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Controlling phase transitions in quantum systems via coupling to reservoirs has been mostly
studied for idealized (memory-less) environments. Here, we present a general method to tackle
dissipative phase transitions (DPTs) in non-Markovian systems, extending the scope of dissipative
engineering of matter phases to more realistic materials and experiments in the solid-state and
atomic, molecular and optical physics. We show how memory effects can be used to reshape phase
boundaries but also reveal the existence of DPTs genuinely triggered by non-Markovianity.

Introduction. Finding new ways to control phase tran-
sitions in quantum systems to access desired properties
is at the forefront of research for developing new materi-
als and technologies. In this context, driven-dissipative
mechanisms obtained via the coupling of systems to en-
gineered environments and fields offer opportunities to
generate matter phases otherwise inaccessible [1–3].

However, thus far, dissipative phase transitions
(DPTs), which have been observed in controlled exper-
iments [4–9], have mostly garnered theoretically atten-
tion in systems coupled to memoryless reservoirs [10–12].
Yet, most realistic systems are coupled to reservoirs with
a spectral structure [13], giving the latter a memory of
past system-bath exchanges, which considerably compli-
cates their dynamics. Such non-Markovian effects are
crucial to be understood, not least because they can be
used as a resource to generate useful phenomena, such as
non-Markovian-assisted steady state entanglement [14],
quantum transport [15], spin squeezing [16], chaotic be-
haviors [17] or new dynamical phases [18]. Moreover,
from a computational perspective, it is sometimes desir-
able to derive reduced descriptions of a large Markovian
open quantum system in order to deal with a smaller
Hilbert space, which usually implies dealing with non-
Markovian effects [19, 20].

Here, we extend the spectral theory of DPTs to non-
Markovian systems and present a general method to
characterize their signatures, opening possibilities for ex-
ploring DPTs in a wider range of systems. Our ap-
proach is based on the Hierarchical Equations of Motion
(HEOM) [21–26], a numerical method for non-Markovian
dynamics extensively used in quantum physics and chem-
istry, from which one can define a generalization of the
Liouvillian usually associated with the Lindblad master
equation for Markovian systems whose spectral proper-
ties are connected to DPTs. One of the necessary condi-
tions for DPTs is the closing of the Liouvillian gap [10]:
Here we show how to define a similar quantity for non-
Markovian systems.

Non-Markovian effects in DPTs have been studied via
other techniques [27–30], but mostly only on the paradig-
matic spin-boson model [31–33]. As our approach is

the natural extension of the powerful spectral machin-
ery widely used for Markovian systems, it provides an
ideal framework to explore non-Markovian effects in new
regimes and for more realistic systems and experiments.
Below, we first present the generalization of the Liou-

villian for non-Markovian systems and derive its prop-
erties and connections with DPTs and symmetries. As
examples of applications, we first study a generalized
Lipkin-Meshkov-Glick model [34] and show that devia-
tions from a Markovian reservoir lead to a shift of the
phase transition boundary. Then, even more remarkably,
we reveal the existence of DPTs that only appear in the
non-Markovian regime.
Theoretical framework. Consider a system S coupled

to a bosonic environment E at zero temperature [35].
The total Hamiltonian (ℏ = 1) is

H = HS +
∑

k

ωka
†
kak

︸ ︷︷ ︸
≡ HE

+
∑

k

(gkakL
†
k + g∗ka

†
kLk)

︸ ︷︷ ︸
≡ Hint

, (1)

where HS (HE) is the system (environment) Hamilto-

nian, with ak (a†k) the annihilation (creation) operator
for the k-th mode of frequency ωk, and Hint is the inter-
action Hamiltonian with Lk being arbitrary system op-
erators and gk being the system-bath coupling strengths.
The effect of the environment on the system is encoded
in the spectral density J(ω) = π

∑
k |gk|2δ(ω − ωk) or

equivalently in the bath correlation function α(τ) =∑
k |gk|2e−iωkτ = (1/π)

∫∞
0

J(ω)e−iωτdω. We assume
that the correlation function, which depends on the
model, is a sum of M decaying exponentials

α(τ) =

M∑

j=1

Gj e
−iωjτ−κj |τ |, κj , ωj ∈ R, Gj ∈ C. (2)

This decomposition, which is not unique [36], can be per-
formed either exactly or with great precision in a wide
range of situations [25, 37–39]. For Gj ∈ R, this amounts
to decompose the non-Markovian environment E into a
set of M modes of frequencies {ωj} which are damped
with rates {κj} due to their coupling to independent
Markovian baths, as illustrated in Fig. 1. This pseudo-
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FIG. 1. (a): Sketch of a system S interacting with a struc-
tured environment E characterized by a spectral density J(ω)
that can be decomposed into three Lorentzians, as if the sys-
tem was coupled to three pseudo-modes coupled to their own
unstructured bath (b). If one enlarges the system S by in-
cluding the pseudo-modes (system SM in the dashed black
box), the dynamics can be treated by a Lindblad description.

mode picture [40–47] is relevant for atoms in cavities,
superconducting qubits coupled to resonators [48, 49],
electrons-phonon systems [50, 51], or emitters in plas-
monic cavities [52]. Using complex Gj is even more gen-
eral and allows for instance an efficient fit of Ohmic spec-
tral density [36, 53] and the study of critical behaviors
[54].

When the global system is initially in the state ρ(0) =
ρS(0)⊗ ρB(0), the exact dynamics of S can be described
by the HEOM method which takes the form [21–25]

dρ(n⃗,m⃗)

dt
= −i[HS , ρ

(n⃗,m⃗)]− (w⃗∗ · n⃗+ w⃗ · m⃗)ρ(n⃗,m⃗)

+
M∑

j=1

{
GjnjLjρ

(n⃗−e⃗j ,m⃗) +G∗
jmjρ

(n⃗,m⃗−e⃗j)L†
j

+ [ρ(n⃗+e⃗j ,m⃗), L†
j ] + [Lj , ρ

(n⃗,m⃗+e⃗j)]
}
, (3)

with n⃗ = (nj) and m⃗ = (mj) multi-indices in NM ,
w⃗ = (κj + i ωj) ∈ CM , e⃗j = (δjj′) unit vectors, and

a⃗ · b⃗ =
∑

j a
∗
j bj the inner product on CM , and Lj the

system operator coupled to the jth pseudo mode. In

Eq. (3), ρ(⃗0,⃗0) ≡ ρS corresponds to the physical den-
sity operator of the system S with which all the mean
values of system observables are computed, while ρ(n⃗,m⃗)

for (n⃗, m⃗) ̸= (⃗0, 0⃗), which are also operators acting on
the system space, correspond to auxiliary states from
which bath correlations can be obtained [16]. Although
the hierarchy is formally infinite, it can be truncated
at large hierarchy depth indices n⃗ and m⃗. In practice,
the stronger the non-Markovianity, the larger the num-
ber of auxiliary states we need to retain to obtain con-
vergence of the results. Here, we choose the triangular
truncation ρ(n⃗,m⃗) = 0 ∀ n⃗, m⃗ :

∑
j(nj + mj) > kmax,

where kmax is the truncation order, yielding a total of
K = (2M + kmax)!/((2M)! kmax!) auxiliary states [16].

By stacking in a vector |ρ⟩⟩ all the vectorized versions

of the matrices ρ(n⃗,m⃗), Eq. (3) can be written in the form

d|ρ⟩⟩
dt

= LHEOM(kmax) |ρ⟩⟩, (4)

where LHEOM(kmax) is the HEOM Liouvillian, the gener-
ator of the non-Markovian dynamics of the system, exact
for kmax → +∞ and which generalises Lindblad’s Liou-
villian (see Supplemental Material (SM) for an example).
Instead of using LHEOM, one can sometimes as noted
above enlarge the system by including explicit pseudo-
mode degrees of freedom damped by standard Lindblad
decay channels, as illustrated in Fig. 1(b). This would
define a Markovian Liouvillian LM for the global system
SM . However, using LHEOM is computationally more fa-
vorable than LM , especially for large M (see SM).
Properties of the HEOM Liouvillian. The superoper-

ator LHEOM is linear and in general non-Hermitian. We
assume it is diagonalizable and denote its eigenvectors
and eigenvalues by |ρi⟩⟩ and λi. For a truncation order
kmax, its dimension is D = K dim(HS)

2. It admits the
following properties (see proofs in the SM): (i) its spec-
trum is symmetric with respect to the real axis; (ii) it pre-

serves the trace of the physical state ρ(⃗0,⃗0); (iii) the eigen-
value 0 is always in its spectrum, guaranteeing the exis-
tence of a stationary state; (iv) all the eigenvalues must
have a negative real part in the limit kmax → +∞; (v)

Tr[1(⃗0,⃗0)ρi] = 0 with 1(⃗0,⃗0) the projector onto the phys-
ical state space if ρi is a right eigenoperator of LHEOM

associated with the eigenvalue λi with Re[λi] ̸= 0. As
in [10, 11], we order the eigenvalues of LHEOM so that
|Re[λ0]| < |Re[λ1]| < · · · < |Re[λD]|, where λ0 = 0.

DPT and HEOM Liouvillian spectrum. Consider a sys-
tem described by Eq. (4) which admits a valid thermo-
dynamic limit N → ∞ and a unique steady state ρss for
all finite N . We say that the system undergoes a phase
transition of order M when a non-analytical change in
a g-independent system observable O occurs when the
parameter g tends to a critical value gc for N → ∞,
i.e., [10]

lim
g→gc

∣∣∣∣
∂M

∂gM
lim

N→+∞
⟨O⟩ss

∣∣∣∣ = +∞, (5)

where ⟨O⟩ss = Tr[Oρ
(⃗0,⃗0)
ss ]. This definition of DPTs is

the same as for Markovian systems. The only differ-
ence is that the steady state is now obtained from the
HEOM Liouvillian (4). Like for the Markovian case, a
non-analytical change as described by (5) must occur due
to a level crossing in the spectrum of LHEOM, which im-
plies the closing of the HEOM Liouvillian gap Re[λ1].
For 1st-order DPTs, the connection is even stronger as a
DPT occurs iff Re[λ1] = 0 at g = gc and Im[λ1] = 0 in a
finite domain around gc for N → ∞ (see SM).
Symmetries and DPTs. We call weak symmetry

of LHEOM any unitary superoperator U such that
[LHEOM,U ] = 0. The matrix representing LHEOM in the
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FIG. 2. Signatures of the 1st-order DPT for the general-
ized dissipative LMG model (6) obtained from LHEOM, show-
ing how environmental spectral structures affect the DPT.
(a,b): Steady state magnetization ⟨Sz⟩ as a function of V/γ
for κ/ω = 50 (a) and κ/ω = 1 (b). The vertical green and
red dashed lines indicate the transitions points for κ/ω = 50

and 1, respectively. (c,d): Liouvillian gap −Re[λ
(0)
1 ] (c) and

−Re[λ
(1)
0 ] (d) as a function of V/γ, indicating respectively the

DPT and the SSB associated with the DPT. The insets of (a)
show the same quantities for the Markovian case. Trunca-
tion orders are kmax = 2 (a) and kmax = 6 (N = 10–30), 7
(N = 40), 9 (N = 50) (b-d).

eigenvector basis of U is block-diagonal, i.e., LHEOM =⊕
uk

Luk
, where each block Luk

is associated with dis-
tinct eigenvalues uk of U where k ∈ {0, 1, . . . }. We de-
fine the symmetry sector Luk

as the subspace spanned
by the eigenvectors of U associated with the eigenvalue
uk. We can prove, in close analogy with the Marko-
vian case [10] that if the steady-state |ρss⟩⟩ of (4) is
unique, then |ρss⟩⟩ ∈ Lu0=1 [55]. A spontaneous sym-
metry breaking (SSB) corresponds to the emergence of a
zero eigenvalue in each symmetry sectors k in the limit
N → ∞. To be specific, if LHEOM is a direct sum of
n+1 blocks and if its eigenvalues are sorted in each block

k as |Re[λ(k)
0 ]| < |Re[λ(k)

1 ]| < . . . , a SSB is signaled by

λ
(k)
0 → λ

(0)
0 = 0 ∀k > 0 for g ≥ gc, N → +∞ [56]. This

means that the independent hierarchies associated with
each block k mix in the limit N → +∞ so that steady-
states that explicitly break the symmetry emerge.

