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On a characterization theorem in the space R
n
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By Heyde’s theorem, the class of Gaussian distributions on the real line is char-

acterized by the symmetry of the conditional distribution of one linear form of

independent random variables given another. We prove an analogue of this the-

orem for two independent random vectors taking values in the space Rn. The

obtained class of distributions consists of convolutions of Gaussian distributions

and a distribution supported in a subspace, which is determined by coefficients of

the linear forms.
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1 Introduction

By the well-known Skitovich–Darmois theorem, Gaussian distributions on the real are characterized
by the independence of two linear forms with nonzero coefficients of independent random variables.
This result was generalized by S.G. Ghurye and I. Olkin to independent random vectors taking values
in the space R

n. Coefficients of the linear forms in this case are invertible linear operators in R
n ([14],

see also [16, §3.2]). A theorem similar to the Skitovich–Darmois theorem was proved by C.C. Heyde.
By Heyde’s theorem, Gaussian distributions on the real line are characterized by the symmetry of the
conditional distribution of one linear form given another. Coefficients of the linear forms are nonzero
real numbers ([15], see also [16, §13.4]). For two independent random variables Heyde’s theorem states
the following. Let ξ1 and ξ2 be independent random variables with distributions µ1 and µ2. Let aj
and bj be nonzero numbers such that b1a

−1

1
+ b2a

−1

2
6= 0. If the conditional distribution of linear form

L2 = b1ξ1 + b2ξ2 given L1 = a1ξ1 + a2ξ2 is symmetric, then µj are Gaussian distributions. It is easy
to see that in studying the possible distributions µj we can assume without loss of generality that
L1 = ξ1 + ξ2, L2 = ξ1 + aξ2, where a 6= 0. Hence the following statement holds.

Theorem A Let ξ1 and ξ2 be independent random variables with distributions µ1 and µ2. Let a 6= 0
and a 6= −1. If the conditional distribution of the linear form L2 = ξ1 + aξ2 given L1 = ξ1 + ξ2 is

symmetric, then µj are Gaussian distributions.

A number of works have been devoted to analogues of Heyde’s theorem for various locally compact
Abelian groups (see e.g. [5, 6, 8–13,17–20]). In so doing coefficients of the linear forms are topological
automorphisms of the group. At the same time Heyde’s theorem for the space R

n was not specially
studied. The space R

n was considered only as a special case of a locally compact Abelian group.
In particular, the following theorem was proved in [11] for arbitrary locally compact Abelian groups
containing no nonzero elements of finite order. For the space R

n this theorem can be formulated as
follows.

Theorem B Let α be an invertible linear operator in the space R
n such that I+α is also an invertible

operator. Let ξ1 and ξ2 be independent random vectors with values in R
n and distributions µ1 and µ2.

If the conditional distribution of the linear form L1 = ξ1 + ξ2 given L2 = ξ1 + αξ2 is symmetric, then

µj are Gaussian distributions.
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Obviously, Theorem A is a particular case of Theorem B for n = 1. The purpose of this note is to
prove Heyde’s theorem for the space R

n without any restrictions on an invertible linear operator α. In
other words, we want to get a full description of the possible distributions µj in Theorem B in the case
when the operator I+α need not be invertible. It turns out that if the operator I+α is not invertible,
then µj are convolutions of Gaussian distributions and a distribution supported in a subspace which
is determined by the operator α.

Denote by x = (x1, x2, . . . , xn), xj ∈ R, elements of the space R
n. If x, y ∈ R

n, then put

〈x, y〉 =

n∑

j=1

xjyj.

Denote by C the complex plane. We will also use the notation 〈x, y〉 in the case when x, y ∈ C
n. Let

H be a subspace of Rn. Denote by

A(Rn,H) = {x ∈ R
n : 〈x, y〉 = 0 for all y ∈ H}

the annihilator of H.
Let α be a linear operator in R

n. Denote by α̃ its adjoint operator. If a subspace G of R
n is

invariant with respect to α, then denote by αG the restriction of α to G. Denote by I the identity
operator. Denote by ‖x‖ a norm of a vector x ∈ R

n and by ‖α‖ the norm of the operator α.
Let P (y) be an arbitrary function on R

n and let h ∈ R
n. Denote by ∆h the finite difference operator

∆hP (y) = P (y + h)− P (y), y ∈ R
n.

Recall that a continuous function P (y) is a polynomial in some neighbourhood of zero in R
n if and

only if for a nonnegative integer m the function P (y) satisfies the equation

∆m+1

h P (y) = 0, (1)

for all y and h in a neighborhood of zero in R
n. Moreover, the minimum m at which (1) is satisfied

coincides with the degree of the poynomial P (y).
Let µ be a probability distribution on R

n. Denote by µ̂(y), y ∈ R
n, the characteristic function

of µ. Define the distribution µ̄ by the formula µ̄(B) = µ(−B) for each Borel subset B in R
n. Then

ˆ̄µ(y) = µ̂(y). Denote by Ex the degenerate distribution concentrated at a vector x ∈ R
n.

2 Main theorem

The main result of this paper is the proof of the following theorem.

