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Understanding the mechanical properties of amorphous solids is a crucial area of research due
to the fascinating phenomena they exhibit under external deformations and their importance in
industrial applications. Although these solids have higher yield strength compared to crystalline
solids of similar composition, they often fail catastrophically through shear band formation. Tuning
their mechanical behavior is vital for material design. Engineers have long been seeking ways to
improve the ability of amorphous solids to withstand external deformations, with micro-alloying
being a popular method. By adding small amounts of different materials to pure samples, micro-
alloying can enhance yield strain, although the microscopic mechanisms behind this process remain
poorly understood. We conducted a study with extensive molecular dynamics simulations on model
amorphous solids to investigate the effect of asphericity of the impurity particles on their yielding
behaviour. Our results indicate that aspherical impurities free to rotate can significantly increase
the yield threshold. Conversely, when impurities are unable to rotate, they can lead to the formation
of extremely brittle, ultrastable-like systems. The rotational degrees of freedom are controlled by
changing the aspect ratio of the impurity, and they play a crucial role in influencing shear band
formation. Additionally, we found that including larger impurities enhances the structural stability
of the parent glass matrix.

I. INTRODUCTION

The investigation of mechanical failure in amorphous
solids holds paramount significance owing to its extensive
application in both industrial and everyday life contexts.
While the mechanical behavior of crystalline solids sub-
jected to external deformation is comprehensively eluci-
dated in terms of defects associated with their structure,
such defects cannot be precisely delineated in amorphous
solids due to the absence of long-range structural order.
As a result, despite rigorous research efforts [1–3], the me-
chanical response of amorphous solids continues to elude
a comprehensive understanding.

Under external deformation, amorphous solids exhibit
a combination of elastic and plastic responses [4–7]. As
strain increases, stress undergoes non-linear growth,
attributed to stress drops (plastic events) resulting from
the irreversible rearrangement of constituent particles.
In the initial stages of straining a freshly prepared
sample, plastic events are small and spatially localised
[8] with a quadrupolar structure in displacement field,
well-known in the literature from the exact results in
Eshelby inclusion problem [9]. However, with increasing
strain, their size and frequency amplify. Consequently,
beyond a certain threshold of strain, stress ceases to
increase, marking the onset of mechanical failure or
fluidization of the solids. This phenomenon is recognized
as the yield transition of materials. Despite decades of
research, a clear understanding of how an amorphous
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solid yield remains elusive, with one set of studies
suggesting it as a non-equilibrium phase transition
[10–14] while the other studies argue this as a purely
a dynamic crossover [15]. Depending on the nature of
the failure, one can distinguish between “ductile” and
“brittle” yielding. In the former case, material flow
is a gradual process facilitated by the proliferation of
plasticity in the system, such as the flow of foam or
various pastes. In the latter case, the system experiences
catastrophic failure through the sudden formation of
a system-spanning shear band instability, as observed
in the breaking of metallic glass. However, the same
material may exhibit either form of yielding, contingent
upon the sample’s stability [11, 16, 17] or size [18–21].
Creating a highly stable sample and optimizing its
mechanical strength are popular research topics in the
field.

The stability of the computer glass formers can be con-
trolled by changing the cooling rates during the prepa-
ration [22]; a lower cooling rate will give a more sta-
ble sample. However, even the lowest accessible cooling
rate results in a poorly annealed state, making it dif-
ficult to study realistic systems. However, highly sta-
ble glassy configurations can be prepared using the swap
Monte-Carlo method in computer simulations (known as
ultrastable glasses) [23, 24] in polydisperse system [11]
and with the use of cyclic deformation [25, 26]. While
swap Monte-Carlo is not readily applicable to experi-
ments, cyclic shear protocols might not guarantee kinetic
stability and generate very well-annealed glasses [26–28].
Recently, ultrastable glass was obtained using random
bonding [29], which can be considered a potential tech-
nique to generate realistic stable glasses in patchy colloids
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besides vapor deposition techniques [30].

Another important aspect of these studies is to have
control on the alteration of the mechanical strength of the
materials. For decades, engineers have been working on
ways to improve the ability of amorphous solids to sustain
external loading. One popular method is micro-alloying,
which involves adding small amounts of different mate-
rials to the pure sample [31, 32]. While there are many
examples of how micro-alloying [33, 34] can improve the
yield strain, the microscopic mechanism behind it has
yet to be fully understood. Recent studies have focused
on the role of impurities in the mechanical response of
amorphous solids, particularly through particle pinning
[35, 36]. This technique has been shown to prevent plas-
tic events and delay the yielding transition; moreover,
random pinning leads to a transition from heterogeneous
to homogeneous yielding.

