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Abstract

We prove a scaling limit theorem for two-type Galton-Waston branching processes with
interaction. The limit theorem gives rise to a class of mixed state branching processes
with interaction using to simulate the evolution for cell division affected by parasites.
Such process can also be obtained by the pathwise unique solution to a stochastic equa-
tion system. Moreover, we present sufficient conditions for extinction with probability
one and the exponential ergodicity in the L1-Wasserstein distance of such process in
some cases.

Keywords and phrases: mixed state branching process; stochastic integral
equation; interaction.

1 Introduction

Let N = {0, 1, 2, ...}. We consider a continuous time model inD = [0,∞)×N for cells and parasites,
where the behavior of cell division is infected by parasites. Informally, the quantity of parasites
(X(t))t≥0 in a cell evolves as a continuous state branching process. The cells divide in continuous
time at a rate h(x, y) which may depend on the quantity of parasites x and cells y. This framework
is general enough to be applied for the modelling of other structured populations, for instance,
grass-rabbit models in [11].

Many studies have been conducted on branching within branching processes to study such
population dynamics in continuous time. In [25], the evolution of parasites is modelled by a
birth-death process, while the cells split according to a Yule process. [2] allows the quantity of
parasites in a cell following a Feller diffusion. A continuous state branching process with jumps is
considered to model the quantity of parasites in a cell in [24]. In particular, [25, 2, 24] describe
cell populations in a tree structure, in this way, the population of cells at some time may be
represented by a random point measure and associated martingale problems can be established
by choosing test functions appropriately. Instead of [25, 2, 24], in this paper we ignore the tree
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structure and mainly focus on a parasite-cell model from a macro point of view. More precisely,
we use a stochastic equation system to describe the sample path of such models,

{

X(t) = X(0) − b
∫ t
0 X(s) ds+

∫ t
0

√

2cX(s) dB(s) +
∫ t
0

∫ X(s−)
0

∫∞
0 ξ M̃(ds,du,dξ),

Y (t) = Y (0) +
∫ t
0

∫ Y (s−)
0

∫ h(X(s−),Y (s−))
0

∫

N
(ξ − 1)N(ds,du,dr,dξ),

where b ∈ R and c ≥ 0 are constants, (B(t))t≥0 is a standard Brownian motion, h(·, ·) ∈ C(R2
+)

+,
here C(R2

+)
+ is the collection of continuous positive functions defined on R

2
+. Let (ξ ∧ ξ2)m(dξ)

be a finite measure on (0,∞) and (pξ : ξ ∈ N) be an offspring distribution satisfying
∑

ξ ξpξ < ∞.
Without losing generality, we assume p1 = 0. The aboveM(ds,du,dξ) is a Poisson random measure
on (0,∞)3 with intensity dsdum(dξ), and M̃(ds,du,dξ) = M(ds,du,dξ)−dsdum(dξ). The above
N is a Poisson random measure on (0,∞)3×N with intensity dsdudrn(dξ), where n(dξ) = pξ♯(dξ)
and ♯(·) =

∑

j δj(·) is the counting measure on N. Those three random elements (B(t), M and
N) are independent of each other. Apparently, (X(t))t≥0 is indeed a continuous-state branching
process (CB-process), see [6, 7]. In particular, when h(·, ·) ≡ r > 0, (Y (t))t≥0 is a standard
continuous time Markov branching process with branching rate r > 0 and offspring (pξ, ξ ∈ N), in
this case, the system can be seen as a particular case of mixed state branching processes, which
has been studied in [4].

For simplicity, we introduce another Poisson random measure and write it again by N on
[0,∞)3 × N

−1, N−1 = N ∪ {−1} with characteristic measure n(dξ) = p′ξ♯(dξ), p
′
ξ = pξ+1. Then we

can rewrite the system by


















X(t) = X(0) − b

∫ t

0
X(s) ds +

∫ t

0

√

2cX(s) dB(s) +

∫ t

0

∫ X(s−)

0

∫ ∞

0
ξ M̃(ds,du,dξ), (1.1)

Y (t) = Y (0) +

∫ t

0

∫ Y (s−)

0

∫ h(X(s−),Y (s−))

0

∫

N−1

ξ N(ds,du,dr,dξ). (1.2)

In the rest of the paper, we use the stochastic equation system (1.1)–(1.2) to describe the parasite-
cell model. In the literature on the theory of branching processes, the rescaling (in time or state)
approach plays a valuable role in establishing the connection among those branching processes,
see [12], [17, 18], [23], [4] and [21] and the references therein. To the best of our knowledge,
limited work has been done in branching processes with interactions. This leads to the first
purpose of this paper, and the establishment of strong uniqueness of solution to (1.1)–(1.2). For a
sequence of two-type Galton–Watson processes with interactions {(xk(n), yk(n))n∈N}k≥1, we prove
that (xk(⌊γkt⌋)/k, yk(⌊γkt⌋))t≥0 converges in distribution to the solution to (1.1)–(1.2) as k → ∞
under suitable conditions. The pathwise uniqueness of solution to (1.1)–(1.2) is also given.

In addition, the second purpose of this paper is to study several long time behaviors of such pro-
cess and we mainly obtain the extinction behavior and exponential ergodicity in the L1-Wasserstein
distance in some cases. The result of extinction behavior is inspired by [16]. Furthermore, ergodic-
ity is the foundation for a wide class of limit theorems and long-time behavior for Markov processes.
Due to the nonlinearity of function h, the semigroup transition of (X,Y ) is not explicit. We obtain
the ergodic property by a coupling approach, which has been proved to be effective in the study
of ergodicity of nonlinear case, see [3, 22] and the references therein.

We now introduce some notation. Let eλ(z) = e−〈λ,z〉 for any λ = (λ1, λ2) ∈ R
2
+ and z =

(x, y) ∈ D, where 〈λ, z〉 = λ1x + λ2y. We use Cb(D) to denote the set of all bounded functions
(x, y) 7→ f(x, y) on D with x 7→ f(x, ·) continuous. Let C2

b (D) be the subset of Cb(D) with
continuous bounded derivatives up to 2nd order on x. Let C2

0(D) be the subset of C2
b (D) vanishing

at infinity, and C2
c (D) be the subset of C2

0(D) with compact support. Define Cb(R
2
+) to be the

collection of all bounded continuous functions on R
2
+, which is a subset of Cb(D). Let C2,1

b (R2
+) be

the subset of Cb(R
2
+) with continuous bounded derivatives up to 2nd order on x and continuous
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bounded derivatives up to first order on y. Then we have C2,1
b (R2

+) ⊂ C2
b (D). Let D([0,∞),D)

denote the space of càdlàg paths from [0,∞) to D furnished with the Skorokhod topology. In the
integrals, we make the convention that, for a ≤ b ∈ R,

∫ b

a
=

∫

(a,b]
and

∫ ∞

a
=

∫

(a,∞)
.

This paper is structured as follows. The existence by a scaling limit of a sequence of two-type
Galton-Watson processes with interaction and pathwise uniqueness of solution to (1.1)–(1.2) are
given in Section 2. In Section 3 the extinction behavior of the system is studied. In Section 4, an
exponential ergodic property is proved under some conditions.