Theorem 2.1 Let α be an invertible linear operator in the space R
n. Put K = Ker (I + α). Let

ξ1 and ξ2 be independent random vectors with values in R
n and distributions µ1 and µ2. Assume that

the conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. Then

there exists an α-invariant subspace G such that µj are shifts of convolutions of symmetric Gaussian

distributions supported in G and a distribution supported in K. Moreover, K ∩G = {0}.

It is clear that if in Theorem 2.1 I+α is an invertible operator, i.e. K = {0}, then µj are Gaussian
distributions. Thus, Theorem B follows from Theorem 2.1.

To prove Theorem 2.1 we need a series of lemmas. The following lemma holds for independent
random variables taking values in an arbitrary locally compact Abelian group. We formulate it for the
space R

n.
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Lemma 2.2 ([7, Lemma 16.1]) Let α be an invertible linear operator in the space R
n. Let ξ1 and

ξ2 be independent random vectors with values in R
n and distributions µ1 and µ2. The conditional

distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric if and only if the

characteristic functions µ̂j(y) satisfy the equation

µ̂1(u+ v)µ̂2(u+ α̃v) = µ̂1(u− v)µ̂2(u− α̃v), u, v ∈ R
n. (2)

Equation (2) is called the Heyde functional equation. Due to Lemma 2.2, the proof of Theorem 2.1
reduces to the description of solutions of equation (2) in the class of continuous normalized positive
definite functions. Note that the proof of the Ghurye–Olkin theorem, mentioned in the introduction,
for two independent random vectors reduces to solving the Skitovich–Darmois functional equation

µ̂1(u+ v)µ̂2(u+ α̃v) = µ̂1(u)µ̂2(u)µ̂1(v)µ̂2(α̃v), u, v ∈ R
n, (3)

in the class of continuous normalized positive definite functions. Unlike equation (2), all solutions of
equation (3) in the class of continuous normalized positive definite functions are characteristic functions
of Gaussian distributions in the space R

n.
Note that based on characterization of polynomials as the solutions set of some functional equations,

J. M. Almira in [2] proposed a new approach to solving the Skitovich–Darmois functional equation
in the space R

n for m ≥ 2 functions. Then, using the fact that Aichinger’s equation characterizes
polynomial functions (see [1] by E. Aichinger and J. Moosbauer), J. M. Almira in [3] studied the
solutions of the Skitovich–Darmois functional equation on an arbitrary Abelian group.

We will need the following easily verified statement, which we formulate as a lemma (see e.g. [4,
Lemma 6.9]).

Lemma 2.3 Let R
n = R

p × R
q and let µ be a distribution on the space R

n with the characteristic

function µ̂(s1, s2), s1 ∈ R
p, s2 ∈ R

q. Assume that the function µ̂(0, s2), s2 ∈ R
q, is extended to C

q as

an entire function in s2. Put Br = {s2 = (s21, s22, . . . , s2q) ∈ C
q : |s2j | ≤ r, j = 1, 2, . . . , q}. Then for

each fixed s1 ∈ R
p the function µ̂(s1, s2), s2 ∈ R

q, is also extended to C
q as an entire function in s2,

and for each s1 ∈ R
p the inequality

max
s2∈Br

|µ̂(s1, s2)| ≤ max
s2∈Br

|µ̂(0, s2)| (4)

holds.

The following lemma holds for independent random variables taking values in an arbitrary locally
compact Abelian group containing no elements of order 2. It follows directly from Lemma 2.2. We
formulate it for the space R

n.

Lemma 2.4 Let ξ1 and ξ2 be independent random vectors with values in the space R
n and distributions

µ1 and µ2. The conditional distribution of the linear form L2 = ξ1−ξ2 given L1 = ξ1+ξ2 is symmetric

if and only if µ1 = µ2.

The following lemma is crucial in the proof of Theorem 2.1. It describes the possible distributions
µj in Theorem B in the case when in a suitable basis a Jordan cell with the eigenvalue λ = −1
corresponds to a linear operator α, i.e.

α = αn =




−1 1 0 . . . 0
0 −1 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . −1




.
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Lemma 2.5 Let αn be the invertible linear operator in the space R
n, n ≥ 2, of the form

αn(x1, x2, . . . , xn) = (−x1 + x2,−x2 + x3, . . . ,−xn−1 + xn,−xn), xj ∈ R. (5)

Let ξ1 and ξ2 be independent random vectors with values in R
n and distributions µ1 and µ2. Assume

that the conditional distribution of the linear form L2 = ξ1+αnξ2 given L1 = ξ1+ξ2 is symmetric. Put

K = Ker (I+αn). Then we can replace the distributions µj by their shifts τj in such a way that τ1 = τ2,
the distribution τj is supported in the subspace K, and if ηj are independent identically distributed

random vectors with values in the space R
n and distribution τj, then the conditional distribution of the

linear form M2 = η1 + αnη2 given M1 = η1 + η2 is symmetric.