Using computer simulation of a binary glass-forming
system, we investigate the effect of impurities on the
yielding transition of amorphous solids in the athermal
quasi-static scenario in the context of micro-alloying. We
used both spherical and aspherical impurities and ana-
lyzed the stability of the obtained sample along with the
microscopics behind the attained mechanical strength.
In the case of spherical impurities, we add a third type
of particle into the glass matrix, which has a larger di-
ameter than the constituent particles. In the case of as-
pherical impurities, we add rod-shaped particles into the
glass matrix. In recent studies, rod-shape particles are
proven to be useful in studying growing length scales of
glassy systems [37–39] and jamming transition in gran-
ular systems [40]. The advantage of using rod-shaped
impurities over spherical impurities is that they intro-
duce rotational degrees of freedom (DoF) in the system,
which provides extra pathways for stress relaxation under
mechanical loading.

We find that adding large spherical impurities im-
proves the prepared glassy state’s structural order, re-
ducing the plasticity at smaller strains, increasing the
yield strain, and leading to more brittle type yielding.
Aspherical dimers, having comparatively the same size
as large particles, on the other hand, exhibit a similar
but enhanced response; the system can sustain a much
larger load than spherical impurities. We prove this to
be linked with the extra rDoF. We also study the ef-
fect of increasing rod length on the yield point and found
that such long rods (with large rotational inertia) change
the yielding transition to be highly brittle type, similar
to ultra-stable glasses. We connect this observation with
the decreasing rotational degrees of freedom of aspherical
impurities with their increasing length. Our study thus
points towards the enhancement of strain-bearing capac-
ity with the presence of rDoF, while frozen rDof will lead
to ultra-stable-like behaviour as also observed in a recent
work [29].

σAA = 1.0 σBB = 0.8 σs = 2.0 Lr : σb = 2.3 : 2.0
Lr : σb = Lr : 1

Lr = [(nb − 1) * 0.3 + 1.0]

(a) (b) (c) (d) (e)

FIG. 1. Components of the system :(a, b) Particle type
‘A’ and ‘B’ of the parent KA system. (c) The spherical impu-
rity with twice the diameter of the particle ‘A’. It has a vari-
able number fraction of cs in the system. (d) A dimer made
with larger particles and having a slight asphericity. We have
varied their number fraction (cr) in the system (e) Rods with
larger aspect ratio, made by attaching A-type particles. We
studied the systems with different aspect ratio rods, with a
fixed number fraction of cr = 0.1.

II. MODEL SYSTEMS & SIMULATION
DETAILS

We conduct simulations of a binary Kob-Anderson
mixture of Lennard-Jones particles in both two and three
dimensions. The model details are as follows:
3d model: The 3D Kob-Anderson model (referred to as
3D) [41] represents a binary mixture comprising A- and
B-type Lennard-Jones particles, with a concentration ra-
tio of 80 : 20. This generic model resembles molecular
glass-forming liquid, Ni80P20. The following potential
governs the interaction between particles:

Vαβ(r) = 4ϵαβ

[(σαβ

r

)12

−
(σαβ

r

)6
]

(1)

where α and β vary in A, B and the interaction strengths
and radii are ϵ

AA
= 1.0, ϵ

AB
= 1.5, ϵ

BB
= 0.5; σ

AA
= 1.0,

σ
BB

= 0.88 and σ
AB

= 0.8. The interaction is truncated
at r = 2.5σαβ and is smoothed by adding up to 2nd order
terms.
2d model: 2d modified Kob-Anderson model (men-
tioned as 2d) [42] is the glass forming model in 2 di-
mensions with properties like 3dKA. It is a 65:35 binary
mixture of the same A and B particles of the 3dKA model
interacting with the same potential and parameters.
Rods and spherical dopants: In the glass formers
mentioned above, we added cr (cs) concentration of rods
(spherical particles) in the parent system of N = (1 −
cx)NT particles; we used a system with NT = 100000
total particles. Each rod is formed by glueing nb spheres
at a fixed distance of d = 0.3σAA. In this study, to
achieve the soft pinning effect, the rods are made up of
two beads each with diameter of σb = 2.0, while σb,α =
0.5(σb+σα), same is true for the spherical dopants; while
they have same mass and interacts via same potential as
parent spheres with ϵb,α = 1 and ϵb,b = 1

2 for both the

models. ϵb,b =
1
2 is chosen to avoid the nematic ordering.