1st-order DPT. We first illustrate our approach for a
Lipkin-Meshkov-Glick (LMG) model of the form

HLMG =
V

N

(
S2
x − S2

y

)
=

V

2N

(
S2
+ + S2

−
)
, (6)

where Sα =
∑N

j=1 σ
(j)
α /2 (α = x, y, z) are the collective

spin operators defined in terms of single-spin Pauli oper-

ators σ
(j)
α and S± = Sx± iSy. When the spin system un-

dergoes collective decay as described by Lindblad’s mas-

ter equation

ρ̇ = −i[HLMG, ρ] +
γ

2N
D[S−] (7)

where D[o] = 2oρo† − {o†o, ρ}, as would occur if cou-
pled to an unstructured bath with α(τ) = (γ/N)δ(τ),
the model exhibits a 1st-order DPT at the critical point
V M
c = γ/2 [34], separating a steady state phase where

⟨Sz⟩ → −N/2 (V < V M
c ) to a phase where ⟨Sz⟩ → 0

(V > V M
c ) for N → ∞, as can be seen in Fig. 2(a).

Here, we generalize the study of this DPT to the non-
Markovian regime by considering a finite memory time
for the bath with a correlation function of the form
α(τ) = Ge−κ|τ |−iωτ , as if the damping of the collec-
tive spin was originating from the coupling of the sys-
tem to a structured bath via an interaction Hamiltonian
Hint =

√
G (S−a† + S+a) with G = γκ/(2N) and a

the annihilation operator of a damped pseudo-mode of
Hamiltonian HE = ωa†a. This model allows us to study
non-Markovian effects on the DPT and compare them to
the Markovian case by tuning the “loss” rate κ of the
pseudo mode. Indeed, the collective spin and the pseudo
mode form an extended Markovian system governed by
the master equation

ρ̇tot = −i[H, ρtot] + κD[a] (8)

with H = HLMG +HE +Hint. Adiabatic elimination of
the pseudo-mode’s degrees of freedom recovers Eq. (9)
in the limit κ → ∞ (see SM), as expected since α(τ) →
(γ/N)δ(τ) for κ → ∞. When κ is finite, memory effects
arise and affect the DPT as described below. Note that
Eq. (8) has a Z2 symmetry represented by U2 = U2 ⊗U†

2

with U2 = eiπ(Sz+a†a). U2 has two distinct eigenvalues
uk = eikπ = ±1 with k = 0, 1, so there are two symmetry
sectors, with Lk=0 containing ρss.
The impact of memory effects on the DPT based on

LHEOM for the spin system can be seen in Fig. 2. First,
we see in panel (b) that the steady state spin magneti-
zation ⟨Sz⟩ exhibits a sharp transition at a critical point
smaller than in the Markovian case shown in Fig. 2(a).
This demonstrates that deviations from a flat spectral
density can reshape phase boundaries. A mean-field anal-
ysis of (8) shows that the shift in the critical point in-
creases as κ decreases (see SM for all details). Physi-
cally, this can be understood as follows: the smaller κ,
the greater the probability that excitations escaping from
the system will be reabsorbed at later times. The degree
of openness of the system therefore decreases as κ de-
creases, which leads to a stabilisation of the phase dom-
inated by the Hamiltonian (6) for small V . For κ → 0
(i.e., for a closed system), the phase transition disappears
because the Hamiltonian dynamics no longer competes
with dissipative dynamics. In the opposite limit κ → ∞,
we recover the Markovian case. The HEOM Liouvillian
spectrum correctly captures all DPT signatures. Indeed,
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it captures the emergence of both the level-touching at
the critical point in the symmetry sector k = 0, i.e.,

−Re[λ
(0)
1 ] → 0 as N → ∞ and the SSB associated to the

DPT, i.e., −Re[λ
(1)
0 ] → 0 for V above the critical point

as N → ∞, as can be seen in panels (c) and (d).

Note that this DPT cannot be studied via an approxi-
mate reduced description of the spin dynamics obtained
after adiabatic elimination of the pseudo-mode, as the re-
lated mean-field approach predicts qualitatively different
steady states (see SM). In general, reduced descriptions
cannot account for all the features of a DPT and can even
fail to capture DPTs, as elaborated on further below and
strongly motivates again the use of our framework.

2nd-order DPT. The second model we consider, also
experimentally relevant for cavity QED [57], is of the
form (1) with HS = HLMG + hSz and Lk ≡ L = Sx.
For an unstructured bath with α(τ) = γδ(τ), the system
dynamics is governed by the master equation

ρ̇ = −i[HLMG + hSz, ρ] +
γ

2N
D[Sx] (9)

whose unique steady-state is the maximally mixed state
ρss ∝ 1N+1, preventing the emergence of any DPT. How-
ever, if we add again a realistic finite memory time for the
bath by considering α(τ) = (γκ/2)e−iωτ−κ|τ |, we unveil
the existence of two consecutive 2nd-order DPTs sepa-
rating three different phases upon varying the squeez-
ing strength V . This can be seen in Fig. 3, where we
show that our approach captures all the features of the
DPTs in agreement with mean-field predictions detailed
in the SM. Panels (a-c) show the steady states expecta-
tions ⟨Sz⟩ and ⟨S2

y⟩ as a function of V , which distinguish
the phases [labeled as (I), (II) and (III)], as we have ⟨S2

y⟩
= 0 in phases (I) and (II) and ⟨Sz⟩ = −N/2 in phase
(II) only. In addition, as there is a Z2 symmetry rep-
resented by U2 in our model akin to the symmetry that
is broken in the DPT of the Dicke model [19], we ex-

pect a SSB manifesting as λ
(1)
0 → 0 as N → +∞ in

phases (I) and (III), accompanied by an exponential clo-
sure of the gap [20]. This behavior is illustrated in pan-
els (b) and (d). Also, note that as the critical points
are at V = −h + γκω/[2(κ2 + ω2)] and V = h, taking
the limit κ → ∞ does not recover the prediction of the
Lindblad scenario, i.e., no DPT. In other words, we have
limκ→∞limN→∞ ̸= limN→∞limκ→∞. Physically, taking
κ → ∞ amounts to consider equal absorption and emis-
sion rates for the system, pushing it inevitably to the in-
finite temperature state. Considering a finite κ restores a
memory for the bath, i.e., a system-frequency-dependent
response, thereby providing the necessary competition
between Hamiltonian and dissipative dynamics for the
emergence of DPTs.

Other model. We have also employed our method in
the case of a challenging U(1)-symmetric two-mode Dicke
model [20, 58] to capture both the correct steady-state

FIG. 3. Signatures of the 2nd-order DPT of the second model
obtained from LHEOM, showing the emergence of three phases
[(I), (II), and (III)] as V/γ is varied. (a) and (c): Steady-state
values of ⟨Sz⟩ and ⟨S2

y⟩ as a function of V/γ for different
N , allowing for distinguishing the phases. The solid black
lines correspond to mean-field predictions and the vertical
dashed red lines indicate the critical points. (b): Real part of

λ
(1)
0 (i.e., the gap) as a function of V/γ, signalling the SSBs

associated with the DPT. Three vertical dotted lines indicate
the values of V/γ taken for the finite-size scaling of the gap
shown in panel (d), i.e., V/γ = −1.75 (green), −0.05 (blue), 2
(pink), revealing an exponential closure of the gap in phases
(I) and (III), as shown by the straight line fits. Parameters:
ω = κ = 2h = 2γ. Truncation orders: kmax = 6 (N = 10-30),
7 (N = 40-60), 9 (N = 70, 100).

and the vanishing of the gap, a task for which all other
methods have failed so far (see SM).

Conclusion. We developed a comprehensive frame-
work for studying DPTs in non-Markovian systems, more
relevant experimentally. Our method is numerically ex-
act, systematic, easily accessible (as based on the well-
established HEOM technique available in open access li-
braries [25, 26]), and provides a considerable computa-
tional advantage over a standard embedding technique.
We demonstrated the power of our approach by highlight-
ing non-Markovian reservoir engineering of a 1st-order
DPT with a discrete SSB, by showing how DPTs can
be genuinely triggered by non-Markovian effects, and by
capturing all the defining features of a challenging 2nd-
order DPT with a continuous SSB for which other previ-
ous reduced descriptions had failed up to now [20].

Our work makes it possible to explore out-of-
equilibrium matter phases beyond the idealized Marko-
vian limit, featuring non-Markovianity as a resource
for triggering or controlling them. This is so far un-
charted territory as most works dealing with dissipative
many-body dynamics is generally constrained to Lind-
blad dissipation, which potentially hinders the evidences
of DPTs [19, 20]. Our method could be improved via
hybridization with advanced numerical techniques, such
as corner-space renormalization [59] or matrix product
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operators (as in [51, 60–63]). Other perspectives in-
clude studies of initial system-bath correlations [64] or
connections in the non-Markovian regime between DPTs
and symmetry breaking [65, 66], geometric phase cur-
vature [67, 68], or dynamical [69, 70] or measurement-
induced [71, 72] phase transitions, or dissipation engi-
neering of long-range order [73], also for systems with
non-Lorentzian environments [28, 64, 74].

We thank Jonathan Keeling, Peter Kirton, Valentin
Link and Lukas Pausch for helpful comments on a previ-
ous version of the manuscript. Computational resources
were provided by the Consortium des Equipements de
Calcul Intensif (CECI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11.
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constructions of the HEOM’s Liouvillian LHEOM. In Sec. II, we give a general argument on the computational
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I. EXPLICIT MATRIX FORM OF THE HEOM’S LIOUVILLIAN

By vectorizing Eq. (3) of the main text using |i⟩ ⟨j| ∼= |i⟩ ⊗ |j⟩ [S1], we get

d|ρ(n⃗,m⃗)⟩⟩
dt

= −i
[
HS ⊗ 1− 1⊗HT

S − (w⃗∗ · n⃗+ w⃗ · m⃗)
]
|ρ(n⃗,m⃗)⟩⟩+

M∑

j=1

(
GjnjLj ⊗ 1|ρ(n⃗−e⃗j ,m⃗)⟩⟩

+ G∗
jmj1⊗ L∗

j |ρ(n⃗,m⃗−e⃗j)⟩⟩
)
+

M∑

j=1

[
(1⊗ L∗

j − L†
j ⊗ 1)|ρ(n⃗+e⃗j ,m⃗)⟩⟩ (1⊗ L∗

j − L†
j ⊗ 1)†|ρ(n⃗,m⃗+e⃗j)⟩⟩

]
, (S1)

where |ρ(n⃗,m⃗)⟩⟩ denotes the vectorization of the matrices ρ(n⃗,m⃗), 1 the identity matrix acting on HS , and L∗
j (LT

j ) the

conjugate (transpose) matrix of Lj . By stacking in a vector |ρ⟩⟩ all the vectorized matrices |ρ(n⃗,m⃗)⟩⟩, we can construct
the matrix LHEOM(kmax) called HEOM’s Liouvillian and Eq. (S1) becomes Eq. (4) of the main text, i.e.,

d|ρ⟩⟩
dt

= LHEOM(kmax) |ρ⟩⟩. (S2)

For the sake of clarity, we explicitly construct the different blocks of the matrix representation of the HEOM’s
Liouvillian for an environment made of only one damped pseudo-mode (M = 1). For this special case, the vectorized
HEOM reads

d|ρ(n,m)⟩⟩
dt

= [−i
(
HS ⊗ 1− 1⊗HT

S )− ((n−m)iω + (n+m)κ)1⊗ 1
]

︸ ︷︷ ︸
≡Dnm

|ρ(n,m)⟩⟩

+ (Gn L⊗ 1)︸ ︷︷ ︸
≡An

|ρ(n−1,m)⟩⟩+ (G∗m 1⊗ L∗)︸ ︷︷ ︸
≡Bm

|ρ(n,m−1)⟩⟩

+ (1⊗ L∗ − L† ⊗ 1)︸ ︷︷ ︸
≡C

|ρ(n+1,m)⟩⟩+ (L⊗ 1− 1⊗ LT )︸ ︷︷ ︸
≡−C†

|ρ(n,m+1)⟩⟩.