Proof. Note that K = {(x1, 0, . . . , 0) ∈ R
n : x1 ∈ R}. We divide the proof of the lemma into three

steps.
1. By Lemma 2.2, the characteristic functions µ̂j(y) satisfy equation (2). Put νj = µj ∗ µ̄j. Then

ν̂j(y) = |µ̂j(y)|
2 ≥ 0. Since ν̂j(0) = 1, we can choose ε > 0 in such a way that the inequalities

ν̂j(y) > 0, j = 1, 2, are valid for all ‖y‖ < ε. Obviously, the characteristic functions ν̂j(y) also satisfy
equation (2). Put Pj(y) = log ν̂j(y), where ‖y‖ < ε, j = 1, 2. Let ‖αn‖ = M . It is obvious that M ≥ 1.
Put δ = ε/8M and

H = (I + α̃n)(R
n).

We prove that Pj(y) are polynomials of degree at most 2 in some neighbourhood of zero in the subspace
H.

It follows from equation (2) for the characteristic functions ν̂j(y) that the functions Pj(y) satisfy
the equation

P1(u+ v) + P2(u+ α̃nv)− P1(u− v)− P2(u− α̃nv) = 0, u, v ∈ R
n, ‖u‖ < δ, ‖v‖ < δ. (6)

Equation (6) arises in the study of Heyde’s theorem on various locally compact Abelian groups. To
solve equation (6) we use the finite difference method. This is a standard reasoning (see e.g. [9], [11]).

Take an arbitrary vector k1 in the space R
n such that ‖k1‖ < δ. Put h1 = α̃nk1. Replacing in (6)

u by u+ h1 and v by v + k1 and subtracting equation (6) from the obtained equation, we get

∆l11P1(u+ v) + ∆l12P2(u+ α̃nv)−∆l13P1(u− v) = 0, u, v ∈ R
n, ‖u‖ < δ, ‖v‖ < δ, (7)

where l11 = (I+ α̃n)k1, l12 = 2α̃nk1, l13 = (α̃n−I)k1. Take an arbitrary vector k2 in the space R
n such

that ‖k2‖ < δ. Put h2 = k2. Replacing in (7) u by u + h2 and v by v + k2 and subtracting equation
(7) from the obtained equation, we find

∆l21∆l11P1(u+ v) + ∆l22∆l12P2(u+ α̃nv) = 0, u, v ∈ R
n, ‖u‖ < δ, ‖v‖ < δ, (8)

where l21 = 2k2, l22 = (I + α̃n)k2. Take an arbitrary vector k3 in the space R
n such that ‖k3‖ < δ.

Put h3 = −α̃nk3. Replacing in (8) u by u+ h3 and v by v+ k3 and subtracting equation (8) from the
obtained equation, we get

∆l31∆l21∆l11P1(u+ v) = 0, u, v ∈ R
n, ‖u‖ < δ, ‖v‖ < δ, (9)

where l31 = (I − α̃n)k3. Substituting v = 0 into (9) we find that

∆l31∆l21∆l11P1(u) = 0, u ∈ R
n, ‖u‖ < δ. (10)

Since multiplication by 2 and I− α̃n are invertible linear operators in the space R
n and kj are arbitrary

vectors in R
n such that ‖kj‖ < δ, it follows from (10) that the function P1(y) satisfies the equation

∆3
hP1(y) = 0, y, h ∈ H, ‖y‖ < δ, ‖h‖ < δ. (11)
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Arguing similarly, we exclude the function P1(y) from equation (8) and obtain that the function P2(y)
also satisfies equation (11). It follows from this that Pj(y) are polynomials of degree at most 2 in some
neighbourhood of zero in the subspace H.

2. Assume n = 2 and prove that ν̂1(y) = ν̂2(y) = 1 for all y ∈ H. Since α2(x1, x2) = (−x1 +
x2,−x2), xj ∈ R, we have α̃2(y1, y2) = (−y1, y1 − y2), yj ∈ R, and then H = {(0, y2) ∈ R

2 :
y2 ∈ R}. Since Pj(y) are polynomials of the degree at most 2 in some neighbourhood of zero in
the subspace H and Pj(y) = log ν̂j(y) for all ‖y‖ < δ, y ∈ H, this implies that the characteristic
functions ν̂j(0, y2) coincide with the characteristic functions of some symmetric Gaussian distributions
in some neighbourhood of zero on the real line. It is well known that then ν̂j(0, y2), y2 ∈ R, are the
characteristic functions of some symmetric Gaussian distributions ([16, §1.2]). Thus, we have

Pj(0, y2) = −σjy
2
2, y2 ∈ R, (12)

where σj ≥ 0, j = 1, 2.
Since α̃2(y1, y2) = (−y1, y1 − y2), yj ∈ R, equation (2) for the functions ν̂j(y) takes the form

ν̂1(u1 + v1, u2 + v2)ν̂2(u1 − v1, u2 + v1 − v2)

= ν̂1(u1 − v1, u2 − v2)ν̂2(u1 + v1, u2 − v1 + v2), uj , vj ∈ R. (13)

By Lemma 2.3, it follows from (12) that for each fixed y1 ∈ R the functions ν̂j(y1, y2) can be extended
to the complex plane C as entire functions in y2. It is obvious that equation (13) remains valid for all
u1, v1 ∈ R and u2, v2 ∈ C.

