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We propose a new model for non-stationary integer-valued time series which is particularly suitable for data with
a strong trend. In contrast to popular Poisson-INGARCH models, but in line with classical GARCH models, we
propose to pick the conditional distributions from nearly scale invariant families where the mean absolute value
and the standard deviation are of the same order of magnitude. As an important prerequisite for applications in
statistics, we prove absolute regularity of the count process with exponentially decaying coefficients.
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1. Motivation and introduction of the model

We propose a new model for time series of counts which is particularly appropriate for modeling
explosive processes. So far, the literature on models for integer-valued time series is dominated by
processes where the distribution of the count variables conditioned on the past is taken from the family
of Poisson distributions, and where the intensities themselves are random and depend on lagged values
of the count and the intensity variables; see e.g. Chapter 4 in Weiss (2018). While most of the results
on statistical inference for these models are restricted to stationary time series, most of real life count
data exhibit strong seasonal patterns and trends, see Figure 1. These features have to be incorporated
into the model as simple detrending and deseasonalization is not feasible due to the discrete structure
of the data. With a view towards a possible explosive behavior of processes to be modeled, we believe

Figure 1. left: Monthly immigration numbers for the Netherlands with increasing trend and strongly increasing
seasonality; right: daily COVID-19 infection numbers from Italy with explosive trend.
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that it is natural that the expected values of the count variables are of the same order of magnitude as
the respective standard deviations. This is in contrast to the family of Poisson distributions where, for
𝑋 ∼ Poi(𝜎), 𝐸𝑋 = 𝜎 but

√︁
var(𝑋) =

√
𝜎, and so

√︁
var(𝑋)/𝐸𝑋 tends to zero as 𝜎→∞.

Note that overdispersion in the sense of var(𝑋𝑡 ) = 𝜂𝐸𝑋𝑡 for some 𝜂 > 1 can be incorporated
in (log-)linear Poisson regression models by including exogenous regressors, see e.g. Cameron and
Trivedi (1986) and Xu et al. (2012). This approach is frequently used in various fields; e.g. in demogra-
phy, health, and biology (as in Renshaw and Haberman (2003), Powell et al. (2015), and Aagard, Lyons,
and Thogmartin (2018)) and can be adapted to non-linear Poisson autoregressions: If

𝑋𝑡 | 𝜎(𝜎0, 𝑋0, . . . , 𝜎𝑡−1, 𝑋𝑡−1) ∼ Poi(𝜎𝑡 𝑍𝑡 ) with 𝜎𝑡 = 𝑓 (𝜎𝑡−1, 𝑋𝑡−1)

where (𝑍𝑡 )𝑡 is a sequence of i.i.d. random variables with mean 𝜇𝑧 and variance 𝜎2
𝑧 ∈ (0,∞) such

that 𝑍𝑡 is stochastically independent of 𝜎(𝜎0, 𝑋0, . . . , 𝜎𝑡−1, 𝑋𝑡−1), then it follows from

𝐸 [𝑋𝑡 | 𝜎(𝜎0, 𝑋0, . . . , 𝜎𝑡−1, 𝑋𝑡−1)] = 𝑓 (𝜎𝑡−1, 𝑋𝑡−1) 𝜇𝑧 and

var(𝑋𝑡 | 𝜎(𝜎0, 𝑋0, . . . , 𝜎𝑡−1, 𝑋𝑡−1)) = 𝑓 2 (𝜎𝑡−1, 𝑋𝑡−1)𝜎2
𝑧 + 𝑓 (𝜎𝑡−1, 𝑋𝑡−1) 𝜇𝑧

that the degree of conditional dispersion can be changed adapting mean and variance of the exogenous
regressors accordingly. Indeed, several well-known count time series models are special cases of these
so-called mixed Poisson models. For instance, if the 𝑍𝑡 ’s are binomial, then the conditional distribution
of 𝑋𝑡 is a zero-inflated Poisson distribution and 𝑍𝑡 ’s being Gamma distributed result in a negative
binomial distribution, see e.g. Kremer et al. (2021) and Doukhan, Leucht, and Neumann (2022).

Here, we propose an alternative approach to assure that conditional expectation and variance are of
the same order of magnitude. We pick the conditional distributions from a family of (nearly) scale-
invariant distributions. Candidates for such distributions can be found by discretizing scale-invariant
continuous distributions. Let 𝑌 be a non-negative random variable with a probability density 𝑝. Then
we can define related integer-valued random variables 𝑋𝜎 by setting

𝑋𝜎 = ⌊𝜎𝑌⌋,

i.e. 𝑋𝜎 = 𝑘 if and only if 𝜎𝑌 ∈ [𝑘, 𝑘 + 1). In what follows we denote the distribution of 𝑋𝜎 by 𝑃𝜎 and
the corresponding probability mass function by 𝑝𝜎 . For example, if 𝑌 is exponentially distributed with
rate parameter 1, then 𝜎𝑌 is exponentially distributed with rate parameter 𝜎 and 𝐸 [𝜎𝑌 ] =

√︁
var(𝜎𝑌 ) =

𝜎. We obtain for the corresponding integer-valued random variable 𝑋𝜎 that

𝑃𝜎

(
{𝑘}

)
= 𝑒−𝑘/𝜎 − 𝑒−(𝑘+1)/𝜎 = (1 − 𝑝)𝑘 𝑝 ∀𝑘 ∈ N0,

where 𝑝 = 1 − 𝑒−1/𝜎 . In this case, 𝑋𝜎 has a geometric distribution with success parameter 𝑝. Further-
more, 𝐸𝑋𝜎 = (1 − 𝑝)/𝑝 = 𝑒−1/𝜎/(1 − 𝑒−1/𝜎) and

√︁
var(𝑋𝜎) =

√︁
(1 − 𝑝)/𝑝2 = 𝑒−1/(2𝜎)/(1 − 𝑒−1/𝜎)

are of the same order of magnitude as 𝜎 → ∞. (This version of a geometric distribution has sup-
port N0 and describes the number of failures before the first success of independent Bernoulli trials
with success parameter 𝑝.) Another example can be generated from the family of normal distributions.
If 𝑌 ∼ 𝑁 (0, 𝜈2), then |𝑌 | has a so-called half-normal distribution, and corresponding integer-valued
random variables can be generated by setting 𝑋𝜎 = ⌊𝜎𝑌⌋. In both cases, the families (𝑃𝜎)𝜎>0 satisfy
the conditions imposed in this paper.

We impose a GARCH-type structure for the count process, i.e.

𝑋𝑡 | F𝑡−1
𝑑
= ⌊𝜎𝑡 𝑌⌋ ∼ 𝑃𝜎𝑡

, 𝑡 ∈ N, (1.1a)



Log-linear count processes 3

where F𝑠 = 𝜎(𝜎0, 𝑋0, 𝑍0, . . . , 𝜎𝑠 , 𝑋𝑠 , 𝑍𝑠) and 𝜎𝑡 is a function of 𝜎𝑡−1, 𝑋𝑡−1, and an exogenous co-
variate 𝑍𝑡−1 which may describe e.g. seasonal effects or the effect of a changing environment. To be
specific, we will assume that 𝜎𝑡 = 𝑓 (𝜎𝑡−1, 𝑋𝑡−1) · 𝑍𝑡−1, which can be equivalently rewritten as

ln(𝜎𝑡 ) = ln( 𝑓 (𝜎𝑡−1, 𝑋𝑡−1)) + 𝐶𝑡−1, (1.1b)

where 𝐶𝑡 = ln(𝑍𝑡 ). Note that the initial variable 𝜎0 ≥ 0 can be chosen arbitrarily as long as some
moment conditions are satisfied, see Theorem 2.1 for details.

To work with such processes it is necessary to have some probabilistic properties at our disposal. For
classical GARCH processes, mixing properties have been known for a long time; see e.g. Boussama
(1998) for linear and Carrasco and Chen (2002) and Francq and Zakoïan (2006) for nonlinear variants.
These properties are typically stated for the bivariate process consisting of the observable and the state
variables. In sharp contrast, for integer-valued GARCH, the state process (𝜎𝑡 )𝑡∈N0 is not mixing in
general; see Remark 3 in Neumann (2011) for a counterexample. Moreover, mixing properties of clas-
sical GARCH processes can be deduced under weak moment conditions on the innovation distribution
(see Francq and Zakoïan (2006)), while for Poisson-INGARCH time series all conditional moments
given 𝜎𝑡 exist. In contrast, here we require only 𝐸 [ln+ (𝑌 )] < ∞ with ln+ (𝑌 ) = max{ln(𝑌 ),0} which
means that only logarithmic conditional moments of the 𝑋𝑡 may exist.

