̄) = a(t)x2 − 2a(t)xµ̄+ b(t)µ̄2 + c(t)ν̄ + d(t).

This concludes Proposition 1.

5 The N-Player Game

This section focuses on proving Proposition 2 regarding the corresponding N -player game. For
simplicity, we can omit the superscript (N) when referring to the processes in the sample space
Ω(N).

To begin, we address the N -player game in Subsection 5.1, where we solve it and obtain a
Riccati system containing O(N3) equations. Subsequently, we reduce the relevant Riccati system
to an ODE system in Subsection 5.2, which has a dimension independent of N . This simplified
system forms the fundamental component of the convergence result.

5.1 Characterization of the N-player game by Riccati system

It is important to emphasize that based on the problem setting in Subsection 2.2 and the running
cost for each player specified in (9), the N -player game can be classified as an N -coupled stochastic
LQG problem. As a result, the value function and optimal control for each player can be determined
by means of the following Riccati system:

For i = 1, 2, . . . , N , consider

A′i − 2A>i eie
>
i Ai − 4

N∑
j 6=i

A>j eje
>
j Ai +

k

N

N∑
j 6=i

(ei − ej) (ei − ej)> = 0,

B′i − 2A>i eie
>
i Bi − 2

N∑
j 6=i

(
A>i eje

>
j Bj +A>j eje

>
j Bi

)
= 0,

C ′i −
1

2
B>i eie

>
i Bi −

N∑
j 6=i

B>j eje
>
j Bi + 2tr(Ai) = 0,

Ai(T ) = Bi(T ) = Ci(T ) = 0,

(42)

where Ai is N ×N symmetric matrix, Bi is N -dimensional vector, Ci ∈ R is a real constant, and
ei is the i-th natural basis in RN for each i = 1, 2, . . . , N .

Lemma 10. Suppose (Ai, Bi, Ci : i = 1, 2, . . . , N) is the solution of the Riccati system (42). Then,
the value functions of N -player game defined by (7) is

Vi

(
x(N)

)
=
(
x(N)

)>
Ai(0)x(N) +

(
x(N)

)>
Bi(0) + Ci(0), i = 1, 2, . . . , N.

Moreover, the path and the control under the equilibrium are given by

dX̂
(N)
it =

(
−2(Ai(t))

>
i X̂

(N)
t − (Bi(t))i

)
dt+ dW

(N)
it + dW̃t, (43)
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and

α̂
(N)
it = −2(Ai(t))

>
i X̂

(N)
t − (Bi(t))i

for each i = 1, 2, . . . , N , where (A)i denotes the i-th column of matrix A, (B)i denotes the i-th

entry of vector B and X̂
(N)
t = [X̂

(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ]>.

Proof. From the dynamic programming principle, it is standard that, under enough regularities,
the players’ value function V (x(N)) = (V1, V2, . . . , VN )(x(N)) can be lifted to the solution vi(t, x

(N))
of the following system of HJB equations, for i = 1, 2, . . . , N ,

∂tvi + inf
ait∈R

(
ait∂xivi +

1

2
a2
it

)
+

N∑
j 6=i

ajt∂xjvi + ∆vi +
k

N

N∑
j 6=i

(
(ei − ej)> x(N)

)2
= 0,

vi

(
T, x(N)

)
= 0.

Note that with ait = −∂xivi
(
t, x(N)

)
for each i = 1, 2, . . . , N , the term in the infimum attains the

optimal value and thus the HJB equation can be reduced to
∂tvi −

1

2
(∂xivi)

2 −
N∑
j 6=i

∂xjvj∂xjvi + ∆vi +
k

N

N∑
j 6=i

(
(ei − ej)> x(N)

)2
= 0,

vi

(
T, x(N)

)
= 0.

(44)

Then, the value functions V of N -player game defined by (7) is Vi(x
(N)) = vi(0, x

(N)) for all
i = 1, 2, . . . , N . Moreover, the path and the control under the equilibrium are given by

dX̂
(N)
it = −∂xivi

(
t, X̂

(N)
t

)
dt+ dW

(N)
it + dW̃t,

and
α̂

(N)
it = −∂xivi

(
t, X̂

(N)
t

)
for i = 1, 2, . . . , N . The proof is the application of Itô’s formula and the details are omitted here.
Due to its LQG structure, the value function leads to a quadratic function of the form

vi

(
t, x(N)

)
=
(
x(N)

)>
Ai(t)x

(N) +
(
x(N)

)>
Bi(t) + Ci(t).

Plugging Vi into (44), and matching the coefficient of variables, we get the Riccati system of ODEs
in (42) and the desired results are obtained.

5.2 Proof of Proposition 2: Reduced Riccati form for the equilibrium

At present, the MFG and the corresponding N -player game can be characterized by Proposition
1 and Lemma 10, respectively. One of our primary objectives is to examine the convergence of

the representative optimal path X̂
(N)
1t generated by the N -player game defined in (42)-(43) to the

optimal path X̂t of the MFG described in Proposition 1.
It should be noted that X̂t is solely dependent on the function a(t), as indicated in the ODE (11).