We will verify that if ν̂j(y1, 0) > 0 for all |y1| < δ, j = 1, 2, then the functions ν̂j(y1, y2) do not
vanish for all |y1| < δ and y2 ∈ C. Assume the contrary, let ν̂1(ỹ1, ỹ2) = 0, where |ỹ1| < δ, ỹ2 ∈ C.
Take arbitrary numbers u1 ∈ R and u2 ∈ C. Put v1 = ỹ1 − u1, v2 = ỹ2 − u2 and substitute uj and vj
into equation (13). Then the left-hand side of equation (13) is equal to zero. Hence the equality

ν̂1(2u1 − ỹ1, 2u2 − ỹ2)ν̂2(ỹ1, ỹ2 − ỹ1 + u1) = 0 (14)

is satisfied for all uj. Since ν̂2(ỹ1, y2) is not identically zero an entire function in y2, take u1 = ũ1 in
such a way that ν̂2(ỹ1, ỹ2 − ỹ1 + ũ1) 6= 0 and |2ũ1 − ỹ1| < δ. Obviously, we can do it. Then it follows
from (14) that ν̂1(2ũ1− ỹ1, 2u2− ỹ2) = 0 for all u2 ∈ C, that contradicts the fact that ν̂1(2ũ1− ỹ1, y2) is
a not identically zero entire function in y2. Arguing similarly it is easy to make sure that the function
ν̂2(y1, y2) does not vanish for all |y1| < δ, y2 ∈ C.

Taking into account (12), by Lemma 2.3, it follows from inequality (4) that ν̂j(y1, y2) are entire
functions in y2 of order at most 2 for all |y1| < δ. Since the functions ν̂j(y1, y2) for all |y1| < δ, y2 ∈ C

do not vanish, Hadamard’s theorem on the representation of entire functions of finite order implies
that the representation

ν̂j(y1, y2) = exp{aj(y1)y
2
2 + bj(y1)y2 + cj(y1)}, |y1| < δ, y2 ∈ C, (15)

is valid, where aj(y1), bj(y1), cj(y1) ∈ C, j = 1, 2. Substituting u1 = v1 = 0, u2 = v2 = y2/2 into (13),
we get

ν̂1(0, y2) = ν̂2(0, y2), y2 ∈ R. (16)

It follows from (12) and (16) that σ1 = σ2 = σ. Thus, (12) and (15) imply that a1(0) = a2(0) = −σ,
b1(0) = b2(0) = 0. Obviously, without loss of generality, we can assume that c1(0) = c2(0) = 0.

Substituting u1 = v1 = y1/2 into (13) and taking into account (15), we obtain

a1(y1)(u2 + v2)
2 + b1(y1)(u2 + v2) + c1(y1)− σ(u2 + y1/2− v2)

2

= −σ(u2 − v2)
2 + a2(y1)(u2 − y1/2 + v2)

2 + b2(y1)(u2 − y1/2 + v2)

+ c2(y1) + 2πin(y1), |y1| < δ, u2, v2 ∈ C, (17)
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where the function n(y1) takes integer values. Considering the left-hand side and the right-hand side
of (17) as polynomials in u2 and v2 and equating in (17) the coefficients of u2 and v2, we get

b1(y1)− σy1 = −a2(y1)y1 + b2(y1), b1(y1) + σy1 = −a2(y1)y1 + b2(y1), |y1| < δ.

This implies that σ = 0. Hence ν̂1(0, y2) = ν̂2(0, y2) = 1 for all y2 ∈ R.
3. We will prove the lemma by induction. Let n = 2. We have,

H = (I + α̃2)(R
2) = {(0, y2) ∈ R

2 : y2 ∈ R}.

Substituting u1 = v1 = 0, u2 = v2 = y2/2 into equation (13) for the functions µ̂j(y1, y2), we get
that µ̂1(0, y2) = µ̂2(0, y2) for all y2 ∈ R. It follows from what was proved in step 2 that |µ̂1(0, y2)| =
|µ̂2(0, y2)| = 1 for all y2 ∈ R. Hence there is a real number x such that µ̂j(0, y2) = exp{ixy2} for all
y2 ∈ R, j = 1, 2. Put t1 = (x,−x), t2 = (0,−x). Consider the distributions τj = µj ∗Etj . It is obvious
that τ̂j(0, y2) = 1 for all y2 ∈ R, j = 1, 2. It follows from this that the distributions τj are supported
in the annihilator A(R2,H). It is obvious that A(R2,H) = K. Since t1 + α2t2 = 0, the characteristic
functions τ̂j(y) satisfy equation (2). By Lemma 2.2, this implies that if ηj are independent random
vectors with values in the space R

2 and distributions τj, then the conditional distribution of the linear
form M2 = η1 + α2η2 given M1 = η1 + η2 is symmetric. Since K = Ker (I + α2), the restriction of
the operator α2 to the subspace K coincides with −I. It means that if we consider ηj as independent
random vectors with values in K, then the conditional distribution of the linear form M2 = η1 − η2
given M1 = η1+η2 is symmetric. It follows from Lemma 2.4, applying to the subspace K, that τ1 = τ2.
Thus, when n = 2 the lemma is proved.