In this paper we search for conditions that allow us to prove absolute regularity (𝛽-mixing) of the
count process (𝑋𝑡 )𝑡∈N0 (N0 = N ∪ {0} = {0,1,2, . . .}). This will be done by a coupling approach de-
scribed in greater detail in Section 2. To illustrate the usefulness of this result we discuss an application
in statistics in Section 3. The proof of the main result is contained in Section 4 and the proof of asymp-
totic normality of a least squares estimator of a trend parameter is postponed to Section 5. Validity of
a bootstrap method to quantify uncertainty of this estimator is proved in Section 6. Proofs of a few
technical results are collected in a final Section 7.

2. Absolute regularity of the count process

Let (Ω,A, 𝑃) be a probability space and A1, A2 be two sub-𝜎-algebras of A. Then the coefficient of
absolute regularity is defined as

𝛽(A1,A2) = 𝐸
[
sup{|𝑃(𝐵 | A1) − 𝑃(𝐵) | : 𝐵 ∈ A2}

]
.

For a process X = (𝑋𝑡 )𝑡∈N0 on (Ω,F , 𝑃), the coefficients of absolute regularity at the point 𝑘 are
defined as

𝛽𝑋 (𝑘, 𝑛) = 𝛽
(
𝜎(𝑋0, 𝑋1, . . . , 𝑋𝑘), 𝜎(𝑋𝑘+𝑛, 𝑋𝑘+𝑛+1, . . .)

)
and the (global) coefficients of absolute regularity as

𝛽𝑋 (𝑛) = sup{𝛽𝑋 (𝑘, 𝑛) : 𝑘 ∈ N0};

see e.g. Doukhan (1994). The intended approach to prove absolute regularity is inspired by the fact
that one can construct, on a suitable probability space (Ω̃, F̃ , 𝑃) two versions of the process (𝑋𝑡 )𝑡∈N0 ,
(𝑋𝑡 )𝑡∈N0 and (𝑋 ′

𝑡 )𝑡∈N0 , such that (𝑋0, . . . , 𝑋𝑘) and (𝑋 ′
0, . . . , 𝑋

′
𝑘
) are independent and

𝛽𝑋 (𝑘, 𝑛) = 𝑃

(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 for some 𝑟 ≥ 0
)
.

Since such an optimal coupling seems to be out of reach in our context we confine ourselves to construct
a “reasonably good” coupling. Actually, if (𝑋𝑡 )𝑡∈N0 and (𝑋 ′

𝑡 )𝑡∈N0 defined on a common probability
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space (Ω̃, F̃ , 𝑃) are any two versions of (𝑋𝑡 )𝑡∈N0 such that (𝑋0, . . . , 𝑋𝑘) and (𝑋 ′
0, . . . , 𝑋

′
𝑘
) are indepen-

dent, then

𝛽𝑋 (𝑘, 𝑛) ≤ 𝐸

[
sup

𝐶∈𝜎 (C)

{��𝑃 (
(𝑋𝑘+𝑛, 𝑋𝑘+𝑛+1, . . .) ∈ 𝐶 | 𝑋0, . . . , 𝑋𝑘

)
−𝑃

(
(𝑋 ′

𝑘+𝑛, 𝑋
′
𝑘+𝑛+1, . . .) ∈ 𝐶 | 𝑋 ′

0, . . . , 𝑋
′
𝑘

) ��}]
≤ 𝑃

(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 for some 𝑟 ∈ N0

)
= 𝑃

(
𝑋𝑘+𝑛 ≠ 𝑋 ′

𝑘+𝑛

)
+

∞∑︁
𝑟=1

𝑃

(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1, . . . , 𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛

)
. (2.1)

(In the second line of this display, 𝜎(C) denotes the 𝜎-algebra generated by the cylinder sets.) We con-
struct on a suitable probability space (Ω̃, F̃ , 𝑃) two versions

(
(𝜎̃𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

and
(
(𝜎̃′

𝑡 , 𝑋
′
𝑡 ,𝐶

′
𝑡 )

)
𝑡∈N0

of the process
(
(𝜎𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

such that

𝑃
(
𝑋𝑡 = 𝑋 ′

𝑡 | 𝜎̃𝑡 , 𝜎̃
′
𝑡

)
=

∞∑︁
𝑘=0

𝑃𝜎̃𝑡
({𝑘}) ∧ 𝑃𝜎̃′

𝑡
({𝑘}) = 1 − 𝑑𝑇𝑉

(
𝑃𝜎̃𝑡

, 𝑃𝜎̃′
𝑡

)
, (2.2)

where 𝑑𝑇𝑉 (𝑃,𝑄) = (1/2)∑∞
𝑘=0 |𝑃(𝑘) − 𝑄(𝑘) | denotes the total variation distance of two count mea-

sures 𝑃 and 𝑄. Furthermore, if the density 𝑝 of 𝑌 is nonincreasing on [0,∞) or differentiable every-
where on (0,∞) and

∫ ∞
0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥 <∞, then Lemma 7.1 shows that

𝑑𝑇𝑉
(
𝑃𝜎 , 𝑃𝜎′

)
= 𝑂

(
| ln(𝜎) − ln(𝜎′) |

)
.

Hence, it is important to have the evolution of the process
(
| ln(𝜎̃𝑡 ) − ln(𝜎̃′

𝑡 ) |
)
𝑡∈N0

under control. Since
𝐸
�� ln(⌊𝜎𝑌⌋ + 1) − ln(⌊𝜎′𝑌⌋ + 1)

�� ≤ 𝛾 | ln(𝜎) − ln(𝜎′) | for

𝛾 :=
∫ ∞

0
sup{𝑝(𝑦) : 𝑦 ≥ 𝑥} 𝑑𝑥

(see Lemma 7.3 below) we suppose that the link function 𝑓 in (1.1b) satisfies the following contractive
condition.�� ln (

𝑓 (𝜎, 𝑥)
)
− ln

(
𝑓 (𝜎′, 𝑥′)

) ��
≤ 𝑎 | ln(𝜎) − ln(𝜎′) | + 𝑏 | ln(𝑥 + 1) − ln(𝑥′ + 1) | ∀𝜎,𝜎′ > 0, 𝑥, 𝑥′ ∈ N0, (2.3a)

where 𝑎, 𝑏 ≥ 0 and 𝑎+ 𝑏𝛾 < 1. Note that the latter condition implies validity of the classical contraction
condition 𝑎 + 𝑏 < 1 since it holds 𝛾 ≥ 1 by definition. Furthermore, we assume that 𝐶𝑡 is independent
of F𝑡−1 and 𝑋𝑡 , and that

𝑀 := sup
𝑡

𝐸 |𝐶𝑡 − 𝐸𝐶𝑡 | < ∞. (2.3b)

Note that this includes the specification proposed in Fokianos and Tjøstheim (2011),

ln(𝜎𝑡 ) = 𝑎 ln(𝜎𝑡−1) + 𝑏 ln(𝑋𝑡−1 + 1) + 𝑑 ∀𝑡 ∈ N,
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where the count variable 𝑋𝑡 given the past had a Poisson distribution with random intensity 𝜎𝑡 , and
𝑑 was a constant. In that case, for appropriately chosen values of the parameters 𝑎 and 𝑏, there exists
a stationary process with such a dynamics. Lemmas 4.1, 4.2, and 7.1 allow us to prove the following
main result of this contribution.

Theorem 2.1. Suppose that (1.1a), (1.1b), (2.3a), and (2.3b) are fulfilled, and let 𝐸 | ln(𝜎0) | +
𝐸 ln+ (𝑌 ) <∞. We assume that the density 𝑝 : [0,∞) → [0,∞) of 𝑌 is

(i) monotonously non-increasing
or

(ii) everywhere differentiable.

In the former case we set 𝛾 = Γ = 1 and in the latter 𝛾 =
∫ ∞

0 sup{𝑝(𝑦) : 𝑦 ≥ 𝑥} 𝑑𝑥 and Γ =
(
1 +∫ ∞

0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥
)
/2. Then the count process (𝑋𝑡 )𝑡∈N0 is absolutely regular (𝛽-mixing), and the cor-

responding coefficients satisfy

𝛽𝑋 (𝑛) ≤ (𝑎 + 𝑏𝛾)𝑛 Γ

1 − 𝑎

{
2𝐸 | ln(𝜎0) | +

2𝑏 (∥𝑝∥∞ + 𝐸 ln+ (𝑌 )) + 2𝑀
1 − 𝑎 − 𝑏

}
.