The aspect ratio of such a dimer will be Lr : σb = 2.3 : 2.
We have also studied the mechanical response with thin
rod inclusions with σb = 1.0. The aspect ratio of such a
dopant will be Lr : σb = (nb− 1) ∗ 0.3 + 1 : 1.
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Sample preparation: The moderately-annealed state
of a glassy system with cr (cs), the concentration of rods
(spherical dopants) is prepared by firstly equilibrating
the system at high temperature (T = 0.5). It is then
slowly cooled to temperature T = 5× 10−4, with a cool-
ing rate of dT/dt = 1 × 10−4. This annealed state is
minimized via conjugate-gradient to reach the inherent
state (IS). This inherent state is then used as a starting
point for all shear procedures.

Shear protocol: This work focuses only on the ather-
mal quasi-static (T → 0 and γ̇ → 0) deformation. We
start with an inherent state and deform it by increasing
the strain by δγ = 5×10−5 in every step. Each deforma-
tion step contains two parts; the first step is called affine
transformation, in which particle positions are modified
in the following way: xi = xi + δγyi, yi = yi, zi = zi.
Here the strain is applied in the x direction. The second
step involves minimizations of energy in which particles
are brought back to mechanical equilibrium. We use the
conjugate gradient method for energy minimization.

Structural order parameter: The structural order pa-
rameter utilized in this study aims to characterize the de-
viation of local structure from perfect steric packing, as
outlined in Ref. [43]. The specific order parameter, de-
noted as Θo for a tagged particle o, is determined through
a series of steps detailed next. Firstly, the neighbours of o
are identified using radical Voronoi tessellation, then sets
of four particles, comprising the tagged particle o and
three of its neighbours, are identified to form tetrahedra.
For each bond within the tetrahedron, the imperfection is
calculated as

∑
<ab> |rab−σab|, where < ab > ranges over

the six edges of the tetrahedron, and σab = (σa+σb)×0.5
represents the favoured distance. Normalization is ap-
plied, and the imperfections are averaged over all tetra-
hedra. The order parameter for a particle is then given
by the expression:

Θo =
1

N tetra
0

∑
oijk

∑
<ab> |rab − σab|∑

<ab> σab
(2)

where < oijk > runs over all tetrahedron sets. The sys-
tem’s structural order parameter is computed by aver-
aging over all particles. A higher value of Θo indicates
a more disordered local surrounding; thus, the Θ map
serves as a valuable tool for identifying regions with shear
bands, as elaborated in the results section.

For systems with dopants, to directly compare struc-
tural order parameters, Θo is averaged only over the
parent liquid particles. Additionally, for Θo calculation,
only tetrahedra containing parent particles are consid-
ered, while Voronoi tessellation is performed on all par-
ticles, including the beads of each rod.
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FIG. 2. Mechanical properties with spherical inclu-
sions: (a, b) Stress-strain curves for the 2dmKA and 3dKA
systems with different cs; the systematic shift in the yield
point to higher strain values with increasing the concentra-
tion of ternary particles can be seen. Panel (c) shows the
susceptibility plot (Eq.3) for the 3d system with changing cs.
The shifted peaks and increased sharpness conclude the in-
crease in yield point and emerging brittle-like behaviour. (d)
The structural order parameter is shown for the γ = 0 state of
the system with different concentrations of inclusions (blue),
along with its comparison with the states generated using dif-
ferent cooling rates (red). It shows the increased structural
stability of the glass matrix with increasing cs and not so
much with decreasing cooling rate.