2 Existence and pathwise uniqueness of solution

The generator A of (X(t), Y (t))t≥0 satisfying (1.1)–(1.2) is determined by

Af(z) = x
[

− bf ′
x + cf ′′

xx +

∫ ∞

0
{f(x+ ξ, y)− f(x, y)− ξf ′

x}m(dξ)
]

+γ(x, y)

∫

N−1

{

f(x, y + ξ)− f(x, y)
}

n(dξ) (2.3)

for any f ∈ C2
b (D), where z = (x, y) ∈ D and γ(x, y) = h(x, y)y. Then

Aeλ(z) = eλ(z)
[

xφ1(λ1) + γ(x, y)φ2(λ2)
]

, (2.4)

where

φ1(λ1) = bλ1 + cλ2
1 +

∫ ∞

0
(e−λ1ξ − 1 + λ1ξ)m(dξ), (2.5)

φ2(λ2) =

∫

N−1

(e−λ2ξ − 1)n(dξ). (2.6)

We first consider the case of h ∈ Cb(R
2
+)

+. Given the initial value (x(0), y(0)) ∈ N × N, let
(x(n), y(n))n≥0 be a two-dimensional process defined by

x(n) =

x(n−1)
∑

j=1

αn−1,j , y(n) =

y(n−1)
∑

j=1

βn−1,j,θ(x(n−1),y(n−1)), n ≥ 1, (2.7)

where {αn,j : n ≥ 0, j ≥ 1} are integer-valued i.i.d. random variables with offspring distribution
(w(i) : i ∈ N). Given x, y ∈ N, the above {βn,j,θ(x,y) : n ≥ 0, j ≥ 1} are i.i.d. integer-valued

random variables with offspring distribution (vθ(x,y)(i) : i ∈ N) depending on the function θ. Let

g1 and g
θ(x,y)
2 be the generating functions of (w(i) : i ∈ N) and (vθ(x,y)(i) : i ∈ N), respectively. It

is known that (x(n), y(n))n≥0 is a Markov process and we call it two-type Galton-Watson process
with interaction. Suppose that there exists a sequence of two-type Galton-Watson processes with

interaction {(xk(n), yk(n))n≥0}k≥1 with parameters (gk,1, g
θk(x,y)
k,2 ). Let {γk}k≥1 be a sequence of

positive numbers with γk → ∞ as k → ∞. For (x, y) ∈ N × N, we introduce several functions on
R+ as below:

Φ̄k,1(λ1) = kγk log
[

1− (kγk)
−1Φk,1(λ1)e

λ1/k
]

,

Φk,1(λ1) = kγk

[

e−λ1/k − gk,1(e
−λ1/k)

]

,

Φ̄
θk(x,y)
k,2 (λ2) = γk log

[

1− γ−1
k Φ

θk(x,y)
k,2 (λ2)e

λ2

]

,

Φ
θk(x,y)
k,2 (λ2) = γk

[

e−λ2 − g
θk(x,y)
k,2 (e−λ2)

]

.
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Let Ek = {0, k−1, 2k−1, · · · } for each k ≥ 1. For any x ∈ R+, we take xk := ⌊kx⌋/k. Then xk ∈ Ek

and |xk − x| ≤ 1/k. Let Dk := Ek × N. Then Dk is a subset of D. We define a continuous-time
stochastic process taking values on Dk as (Xk(t), Yk(t))t≥0 := (xk(⌊γkt⌋)/k, yk(⌊γkt⌋))t≥0. Denote
Zk(t) = (Xk(t), Yk(t)) to simplify the notation. In order to state our main results in this section,
we first present the assumption taken throughout this section.

Condition 2.1

(2.1.1) The sequence {Φk,1(λ1)}k≥1 is uniformly Lipschitz in λ1 on each bounded interval, and con-
verges to a continuous function as k → ∞;

(2.1.2) γk[1− v
θk(kxk,y)
k (1)] → h(x, y) uniformly in (x, y) ∈ R+ × N as k → ∞;

(2.1.3)
v
θk(kxk,y)

k (ξ)

1−v
θk(kxk,y)

k (1)
→ pξ for ξ ∈ N\{1} uniformly in (x, y) ∈ R+ × N as k → ∞.

(2.1.4) The sequence {Φθk(kxk,y)
k,2 (λ2)}k≥1 is uniformly Lipschitz in λ2 on each bounded interval, where

the Lipshcitz coefficient is independent from x, y.

By [20, Proposition 2.5], under Condition (2.1.1), Φk,1(λ1) converges to a function with rep-
resentation (2.5) as k → ∞, see also [17, 18]. Moreover, there exists a constant K > 0 such
that

sup
k

Φ′
k,1(0+) = sup

k
γk[g

′
k,1(1−)− 1] ≤ K. (2.8)

Example 2.1 Let {pξ : ξ = 0, 1, · · · } be an offspring distribution with p1 = 0. Let

v
θk(kxk,y)
k (ξ) = pξγ

−1/2
k

(

1− e−γ
−1/2
k h(xk,y)

)

for any ξ ∈ N\{1} and

v
θk(kxk,y)
k (1) = 1− γ

−1/2
k

(

1− e−γ
−1/2
k h(xk,y)

)

.

Then we have

Φ
θk(kxk,y)
k,2 (λ2) = γ

1/2
k

(

1− e−γ
−1/2
k h(xk,y)

)(

e−λ2 − g(e−λ2)
)

with g(e−λ2) =
∑∞

ξ=0 pξe
−λ2ξ. It is easy to check that the above satisfies Condition (2.1.2)–(2.1.4).

2.1 Main results

We have the following statements about a scaling limit theorem of mixed state branching processes
with interactions, existence and pathwise uniqueness of solution to (1.1)–(1.2).

Theorem 2.2 Suppose that Condition 2.1 holds and h ∈ Cb(R
2
+)

+. Let Zk(0) converge in distri-
bution to Z(0) as k → ∞ with supk E[Xk(0) + Yk(0)] < ∞. Then {(Zk(t))t≥0}k≥1 converges in
distribution on D(0,∞),D) to (Z(t))t≥0, which is a solution to (1.1)–(1.2).

Theorem 2.3 Assume that h ∈ Cb(R
2
+)

+. For any given initial value (X(0), Y (0)) ∈ D, the
pathwise uniqueness holds for (1.1)–(1.2) on D.

4



Remark 2.4 For the classical branching process, the transition semigroup can be determined
uniquely by the log-Laplace transform since branching property. Then the linear hull of {e−λx :
λ ≥ 0} is the core for generator of the process. Therefore, the scaling limit theorem can be obtained
in the sense of convergence in distribution on the skorokhod space by [8, p.226 and pp.233-234]. We
refer to [12, 17] and references therein for details. However, the branching property is invalid for
our model since the interaction. It is not enough to give estimation only when f = eλ. Therefore,
in the following proof of Theorem 2.2, we give the existence of solution to the martingale problem
by tightness for general f, which implies the existence of solution to (1.1)-(1.2).

As we know, there is a unique strong solution to (1.1), which is a CB-process. Based on this, in
the proof of Theorem 2.3, we then construct the pathwise unique solution to (1.2) by path stitching
method.

One sees that there is a unique positive strong solution to (1.1)-(1.2) by Theorems 2.2 and 2.3
when h ∈ Cb(R

2
+)

+. However, the boundedness assumption of h is removed in the following result.

Theorem 2.5 Suppose that h ∈ C(R2
+)

+. Then there exists a unique positive strong solution to
(1.1)–(1.2).

2.2 Proof of main results

Proposition 2.6 Under Conditions (2.1.2)–(2.1.3), eλ2Φ
θk(kxk,y)
k,2 (λ2) converges to −h(x, y)φ2(λ2)

uniformly for (x, y, λ2) ∈ R+ × N × R+ as k → ∞, where h ∈ Cb(R
2
+)

+ and φ2(λ2) is given by
(2.6).