Theorem 2.1 can serve as a basis for various statistical applications. For instance, confidence sets and
statistical tests can be developed relying on Rio’s (1995) CLT for triangular arrays of nonstationary
random variables; see Section 3 for details.

Remark 1. The monotonicity assumption on 𝑝 is satisfied for instance if 𝑌 is exponentially distributed
or if it is half-normal. If 𝑌 has a chi-square distribution with at least 𝑘 = 3 degrees of freedom, then the
corresponding density 𝑝𝑘 is unimodal with a mode at 𝑘 − 2. However it is differentiable everywhere on
(0,∞) and∫ ∞

0
𝑥 |𝑝′𝑘 (𝑥) | 𝑑𝑥 =

∫ 𝑘−2

0
𝑥 𝑝′𝑘 (𝑥) 𝑑𝑥 −

∫ ∞

𝑘−2
𝑥 𝑝′𝑘 (𝑥) 𝑑𝑥

= 2(𝑘 − 2)𝑝𝑘 (𝑘 − 2) −
∫ 𝑘−2

0
𝑝𝑘 (𝑥) 𝑑𝑥 +

∫ ∞

𝑘−2
𝑝𝑘 (𝑥) 𝑑𝑥 < ∞.

Hence, our conditions on the distribution of 𝑌 are satisfied. Another example is given by the family of
Cauchy distributions. Such a distribution has a density 𝑝(𝑥) = 𝜋𝛾/((𝑥 − 𝜇)2 + 𝛾2) on R, where 𝜇 ∈ R is
the location and 𝛾 > 0 the scale parameter. If 𝑍 follows such a distribution we would call the distribution
of 𝑌 = |𝑍 | to be half-Cauchy. Such a distribution does not have finite moments of order greater than or
equal to one, however, 𝐸 ln+ (𝑌 ) is finite.𝑌 has a density 𝑝(𝑥) = 𝜋𝛾/((𝑥− 𝜇)2 +𝛾2) +𝜋𝛾/((𝑥 + 𝜇)2 +𝛾2)
which is not non-increasing on [0,∞) if |𝜇 | is large, however, it is decreasing on [|𝜇 |,∞). Again, our
conditions are satisfied by this family of distributions.

Remark 2. The proof of Theorem 2.1 relies heavily on the discretization ⌊𝜎𝑌⌋ to bound (2.1) and
(2.2), respectively. Still, these two relations build the basis for proving absolute regularity of other
count time series such as Poisson INGARCH processes and variants thereof, see e.g. Doukhan and
Neumann (2019), Neumann (2021), or Doukhan, Leucht, and Neumann (2022).

3. An application in statistics
Suppose that we observe the random variables 𝑋1, . . . , 𝑋𝑛 which follow a log-linear model similar to
that proposed in Fokianos and Tjøstheim (2011). However, we include an increasing intercept term
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which causes a strong trend. To be specific, we assume that

ln(𝜎𝑡 ) = 𝑎 ln(𝜎𝑡−1) + 𝑏 ln(𝑋𝑡−1 + 1) + 𝑐 ln(𝑡), (3.1)

where 𝑎 ≥ 0, 𝑏, 𝑐 > 0, and 𝑎 + 𝑏𝛾 < 1. We also assume that

𝑋𝑡 | F𝑡−1
𝑑
= ⌊𝜎𝑡𝑌⌋ .

Although consistent estimation of the parameters 𝑎, 𝑏 and 𝑐 is a highly relevant issue, it is left for future
research as it is mathematically demanding. On the one hand, the 𝜎𝑡 ’s cannot be observed. Hence,
one has to come up with suitable estimators for the volatility process as a preliminary step if 𝑎 ≠ 0.
Moreover, we expect the convergence rate of least-squares parameter estimators to be comparatively
poor in view of the multicollinarity of (ln(𝑡))𝑡=2,...,𝑛 and (ln(𝑋𝑡−1 + 1))𝑡=2,...,𝑛. However, under mild
regularity conditions we obtain that

𝐸 ln(𝑋𝑡 + 1) = 𝑐

1 − 𝑎 − 𝑏
ln(𝑡) + 𝑂 (1); (3.2)

see (5.4) and (5.5) in Section 5 below. Hence, the parameter 𝜃 := 𝑐/(1 − 𝑎 − 𝑏) characterizes the trend
in the data. To estimate it, we may fit the regression model

ln(𝑋𝑡 + 1) = 𝜃 ln(𝑡) + 𝜀𝑡 , 𝑡 = 1, . . . , 𝑛.

The ordinary least squares estimator is given as

𝜃̂𝑛 =

∑𝑛
𝑡=1 ln(𝑡) ln(𝑋𝑡 + 1)∑𝑛

𝑡=1
(
ln(𝑡)

)2

and it is centered about the best projection 𝜃 = 𝜃 (𝑛) which is given as

𝜃 = arg min
𝜃

𝑛∑︁
𝑡=1

𝐸
�� ln(𝑋𝑡 + 1) − 𝜃 ln(𝑡)

��2 =

∑𝑛
𝑡=1 ln(𝑡) 𝐸 ln(𝑋𝑡 + 1)∑𝑛

𝑡=1
(
ln(𝑡)

)2 .

Using the mixing property derived in Theorem 2.1 in conjunction with Rio’s (1995) central limit the-
orem for nonstationary and mixing random variables we can prove the following central limit theorem.
In particular, it shows a non-standard rate of convergence of our estimator.

Proposition 3.1. Suppose that the conditions of Theorem 2.1 are satisfied and

ln(𝜎𝑡 ) = 𝑎 ln(𝜎𝑡−1) + 𝑏 ln(𝑋𝑡−1 + 1) + 𝑐 ln(𝑡),

where 𝑎 ≥ 0, 𝑏, 𝑐 > 0, and 𝑎+𝑏𝛾 < 1. Moreover, assume that 𝜎0 ≥ 1 and ∥ ln(𝜎0)∥2+𝛿 + ∥ ln+ (𝑌 )∥2+𝛿 <

∞ for some 𝛿 > 0. Then,
√
𝑛 ln(𝑛)

(
𝜃̂𝑛 − 𝜃

) 𝑑−→ N
(
0, 𝜎2) ,

where 𝜎2 = var
(
ln(𝑌 )

)
(1 − 𝑎)2/(1 − (𝑎 + 𝑏))2.

Remark 3. It is known that
∫ 1

0 | ln(𝑦) |𝑘 𝑑𝑦 = 𝑘! ∀𝑘 ∈ N. Therefore,
∫ 1

0 | ln(𝑦) |2+𝛿 𝑝(𝑦) 𝑑𝑦 < ∞ if

∥𝑝∥∞ < ∞, which implies that 𝐸
[
| ln(𝑌 ) |2+𝛿

]
≤ ∥𝑝∥∞

∫ 1
0 | ln(𝑦) |2+𝛿 𝑑𝑦 + 𝐸

[
| ln+ (𝑌 ) |2+𝛿

]
< ∞. This

means in particular that the variance of ln(𝑌 ) is finite under the above conditions.
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To illustrate the dynamics of these models, we revisit the COVID-19 data from Italy. We estimate
𝜃̂𝑛 = 2.48 and visualize the curve 𝑡 ↦→ 𝑡 𝜃𝑛 , see Figure 2. Moreover, we investigate the finite sample

Figure 2. COVID-19 infection numbers with estimated trend curve.

behaviour of our estimator in synthetic samples of sizes 𝑛 = 200 and 𝑛 = 500 with parameters chosen as
𝑎 = 𝑏 = 0.1 and 𝑐 = 2 which give 𝜃 = 2.5, see Figure 3. The distribution of 𝑌 is chosen to be either half-
normal (left) or exponential (right), both with expectation 1. The box plots are based on 1000 iterations
and the red line marks the target value 𝜃. We obtained 𝜃 by simulation with 20000 Monte Carlo loops
as it depends on the unknown distribution of the 𝑋𝑡 ’s as well as the sample size. The performance of
the proposed estimator is very convincing in the sense that the median is very close to the target value
also for smaller sample size and that the variability becomes smaller as sample sizes increase.