III. RESULTS

A. Increasing mechanical strength with spherical
impurities

First, we investigate the bulk mechanical behavior
of the system by incorporating spherical impurities
(Fig1(c)) in the spirit of micro-alloying. Generally, im-
purities have two adjustable parameters: their size and
the strength of their interaction with the system’s con-
stituent particles. While the latter has been studied in
the past [44], we focus on the effect of size by introduc-
ing larger impurities with a diameter of σs = 2σAA for
a range of concentration cs from 0 − 10% into the sys-
tem of total particle (constitutive particles and impu-
rities) NT = 100000. We conduct a strain-controlled
experiment on the 2-dimensional modified KA and 3-
dimensional KA glass-forming systems, with the stress
acting as the observable. Fig. 2(a) and 2(b) illustrate the
stress-strain curves for both models, respectively. The re-
sults clearly indicate an increase in both the yield strain
and the shear modulus (µ) with an increasing concentra-
tion of impurities in systems of both dimensions. The
enhancement of mechanical strength is also accompanied
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FIG. 3. Mechanical properties with aspherical inclusions: (a, b) Stress-strain curves for 2dmKA and 3dKA system
with different cr; the systematic shift in the yield point to higher strain values, almost 100% improvement compare to the
ternary system is seen; Panel (c) is the susceptibility plots for the three dimension system. The increase in peak height and
the shift in peak to larger strain value with increasing cr supports the conclusion of increased yield strain. Panel (d) shows the
stress contributions from sphere-sphere and sphere-rod bonds, normalized by the steady-state values. The rods-sphere pairs
are making the system hold stress to larger strain values, where the sphere-sphere stress has already started to fall. Panel (e)
shows the single ensemble version of the same for cr = 0.05. Panel (f) compares the structural order parameter of the system
with spherical inclusions (circles) and aspherical inclusions (triangles). The similar trend and change in the magnitude suggest
the similarity in the γ = 0 structure. However, the huge change in yielding strain points to the importance of rDoFs.

by a prominent stress peak, especially for the 3D KA
model, along with an increase in steady-state stress val-
ues (flow stress). On top of that, the yielding seems to
become more brittle in nature. Generally, the nature of
the yielding transition can be characterized by comput-
ing the susceptibility,

χ(γ) = NT

(
⟨σ2

xy⟩ − ⟨σxy⟩2
)
. (3)

χ(γ) has a maximum at the yield point but exhibits a
sharp peak for brittle failure. A sharper peak with a
larger magnitude indicates a more brittle character of
the yield process. In Fig.2(c), we show how χ becomes
sharper, and the peak height of χ increases with increas-
ing cs, signifying the emerging brittle character in our
system. The peak also shifts to larger strain values,
manifesting the higher yield strain in the system. The
mechanical response of the systems with impurities in-
dicates the enhanced structural stability of the samples.
The most common method to characterize the stability of
the amorphous solid is the energy per particle averaged
over all the all particles of the system. However, in our
system, due to the addition of foreign particles, the en-
ergy scale with different concentrations might not remain
comparable. Thus, to delve deeper into this observation,
we rely on the structural order parameter [43], denoted
by Θ (Eq.2), which depends purely on the local struc-

ture rather than the interaction. The lower value of the
structural order parameter stands for the better stability
of the system. We compute Θ of the unstrained config-
urations (freshly prepared samples) for all cs, shown in
Fig.2(d). We find that a lowering of Θ with increasing cs
indicates enhanced structural stability, aligning with the
observed brittle behavior. For comparison, we include
the influence of the cooling rate on Θ in the same plot
(red points), revealing its minimal impact even across
three decades of slowing down compared to the effect of
large spherical impurities. We note that in our study, the
diameter of the impurity is limited to 1.8−2.0σAA. While
smaller impurities have a very mild effect, the larger im-
purity system cannot be equilibrated within the available
simulation time scale due to their slow dynamics.

B. Increasing mechanical strength using aspherical
impurities

Although the results with spherical impurities are en-
couraging, we must admit that the improvement is min-
imal (γY (cs = 0) = 0.09 to γY (cs = 0.1) = 0.107 for
the 3D KA system). Interestingly, studies in [29, 35, 45]
highlight the significant impact of eliminating degrees
of freedom on the mechanical properties of amorphous
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solids. In contrast, we focus on the alternation in the
mechanical properties of amorphous solids brought about
by the introduction of rotational degrees of freedom (rD-
oFs) through rod-like aspherical impurities, as discussed
in the following sections.