Therefore, if kmax = 1, the stacked vector |ρ⟩⟩ is given by |ρ⟩⟩ = (|ρ(0,0)⟩⟩, |ρ(0,1)⟩⟩, |ρ(1,0)⟩⟩)T and

LHEOM(kmax = 1) =



D00 −C† C
B1 D01 0
A1 0 D10


 , (S3)

while for kmax = 2, we get |ρ⟩⟩ = (|ρ(0,0)⟩⟩, |ρ(0,1)⟩⟩, |ρ(0,2)⟩⟩, |ρ(1,0)⟩⟩, |ρ(1,1)⟩⟩, |ρ(2,0)⟩⟩)T and

LHEOM(kmax = 2) =




D00 −C† 0 C 0 0
B1 D01 −C† 0 C 0
0 B2 D02 0 0 0
A1 0 0 D10 −C† C
0 A1 0 B1 D11 0
0 0 0 A2 0 D20




. (S4)

II. COMPUTATIONAL ADVANTAGE OF LHEOM - GENERAL ARGUMENT

In this section, we compare the dimension of the HEOM Liouvillian LHEOM to the one of the Liouvillian for the
enlarged Markovian system that includes the pseudomodes, which we denote by LM. This provides an overall idea of
what kind of computational advantage of using LHEOM instead of LM can be expected. A more detailed comparison
for the LMG model investigated in the main text can be found in Sec. V.

The dimension of the matrix representing LHEOM is

D = dim (LHEOM) =
(2M + kmax)!

(2M)!kmax!
dim(HS)

2 (S5)

It depends on the size of the system Hilbert space HS , and of the truncation order kmax and the number of pseudo
modes M which determines the number of auxiliary matrices of the hierarchy.
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FIG. S1. Overall comparison between the dimensions of LHEOM and LM: ratios dim (LHEOM) /dim (LM) as a function
kmax and M (a), as a function of kmax for M = 1, 2 and 3 (b), and as a function of M for kmax = 1, 2 and 3 (c). Since
dim (LHEOM) /dim (LM) < 1, this means that we need less computational memory to store LHEOM than LM.

To compare with the dimension of the matrix representing the Liouvillian of the enlarged Markovian system LM,
we need to introduce a cutoff Nc for the pseudo-mode Fock spaces {|ni⟩} (ni = 0, 1, . . . ,∞ and i = 1, 2, . . . ,M), which
are in principle infinite. We choose here Nc = kmax, motivated by the fact that the pseudo-mode correlation functions
are related to the traces of the auxiliary matrices according to (for M = 1) [S2]

⟨an(a†)m⟩(t) = Tr
[
ρ(n,m)(t)

]

(iG)n(−iG)m
, (S6)

which means that if we truncate the hierarchy at kmax, we need at least to truncate the pseudo-mode Fock space at
Nc = kmax to be able to compute the same correlations. The dimension of LM should thus be

dim (LM) = dim(HS)
2(kmax + 1)M . (S7)

The ratio dim (LHEOM) /dim (LM) is plotted as a function of kmax and M in Fig. S1. We see that the advantage can
be significant, especially for large numbers of pseudo-modes.

III. PROPERTIES OF THE HEOM LIOUVILLIAN AND CONNECTIONS TO DPTS

A. Remark on notations

LHEOM(kmax) is a superoperator, which can be represented in the finite dimensional case by a matrix thanks to the
Choi-Jamiolkowski isomorphism, as explained in the main text and in Section I. For simplicity and clarity, we choose
to not change the notations when LHEOM is seen as a superoperator or as a matrix. Instead, it is the object it acts on
that changes, i.e., ρ = {ρ(n⃗,m⃗)|∑j(nj +mj) ≤ kmax} or |ρ⟩⟩ = {|ρ(n⃗,m⃗)⟩⟩|∑j(nj +mj) ≤ kmax}, so that no ambiguity

should arise. As an illustration, for one damped pseudo-mode (M = 1), kmax = 1, and Lj ≡ L, we have that

LHEOM(kmax = 1)|ρ⟩⟩ =



D00 −C† C
B1 D01 0
A1 0 D10





|ρ(0,0)⟩⟩
|ρ(0,1)⟩⟩
|ρ(1,0)⟩⟩


 ,

LHEOM(kmax = 1)[ρ] =




d
dtρ

(0,0)

d
dtρ

(0,1)

d
dtρ

(1,0)


 =




−i[HS , ρ
(0,0)] + [ρ(1,0), L†] + [L, ρ(0,1)]

−i[HS , ρ
(0,1)] + (iω − κ)ρ(0,1) +G∗ρ(0,0)L†

−i[HS , ρ
(1,0)]− (iω + κ)ρ(1,0) ++GLρ(0,0)


 ,

(S8)

where we used in the first line the notations of Section I.

B. Proof of the properties of the HEOM Liouvillian

We provide here the proofs of the properties of the HEOM Liouvillian. To show that the spectrum of LHEOM

is symmetric with respect to the real axis (property (i) of the main text), we note that
(

dρ(n⃗,m⃗)

dt

)†
= d

dtρ
(m⃗,n⃗) =
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FIG. S2. Main properties of the behavior of key eigenvalues of the HEOM Liouvillian in the thermodynamic limit N → ∞ in
different scenarii. (a) When there is a 1st-order DPT, the first non-zero eigenvalue λ1 should vanish at the critical point. (b)
When the Liouvillian can be decomposed in symmetry sectors (illustrated here for the case of two symmetry sectors k = 0 and
k = 1) and there is a SSB, the first non-zero eigenvalue of the Liouvillian in each symmetry sector different from the one of

the steady state (i.e., λ
(k)
0 for k > 0) should vanish in the symmetry broken phase (g ⩾ gc). (c) When there is both a 1st-order

DPT and a SSB, the system exhibits the combined behavior of cases (a) and (b), where the eigenvalue vanishing only at gc is

the one in the symmetry sector of the steady state (i.e., λ
(0)
1 ).

d
dt (ρ

(n⃗,m⃗))†, where we used the property (ρ(n⃗,m⃗))† = ρ(m⃗,n⃗) [S2], which implies

LHEOM[ρ†] = (LHEOM[ρ])†. (S9)

The trace preserving property ((ii) in the main text) of LHEOM is immediate from Eq. (3) of the main text. This
implies that

0 =
dTr[ρ(⃗0,⃗0)]

dt
= Tr

[
d

dt
ρ(⃗0,⃗0)

]
= Tr

[
1(⃗0,⃗0) LHEOM[ρ]

]
= ⟨⟨1(⃗0,⃗0)|LHEOM|ρ⟩⟩ ∀ ρ, (S10)

where we used the Hilbert-Schmidt inner product ⟨⟨A|B⟩⟩ ≡ Tr[A†B] and the projector onto the physical state space

1(⃗0,⃗0). Equation (S10) leads to ⟨⟨1(⃗0,⃗0)|LHEOM = 0, meaning that ⟨⟨1(⃗0,⃗0)| is a left eigenvector of LHEOM associated
to the eigenvalue 0. Therefore, the eigenvalue 0 is always in the spectrum of LHEOM (property (iii) of the main text),
which guarantees the existence of a stationary state. The fact that all the eigenvalues must have a negative real part
in the limit kmax → +∞ (property (iv) of the main text) comes from the fact that in this limit, the solution of Eq. (3)

of the main text in the sector (⃗0, 0⃗) is exactly the reduced density operator of the system. Thus, any positive real part

eigenvalues would lead to unphysical matrices in the sector (⃗0, 0⃗), therefore contradicting our last statement. Lastly,

to prove that Tr[1(⃗0,⃗0)ρi] = 0 if ρi is a right eigenoperator of LHEOM associated to the eigenvalue λi with Re[λi] ̸= 0

(property (v) of the main text), we note that LHEOM preserves the trace in the sector (⃗0, 0⃗) and ρi(t) = eLHEOMtρi → 0
for t → +∞ if Re[λi] ̸= 0 and kmax → +∞.

C. Connections to DPTs

In this section, we discuss how the properties of the HEOM Liouvillian are connected to 1st-order DPTs and to 2nd-
order DPTs associated with spontaneous symmetry breaking (SSB). A summary of the behavior of the key eigenvalues
of the HEOM Liouvillian for the different cases can be seen in Fig. (S2).

1. 1st-order DPTs

Since 1st-order DPTs are independent of symmetries of the HEOM Liouvillian LHEOM (and thus of SSB), we
consider below no particular symmetry and simply label the eigenvectors and eigenvalues of LHEOM as ρi and λi. In
the case of 1st-order DPTs emerging in systems with symmetries, the results below must be understood as related
to the Liouvillian block associated with the symmetry sector containing the steady state, i.e., the block Lu0=1 of

the decomposition LHEOM =
⊕

uk
Luk

, so that ρi and λi below must simply be understood as ρ
(0)
i and λ

(0)
i . This

is exemplified in Fig. 2 of the main text, where we show both the eigenvalue signalling the SSB (λ
(1)
0 ) and the one

responsible for the 1st-order DPT (λ
(0)
1 ).
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Because of the aforementioned properties and their similarity with the Markovian case [S3], one can show that
a 1st-order DPT can occur if and only if the HEOM Liouvillian gap Re[λ1] vanishes at the critical point in the
thermodynamic limit. Moreover, Im[λ1] must vanish in a finite domain around the critical point. For the sake of
completeness, we prove below these statements in the limit kmax → +∞. The proofs closely follow Ref. [S3] which
itself relies on results of Kato [S4]. We start by a definition.

Definition III.1. Let ρi be a right eigenoperator of LHEOM. We define the superoperator P (⃗0,⃗0) through

P (⃗0,⃗0)ρi = ρ
(⃗0,⃗0)
i , |P (⃗0,⃗0)ρi⟩⟩ = |ρ(⃗0,⃗0)i ⟩⟩, (S11)

i.e., P (⃗0,⃗0) only selects the component of ρi in the physical sector (⃗0, 0⃗), that is the operator ρ
(⃗0,⃗0)
i acting on a space

of dimension dim (HS). Note that P (⃗0,⃗0) is different from 1(⃗0,⃗0), as |1(⃗0,⃗0)ρi⟩⟩ corresponds to the stacked vector

(|ρ(⃗0,⃗0)i ⟩⟩, |0⟩⟩, |0⟩⟩, . . . )T .