Let n > 2. We note that α̃n(y1, y2, . . . , yn) = (−y1, y1 − y2, . . . , yn−1 − yn). Hence equation (2) for
the functions ν̂j(y) takes the form

ν̂1(u1 + v1, u2 + v2, . . . , un + vn)ν̂2(u1 − v1, u2 + v1 − v2, . . . , un + vn−1 − vn)

= ν̂1(u1 − v1, u2 − v2, . . . , un − vn)ν̂2(u1 + v1, u2 − v1 + v2, . . . , un − vn−1 + vn), uj , vj ∈ R. (18)

Substituting u1 = u2 = · · · = un−2 = 0, v1 = v2 = · · · = vn−2 = 0 into (18) we obtain

ν̂1(0, . . . , 0, un−1 + vn−1, un + vn)ν̂2(0, . . . , 0, un−1 − vn−1, un + vn−1 − vn)

= ν̂1(0, . . . , 0, un−1 − vn−1, un − vn)ν̂2(0, . . . , 0, un−1 + vn−1, un − vn−1 + vn), uj , vj ∈ R. (19)

We see that equation (19), up to the notation, coincides with equation (13). Therefore, as proven
in step 2, we have ν̂1(0, . . . , 0, yn) = ν̂2(0, . . . , 0, yn) = 1 for all yn ∈ R. Hence |µ̂1(0, . . . , 0, yn)| =
|µ̂2(0, . . . , 0, yn)| = 1 for all yn ∈ R. Put L = {(0, . . . , 0, yn) ∈ R

n : yn ∈ R}. Arguing as in the case
when n = 2 we can replace the distributions µj by their shifts τj in such a way that the distributions
τj are supported in the annihilator A(Rn, L) = R

n−1. Moreover, if ηj are independent random vectors
with values in the space R

n and distributions τj, then the conditional distribution of the linear form
M2 = η1 +αnη2 given M1 = η1 + η2 is symmetric. We note that αn(R

n−1) = R
n−1 and the restriction

of the operator αn to the subspace R
n−1 coincides with the operator αn−1. It means that if we consider

ηj as independent random vectors with values in R
n−1, then the conditional distribution of the linear

form M2 = η1 + αn−1η2 given M1 = η1 + η2 is symmetric. The lemma is proved by induction.
The statement of the lemma can not be strengthened. Indeed, let ω be an arbitrary distribution

supported in the subspace K = Ker (I+αn). Let t1 and t2 be some vectors in R
n such that t1+αnt2 = 0.

Put µj = ω ∗Etj , j = 1, 2. Taking into account that the restriction of the operator αn to the subspace
K coincides with −I, Lemma 2.2 and Lemma 2.4 imply that if ξ1 and ξ2 are independent random
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vectors with values in the space R
n and distributions µj , then the conditional distribution of the linear

form L2 = ξ1 + αnξ2 given L1 = ξ1 + ξ2 is symmetric. �

The following statement implies from Lemma 2.5.

Corollary 2.6 Let α be an invertible linear operator in the space R
n. Put K = Ker (I + α) and

suppose K 6= {0}. Let ξ1 and ξ2 be independent random vectors with values in R
n and distributions µ1

and µ2. Assume that the conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2
is symmetric. Then there exists an α-invariant subspace G satisfying the condition K ∩G = {0} and

such that some shifts τj of the distributions µj are supported in the subspace K ×G. Moreover, if ηj
are independent random vectors with values in the space R

n and distributions τj, then the conditional

distribution of the linear form M2 = η1 + αη2 given M1 = η1 + η2 is symmetric, and the restriction of

the operator α to the subspace K ×G is of the form (−I, αG).

Proof. Represent the space R
n as a direct sum of two α-invariant subspaces Rn = F ×G, where F

is the root subspace corresponding to the eigenvalue λ = −1 of the operator α, and the operator I +α
is invertible in the subspace G. The operator α can be written in the form α = (αF , αG). In order not
to complicate the notation we assume that F = R

p, G = R
q, a basis in the space R

p is chosen in such
a way that R

p = R
n1 × R

n2 × · · · ×R
nk , and the operator αF is of the form αF = (αn1

, αn2
, . . . , αnk

),
where αnj

= −I, if nj = 1, and αnj
is an invertible linear operator in the space R

nj which is given
by formula (5), if nj ≥ 2. By Lemma 2.2, the characteristic functions µ̂j(y) satisfy equation (2) which
takes the form

µ̂1(u1 + v1, u2 + v2)µ̂2(u1 + α̃F v1, u2 + α̃Gv2)

= µ̂1(u1 − v1, u2 − v2)µ̂2(u1 − α̃F v1, u2 − α̃Gv2), u1, v1 ∈ R
p, u2, v2 ∈ R

q. (20)

Substitute u2 = v2 = 0 into (20). Taking into account Lemma 2.2 and applying successively Lemma
2.5 to each of the subspaces R

nj , where nj ≥ 2, we find as a result from the obtained equation that
there exist vectors tj ∈ R

p such that the distributions τj = µj ∗ Etj are supported in the subspace
K × G. Moreover, if ηj are independent random vectors with values in K × G and distributions τj ,
then the conditional distribution of the linear form M2 = η1 + αη2 given M1 = η1 + η2 is symmetric.
Obviously, the restriction of the operator α to the subspace K ×G is of the form (−I, αG). �

Remark 2.7 Assume that under the conditions of Theorem 2.1 K 6= {0}, i.e. λ = −1 is an eigenvalue
of the operator α. Assume also that the root subspace corresponding to the eigenvalue λ = −1 does
not coincide with the eigenspace. Then, as was proved in Corollary 2.6, some shifts of the distributions
µj are supported in a proper subspace of the space R

n. Hence µj are singular distributions.