In contrast, X̂
(N)
1t depends on O(N3) many functions derived from the solutions of a substantial

Riccati system (42) involving matrices (Ait, Bit : i = 1, 2, . . . , N). Consequently, comparing these
two processes meaningfully becomes an exceedingly challenging task without gaining further insight
into the intricate structure of the Riccati system (42).
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Proof of Proposition 2. Inspired from the setup in [18] and [16], we may seek a pattern for the
matrix Ai in the following form:

(Ai)pq =


a1(t), if p = q = i,

a2(t), if p = q 6= i,

a3(t), if p 6= q, p = i or q = i,

a4(t), otherwise.

(45)

The next result justifies the above pattern: the N2 entries of the matrix Ai can be embedded to a
2-dimensional vector space no matter how big N is.

For the Riccati system (42), with the given of Ai and suppose each function in Ai is continuous
on [0, T ], it is obvious to see that Bi = 0 for all t ∈ [0, T ] and for all i = 1, 2, . . . , N . Note that in
this case, for i = 1, 2, . . . , N , the optimal control is given by

α̂i = −2
N∑
j=1

(Ai)ijX̂
(N)
jt = −2 (Ai)

>
i X̂

(N)
t ,

where (A)i is the i-th column of matrix A.
Plugging the pattern (45) into the differential equation of Ai, we obtain the following system

of ODEs: 

a′1 − 2a2
1 − 4(N − 1)a2

3 +
N − 1

N
k = 0,

a′2 − 2a2
3 − 4a1a2 − 4(N − 2)a3a4 +

k

N
= 0,

a′3 − 2a1a3 − 4a1a3 − 4(N − 2)a2
3 −

k

N
= 0,

a′3 − 2a1a3 − 4a2a3 − 4(N − 2)a3a4 −
k

N
= 0,

a′4 − 2a2
3 − 4a2a3 − 4a1a4 − 4(N − 3)a3a4 = 0

with the terminal conditions

a1(T ) = a2(T ) = a3(T ) = a4(T ) = 0.

It is worth noting that there are two ODEs for a3, and the two expressions should be equal, thus

a1a3 + (N − 2)a2
3 = a2a3 + (N − 2)a3a4,

which implies that (a1 + (N − 2)a3)′ = (a2 + (N − 2)a4)′ or

2a2
1 + 2(N − 2)a1a3 + 4(N − 1)a2

3 + 4(N − 2)a2a3 + 4(N − 2)2a3a4 −
k

N

= 2(N − 1)a2
3 + 4a1a2 + 4(N − 2)(a2a3 + a3a4 + a1a4) + 4(N − 2)(N − 3)a3a4 −

k

N
.

After combining terms and substituting a2 + (N − 2)a4 with a1 + (N − 2)a3, we get

a2
1 + (N − 2)a1a3 − (N − 1)a2

3 = 0,
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which yields a3 = a1 or a3 = − 1
N−1a1. Note that, since a1 and a3 satisfies different differential

equations, it follows that a3 6= a1. Hence, we can conclude that a3 = − 1
N−1a1. Next, from the

equation a1 + (N − 2)a3 = a2 + (N − 2)a4, we have

a4 =
1

N − 2
a1 + a3 −

1

N − 2
a2.

In conclusion, for i = 1, 2, . . . , N , Ai has the following expressions:

(Ai)pq =



a1(t), if p = q = i,

a2(t), if p = q 6= i,

− 1

N − 1
a1(t), if p 6= q, p = i or q = i,

1

(N − 1)(N − 2)
a1(t)− 1

N − 2
a2(t), otherwise,

where a1 and a2 satisfies the system of ODEs (46)
a′1 −

2(N + 1)

N − 1
a2

1 +
N − 1

N
k = 0,

a′2 +
2

(N − 1)2
a2

1 −
4N

N − 1
a1a2 +

k

N
= 0,

a1(T ) = a2(T ) = 0.

(46)

The existence and uniqueness of Ai in (42) are equivalent to the existence and uniqueness of
(46). Firstly, the existence, uniqueness, and boundness of a1 in (46) is from the same argument
for a in (40), which is shown as the proof of Lemma 12 in Appendix. The explicit solution of a1 is
given by

a1(t) =

√
k

2

(N − 1)2

N(N + 1)

1− e−2
√

2
√

N+1
N

k(T−t)

1 + e
−2
√

2
√

N+1
N

k(T−t)

for all t ∈ [0, T ]. Next, with the given of a1, the existence, uniqueness, and boundness of a2 in
(46) is guaranteed by Theorem 12.1 in [1]. Therefore, we can express the equilibrium paths and
associated controls as the following:

dX̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt

 dt+ dW
(N)
it + dW̃t, (47)

and

α̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j 6=i

X̂
(N)
jt


respectively for i = 1, 2, . . . , N , where aN1 is the solution to the ODE for a1 in (46). This concludes
Proposition 2.