2.
32
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36
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44

half−normal, n=200

2.
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2.
36

2.
40
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44

half−normal, n=500
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30
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35
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40

exponential, n=200

2.
30
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35

2.
40

exponential, n=500

Figure 3. Boxplots for sample sizes 𝑛 = 200 and 𝑛 = 500: left: 𝑌 ∼ half-normal with 𝐸𝑌 = 1, right: 𝑌 ∼ 𝐸𝑥𝑝(1).

It is possible to construct an asymptotic confidence interval for the parameter 𝜃. To this end, we have
to approximate the distribution of

𝑇𝑛 :=
√
𝑛 ln(𝑛)

(
𝜃̂𝑛 − 𝜃

)
=

𝑛∑︁
𝑡=1

𝑤𝑡

[
ln(𝑋𝑡 + 1) − 𝐸 ln(𝑋𝑡 + 1)

]
,
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where 𝑤𝑡 =
√
𝑛 ln(𝑛) ln(𝑡)/∑𝑛

𝑠=1 (ln(𝑠))2. This can be conveniently achieved using the so-called de-
pendent wild bootstrap which was introduced by Shao (2010) for smooth functions of the mean. In our
context, we approximate the distribution of 𝑇𝑛 by the conditional distribution of

𝑇∗
𝑛 :=

𝑛∑︁
𝑡=1

𝑤𝑡

[
ln(𝑋𝑡 + 1) − 𝑚𝑛 (𝑡)

]
𝑊∗

𝑡 ,

where 𝑚𝑛 (𝑡) is an appropriate estimator of 𝑚(𝑡) = 𝐸 ln(𝑋𝑡 + 1), and (𝑊∗
𝑡 )𝑡=1,...,𝑛 is a triangular array

of auxiliary random variables 𝑊∗
𝑡 =𝑊∗

𝑡 ,𝑛 which are independent of the original sample 𝑋1, . . . , 𝑋𝑛,
satisfy 𝐸𝑊∗

𝑡 = 0 and cov(𝑊∗
𝑠 ,𝑊

∗
𝑡 ) = 𝜌( |𝑠 − 𝑡 |/𝑙𝑛), where 𝜌(𝑢) →𝑢→0 1 and

∑𝑛−1
𝑟=1 |𝜌( |𝑟 |/𝑙𝑛) | =𝑂 (𝑙𝑛).

The parameter 𝑙𝑛 plays a similar role as the block length in blockwise bootstrap methods and it has to
be chosen such that 𝑙𝑛 →𝑛→∞ ∞ and 𝑙𝑛 = 𝑜(𝑛). To simplify matters we suppose that 𝑊∗

1 , . . . ,𝑊
∗
𝑛 are

jointly Gaussian. It turns out that the function 𝑚 is monotonously increasing (see Lemma 6.1 below)
and that 𝑚(𝑡) =𝑂 (ln(𝑡)). Hence 𝑚(𝑡) can be well estimated by a nearest neighbor estimator

𝑚𝑛 (𝑡) =
∑︁

𝑠 : |𝑠−𝑡 | ≤𝑁𝑛

ln(𝑋𝑠 + 1)/#{𝑠 ∈ {1, . . . , 𝑛} : |𝑠 − 𝑡 | ≤ 𝑁𝑛},

where 𝑁𝑛 →∞ as 𝑛→∞. It follows from (5.7) and (5.8) that

var
(
𝑚𝑛 (𝑡)

)
= 𝑂

(
1/𝑁𝑛

)
. (3.3)

Furthermore, since
��𝐸𝑚𝑛 (𝑡) − 𝑚(𝑡)

�� ≤ 𝐸 ln(𝑋(𝑡+𝑁𝑛 )∧𝑛 + 1) − 𝐸 ln(𝑋(𝑡−𝑁𝑛 )∨1 + 1) we obtain that

𝑛∑︁
𝑡=1

��𝐸𝑚𝑛 (𝑡) − 𝑚(𝑡)
��2 = 𝑂

(
𝑁𝑛 (ln(𝑛))2) . (3.4)

Remark 4. A simple way to construct the random variables 𝑊∗
1 , . . . ,𝑊

∗
𝑛 is to take first an Ornstein-

Uhlenbeck process (𝑈𝑡 )𝑡≥0, i.e. a Gaussian process with continuous sample paths, 𝐸𝑈𝑡 = 0 and
cov(𝑈𝑠 ,𝑈𝑡 ) = exp(−|𝑠 − 𝑡 |), and to define 𝑊∗

𝑡 = 𝑈𝑡/𝑙𝑛 , 𝑡 = 1, . . . , 𝑛. Then the practical implementa-
tion becomes easy since a discrete sample of an Ornstein-Uhlenbeck process forms an AR(1) process,
i.e.

𝑊∗
𝑡 = 𝑒−1/𝑙𝑛 𝑊∗

𝑡−1 +
√︁

1 − 𝑒−2/𝑙𝑛 𝜀∗𝑡 ,

where 𝑊∗
1 , 𝜀

∗
2, . . . , 𝜀

∗
𝑛 are independent standard normal variables.

Proposition 3.2. Suppose that the conditions of Proposition 3.1 are satisfied. Furthermore, we as-
sume that 𝜎0 = 1, ∥ ln+ (𝑌 )∥4+𝛿 < ∞ for some 𝛿 > 0, and that 𝑙𝑛 −→

𝑛→∞
∞, 𝑙𝑛/𝑛 −→

𝑛→∞
0, and 𝑙𝑛/𝑁𝑛 +

𝑙𝑛𝑁𝑛 ((ln(𝑛))2/𝑛 −→
𝑛→∞

0. Then

(i) sup𝑥∈R

��𝑃 (
𝑇𝑛 ≤ 𝑥

)
− 𝑃

(
𝑇∗
𝑛 ≤ 𝑥 | 𝑋1, . . . , 𝑋𝑛

) �� 𝑃−→ 0.
(ii) Let 𝑢∗1−𝛼/2 be the (1 − 𝛼/2)-quantile of 𝑃𝑇∗

𝑛 |𝑋1 ,...,𝑋𝑛 . Then

𝑃

(
𝜃 ∈

[
𝜃̂𝑛 −

𝑢∗1−𝛼/2√
𝑛 ln(𝑛)

, 𝜃̂𝑛 +
𝑢∗1−𝛼/2√
𝑛 ln(𝑛)

] )
−→
𝑛→∞

1 − 𝛼.
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Table 1. Rejection frequencies

𝑛 = 500 half-normal exponential
𝑙𝑛 𝑁𝑛 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.05

20 55 0.900 0.953 0.860 0.919

20 65 0.940 0.969 0.904 0.952

25 60 0.912 0.953 0.887 0.933

25 70 0.944 0.976 0.920 0.956

30 65 0.922 0.959 0.895 0.940

30 75 0.951 0.982 0.926 0.961

We illustrate the finite sample performance of the proposed bootstrap method by some simulations
regarding the coverage of the bootstrap-based (1−𝛼)-confidence intervals for 𝛼 = 0.05 and 𝛼 = 0.1. The
data are generated in the same way as in the previous simulations. We use 1000 Monte Carlo loops, each
consisting of 1000 bootstrap replications while varying the window size 𝑁𝑛 of the nearest-neighbor
estimator and the tuning parameter 𝑙𝑛 of the dependent wild bootstrap, see Table 3. We observe that
the performance of our bootstrap method is convincingly stable with respect to the choice of 𝑙𝑛 as long
as 𝑁𝑛 is not chosen too small. Conversely, choosing 𝑁𝑛 too large results in a higher variance of the
bootstrap estimator which then gives wider confidence intervals with high coverage.

4. Proof of Theorem 2.1

The proof of our main result is based on the following two lemmas.

Lemma 4.1. Suppose that (1.1a), (1.1b), (2.3a), and (2.3b) are fulfilled, that the density 𝑝 of 𝑌 is
bounded, and let 𝐸 | ln(𝜎0) | + 𝐸 ln+ (𝑌 ) < ∞. Let

(
(𝜎̃𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

and
(
(𝜎̃′

𝑡 , 𝑋
′
𝑡 ,𝐶

′
𝑡 )

)
𝑡∈N0

be inde-

pendent versions of
(
(𝜎𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

which are defined on a suitable probability space
(
Ω̃, F̃ , 𝑃

)
.

Then

sup
𝑘∈N0

𝐸
�� ln(𝜎̃𝑘) − ln(𝜎̃′

𝑘)
�� ≤ 2𝐸 | ln(𝜎0) | +

2𝑏 (∥𝑝∥∞ + 𝐸 ln+ (𝑌 )) + 2𝑀
1 − 𝑎 − 𝑏

.