Proof of Theorem 2.1. By Theorem B, if K = {0}, i.e. λ = −1 is not an eigenvalue of the
operator α, then µj are Gaussian distributions. Therefore, we assume K 6= {0}, i.e. λ = −1 is an
eigenvalue of the operator α. Let F be the root subspace corresponding to the eigenvalue λ = −1 of
the operator α. Corollary 2.6 allows us to prove the theorem, assuming that αF = −I. In other words,
the root subspace corresponding to the eigenvalue λ = −1 of the operator α is the eigenspace. Then
equation (20) takes the form

µ̂1(u1 + v1, u2 + v2)µ̂2(u1 − v1, u2 + α̃Gv2)

= µ̂1(u1 − v1, u2 − v2)µ̂2(u1 + v1, u2 − α̃Gv2), u1, v1 ∈ R
p, u2, v2 ∈ R

q. (21)

Substitute u1 = v1 = 0 into (21). Taking into account Lemma 2.2, it follows from Theorem B
applying to the space R

q that µ̂j(0, y2) are the characteristic functions of Gaussian distributions, i.e.

µ̂j(0, y2) = exp{−〈Ajy2, y2〉+ i〈bj , y2〉}, y2 ∈ R
q, (22)
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where Aj is a symmetric positive semidefinite q× q matrix, bj ∈ R
q, j = 1, 2. Substituting u2 = v2 = 0

into (21) and taking into account (22) we obtain that b1 + αGb2 = 0. Hence we can replace the
distributions µj by their shifts τj = µj ∗E−bj and suppose that b1 = b2 = 0 in (22), i.e.

µ̂j(0, y2) = exp{−〈Ajy2, y2〉}, y2 ∈ R
q, j = 1, 2. (23)

By Lemma 2.3, it follows from (23) that for each fixed y1 ∈ R
p the function µ̂j(y1, y2) can be extended

to C
q as an entire function in y2. It is obvious that equation (21) remains valid for all u1, v1 ∈ R

p,
u2, v2 ∈ C

q.
Substituting u1 = v1 = y1/2, u2 = v2 = 0 into (21) we see that µ̂1(y1, 0) = µ̂2(y1, 0) for all y1 ∈ R

p.
Make sure that if for a fixed ỹ1 ∈ R

p the inequalities

µ̂j(ỹ1, 0) 6= 0, j = 1, 2, (24)

hold, then µ̂j(ỹ1, y2) 6= 0 for all y2 ∈ C
q, j = 1, 2. Suppose the contrary, let µ̂1(ỹ1, ỹ2) = 0 for some

ỹ2 ∈ C
q. Substitute u1 = v1 = ỹ1/2, u2 = (I + α̃G)

−1α̃Gỹ2, v2 = (I + α̃G)
−1ỹ2 into (21). Then

the left-hand side of equation (21) is equal to zero. In view of (23) and (24), the right-hand side of
equation (21) is nonzero. If µ̂2(ỹ1, ỹ2) = 0 for some ỹ2 ∈ C

q, then substituting u1 = −v1 = ỹ1/2,
u2 = v2 = (I + α̃G)

−1ỹ2 into (21), we get the contradiction, because the left-hand side of equation
(21) is equal to zero and the right-hand side is not. Thus, if inequalities (24) hold, then the function
µ̂2(ỹ1, y2) is also nonzero for all y2 ∈ C

q.
So, we proved that if µ̂j(y1, 0) 6= 0, j = 1, 2, for some y1 ∈ R

p, then the functions µ̂j(y1, y2) can be
extended to C

q as entire functions in y2 without zeros. Hence we have the representations

µ̂j(y1, y2) = exp{Qj(y1, y2)}, y2 ∈ C
q, j = 1, 2,

where Qj(y1, y2) are entire functions in y2 in C
q.

By Lemma 2.3, it follows from inequality (4) and (23) that by Hadamard’s theorem on the repre-
sentation of entire functions of finite order, the restriction of the functions Qj(y1, y2) to each complex
plane in C

q passing through zero are polynomials of degree at most 2. Hence the functions Qj(y1, y2)
are polynomials of degree at most 2 in y2. Thus, we have a representation

µ̂j(y1, y2) = exp{〈Aj(y1)y2, y2〉+ 〈bj(y1), y2〉+ cj(y1)}, y2 ∈ C
q, (25)

where Aj(y1) are symmetric complex q × q matrices, bj(y1) ∈ C
q, cj(y1) ∈ C.