Proposition III.1. If a physical system undergoes a 1st-order DPT in a well-defined thermodynamic limit N → +∞
at the critical point g = gc separating two unique phases, and if limN→+∞ LHEOM(g,N) is continuous with respect to
g, then limN→+∞ λ1(g = gc, N) = 0.

Proof. Let us assume that a system undergoes a 1st-order DPT in a well-defined thermodynamic limit N → +∞ when

a parameter g is varied. By definition, the steady state ρ(⃗0,⃗0)(t → ∞) ≡ ρ
(⃗0,⃗0)
ss must change discontinuously, which

implies that there exists a critical point gc such that

lim
g→g−

c

lim
N→+∞

ρ(⃗0,⃗0)ss (g,N) ≡ ρ
(⃗0,⃗0)
− ̸= lim

g→g+
c

lim
N→+∞

ρ(⃗0,⃗0)ss (g,N) ≡ ρ
(⃗0,⃗0)
+ , (S12)

where ρ
(⃗0,⃗0)
− and ρ

(⃗0,⃗0)
+ are the states (phases) of the system right before and after the transition, respectively, which

are unique by hypothesis. Equation (S12) implies that there exists ρ± such that

lim
g→g−

c

lim
N→+∞

LHEOM(g,N)[ρ−] = 0 = lim
g→g+

c

lim
N→+∞

LHEOM(g,N)[ρ+], (S13)

with P (⃗0,⃗0)ρ± = ρ
(⃗0,⃗0)
± . The continuity of the HEOM generator in the thermodynamic limit then gives

lim
g→gc

lim
N→+∞

LHEOM(g,N)[ρ±] = 0. (S14)

Exactly at g = gc, we then found two eigenoperators that belongs to the null space of LHEOM, while there is a unique
steady state for g ̸= gc. Consequently, we must have

lim
N→+∞

λ1(g = gc, N) = 0 = λ0, lim
N→+∞

λ1(g ̸= gc, N) ̸= 0. (S15)

Note that even if LHEOM(g) is continuous, there is no guarantee that ρ1(g) is continuous. Indeed, the coalescence of
eigenvalues may induce non-continuous eigenvectors [S4]. Nevertheless, we will get rid of these difficulties by assuming

that ρ
(⃗0,⃗0)
1 ≡ P (⃗0,⃗0)ρ1 is continuous, as done for the Markovian case [S3]. We can then elaborate on the form of the

steady state at the critical point as a function of the right eigenvectors of the Liouvillian associated with λ0 and
λ1, that is ρ0 and ρ1. For convenience, from now on we always assume the thermodynamic limit and drop the N
dependence.

Proposition III.2. We retain the same assumptions as in Proposition III.1. If ρ+ and ρ− span the null space at

g = gc, then Im[λ1] = 0 holds in a finite neighborhood of g = gc. Moreover, if limN→+∞ ρ
(⃗0,⃗0)
1 (g,N) is continuous

with respect to g and orthogonal to the steady-state, then

ρ(⃗0,⃗0)ss (g = gc) =
ρ
(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
−

2
, (S16)

in the thermodynamic limit, i.e., the steady-state is an equal mixture of the two phases ρ±.
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Proof. We must have Im[λ1] = 0 in a finite neighbourhood of gc as if it were not the case, then we would have three
zero eigenvalues at g = gc : λ1(g = gc) = λ∗

1(g = gc) = λ0 = 0 because of the property (i) of the main text. This
implies that ρ+ and ρ− do not span the null space at g = gc

1, which contradicts our assumptions.

To prove the second part, we first note that from the property (v) of LHEOM, we have Tr[1(⃗0,⃗0)ρ1(g ̸= gc)] = 0

since Re[λ1(g ̸= gc)] ̸= 0. By hypothesis ρ
(⃗0,⃗0)
1 ≡ P (⃗0,⃗0)ρ1 is continuous. This means that ρ

(⃗0,⃗0)
1 (g) does not change

abruptly as a function g but instead evolves continuously and makes a small excursion into the null space of LHEOM

exactly at g = gc. Therefore, we extend the zero trace property of ρ
(⃗0,⃗0)
1 at the critical point. Since the system null

space at g = gc is spanned by ρ
(⃗0,⃗0)
± , we must have

ρ
(⃗0,⃗0)
1 (g = gc) ∝ ρ

(⃗0,⃗0)
+ − ρ

(⃗0,⃗0)
− . (S17)

Furthermore, since ρ
(⃗0,⃗0)
± span the null space at g = gc, the steady state at the critical point must read

ρss(g = gc) = cρ
(⃗0,⃗0)
+ + (1− c)ρ

(⃗0,⃗0)
− , (S18)

with c ∈ [0, 1]. The precise value of c cannot be determined through the behavior of ρss(g ̸= gc). If, however, we

impose orthogonality between ρss(g = gc) and ρ
(⃗0,⃗0)
1 (g = gc), we obtain

ρ(⃗0,⃗0)ss (g = gc) =
ρ
(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
−

2
, (S19)

in virtue of the orthogonality between ρ
(⃗0,⃗0)
± , that we prove below.

For λ1(g = gc) = 0 ∈ R, ρ(⃗0,⃗0)1 can be assumed Hermitian without loss of generality, as a direct consequence of

property (i) of the main text. Consequently, ρ
(⃗0,⃗0)
1 can be diagonalized and one can construct ρ±, satisfying Eq. (S17),

by simply gathering all positive eigenvalues in ρ
(⃗0,⃗0)
+ and all negative eigenvalues in −ρ

(⃗0,⃗0)
− and then normalizing the

trace of ρ
(⃗0,⃗0)
± to one. By construction, ρ

(⃗0,⃗0)
± are then orthogonal.

We stress that the decomposition (S16) relies on strong assumptions, e.g., the orthogonality of ρ
(⃗0,⃗0)
1 and ρss at the

critical point, which may not be fulfilled. Indeed, in Ref. [S5], it has been shown that, in the Markovian regime, there
exists 1st-order DPTs without phase coexistence at the critical point, which contradicts Eq. (S16). Nevertheless, in
all the systems studied here we find an excellent agreement with the present theory. Indeed, we numerically checked
the validity of the decomposition (S16) and find good agreement as discussed in Section IV.C.

Proposition III.3. If λ1(g) vanishes only at g = gc with Im[λ1(g)] = 0 in a finite domain around g = gc, ρ
(⃗0,⃗0)
1 (g)

is continuous and if the null space is spanned at g = gc by two linearly independent eigenoperators associated with the
eigenvalue 0, then there is a 1st-order DPT occurring at g = gc.

Proof. We proceed by contradiction by assuming that limg→gc λ1(g) = 0 and that there is no 1st-order DPT. Equiva-

lently, we have that for any observable O of the system Tr[Oρss](g) is continuous at g = gc, which implies that ρ
(⃗0,⃗0)
ss (g)

is also continuous at g = gc. At g = gc, however, λ1 = 0 and as in Proposition III.2, we may then extend the zero
trace condition by setting

ρ
(⃗0,⃗0)
1 (g = gc) ∝ ρ

(⃗0,⃗0)
1+ − ρ

(⃗0,⃗0)
1− , (S20)

where ρ
(⃗0,⃗0)
1± can be found by diagonalizing ρ

(⃗0,⃗0)
1 [which is always possible since ρ

(⃗0,⃗0)
1 is hermitian in the domain in

which Im[λ1] = 0 ] and gathering again all positive eigenvalues in ρ
(⃗0,⃗0)
1+ and all negative eigenvalues in −ρ

(⃗0,⃗0)
1− and

then normalizing the trace of ρ
(⃗0,⃗0)
1± to one. By construction, ρ

(⃗0,⃗0)
1± are then density matrices such that ⟨⟨ρ(⃗0,⃗0)1+ |ρ(⃗0,⃗0)1− ⟩⟩ ≡

Tr[ρ
(⃗0,⃗0)†
1+ ρ

(⃗0,⃗0)
1− ] = 0. At the critical point, the steady state can then be written as

ρ(⃗0,⃗0)ss (g = gc) = cρ
(⃗0,⃗0)
1+ + (1− c)ρ

(⃗0,⃗0)
1− , (S21)

1 We recall that we always assume the diagonalizability of the HEOM Liouvillian.
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where c ∈ [0, 1]. Now, for all g ̸= gc and g ∈ [gc − ϵ, gc + ϵ] (ϵ > 0), the gap is not closed. Therefore,

P (⃗0,⃗0) lim
g→g±

c

lim
t→+∞

eLHEOM(g)tρ1±(g) = lim
g→g±

c

ρ
(⃗0,⃗0)
0 (g) = lim

g→g±
c

ρ(⃗0,⃗0)ss (g), (S22)

By hypothesis, however, ρ
(⃗0,⃗0)
ss is continuous at g = gc, which means

P (⃗0,⃗0) lim
g→g±

c

lim
t→+∞

eLHEOM(g)tρ1±(g) = ρ(⃗0,⃗0)ss (g = gc) = cρ
(⃗0,⃗0)
1+ + (1− c)ρ

(⃗0,⃗0)
1− , (S23)

or

ρ
(⃗0,⃗0)
1± (g = gc) = cρ

(⃗0,⃗0)
1+ (g = gc) + (1− c)ρ

(⃗0,⃗0)
1− (g = gc), (S24)

since ρ1±(g) belongs to the null space at g = gc. From Eq. (S24) we infer ρ
(⃗0,⃗0)
1+ (g = gc) = ρ

(⃗0,⃗0)
1− (g = gc), hence the

contradiction with ⟨⟨ρ(⃗0,⃗0)1+ |ρ(⃗0,⃗0)1− ⟩⟩ ≡ Tr[ρ
(⃗0,⃗0)†
1+ ρ

(⃗0,⃗0)
1− ] = 0 or even with the very existence of ρ

(⃗0,⃗0)
1 .

2. 2nd-order DPTs with SSB

Let us now discuss the consequences of the properties of the HEOM Liouvillian on 2nd-order DPTs associated with
SSB. For clarity, we only consider DPTs associated with a Z2-SSB, but the generalization to more general symmetries
is straightforward.

Let LHEOM(g) be the HEOM generator that captures a 2nd-order DPT associated with the spontaneous breaking of
a Z2 symmetry for g ≥ gc, gc being the critical point. By definition of a weak symmetry, there exists a superoperator
U2 such that

[LHEOM,U2] = 0. (S25)

As discussed in the main text, the very existence of the operator U2 constrains the HEOM generator to adopt a
block-diagonal structure when written in the eigenbasis of U2, namely

LHEOM =
⊕

uk=±1

Luk
, (S26)

where Luk=±1 are the blocs associated with the two eigenvalues of U2, namely ±1. By hypothesis, a 2nd-order DPT
with Z2-SSB occurs for g ≥ gc and N → +∞ i.e., the two blocks L+1 (k = 0) and L−1 (k = 1) get coupled in the

thermodynamic limit: λ
(k=0)
0 (g ≥ gc) = 0 = λ

(k=1)
0 . The associated eigenvectors, denoted by ρ

(k)
0 , are then orthogonal

since we have

⟨⟨ρ(0)0 |ρ(1)0 ⟩⟩ = ⟨⟨U2ρ
(0)
0 |ρ(1)0 ⟩⟩ = ⟨⟨ρ(0)0 |U2ρ

(1)
0 ⟩⟩ = −⟨⟨ρ(0)0 |ρ(1)0 ⟩⟩ (S27)

as U2 is Hermitian, and thus ⟨⟨ρ(0)0 |ρ(1)0 ⟩⟩ = 0. Now, if we define

ρ± ∝ ρ
(0)
0 ± ρ

(1)
0 , (S28)

it is clear that ρ± belong to the kernel of LHEOM(g ≥ gc) in the thermodynamic limit. Note, however, that ρ± are

not eigenvectors of U2 as U2ρ± ∝ ρ∓. Moreover, the projections ρ
(⃗0,⃗0)
± = P (⃗0,⃗0)ρ± allow us to interpret ρ

(⃗0,⃗0)
± as

steady-states of the system that explicitly break the symmetry. Equation (S28) can be inverted, so that

ρ
(0)
0 ∝ ρ+ + ρ−,

ρ
(1)
0 ∝ ρ+ − ρ−.