Proof. One can see that

eλ2Φ
θk(kxk,y)
k,2 (λ2)

= γk

[

1− eλ2g
θk(kxk,y)
k,2 (e−λ2)

]

= γk

[

1− eλ2

∞
∑

j=0

e−λ2jv
θk(kxk,y)
k (j)

]

= γk

∞
∑

j=0

(1− e−λ2(j−1))v
θk(kxk,y)
k (j)

= γk

[

1− v
θk(kxk,y)
k (1)

]

∫

N−1\{0}
(1− e−λ2ξ)ρ

θk(kxk,y)
k (dξ),

where

ρ
θk(kxk,y)
k (dξ) =

1

1− v
θk(kxk,y)
k (1)

∞
∑

j=0

v
θk(kxk,y)
k (j)δj−1(dξ)

=
v
θk(kxk,y)
k (ξ + 1)

1− v
θk(kxk,y)
k (1)

♯(dξ)

for ξ ∈ N−1\{0} with ♯(dξ) being the counting measure on N−1. The result follows from Conditions
(2.1.2)–(2.1.3). �

For λ = (λ1, λ2) ∈ R
2
+, we then have

eλ(Zk(t)) = eλ(Zk(0)) +

⌊γkt⌋
∑

i=1

[

eλ

(

Zk

(

i

γk

))

− eλ

(

Zk

(

i− 1

γk

))]

5



= eλ(Zk(0)) +

⌊γkt⌋
∑

i=1

γ−1
k Akeλ

(

Zk

(

i− 1

γk

))

+Mk,λ(t)

= eλ(Zk(0)) +

∫ ⌊γkt⌋/γk

0
Akeλ(Zk(s))ds+Mk,λ(t), (2.9)

where

Mk,λ(t) =

⌊γkt⌋
∑

i=1

{

[

eλ

(

Zk

(

i

γk

))

− eλ

(

Zk

(

i− 1

γk

))]

−E

[

eλ

(

Zk

(

i

γk

))

− eλ

(

Zk

(

i− 1

γk

))

∣

∣

∣

∣

∣

F i−1
γk

]}

(2.10)

is a martingale and for z = (x, y) ∈ D,

Akeλ(z) = γk

[

(gk,1(e
−λ1/k))kxk · (gθk(kxk,y)

k,2 (e−λ2))y − eλ(z)

]

.

One can check that

Akeλ(z) = eλ(z)
[

xΦ̄k,1(λ1) + yΦ̄
θk(kxk,y)
k,2 (λ2)

]

+ o(1).

By the above, [20, Proposition 2.5] and Proposition 2.6, we have the following estimation.

Theorem 2.7 Suppose that Condition 2.1 holds. Then for any λ > 0, we have

lim
k→∞

sup
z∈Dk

|Akeλ(z)−Aeλ(z)| = 0,

where A is the generator defined by (2.3).

Proposition 2.8 Suppose that Condition 2.1 holds. Let T > 0 be a fixed constant and

sup
k

E[Xk(0) + Yk(0)] < ∞.

Then we have

sup
k

sup
0≤t≤T

E[Xk(t) + Yk(t)] < ∞.

Proof. By (2.8) one sees that 0 ≤ g′k,1(1−) ≤ K/γk + 1. Then for t ∈ [ i
γk
, i+1

γk
), we have

E[Xk(t)] = k−1
E[xk(⌊γkt⌋)]

= g′k,1(1−)k−1
E[xk(⌊γkt⌋ − 1)]

≤ (K/γk + 1)k−1
E[xk(⌊γkt⌋ − 1)].

By induction, we have E[Xk(t)] ≤ (K/γk + 1)⌊γkt⌋E[Xk(0)]. Moreover, by Condition (2.1.4), we
have

sup
k

∣

∣

∣

∣

∂

∂λ2
Φ
θk(kxk,y)
k,2 (λ2)

∣

∣

∣

λ2=0

∣

∣

∣

∣

= sup
k

γk

∣

∣

∣

∣

∂

∂z
g
θk(kxk,y)
k,2 (z)

∣

∣

∣

z=1
− 1

∣

∣

∣

∣

≤ K.

6



Similarly, for t ∈ [ i
γk
, i+1

γk
), one sees that

E[Yk(t)] = E[yk(⌊γkt⌋)] = E





yk(n−1)
∑

k=1

E

[

βn−1,k,θk(xk(n−1),yk(n−1))

∣

∣

∣
xk(n− 1), yk(n − 1)

]





∣

∣

∣

∣

∣

n=⌊γkt⌋

= E

[

yk(n− 1) · ∂

∂z
g
θk(xk(n−1),yk(n−1))
k,2 (z)

∣

∣

∣

∣

∣

z=1

]
∣

∣

∣

∣

∣

n=⌊γkt⌋

≤ (1 +K/γk)E[yk(⌊γkt⌋ − 1)].

Then we get E[Yk(t)] ≤ (K/γk + 1)⌊γkt⌋E[Yk(0)] by induction. The result follows. �

Let {τk : k ≥ 1} be a sequence of bounded stopping times, and {δk : k ≥ 1} be a sequence of
positive constants with δk → 0 as k → ∞. For a fixed constant T > 0, we assume that

0 ≤ τk ≤ τk + δk ≤ T.

Proposition 2.9 Suppose that Condition 2.1 holds and h ∈ Cb(R
2
+)

+. Then for any λ ∈ R
2
+, we

have

lim
k→∞

E

[

|eλ(Zk(τk + δk))− eλ(Zk(τk))|2
]

= 0.

Proof. For any λ ∈ R
2
+, by (2.9) we have

E

[

|eλ(Zk(τk + δk))− eλ(Zk(τk))|2
]

≤ |E [e2λ(Zk(τk + δk))− e2λ(Zk(τk))]|
+ |E [2eλ(Zk(τk))[eλ(Zk(τk + δk))− eλ(Zk(τk))]]|

≤ I1 + I2 + I3,

where

I1 =

∣

∣

∣

∣

∣

E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

Ake2λ(Zk(s))ds

]
∣

∣

∣

∣

∣

,

I2 =

∣

∣

∣

∣

∣

E

[

2eλ(Zk(τk))

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

Akeλ(Zk(s))ds

]
∣

∣

∣

∣

∣

,

I3 = |E [2eλ(Zk(τk)) (Mk,λ(τk + δk)−Mk,λ(τk))]| .

Then by (2.4), Theorem 2.7 and Proposition 2.8, one can see that

I1 ≤ E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

|Ake2λ(Zk(s))−Ae2λ(Zk(s))| ds
]

+E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

|Ae2λ(Zk(s))| ds
]

≤ Kδk.

Similarly,

I2 ≤ 2E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

|Akeλ(Zk(s))| ds
]

≤ 2E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

|Akeλ(Zk(s))−Aeλ(Zk(s))| ds
]

7



+2E

[

∫ ⌊γk(τk+δk)⌋/γk

⌊γkτk⌋/γk

|Aeλ(Zk(s))| ds
]

≤ Kδk.

Moreover, recall that h is bounded, it follows from (2.10) and Doob’s stopping theorem that

E [eλ(Zk(τk)) (Mk,λ(τk + δk)−Mk,λ(τk))]
= E

[

E
[

eλ(Zk(τk)) (Mk,λ(τk + δk)−Mk,λ(τk)) |F⌊γkτk⌋

]]

= E

[

eλ(Zk(τk))
[

E

[

Mk,λ(τk + δk)
∣

∣

∣
F⌊γkτk⌋

]

−Mk,λ(τk)
]]

= 0,

which implies that I3 = 0. The result holds. �

Corollary 2.10 Suppose that Condition 2.1 holds and h ∈ Cb(R
2
+)

+. Then for any λ := (λ1, λ2) ∈
R
2
+, we have

lim
k→∞

Lλ
τk,δk

(Zk) = 0,

where Lλ
τk,δk

(Zk) := E

[

∣

∣e−λ1Xk(τk+δk) − e−λ1Xk(τk)
∣

∣

2
+
∣

∣e−λ2Yk(τk+δk) − e−λ2Yk(τk)
∣

∣

2
]

.