Assume µ̂j(y1, 0) 6= 0, j = 1, 2. Substituting u1 = v1 = y1/2 into (21) and taking into account
(25), we find from the obtained equation

〈A1(y1)(u2 + v2), u2 + v2〉+ 〈A2(0)(u2 + α̃Gv2), u2 + α̃Gv2〉

= 〈A1(0)(u2 − v2), u2 − v2〉+ 〈A2(y1)(u2 − α̃Gv2), u2 − α̃Gv2〉, u2, v2 ∈ C
q. (26)

〈b1(y1), u2 + v2〉+ 〈b2(0), u2 + α̃Gv2〉 = 〈b1(0), u2 − v2〉+ 〈b2(y1), u2 − α̃Gv2〉, u2, v2 ∈ C
q. (27)

The equalities
A1(y1) +A2(0) = A1(0) +A2(y1) (28)

and
A1(y1) + αGA2(0)α̃G = A1(0) + αGA2(y1)α̃G (29)

follow from (26). Substituting u1 = y1, v1 = 0 into (21) and taking into account (25), we get from the
obtained equation

〈A1(y1)(u2 + v2), u2 + v2〉+ 〈A2(y1)(u2 + α̃Gv2), u2 + α̃Gv2〉

= 〈A1(y1)(u2 − v2), u2 − v2〉+ 〈A2(y1)(u2 − α̃Gv2), u2 − α̃Gv2〉, u2, v2 ∈ C
q. (30)
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Equation (30) implies that
A1(y1) + αGA2(y1) = 0. (31)

Taking into account that I + αG is an invertible operator, (23), (29) and (31) imply that A1(y1) =
A1(0) = −A1. Then it follows from (23) and (28) that A2(y1) = A2(0) = −A2. Thus, we have proved
that if µ̂j(y1, 0) 6= 0, then

A1(y1) = −A1, A2(y1) = −A2. (32)

We find from (27) that

b1(y1) + b2(0) = b1(0) + b2(y1), b1(y1) + αGb2(0) = −b1(0) − αGb2(y1). (33)

It follows from (23) and (25) that b1(0) = b2(0) = 0. Given this, and taking into account that I + αG

is an invertible operator, (33) implies that if µ̂j(y1, 0) 6= 0, then b1(y1) = b2(y1) = 0 and hence in view
of (25) and (32), the representations

µ̂j(y1, y2) = exp{−〈Ajy2, y2〉+ cj(y1)}, y2 ∈ C
q, j = 1, 2, (34)

are valid for the functions µ̂j(y1, y2). Moreover, in this case substituting u1 = v1 = y1/2, u2 = v2 = 0
in equation (21) and taking into account (34), we obtain that

µ̂1(y1, 0) = µ̂2(y1, 0) = exp{c1(y1)} = exp{c2(y1)}, y1 ∈ R
p. (35)

Assume µ̂j(ỹ1, 0) = 0, j = 1, 2, for some ỹ1 ∈ R
p. We verify that then µ̂j(ỹ1, y2) = 0 for all y2 ∈ C

q,
j = 1, 2. Put u1 = v1 = ỹ1/2, u2 = −v2 = y2 in equation (21). Then the left-hand side of equation (21)
is equal to zero. In view of (23), we have µ̂2(ỹ1, (I + α̃G)y2) = 0 for all y2 ∈ C

q. Since (I + α̃G) is an
invertible operator, we have µ̂2(ỹ1, y2) = 0 for all y2 ∈ C

q. Substituting u1 = −v1 = ỹ1/2, u2 = α̃Gy2,
v2 = −y2 into equation (21), we make sure that µ̂1(ỹ1, y2) = 0 for all y2 ∈ C

q.
Denote by γj the symmetric Gaussian distribution in the space R

q with the characteristic function

γ̂j(y2) = exp{−〈Ajy2, y2〉}, y2 ∈ R
q, j = 1, 2. (36)

In view of µ̂1(y1, 0) = µ̂2(y1, 0) for all y1 ∈ R
p, denote by ω a distribution in the space R

p with the
characteristic function

ω̂(y1) = µ̂1(y1, 0) = µ̂2(y1, 0), y1 ∈ R
p. (37)

Taking into account that ω̂(y1) = 0 if and only if µ̂2(y1, y2) = 0 for all y2 ∈ R
q, (34)–(37) imply the

representations

µ̂j(y1, y2) = exp{−〈Ajy2, y2〉}ω̂(y1), y1 ∈ R
p, y2 ∈ R

q, j = 1, 2.

This implies the statement of the theorem.
Note that we also proved that the intersection of each of the supports of the symmetric Gaussian

distributions γj with the root subspace corresponding to the eigenvalue λ = −1 of the operator α is
equal to zero.

