
ar
X

iv
:2

30
7.

01
17

4v
2

 [
cs

.G
T

]
 6

 M
ar

 2
02

4

Anonymous and Copy-Robust Delegations

for Liquid Democracy∗

Markus Utke

TU Eindhoven, The Netherlands

m.utke@tue.nl

Ulrike Schmidt-Kraepelin

TU Eindhoven, The Netherlands

u.schmidt.kraepelin@tue.nl

March 7, 2024

Abstract

Liquid democracy with ranked delegations is a novel voting scheme that unites the prac-
ticability of representative democracy with the idealistic appeal of direct democracy: Every
voter decides between casting their vote on a question at hand or delegating their voting weight
to some other, trusted agent. Delegations are transitive, and since voters may end up in a
delegation cycle, they are encouraged to indicate not only a single delegate, but a set of po-
tential delegates and a ranking among them. Based on the delegation preferences of all voters,
a delegation rule selects one representative per voter. Previous work has revealed a trade-off
between two properties of delegation rules called anonymity and copy-robustness.

To overcome this issue we study two fractional delegation rules: Mixed Borda Branching,
which generalizes a rule satisfying copy-robustness, and the Random Walk Rule, which
satisfies anonymity. Using the Markov chain tree theorem, we show that the two rules are in fact
equivalent, and simultaneously satisfy generalized versions of the two properties. Combining
the same theorem with Fulkerson’s algorithm, we develop a polynomial-time algorithm for
computing the outcome of the studied delegation rule. This algorithm is of independent interest,
having applications in semi-supervised learning and graph theory.

1 Introduction

Today, democratic decision-making in legislative bodies, parties, and non-profit organizations is of-
ten done via one of two extremes: In representative democracy, the constituents elect representatives
who are responsible for deciding upon all upcoming issues for a period of several years. In direct
democracy, the voters may vote upon every issue themselves. While the latter is distinguished by its
idealistic character, it may suffer from low voter turnout as voters do not feel sufficiently informed.
Liquid democracy aims to provide the best of both worlds by letting voters decide whether they
want to cast their opinion on an issue at hand, or prefer to delegate their voting weight to some
other, trusted voter. Delegations are transitive, i.e., if voter v1 delegates to voter v2, and v2 in
turn delegates to voter v3, who casts its vote, then v3 receives the voting weight of both v1 and v2.

∗Part of this research was carried out while both authors were affiliated with TU Berlin and Universidad de Chile,
Markus Utke was affiliated with University of Amsterdam and Ulrike Schmidt-Kraepelin was affiliated with Simons
Laufer Mathematical Sciences Institute (SLMath).

1

http://arxiv.org/abs/2307.01174v2

Liquid democracy has been implemented, for example, by political parties [Kling et al., 2015] and
Google [Hardt and Lopes, 2015]. From a theoretic viewpoint, liquid democracy has been studied
intensively by the social choice community in the last decade [Paulin, 2020].

Earlier works on liquid democracy [Christoff and Grossi, 2017, Brill, 2018] have pointed towards
the issue of delegation cycles, e.g., the situation that occurs when voter v3 in the above example
decides to delegate to voter v1 instead of casting its vote. If this happens, none of the three
voters reaches a casting voter via a chain of trusted delegations, and therefore their voting weight
would be lost. In order to reduce the risk of the appearance of such so-called isolated voters,
several scholars suggested to allow voters to indicate back-up delegations [Brill, 2018, Gölz et al.,
2021, Kavitha et al., 2022] that may be used in case there is no delegation chain using only top-
choice delegations. In liquid democracy with ranked delegations [Brill et al., 2022, Colley et al.,
2022, Kavitha et al., 2022], voters are assumed to indicate a set of trusted delegates together with
a ranking (preference order) among them. In fact, Brill et al. [2022] showed empirically that in
many random graph models, one to two back-up delegations per voter suffice in order to avoid the
existence of isolated voters almost entirely.

Allowing the voters to indicate multiple possible delegations calls for a principled way to decide
between multiple possible delegation chains. For example, consider Figure 1: Should voter v1’s
weight be assigned to casting voter s1, via v1’s second-ranked delegation, or should it rather be
assigned to voter s2 by following v1’s first-ranked delegation to voter v2, and then following v2’s
second-ranked delegation? Brill et al. [2022] introduced the concept of delegation rules, which take
as input a delegation graph (i.e., a digraph with a rank function on the edges) and output an
assignment of each (non-isolated) delegating voter to a casting voter. In order to navigate within
the space of delegation rules, they apply the axiomatic method [Thomson, 2001], as commonly
used in social choice theory. In particular, the authors argue that the following three axioms are
desirable:

(i) Confluence: A delegation rule selects one path from every delegating voter to a casting voter
and these paths are “consistent” with one another. That is, when the path of voter v1 reaches
some other delegating voter v2, the remaining subpath of v1 coincides with the path of v2.
This was argued to increase accountability of delegates [Brill et al., 2022, Gölz et al., 2021].

(ii) Anonymity: A delegation rule should make decisions solely on the structure of the graph, not
on the identities of the voters, i.e. it should be invariant under renaming of the voters.

(iii) Copy-robustness : If a delegating voter v1 decides to cast her vote herself instead of delegating,
this should not change the sum of the voting weight assigned to v1’s representative and
herself. This property was emphasized by practitioners [Behrens and Swierczek, 2015] to
avoid manipulations in the system by delegating voters acting as casting voters but actually
copying the vote of their former representative.

v1 v2s1 s2

Figure 1: Example of a delegation graph. Delegating voters (v1 and v2) are indicated by circles
and casting voters (s1 and s2) by squares. Solid edges represent the first-ranked delegations and
dashed edges second-ranked delegations.

2

For any pair of axioms (i) to (iii), Brill et al. [2022] provide a delegation rule that satisfies both
of them. In contrast, we prove in Section 7 that there exists no delegation rule that satisfies all
three properties simultaneously, thereby strengthening an impossibility result by Brill et al. [2022].1

Our Contribution We show that the above impossibility is due to the restriction that delegation
rules may not distribute the voting weight of a delegating voter to more than one casting voter.

• We generalize the definition of delegation rules to fractional delegation rules (Section 3) and
provide generalizations of all three axioms above (Section 7).

• We introduce a natural variant of the Borda Branching rule [Brill et al., 2022], which we
call Mixed Borda Branching. We show that this rule is equivalent to the Random Walk

Rule, a fractional delegation rule that has been suggested by Brill [2018].

• In our main result, we build upon Fulkerson’s algorithm [Fulkerson, 1974] and the Markov
chain tree theorem [Leighton and Rivest, 1986] and show the existence of a polynomial-time
algorithm for Mixed Borda Branching. This algorithm is of independent interest, as it
computes the probability of two nodes being connected, when sampling a min-cost branching
in a digraph uniformly at random. This problem features in semi-supervised learning, under
the name directed power watershed [Fita Sanmartin et al., 2021], a directed variant of the
power watershed [Couprie et al., 2010]. To the best of our knowledge, we provide the first
efficient algorithm.

• In Section 7, we show that the Random Walk Rule (and thus Mixed Borda Branching)
satisfies the generalizations of all three axioms. We also formalize the impossibility for non-
fractional delegation rules. Beyond that, we show that the Random Walk Rule satisfies a
generalization of a further axiom (guru participation) which has been studied in the literature
[Kotsialou and Riley, 2020, Colley et al., 2022, Brill et al., 2022] (Appendix C).

The proofs (or their completions) for results marked by (⋆) can be found in the appendix.

Related Work Liquid democracy. The idea to let agents rank potential delegates in liquid
democracy was first presented by the developers of the liquid democracy platform Liquid Feedback
[Behrens and Swierczek, 2015], who presented seven properties that cannot be satisfied simultane-
ously. Some of these properties, such as copy-robustness and guru participation, have been picked
up in the social choice literature [Kotsialou and Riley, 2020, Brill et al., 2022, Colley et al., 2022].
The connection of confluent delegation rules to branchings in a digraph was first emphasized by
Kavitha et al. [2022] and later built upon in [Brill et al., 2022, Natsui and Takazawa, 2022]. We
base our model on [Brill et al., 2022], as their model captures all rules and axioms from the liter-
ature. Fractional delegations were studied by Degrave [2014] and Bersetche [2022], however, here
agents indicate a desired distribution among their delegates instead of a ranking. While the two
approaches are orthogonal, we argue in Section 6 that they could be easily combined (and our
algorithm could be adjusted).

Branchings and matrix tree theorems. Our algorithm for computing Mixed Borda Branching

is based on an algorithm for computing min-cost branchings in directed trees. This can be done,
e.g., via Edmond’s algorithm [Edmonds, 1967] or Fulkerson’s algorithm [Fulkerson, 1974]. The

1Brill et al. [2022] show that there exists no delegation rule belonging to the subclass of sequence rules that is
both confluent and copy-robust. Any sequence rule is in particular anonymous.

3

latter comes with a characterization of min-cost branchings in terms of dual certificates, which we
utilize in Algorithm 2. We refer to Kamiyama [2014] for a comprehensive overview on the literature
of min-cost branchings. Our algorithm makes use of (a directed version of) the matrix tree theorem
[Tutte, 1948], which allows to count directed trees in a digraph. An extension of this theorem is the
Markov chain tree theorem [Leighton and Rivest, 1986], which we use for the construction of our
algorithm as well as for proving the equivalence of Mixed Borda Branching and the Random

Walk Rule. A comprehensive overview of the literature is given by Pitman and Tang [2018].
Semi-supervised learning. There is a connection of our setting to graph-based semi-supervised

learning. In particular, Algorithm 2 is related to the power watershed algorithm [Couprie et al.,
2010] and the probabilistic watershed algorithm [Fita Sanmartin et al., 2019, 2021]. We elaborate
on this connection in Section 4.

2 Preliminaries

The main mathematical concepts used in this paper are directed graphs (also called digraphs),
branchings, in-trees, and Markov chains, all of which we briefly introduce below.
We assume that a digraph G has no parallel edges, and denote by V (G) the set of nodes and by
E(G) the set of edges of G. We use δ+G(v) to indicate the set of outgoing edges of node v ∈ V (G),
i.e., δ+G(v) = {(v, u) ∈ E(G)}. For a set of nodes U ⊆ V (G), we define the outgoing cut of U by
δ+G(U) = {(u, v) ∈ E(G) | u ∈ U, v ∈ V (G) \ U}. A walk W is a node sequence (W1, . . . ,W|W |),
such that (Wi,Wi+1) ∈ E(G) for i ∈ {1, . . . , |W | − 1}. We omit G if it is clear from the context.