Proof. The result follows by taking λ = (λ1, 0) and λ = (0, λ2) in Proposition 2.9. �

Similar to the proof of [20, Theorem 3.6], we get the following result.

Proposition 2.11 Suppose that Condition 2.1 holds and h ∈ Cb(R
2
+)

+. Let Zk(0) = (Xk(0), Yk(0))
be the initial value satisfying supk E[Xk(0) + Yk(0)] < ∞. Then the process {(Zk(t))t≥0}k≥1 =
{(Xk(t), Yk(t))t≥0}k≥1 is tight on D([0,∞),D).

Proof. By Aldous’s criterion, it suffices to show that, for any ǫ > 0,

lim
k→∞

P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ] = 0, (2.11)

where ‖ · ‖2 is the L2 norm on D. For any a := (a1, a2), b := (b1, b2) ∈ D satisfying ‖a− b‖2 > ǫ,
we have |a1− b1|∧ |a2− b2| > ǫ/2. Then for a fixed constant M > 0, by taking 0 ≤ ‖a‖2, ‖b‖2 ≤ M,
one sees that

|e−λ1a1 − e−λ1b1 |2 + |e−λ2a2 − e−λ2b2 |2 ≥
(

1

2
(λ1 ∧ λ2)ǫe

−(λ1+λ2)M

)2

.

By Proposition 2.9, it is easy to see that

P {‖Zk(τk + δk)− Zk(τk)‖2 > ǫ; ‖Zk(τk)‖2 ∨ ‖Zk(τk + δk)‖2 ≤ M}

≤
(

1

2
(λ1 ∧ λ2)ǫe

−(λ1+λ2)M

)−2

Lλ
τk,δk

(Zk) → 0

as k → ∞. Further, by Proposition 2.8, we have

P [‖Zk(τk + δk)‖2 ≥ M ] ≤ P

[

Xk(τk + δk) ≥
M

2

]

+ P

[

Yk(τk + δk) ≥
M

2

]

≤ 2
sup0≤t≤T E[Xk(t) + Yk(t)]

M
≤ K

M
.
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Similarly, we get

P [‖Zk(τk)‖2 ≥ M ] ≤ K

M
.

As a result,

P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ]
≤ P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ; ‖Zk(τk)‖2 ∨ ‖Zk(τk + δk)‖2 ≤ M ]
+P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ; ‖Zk(τk + δk)‖2 ≥ M ]
+P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ; ‖Zk(τk)‖2 ≥ M ]

≤ P [‖Zk(τk + δk)− Zk(τk)‖2 > ǫ; ‖Zk(τk)‖2 ∨ ‖Zk(τk + δk)‖2 ≤ M ]
+P [‖Zk(τk + δk)‖2 ≥ M ] + P [‖Zk(τk)‖2 ≥ M ]

goes to 0 as k → ∞ and M → ∞, which implies (2.11). The result follows. �

Lemma 2.12 For any f ∈ C2
b (D), there exists a sequence of functions fm,n ∈ C2

0 (D) such that
fm,n → f , fm,n

1 → f1 and fm,n
11 → f11 uniformly on any bounded subset of D as m,n → ∞, where

fm,n
1 := ∂fm,n(x,y)

∂x , f1 :=
∂f(x,y)

∂x , fm,n
11 := ∂2fm,n(x,y)

∂x2 and f11 :=
∂2f(x,y)

∂x2 .

Proof. For any nonnegative function f ∈ C2
b (D), we define

fm,n(x, y) =











f(x, y), (x, y) ∈ [0,m]× [0, n] ∩D,

f(x, y)
[

1− 2
∫ x
m ρ(2(z −m)− 1)dz

]

, (x, y) ∈ [m,m+ 1]× [0, n] ∩D;

0, others,

where ρ is the mollifier defined by

ρ(x) = Λ exp{−1/(1 − x2)}1{|x|<1}

with Λ being the constant such that
∫

R
ρ(x)dx = 1. It is easy to see that fm,n ∈ C2

0 (D). Notice
that, for (x, y) ∈ [m,m+ 1]× [0, n] ∩D,

fm,n
1 (x, y) = f1(x, y)−

d

dx

[

2f(x, y)

∫ x

m
ρ(2(z −m)− 1)dz

]

and

fm,n
11 (x, y) = f11(x, y)−

d2

dx2

[

2f(x, y)

∫ x

m
ρ(2(z −m)− 1)dz

]

.

Let Db be a fixed bounded subset of D. Then we have

sup
(x,y)∈Db

[|fm,n(x, y)− f(x, y)|+ |fm,n
1 (x, y)− f1(x, y)|+ |fm,n

11 (x, y)− f11(x, y)|] → 0

as m,n → ∞. The result follows. �

Now we are ready to give the existence of the solution to (1.1)–(1.2) for the case of h ∈ Cb(D)+.

Proof of Theorem 2.2 Let P (k) be the distributions of Zk on D([0,∞),D). By Proposi-
tion 2.11, the sequence of processes {Zk}k≥1 is relatively compact. Then there are a probability
measure Q and a subsequence P (ki) on D([0,∞),D) such that Q = limi→∞ P (ki). By Skorokhod
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representative theorem, there exists a probability space (Ω̃, F̃ , P̃) on which are defined càdlàg pro-
cesses (Z̃(t))t≥0 and (Z̃ki(t))t≥0 such that the distribution of Z̃ and Z̃ki on D([0,∞),D) are Q and
P (ki), respectively, and limi→∞ Z̃ki = Z̃, P̃-almost surely.

Now it suffices to show that (Z̃(t))t≥0 satisfies the following martingale problem: for any f ∈
C2
b (D), we have

f(Z̃(t)) = f(Z̃(0)) +

∫ t

0
Af(Z̃(s))ds + local mart. (2.12)

Let f(z) = eλ(z) for any z ∈ D. By (2.9), we get

eλ(Z̃ki(t)) = eλ(Z̃ki(0)) +

∫ ⌊γki t⌋/γki

0
Akieλ(Z̃ki(s))ds +Mki,λ(t).

One sees that
∫ ⌊γki t⌋/γki

0

∣

∣

∣
Akieλ(Z̃ki(s))−Aeλ(Z̃(s))

∣

∣

∣
ds

≤
∫ ⌊γki t⌋/γki

0

∣

∣

∣
Akieλ(Z̃ki(s))−Aeλ(Z̃ki(s))

∣

∣

∣
ds

+

∫ ⌊γki t⌋/γki

0

∣

∣

∣
Aeλ(Z̃ki(s))−Aeλ(Z̃(s))

∣

∣

∣
ds =: I1ki + I2ki .

Then I1ki → 0 as i → ∞ by Theorem 2.7. On the other hand, let

CX := {t > 0 : P̃ (Z̃(t−) = Z̃(t)) = 1}.

Then the set R+\CX is at most countable. Then we have I2ki → 0 as i → ∞. Consequently, the

process (Z̃(t))t≥0 satisfies the martingale problem (2.12) when f(z) = eλ(z).