Proof. It follows from (1.1b) and (2.3a) that�� ln(𝜎̃𝑡 ) − ln(𝜎̃′
𝑡 )

��
≤ 𝑎

�� ln(𝜎̃𝑡−1) − ln(𝜎̃′
𝑡−1)

�� + 𝑏
�� ln(𝑋𝑡−1 + 1) − ln(𝑋 ′

𝑡−1 + 1)
�� + ��𝐶𝑡−1 − 𝐶′

𝑡−1

��.
Note we obtain from Lemma 7.2 that 𝐸

(
| ln(𝑋𝑡−1 + 1) − ln(𝜎̃𝑡−1 + 1) |

��𝜎̃𝑡−1, 𝜎̃
′
𝑡−1

)
= 𝐸

(
| ln(𝑋𝑡−1 + 1) −

ln(𝜎̃𝑡−1 +1) |
��𝜎̃𝑡−1

)
≤ ∥𝑝∥∞ +𝐸 ln+ (𝑌 ) and, analogously, 𝐸

(
| ln(𝑋 ′

𝑡−1 +1) − ln(𝜎̃′
𝑡−1 +1) |

��𝜎̃𝑡−1, 𝜎̃
′
𝑡−1

)
≤

∥𝑝∥∞ + 𝐸 ln+ (𝑌 ). Therefore we obtain, for 𝑡 ≥ 1,

𝐸

(�� ln(𝜎̃𝑡 ) − ln(𝜎̃′
𝑡 )

�� ��� 𝜎̃𝑡−1, 𝜎̃
′
𝑡−1

)
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≤ 𝑎
�� ln(𝜎̃𝑡−1) − ln(𝜎̃′

𝑡−1)
�� + 𝑏

�� ln(𝜎̃𝑡−1 + 1) − ln(𝜎̃′
𝑡−1 + 1)

��
+ 𝑏 𝐸

(�� ln(𝑋𝑡−1 + 1) − ln(𝜎̃𝑡−1 + 1)
�� ��� 𝜎̃𝑡−1, 𝜎̃

′
𝑡−1

)
+ 𝑏 𝐸

(�� ln(𝑋 ′
𝑡−1 + 1) − ln(𝜎̃′

𝑡−1 + 1)
�� ��� 𝜎̃𝑡−1, 𝜎̃

′
𝑡−1

)
+𝐸

(��𝐶𝑡−1 − 𝐸𝐶𝑡−1
�� ��� 𝜎̃𝑡−1, 𝜎̃

′
𝑡−1

)
+ 𝐸

(��𝐶′
𝑡−1 − 𝐸𝐶𝑡−1

�� ��� 𝜎̃𝑡−1, 𝜎̃
′
𝑡−1

)
≤ (𝑎 + 𝑏)

�� ln(𝜎̃𝑡−1) − ln(𝜎̃′
𝑡−1)

�� + 𝑀̄,

where 𝑀̄ = 2𝑏 (∥𝑝∥∞ + 𝐸 ln+ (𝑌 )) + 2𝑀 . Taking expectation on both sides of this inequality we obtain
that

𝐸
�� ln(𝜎̃𝑡 ) − ln(𝜎̃′

𝑡 )
��

≤ (𝑎 + 𝑏) 𝐸
�� ln(𝜎̃𝑡−1) − ln(𝜎̃′

𝑡−1)
�� + 𝑀̄

≤ (𝑎 + 𝑏)
{
(𝑎 + 𝑏) 𝐸

�� ln(𝜎̃𝑡−2) − ln(𝜎̃′
𝑡−2)

�� + 𝑀̄

}
+ 𝑀̄

≤ . . . ≤ (𝑎 + 𝑏)𝑡 𝐸
�� ln(𝜎̃0) − ln(𝜎̃′

0)
�� + 𝑀̄

{
1 + (𝑎 + 𝑏) + · · · + (𝑎 + 𝑏)𝑡−1}

≤ 2𝐸 | ln(𝜎0) | +
𝑀̄

1 − 𝑎 − 𝑏
.

Lemma 4.2. Suppose that (1.1a), (1.1b), (2.3a), and (2.3b) are fulfilled, and let 𝐸 | ln(𝜎0) | < ∞. Fur-
thermore, we assume that 𝑝 : [0,∞) → [0,∞) is continuous and 𝛾 :=

∫ ∞
0 sup{𝑝(𝑦) : 𝑦 ≥ 𝑥} 𝑑𝑥 <∞.

Then there exist versions
(
(𝜎̃𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

and
(
(𝜎̃′

𝑡 , 𝑋
′
𝑡 ,𝐶

′
𝑡 )

)
𝑡∈N0

of the process
(
(𝜎𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

such that, for all 𝑘, 𝑛 ≥ 0,

(i) 𝐸
�� ln(𝜎̃𝑘+𝑛) − ln(𝜎̃′

𝑘+𝑛)
�� ≤ (𝑎 + 𝑏𝛾)𝑛 𝐸

�� ln(𝜎̃𝑘) − ln(𝜎̃′
𝑘)

��,
(ii) 𝐸

[�� ln(𝜎̃𝑘+𝑛+𝑟 ) − ln(𝜎̃′
𝑘+𝑛+𝑟 )

��1(
𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛, . . . , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1

) ]
≤ 𝑎𝑟 (𝑎 + 𝑏𝛾)𝑛 𝐸

�� ln(𝜎̃𝑘) − ln(𝜎̃′
𝑘)

�� ∀𝑟 ≥ 1,

(iii) 𝑃
(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1, . . . , 𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛
)

≤ Γ 𝐸

[�� ln(𝜎̃𝑘+𝑛+𝑟 ) − ln(𝜎̃′
𝑘+𝑛+𝑟 )

��1(
𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛, . . . , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1

) ]
∀𝑟 ≥ 0,

where Γ = 1 if the density 𝑝 is non-increasing on [0,∞) and Γ =
(
1 +

∫ ∞
0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥

)
/2 if 𝑝 is differ-

entiable everywhere on (0,∞) with
∫ ∞

0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥 <∞.

Proof. Let 𝑡 ≥ 𝑘 . For given 𝜎̃𝑡 and 𝜎̃′
𝑡 , we apply a maximal coupling of the respective random variables

𝑋𝑡 and 𝑋 ′
𝑡 , i.e. 𝑋𝑡 and 𝑋 ′

𝑡 are defined such that

a) 𝑃
(
𝑋𝑡 = 𝑘 | 𝜎̃𝑡 , 𝜎̃

′
𝑡

)
= 𝑃𝜎̃𝑡

({𝑘}) and 𝑃
(
𝑋 ′
𝑡 = 𝑘 | 𝜎̃𝑡 , 𝜎̃

′
𝑡

)
= 𝑃𝜎̃′

𝑡
({𝑘}) ∀𝑘 ∈ N0,

b) 𝑃
(
𝑋𝑡 = 𝑋 ′

𝑡 | 𝜎̃𝑡 , 𝜎̃
′
𝑡

)
= 1 − 𝑑𝑇𝑉

(
𝑃𝜎̃𝑡

, 𝑃𝜎̃′
𝑡

)
=

∑∞
𝑘=0 𝑃𝜎̃𝑡

({𝑘}) ∧ 𝑃𝜎̃′
𝑡
({𝑘}).