Branchings and in-trees. Given a digraph G, we say that B ⊆ E is a branching (or in-forest)
in G, if B is acyclic, and the out-degree of any node v ∈ V (G) in B is at most one, i.e., |B∩δ+(v)| ≤ 1.
Throughout the paper, we use the term branching to refer to maximum-cardinality branchings, i.e.,
branchings B maximizing |B| among all branchings in G. For a given digraph G we define B(G) as
the set of all (max-cardinality) branchings and Bv,s(G) as the set of all (max-cardinality) branchings
in which node v ∈ V (G) has a path to the node s ∈ V (G). For any branching B in any digraph
G it holds that |B| ≤ |V (G)| − 1. If in fact |B| = |V (G)| − 1, then B is also called an in-tree. For
every in-tree T ⊆ E, there exists exactly one node v ∈ V (G) without outgoing edge. In this case,
we also say that v is the sink of T and call T a v-tree. For v ∈ V (G), we let Tv(G) be the set of
v-trees in G.

Matrix tree theorem. For our main result we need to count the number of in-trees in a
weighted digraph, which can be done with help of the matrix tree theorem. For a digraph G with
weight function w : E → N, we define the weight of a subgraph T ⊆ E as w(T) =

∏

e∈T w(e) and
the weight of a collection of subgraphs T as w(T) =

∑

T∈T w(T). Then, we define the Laplacian
matrix of (G,w) as L = D − A, where D is a diagonal matrix containing the weighted out-degree
of any node v in the corresponding entry Dv,v and A is the weighted adjacency matrix, given as
Au,v = w((u, v)) for any edge (u, v) ∈ E and zero everywhere else. Moreover, we denote by L(v)

the matrix resulting from L when deleting the row and column corresponding to v.

Lemma 1 (Matrix tree theorem [Tutte, 1948, De Leenheer, 2020]2). Let (G,w) be a weighted
digraph and let L be its Laplacian matrix. Then,

det(L(v)) =
∑

T∈Tv

∏

e∈T

w(e) = w(Tv).

2Tutte [1948] proves the theorem for digraphs, the weighted version can be found in [De Leenheer, 2020].

4

If we interpret the weight of an edge as its multiplicity in a multigraph, then det(L(v)) equals
the total number of distinct v-trees.

Markov Chains. A Markov chain is a tuple (G,P), where G is a digraph and the matrix P ∈
[0, 1]|V |×|V | encodes the transition probabilities. That is, the entry Pu,v indicates the probability
with which the Markov chain moves from state u to state v in one timestep. For a given edge
e = (u, v) ∈ E, we also write Pe to refer to Pu,v. For all v ∈ V it holds that

∑

e∈δ+(v) Pe = 1.

Moreover, if (u, v) /∈ E, we assume Pu,v = 0. We define the matrix Q ∈ [0, 1]|V |×|V | as Q =
limτ→∞

1
τ

∑τ

i=0 P
τ . If (G,P) is an absorbing Markov chain, Qu,v corresponds to the probability

for a random walk starting in u to end in absorbing state v. In contrast, if G is strongly connected
and P is positive for all edges in G, then Qu,v corresponds to the relative number of times v is
visited in an infinite random walk independent of the starting state [Grinstead and Snell, 1997].

In the axiomatic analysis we will need the following lemma, which we proof in the appendix.

Lemma 2 (⋆). Adding a self-loop to a non-absorbing state v with probability p and scaling all
other transition probabilities from that state by 1− p does not change the absorbing probabilities of
an absorbing Markov-chain (G,P).

3 Liquid Democracy with Fractional Delegations

A delegation graph G = (N ∪ S,E) is a digraph with a cost function3 c : E → N (called rank
function before), representing the preferences of the voters over their potential delegates (lower
numbers are preferred). Nodes correspond to voters and an edge (u, v) ∈ E indicates that u accepts
v as a delegate. By convention, the set of nodes S corresponds exactly to the sinks of the digraph,
i.e., the set of nodes without outgoing edges. Thus, S captures the casting voters, and N the
delegating voters. We assume for all v ∈ N that they reach some element in S.4 A delegation rule
maps any delegation graph to a fractional assignment, i.e., a matrix A ∈ [0, 1]N×S, where, for every
v ∈ N , s ∈ S, the entry Av,s indicates the fraction of delegating voter v’s weight that is allocated
to casting voter s ∈ S.5 For any v ∈ N we refer to any casting voter s ∈ S with Av,s > 0 as
a representative of v. For assignment A, the voting weight of a casting voter s ∈ S is defined as
πs(A) = 1+

∑

v∈N Av,s. A non-fractional delegation rule is a special case of a delegation rule, that
always returns assignments A ∈ {0, 1}N×S.

Mixed Borda Branching. The output of any non-fractional, confluent delegation rule
can be represented as a branching: Any branching in the delegation graph consists of |N | edges,
and every delegating voter has a unique path to some casting voter. Brill et al. [2022] suggested
to select min-cost branchings, i.e., those minimizing

∑

e∈B c(e). The authors call these objects
Borda branchings and show that selecting them yields a copy-robust rule. As this rule is inherently
non-anonymous, we suggest to mix uniformly over all Borda branchings, hoping to gain anonymity
without losing the other properties6. Formally, for a given delegation graph (G, c), let B∗(G) be the
set of all Borda branchings and let B∗

v,s(G) be the set of all Borda branchings in which delegating

3We remark that in this paper cost functions and weight functions play different roles.
4If this is not the case, such a voter is isolated, i.e., there is no chain of trusted delegations to a casting voter,

thus we cannot meaningfully assign its voting weight. We remove isolated nodes in a preprocessing step.
5While this definition allows Av,s > 0 for any v ∈ N, s ∈ S, for a sensible delegation rule, this should only be the

case if there exists a path from v to s. Confluence (defined in Section 7) implies this restriction.
6Confluence and copy-robustness are not directly inherited from the non-fractional counterpart of the rule.

5

voter v ∈ N is connected to casting voter s ∈ S. Mixed Borda Branching returns the assignment
A defined as

Av,s =
|B∗

v,s(G)|

|B∗(G)|
for all v ∈ V, s ∈ S.

Random Walk Rule. The second delegation rule was suggested in Brill [2018] and at-
tributed to Vincent Conitzer. For any given delegation graph (G, c) and fixed ε ∈ (0, 1], we define
a Markov chain on G, where the transition probability matrix P (ε) ∈ [0, 1]V (G)×V (G) is defined as

P (ε)
u,v =

εc(u,v)

ε̄u
for any (u, v) ∈ E, (1)

where ε̄u =
∑

(u,v)∈δ+(u) ε
c(u,v) is the natural normalization factor. The Markov chain (G,P (ε)) is

absorbing for every ε ∈ (0, 1] where the absorbing states are exactly S. The Random Walk Rule

returns the fractional assignment A defined as the limit of the absorbing probabilities, i.e.,

Av,s = lim
ε→0

(

lim
τ→∞

1

τ

τ
∑

i=0

(P (ε))τ
)

v,s
for all v ∈ N, s ∈ S.

4 Connection to Semi-Supervised Learning

In graph-based semi-supervised learning, the input is a directed or undirected graph, where nodes
correspond to data points and edges correspond to relationships between these. A subset of the
nodes is labeled and their labels are used to classify unlabeled data. Many algorithms compute
a fractional assignment of unlabeled data points towards labeled data points, which is then used
to determine the predictions for unlabeled data. In the directed case, there exists a one-to-one
correspondence to our model: Delegating voters correspond to unlabeled data and casting voters
correspond to labeled data.

Power Watershed. In the undirected case, the power watershed [Couprie et al., 2010] can
be interpreted as an undirected analog of Mixed Borda Branching: For any pair of unlabeled
data point x and labeled data point y, the algorithm computes the fraction of min-cost undirected
maximum forests that connect x to y.7 The authors provide a polynomial-time algorithm for
computing its outcome. On a high level, our algorithm (Section 5) is reminiscent of theirs, i.e.,
both algorithms iteratively contract parts of the graph, leading to a hierarchy of subsets of the
nodes. However, while the algorithm by Couprie et al. [2010] only needs to carry out computations
at the upper level of the hierarchy, our algorithm has to carry out computations at each level of the
hierarchy. We believe that the increased complexity of our algorithm is inherent to our problem
and do not find this surprising: Even the classic min-cost spanning tree problem can be solved by
a greedy algorithm and forms a Matroid, but this structure gets lost when moving to its directed
variant.

Directed Probabilistic Watershed. Fita Sanmartin et al. [2021] study a directed version of
graph-based semi-supervised learning. The authors introduce the directed probabilistic watershed
(DProbWS): Similar to our model, there exists a cost function c and a weight function w on the
edges. In their case, these functions are linked by w(e) = exp(−µc(e)). The paper studies a Gibbs
distribution with respect to the weights, i.e., the probability of sampling a branching is proportional

7This analogy holds for the variant of the power watershed when a parameter q is 2 [Couprie et al., 2010].

6

to its weight. The parameter µ controls the entropy of this function, i.e., for µ = 0, any branching
is sampled with equal probability, while larger µ places more probability on low cost branchings.
The authors show: (i) For fixed µ, the fractional allocation induced by the Gibbs distribution can
be computed by calculating the absorbing probabilities of a Markov chain. (ii) For the limit case
µ → ∞, the defined distribution equals the uniform distribution over all min-cost branchings, i.e.,
the distribution that we study in this paper. In this limit case, the authors refer to the corresponding
solution as the directed power watershed. Hence, the authors have shown the equivalence of the
directed power watershed and the limit of a parameterized Markov chain. Since this Markov chain
only slightly differs from ours, this result is very close to our Theorem 6. As its proof is very short
and might be of interest for the reader, we still present it in Section 6.

Importantly, Fita Sanmartin et al. [2021] do not show how to compute the outcome of the di-
rected power watershed. In particular, the algorithm from (i) makes explicit use of the weight
function on the edges (which depends on µ). Hence, the running time of the algorithm grows to
infinity in the limit case. We fill this gap by providing the (to the best of our knowledge) first
polynomial-time algorithm for the directed power watershed. Maybe surprisingly, we need a signifi-
cantly more complex approach to solve the limit case: While the algorithm of Fita Sanmartin et al.
[2021] solves one absorbing Markov chain, our algorithm derives a hierarchical structure of subsets
of the nodes by the structural insights provided by Fulkerson’s algorithm, and solves several Markov
chains for each of the hierarchy.

5 Computation of Mixed Borda Branching

Our algorithm for computing the outcome of Mixed Borda Branching is an extension of an
algorithm by Fulkerson [1974] for computing an arbitrary min-cost branchings in a digraph. The
algorithm by Fulkerson follows a primal-dual approach and can be divided into two phases, where
the first phase characterizes min-cost branchings with the help of a family of subsets of the nodes,
and the second phase then constructs one arbitrary min-cost branching. Building upon the first
phase, we show that, for every two nodes v ∈ N and s ∈ S, we can count the number of min-cost
branchings that connect the two nodes by applying an extension of the matrix tree theorem [Tutte,
1948, De Leenheer, 2020] and the Markov chain tree theorem [Leighton and Rivest, 1986].

Fulkerson’s algorithm.8 The algorithm (described formally in Algorithm 1) maintains a
function y : 2N∪S → N and a subset of the edges Ey ⊆ E. The set Ey captures edges that are tight
(w.r.t. y), i.e., those e ∈ E satisfying

∑

X⊆N∪S:e∈δ+(X)

y(X) = c(e).