1. Effect of impurity concentration

To begin with, we examine the response of less as-
pherical rod-shape impurities (Fig1(d)) for various im-
purity concentrations cd. The volume of these impuri-
ties is chosen to be similar to that of spherical impuri-
ties, aiming to impart a comparable influence on the sys-
tem as the larger spherical impurities, as demonstrated
by the structural order parameter in Fig.3(f). However,
compared to spherical impurities, they possess additional
rotational degrees of freedom. These impurities are cre-
ated by attaching two spheres (beads) with a diameter of
σb = 2.0σAA, with a 77.7% overlap, resulting in a length
of Ld = 2.3σAA and an aspect ratio of Ld : σb = 2.3 : 2.
Given that these impurities consist solely of two beads,
we designate them as dimers to differentiate them from
another category of impurities that comprise more than
two beads with the same amount of overlap described
later in the paper. Various parameter of the dimer
impurity system is denoted by the subscript ‘d’ if not
mentioned otherwise. Fig.3(a, b) shows the stress-strain
curves for the studied model systems. Notably, we ob-
serve a significant increase in yield strain for both two and
three dimensions, accompanied by a substantial increase
in the shear modulus. For instance, in the 3D KA model,
the yield strain changes by around 40% from γY = 0.09
for the pure systems to γY = 0.127 for cd = 10%, com-
pared to around 18% for the system with spherical impu-
rities. Additionally, the stress overshoots become more
pronounced with higher dimer concentrations. This sys-
tematic increase in the yield point with larger cd suggests
that small dimer impurities render the system more sta-
ble and capable of withstanding greater loads than the
pure system. This observation is further supported by
the χ(γ) plots shown in Fig.3(c); shift in the peak posi-
tion to a larger strain indicates an increase in γY with
increasing cd, while the increased peak height indicates
improved stability rather than increased brittleness, as
the width of the χ vs. γ curve remains very similar with
increasing cd.We note that the rod impurities with aspect
ratio Lr : σb = 1.3 : 1 give qualitatively similar results,
although the change in different mechanical properties is
less prominent. We do not study the dimer with a larger
diameter as the equilibration of the system stands as a
problem.

To microscopically understand the role of rod impu-
rities in enhancing the system’s stability and delaying
the yielding transition, we analyzed stress contributions
from rod-sphere and sphere-sphere interactions at a mi-
croscopic level, as shown in Fig. 3, panel (d). The data
for all studied concentrations reveal that the stress con-

tribution from sphere-sphere interaction begins to sat-
urate at smaller strains than the system’s macroscopic
yield strain, whereas the stress contribution from the rod-
sphere interaction keeps increasing until the yield strain
and then starts decreasing sharply. This indicates that
the regions with rods are more structurally stable and de-
form plastically at higher strain values than those with-
out rods. This also suggests that the onset of yielding
is mainly controlled by the rod-sphere interaction, de-
picting a clear picture of delayed yielding with increasing
cd.
Fig. 3 (f) illustrates the enhanced structural stability

of the parent glass matrix in terms of Θ as the Cd in-
creases. The figure also shows the variation of Θ with
concentration of spherical impurities and with different
cooling rates for comparison. It’s important to note that
the structural stability introduced by both spherical and
aspherical particles is similar in magnitude. This can
be attributed to the fact that the volume of a rod is
comparable to that of a spherical impurity. However,
the substantial shift in the yield point for the aspherical
case indicates a significant influence of rotational degrees
of freedom on the yielding transition. By providing ad-
ditional pathways for dissipating internal stresses, these
degrees of freedom allow the system to dissipate extra
stresses. In the subsequent section, we explore the sys-
tem containing rod-shaped impurities of varying lengths
to test this assertion further, where such impurities with
longer lengths inherently exhibit reduced rotational free-
dom.

2. Effect of the length of rod dopant

We now add longer rod-shaped impurities (more as-
pherical compared to dimer) in the amorphous matrix
(see Fig. 1(e)). These impurities have more than two
beads and, for clarity, are identified as rods. The sub-
script r, if not mentioned otherwise, indicates various
parameters associated with the rod impurity system.
The diameter of each bead in the rod is kept to be
σr = σAA. The reason to reduce the bead diameter from
2σAA to σAA is that long rods with large diameters ex-
hibit very slow dynamics and can not be equilibrated
within the available simulation time scale. Even with a
smaller bead, the maximum rod length we can simulate is
Lr = 2.5σAA. Fig. 4(a) shows the averaged stress-strain
curve for a 3dKA system with rod concentration cr = 0.1
of different Lr. One can clearly see that for samples with
the rod, Lr = 1.3 has large γY compared to the pure
samples due to the presence of rotational degrees of free-
dom, but the yield point is shifting back to lower values
with increasing Lr, akin to the fact of reduced rotational
relaxation of the longer rods. The degree of rotational
relaxation can be characterized by the rotational relax-