(Note that our definition of the total variation norm differs from that in Lindvall (1992) by the fac-
tor 2.) Furthermore, and in contrast to the construction used for the proof of Theorem 5.2 in Lindvall
(1992, Chapter I), we couple 𝑋𝑡 and 𝑋 ′

𝑡 such that 𝑋𝑡 ≥ 𝑋 ′
𝑡 holds with conditional probability 1 if
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𝜎̃𝑡 ≥ 𝜎̃′
𝑡 and, vice versa, 𝑋𝑡 ≤ 𝑋 ′

𝑡 holds with conditional probability 1 if 𝜎̃𝑡 ≤ 𝜎̃′
𝑡 . (This is possible

since ⌊𝜎𝑌⌋ is stochastically greater than ⌊𝜎′𝑌⌋ if 𝜎 ≥ 𝜎′ and 𝑃⌊𝜎𝑌 ⌋ ((−∞, 𝑡]) ≤ 𝑃⌊𝜎′𝑌 ⌋ ((−∞, 𝑡]) ∀𝑡
implies that (𝑃⌊𝜎𝑌 ⌋ − 𝑃⌊𝜎𝑌 ⌋ ∧ 𝑃⌊𝜎′𝑌 ⌋) ((−∞, 𝑡]) ≤ (𝑃⌊𝜎′𝑌 ⌋ − 𝑃⌊𝜎𝑌 ⌋ ∧ 𝑃⌊𝜎′𝑌 ⌋) ((−∞, 𝑡]) ∀𝑡.) And
finally, we choose the exogenous variables such that 𝐶𝑡 =𝐶′

𝑡 .
(i) Let 𝑘 < 𝑡 ≤ 𝑘 + 𝑛. Since 𝑋𝑡 − 𝑋 ′

𝑡 has the same sign as 𝜎̃𝑡 − 𝜎̃′
𝑡 , ln(𝑋𝑡 + 1) − ln(𝑋 ′

𝑡 + 1) is either
non-negative or non-positive with conditional probability 1, and we obtain by Lemma 7.3

𝐸

(�� ln(𝑋𝑡 + 1) − ln(𝑋 ′
𝑡 + 1)

�� ��� 𝜎̃𝑡 , 𝜎̃
′
𝑡

)
≤ 𝛾

�� ln(𝜎̃𝑡 ) − ln(𝜎̃′
𝑡 )

��.
This yields that

𝐸

(�� ln(𝜎̃𝑡 ) − ln(𝜎̃′
𝑡 )

�� ��� 𝜎̃𝑡−1, 𝜎̃
′
𝑡−1

)
≤ (𝑎 + 𝑏𝛾)

�� ln(𝜎̃𝑡−1) − ln(𝜎̃′
𝑡−1)

��.
Taking expectation on both sides of this inequality, and using the resulting inequality 𝑛 times we obtain

𝐸
�� ln(𝜎̃𝑘+𝑛) − ln(𝜎̃′

𝑘+𝑛)
�� ≤ (𝑎 + 𝑏𝛾)𝑛 𝐸

�� ln(𝜎̃𝑘) − ln(𝜎̃′
𝑘)

��.
(ii) Let now 𝑡 = 𝑘 + 𝑛 + 𝑟 > 𝑘 + 𝑛. Then we obtain immediately�� ln(𝜎̃𝑡 ) − ln(𝜎̃′

𝑡 )
��1(

𝑋𝑘+𝑛 = 𝑋 ′
𝑘+𝑛, . . . , 𝑋𝑡−1 = 𝑋 ′

𝑡−1
)

≤ 𝑎
�� ln(𝜎̃𝑡−1) − ln(𝜎̃′

𝑡−1)
��1(

𝑋𝑘+𝑛 = 𝑋 ′
𝑘+𝑛, . . . , 𝑋𝑡−2 = 𝑋 ′

𝑡−2
)

≤ · · · ≤ 𝑎𝑟
�� ln(𝜎̃𝑘+𝑛) − ln(𝜎̃′

𝑘+𝑛)
��,

which yields (ii). Statement (iii) follows from Lemma 7.1 since b) gives

𝑃
(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1, . . . , 𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛
)

= 𝐸
(
𝑑𝑇𝑉 (𝑃𝜎̃𝑘+𝑛+𝑟 , 𝑃𝜎̃′

𝑘+𝑛+𝑟
) 1

(
𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛, . . . , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1

) )
.

Now we are in a position to prove our main result.

Proof of Theorem 2.1. Let
(
(𝜎̃𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

and
(
(𝜎̃′

𝑡 , 𝑋
′
𝑡 ,𝐶

′
𝑡 )

)
𝑡∈N0

be two versions of the process(
(𝜎𝑡 , 𝑋𝑡 ,𝐶𝑡 )

)
𝑡∈N0

, where (𝜎̃0, 𝑋0,𝐶0, . . . , 𝜎̃𝑘−1, 𝑋𝑘−1,𝐶𝑘−1, 𝜎̃𝑘 , 𝑋𝑘) and

(𝜎̃′
0, 𝑋

′
0,𝐶

′
0, . . . , 𝜎̃

′
𝑘−1, 𝑋

′
𝑘−1,𝐶

′
𝑘−1, 𝜎̃

′
𝑘
, 𝑋 ′

𝑘
) are independent, and where 𝐶𝑘 , 𝜎̃𝑘+1, 𝑋𝑘+1, 𝜎̃𝑘+2, 𝑋𝑘+2, . . .

are coupled with their respective counterparts 𝐶′
𝑘
, 𝜎̃′

𝑘+1, 𝑋
′
𝑘+1, 𝜎̃

′
𝑘+2, 𝑋

′
𝑘+2, . . . as described in the proof

of Lemma 4.2. Then we obtain from (2.1) and Lemmas 4.1 and 4.2 that

𝛽𝑋 (𝑘, 𝑛)

≤ 𝑃

(
𝑋𝑘+𝑛 ≠ 𝑋 ′

𝑘+𝑛

)
+

∞∑︁
𝑟=1

𝑃

(
𝑋𝑘+𝑛+𝑟 ≠ 𝑋 ′

𝑘+𝑛+𝑟 , 𝑋𝑘+𝑛+𝑟−1 = 𝑋 ′
𝑘+𝑛+𝑟−1, . . . , 𝑋𝑘+𝑛 = 𝑋 ′

𝑘+𝑛

)
≤ Γ

∞∑︁
𝑟=0

𝑎𝑟 (𝑎 + 𝑏𝛾)𝑛
{
2𝐸

�� ln(𝜎0)
�� + 2𝑏 (∥𝑝∥∞ + 𝐸 ln+ (𝑌 )) + 2𝑀

1 − 𝑎 − 𝑏

}
.
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5. Proof of Proposition 3.1

The following lemma is a consequence of a CLT in Rio (1995) and it serves as a basis for the proof of
Proposition 3.1.

Lemma 5.1. Suppose that (𝑋𝑡 ,𝑛)𝑡=1,...𝑛, 𝑛 ∈ N, is a triangular array of centered random variables
with sup𝑡≤𝑛 (∥𝑋𝑡 ,𝑛∥2+𝛿) =𝑂 (𝑛−1/2) for some 𝛿 > 0, where ∥𝑋𝑡 ,𝑛∥𝑞 := (𝐸 |𝑋𝑡 ,𝑛 |𝑞)1/𝑞 . Further assume
that the array is absolutely regular with exponentially decaying mixing coefficients 𝛽(𝑛) (𝑘) ≤ 𝜌𝑘 for
some 𝜌 < 1. If additionally 𝑉𝑛,𝑛 := var(∑𝑛

𝑡=1 𝑋𝑡 ,𝑛) satisfies lim inf𝑛→∞𝑉𝑛,𝑛 > 0, then

𝑛∑︁
𝑡=1

𝑋𝑡 ,𝑛

𝑉
1/2
𝑛,𝑛

𝑑−→ 𝑍 ∼N(0,1).

Proof of Lemma 5.1. We apply Corollary 1 in Rio (1995). To this end, we validate conditions (a) and
(b) therein. Assumption (a) reads

lim sup
𝑛→∞

max
𝑖≤𝑛

var(∑𝑖
𝑡=1 𝑋𝑡 ,𝑛)
𝑉𝑛,𝑛

< ∞.

In view of our assumption lim inf𝑛→∞𝑉𝑛,𝑛 > 0, it suffices to show that

lim sup
𝑛∈N

𝑛∑︁
𝑠,𝑡=1

��cov(𝑋𝑠,𝑛 , 𝑋𝑡 ,𝑛)
�� ≤ 𝐶. (5.1)

Recall that the 𝛽-mixing coefficients serve as an upper bound for the 𝛼-mixing coefficients. By the
covariance inequality for 𝛼-mixing random variables (see e.g. Doukhan (1994, Thm. 3, Sect. 1.2.2)) we
obtain ��cov(𝑋𝑠,𝑛 , 𝑋𝑡 ,𝑛)

�� ≤ 8𝛼𝑋
(𝑛) ( |𝑠 − 𝑡 |) (2+𝛿 )/𝛿 ∥𝑋𝑠,𝑛∥2+𝛿 ∥𝑋𝑡 ,𝑛∥2+𝛿

which then gives (5.1) under our moment conditions by the exponential decay of the strong mixing
coefficients.