The algorithm takes as input a delegation graph G together with a cost function c : E → N.
Since c(e) ≥ 1 for all e ∈ E, the output F contains all singleton sets induced by nodes in N ∪S,

and beyond that subsets of N . In the following we show several structural insights that are crucial
for the construction of our algorithm. While statements (ii) and (iii) have been proven in similar
forms by Fulkerson [1974], we prove all of Lemma 3 in Appendix B for completeness.

8We slightly adjust the algorithm, as Fulkerson [1974] studies directed out-trees and assumes one sink only.

7

Algorithm 1 Fulkerson’s Algorithm [Fulkerson, 1974, Kamiyama, 2014]

1: Set y(X) = 0 for any set X ⊆ N ∪ S except y({s}) = 1 for any s ∈ S, Ey = ∅

2: while some node in N cannot reach any node in S in the graph (N ∪ S,Ey) do

3: let X ⊆ N be a strongly connected component in (N ∪ S,Ey) with δ+(X) ∩Ey = ∅
4: set y(X) to minimum value such that some edge in δ+(X) is tight, add tight edges to Ey

5: F = {X ⊆ N ∪ S | y(X) > 0}

6: return (F , Ey , y)

Lemma 3 (⋆). Let (G, c) be a delegation graph and let (F , Ey , y) be the output of Algorithm 1.
Then:

(i) For every (G, c), the output of the algorithm is unique, i.e., it does not depend on the choice
of the strongly connected component in line 3.

(ii) F is laminar, i.e., for any X,Y ∈ F it holds that either X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅.

(iii) Branching B in (G, c) is min-cost iff (a) B ⊆ Ey, and (b) |B∩δ+(X)| = 1 for all X ∈ F , X ⊆
N .

(iv) For every X ∈ F , an in-tree T in G[X] = (X,E[X]), where E[X] = {(u, v) ∈ E | u, v ∈ X},
is min-cost iff (a) T ⊆ Ey, and (b) |T ∩ δ+(Y)| = 1 for all Y ∈ F such that Y ⊂ X.

Intuition and notation for Algorithm 2. For our algorithm, the crucial statements in
Lemma 3 are (ii) and (iii). First, because F forms a laminar family, there exists a natural tree-like
structure among the sets. We say that a set Y ∈ F is a child of a set X ∈ F , if Y ⊂ X and there
does not exist a Z ∈ F , such that Y ⊂ Z ⊂ X . Moreover, for some X ∈ F or X = N ∪ S, we
define GX = (VX , EX) as the tight subgraph that is restricted to the node set X and contracts
all children of X . Formally, VX = {Y | Y is a child of X} and EX = {(Y, Y ′) | (u, v) ∈ Ey, u ∈
Y, v ∈ Y ′, and Y, Y ′ ∈ VX}. In the following we first focus on the graph corresponding to the
uppermost layer of the hierarchy, i.e., GX for X = N ∪ S. Now, statement (iii) implies that every
min-cost branching B in G leaves every child of X exactly once and only uses tight edges. Hence,
if we project B to an edge set B̂ in the contracted graph GX , then B̂ forms a branching in GX .
However, there may exist many min-cost branchings in G that map to the same branching in GX .
The crucial insight is that we can construct a weight function wX on the edges of GX , such that
the weighted number of branchings in GX equals the number of min-cost branchings in G. This
function is constructed by calculating for every child Y of X and every node v ∈ Y , the number
of min-cost v-trees inside the graph G[Y] = (Y,E[Y]), where E[Y] = {(u, v) ∈ E | u, v ∈ Y }.
This number, denoted by tY (v), can be computed by recursively applying the matrix tree theorem.
Coming back to the graph GX , however, we need a more powerful tool since we need to compute
the (relative) number of weighted branchings in GX connecting any node to a sink node. Thus, we
introduce the Markov chain tree theorem (in a slightly modified version so that it can deal with
Markov chains induced by weighted digraphs).

For a weighted digraph (G,w) we define the corresponding Markov chain (G′, P) as follows: The
digraph G′ is derived from G by adding self-loops, and for (u, v) ∈ E(G′) we let

Pu,v =

{

w(u,v)
∆ if u 6= v

1−
∑

e∈δ+(u) w(e)

∆ if u = v,

where ∆ = maxv∈V

∑

e∈δ+(v) w(e).

8

Y1 Y2

X1

2

2

1

1

1

v1

v2

v3

v4

v5

(a) The delegation graph (G, c) restricted to the set
X1. Nodes v ∈ Y1 are labeled with tY1(v) and nodes
in v ∈ Y2 are labeled with tY2(v). Recall, that tY1(v)
is the total number of min-cost v-trees in G[Y1].

Y1 Y2

3

1

wX1(TY1 (GX1)) = 1

wX1(TY2 (GX1)) = 3

(b) Digraph GX1 with edge weights wX1 . Based on
this input, for i ∈ {1, 2}, we calculate the total weight
of all Yi-trees in GX1 , i.e., wX1(TYi(GX1)).

v1

v2

v3

v4

v5
X1

2

2

1

3

3

(c) The graph (G, c) restricted to X1. Every node
v ∈ X1 is labeled with tX1(v), which was calculated
by multiplying the weights from Figure 2a with the
results from Figure 2b.

X1 X2 X3

{s1} {s2}

3

2

4

1

1

(d) An example for (GX , wX), where X = N ∪ S.
In the last iteration, this graph is translated into
a Markov chain and the absorbing probabilities are
returned.

Figure 2: Two iterations of Algorithm 2. Costs are depicted by edge patterns (solid equals cost 1,
dashed equals cost 2, and dotted equals cost 3) and weights are depicted by numbers on the edges.

9

Algorithm 2 Computation of Mixed Borda Branching

1: compute (F , Ey, y), set F ′ = F ∪ {N ∪ S} and label its elements “unprocessed” ⊲ Algorithm 1
2: t{v}(v)← 1 for all v ∈ N ∪ S, label singletons as “processed”
3: do pick unprocessed X ∈ F ′ for which all children are processed, label X as “processed”
4: set wX(Y, Y ′)←

∑

(u,v)∈Ey∩(Y×Y ′) tY (u), for all children Y and Y ′ of X
5: if X 6= N ∪ S then

6: for all children Y of X do

7: tX(v)← wX(TY (GX)) · tY (v) for all v ∈ Y ⊲ Lemma 1

8: else compute absorbing probability matrix Q for the Markov chain
corresponding to (GX , wX)

⊲ Lemma 4

9: while X 6= N ∪ S
10: return for all v ∈ N and s ∈ S: Av,s ← QYv,{s}, where Yv child of N ∪ S with v ∈ Yv

Lemma 4 (Markov chain tree theorem (Leighton and Rivest [1986])). Consider a weighted digraph
(G,w) and the corresponding Markov chain (G′, P) and let Q = limτ→∞

1
τ

∑τ

i=0 P
τ . Then, the

entries of the matrix Q are given by

Qu,v =

∑

B∈Bu,v

∏

e∈B Pe
∑

B∈B

∏

e∈B Pe

=

∑

B∈Bu,v

∏

e∈B w(e)
∑

B∈B

∏

e∈B w(e)
=

∑

B∈Bu,v
w(B)

∑

B∈B w(B)
.

We formalize Algorithm 2, which takes as input a delegation graph (G, c) and, in contrast to
the intuition above, works in a bottom-up fashion. We refer to Figure 2 for an illustration.

Theorem 5. Algorithm 2 returns Mixed Borda Branching and runs in poly(n).

Proof. We start by showing by induction that the given interpretation of the weight function on
the nodes is correct, i.e., for any v ∈ N , tX(v) corresponds to the number of min-cost v-trees in the
graph G[X]. The claim is clearly true for any singleton, since t{v}(v) = 1 and the number of v-trees
in ({v}, ∅) is one, i.e., the empty set is the only v-tree. Now, we fix some X ∈ F ′ and assume that
the claim is true for all children of X . In the following, we fix v ∈ X and argue that the induction
hypothesis implies that the claim holds for tX(v) as well.
For any node u ∈ X , let Yu ∈ F be the child of X containing node u. Moreover, let T ∗

v (G[X])
(or short T ∗

v) be the set of min-cost v-trees in G[X], and TYv
(GX) (or short TYv

) be the set of
Yv-trees in GX . Lastly, for any u ∈ X , let T ∗

u (G[Yu]) be the set of min-cost u-trees in G[Yu]. In
the following, we argue that there exists a many-to-one mapping from T ∗

v to TYv
. Note that, by

statement (iv) in Lemma 3, every min-cost in-tree T in G[X] (hence, T ∈ T ∗
v) leaves every child of

X exactly once via a tight edge. Therefore, there exists a natural mapping to an element of TYv
by

mapping every edge in T that connects two children of X to their corresponding edge in GX . More
precisely, T̂ = {(Y, Y ′) ∈ EX | T ∩ δ+(Y) ∩ δ−(Y ′) 6= ∅} is an Yv-tree in GX and hence an element
of TYv

.
Next, we want to understand how many elements of T ∗

v map to the same element in TYv
. Fix any

T̂ ∈ TYv
. We can construct elements of T ∗

v by combining (an extended version of) T̂ with min-cost
in-trees within the children of X , i.e., with elements of the sets T ∗

u (G[Yu]), u ∈ X . More precisely,
for any edge (Y, Y ′) ∈ T̂ , we can independently chose any of the edges in (u, u′) ∈ Ey ∩ (Y × Y ′)
and combine it with any min-cost u-tree in the graph G[Y]. This leads to

(

∏

(Y,Y ′)∈T̂

∑

(u,u′)∈Ey∩(Y×Y ′)

tY (u)
)

tYv
(v) =

(

∏

(Y,Y ′)∈T̂

wX(Y, Y ′)
)

· tYv
(v)

10

many different elements from T ∗
v that map to T̂ ∈ TYv

. Hence,

|T ∗
v | =

∑

T̂∈TYv

∏

(Y,Y ′)∈T̂

wY (Y, Y
′) · tYv

(v) = wX(TYv
) · tYv

(v) = tX(v),

where the last inequality follows from the definition of tX(v) in the algorithm. This proves the
induction step, i.e., tX(v) corresponds to the number of min-cost v-trees in the graph G[X].

Now, let X = N ∪ S, i.e., we are in the last iteration of the algorithm. Due to an analogous
reasoning as before, there is a many-to-one mapping from the min-cost branchings in G to branchings
in GX . More precisely, for every branching B ∈ BY,{s}(GX), there exist

∏

(Y,Y ′)∈B

wX(Y, Y ′) = wX(B)

branchings in G that map to B. Hence, by the Markov chain tree theorem (Lemma 4), we get

Av,s = Qv,s =

∑

B∈BYv,{s}(GX) wX(B)
∑

B∈B(GX) wX(B)
=

∑

B∈B∗
v,s(G) 1

∑

B∈B∗(G) 1
,

where (G′
X , P) is the Markov chain corresponding to GX and Q = limτ→∞

1
τ

∑τ
i=0 P

τ . This equals
the definition of Mixed Borda Branching.