ation function defined as Sr =< 1
Nr

∑Nr

i=1 ŝi(γ).ŝi(0) >

shown in Fig. 4(b). Here ŝi is the orientation vector of the
rod. A faster decay of Sr suggests a better independent
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FIG. 4. Mechanical properties with longer rod inclusions: (a, b) The stress-strain curves for 2dmKA and 3dKA systems
with different lengths of rods (Fig.1(e)). Firstly, the yield point shifts back with increasing rod length because of losing rDoFs,
which is shown in panel (b). Panel (b) shows the rotational decorrelation function for rods of different lengths with mechanical
loading; the red points indicate the equal net D2

min [46]. Secondly, Panel (a) suggests the increased brittle behaviour with
increasing rod length. It is further advocated in (c-h). Panel (c) shows brittle (not so brittle) behaviour in sample-to-sample
stress-strain plots for systems with rods of length Lr = 2.5 (Lr = 1.3). The sharpness and increased peak height of χ in (d)
also convey the emerging mechanical ultra-stability of the sample. (e) The structural order parameter decreases with increasing
rod length in the system, implying increased structural stability. Panel (f) shows the non-affine displacement D2

min, averaged
in strips perpendicular to the shear band (at dx = 0). All these curves have the same area under the curve to ensure equal
plasticity. The large displacement away from the shear band in systems with smaller rods and large peak value for longer rods
again advocate the emerging brittle behaviour. It is also clear from the D2

min maps (g, h) obtained at equal net displacements
for systems with rods of lengths Lr = 1.3 and Lr = 2.5, respectively.

mobility of the rod’s orientation. We see Sr decreases
with γ for all Lr due to the non-affine motion originating
from the plastic events. However, systems with different
Lr do not suffer from the same amount of plasticity at
the same γ . So we choose Sr at different γ shown by
the red points on the data where all the systems have the
same amount of net non-affine displacement (in terms of
total D2

min). The higher values of Sr at the point of the
same plasticity with increasing Lr advocate the reduced
rotational motion of larger rods.

Another clear facet emerging from the average stress-
strain curves is the increased brittle behaviour with in-
creasing rod length. It is also worth pointing out that
the system with longer rods is dynamically slow; thus,
the same preparation protocol would generate poorly an-
nealed states, which should smoothen the stress-strain
curve; implying that the observed brittleness is even
stronger than what we obtain in this study because of
the simulation difficulty. In Fig. 4(c), the individual
stress-strain curves of two different Lr are compared.
For Lr = 1.3, the stress-strain curves exhibit several
stress drops near the yielding transition. On the other
hand, for Lr = 2.5, the individual stress-strain curves are
more abrupt, and larger stress drops occur during plastic
events, indicating the emergence of shear band instability

in the system. Fig. 4(d) displays the large values of the
χ(γ) peak, which becomes narrower with increasing Lr,
indicating an emerging mechanically ultra-stable phase
for longer rods. In panel (e), the variation of Θ is pre-
sented as a function of rod length for samples prepared
using the same cooling rate. Θ decreases with increasing
Lr, suggesting better stability of the samples. Although
yield strain should increase with higher stability, such a
trend is not observed. Thus, one can easily conclude that
with increasing Lr, the lack of rDoF would push γY to
lower γ, whereas the higher stability of the system should
do the opposite, but the system yields at smaller γY as
the effect of rDoFs dominates over the effect of stability
of the systems.

As a direct indicator of increased brittle behavior,
Fig. 4(f) presents the non-affine displacement, D2

min [46],
averaged across slices perpendicular to the shear band,
and plotted against the distance from the center of the
shear band for systems with rods of varying lengths. All
the curves have similar areas under the curve to ensure
the same amount of plasticity. The plots show that the
non-affine displacement magnitude away from the shear
band decreases with increasing rod length, indicating
less spatially scattered plastic events. Furthermore, the
peaked displacement for larger rods shows the formation
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FIG. 5. Mechanical aspect of frozen rotational DoFs: (a, c) The averaged stress-strain curves for 2dmKA and 3dKA
systems with rotationally frozen dimer (Fig.1(d)) inclusions. The yield strain does not change much, and the system becomes
extremely brittle, as seen from the respective susceptibility plots in panels (b, d). Note for the 3dKA model, the stress-strain
curves become nearly discontinuous at the yielding transition for the larger concentration of dimers. The effect is even enhanced
for the system with more aspherical rods (panel (e, f)). Inset of (f) contains the averaged maximum stress drop (∆σmax) that
happened in the whole strain window. It is an order parameter for brittle behaviour [11], and its systematic increased magnitude
with increasing rod concentration and rod length proves that the frozen rDoF leads to a highly brittle breakdown. Panel (g,
h) shows the D2

min plots indicating the sharpness of the obtained shear band (see text for detailed discussion).