It remains to check (b) in Corollary 1 in Rio (1995), that is

𝑛∑︁
𝑡=1

∫ 1

0
𝛼−1
(𝑛)

( 𝑥
2

)
𝑄2

𝑡 ,𝑛 (𝑥) min
{
1 , 𝛼−1

(𝑛)

( 𝑥
2

)
𝑄𝑡 ,𝑛 (𝑥)

}
𝑑𝑥 −→

𝑛→∞
0. (5.2)

Here, 𝑄𝑡 ,𝑛 denotes the inverse of the survival function 𝑧 ↦→ 𝑃( |𝑋𝑡 ,𝑛 | > 𝑧𝑉
1/2
𝑛,𝑛 ) and 𝛼−1

(𝑛) denotes the

inverse of 𝑧 ↦→ 𝛼(⌊𝑧⌋). First, note that 𝛼−1
(𝑛) (𝑥/2) ≤ 𝐶1 −𝐶2 ln(𝑥) for some 𝐶1, 𝐶2 ∈ (0,∞) in view of

the exponential decay of the mixing coefficients. Second, we obtain by Markov’s inequality

𝑃( |𝑋𝑡 ,𝑛 | > 𝑧𝑉
1/2
𝑛,𝑛 ) ≤

𝐸 |𝑋𝑡 ,𝑛 |2+𝛿

𝑧2+𝛿 𝑉 (2+𝛿 )/2
𝑛,𝑛

which leads to

𝑄𝑡 ,𝑛 (𝑥) ≤ 𝑥−1/(2+𝛿 )
(
∥𝑋𝑡 ,𝑛∥2+𝛿

𝑉
1/2
𝑛,𝑛

)
.
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From this, and using the rough estimate min
{
1, 𝛼−1

(𝑛)
(
𝑥
2
)
𝑄𝑡 ,𝑛 (𝑥)

}
≤ 𝛼

−𝛿/2
(𝑛)

(
𝑥
2
)
𝑄

𝛿/2
𝑡 ,𝑛 (𝑥), we can de-

duce that the r.h.s. of (5.2) can be bounded from above by

𝐶

∫ 1

0
| ln(𝑥) |1+𝛿/2 𝑥−(2+𝛿/2)/(2+𝛿 ) 𝑑𝑥 ·

𝑛∑︁
𝑡=1

(
∥𝑋𝑡 ,𝑛∥2+𝛿

𝑉
1/2
𝑛,𝑛

)2+𝛿/2

which tends to zero as sup𝑡≤𝑛 (∥𝑋𝑡 ,𝑛∥2+𝛿) =𝑂 (𝑛−1/2).

Before we turn to the proof of Proposition 3.1 we derive a few useful approximations. Since 𝜎0 ≥ 1
and ln(𝜎𝑡 ) ≥ 𝑎 ln(𝜎𝑡−1) + 𝑐 ln(𝑡), we see inductively that under the conditions of Proposition 3.1

𝜎𝑡 ≥ 𝑡𝑐 ∀𝑡 ≥ 1. (5.3)

In what follows we shall get rid of the cumbersome terms ln(𝑋𝑡 + 1). Note that the vector (𝑋0, . . . , 𝑋𝑛)
has the same distribution as (⌊𝜎0𝑌0⌋, . . . , ⌊𝜎𝑛𝑌𝑛⌋), where 𝑌𝑡 has the same distribution as 𝑌 and is
independent of 𝜎0, . . . , 𝜎𝑡 ,𝑌0, . . . ,𝑌𝑡−1. To simplify the representation we suppose that 𝑋𝑡 = ⌊𝜎𝑡𝑌𝑡 ⌋.

Since

ln(𝜎𝑡𝑌𝑡 ) ≤ ln(𝑋𝑡 + 1) ≤ ln(𝜎𝑡𝑌𝑡 + 1) ≤ ln(𝜎𝑡 (𝑌𝑡 + 1/𝑡𝑐)),

we obtain

ln
(
𝑋𝑡 + 1

)
− ln

(
𝜎𝑡𝑌𝑡

)
≤ ln

(
𝜎𝑡 (𝑌𝑡 + 1/𝑡𝑐)

)
− ln

(
𝜎𝑡𝑌𝑡

)
and hence, for 𝜌 ≤ 2 + 𝛿,

𝐸
�� ln (

𝑋𝑡 + 1
)
− ln

(
𝜎𝑡𝑌𝑡

) ��𝜌 ≤ 𝐸
�� ln (

𝜎𝑡 (𝑌𝑡 + 1/𝑡𝑐)
)
− ln

(
𝜎𝑡𝑌𝑡

) ��𝜌
= 𝐸

�� ln (
(𝑌𝑡 + 1/𝑡𝑐)

)
− ln

(
𝑌𝑡

) ��𝜌 −→
𝑡→∞

0. (5.4)

The above representation allows us to represent ln(𝜎𝑡 ) in a suitable form:

ln(𝜎𝑡 ) = (𝑎 + 𝑏) ln(𝜎𝑡−1) + 𝑏 ln(𝑌𝑡−1) + 𝑏
[
ln(𝑋𝑡−1 + 1) − ln(𝜎𝑡−1𝑌𝑡−1)

]
+ 𝑐 ln(𝑡)

= (𝑎 + 𝑏)
{
(𝑎 + 𝑏) ln(𝜎𝑡−2) + 𝑏 ln(𝑌𝑡−2) + 𝑏

[
ln(𝑋𝑡−2 + 1) − ln(𝜎𝑡−2𝑌𝑡−2)

]
+ 𝑐 ln(𝑡 − 1)

}
+ 𝑏 ln(𝑌𝑡−1) + 𝑏

[
ln(𝑋𝑡−1 + 1) − ln(𝜎𝑡−1𝑌𝑡−1)

]
+ 𝑐 ln(𝑡)

= . . . = (𝑎 + 𝑏)𝑡 ln(𝜎0)

+ 𝑏
𝑡∑︁

𝑠=1

(𝑎 + 𝑏)𝑠−1 ln(𝑌𝑡−𝑠)

+ 𝑏
𝑡∑︁

𝑠=1

(𝑎 + 𝑏)𝑠−1 [
ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠𝑌𝑡−𝑠)

]
+ 𝑐

{ 𝑡−1∑︁
𝑠=0

(𝑎 + 𝑏)𝑠 ln(𝑡 − 𝑠) − 1
1 − 𝑎 − 𝑏

ln(𝑡)
}

+ 𝑐

1 − 𝑎 − 𝑏
ln(𝑡). (5.5)
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The first four terms on the right-hand side are stochastically bounded, and the fifth one is dominating.
To see boundedness of the fourth term, note that��� 𝑡−1∑︁

𝑠=0

(𝑎 + 𝑏)𝑠 ln(𝑡 − 𝑠) − 1
1 − 𝑎 − 𝑏

ln(𝑡)
���

≤
��� 𝑡−1∑︁
𝑠=0

(𝑎 + 𝑏)𝑠
[
ln(𝑡 − 𝑠) − ln(𝑡)

] ��� + ���1 − (𝑎 + 𝑏)𝑡
1 − 𝑎 − 𝑏

ln(𝑡) − 1
1 − 𝑎 − 𝑏

ln(𝑡)
���

≤
𝑡−1∑︁
𝑠=0

(𝑎 + 𝑏)𝑠 𝑠 + (𝑎 + 𝑏)𝑡
1 − 𝑎 − 𝑏

ln(𝑡).

Now we are in a position to approximate the covariance structure of ln(𝑋𝑡 + 1). Since it follows from
(5.4) that



 ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠𝑌𝑡−𝑠)




2 −→
𝑡→∞

0, we obtain by Minkowski’s inequality




𝑏 𝑡∑︁
𝑠=1

(𝑎 + 𝑏)𝑠−1 [
ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠𝑌𝑡−𝑠)

]



2

≤ 𝑏

𝑡∑︁
𝑠=1

(𝑎 + 𝑏)𝑠−1 

 ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠𝑌𝑡−𝑠)




2 −→
𝑡→∞

0.