Lastly, we argue about the running time of the algorithm. For a given delegation graph (G, c),
let n = V (G), i.e., the number of voters. Algorithm 1 can be implemented in O(n3). That is
because, the while loop runs for O(n) iterations (the laminar set family F can have at most 2n− 1
elements), and finding all strongly connected components in a graph can be done in O(n2) (e.g.,
with Kosaraju’s algorithm [Hopcroft et al., 1983]). Coming back to the running time of Algorithm 2,
we note that the do-while loop runs for O(n) iterations, again, due to the size of F ′. In line 7, the
algorithm computes O(n) times the number of weighted spanning trees with the help of Lemma 1
(Tutte [1948]). Hence, the task is reduced to calculating the determinant of a submatrix of the
laplacian matrix. Computing an integer determinant can be done in polynomial time in n and
log(M), if M is an upper bound of all absolute values of the matrix9. Note, that all values in
every Laplacian (the out-degrees on the diagonals and the multiplicities in the other entries) as
well as the results of the computation are upper-bounded by the total number of branchings in
the original graph G (this follows from our argumentation about the interpretation of tX(v) in the
proof of Theorem 5), hence in particular by nn. Therefore, the running time of each iteration of
the do-while loop is polynomial in n. In the final step we compute the absorbing probabilities of
the (scaled down version) of the weighted graph (GX , wX) (where X = N ∪ S). For that, we need
to compute the inverse of a O(n)×O(n) matrix, which can be done using the determinant and the
adjugate of the matrix. Computing these comes down to computing O(n2) determinants, for which
we argued before that it is possible in polynomial time10. Summarizing, this gives us a running
time of Algorithm 1 in O((n7 log(n) + n4 log(n log(n))) ∗ (log2 n+ (log(n log(n)))2)).

9More precisely, it can be computed in O((n4 log(nM) + n3 log2(nM)) ∗ (log2 n + (log logM)2))
[Gathen and Gerhard, 2013]

10We argued this only for integer matrices, but we can transform the rational matrix into an integer one by scaling
it up by a factor which is bounded by nn.

11

6 Equivalence of Mixed Borda Branching and Random

Walk Rule

With the help of the Markov chain tree theorem, as stated in Section 5, we can show the equivalence
of the Random Walk Rule and Mixed Borda Branching.

Theorem 6. Let (G, c) be a delegation graph and A and Â be the assignments returned by Mixed

Borda Branching and the Random Walk Rule, respectively. Then, A = Â.

Proof. Let v ∈ N and s ∈ S, then,

Âv,s = lim
ε→0

(1

τ

∞
∑

τ=1

(P (ε))τ
)

v,s
= lim

ε→0

∑

B∈Bv,s

∏

e∈B P
(ε)
e

∑

B∈B

∏

e∈B P
(ε)
e

= lim
ε→0

∑

B∈Bv,s

∏

(u,v)∈B
εc(u,v)

ε̄u
∑

B∈B

∏

(u,v)∈B
εc(u,v)

ε̄u

= lim
ε→0

∏

u∈N (ε̄u)
−1

∑

B∈Bv,s
εc(B)

∏

u∈N (ε̄u)−1
∑

B∈B εc(B)
=

∑

B∈B∗
v,s

1
∑

B∈B∗ 1
= Av,s.

We first use the definition of the Random Walk Rule, and then apply the Markov chain tree
theorem (Lemma 4) for fixed ε ∈ (0, 1] to obtain the second equality. For the third equality, we
use the definition of P (ε), and then factor out the normalization factor ε̄u for every u ∈ N . For
doing so, it is important to note that for every v ∈ N and s ∈ S, every branching in Bv,s and every
branching in B contains exactly one outgoing edge per node in N . We also remind the reader that
c(B) =

∑

e∈B c(e). Finally, we resolve the limit in the fifth equality by noting that the dominant
parts of the polynomials are those corresponding to min-cost (Borda) branchings.

Alternative Interpretation of Algorithm 2. We stated Algorithm 2 in terms of counting
min-cost branchings. There exists a second natural interpretation that is closer to the definition of
the Random Walk Rule, in which we want to compute the limit of the absorbing probabilities of
a parametric Markov chain. We give some intuition on this reinterpretation of the algorithm with
the example in Figure 2, and later extend this interpretation to a larger class of parametric Markov
chains. Every set X ∈ F in the Markov chain (G,P (ε)) corresponding to the delegation graph
G is a strongly connected component whose outgoing edges have an infinitely lower probability
than the edges inside of X as ε approaches zero. We are therefore interested in the behavior of an
infinite random walk in G[X]. While in the branching interpretation, the node weight tX(v) can be
interpreted as the number of min-cost v-arborescences in G[X], in the Markov chain interpretation
we think of tX(v) as an indicator of the relative time an infinite random walk spends in v (or the
relative number of times v is visited) in the Markov chain given by the strongly connected graph
G[X]. Consider the example iteration depicted in Figure 2a, where we are given an unprocessed
X ∈ F whose children Y1, Y2 are all processed. When contracting Y1 and Y2 the weights on the
edges should encode how likely a transition is from one set to another, which is achieved by summing
over the relative time spent in each node with a corresponding edge. We then translate the resulting
graph (Figure 2b) into a Markov chain and again compute the relative time spend in each node.
This computation is equivalent to calculating the sum of weights of all in-trees (up to a scaling
factor, see Theorem 4). Indeed, we get a ratio of one to three for the time spend in Y1 and Y2.
To compute tX(v) we multiply the known weight tYv

(v) by the newly calculated weight of Yv. In
the example this means that since we know, we spend three times as much time in Y2 as in Y1 all
weights of nodes in Y2 should be multiplied by three (see Figure 2c).

12

Extension of Algorithm 2. In addition, we remark that our algorithm could be extended to a
larger class of parametric Markov chains, namely, to all Markov chains (G,P (ε)), where G is a graph

in which every node has a path to some sink node, and, for every e ∈ E(G), P
(ε)
e is some rational

fraction in ε, i.e., fe(ε)
ge(ε)

, where both fe and ge are polynomials in ε with positive coefficients.11 Now,

we can construct a cost function c on G, by setting c(e) = xe − ze + 1, where xe is the smallest
exponent in fe(ε) and ze is the smallest exponent in ge(ε). Note that, if c(e) < 1, then the Markov
chain cannot be well defined for all ε ∈ (0, 1]. Now, we run Algorithm 2 for the delegation graph
(G, c) with only one difference, i.e., the weight function wX also has to incorporate the coefficients
of the polynomials fe(ε) and ge(ε). More precisely, we define for every e ∈ E, the number qe as
the ratio between the coefficient corresponding to the smallest exponent in fe and the coefficient
corresponding to the smallest exponent in ge. Then, we redefine line 4 in the algorithm to be

wX(Y, Y ′)←
∑

(u,v)∈Ey∩(Y×Y ′)

tY (u) · q(u,v).

One can then verify with the same techniques as in Section 5 and Section 6, that this algorithm
returns the outcome of the above defined class of Markov chains.

7 Axiomatic Analysis

In this section, we generalize and formalize the axioms mentioned in Section 1 and show that the
Random Walk Rule (and hence Mixed Borda Branching) satisfies all of them. In particular,
our version of confluence (copy-robustness, respectively) reduces to (is stronger than, respectively)
the corresponding axiom for the non-fractional case by Brill et al. [2022] (see Appendix D). We first
define anonymity, which prescribes that a delegation rule should not make decisions based on the
identities of the voters. Given a digraph with a cost function (G, c) and a bijection σ : V (G)→ V (G),
we define the graph σ((G, c)) as (G′, c′), where V (G′) = V (G), E(G′) = {(σ(u), σ(v) | (u, v) ∈
E(G)} and c′(σ(u), σ(v)) = c(u, v) for each edge (u, v) ∈ E(G).

Anonymity: For any delegation graph (G, c), any bijection σ : V (G) → V (G), and any
v ∈ N, s ∈ S, it holds that Av,s = A′

σ(v),σ(s), where A and A′ are the outputs of the delegation rule

for (G, c) and σ((G, c)), respectively.

Theorem 7. The Random Walk Rule satisfies anonymity.

Proof. Given a delegation graph (G, c) and a bijection σ : V (G) → V (G), we know that for all
v ∈ V (G) it holds that |δ+G(v)| = |δ

+
G′(σ(v))| and c(v, w) = c′(σ(v), σ(w)) for any edge (v, w) ∈ δ+(v),

where (G′, c′) = σ((G, c)). In the corresponding Markov chains Mε and M ′
ε we therefore get

P
(ε)
(v,w) = P

′(ε)
(σ(v),σ(w)) (see Equation 1). Since through the bijection between the edges of the graph,

we also get a bijection between all walks in the graph W and for every s ∈ S and walk in W [s, v]
there is a corresponding walk in W [σ(v), σ(s)] of the same probability. Therefore we have

Av,s = lim
ε→0

∑

W∈W[v,s]

∏

e∈W

P (ε)
e = lim

ε→0

∑

W∈W[σ(v),σ(s)]

∏

e∈W

P ′(ε)
e = A′

σ(v),σ(s) ,

which concludes the proof.

11This class is reminiscent of a class of parametric Markov chains studied by Hahn et al. [2011].

13

We now define copy-robustness, which intuitively demands that if a delegating voter v ∈ N
decides to cast their vote instead, the total voting weight of v and all its representatives should
not change. This lowers the threat of manipulation by a voter deciding whether to cast or delegate
their vote depending on which gives them and their representatives more total voting weight. This
axiom was introduced (under a different name) by Behrens and Swierczek [2015] and defined for
non-fractional delegation rules in [Brill et al., 2022]. We strengthen12 and generalize the version of
Brill et al. [2022].

Copy-robustness: For every delegation graph (G, c) and delegating voter v ∈ N , the following
holds: Let (Ĝ, c) be the graph derived from (G, c) by removing all outgoing edges of v, let A and Â be
the output of the delegation rule for (G, c) and (Ĝ, c), respectively and let Sv = {s ∈ S | Av,s > 0}

be the set of representatives of v in (G, c). Then
∑

s∈Sv
πs(A) = πv(Â) +

∑

s∈Sv
πs(Â).

Theorem 8. The Random Walk Rule satisfies copy-robustness.

Proof. Let (G, c), v, (Ĝ, c), A, Â and Sv be defined as in the definition of copy-robustness. Let
(F , y) and (F̂ , ŷ) be the set families and functions returned by Algorithm 1 for G and Ĝ, respectively.
In this proof, we restrict our view to the subgraphs of only tight edges, denoted by Gy = (N ∪S,Ey)

and Ĝŷ = (N \ {v} ∪ V ∪ {v}, Eŷ), respectively. Note, that this does not change the result of the
Random Walk Rule, since it is shown to be equal to Mixed Borda Branching, which only
considers tight edges (in the contracted graph) itself.