(S29)

In particular, if we apply P (⃗0,⃗0) to both sides of the previous relations, we obtain

ρ
(0)(⃗0,⃗0)
0 ∝ ρ

(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− ,

ρ
(1)(⃗0,⃗0)
0 ∝ ρ

(⃗0,⃗0)
+ − ρ

(⃗0,⃗0)
− ,

(S30)
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with P (⃗0,⃗0)ρ
(k)
0 = ρ

(k)(⃗0,⃗0)
0 (k = 0, 1), which is exactly what predicts the Markovian theory [S3]. For finite N , the

steady-state is unique, i.e. ρss ∝ ρ
(0)(⃗0,⃗0)
0 and therefore

ρss(g ≥ gc, N) ≈ ρ
(⃗0,⃗0)
+ (g ≥ gc, N) + ρ

(⃗0,⃗0)
− (g ≥ gc, N)

2
. (S31)

In Sec. V.B, we checked numerically the validity of this decomposition for the second model considered in the main
text.

IV. FIRST MODEL - SHIFTING PHASE BOUNDARIES VIA NON-MARKOVIAN EFFECTS

In this section, we present details on the first model we consider in the main text, i.e., the generalized dissipative
Lipkin-Meshkov-Glick model, which generalizes the study made in Ref. [S6] to the non-Markovian regime. The master
equation for the collective spin and pseudo-mode density matrix reads [Eq. (8) in the main text]

ρ̇tot = −i [H, ρtot] + κ
(
2aρtota

† − {a†a, ρtot}
)

with H = HLMG + ωa†a+

√
γκ

2N

(
S−a

† + aS+

)
.

(S32)

In the following, we first show how adiabatic elimination of the cavity mode recovers the original model [Eq.(7) in the
main text] in the “bad cavity” limit before performing a mean-field analysis of our generalized model.

A. Adiabatic elimination of the cavity mode in the bad cavity limit

Let us perform a standard derivation of a master equation for the collective spin only, first dividing H = H0 +H1

and then working in the interaction picture with respect to H0 = HLMG + ωa†a. In this interaction picture, the
interaction Hamiltonian H1 takes the form:

H1(t) =

√
γκ

2N
(a(t)S+(t) + a†(t)S−(t)), (S33)

where S±(t) = eiHLMGtS±e−iHLMGt. The master equation for the collective spin density operator ρ = TrE(ρtot) reads
in the Markov approximation [S7]:

ρ̇ = −
∫ t

0

dt′TrE ([H1(t), [H1(t
′), ρtot(t)]]) . (S34)

Considering the Born approximation ρtot(t) ≈ ρ(t)⊗ρE with ρE the vacuum state for the pseudo mode and expanding
the double commutator yields

ρ̇ = −
∫ t

0

dt′
(
α(t−t′)S+(t)S−(t

′)ρ(t)−α∗(t−t′)S−(t)ρ(t)S+(t
′)−α(t−t′)S−(t

′)ρ(t)S+(t)+α∗(t−t′)ρ(t)S+(t
′)S−(t)

)
,

(S35)
which made appear the bath correlation function

α(t− t′) =
( γκ

2N

)
TrE

(
a(t)a†(t′)ρE

)
=

γκ

2N
e−iω(t−t′)−κ|t−t′|. (S36)

a. “Bad cavity” limit κ → ∞. In the “bad cavity” limit κ → ∞, which corresponds to the case of a flat
spectral density of the bath, we have α(t − t′) → (γ/N)δ(t − t′), which makes it possible to perform the integration
straightforwardly and obtain the following master equation in the Schrödinger picture

ρ̇ = −i [HLMG, ρ] +
γ

2N
(2S−ρS+ − {S+S−, ρ}) , (S37)

which is exactly Eq. (7) in the main text.
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b. Finite κ and large detuning limit. If we know consider the case of finite κ, the integrand in Eq. (S35) is now
non-zero over a finite range of time t′, so that one has in principle to know the explicit time-dependence of the system
operators S ± (t′) = eiHLMGtS±e−iHLMGt - and thus the HLMG Hamiltonian spectrum – to perform the integral. Such
knowledge is however not needed in the limit where the pseudo-mode frequency ω dominates all system transition
frequencies as shown below. Suppose indeed a spectral decomposition of HLMG of the form HLMG|n⟩ = ωn|n⟩
with eigenvalues and eigenvectors ωn and |n⟩. The time-dependence of the system operators S±(t′) in the HLMG

Hamiltonian basis reads

S±(t) =
∑

n,n′

e−i(ωn−ωn′ )t⟨n|S±|n′⟩|n⟩⟨n′|. (S38)

Inserting Eq. (S38) in Eq. (S35), making the variable substitution t′ → t− τ and pushing the limit of the integral to
infinity yields after integration

ρ̇ = − γκ

2N

∑

n,n′

( 1

κ+ i(ω − (ωn − ωn′))
S+(t)

(
e−i(ωn−ωn′ )t⟨n|S−|n′⟩|n⟩⟨n′|

)
ρ(t)

− 1

κ− i(ω + (ωn − ωn′))
S−(t)ρ(t)

(
e−i(ωn−ωn′ )t⟨n|S+|n′⟩|n⟩⟨n′|

)

− 1

κ+ i(ω − (ωn − ωn′))

(
e−i(ωn−ω′

n)t⟨n|S−|n′⟩|n⟩⟨n′|
)
ρ(t)S+(t)

+
1

κ− i(ω + (ωn − ωn′))
ρ(t)

(
e−i(ωn−ωn′ )t⟨n|S+|n′⟩|n⟩⟨n′|

)
S−(t)

)
.

(S39)

If now we have ω ≫ (ωn − ωn′) ∀n, n′, then 1/(κ± i(ω ± (ωn − ωn′)) ≈ 1/(κ± iω) and the equation becomes

ρ̇ = − γκ

2N

( 1

κ+ iω
S+(t)S−(t)ρ(t)−

1

κ− iω
S−(t)ρ(t)S+(t)−

1

κ+ iω
S−(t)ρ(t)S+(t) +

1

κ− iω
ρ(t)S+(t)S−(t)

)
.

(S40)
Coming back to the Schrödinger picture yields

ρ̇ = −i
[
HLMG − q2

γ

2N
S+S−, ρ

]
+ q1

γ

2N
(2S−ρS+ − {S+S−, ρ}) , (S41)

where we introduced the factors

q1 =
κ2

κ2 + ω2
, q2 =

κω

κ2 + ω2
. (S42)

Hence, we see that in the large detuning limit ω/(ωn−ωn′) → ∞ ∀n, n′, the structure of the bath spectral density has
the effect of reducing the impact of the dissipative part of the master equation for the spin by a factor q1 = κ2/(κ2+ω2)
as well as adding a energy shift proportional to q2γ/2N .

c. Redfield master equation. As explained above, going beyond the approximations used in the previous section
require to take into account the spectrum of the system to evaluate the dissipative part of the master equation.
However, the Lipkin-Meshkov-Glick Hamiltonian has complicated eigenvalues and eigenvectors [S8, S9] and it is not
easy to write down simple formula for Eq. (S38), which hampers the writing of a simple expression for the master
equation and stongly motivates the use of our systematic HEOM approach.

B. Mean-field analysis

We first start by writing the Heisenberg equations of motion for a, Sx, Sy and Sz from Eq. (S32)

ȧ = −(κ+ iω)a− i

√
γκ

2N
S−,

Ṡx = −V

N
{Sy, Sz}+ i

√
γκ

2N
Sz(a− a†),

Ṡy = −V

N
{Sx, Sz} −

√
γκ

2N
Sz(a+ a†),

Ṡz = 2
V

N
{Sx, Sy}+ i

√
γκ

2N

(
a†S− − aS+

)
.

(S43)
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Using ⟨AB⟩ = 1
2 ⟨{A,B}+ [A,B]⟩ ≈ ⟨A⟩⟨B⟩+ 1

2 ⟨[A,B]⟩, we get the mean-field semiclassical equations of motion

⟨ȧ⟩ = −(κ+ iω)⟨a⟩ − i

√
γκ

2N
⟨S−⟩, (S44)

⟨Ṡx⟩ = −2
V

N
⟨Sy⟩⟨Sz⟩+ i

√
γκ

2N
⟨Sz⟩(⟨a⟩ − ⟨a†⟩), (S45)

⟨Ṡy⟩ = −2
V

N
⟨Sx⟩⟨Sz⟩ −

√
γκ

2N
⟨Sz⟩(⟨a⟩+ ⟨a†⟩), (S46)

⟨Ṡz⟩ = 4
V

N
⟨Sx⟩⟨Sy⟩+ i

√
γκ

2N
(⟨a†⟩⟨S−⟩ − ⟨a⟩⟨S+⟩), (S47)

which are exact in the thermodynamic limit N → ∞. Note that the quantity ⟨Sx⟩2 + ⟨Sy⟩2 + ⟨Sz⟩2 is a constant
of motion, hence the dynamics of the spin is constrained to the surface of a Bloch sphere. In the following, we are
interested in finding the fixed points of these equations and studying their stability as a function of the parameters
of the model, in order to deduce the different possible steady states and build a phase diagram as in [S6].

The different fixed points labelled as {(⟨a⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗} of Eqs. (S44)-(S47) can be obtained by setting the
left-hand-side of all the equations to zero. In particular, from the first equation, setting ⟨ȧ⟩ = 0 gives

⟨a⟩∗ = −i

√
γκ
2N ⟨S−⟩∗
κ+ iω

(S48)

Hence, the pseudo-mode degree of freedom is slaved to the collective spin ones, which simplifies the problem as we
just need to find first the fixed points of a closed set of equations for the collective spin variables ⟨Sx⟩∗, ⟨Sy⟩∗ and
⟨Sz⟩∗ only, i.e.,

0 = −2
V

N
⟨Sy⟩∗⟨Sz⟩∗ +

γ

N
⟨Sz⟩∗ (q1⟨Sx⟩∗ − q2⟨Sy⟩∗) , (S49)

0 = −2
V

N
⟨Sx⟩∗⟨Sz⟩∗ +

γ

N
⟨Sz⟩∗ (q1⟨Sy⟩∗ + q2⟨Sx⟩∗) , (S50)

0 = 4
V

N
⟨Sx⟩∗⟨Sy⟩∗ −

γ

N
q1
(
⟨Sx⟩2∗ + ⟨Sy⟩2∗

)
. (S51)

It is worth noting that if one is interested in deriving a spin-only description of the model by performing an adiabatic
elimination of the pseudo mode (as done in the case of the Dicke model in [S10]), it would also require to setting
ȧ = 0 in Eqs. (S44)-(S47), which would yield Eqs. (S49)-(S51) but with the derivative of the collective spin operators
on the left-hand-sides of each equation. Importantly, this means the fixed points of the spin system after adiabatic
elimination of the pseudo mode are the same as the full model. However, as we will see below, their stability differs
depending on whether or not we account for the pseudo-mode degree of freedom. Note also that taking the limit
κ/ω → ∞ in Eqs. (S49)-(S51) yields q1 → 1 and q2 → 0, so that we recover the semiclassical equations of the Lindblad
model [S6].