Let f ∈ C2
0 (D) be fixed, and E0 be the linear hull of {eλ(z) : λ ∈ R

2
+}. By Stone-Weierstrass

Theorem and (2.3), there exists a sequence of functions fn ∈ E0 such that Afn(z) → Af(z)
uniformly on each bounded subset of D as n → ∞. As a linear span of {eλ(z)}, we have

fn(Z̃(t)) = fn(Z̃(0)) +

∫ t

0
Afn(Z̃(s))ds + local mart. (2.13)

Let τ̃N := inf{t > 0 : X̃(t) ≥ N or Ỹ (t) ≥ N}. Then τ̃N → ∞ almost surely as N → ∞ by
Proposition 2.8 and Fatou’s lemma. Replacing t with t ∧ τ̃N , and taking limits as n → ∞ on both
sides of (2.13), we then have

f(Z̃(t ∧ τ̃N )) = f(Z̃(0)) +

∫ t

0
Af(Z̃(s ∧ τ̃N−))ds+mart. (2.14)

Next, for the general function f ∈ C2
b (D), by Lemma 2.12, there exists a sequence functions

fm,n ∈ C2
0 (D) such that Afm,n(z) → Af(z) uniformly on each bounded subset of D as m,n → ∞.

Similar to the above, (2.14) holds for any f ∈ C2
b (D). Letting N → ∞, one can see that (Z̃(t))t≥0

satisfies the martingale problem (2.12), which implies that (Z̃(t))t≥0 is a weak solution to (1.1)–
(1.2). The result follows. �

Lemma 2.13 Assume that h ∈ Cb(R
2
+)

+. Let (X(t), Y (t))t≥0 be the solution to (1.1)-(1.2) with
E[X(0) + Y (0)] < ∞. Then for any T > 0 we have

sup
0≤t≤T

E[X(t) + Y (t)] < ∞.
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Proof. Taking f(x, y) = x+ y and Z(t) = (X(t), Y (t)), by (2.14) we have

E[X(t ∧ τ̃N ) + Y (t ∧ τ̃N )] = E[X(0) + Y (0)] +

∫ t

0
E [Af(Z(s ∧ τ̃N−))] ds.

By (2.3) and h ∈ Cb(R
2
+)

+, one sees that

E[X(t ∧ τ̃N ) + Y (t ∧ τ̃N )] ≤ E[X(0) + Y (0)]

+

∫ t

0
E

[

−bX(s∧τ̃N) +

(

sup
(x,y)∈R2

+

h(x, y)

∫

N−1

ξn(dξ)

)

Y (s∧τ̃N )

]

ds

≤ E[X(0) + Y (0)] +K

∫ t

0
E[X(s ∧ τ̃N ) + Y (s ∧ τ̃N )]ds.

Then the result follows by Gronwall’s inequality and letting N → ∞. �

Proof of Theorem 2.3 By [6, Theorems 5.1 and 5.2] and [10, Corollary 5.2], there is a unique
positive strong solution to (1.1), which is a CB-process. Let (X(t))t≥0 be the unique positive strong
solution to (1.1). The pathwise uniqueness of solution to (1.2) can be constructed by path stitching
method. Let κ0 = 0. Then Y (κ0) = Y (0). Given κk−1 ≥ 0, Y (κk−1) ≥ 0 and the process (X(t))t≥0,
we first define

κk = κk−1 + inf

{

t > 0 :

∫ t+κk−1

κk−1

∫ Y (κk−1)

0

∫ h(X(s−),Y (κk−1))

0

∫

N−1

N(ds,du,dr,dξ) = 1

}

.

Then we define Y (t) = Y (0) for any t ∈ [κ0, κ1) and

∆k :=

∫ κk

κk−1

∫ Y (κk−1)

0

∫ h(X(s−),Y (κk−1))

0

∫

N−1

ξN(ds,du,dr,dξ).

For any k = 1, 2, · · · , let Y (t) := Y (κk−1) + ∆k for any t ∈ [κk, κk+1), which uniquely determine
the behavior of the trajectory t → Y (t) on the time interval [κk, κk+1), k = 1, 2, · · · . Let κ :=
limk→∞ κk. Then (Y (t))t≥0 is the pathwise-unique solution to (1.2) up to time κ. Notice that κk
is the time of k-th jump of Y. By Lemma 2.13, one sees that

E

[

∫ t∧κk

0

∫ Y (s−)

0

∫ h(X(s−),Y (s−))

0

∫

N−1

N(ds,du,dr,dξ)

]

≤ Kt sup
0≤s≤t

E[Y (s)] < ∞.

It follows that P(κ > t) = 1 for any t ≥ 0, which implies that P(κ = ∞) = 1. Then (X(t), Y (t))t≥0

is the pathwise-unique solution to (1.1)-(1.2). The result follows. �

Proof of Theorem 2.5 Let hm(x, y) := h(x ∧ m, y ∧ m). Then hm is bounded for any
m ≥ 1 and hm → h as m → ∞. By Theorems 2.2 and 2.3, there exists a unique strong solution
(Xm(t), Ym(t))t≥0 to the following stochastic integral equation system:

{

X(t) = X(0) − b
∫ t
0 X(s) ds+

∫ t
0

√

2cX(s) dB(s) +
∫ t
0

∫ X(s−)
0

∫∞
0 ξ M̃(ds,du,dξ),

Y (t) = Y (0) +
∫ t
0

∫ Y (s−)
0

∫ hm(X(s−),Y (s−))
0

∫

N−1 ξ N(ds,du,dr,dξ).
(2.15)

In fact, (Xm(t))t≥0 is the unique strong solution to (1.1) independent with m, which is written as
(X(t))t≥0 in the following. Let τXm := inf{t > 0 : X(t) ≥ m}, τYm := inf{t > 0 : Ym(t) ≥ m} and
τm = τXm ∧ τYm . Then 0 ≤ X(t) < m and 0 ≤ Ym(t) < m for 0 ≤ t < τm, and (X(t), Ym(t)) satisfies
(1.1)-(1.2) for 0 ≤ t < τm. For n ≥ m ≥ 1, let

Ym(τm) = Ym(τm−) +

∫

{τm}

∫ Ym(τm−)

0

∫ hn(X(τm−),Ym(τm−))

0

∫

N−1

ξN(ds,du,dr,dξ).
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There exists a unique strong solution (X(t), Ỹ (t))t≥τm to (1.1) and

Y (t) = Ym(τm) +

∫ t

τm

∫ Y (s−)

0

∫ hn(X(s−),Y (s−))

τm

∫

N−1

ξ N(ds,du,dr,dξ).

Let Y ′(t) = Ym(t) for 0 ≤ t < τm and Y ′(t) = Ỹ (t) for t ≥ τm. Then it is a solution to (2.15)
by changing m to n. By the strong uniqueness we get (X(t), Y ′(t))t≥0 = (X(t), Yn(t))t≥0 almost
surely. In particular, we infer Yn(t) = Ym(t) < m for 0 ≤ t < τm. Consequently, the sequence {τm}
is non-decreasing. On the other hand, by (2.15) it is easy to check that E[X(t∧τXm )] ≤ E[X(0)]eKt,
where K is a constant independent with m. Then we have τXm → ∞ almost surely as m → ∞.
Let τ = limm→∞ τm = limm→∞ τYm . Let Y (t) = Ym(t) for all 0 ≤ t < τm and m ≥ 1. It is
easily seen that (X(t), Y (t))t∈[0,τ) is a unique strong solution to (1.1)–(1.2) up to τ . For t ≥ τ, let
(X(t), Y (t)) = (X(t),∞). The result follows. �

3 Large time behaviors

3.1 Foster-Lyapunov criteria for extinction

In this subsection, we mainly discuss the extinction behavior of such processes under b ≥ 0. Define
τ0 = inf{t > 0 : X(t) = 0 and Y (t) = 0}. Moreover, we separately define the extinction time of
X,Y as τX0 := inf{t > 0 : X(t) = 0} and τY0 := {t > 0 : Y (t) = 0}. Then we have τ0 = τX0 ∨ τY0 .
For the extinction behavior of the process X, we introduce the so called Grey’s condition:

Condition 3.1 There is some constant θ > 0 so that φ1(z) > 0 for z ≥ θ and
∫∞
θ φ−1

1 (z)dz < ∞,
where φ1 is given by (2.5).