First, we observe that the set Sv is exactly the subset of S reachable by v in Gy. This is because
the assignment A returned by the Random Walk Rule is given as the absorbing probability of
a Markov chain on the graph (GX , wX) with X = N ∪ S, computed by Algorithm 2. The graph is
constructed from Gy by a number of contractions, which do not alter reachability, i.e. for s ∈ S the
node {s} is reachable from the node Yv containing v in GX exactly if s is reachable from v in Gy.
Since all edge weights wX are strictly positive, in the corresponding Markov chain all transition
probabilities on the edges of GX are strictly positive as well. This gives {s} a strictly positive
absorbing probability when starting a random walk in Yv exactly if s is reachable from v in Gy.

Our next observation is that F̂ = F \ {Y ∈ F | v ∈ Y } ∪ {{v}}, ŷ({v}) = 1 and y(Y) = ŷ(Y)
for all Y ∈ F̂ \ {{v}}. Consider the computation of F in Algorithm 1. Since the output is unique
(see Lemma 3 statement (i)), we can assume without loss of generality that after initializing F , all
sets in {Y ∈ F | v /∈ Y } are added to F first and then the remaining sets {Y ∈ F | v ∈ Y }. In Ĝ,
the only edges missing are the outgoing edges from v, therefore, when applying Algorithm 1 to Ĝ
all sets in {Y ∈ F | v /∈ Y } can be added to F̂ first (with ŷ(Y) = y(Y)). Note, that the set {v}
with y({v}) = 1 was added to F̂ in the initialization. We claim, that the algorithm terminates at
that point. Suppose not, then there must be another strongly connected component X ⊆ N with
δ+(X) ∩ Eŷ = ∅. If v ∈ X then since v has no outgoing edges X = {v}, which is already in F . If
v /∈ X then X would have already been added.

With these two observations, we can show the following claim: For every casting voter s ∈ S \Sv

the voting weight remains equal, when v turns into a casting voter, i.e., πs(A) = πs(Â). Fix
s ∈ S \ Sv and let U ⊂ N be the set of nodes not reachable from v in Gy . We know that

F̂ = F \ {Y ∈ F | v ∈ Y } ∪ {v}, which implies that for every node u ∈ U the sets containing u
are equal in F and F̂ , i.e., {Y ∈ F | u ∈ Y } = {Y ∈ F̂ | u ∈ Y }. Therefore, the outgoing edges
from any u ∈ U are equal in Gy and Ĝŷ. Since F̂ ⊆ F , the edges in Ĝŷ are a subset of the edges

in Gy and therefore the set U is not reachable from v in Ĝŷ. When translating Ĝŷ into the Markov

12Brill et al. [2022] restrict the condition to voters that have a direct connection to their representative.

14

chain (Ĝŷ, P̂
(ε)) (see Equation 1), we get for the probability of any tight out-edge e of u and any

ε > 0, that P
(ε)
e = P̂

(ε)
e , where P (ε) is the transition matrix induced by the original graph Gy . In

the following we argue about the set of walks in Gy and Gŷ. To this end we define for every u ∈ N ,

the set W [u, s] (Ŵ [u, s], respectively) as the set of walks in Gy (in Gŷ, respectively) that start in u
and end in sink s. Since all walks from any u ∈ U to s contain only outgoing edges from nodes in
U , we have Ŵ [u, s] =W [u, s]. For any other voter w ∈ N \ U we have Ŵ [w, s] =W [w, s] = ∅ and
therefore

πs(Â) = 1 +
∑

u∈U

lim
ε→0

∑

Ŵ∈Ŵ[u,s]

∏

e∈Ŵ

P (ε)
e = 1 +

∑

u∈U

lim
ε→0

∑

W∈W[u,s]

∏

e∈W

P (ε)
e = πs(A) ,

which concludes the proof of the claim.
Summarizing, we know that that for any casting voter s ∈ S \Sv we have πs(A) = πs(Â), which

directly implies that
∑

s∈Sv
πs(A) = πv(Â) +

∑

s∈Sv
πs(Â).

To capture the requirement that the voting weight of different voters is assigned to casting
voters in a “consistent” way, Brill et al. [2022] define confluence as follows: A delegation rule selects,
for every voter u ∈ N , one walk in the delegation graph starting in u and ending in some sink
s ∈ S, and assigns voter u to casting voter s. A delegation rule satisfies confluence, if, as soon
as the walk of u meets some other voter v, the remaining subwalk of u equals the walk of v.13

Below, we provide a natural generalization of the property by allowing a delegation rule to specify
a probability distribution over walks. Then, conditioned on the fact that the realized walk of some
voter u meets voter v, the probability that u reaches some sink s ∈ S should equal the probability
that v reaches s.

Confluence: For every delegation graph (G, c), there exists a probability distribution fv for all
v ∈ N over the set of walks in G that start in v and end in some sink, which is consistent with the
assignment A of the delegation rule (i.e., PW∼fv [s ∈W] = Av,s for all v ∈ N, s ∈ S), and,

PW∼fu [s ∈W | v ∈W] = PW∼fv [s ∈W] for all u, v ∈ N, s ∈ S.

Note that the requirement that Av,s = PW∼fv [s ∈ W] implies that for any v ∈ V and s ∈ S we
can have Av,s > 0 only if there is a path from v to s in G.

Theorem 9. The Random Walk Rule satisfies confluence.

Proof. Before proving the claim, we introduce notation. For any walk W in some graph G, and
some node v ∈ V (G), we define W [v] to be the subwalk of W that starts at the first occasion
of v in W . For two nodes u, v ∈ V (G), we define W [u, v] to be the subwalk of W that starts at
the first occasion of u and ends at the first occasion of v. (Note that W [v] and W [u, v] might be
empty.) Now, for a set of walks W and u, v, s ∈ V (G), we define W [v] = {W [v] | W ∈ W} and
W [u, v] = {W [u, v] | W ∈ W}. Lastly, we define W [u, v, s] = {W ∈ W [u, s] | v ∈ W [u, s]}. We
usually interpret a walk W as a sequence of nodes. In order to facilitate notation, we abuse notation
and write v ∈W for some node v ∈ V (G) in order to indicate that v appears in W , and for an edge
e ∈ E(G), we write e ∈W to indicate that tail and head of e appear consecutively in W .

For the remainder of the proof we fix W to be the set of walks in the input delegation graph G
starting in some node from N and ending in some sink node S. Moreover, let GX be the graph at

13Brill et al. [2022] assume paths instead of walks. The two definitions are equivalent (see Appendix D).

15

the end of Algorithm 2, i.e., GX for X = N ∪ S. We fix Ŵ to be the set of walks which start in
some node of GX and end in some sink node of GX (which are exactly the nodes in {{s} | s ∈ S}).

In the following, we define for every v ∈ N a probability distribution fv : W [v] → [0, 1], such
that it witnesses the fact that the Random Walk Rule is confluent. To this end, we define
a mapping γv : Ŵ [Yv] → W [v], where Yv is the node in GX that contains v. Given a walk
Ŵ ∈ Ŵ [Yv], we construct γv(Ŵ) ∈ W [v] as follows: Let Ŵ = Y (1), . . . Y (k). By construction of GX

we know that for every i ∈ {1, . . . , k}, the fact that (Y (i), Y (i+1)) ∈ EX implies that there exists
(b(i), a(i+1)) ∈ E with b(i) ∈ Y (i) and a(i+1) ∈ Y (i+1). Moreover, we define a(1) = v and b(n) = s,
where {s} = Y (k). Under this construction it holds that a(i), b(i) ∈ Y (i) for all i ∈ {1, . . . , k}, but
the two nodes may differ. Therefore, we insert subwalks W (i) connecting a(i) to b(i) by using only
nodes in Y (i) and visiting each of these nodes at least once. The final walk γv(Ŵ) is then defined by
(a(1),W (1), b(1), . . . , a(n),W (n), b(n)). We remark that this mapping is injective, and it holds that
Ŵ visits some node Y ∈ V (GX) if and only if γv(Ŵ) visits all nodes in Y .

Recall that the assignment A of the Random Walk Rule can be computed via a Markov chain
(G′

X , P) derived from the contracted graph (GX , wX) (see Section 5 and Section 6), where G′
X is

derived from GX by adding self-loops. In Lemma 2 we show that introducing (and thus removing)
self-loops to states in an absorbing Markov chain does not change its absorbing probabilities. We
retrieve the Markov chain (GX , P̂) by removing all self loops of all voters in N and rescaling the
other probabilities accordingly. We then make use of this Markov chain in order to define fv over
W [v]. That is, for any W ∈ W [v] let

fv(W) =

{

∏

e∈Ŵ P̂e if there exists Ŵ ∈ Ŵ [Yv] such that γv(Ŵ) = W

0 else.

Note that, the above expression is well defined since γv is injective.
In the remainder of the proof, we show that fv witnesses the confluence of the Random Walk

Rule. First, we show that fv is indeed consistent with the assignment A returned by Random

Walk Rule. That is, for any v ∈ N and s ∈ S it holds that

PW∼fv [s ∈W] =
∑

W∈W[v,s]

fv(W) =
∑

Ŵ∈Ŵ[Yv,{s}]

∏

e∈Ŵ

P̂e = Av,s .

The second equality comes from the fact that γv is injective and exactly those walks in Ŵ[Yv, {s}]
are mapped by γv to walks in W [v, s]. Moreover, all walks in W [v, s] that have no preimage in
Ŵ [Yv, {s}] are zero-valued by fv. The last equality comes from the fact that Av,s equals the

probability that the Markov chain (G′
X , P) (equivalently, (GX , P̂)) reaches {s} if started in Yv (see

Section 5 and Section 6).
We now turn to the second condition on the family of probability distributions fv, v ∈ N . That

16

is, for every u, v ∈ N, s ∈ S it holds that

PW∼fu [v ∈W ∧ s ∈ W] =
∑

W∈W[u,v,s]

fu(W) =
∑

Ŵ∈Ŵ[Yu,Yv,{s}]

∏

e∈Ŵ

P̂e

=
∑

Ŵ∈Ŵ[Yu,Yv,{s}]

(

∏

e∈Ŵ [Yu,Yv]

P̂e

)(

∏

e∈Ŵ [Yv,{s}]

P̂e

)

=
(

∑

Ŵ∈Ŵ[Yu,Yv]

∏

e∈Ŵ

P̂e

)

·
(

∑

Ŵ∈Ŵ[Yv ,{s}]

∏

e∈Ŵ

P̂e

)

=
(

∑

s′∈S

∑

Ŵ∈Ŵ[Yu,Yv ,{s′}]

∏

e∈Ŵ

P̂e

)

·
(

∑

Ŵ∈Ŵ[Yv,{s}]

∏

e∈Ŵ

P̂e

)

=
(

∑

s′∈S

∑

W∈W[u,v,s′]

fu(W) ·
(

∑

W∈W[v,s]

fv(W))

= PW∼fu [v ∈W] · PW∼fv [s ∈ W].