Equations (S49)-(S51) together with the normalization condition ⟨Sx⟩2∗ + ⟨Sy⟩2∗ + ⟨Sz⟩2∗ = (N/2)2 admit (as for the
Markovian case) two classes of fixed points:

(⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2
(0, 0,±1) (S52)

and

(⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2




√
1±

√
1− q21γ

2

4V 2

√
2

,
q1γ

4V

√
2√

1±
√
1− q21γ

2

4V 2

, 0


 , (S53)

(⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ = −N

2




√
1±

√
1− q21γ

2

4V 2

√
2

,
q1γ

4V

√
2√

1±
√

1− q21γ
2

4V 2

, 0


 . (S54)
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According to Eq. (S48), the first class of fixed points corresponds to the spin at the north and south poles of the Bloch
sphere with an empty pseudo mode, while the second class of fixed points corresponds to the spin at four different
locations at the equator and a scaling ⟨a⟩∗ ∝

√
N for the pseudo mode. In the following, we analyse the stability of

these fixed points to determine the steady states of the model. As it turns out that it depends on whether the analysis
is performed on the spin degrees of freedom (Sx, Sy, Sz) only (spin model), as obtained from adiabatic elimination of
the pseudo mode, or on all degrees of freedom (a, Sx, Sy, Sz) (full model), we investigate subsequently these two cases.

1. Spin model

a. Linear stability analysis. Let us first perform a linear stability analysis for the spin model obtained after
adiabatic elimination of the pseudo mode, i.e.,

⟨Ṡx⟩ = −2
V

N
⟨Sy⟩⟨Sz⟩+

γ

N
⟨Sz⟩ (q1⟨Sx⟩ − q2⟨Sy⟩) , (S55)

⟨Ṡy⟩ = −2
V

N
⟨Sx⟩⟨Sz⟩+

γ

N
⟨Sz⟩ (q1⟨Sy⟩+ q2⟨Sx⟩) , (S56)

⟨Ṡz⟩ = 4
V

N
⟨Sx⟩⟨Sy⟩ −

γ

N
q1
(
⟨Sx⟩2 + ⟨Sy⟩2

)
, (S57)

around the first class of fixed points: (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ = (0, 0,±N/2). Note that the equations above can also be ob-
tained from the master equation (S41) in the large detuning limit. To perform the analysis, we replace (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)
by (x, y, z ± (N/2)) in Eqs. (S55-S57) where (x, y, z) denotes fluctuations around the fixed points which yields

ẋ = −2
V

N
y

(
z ± N

2

)
+

γ

N

(
z ± N

2

)
(q1x− q2y) , (S58)

ẏ = −2
V

N
x

(
z ± N

2

)
+

γ

N

(
z ± N

2

)
(q1y + q2x) , (S59)

ż = 4
V

N
xy − γ

N
q1
(
x2 + y2

)
. (S60)

Linearizing Eqs. (S58)-(S60) shows that fluctuations along z decouple from those along x and y, which reduces the
analysis to the following two-dimensional system

(
ẋ
ẏ

)
= ±γ

2

(
q1 − 2V

γ − q2
− 2V

γ + q2 q1

)(
x
y

)
. (S61)

The eigenvalues of the matrix are ±γ(q1 −
√
4(V/γ)2 − q22)/2 and ±γ(q1 +

√
4(V/γ)2 − q22)/2. For the fixed point

(⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
(
0, 0, N

2

)
[“+” sign in Eq. (S61)], the eigenvalue γ(q1 +

√
4(V/γ)2 − q22)/2 is always positive,

meaning that the fixed point is always unstable. For the fixed point (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
(
0, 0,−N

2

)
[“–’ sign in

Eq. (S61)], both the eigenvalues −γ(q1 −
√

4(V/γ)2 − q22)/2 and −γ(q1 +
√

4(V/γ)2 − q22)/2 are negative for

V <
γ

2
√
1 + ω2/κ2

≡ V +
c , (S62)

and −γ(q1 −
√
4(V/γ)2 − q22)/2 is positive for V > V +

c . Hence, the fixed point (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
(
0, 0,−N

2

)
is

stable only if V < V +
c and unstable otherwise. Note again that in the limit κ/ω → ∞, we recover the result of the

Lindblad model of [S6] where V +
c → γ/2.

Let us now perform a linear stability analysis around the second class of fixed points of the form (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
(sx∗, sy∗, 0), where sx∗ and sy∗ are given by the right-hand side of Eqs. (S53) or (S54). Here, the EOM for the
fluctuations, obtained by replacing (⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩) by (x+ sx∗, y + sy∗, z), yields after linearization



ẋ
ẏ
ż


 =

1

N




0 0 q1γsx∗ − (2V + q2γ)sy∗
0 0 q1γsy∗ − (2V − q2γ)sx∗

4V sy∗ − 2q1γsx∗ 4V sx∗ − 2q1γsy∗ 0





x
y
z


+




0
0

−Nγq1
4


 . (S63)

The eigenvalues of the matrix are

0, −N

√
(±q2

√
4V 2 − γ2q21 + γ2q21 − 4V 2)/2, and N

√
(±q2

√
4V 2 − γ2q21 + γ2q21 − 4V 2)/2, (S64)
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where the ± sign relate to the ± sign in Eqs. (S53) and (S54). Note that the zero eigenvalue is not physical, as
the variables are not independent. To see how this eigenvalue can be eliminated, one can switch to the spherical
coordinates ⟨Sx⟩ = r sin θ cosφ, ⟨Sy⟩ = r sin θ sinφ, ⟨Sz⟩ = r cos θ in Eqs. (S55-S57), which yields ṙ = 0 because of the
norm conservation and

φ̇ =
cos θ

2
[q2γ − 2V cos(2φ)] , (S65)

θ̇ =
sin θ

2
[q1γ − 2V sin(2φ)] . (S66)

Linear stability analysis based on these equations yields the two non-trivial eigenvalues of Eq. (S64). The fixed points
are unstable when the real part of at least one of them is positive. This happens for

V <
γ

2 (1 + ω2/κ2)
≡ V −

c (S67)

for the two fixed points associated with the “–” sign in Eqs. (S53) and (S54) and for

V < V +
c (S68)

for the two fixed points associated with the “+” sign. Above these critical values, the real part of both the eigenvalues
are zero, and so one cannot conclude on the stability of the fixed points in this region via this simple linear stability
analysis.

While the approach above cannot provide a full understanding of the stability of the system, we already see strong
deviations from the Markovian limit ω/κ → 0. Indeed, in this latter, we have V −

c = V +
c = V M

c = γ/2 so that there is
no region of parameters where the two kind of fixed points are not unstable, hampering the possibility for a coexistence
of two distinct phases. More specifically, in [S6], it was shown that for V < V M

c the fixed point (0, 0,−N/2) is the
unique steady state while for V > V M

c the fixed points (sx∗, sy∗, 0) are center fixed points and there exists an infinite
set of oscillating (initial-state-dependent) steady states corresponding to orbits around these fixed points on the Bloch
sphere. While these steady states are persistent spin oscillations, they average to zero along the z direction over time,
so that the Markovian scenario well-describes a 1st-order transition between a phase with ⟨Sz⟩ ≠ 0 (V < V M

c ) and
⟨Sz⟩ = 0 (V > V M

c ). In the case ω/κ ̸= 0, however, we have V −
c < V +

c , so the possibility that the fixed points and
thus two distinct phases coexist in the region V −

c < V < V +
c (which increases as ω/κ increases) is not excluded. This

is confirmed in the next subsection.
b. Higher-order stability analysis. As the equations of motion are cumbersome beyond linearization, we rely on

a numerical analysis of the stability of the fixed points, as summarized below.
For 0 ≤ V < V −

c , the fixed point (0, 0,−N/2) is the unique steady state, as shown in the stream plots in Fig. S3
(a,b,e). Note that in this regime all the fixed points of the form (sx∗, sy∗, 0) are not physical fixed points as they are
complex vectors.

For V −
c < V < V +

c , we observe a bistability phenomenon as the steady state depends on the initial conditions: the
fixed point (0, 0,−N/2) is still a possible steady state, but an infinite number of steady states corresponding to stable
orbits on the Bloch sphere around the two center fixed points (S53) and (S54) with the “–” sign become available, as
shown in Fig. S3(f). For V ≳ V −

c , only orbits close to the fixed points are stable. As V increases, more orbits become
stable. This is in sharp contrast with the Markovian case where all the points on the sphere belong to stable orbits
as soon as V > V M

c [panel (c,d)]. Here, in the regime V −
c < V < V +

c , each point on the Bloch sphere undergoes the
phase transition at a different critical point.

For V > V +
c , the fixed point (0, 0,−N/2) is no longer stable and all the four fixed points (S53) and (S54) become

center fixed points, as can be seen in Fig. S3(g,h). Note that since V +
c < V M

c , this means going beyond the limit of a
flat spectral density has the effect to renormalize to lower values the critical point by a function of the bath SD. We
interpret this phenomenon as a consequence of memory effects: for smaller κ/ω, the excitations escaping the system
are more likely to be re-absorbed by the system at later times, protecting its coherence and hence stabilizing the
phase dominated by the Hamiltonian term to lower ratio V/γ.

2. Full model

We now come back to the mean-field equations for the full model (S44)-(S47) in order to study how reintroducing
the pseudo-mode degree of freedom affects the stability of the fixed points. Here, the complex variable ⟨a⟩ can be
decomposed into two real variables. Hence, the linear stability analysis on the full model exhibits four non-trivial
eigenvalues to analyze, by contrast with the two of the previous section. As before, the analysis consists in linearizing
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FIG. S3. Stream plots obtained from the mean-field equations (S55)-(S57) after adiabatic elimination of the pseudo mode
showing the trajectories of the collective spin on the Bloch sphere in the thermodynamic limit as a function of the ratio V/γ
between coherent and dissipative rates (not in scale) and of the degree of spectral density structures ω/κ. In the Markovian
limit (ω/κ → 0), there is a phase transition at V = V M

c = γ/2 between a phase with a unique pure steady state (0, 0,−N/2)
(blue dot at the south pole) [V < V M

c , (a,b)] and a phase with an infinite set of (initial-state-dependent) pure steady states
orbiting around four center fixed points (blue dots at the equator) [V > V M

c , (c,d)]. As ω/κ increases, the stream lines twist
around the z-axis (e) and a region of parameters (V −

c < V < V +
c ) emerges where both the steady state (0, 0,−N/2) or a

steady orbit can be observed depending on the initial condition (f). Overall, the phase space where the coherent dynamics
dominates over the dissipative one is enlarged due to non-Markovian effects. Parameters are V/γ = 0.11 (a,e), V/γ = 0.31
(b,f), V/γ = 0.51 (c,g) and V/γ = 0.71 (d,h). For ω/κ = 1, V −

c /γ = 0.25 and V +
c /γ ≈ 0.354. (i) Positions of the relevant fixed

points on the Bloch sphere as a function of spherical coordinates φ and θ and V/γ for the Markovian limit ω/κ = 0 (dashed
red) and for ω/κ = 1 (blue).

the equations of motion for the fluctuations around the different fixed points and inspecting the eigenvalues of the
matrix of the system. We summarize below the results for each class of fixed points.

For the first class of fixed points at the north and south poles of the Bloch sphere, (⟨Sx⟩∗, ⟨Sy⟩∗, ⟨Sz⟩∗) = (0, 0, N/2)
is still unstable for all values of V , while (0, 0,−N/2) is still a valid steady state for V < V +

c , as can be seen in panel
(a) and (b) respectively of Fig. S4, which displays the real parts of the eigenvalues of the linear stability analysis
matrix in each case.