of shear band. The same can be seen from D2
min map of

the system with Lr = 1.3 in Fig. 4(g), and with Lr = 2.5
in Fig. 4(h). For a direct comparison, these two maps
have an equal net D2

min, and it is evident that the sys-
tem with shorter rods has multiple plastic events that
are spatially spread out, while the longer rods have a lo-
calized shear band. Thus, the emerging ultra-stability
originates from the lack of rotational freedom, as we will
see in the next section.

C. Ultra-stability with Frozen Rotational DoFs

1. Mechanical aspect

Our results presented in Fig. 4 demonstrate that with
increasing rod length, the rotational diffusivity decreases
significantly, indicating the possibility of complete arrest
of rotation after a certain rod length. However, the ef-
fect of such long rods cannot be observed due to sim-
ulation limitations. Nonetheless, in a realistic system,
it is possible to freeze rDoFs at a suitable temperature
and rod length [37, 47]. To overcome this numerical dif-
ficulty and mimic the effect of very long rods that have
vanishing rotational diffusivity, we manually freeze the
rDoFs by prohibiting the rod-shape impurities from ro-
tating during the stress release via minimization process
(non-affine motion), although rotation is allowed during

the affine transformation.

The same samples for different concentrations of dimer
impurities and for different rod lengths of rod impurities
used in the previous analysis are taken and subjected
to straining with frozen rDoFs. Fig. 5(a) and Fig. 5(c)
show the stress-strain curves for the systems in two and
three dimensions, with frozen rotational DoFs. Firstly,
the drastic increase in the yield strain shown in Fig. 3 has
disappeared, re-confirming the vital role of the rotational
degrees. Although γY increases slightly with increasing
cd due to the higher stability of the system captured by
θ in Fig. 3, panel (f). Secondly, in Fig. 5(b), we show the
susceptibility, χ for the 2dmKA model, the peak height
increase with a significant decrease in the width of the
χ − γ curves points to the increasing brittle-like failure.
The trend in the 3dKA model is even dramatic as shown
in Fig. 5(d), in which one sees the stress-strain curve to
become nearly discontinuous at the transition point and
the corresponding susceptibility χ attaining a very large
peak value with a smaller spread in the loading axis.
In Fig. 5(e), the stress-strain curve is shown for various
Lr for cr = 0.1. For all values of Lr the failure is brittle,
but longer rod impurities increase the shear modulus due
to the higher stability of the samples (see Fig. 4, panel
(e)), and cause the failure to become more brittle as im-
plied from the peak height of χ shown in panel (f). An-
other important measure for quantifying brittle behavior
is the maximum stress drop, denoted as ∆σmax [11]. This
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parameter is computed as the maximum stress drop in a
unit step that occurs within the entire strain window.
The average value of ∆σmax, denoted as < ∆σmax >,
is zero for macroscopic ductile systems and non-zero for
brittle systems. The inset of Fig. 5 (f) displays the val-
ues ∆σmax, where one can observe a systematic increase
with both increasing rod length (red line), and concen-
tration of dimers (blue line), confirming the more brittle
behavior.

Figure 5(g) tries to bring out the change in the yield-
ing process with and without rDoFs. It shows the spatial
variation of the non-affine displacement,D2

min, similar to
Fig. 4(f) w.r.t to the distance from the center of the shear
band for both cases. The extremely small displacement
outside the shear band for the frozen rDoFs scenario,
along with increased displacement in the shear band re-
gion, demonstrates the highly brittle nature of the failure.
This is also supported by the D2

min map in panel (h) of
Fig. 5.