The second equality follows from the same reason as above, i.e., γv is injective, exactly those walks
in Ŵ [Yu, Yv, {s}] are mapped by γv to walks in W [u, v, s], and all walks in W [u, v, s] that have no
preimage in Ŵ [Yu, Yv, {s}] are zero-valued by fv. The third inequality holds by the fact that every
walk that is considered in the sum can be partitioned into Ŵ [Yu, Yv] and Ŵ [Yv, {s}]. The fourth
equality follows from factoring out by the subwalks. The fifth equality follows from the fact that
every walk in Ŵ reaches some sink node eventually, and therefore, the additional factor in the first
bracket sums up to one. Lastly, the sixth equality follows from the very same argument as before.

From the above equation we get in particular that for every u, v ∈ N, s ∈ S it holds that

PW∼fu [s ∈W | v ∈W] =
PW∼fu [s ∈ W ∧ v ∈ W]

PW∼fu [v ∈W]
= PW∼fv [s ∈W].

This concludes the proof.

With the formal definition of confluence, anonymity, and copy-robustness we can now show that
these properties altogether are impossible to achieve in the non-fractional case. Recall, that a non-
fractional delegation rule is defined as a delegation rule, that returns assignments A ∈ {0, 1}N×S.

Theorem 10. No non-fractional delegation rule satisfies confluence, anonymity, and copy-robustness.

Proof. Consider the graph (G1, c1) in Figure 3. There are four non-fractional assignments in
(G1, c1): Both v1 and v2 can either be assigned v3 or v4. Suppose a rule chooses assignment
A with Av1,v4 = Av2,v3 = 1. This rule cannot satisfy confluence, as any walk from v2 to v3
includes v1 and confluence requires 1 = Av2,v3 = PW∼fv2

[v3 ∈ W] = PW∼fv2
[v3 ∈ W | v1 ∈

W] = PW∼fv1
[v3 ∈ W] = Av1,v3 = 0. Now, suppose a delegation rule chooses assignment A with

Av1,v3 = Av2,v3 = 1. We define the bijection σ mapping v1 to v2, v2 to v1, v3 to v4 and v4 to v3.
Then, σ((G1, c)) = (G1, c) and thus A′

v1,v3
= A′

v2,v3
= 1 in the assignment A′ that the rule chooses

for σ((G1, c)). This contradicts anonymity, since 1 = Av1,v3 6= A′
σ(v1),σ(v3)

= A′
v2,v4

= 0. We can
make the same argument in the case of Av1,v4 = Av2,v4 = 1. For any rule satisfying anonymity and
confluence the chosen assignment A must therefore have Av1,v3 = Av2,v4 = 1.
The above arguments are independent of the cost function c, so long as we have c(v1, v2) = c(v2, v1)
and c(v1, v3) = c(v2, v4), needed for the equality of σ((G1, c)) and (G1, c). Thus, any rule satisfying

17

v1 v2v3 v4(G1, c1) :

v1 v3v2 v4(G2, c2) :

v1

v2

v3

v4(G3, c3) :

Figure 3: Situation in the proof of Theorem 10. Solid edges correspond to first-choice delegations,
dashed edges to second-choice delegations.

anonymity and confluence must choose the assignment A with Av1,v2 = Av3,v4 = 1 for (G2, c2).
We modify (G1, c1) by making v2 a casting voter (as in the definition of copy-robustness) and
retrieve (G3, c3). Copy robustness requires that the assignment from v1 to v4 in G1 (which is zero)
must be the same as the sum of assignments from v1 to v4 and v2. Thus, we have Av1,v3 = 1 for the
assignment A, that any confluent, anonymous, and copy-robust rule chooses for (G3, c3). However,
we can also construct (G3, c3) from (G2, c2) by making v3 a casting voter. Then, analogously,
copy-robustness requires Av1,v2 = 1 for the assignment of (G3, c3), leading to a contradiction.

Since the Random Walk Rule (and thus Mixed Borda Branching) satisfies generalizations
of the three axioms, the above impossibility is due to its restriction to non-fractional rules.

8 Concluding Remarks

We generalized the setting of liquid democracy with ranked delegations to allow for fractional del-
egation rules. Beyond that, we presented a delegation rule that can be computed in polynomial
time and satisfies a number of desirable properties. A natural follow-up question is to understand
the entire space of delegation rules satisfying these properties.
Fractional delegations have been recently implemented (see electric.vote) and studied by Degrave
[2014] and Bersetche [2022]. In contrast to our setting, these approaches let agents declare a desired
distribution over their delegates (instead of rankings). We remark that one could easily combine the
two approaches by letting agents declare their desired split within each equivalence class of their
ranking. Our algorithm can be extended for this setting (see Section 6).
There exists a line of research which aims to understand liquid democracy from an epistemic view-
point [Kahng et al., 2021, Caragiannis and Micha, 2019, Halpern et al., 2023]. Here, many of the
negative results stem from the fact that voting weight is concentrated on few casting voters. Since,
intuitively, ranked delegations can help to distribute the voting weight more evenly, it would be
interesting to study these through the epistemic lense.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (under grant BR 4744/2-1), the
Centro de Modelamiento Matemático (CMM) (under grant FB210005, BASAL funds for center of
excellence from ANID-Chile), ANID-Chile (grant ACT210005), and the Dutch Research Council
(NWO) (project number 639.023.811, VICI “Collective Information”). Moreover, this work was
supported by the National Science Foundation under Grant No. DMS-1928930 and by the Alfred
P. Sloan Foundation under grant G-2021-16778, while Ulrike Schmidt-Kraepelin was in residence at
the Simons Laufer Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during
the Fall 2023 semester.

18

electric.vote

We would like to thank Markus Brill for suggesting the setting to us as well as insightful
discussions. Moreover, we thank Jannik Matuschke for helpful discussions on min-cost branchings.
Also, we thank our colleagues from Universidad de Chile, Martin Lackner, and Théo Delemazure
for their valuable feedback.

References

J. Behrens and B. Swierczek. Preferential delegation and the problem of negative voting weight.
The Liquid Democracy Journal, 3:6–34, 2015.

F. Bersetche. A Voting Power Measure for Liquid Democracy with Multiple Delegation. Technical
report, arXiv: 2209.14128 [cs.MA], 2022.

M. Brill. Interactive democracy. In Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS) Blue Sky Ideas track, pages 1183–1187. IFAAMAS,
2018.

M. Brill, T. Delemazure, A.-M. George, M. Lackner, and U. Schmidt-Kraepelin. Liquid democracy
with ranked delegations. In Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI), pages 4884–4891. AAAI Press, 2022.

I. Caragiannis and E. Micha. A contribution to the critique of liquid democracy. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (IJCAI), pages 116–122. IJCAI,
2019.

Z. Christoff and D. Grossi. Binary voting with delegable proxy: An analysis of liquid democracy. In
Proceedings of the 16th Conference on Theoretical Aspects of Rationality and Knowledge (TARK),
pages 134–150, 2017.

R. Colley, U. Grandi, and A. Novaro. Unravelling multi-agent ranked delegations. Autonomous
Agents and Multi-Agent Systems, 36(1):1–35, 2022.

C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watershed: A unifying graph-based
optimization framework. IEEE transactions on pattern analysis and machine intelligence, 33(7):
1384–1399, 2010.

P. De Leenheer. An Elementary Proof of a Matrix Tree Theorem for Directed Graphs. SIAM
Review, 62(3):716–726, 2020.

J. Degrave. Resolving multi-proxy transitive vote delegation. Technical report, arXiv: 1412.4039
[cs.MA], 2014.

J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71
(4):233–240, 1967.

E. Fita Sanmartin, S. Damrich, and F. A. Hamprecht. Probabilistic Watershed: Sampling all
spanning forests for seeded segmentation and semi-supervised learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

19

E. Fita Sanmartin, S. Damrich, and F. A. Hamprecht. Directed probabilistic watershed. In Advances
in Neural Information Processing Systems (NeurIPS), pages 20076–20088, 2021.

D. R. Fulkerson. Packing rooted directed cuts in a weighted directed graph. Mathematical Pro-
gramming, 6(1):1–13, 1974.

J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2013. ISBN
978-1-107-03903-2.

P. Gölz, A. Kahng, S. Mackenzie, and A. D. Procaccia. The fluid mechanics of liquid democracy.
ACM Transactions on Economics and Computation, 9(4):1–39, 2021.

C. M. Grinstead and J. L. Snell. Introduction to Probability. American Mathematical Society,
second edition, 1997.

E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric Markov models.
International Journal on Software Tools for Technology Transfer, 13(1):3–19, 2011.

D. Halpern, J. Halpern, A. Jadbabaie, E. Mossel, A. Procaccia, and M. Revel. In defense of
liquid democracy. In Proceedings of the 24th ACM Conference on Economics and Computation
(ACM-EC), 2023. Forthcoming.

S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a corporate social network.
Technical report, Technical Disclosure Commons, 2015.

J. E. Hopcroft, J. D. Ullman, and A. V. Aho. Data structures and algorithms, volume 175. Addison-
wesley Boston, 1983.

A. Kahng, S. Mackenzie, and A. D. Procaccia. Liquid democracy: An algorithmic perspective.
Journal of Artificial Intelligence Research, 70:1223–1252, 2021.

N. Kamiyama. Arborescence problems in directed graphs: Theorems and algorithms. Interdisci-
plinary information sciences, 20(1):51–70, 2014.

T. Kavitha, T. Király, J. Matuschke, I. Schlotter, and U. Schmidt-Kraepelin. Popular branchings
and their dual certificates. Mathematical Programming, 192(1):223–237, 2022.

C. Kling, J. Kunegis, H. Hartmann, M. Strohmeier, and S. Staab. Voting behaviour and power
in online democracy: A study of liquidfeedback in germany’s pirate party. In International
Conference on Weblogs and Social Media, pages 208–217, 2015.

G. Kotsialou and L. Riley. Incentivising participation in liquid democracy with breadth first delega-
tion. In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 638–644. IFAAMAS, 2020.

F. Leighton and R. Rivest. Estimating a probability using finite memory. IEEE Transactions on
Information Theory, 32(6):733–742, 1986.

K. Natsui and K. Takazawa. Finding popular branchings in vertex-weighted digraphs. In Pro-
ceedings of the 16th International Conference and Workshops on Algorithms and Computation
(WALCOM), pages 303–314. Springer, 2022.

20

A. Paulin. Ten years of liquid democracy research an overview. Central and Eastern European
eDem and eGov Days, 2020.

J. Pitman and W. Tang. Tree formulas, mean first passage times and Kemeny’s constant of a
Markov chain. Bernoulli, 24(3):1942–1972, 2018.

W. Thomson. On the axiomatic method and its recent applications to game theory and resource
allocation. Social Choice and Welfare, 18(2):327–386, 2001.