For the second class of fixed points at the equator of the Bloch sphere, the changes are more drastic. (i) The two
fixed points associated with the “–” sign in Eqs. (S53) and (S54) are still unstable for V < V −

c . However, they are
now stable for V > V −

c , as can be seen in Fig. S4(c) showing that all real parts of the eigenvalues become negative in
this region (blue solid curve), by contrast with the analysis of the reduced spin model (dashed purple and dotted dark
cyan). Hence, these two fixed points are now real steady states for V > V −

c , and they coexist with the steady state
(0, 0,−N/2) for V −

c < V < V +
c . There are no more stable orbits around these fixed points. (ii) The two fixed points

associated with the “+” sign in Eqs. (S53) and (S54) are still unstable for V < V +
c , and now become also unstable

above V +
c , as can be seen in Fig. S4(d).

In conclusion, the mean-field analysis of our generalized LMG model (S32) yields qualitatively different phase
diagrams depending on the approximations used.

• The original spin-only model of [S6] as obtained in the limit ω/κ → 0 exhibits the DPT at V = V M
c = γ/2.

For V < γ/2, (0, 0,−N/2) is the only steady state, while for V > γ/2 they are four center fixed points at the
equator of the Bloch sphere around which an infinity of stable orbits are valid steady states, which one is chosen
depends on the initial conditions.

• When including the spectral structures of the bath in the reduced description of the spin system (ω/κ ̸= 0), the

critical point is split into two: V −
c = γ/[2(1 + ω2/κ2)] and V +

c = γ/(2
√

1 + ω2/κ2) where V −
c < V +

c , and the
four fixed points at the equator have shifted locations. For V < V −

c , (0, 0,−N/2) is the only steady state. For
V −
c < V < V +

c , (0, 0,−N/2) and an ensemble of stable orbits around two out of the four center fixed points can
be steady states. For V > V +

c , only stable orbits around the four center fixed points are steady states.

• In the exact full model, the fixed points remain the same but not their stability. Notably, stable orbit cannot
be seen anymore in any regime. For V < V −

c , (0, 0,−N/2) is the only steady state. For V −
c < V < V +

c ,
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FIG. S4. Real parts of the eigenvalues of the linear stability analysis matrix of the mean-field equations for the full model
[Eqs (S44)-(S47)] (blue solid lines) with ω = κ = γ and for the spin model after adiabatic elimination of the pseudo mode
[Eqs. (S55)-(S57)] (dashed purple lines) with ω = κ = γ and in the limit ω/κ → 0 (dotted dark cyan lines). The different panels
correspond to linear stability analyses around different fixed points: at the north pole of the Bloch sphere [(⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
(0, 0,−N/2)] (a), at the south pole [(0, 0,−N/2)] (b) and at the equators [Eqs. (S53)-(S54) with the “–” sign (c) and the “+”
sign (d)]. For a given V/γ, the fixed points are stable if all the corresponding eigenvalues have a negative real parts, while they
are unstable if at least one of them is positive. The vertical dashed lines indicate the positions of the special values of V/γ as
described in the text.

(0, 0,−N/2) and two fixed points at the equator can be steady states. For V > V +
c , only these two latter can

be steady states.

Signatures of this overall picture can be found within our HEOM approach, as it predicts for finite N a transition
between V −

c and V +
c . We elaborate on this in the next section.

C. Understanding the emergence of 1st-order DPTs with spectral decompositions

Here, we illustrate on our first LMGmodel the extension of the Markovian theory of DPTs [S3] to the non-Markovian
regime [see Sec. III. B.].

We have proven that the emergence of a DPT can be traced back to the existence of an eigenvalue λ
(0)
1 which

vanishes at the critical point and in the thermodynamic limit N → +∞. Moreover, the associated eigenvector,

namely ρ1 whose projection on the system sector (⃗0, 0⃗) is written ρ
(⃗0,⃗0)
1 , contains information about the system states

right after/before the critical point, respectively denoted by ρ
(⃗0,⃗0)
+ and ρ

(⃗0,⃗0)
− . We also know that the steady state at

the critical point can simply be written as a mixture with equal weights of the two phases ρ
(⃗0,⃗0)
± . Those statements

strictly hold true in the thermodynamic limit N → +∞. We expect, however, that at finite N the approximation

ρ(⃗0,⃗0)ss (V = Vc, N) ≈ ρ
(⃗0,⃗0)
+ (Vc, N) + ρ

(⃗0,⃗0)
− (Vc, N)

2
, (S69)

holds in a finite region around Vc and improves in accuracy as N increases. As in Sec. III. B, ρ
(⃗0,⃗0)
± (Vc, N) can

be determined through the spectral decomposition ρ
(⃗0,⃗0)
1 (Vc, N) ∝ ρ

(⃗0,⃗0)
+ (Vc, N) − ρ

(⃗0,⃗0)
− (Vc, N). Furthermore, as we

approach the thermodynamic limit, the states ρ
(⃗0,⃗0)
± (Vc, N) are expected to approach the states immediately before

or after the critical point.
In Fig. S5, we show the true quantum solution obtained through diagonalization of the HEOM generator and

compare it with the states ρ
(⃗0,⃗0)
± and (ρ

(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− )/2 as a function of V/γ and for two different values of N . As

expected, the states ρ
(⃗0,⃗0)
− and ρ

(⃗0,⃗0)
+ capture the right magnetization before and after the critical point, as shown in

panels (b) and (c). We also investigate the fidelity between ρ
(⃗0,⃗0)
ss and the states ρ

(⃗0,⃗0)
± , (ρ

(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− )/2. We use the

definition

F (A,B) = Tr

√√
AB

√
A (S70)

for the fidelity between density operators A and B. We find that ρ
(⃗0,⃗0)
− (ρ

(⃗0,⃗0)
+ ) is a good approximation of the true

steady state ρ
(⃗0,⃗0)
ss in a region below (above) the critical point. Moreover, in a small region around the critical point,
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FIG. S5. Left panels: Fidelity between the steady states ρ
(⃗0,⃗0)
ss and the states ρ

(⃗0,⃗0)
± (green and blue curves) and (ρ

(⃗0,⃗0)
+ +ρ

(⃗0,⃗0)
− )/2

(purple curve) reconstructed from the spectral decomposition of ρ
(⃗0,⃗0)
1 . Right panels: Magnetization ⟨Sz⟩ /(N/2) as a function

of V/γ for the steady state ρ
(⃗0,⃗0)
ss (black), ρ

(⃗0,⃗0)
− (green), ρ

(⃗0,⃗0)
+ (blue). Panels (a) and (b) corresponds to N = 30 while panels

(c) and (d) corresponds to N = 50. The parameters are the same of those of Fig. 2 of the main text.

the steady states is best described by (ρ
(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− )/2. All these results are what we expect for finite N ; as N

increases, we see that the region in which (ρ
(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− )/2 ≈ ρ

(⃗0,⃗0)
ss is getting narrower [compare panels (a) and (c)],

which is consistent with the fact that Eq. (S69) strictly holds at a unique point in the thermodynamic limit. Finally,
we note that the localization of the critical point get shifted as N increases while the fidelities get higher.

D. Impact of non-Markovianity on the critical point

In the main text, we showed that for the first LMG model we consider one can reshape the phase boundaries by
considering a bath correlation function that decays with a finite time 1/κ. In this section, we study more thoroughly
the impact of this finite decay time on the DPT.

We find that the smaller κ/ω, the sharper the transition for a given N as illustrated by the panels (a)-(f) of Fig. S6.
This result is not surprising as lowering κ/ω takes us further from the Markovian limit defined by κ → +∞, which
in turn leads to larger values of kmax to ensure convergence. However, as kmax grows, the dimension of the HEOM
Liouvillian LHEOM also increases, in close analogy with the thermodynamic limit N → +∞ which also increases the
dimension of the HEOM Liouvillian. The panel (g) of Fig. S6 shows that the critical point, numerically extracted
from LHEOM is always between V +

c and V −
c for all values of κ/ω considered here, as expected. Furthermore, the

critical point Vc/γ seems to more closely follow the scaling of V +
c /γ given in Eq. (S62) than that of V −

c /γ.

V. SECOND MODEL - TRIGGERING DPTS VIA NON-MARKOVIAN EFFECTS

This section is concerned with the second model considered in the main text, i.e. the modified LMG model coupled
to a bath with exponentially decaying correlation function, which can be modelled as a spin system coupled to a
damped pseudo-mode a.
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FIG. S6. Panels (a)-(f): Magnetization ⟨Sz⟩ /(2N) as a function of V/γ for different values of κ/ω [see axis below the plots] and
for different values of N [see legend] highlighting the reshaping of the phase boundaries induced by non-Markovianity. Panel
(g): Effective critical point Vc/γ (dots in purple), i.e. the critical point numerically found from LHEOM, as a function of κ/ω.
We see that Vc/γ is always between V +

c γ and V −
c /γ and appears to closely follow the scaling of V +

c /γ given in Eq. (S62).

A. Mean-field analysis

In this section, we analyze the mean-field equations associated with the second model considered in the main text.
The master equation for total density matrix reads

ρ̇tot = −i[H, ρtot] + κ
(
2aρtota

† − {a†a, ρtot}
)

with H = HLMG + hSz +

√
γκ

2N
Sx(a+ a†).

(S71)

In close analogy with Section IV. B., it is easy to show that the mean-field equations read

⟨ȧ⟩ = −(κ+ iω)⟨a⟩ − i

√
γκ

2N
⟨Sx⟩, (S72)

⟨Ṡx⟩ = −2
V

N
⟨Sy⟩⟨Sz⟩ − h ⟨Sy⟩ , (S73)

⟨Ṡy⟩ = −2
V

N
⟨Sx⟩⟨Sz⟩+ h ⟨Sx⟩ −

√
γκ

2N
⟨Sz⟩(⟨a⟩+ ⟨a†⟩), (S74)

⟨Ṡz⟩ = 4
V

N
⟨Sx⟩⟨Sy⟩+

√
γκ

2N
⟨Sy⟩ (⟨a⟩+ ⟨a†⟩). (S75)
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They have six fixed points from which four phases labelled as (I), (II), (IIb) and (III) can be inferred:

(I): (⟨a⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2


∓

√
γ

2Nκ

√
1−

(
h

V − q2γ
2

)2

(q2 + iq1),±
√

1−
(

h

V − q2γ
2

)2

, 0,
h(

V − q2γ
2

)




(S76)

(II): (⟨a⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2
(0, 0, 0,−1) (S77)

(IIb): (⟨a⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2
(0, 0, 0, 1) (S78)

(III): (⟨a⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩)∗ =
N

2


0, 0,±

√
1−

(
h

V

)2

,− h

V


 . (S79)

If h > 0 (h < 0), the phase (IIb) [(II)] is always unstable. As we chose h > 0 in the main text, we thus only have the
phases (I), (II), and (III) to consider. Phases (I) and (III) both gather two fixed points, corresponding in each case
to two broken symmetry states. Also, we note that their fixed points are unphysical for |V − q2γ/2| < h and |V | < h,
respectively, which already gives some hints about their stability. A linear stability analysis around the fixed points
show that the phases are stable in distinct regions of parameters. For h, q2, γ > 0 as considered in the main text, we
have the two critical points V1 = min

(
−h+ q2γ

2 , q2γ
4

)
and V2 = max

(
h, q2γ

4

)
with phase (I) stable for V < V1; phase

(II) stable for V1 < V < V2; and phase (III) stable for V2 < V . For h > q2γ/4, the two critical points coalesce and
phase (II) does not emerge anymore when varying V . In the particular case ω = κ = 2γ = 2h as considered in the
main text, we have V1 = −3γ/4 and V2 = γ.