Since b ≥ 0, under Condition 3.1, one can see that Px(τ
X
0 < ∞) = 1 for all x > 0; see, e.g.,

[20, Corollary 3.8]. In the following, we present a Foster-Lyapunov criteria-type result for the
process (X,Y ). For z1 = (x1, y2), z2 = (x2, y2) ∈ D, we say z1 � z2 if x1 ≥ x2 and y1 ≥ y2. Let
z̃ := (x̃, ỹ) � z0 and (X(t), Y (t))t≥0 be the mixed state branching process satisfying (1.1)–(1.2)
with initial value z0. We define stopping time σz̃ = inf{t > 0 : X(t) ≥ x̃ or Y (t) ≥ ỹ}. It is easy to
see that Xt∧σz̃− ≤ x̃ and Yt∧σz̃− ≤ ỹ.

Theorem 3.2 Let (Z(t))t≥0 = (X(t), Y (t))t≥0 be the mixed state branching process satisfying
(1.1)–(1.2) with initial value z0 = (x0, y0) ∈ D. Suppose that φ1(λ1) > 0 and φ2(λ2) > 0 for any
λ := (λ1, λ2) ∈ (0,∞)2. Then we have Pz0{τ0 < ∞} = 1.

Proof. It suffices to prove the case of z0 ∈ D\(0, 0). The proof is inspired by [16, Lemma 4.1]. By
Itô’s formula, we have

eλ(Z(t ∧ τ0 ∧ σz̃)) = eλ(z0) +

∫ t∧τ0∧σz̃

0
Aeλ(Z(s−))ds+mart. (3.16)

Taking expectations on both sides, we have

Ez0 [eλ(Z(t ∧ τ0 ∧ σz̃))] = eλ(z0) +

∫ t

0
Ez0

[

Aeλ(Z(s−))1{s<τ0∧σz̃}

]

ds,

which implies that

d(Ez0 [eλ(Z(t ∧ τ0 ∧ σz̃))]) = Ez0

[

Aeλ(Z(t−))1{t<τ0∧σz̃}

]

dt.
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Recall that φ1(λ1) > 0 and φ2(λ2) > 0 for all λ ∈ (0,∞)2. Then for all z̃ = (x̃, ỹ) ∈ D with z̃ � z0
and λ ∈ (0,∞)2, there exists a constant dz0,z̃,λ > 0 such that for all z = (x, y) ∈ D with z0 � z � z̃,

xφ1(λ1) + h(x, y)yφ2(λ2) ≥ dz0,z̃,λ. (3.17)

Then by integration by parts,

∫ ∞

0
e−dz0,z̃,λtEz0

[

Aeλ(Z(t))1{t<τ0∧σz̃}

]

dt

=

∫ ∞

0
e−dz0,z̃,λtd(Ez0 [eλ(Z(t ∧ τ0 ∧ σz̃))])

= dz0,z̃,λ

∫ ∞

0
e−dz0,z̃,λtEz0 [eλ(Z(t ∧ τ0 ∧ σz̃))] dt− eλ(z0).

Moreover, by (2.4) and (3.17) we have

∫ ∞

0
e−dz0,z̃,λtEz0

[

Aeλ(Z(t))1{t<τ0∧σz̃}

]

dt

≥ dz0,z̃,λ

∫ ∞

0
e−dz0,z̃,λtEz0

[

eλ(Z(t))1{t<τ0∧σz̃}

]

dt.

It follows that

eλ(z0) ≤ dz0,z̃,λ

∫ ∞

0
e−dz0,z̃,λtEz0

[

eλ(Z(τ0 ∧ σz̃))1{t≥τ0∧σz̃}

]

dt

≤ Pz0{τ0 ≤ σz̃}+ sup
z�z̃

[e−λ1x + e−λ2y]

≤ Pz0{τ0 < ∞}+ [e−λ1x̃ + e−λ2 ỹ].

Taking x̃, ỹ → ∞, we get Pz0{τ0 < ∞} ≥ eλ(z0), which holds for any λ ∈ (0,∞)2. The result
follows by letting λ → (0, 0). �

Remark 3.3 The processes (X(t))t≥0 and (Y (t))t≥0 are independent when h is a positive constant.
In this case, one can check that P(τX0 < ∞) = 1 when φ1(λ1) > 0 for any λ1 > 0, and P(τY0 <
∞) = 1 if φ2(λ2) > 0 for any λ2 > 0.

Corollary 3.4 Assume that b ≥ 0, R1 :=
∫

N−1 ξn(dξ) < 0 and Condition 3.1 holds. Then we have
Pz0{τ0 < ∞} = 1.

Proof. By Condition 3.1 and b ≥ 0, one sees that φ1(λ1) > 0 for any λ1 > 0. Moreover, by the
inequality 1− e−λ2ξ ≤ λ2ξ, we have φ2(λ2) ≥ −R1λ2 > 0. The result follows by Theorem 3.2. �

3.2 Exponential ergodicity in the L
1-Wasserstein distance

The coupling method is a powerful tool in the study of ergodicity of Markov processes. We refer
the reader to [3, 13] for the systematical study on this topic.

We say a couple process (Z1(t), Z2(t))t≥0 is called a coupling of (Z(t))t≥0 with transition semi-
group (Pt)t≥0 if both (Z1(t))t≥0 and (Z2(t))t≥0 are Markov processes with transition semigroup
(Pt)t≥0 (possibly with different initial distributions) and Z1(t + τ) = Z2(t + τ) for every t ≥ 0,
where

τ = inf{t ≥ 0 : Z1(t) = Z2(t)}.

13



In this case, (Z1(t))t≥0 and (Z2(t))t≥0 are called the marginal processes of the coupling. Let A and
Ã be infinitesimal generators of (Z(t))t≥0 and (Z1(t), Z2(t))t≥0, respectively. Then Ã is called the
coupling generator and satisfies the marginal property, i.e., for any f, g ∈ D(A),

Ãu(z, z̃) = Af(z) +Ag(z̃) (3.18)

with u(z, z̃) = f(z) + g(z̃).

A coupling (Z1(t), Z2(t))t≥0 is called successful if τ < ∞ almost surely. A Markov process is
said to have a coupling property if, for any initial distributions µ1 and µ2, there exists a successful
coupling with marginal processes starting from µ1 and µ2, respectively. For any initial distribution
µ, let Pµ be the distribution of this process with initial distribution µ, and let µPt be the marginal
distribution of Pµ . It is known, see [5, 13], that the coupling property of the process is equivalent
to the following statement that

For any initial distributions µ1, µ2, lim
t→∞

‖µ1Pt − µ2Pt‖var = 0,

where ‖ · ‖var is the total variational norm in the sense of ‖µ − ν‖var := sup{|µ(A) − ν(A)| : A :
Borel set}.