W. Tutte. The dissection of equilateral triangles into equilateral triangles. 44(4):463–482, 1948.

21

Appendix

A Missing Proof of Section 2

For the proof of Lemma 2, we first explain how to compute the absorbing probabilities of an
absorbing Markov chain (G,P). W.l.o.g. we assume that the states V (G) are ordered such that the
non-absorbing states N come first and the absorbing states S last. We can then write the transition
matrix as

P =

[

D C
0 I|S|

]

,

where D is the |N | × |N | transition matrix from non-absorbing states to non-absorbing states and
C is the |N |× |S| transition matrix from non-absorbing states to absorbing states. I|S| denotes the
|S| × |S| identity matrix. The absorbing probability of an absorbing state s ∈ S, when starting a
random walk in a state v ∈ N is then given as the entry in the row corresponding to v and the
column corresponding to s in the |N | × |S| matrix (I|N | −D)−1C [Grinstead and Snell, 1997].

Lemma 2 (⋆). Adding a self-loop to a non-absorbing state v with probability p and scaling all
other transition probabilities from that state by 1− p does not change the absorbing probabilities of
an absorbing Markov-chain (G,P).

Proof. Let (D,C) and (D′, C′) be the transition matrices of the absorbing Markov chain before and
after adding the self-loop. Let dv,d

′
v, cv, c

′
v be the rows of D,D′, C, C′, corresponding to state v

respectively. Then

d
′
v = (1 − p)dv + pe⊺v ,

c
′
v = (1 − p)cv

and d
′
u = du and c

′
u = cu for all u 6= v.

We want to show that (I|N | − D)−1C = (I|N | − D′)−1C′. Let Z = (I|N | − D)−1C. Then
Z = (I|N | −D′)−1C′ if and only if Z = D′Z +C′. Notice, that only the row corresponding to v in
D′ and C′ differ from D and C and therefore for all u 6= v

zu = duZ + cu = d
′
uZ + c

′
u ,

where zu is the row of Z corresponding to u. The only thing left to show is zv = d
′
vZ + c

′
v. We

have

d
′
vZ + c

′
v = ((1− p)dv + pe⊺v)Z + (1− p)cv

= (1− p)dvZ + pe⊺vZ + (1− p)cv

= (1− p)(dvZ + cv) + pe⊺vZ

= (1− p)zv + pzv (since DZ + C = Z)

= zv ,

which concludes the proof.

22

B Missing Proofs of Section 5

Lemma 3 (⋆). Let (G, c) be a delegation graph and let (F , Ey , y) be the output of Algorithm 1.
Then:

(i) For every (G, c), the output of the algorithm is unique, i.e., it does not depend on the choice
of the strongly connected component in line 3.

(ii) F is laminar, i.e., for any X,Y ∈ F it holds that either X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅.

(iii) Branching B in (G, c) is min-cost iff (a) B ⊆ Ey, and (b) |B∩δ+(X)| = 1 for all X ∈ F , X ⊆
N .

(iv) For every X ∈ F , an in-tree T in G[X] = (X,E[X]), where E[X] = {(u, v) ∈ E | u, v ∈ X},
is min-cost iff (a) T ⊆ Ey, and (b) |T ∩ δ+(Y)| = 1 for all Y ∈ F such that Y ⊂ X.

Proof. Let (G, c) be a delegation graph and let (F , Ey , y) be the output of Algorithm 1.
We start by proving statement (ii). The sets in F correspond exactly to those sets with positive

y-value. Assume for contradiction that there exist two sets X,Y ∈ F with X ∩ Y 6= ∅ and none of
the subsets is a subset of the other. Assume without loss of generality that X was selected before Y
by the algorithm and let y1 and y2 be the status of the function y in each of the two situation. Then,
by construction of the algorithm it holds that G1 = (N ∪S,Ey1) is a subgraph of G2 = (N ∪S,Ey2).
This is because once an edge is added to the set of tight edges (denoted by Ey) it remains in this
set. Since Y is a strongly connected component in G2 without outgoing edge, it holds that for every
z ∈ X \ Y and z′ ∈ X ∩ Y , the node z′ does not reach z in G2. However, this is a contradiction to
the fact that X is a strongly connected component in the graph G1, which concludes the proof of
statement (ii).

We now turn to prove statement (i) and already assume that F is laminar. We fix an order
of the selected strongly connected components in line 3 of the algorithm. Then, suppose that for
some other choices in line 3, the algorithm returns some other output (F̂ , Eŷ, ŷ). Note that F̂ 6= F
or Eŷ 6= Ey implies that ŷ 6= y. Thus, it suffices to assume for contradiction that ŷ 6= y. Then
there must be a smallest set X , that has y(X) 6= ŷ(X) (without loss of generality we assume
y(X) > ŷ(X)). Let X = 2X \ {X} be the set of all strict subsets of X . Since we defined X to be of
minimal cardinality, we have y[X] = ŷ[X], where y[X], and ŷ[X] denote the restriction of y and ŷ
to X , respectively. Because y(X) > 0, all children of X are strongly connected by tight edges with
respect to y[X] and have no tight edges pointing outside of X . Now, consider the iteration of the
alternative run of the Algorithm 2, in which the algorithm added the last set in X ∪ {X}. Since
ŷ(X) < y(X), for every further iteration of the algorithm, a chosen set X ′ 6= X cannot contain any
node in X (because otherwise X ′ cannot form a strongly connected component without outgoing
edge). However, since the nodes in X cannot reach a sink via tight edges, this is a contradiction to
the termination of the algorithm.

We now prove statement (iii). The plan of attack is the following: First we define a linear
program that captures the min-cost branchings in a delegation graph. Second, we dualize the linear
program and show that y (more precisely a minor variant of y) is an optimal solution to the dual
LP, and third, utilize complementary slackness to prove the claim. For a given delegation graph

23

(G, c) with V (G) = N ∪ S we define the following linear program, also denoted by (LP):

min
∑

e∈E

c(e)xe

∑

e∈δ+(X)

xe ≥ 1 ∀ X ⊆ N

xe ≥ 0 ∀e ∈ E

We claim that every branching B in G induces a feasible solution to (LP). More precisely, given
a branching B, let

xe =

{

1 if e ∈ B

0 if e /∈ B.

The last constraint is trivially satisfied. Now, assume for contradiction that there exists X ⊆ N
such that the corresponding constraint in (LP) is violated. In this case the nodes in X have no
path towards some sink node in B, a contradiction to the fact that B is a (maximum cardinality)
branching. In particular, this implies that the objective value of (LP) is at most the minimum cost
of any branching in G (in fact the two values are equal, but we do not need to prove this at this
point). We continue by deriving the dual of (LP), to which we refer to as (DLP):

max
∑

X⊆N

yX

∑

X⊆N |e∈δ+(X)

yX ≤ c(e) ∀ e ∈ E

yX ≥ 0 ∀X ⊆ N

Now, let y be the function returned by Algorithm 1. We define ŷ, which is intuitively y restricted to
all subsets on N , more precisely, ŷ(X) = y(X) for all X ⊆ N . We claim that ŷ is a feasible solution
to (DLP). This can be easily shown by induction. More precisely, we fix any e ∈ E and show that
the corresponding constraint in (DLP) is satisfied throughout the execution of the algorithm. At
the beginning of the algorithm y (and hence ŷ) is clearly feasible for (DLP). Now, consider any step
in the algorithm and let X be the selected strongly connected component. If e ∈ δ+(X), then we
know that the constraint corresponding to e is not tight (since X has no tight edge in its outgoing
cut). Moreover, y is only increased up to the point that some edge in δ+(X) becomes tight (and
not higher than that). Hence, after this round, the constraint for e is still satisfied. If, on the other
hand, e /∈ δ+(X), then the left-hand-side of e’s constraint remains equal when y(X) is increased.
Hence, the constraint of e is still satisfied.

Next, we claim that there exists a branching B in G, such that for the resulting primal solution
x, it holds that

∑

e∈E c(e)xe =
∑

X⊆N ŷ(X). The branching B will be constructed in a top-down
fashion by moving along the laminar hierarchy of F . To this end let GX be the contracted graph
as defined in Algorithm 2. We start by setting X = N ∪ S. Since every node in N can reach some
sink via tight edges, we also know that every node in GX can reach some sink. Hence, a branching
in GX has exactly one edge per node in VX that is not a sink. Let’s pick such a branching BX .
We know that for every edge in BX = (Y, Z) there exists some edge in the original graph G that
is also tight, i.e., u ∈ Y and v ∈ Z such that (u, v) ∈ Ey . For every edge in BX pick an arbitrary
such edge and add it to B. Now, pick an arbitrary node Y ∈ V (GX). By construction, we know

24

that exactly one edge from B is included in δ+(Y), call this edge (u, v). Then, within the graph
GY , there exists exactly one node Z ∈ V (GY), that contains u. We are going to search for a
Z-tree within GY . We know that such a tree exists since GY is strongly connected by construction.
We follow the pattern from before, i.e., finding a Z-tree, mapping the edges back to the original
graph (arbitrarily), and then continuing recursively. For proving our claim, it remains to show
that

∑

e∈E c(e)xe =
∑

X⊆N ŷ(X). The crucial observation is that, by construction, every set in

F̂ = F \ {{s} | s ∈ S} is left by exactly one edge in B. Hence, we can partition the set F̂ into sets
⋃

e∈B F̂e, where F̂e = {X ∈ F̂ | e ∈ δ+(X)}. Moreover, observe that every edge in B is tight. As a
result we get that

∑

e∈B

c(e)xe =
∑

e∈B

∑

X∈F̂e

ŷ(X) =
∑

X⊆N

ŷ(X),

proving the claim.
As a result, note that we found a primal solution B (precisely, the x induced by B), and a

dual solution ŷ having the same objective value. By weak duality, we can conclude that both
solutions are in particular optimal. It only remains to apply complementary slackness to conclude
the claim. To this end, let B be a min-cost branching and x be the induced primal solution. By
the argument above we know that x is optimal. Now, for any X ⊆ N for which ŷ(X) > 0 (hence
X ∈ F), complementary slackness prescribes that the corresponding primal constraint is tight, i.e.,
∑

e∈δ+(X) xe = 1. Hence, the branching corresponding to x leaves the set X exactly once, and

part (b) of statement (iii) is satisfied. For statement (a) we apply complementary slackness in the
other direction. That is, when xe > 0, this implies that the corresponding dual constraint is tight,
implying that e has to be tight with respect to ŷ and therefore also with respect to y (recall that y
and ŷ only differ with respect to the sink nodes).

We now turn to proving statement (iv). This is done almost analogously to statement (iii). Fix
X ∈ F . In the following we argue about the min-cost in-trees in G[X] and how to characterize
these via a linear program. To this end, we add a dummy sink node r to the graph G[X] and call
the resulting graph Ĝ. More precisely, Ĝ = (X ∪ {r}, E[X] ∪ {(u, r) | u ∈ X}). The cost of any
edge (u, r), u ∈ X is set to c∗ := maxe∈E(G) c(e) + 1, where it is only important that this value is
larger than any other cost in the graph. We define the following LP:

min
∑

e∈E(Ĝ)

c(e)xe

∑

e∈δ
+

Ĝ
(Z)

xe ≥ 1 ∀ Z ⊆ X

xe ≥ 0 ∀e ∈ E(Ĝ)

For every min-cost in-tree T in G[X] we obtain a feasible solution to (LP). To this end, let u ∈ X
be the sink node of T and define T̂ = T ∪ {(u, r)}. Then, translate T̂ to its incidence vector x.