The statement of the theorem can not be strengthened. Indeed, consider an invertible linear
operator α in the space R

n. Let G be an α-invariant subspace in R
n such that the operator I + α is

invertible in G. Let G be isomorphic to R
q. Denote by γj a Gaussian distribution in the space R

q with
the characteristic function (36). Moreover, we will also assume that the equality

A1 +A2α̃G = 0 (38)
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holds. Put K = Ker (I +α). Let ω be a distribution on K. Let x1 and x2 be some vectors in R
n such

that
x1 + αx2 = 0. (39)

Put µj = γj ∗ ω ∗ Exj
, j = 1, 2. Let ξ1 and ξ2 be independent random vectors with values in R

n

and distributions µj. It is easy to see that (38) implies that the characteristic functions γ̂j(y) satisfy
equation (2). It follows from Lemma 2.2 and Lemma 2.4, applying to the subspace K, that the
characteristic function ω̂(y) satisfies equation (2). Moreover, (39) implies that the functions (xj , y)
satisfy equation (2). Hence the characteristic functions µ̂j(y) satisfy equation (2). By Lemma 2.2, the
conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. �

We complement Theorem 2.1 by a more detailed description of possible distributions µj in Theorem
2.1 for the space R

2 depending on the spectrum of the linear operator α. If λ is an eigenvalue of the
operator α, denote by Lλ the corresponding eigenspace. In particular, if K = Ker (I +α) 6= {0}, then
K = L−1. We consider two cases: λ = −1 is an eigenvalue of the operator α or not.

1. λ = −1 is an eigenvalue of the operator α. Then the characteristic equation of the operator α
has only real roots. Two cases are possible.

1A. The operator α has another eigenvalue λ = λ0, where λ0 6= −1. In this case in a basis consisting
of eigenvectors of α, the diagonal matrix α = diag{−1, λ0} corresponds to the operator α. Theorem
2.1 easily implies the following alternative. If λ0 > 0, then µj = ω ∗ Exj

, where ω is a distribution
supported in K, j = 1, 2. In so doing K is a one-dimensional subspace of R2. If λ0 < 0, then µj = γj∗ω,
where γj are Gaussian distributions supported in Lλ0

, and ω is a distribution supported in K.
1B. The operator α has the only eigenvalue λ = −1. If the root subspace corresponding to the

eigenvalue λ = −1 does not coincide with K, then the Jordan cell

α =

(
−1 1
0 −1

)

in a suitable basis corresponds to the operator α. In this case by Lemma 2.5, µj = ω ∗ Exj
, where ω

is a distribution supported in K, j = 1, 2. In so doing K is a one-dimensional subspace of R2. If the
root subspace corresponding to the eigenvalue λ = −1 coincides with K, then α = −I, and by Lemma
2.4, µ1 = µ2 = µ, where µ is an arbitrary distribution on R

2.
2. λ = −1 is not an eigenvalue of the operator α. By Theorem B, in this case µj are Gaussian

distributions. Find out what can be said about the supports of the Gaussian distributions µj, in
particular, when µj are degenerate distributions.

The characteristic functions µ̂j(y1, y2) are represented in the form

µ̂j(y1, y2) = exp{−〈Aj(y1, y2), (y1, y2)〉+ i〈bj , (y1, y2)〉}, (y1, y2) ∈ R
2, (40)

where Aj is a symmetric positive semidefinite 2 × 2 matrix, bj ∈ R
2, j = 1, 2. By Lemma 2.2, the

characteristic functions µ̂j(y1, y2) satisfy equation (2). Depending on the spectrum of the operator α,
a matrix of a rather simple form in a suitable basis corresponds to the operator α. Substituting (40)
into (2) we get that the matrices Aj satisfy the equation

A1 +A2α̃ = 0. (41)

The description of solutions of equation (41) in the class of symmetric positive semidefinite 2 × 2
matrices implies the description of the supports of the Gaussian distributions µj. Two cases are
possible.

2A. The characteristic equation of the operator α has only real roots.
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(i). The operator α has two different eigenvalues λ = λ1 and λ = λ2. In this case in a basis
consisting of eigenvectors of α, the diagonal matrix α = diag{λ1, λ2} corresponds to the operator α.
Then the following statements are valid. If λ1 > 0 and λ2 > 0, then µj are degenerate distributions. If
λ1λ2 < 0, then µj = γj ∗Exj

, where γj are symmetric Gaussian distributions supported in Lλj
, where

λj < 0. If λ1 < 0 and λ2 < 0, then µj = γj ∗ Exj
, where γj are symmetric Gaussian distributions. In

so doing either γj are degenerate distributions concentrated at zero, or the supports of γj are one of
subspaces Lλj

, or the supports of γj are the space R
2.

(ii). The operator α has the only eigenvalue λ = λ0. If the root space corresponding to the
eigenvalue λ = λ0 does not coincide with Lλ0

, then the Jordan cell

α =

(
λ0 1
0 λ0

)

in a suitable basis corresponds to the operator α. Then, if λ0 > 0, then µj are degenerate distributions.
If λ0 < 0, then µj = γj ∗Exj

, where γj are symmetric Gaussian distributions supported in Lλ0
. If the

root space corresponding to the eigenvalue λ = λ0 coincides with Lλ0
, then α = λ0I. In this case, if

λ0 > 0, then µj are degenerate distributions. If λ0 < 0, then µj = γj ∗ Exj
, where γj are symmetric

Gaussian distributions. In so doing either γj are degenerate distributions concentrated at zero, or the
supports of γj are the same one-dimensional subspace of R2, or the supports of γj are the space R

2.
2B. The roots of the characteristic equation of the operator α are of the form λ1 = x0 + iy0,

λ1 = x0 − iy0, where y0 6= 0. Then the matrix

α =

(
x0 y0
−y0 x0

)

in a suitable basis corresponds to the operator α. In this case µj are degenerate distributions.
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