The total variational norm is a special case of Wasserstein distances. By P(D) we denote the
space of all Borel probability measures over D. Given µ, ν ∈ P(D), a coupling H of (µ, ν) is a
Borel probability measure on D×D which has marginals µ and ν, respectively. We write H(µ, ν)
for the collection of all such couplings. Let d be a metric on D such that (D, d) is a complete
separable metric space and define

Pd(D) =
{

ρ ∈ P(D) :

∫

D
d(z, 0) ρ(dz) < ∞

}

.

Then the Wasserstein distance on Pd(D) is defined by

Wd(µ, ν) = inf
{

∫

D×D
d(z, z̃)H(dz,dz̃) : H ∈ H(µ, ν)

}

.

Moreover, it can be shown that this infimum is attained; see, e.g., [26, Theorem 6.16]. More
precisely, there exists H̃ ∈ H(µ, ν) such that

Wd(µ, ν) =

∫

D×D
d(z, z̃)H(dz,dz̃).

Taking d(z, z̃) = 1{z 6=z̃}, then we have Pd(D) = P(D) and Wd(µ, ν) = ‖µ − ν‖var; see, e.g., [3,
pp.18]. By taking d(z, z̃) = ‖z − z̃‖1, Pd(D) := P1(D) defined by

P1(D) :=
{

ρ ∈ P(D) :

∫

D
‖z‖1 ρ(dz) < ∞

}

,

where ‖ · ‖1 is the L1 norm on D. We say the corresponding Wasserstein distance W1 is the
L1-Wasserstein distance.

Definition 3.5 We say (Z(t))t≥0 on D or its transition semigroup (Pt)t≥0 is exponential ergodic
in the L1-Wasserstein distance with rate λ0 > 0 if its possesses a unique stationary distribution µ
and there is a nonnegative function ν 7→ C(ν) on P(D) such that

W1(νPt, µ) ≤ C(ν)e−λ0t, t ≥ 0, ν ∈ P(D). (3.19)
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By standard arguments, (3.19) follows if (Pt(z, ·) := δzPt)

W1(Pt(z, ·), Pt(z̃, ·)) ≤ C0(z, z̃)e
−λ0t, t ≥ 0 (3.20)

for C0(z, z̃) > 0 depending on z and z̃; see, e.g., the proof of [9, Theorem 3.5].

In the literature of the exponential ergodicity of branching processes, [19, 20, 9, 4] obtained the
results by making full use of the branching property. If the property fails, it has been shown that
coupling methods are very effective; see, e.g., [14, 15]. In this subsection, we mainly consider that
the rate function h(·, ·) satisfies for any z = (x, y) ∈ D that

h(x, y) = r + xm(y) (3.21)

with r > 0 and m(·) ∈ C(R+) is nonnegative.

This subsection consists two parts. First, we need to construct a coupling for the mixed state
branching process with interactions (Z(t))t≥0 = (X(t), Y (t))t≥0. Second, we construct a proper
function F (x, y, x̃, ỹ) = F (|x − x̃| + |y − ỹ|) for any z = (x, y), z̃ = (x̃, z̃) ∈ D satisfying two
properties:

(i) the exponential contraction property: for any z = (x, y), z̃ = (x̃, ỹ) ∈ D,

ÃF (|x− x̃|+ |y − ỹ|) ≤ −λF (|x− x̃|+ |y − ỹ|)

with some λ > 0, where Ã denotes the coupling generator.

(ii) control the L1-Wasserstein distance in the sense that

F (|x− x̃|+ |y − ỹ|) ≍ |x− x̃|+ |y − ỹ|,

here, f ≍ g means that there is a constant C1 ≥ 1 such that,

C−1
1 f(·) ≤ g(·) ≤ C1f(·).

Then we can deduce (3.19) from (i)–(ii).

Recalling that the generator A of (Z(t))t≥0 = (X(t), Y (t))t≥0 is given by (2.3) for any f ∈
C2,1
b (R2

+). Let D(A) denote the linear space consisting of functions f ∈ C2,1
b (R2

+) such that the
two integrals on the right-hand side of (2.3) are convergent and define continuous functions on
D. To study the coupling and ergodicity of the process, we begin with the construction of a new
coupling operator. we will combine the coupling by reflection for the Brownian motion and the
synchronous coupling for Poisson random measures. Here the coupling by reflection for Brownian
motion means that we will take (−B(t))t≥0 (which is regarded as a reflection of (B(t))t≥0) for the
process (X(t))t≥0 before two marginal processes meet. To explain the meaning of the synchronous
coupling for Poisson random measures, we will use the viewpoint from the coupling operator.
Set z = (x, y), z̃ = (x̃, ỹ) ∈ D with x ≥ x̃. Recall that γ(x, y) = yh(x, y). The jump system
corresponding to the synchronous coupling for the operator A is given by

(x, x̃) →
{

(x+ ξ, x̃+ ξ), x̃m(dξ),

(x+ ξ, x̃), (x− x̃)m(dξ)

and

(y, ỹ) →











(y + ξ, ỹ + ξ), [γ(x, y) ∧ γ(x̃, ỹ)]n(dξ),

(y + ξ, ỹ), [γ(x, y) − γ(x̃, ỹ)]+n(dξ),

(y, ỹ + ξ), [γ(x, y) − γ(x̃, ỹ)]−n(dξ),
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where f+ (f−) denotes the positive (negative) part of function f . Similarly, we can define the case
that x < x̃. We refer to [3] for the details of such coupling and other couplings for jump systems.
We also refer to [15, remark 2.4] for similar discussions in the setting of nonlinear continuous state
branching processes. Let C2(D ×D) be the set of continuous function (x, y, x̃, ỹ) 7→ F (x, y, x̃, ỹ)
on D ×D with continuous derivatives uo to 2nd order on x and x̃. With the idea above in mind,
we then define for any F ∈ C2(D ×D) and x ≥ x̃ that

ÃF (x, y, x̃, ỹ) = −bxF ′
x − bx̃F ′

x̃ + cxF ′′
xx + cx̃F ′′

x̃x̃ − 2c
√
xx̃F ′′

xx̃

+ x̃

∫ ∞

0
[F (x+ ξ, y, x̃+ ξ, ỹ)− F (x, y, x̃, ỹ)− ξ(F ′

x + F ′
x̃)]m(dξ)

+ (x− x̃)

∫ ∞

0
[F (x+ ξ, y, x̃, ỹ)− F (x, y, x̃, ỹ)− ξF ′

x]m(dξ)

+ [γ(x, y) ∧ γ(x̃, ỹ)]

∫

N−1

[F (x, y + ξ, x̃, ỹ + ξ)− F (x, y, x̃, ỹ)]n(dξ)

+ [γ(x, y) − γ(x̃, ỹ)]+
∫

N−1

[F (x, y + ξ, x̃, ỹ)− F (x, y, x̃, ỹ)]n(dξ)

+ [γ(x, y) − γ(x̃, ỹ)]−
∫

N−1

[F (x, y, x̃, ỹ + ξ)− F (x, y, x̃, ỹ)]n(dξ).

(3.22)

Here and in what follows, F ′
x = ∂F (x,y,x̃,ỹ)

∂x , F ′′
xx = ∂2F (x,y,x̃,ỹ)

∂x2 and so on. Similarly, we can define

ÃF (x, y, x̃, ỹ) for the case that x < x̃. By (3.18), it is not hard to see that Ã is indeed a coupling
generator of A defined by (2.3).

Theorem 3.6 There exists a coupling (Z(t), Z̃(t))t≥0 = (X(t), Y (t), X̃(t), Ỹ (t))t≥0 whose genera-
tor is Ã.