25

Given this observation, we again derive the dual of (LP), to which we refer to as (DLP):

max
∑

Z⊆X

yZ

∑

Z⊆X|e∈δ
+

Ĝ
(Z)

yZ ≤ c(e) ∀ e ∈ E(Ĝ)

yZ ≥ 0 ∀Z ⊆ X

Now, let y be the output of Algorithm 1 for the original graph G. We derive ŷ : 2X → R as follows:

ŷ(Z) =

{

y(Z) if Z ⊂ X

c∗ −maxu∈X

∑

Z⊂X|e∈δ
+

Ĝ
(Z) y(Z) if Z = X

First, analogously to (iii), it can be verified that ŷ is a feasible solution to (DLP). Moreover,
again analogously to (iii), there exists some min-cost r-tree in Ĝ and a corresponding primal solution
x, such that

∑

e∈E(Ĝ) c(e)xe =
∑

Z⊆X ŷX . (This tree is derived by first chosing a tight edge towards

the dummy root node r and then again recurse over the laminar family F restricted to X .) This
implies by weak duality that ŷ is an optimal solution to (DLP) and any min-cost r-tree in Ĝ is
an optimal solution to (LP). As a result, we can again apply complementary slackness in both
directions: Let T be a min-cost in-tree in G[X] with sink node u ∈ X . Then let T̂ = T ∪ {(u, r)}
be the corresponding min-cost r-tree in Ĝ and x be the corresponding incidence vector. Then,
complementary slackness implies that for any e ∈ E[X] for which xe > 0 (and hence e ∈ T), it
holds that the corresponding constraint in (DLP) is tight with respect to ŷ (and also y). This implies
that e ∈ Ey. On the other hand, for any Z ⊂ X , if ŷZ > 0, and hence X ∈ F , complementary
slackness prescribes that the corresponding primal constraint is tight, and hence |T ∩δ+

G[X](Z)| = 1,

concluding the proof.

C Further Results of Section 7

We introduce an additional axiom, which was in its essence first introduced by Behrens and Swierczek
[2015] and first given the name guru-participation in Kotsialou and Riley [2020]. The idea is that
a representative (the guru) of a voter, should not be worse off if said voter abstains from the vote.
Brill et al. [2022] define this property for non-fractional ranked delegations by requiring that any
casting voter that was not a representative of the newly abstaining voter should not loose voting
weight. This definition translates well into the setting of fractional delegations where we can have
multiple representatives per voter. For simplicity, we made a slight modification to the definition14,
resulting in a slightly stronger axiom.

Previously, we stated the general assumption that every delegating voter in a delegation graph
(G, c) has a path to some casting voter in G. In this section we modify given delegation graphs
by removing nodes or edges, which may result in an invalid delegation graph not satisfying this
assumption. To prevent this, we implicitly assume that after modifying a delegation graph, all
nodes in N not connected to any sink in S (we call them isolated) are removed from the graph.

14More specifically, Brill et al. [2022] use the notion of relative voting weight between the casting voters in the
definition of the axiom, which follows from our version of the axiom using absolute voting weight.

26

Guru Participation: A delegation rule satisfies guru-participation if the following holds for
every instance (G, c): Let (Ĝ, c) be the instance derived from (G, c) by removing a node v ∈ N (and
all newly isolated nodes), let Sv = {s ∈ S | Av,s > 0} be the set of representatives of v and let A

and Â be the assignments returned by the delegation rule for (G, c) and (Ĝ, c), respectively. Then

πs(Â) ≥ πs(A) ∀s ∈ S\Sv .

In particular, this implies
∑

s∈Sv

πs(Â) + 1 ≤
∑

s∈Sv

πs(A) .

In order to prove that the Random Walk Rule satisfies guru-participation we first show the
following lemma, saying that the voting weight of no casting voter decreases, when the in-edges of
another casting voter are removed from the graph.

Lemma C.1. For the Random Walk Rule, removing the incoming edges of some casting voter
s ∈ S (and all newly isolated voters) does not decrease the absolute voting weight of any casting
voter s′ ∈ S \ {s}.

Proof. Let (G, c) be a delegation graph and s ∈ S a sink. Let (Ĝ, c) be the delegation graph, where
the in-edges of s and all voters disconnected from casting voters are removed. Let P (ε) and P̂ (ε) be
the transition matrices of the corresponding Markov chains Mε and M̂ε. Then, for any ε > 0 and

edge e in Ĝ we have P
(ε)
e ≤ P̂

(ε)
e . Since no edge on a path from any v ∈ N to any s′ ∈ S \ {s} was

removed, we have Ŵ [v, s′] = W [v, s′] and P̂
(ε)
e ≥ P

(ε)
e for every edge e in Ĝ and ε > 0. Therefore,

for the absolute voting weight of any s′ ∈ S \ {s} in Ĝ we get

πs′(Â) = 1 +
∑

v∈N

lim
ε→0

∑

Ŵ∈Ŵ[v,s′]

∏

e∈Ŵ

P (ε)
e ≥ 1 +

∑

v∈N

lim
ε→0

∑

W∈W[v,s′]

∏

e∈W

P (ε)
e = πs′(A) ,

which concludes the proof.

Using Lemma C.1 and the proof of Theorem 8, we can show that guru-participation is satisfied
by the Random Walk Rule by removing a delegating voter step by step.

Theorem C.2. The Random Walk Rule satisfies guru participation.

Proof. Let (G, c) be a delegation graph and v ∈ N a delegating voter. We remove v from G in
three steps. First, we remove all out-edges of v, making v a casting voter and call the new delegation
graph (Ĝ1, c). Then we remove the in-edges of v (and all newly isolated voters) and get (Ĝ2, c).
Finally, we remove v itself to retrieve (Ĝ, c) as in the definition of guru-participation. Let A, Â1,
Â2 and Â be the assignments returned by the Random Walk Rule for (g, c), (Ĝ1, c), (Ĝ2, c) and
(Ĝ, c), respectively. From the proof of Theorem 8 we know that for every casting voter s ∈ S \ Sv

the voting weight in the instances (G, c) and (Ĝ1, c) is equal, i.e., πs(Â1) = πs(A). From Lemma
C.1 it follows that the voting weight of these voters can only increase if also the in-edges of v are
removed, i.e., πs(Â2) ≥ πs(Â1). Finally, removing the now completely isolated (now casting) voter
v does not change the absolute voting weight of any other voter and therefore πs(Â) ≥ πs(A).

27

D Relation to the Axioms of Brill et al. [2022]

First, we remark that the definition of a non-fractional delegation rule varies slightly from the
definition of a delegation rule in Brill et al. [2022]. That is, Brill et al. [2022] define the output of a
delegation rule as a mapping from each delegating voter to some path to a casting voter. Here, on the
other hand, we define the output of a non-fractional delegation rule as a (non-fractional) assignment
of delegating voters to casting voters. Hence, the definition of a delegation rule by Brill et al. [2022]
is slightly more restrictive than our definition, hence, ceteris paribus, the impossibility result holds
in particular for the smaller set of delegation rules. In the following, we refer to our definition as non-
fractional delegation rules and to the definition of Brill et al. [2022] as non-fractional* delegation
rules. We say that a non-fractional delegation rule is consistent to a non-fractional* delegation rule
if, for any input, the assignment in the former corresponds to the induced assignment in the latter.

Copy-robustness Next, consider the copy-robustness axioms. The axiom by Brill et al. [2022]
for non-fractional* delegation rules differs to our copy-robustness axiom restricted to non-fractional
delegation rules in two technicalities: First, Brill et al. [2022] consider the relative voting weight
instead of the absolute voting weight. However, since the number of voters does not change from
(G, c) to (Ĝ, c), this does not change the axiom. The other difference is that their axiom requires that
the delegating voter v under consideration has a direct path (in the output of the non-fractional*
delegation rule) to its assigned casting voter. Since a non-fractional delegation rule only outputs an
assignment and no path, we relaxed this assumption. Hence, our copy-robustness axiom is slightly
stronger than the one presented by Brill et al. [2022]. Nevertheless, it is easy to see that also the
weaker version of the axiom is necessarily violated within the proof of the impossibility theorem
when we utilize the definition of a delegation rule by Brill et al. [2022].

Confluence Lastly, consider the confluence axiom. Brill et al. [2022] define their confluence ax-
iom, which we denote by confluence* as follows: A non-fractional* delegation rule satisfies conflu-
ence* if, for every delegating voter v ∈ N exactly one outgoing edge of v appears within the union
of paths returned by the delegation rule. In particular, this is equivalent to the fact that the union
of the returned paths forms a branching in the delegation graph. We prove below that the two
axioms are in fact equivalent (within the restricted domain of non-fractional delegation rules).

Proposition 1. A non-fractional* delegation rule satisfies confluence* if and only if there exists a
consistent non-fractional delegation rule that satisfies confluence.

Proof. We start by proving the forward direction. Consider a non-fractional* delegation rule that
satisfies confluence*. We define a consistent non-fractional delegation rule by simply returning the
assignment induced by the returned paths instead of the paths. For showing that the rule satisfies
confluence, we define the probability distributions fv, v ∈ N by setting fv(W) = 1 if and only if
W is the path returned for v by the delegation rule. All other probabilities are set to zero. Then,
confluence* directly implies that the distributions fv, v ∈ N witness confluence.

For the other direction, consider a non-fractional delegation rule satisfying confluence, and let
fv, v ∈ N be the probability distributions that witness this fact. Building upon that, we define
a branching in G that is consistent with the outcome of the delegation rule. Interpreting this
branching as the output of a non-fractional* delegation rule then proves the claim. We construct
the branching as follows: We first set B = ∅. In the beginning, set all delegating voters to be
“active”, while all casting voters are “inactive”. Now, pick some arbitrary active voter v ∈ N and

28

consider some arbitrary walk W that obtains non-zero probability by the distribution fv. Construct
a path P from W by cutting the walk in the first appearance of some inactive voter, and then short
cutting all remaining cycles (if existent). Now, add all edges in P to B and set all delegating
voters on P to be “inactive”. Note that, by confluence, for each newly inactive voter u ∈ N it
holds that the casting voter assigned by the delegation rule corresponds to the sink node at the
end of the unique maximal path in B starting from u. We continue this process until all voters are
inactive. As a result, we created a branching that is consistent with the original delegation rule,
hence, there exists a consistent non-fractional* delegation rule that implicitly returns branchings,
i.e., is confluent.

29

	Introduction
	Preliminaries
	Liquid Democracy with Fractional Delegations
	Connection to Semi-Supervised Learning
	Computation of Mixed Borda Branching
	Equivalence of Mixed Borda Branching and Random Walk Rule
	Axiomatic Analysis
	Concluding Remarks
	Missing Proof of sec:preliminaries
	Missing Proofs of sec:borda
	Further Results of sec:axioms
	Relation to the Axioms of BDG+22a