B. Understanding the emergence of 2nd-order DPT from spectral decompositions

In this section, we illustrate the validity of the spectral decomposition (S31), namely

ρss(V,N) ≈ ρ
(⃗0,⃗0)
+ (V,N) + ρ

(⃗0,⃗0)
− (V,N)

2
, (S80)

for the model discussed above. Equation. (S80) should hold in phases where the Z2 symmetry is broken, i.e., in

phases (I) and (III), for large but finite N . Note, however, that the explicit construction of ρ
(⃗0,⃗0)
± requires λ

(1)
0 to be

real such that the associated eigenvector is Hermitian. The imaginary part of this eigenvalue should vanish after the
critical point in the thermodynamic limit because of the SSB (see Sec. III.B.2), however finite-size effects cause the
imaginary part to vanish further than right after the critical point. Therefore, we illustrate the validity of Eq. (S80)
only in the region where the imaginary part is negligible. Fig. S7 highlights the accuracy of Eq. (S80) as shown by
the high fidelity between the steady-state obtained by numerical diagonalization of LHEOM and the reconstructed

steady-state (ρ
(⃗0,⃗0)
+ + ρ

(⃗0,⃗0)
− )/2. Although the Z2 symmetry is broken in phases (I) and (III), it is clear that the way

it is broken is different. Indeed, the convergence is slower and less smooth in phase (III) than in phase (I). This can
not be attributed to numerical errors due to a finite truncation order kmax since ⟨a⟩ = 0 in phase (III) [see Eq. (S79)].
However, this could be due to the fact that in phase (I) it is the symmetry Sx → −Sx, a → −a that is broken
while in phase (III) it is the symmetry Sy → −Sy. Interestingly, the former symmetry involves both the system and
the environment, while the latter is more concerned with the coherent part of the generator. In this context, Fig.S7
suggests that the breaking of U2 through involving both the system and the pseudo mode is less prompt to undergo
large finite-size effects.

VI. THIRD MODEL - CHALLENGING TWO-MODE DICKE MODEL

We now examine a two-mode Dicke model described by the Lindblad master equation [S11, S12]

ρ̇tot = −i[H, ρtot] + κ(D[a] +D[b]), (S81)

where a, b are bosonic annihilation operators damped at rate κ and where

H = ω0Sz + ωAa
†a+ ωBb

†b+
g√
N

(aS+ + bS− + h.c.). (S82)
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FIG. S7. Fidelity [(a)] and logarithm of the infidelity [(b)] (defined as 1 − F (A,B) for density operators A,B, with F (A,B)
as in Eq. (S70)) between the reconstructed state Eq. (S80) and the steady-state ρss found by numerical diagonalization of
LHEOM for the second model as a function of V/γ in phases (I) and (III) for N = 40, 50 (see legend). Panels (a) and (b) prove

the validity of the decomposition (S80). Note that we only show the region for which λ
(1)
0 is real (Im[λ

(1)
0 ]/ω < 10−8). The

parameters are the same as those of Fig. 3 of the main text and kmax = 9.

This model undergoes a 2nd-order DPT between a normal phase with | ⟨Sz⟩ | = N/2 and a superradiant phase with
| ⟨Sz⟩ | < N/2 as N → ∞ [S11]. For ωA = ωB = ω, the critical value gc of the coupling g that drives the transition
can be calculated from a mean-field approach and satisfies 2g2cN = ω0(ω

2 + κ2)/ω. The model (S81) exhibits a

continuous U(1) symmetry described by U1 = U1 ⊗ U†
1 with U1 = eiα(Sz+a†a−b†b) (α ∈ R), spontaneously broken in

the superradiant phase as N → ∞.
Reduced descriptions of the spin dynamics have been studied and compared in [S12] with the mean-field results

summarized above. It has been shown that, by contrast with the single-mode Dicke model [S10], a standard Redfield
approach completely misses the DPT, while a 4th-order Redfield master equation (i.e., a 4th-order perturbative
treatment of the interaction) captures the correct steady state and critical point but fails to predict the closing of the
gap, a necessary condition for DPT. Our method, on the other hand, captures all features of the DPT and the SSB,

as shown in Fig. S8, which displays the magnetization ⟨Sz⟩ (a), the closing of the gap |Re[λ(k>0)
0 ]| (c,d) and of the

imaginary part of λ
(k>0)
0 (b), which have been obtained from the HEOM Liouvillian corresponding to Eq. (3) of the

main text with HS = ω0Sz, L1 = S−, L2 = S+, G1 = G2 = g2/N , ω1 = ω2 = ω, κ1 = κ2 = κ.

VII. CONVERGENCE ANALYSIS AND NUMERICAL EFFICIENCY

The only parameter relevant to the convergence analysis of LHEOM is the truncation order kmax. We introduce the
following measures of convergence

Ckmax(O) ≡ |Tr [ρss(kmax)O − ρss(kmax + 1)O]| ,
Skmax(λ) ≡ |λ(kmax)− λ(kmax+1)|,

(S83)

to assess the convergence of LHEOM with respect to the steady state expectation value of a given operator O or
with respect to one of its eigenvalue λ, such as the HEOM Liouvillian gap. Here, ρss(kmax) is the steady state of
LHEOM(kmax) and similarly λ(kmax) is λ computed with LHEOM(kmax). Note that the convergence measure Ckmax

(O)
is a natural choice often chosen to study the convergence of hierarchy of equations [S13]. The first part of this section
is dedicated to the convergence analysis of LHEOM(kmax) while the second part shed light on the numerical advantage
of LHEOM over enlarged Markovian systems.

A. Convergence analysis of LHEOM(kmax)

In Fig. S9, we show the two measures of convergence (S83) for the LMG model for O = Sz [panels (a) and (b)]

and λ = λ
(1)
0 [panels (c) and (d)]. As the hierarchy depth kmax increases, both measures of convergence Ckmax

(Sz)
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FIG. S8. Signatures of the 2nd-order DPT for the two-mode Dicke model (S82) obtained from LHEOM for κ = ω = 5ω0. (a):
Steady state magnetization ⟨Sz⟩ as a function of g for N = 10-50 (kmax = 7) and 60 (kmax = 8). As N increases, the curves

get closer to the mean-field result (dotted line). (b) Imaginary part of the eigenvalue λ
(k>0)
0 with the largest real part among

all symmetry sectors with k > 0 as a function of g/gc, confirming the SSB. The inset shows the scaling of Im[λ
(k>0)
0 ] as a

function of N at g/gc = 1.49. (c) −Re[λ
(k>0)
0 ] as a function of g/gc showing a decreasing gap in the superradiant phase as N

increases. The vertical dashed lines show g/gc = 1.49 (red) and g/gc = 0.6 (black) used in panel (d) to compare the scaling

of −Re[λ
(k>0)
0 ] (circles) and of the Liouvillian gap of the 4th Redfield master equation of [S12] (crosses) as a function of 1/N

[with N = 60-90 (kmax = 8) and 100 (kmax = 9)]. In the normal phase (black), both methods are in good agreement, while in
the superradiant phase (red), only LHEOM gives the expected closing. The points at 1/N = 0 were extrapolated from a line
defined by the two last points of our data.

and Skmax(λ
(1)
0 ) globally decrease, showing that the truncation order kmax can be used to control the numerical errors

inherent to the LHEOM(kmax) scheme. A comparison of the panels (a) and (c) with the panels (b) and (d) indicates
that errors scale up as N increases. We also note that it is numerically more challenging to extract the spectral

quantity λ
(1)
0 than the steady state expectation value ⟨Sz⟩, as indicated by the change in scale on the y-axis between

panels (a) and (c) or (b) and (d).

These general observations still hold for the U(1)-symmetric Dicke model, as illustrated in Fig S10, which is the

analog of Fig S9 but for the U(1)-symmetric Dicke model. We note that both Ckmax
(Sz) and Skmax

(λ
(k>0)
0 ) increases

as the coupling g increases, highlighting the numerical challenge of the so-called strong coupling regime. Moreover,

this observation combined with the fact that the computation of λ
(k>0)
0 is numerically more demanding that of ⟨Sz⟩

could explain why a fourth order Redfield master equation seems to capture the right steady state but predicts a
non-vanishing gap [S12]. We indeed foresee that the spectrum of LHEOM converges faster for larger eigenvalues.
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FIG. S9. Measures of convergence Cmax(Sz) and Skmax(λ
(0)
1 ) as defined by Eq. (S83) for the LMG model discussed in the main

text displayed in logarithmic scale as a function of V/γ. For all plots, the parameters are κ = ω = γ and N = 10 for panels (a)
and (c) and N = 20 for panels (b) and (d).

FIG. S10. Measures of convergence Cmax(Sz) and Skmax(λ
(0)
1 ) as defined by Eq. (S83) for the U(1)-symmetric Dicke model

discussed in Sec. VI displayed in logarithmic scale as a function of V/γ. For all panels, the parameters are κ = ω = 5ω0 and
N = 10 for panels (a) and (c) and N = 20 for panels (c) and (d).
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B. Comparison with enlarged Markovian systems

Let us illustrate the numerical advantage of our method to characterize DPTs over the standard technique of
analysing the spectrum of the Liouvillian for the enlarged Markovian system of the first model considered in the main
text. For this model, this Markovian Liouvillian superoperator LM is defined through

ρ̇tot = −i [H, ρtot] + κ
(
2aρtota

† − {a†a, ρtot}
)
≡ LM [ρtot]. (S84)

where H = HLMG + ωa†a+
√

γκ
2N (S−a† + S+a). As the dimension of LM is infinite, one has to introduce a cutoff in

order to determine the steady state of LM numerically. We denote by Nc and L(Nc) the effective dimension of the
truncated Fock space of the pseudo-mode and the associated truncated Markovian Liouvillian. In order to compare
LM and LHEOM, we fix a threshold of tolerance for the measures of convergence, namely ϵ = 0.001. We then choose
kmax and Nc accordingly: we take the first value of kmax and Nc that satisfy

Ckmax
(Sz) < ϵ and CNc

(Sz) ≡ |tr(ρss(Nc)Sz − ρss(Nc + 1)Sz)| < ϵ, (S85)

where ρss(Nc) is the steady state associated with LM (Nc). We then compute the effective dimension of LM and
LHEOM for the truncation parameters kmax and Nc previously determined. Figure S11(a) shows that the ratio
dim(LHEOM)/dim(LM ) is below 0.4 for all V/γ and N considered. Moreover, this ratio decreases with N , which
shows that the LHEOM scheme is more suited for the study of DPTs for which one must consider the thermodynamic
limit N → +∞. Let us finally mention that the generators LHEOM and LM give the same results at the chosen
tolerance threshold as illustrated in Fig. S11(b).

FIG. S11. Comparison of the convergence of LHEOM and LM. (a): Ratio between the dimension of the HEOM generator
LHEOM and the Markovian one LM as a function of V/γ for ϵ = 0.0001, proving the numerical gain of using LHEOM instead of
LM for the enlarged Markovian system. (b): Differences in logarithmic scale between the steady state expectation value ⟨Sz⟩
computed with LHEOM(kmax) (resp. LM(Nc)) denoted by ⟨Sz⟩ (kmax) (resp. ⟨Sz⟩ (Nc)) for ϵ = 0.0001. The two methods are in
good agreement at the given tolerance.
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