Proof. We consider the following SDE:


























































X(t) = X(0) − b

∫ t

0
X(s) ds +

∫ t

0

√

2cX(s) dB(s) +

∫ t

0

∫ X(s−)

0

∫ ∞

0
ξ M̃(ds,du,dξ),

Y (t) = Y (0) +

∫ t

0

∫ Y (s−)

0

∫ h(X(s−),Y (s−))

0

∫

N−1

ξ N(ds,du,dr,dξ),

X̃(t) = X̃(0) − b

∫ t

0
X̃(s) ds+

∫ t

0

√

2cX̃(s) dB∗(s) +

∫ t

0

∫ X̃(s−)

0

∫ ∞

0
ξ M̃(ds,du,dξ),

Ỹ (t) = Ỹ (0) +

∫ t

0

∫ Ỹ (s−)

0

∫ h(X̃(s−),Ỹ (s−))

0

∫

N−1

ξ N(ds,du,dr,dξ),

(3.23)

where

B∗(t) =

{

−B(t), t ≤ T,

− 2B(T ) +B(t), t > T

and T = inf{t > 0 : X(t) = X̃(t)}. Clearly, (B∗(t))t≥0 is still a standard Brownian motion.
By the results in Section 2, we can determine the unique strong solution (Z(t), Z̃(t))t≥0 :=
(X(t), Y (t), X̃(t), Ỹ (t))t≥0 to (3.23). On the other hand, we can apply the Itô’s formula to the SDE
(3.23) to see that the infinitesimal generator of the process (Z(t), Z̃(t))t≥0 is indeed the coupling
generator defined by (3.22). �

Now let us define a function F on D ×D such that

F (x, y, x̃, ỹ) = F (|x− x̃|+ |y − ỹ|) = |x− x̃|+ θ|y − ỹ| (3.24)
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with θ > 0, the exact value will be determined later. It is easy to see that

F (|x− x̃|+ |y − ỹ|) ≍ |x− x̃|+ |y − ỹ|.

For our main result in this subsection, we require the following assumptions.

Condition 3.7 b > 0 and R1 :=
∫

N−1 ξ n(dξ) ∈ (−∞, 0).

Condition 3.8 For any y ∈ N+, y 7→ m(y)y is non-decreasing and bounded in the sense of
R2 := sup

y∈N+

m(y)y < ∞.

Remark 3.9 (1). b > 0 means that X is a subcritical CB-process; see, e.g., [18, 20]. There is
not any restrictions on Lévy noises in this paper. It is reasonable since we mainly focus on the
exponential ergodicity in the L1-Wasserstein distance. When considering the exponential ergodicity
in the total variation distance for CB-processes, some additional assumptions on Lévy noises are
needed; see [19, 9]. In the setting of state-dependent branching cases, one has to make some
restrictions on Lévy noises even in the L1-Wasserstein distance; see [15]. Furthermore, we mention
that either in other distances Wd or state-dependent cases, more complicated functions are needed.

(2). R1 < 0 of Condition 3.7 actually means that the associated first moment of offerspring
of each individual strictly less than 1, i.e.

∑

j jpj < 1. In this case, the process Y is called the
subcritical case of continuous-time Markov branching processes when h is a positive constant; see,
e.g., [1, pp.112].

(3). Condition 3.8 holds when m(·) ≡ 0. In this case, (Y (t))t≥0 is a standard continuous time
branching process with branching rate r > 0 and offspring (pξ, ξ ∈ N). Condition 3.8 also holds
when m(y) = 1

y+1 . In this case, as the number of cells increasing, the rate of cell division is getting
slower.

We now present the main result.

Theorem 3.10 Suppose that Conditions 3.7–3.8 are satisfied. Then there are constants λ0 > 0
such that for any (x, y), (x̃, ỹ) ∈ D, (3.20) holds.

Proof. We shall first give some estimates of ÃF (|x− x̃|+ |y− ỹ|). By (3.22) and Taylor’s formula,
we have

ÃF (|x− x̃|+ |y − ỹ|)
≤ −bx

x− x̃

|x− x̃| + bx̃
x− x̃

|x− x̃|
+ θ[γ(x, y)− γ(x̃, ỹ)]+

∫

N−1

[

|y − ỹ + ξ| − |y − ỹ|
]

n(dξ)

+ θ[γ(x, y)− γ(x̃, ỹ)]−
∫

N−1

[

|y − ỹ − ξ| − |y − ỹ|
]

n(dξ)

≤ −b|x− x̃|+ θ[γ(x, y)− γ(x̃, ỹ)]+1{y>ỹ}

∫

N−1

ξ n(dξ)

+ θ[γ(x, y)− γ(x̃, ỹ)]+1{y≤ỹ}

∫

N−1

|ξ|n(dξ) + θ[γ(x, y)− γ(x̃, ỹ)]−1{y>ỹ}

∫

N−1

|ξ|n(dξ)

+ θ[γ(x, y)− γ(x̃, ỹ)]−1{y≤ỹ}

∫

N−1

ξ n(dξ).
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Since γ(x, y) = ry + xm(y)y, we arrive at

ÃF (|x− x̃|+ |y − ỹ|) ≤ −b|x− x̃| − θn({−1})(γ(x, y) − γ(x̃, ỹ))
y − ỹ

|y − ỹ|

+ θ

∫

N

ξ n(dξ)|γ(x, y)− γ(x̃, ỹ)|

= −b|x− x̃| − θn({−1})(ry − rỹ + xm(y)y − x̃m(ỹ)y)
y − ỹ

|y − ỹ|

+ θ

∫

N

ξ n(dξ)|ry − rỹ + xm(y)y − x̃m(ỹ)y|.

Notice that
∫

N−1 |ξ|n(dξ) ∈ (0,∞) by R1 ∈ (−∞, 0) of Condition 3.7. For the case of x > x̃, it
follows from Condition 3.8 that

ÃF (|x− x̃|+ |y − ỹ|) ≤ −b|x− x̃| − θn({−1})
(

r|y − ỹ|+ (x− x̃)m(y)y
y − ỹ

|y − ỹ|
+ x̃(m(y)y −m(ỹ)ỹ)

y − ỹ

|y − ỹ|
)

+ θ

∫

N

ξ n(dξ)
(

r|y − ỹ|+ (x− x̃)m(y)y + x̃|m(y)y −m(ỹ)ỹ|
)

≤ −
(

b−θ

∫

N−1

|ξ|n(dξ)m(y)y
)

|x− x̃|+θrR1|y − ỹ|+x̃θR1|m(y)y−m(ỹ)ỹ|

≤ −
(

b− θR2

∫

N−1

|ξ|n(dξ)
)

|x− x̃|+ θrR1|y − ỹ|
≤ −λ1F (|x− x̃|+ |y − ỹ|)

for some λ1 > 0 by setting θ := θ1 =
b

2R2

∫
N−1 |ξ|n(dξ)

. When x ≤ x̃, similarly we have

ÃF (|x− x̃|+ |y − ỹ|) ≤ −(b+ θR1R2)|x− x̃|+ θR1

(

r|y − ỹ|+ x|m(ỹ)ỹ −m(y)y|
)

≤ −λ2F (|x− x̃|+ |y − ỹ|).

for some λ2 > 0 by setting θ := θ2 = −b
2R1R2

> 0. In conclusion, let θ = θ1 ∧ θ2 and λ = λ1 ∧ λ2.
Following similar arguments in step 2 of the proof for [22, Theorem 3.1], we obtain the desired
result. �
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