2. Kinetic aspect

After demonstrating their enhanced mechanical stabil-
ity, we now focus on the kinetic stability of systems with
frozen rDoFs. To assess the kinetic stability of a solid, we
observe the potential energy per particle (e) while sub-
jecting it to heating-cooling cycles. An ultra-stable state
would be characterized by a deep potential energy min-
imum that can not be reached through normal cooling,
therefore resulting in hysteresis in the potential energy
plot. To test this, we melted the rotationally frozen sys-
tem of 10% dimers with larger beads by heating it to
temperature T = 1.8 with Ṫ = 10−4 and then cooled it
down to the same temperature using the same Ṫ . The
cooling or heating rate is kept the same as the rate with
which the sample was prepared. Note that while prepar-
ing the sample, the rDoFs were not frozen but during the
heating/cooling cycles, they are kept frozen as we are in-
terested in the gained kinetic stability due to the lack of
rDoFs. As shown in Fig. 6(a), hysteresis is observed, val-
idating the classical ultra-stable characteristics. Upon
heating, the system remained in its glassy state until
T = 1.12, while on cooling, it reached its glassy state
at T = 1.0, resulting in a glass with a higher poten-
tial energy per particle. However, the second heat cycle
did not exhibit hysteresis. Furthermore, the absence of
hysteresis in the dashed lines of Fig. 6(a), which depict
the same procedure with rotationally free rods, confirms
the effectiveness of fRoDs in creating ultra-stable glasses.
The specific heat (CV = de/dT ) plots in Fig. 6(b) also
support this conclusion.

IV. DISCUSSION

Our results demonstrate that incorporating impurities
of larger diameter into a glassy system can significantly
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FIG. 6. Kinetic aspect of frozen rotational DoFs: (a)
The potential energy per particle e is plotted for a system
with 10% dimers subjected to heating-cooling cycles at the
rate of dT/dt = 10−4 (same as the rate with which the sam-
ple was prepared). The solid lines are for a system with frozen
rotational DoFs; the observed hysteresis during the first cycle
indicates the ultra-stable character. The second heating cy-
cle does not show any hysteresis. The dashed lines are for the
system evolved with rotational DoFs, and the absence of hys-
teresis is seen as expected. (b) The specific heat CV = de/dT
is calculated from data in (a) by numerical differentiation and
conveys the same

increase its ability to withstand external loads beyond its
usual limit, along with increased shear modulus and yield
stress. Furthermore, rod-shaped asymmetric inclusions,
which have both translational and rotational degrees of
freedom, are much better for micro-alloying as they can
significantly increase the yield strain, shear modulus, as
well as yield stress at even small concentrations. Con-
versely, inclusions with frozen or constrained rotational
degrees of freedom, which can be achieved by increasing
the length of the rod impurities while keeping the diame-
ter the same, exhibit comparatively mild enhancement of
the yield strain but fail in a more brittle-like catastrophic
yielding transition, suggesting the ultra-stable nature of
the system. Recently, in Ref.[29], the bulk-ultra stable
glass phase was claimed to be formed by randomly bond-
ing the nearest neighbors of an otherwise poorly annealed
glassy state. Such bonded molecules would also be rota-
tionally stuck because of the packing. Thus our results
offer an alternate explanation of the results reported in
[29].

The observation of the long/rotationally stuck dopant
making the system behave in a highly brittle way can
be hypothesized as an effect of the larger length scale in
the system. The ultra-stable states are sampled from ex-
tremely low temperatures, implying a sizable structural
length scale, while the states sampled from high temper-
atures would have a structural length scale of a few par-
ticle diameters. By inserting a rod of length Lr, a static
correlation of the same length is induced. Thus the ob-
served similarity between systems doped with larger rod-
like dopant and ultra-stable glasses may be simply due
to the increased static correlation length. Although we
do not have direct proof of this argument, it seems more
likely to be the scenario, and further work is needed to
understand the microscopic reason for the strong similar-
ity between ultra-stable glasses and micro-alloyed glasses
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with long rod-like impurities. Finally, it is worth not-
ing that incorporating aspherical impurities into realis-
tic amorphous solids can be achieved quite easily. This
enables us to tune the amorphous matrix’s mechanical
properties by varying the impurities’ length. While a
spherically symmetric impurity lacks rotational Degrees
of Freedom (rDoFs), the addition of slightly asymmet-
ric impurities with the same or larger radius as the con-
stituent particles results in a significant increase in both
the yield strain and stress of the material due to the ad-
dition of these rDoFs. Conversely, the incorporation of
highly aspherical rod-like impurities transforms the sys-
tem into one that more closely resembles an ultra-stable
configuration. Thus, our findings open a more controlled

and systematic method of micro-alloying.
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