6 Further remark

We have now established Proposition 1 concerning the MFG in Section 4 and Proposition 2 regard-
ing the N -player game in Section 5. With these propositions proven, we are now able to conclude
the proof of Theorem 1, which was presented in Section 3.4.
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7 Appendix

Lemma 11. Let Wp be the p-Wasserstein metric. If X and Y are two real-valued random variables
and c is a constant, then

Wp(L(X),L(Y )) = Wp(L(X + c),L(Y + c)). (48)

Moreover, if α = {αi : i ∈ N} is a sequence of random variables, then

Wp

(
1

N

N∑
i=1

δαi+c,L(Y + c)

)
= Wp

(
1

N

N∑
i=1

δαi ,L(Y )

)
. (49)

Proof. By definition of the p-Wasserstein metric, we have:

Wp(L(X),L(Y )) =

(
inf

π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdπ(x, y)

) 1
p

,

where Π(L(X),L(Y )) is the set of all joint probability measures with marginals L(X) and L(Y ).
Similarly,

Wp(L(X + c),L(Y + c)) =

(
inf

π∈Π(L(X+c),L(Y+c))

∫
R2

|x− y|pdπ(x, y)

) 1
p

,

where Π(L(X + c),L(Y + c)) is the set of all joint probability measures with marginals L(X + c)
and L(Y + c).

Now, consider the mapping Φ : R2 → R2 given by Φ(x, y) = (x + c, y + c). For any π ∈
Π(L(X),L(Y )), the pushforward measure of π under Φ belongs to Π(L(X + c),L(Y + c)), i.e.,
π′ = Φ∗π ∈ Π(L(X + c),L(Y + c)). Thus, we have

Φ∗Π(L(X),L(Y )) ⊂ Π(L(X + c),L(Y + c)).

Moreover, Φ is bijective and measure preserving, then∫
R2

|x− y|pdπ′(x, y) =

∫
R2

|(x+ c)− (y + c)|pdπ(x, y) =

∫
R2

|x− y|pdπ(x, y).

Therefore, we know that

Wp
p (L(X),L(Y )) = inf

π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdπ(x, y)

= inf
π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdΦ∗π(x, y)

= inf
π′∈Φ∗Π(L(X),L(Y ))

∫
R2

|x− y|pdπ′(x, y)

≥Wp
p(L(X + c),L(Y + c)).

by the definition of the p-Wasserstein metric. If we apply the above inequality to X ′ = X + c,
Y ′ = Y + c, and c′ = −c, the opposite inequality is provided. Thus, it completes the proof of (48).

Next, we note that

1

N

N∑
i=1

δαi+c = L(αu + c|α),
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where u be a uniform random variable on {1, 2, . . . , N} independent to α. Using (48), we conclude
(49) from

Wp

(
1

N

N∑
i=1

δαi+c,L(Y + c)

)
= Wp (L(αu + c|α),L(Y + c))

= Wp (L(αu|α),L(Y ))

= Wp

(
1

N

N∑
i=1

δαi ,L(Y )

)
.

Lemma 12. Under the Assumption 2, there exists a unique solution (a(t), b(t), c(t), d(t) : t ∈ [0, T ])
for the Riccati system of ODEs (40)-(41) and the solution can given explicitly by

a(t) =

√
k

2

1− e−2
√

2k(T−t)

1 + e−2
√

2k(T−t)
,

b(t) =

∫ T

t

(
4a(s)c(s)− 2a2(s)

)
ds,

c(t) = k

∫ T

t
e
∫ s
t −4a(r)drds,

d(t) =

∫ T

t
(b(s) + 2c(s)) ds.

Proof. Firstly, with the given of k > 0, we can solve the ODE

a′(t)− 2a2(t) + k = 0, a(T ) = 0

explicitly by the method of separating variables. Note that with the differential form, we have

da(√
2a−

√
k
)(√

2a+
√
k
) =

1

2
√
k

(
1√

2a−
√
k
− 1√

2a+
√
k

)
da = dt.

It follows that

ln

(∣∣∣∣∣
√

2a−
√
k√

2a+
√
k

∣∣∣∣∣
)

= 2
√

2kt+ C1

for some constant C1 by taking integration on both sides. Thus by calculation, we obtain

a(t) =

√
k

2

1− C2e
2
√

2kt

1 + C2e2
√

2kt

for some constant C2 to be determined. Since a(T ) = 0, it yields that C2 = e−2
√

2kT and thus

a(t) =

√
k

2

1− e−2
√

2k(T−t)

1 + e−2
√

2k(T−t)
.

It is easily to verify that a(·) is in C∞([0, T ]) and is bounded. With the given of a, the func-
tions (b, c, d) in the Riccati system (40)-(41) is a coupled linear system, and thus their existence,
uniqueness, and boundedness are given by Theorem 12.1 in [1].
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