This means that the limits of the covariances arise from the terms in the fourth from last row in (5.5):

cov
(
ln(𝜎𝑡 ), ln(𝜎𝑡−𝑢)

)
−→
𝑡→∞

var(ln(𝑌 )) 𝑏2 (𝑎 + 𝑏)𝑢

1 − (𝑎 + 𝑏)2 . (5.6)

This implies

var
(
ln(𝑋𝑡 + 1)

)
−→
𝑡→∞

lim
𝑡→∞

var
(
ln(𝜎𝑡 ) + ln(𝑌𝑡 )

)
= lim

𝑡→∞
var

(
ln(𝜎𝑡 )

)
+ var

(
ln(𝑌 )

)
= var

(
ln(𝑌 )

) { 𝑏2

1 − (𝑎 + 𝑏)2 + 1
}

(5.7)

and, for 𝑢 ≥ 1,

cov
(
ln(𝑋𝑡 + 1), ln(𝑋𝑡−𝑢 + 1)

)
−→
𝑡→∞

lim
𝑡→∞

cov
(
ln(𝜎𝑡 ), ln(𝜎𝑡−𝑢)

)
+ lim

𝑡→∞
cov

(
ln(𝜎𝑡 ), ln(𝑌𝑡−𝑢)

)
= var

(
ln(𝑌 )

) { 𝑏2 (𝑎 + 𝑏)𝑢

1 − (𝑎 + 𝑏)2 + 𝑏 (𝑎 + 𝑏)𝑢−1
}
. (5.8)

In the subsequent proof, (5.7) and (5.8) allow us to identify lim𝑛→∞𝑉𝑛,𝑛.

Proof of Proposition 3.1. Let 𝐽𝑡 ,𝑛 =
ln(𝑡 )√
𝑛 ln(𝑛) (ln(𝑋𝑡 + 1) − 𝐸 ln(𝑋𝑡 + 1)). By Lemma 7.4

𝑛∑︁
𝑡=1

ln2 (𝑡)/(𝑛 ln2 (𝑛)) −→
𝑛→∞

1.
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Therefore, it remains to verify
𝑛∑︁
𝑡=1

𝐽𝑡 ,𝑛
𝑑−→ 𝑍 ∼N(0, 𝜎2).

To this end, we apply Lemma 5.1 with 𝑋𝑡 ,𝑛 := 𝐽𝑡 ,𝑛. Note that we obtain

sup
𝑡≤𝑛

∥𝐽𝑡 ,𝑛∥2+𝛿 ≤ 𝑂 (𝑛−1/2) sup
𝑡≤𝑛, 𝑛∈N

∥ ln(𝑋𝑡 + 1) − 𝐸 ln(𝑋𝑡 + 1)∥2+𝛿

≤ 𝑂 (𝑛−1/2) sup
𝑡≤𝑛, 𝑛∈N

[
∥ ln(𝑋𝑡 + 1) − ln(𝜎𝑡 𝑌𝑡 )∥2+𝛿

+ ∥ ln(𝜎𝑡 𝑌𝑡 ) − 𝐸 ln(𝜎𝑡 𝑌𝑡 )∥2+𝛿 + ∥𝐸 [ln(𝜎𝑡 𝑌𝑡 ) − ln(𝑋𝑡 + 1)] ∥2+𝛿
]
.

Uniform boundedness of the first and the last summand can be deduced from (5.4). Uniform bounded-
ness of the middle term follows from Remark 3 together with (5.5) since the latter gives

∥ ln(𝜎𝑡 𝑌𝑡 ) − 𝐸 ln(𝜎𝑡 𝑌𝑡 )∥2+𝛿

≤ ∥ ln(𝜎𝑡 ) − 𝐸 ln(𝜎𝑡 )∥2+𝛿 + ∥ ln(𝑌𝑡 ) − 𝐸 ln(𝑌𝑡 )∥2+𝛿

≤ (𝑎 + 𝑏)𝑡 ∥ ln(𝜎0) − 𝐸 ln(𝜎0)∥2+𝛿

+
𝑡∑︁

𝑠=1

(𝑎 + 𝑏)𝑠−1 𝑏


[ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠)] − 𝐸 [ln(𝑋𝑡−𝑠 + 1) − ln(𝜎𝑡−𝑠)]




2+𝛿

+ ∥ ln(𝑌 ) − 𝐸 ln(𝑌 )∥2+𝛿 . (5.9)

It remains to derive lim inf𝑛→∞𝑉𝑛,𝑛. It follows from (5.4) and (5.9) that the moments of order 2 + 𝛿

of the random variables ln(𝑋𝑡 + 1) are bounded. Hence, we obtain from the mixing property that
sup𝑡 | cov(ln(𝑋𝑡 + 1), ln(𝑋𝑡+ℎ + 1)) | ≤ 𝐶 𝜌 |ℎ | for some 𝜌 ∈ (0,1). Furthermore, Lebesgue’s theorem,
Cauchy’s limit theorem, Lemma 7.4, (5.7) and (5.8) give

lim
𝑛→∞

𝑉𝑛,𝑛 =
∑︁
ℎ∈Z

lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑡=1

ln(𝑡 + ℎ) ln(𝑡)
ln2 (𝑛)

cov(ln(𝑋𝑡 + 1), ln(𝑋𝑡+ℎ + 1)) 11≤𝑡+ℎ≤𝑛

= var
(
ln(𝑌 )

) {
1 +

∑︁
ℎ∈Z

𝑏2 (𝑎 + 𝑏) |ℎ |

1 − (𝑎 + 𝑏)2 + 2
∑︁
ℎ∈N

𝑏 (𝑎 + 𝑏)ℎ−1
}

= var
(
ln(𝑌 )

) (1 − 𝑎)2

(1 − (𝑎 + 𝑏))2 > 0.

6. Proof of Proposition 3.2

Proof of Proposition 3.2.

(i) It follows from Proposition 3.1 that

sup
𝑥∈R

��𝑃(𝑇𝑛 ≤ 𝑥) − Φ(𝑥/𝜎)
�� −→
𝑛→∞

0. (6.1)
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Since 𝜎2
𝑛 := var(𝑇𝑛) −→

𝑛→∞
𝜎2 and since 𝑇∗

𝑛 conditioned on 𝑋1, . . . , 𝑋𝑛 is by construction normally

distributed, it only remains to show, for 𝜎∗2
𝑛 := var(𝑇∗

𝑛 | 𝑋1, . . . , 𝑋𝑛), that��𝜎∗2
𝑛 − 𝜎2

𝑛

�� 𝑃−→ 0. (6.2)

Then (i) follows from (6.1) and (6.2).
Let 𝑍𝑡 = 𝑤𝑡 [ln(𝑋𝑡 + 1) − 𝐸 ln(𝑋𝑡 + 1)] and 𝑍 ′

𝑡 = 𝑤𝑡 [𝐸 ln(𝑋𝑡 + 1) − 𝑚𝑛 (𝑡)]. Then 𝑇𝑛 =
∑𝑛

𝑡=1 𝑍𝑡

and 𝑇∗
𝑛 =

∑𝑛
𝑡=1 (𝑍𝑡 + 𝑍 ′

𝑡 )𝑊∗
𝑡 . Note that it follows from (3.3), (3.4) and 𝑤𝑡 = 𝑂 (𝑛−1/2) that∑𝑛

𝑡=1 𝐸
[
(𝑍 ′

𝑡 )2] = 𝑂
(
𝑛−1 (𝑛/𝑁𝑛 + 𝑁𝑛 (ln(𝑛))2)

)
. Since

∑𝑛−1
𝑟=−(𝑛−1) |𝜌(𝑟/𝑙𝑛) | = 𝑂 (𝑙𝑛), we obtain

that

𝐸

[( 𝑛∑︁
𝑡=1

𝑍 ′
𝑡𝑊

∗
𝑡

)2]
= 𝐸

[
𝐸

(( 𝑛∑︁
𝑡=1

𝑍 ′
𝑡𝑊

∗
𝑡

)2
| 𝑋1, . . . , 𝑋𝑛

)]
= 𝐸

[ 𝑛∑︁
𝑠,𝑡=1

𝑍 ′
𝑠𝑍

′
𝑡 𝜌( |𝑠 − 𝑡 |/𝑙𝑛)

]
=

𝑛−1∑︁
𝑟=−(𝑛−1)

��𝜌(𝑟/𝑙𝑛)�� ∑︁
max{1,1−𝑟 }≤𝑠≤min{𝑛,𝑛−𝑟 }

��𝐸 [
𝑍 ′
𝑠𝑍

′
𝑠+𝑟

] ��
= 𝑂

( 𝑙𝑛
𝑛

( 𝑛

𝑁𝑛

+ 𝑁𝑛 (ln(𝑛))2) ) = 𝑜(1).

Next we compare var(𝑇𝑛) and var(∑𝑡 𝑍𝑡𝑊
∗
𝑡 | 𝑋1, . . . , 𝑋𝑛). We obtain

𝐸
[
𝑇2
𝑛

]
− 𝐸

(
(
∑︁
𝑡

𝑍𝑡𝑊
∗
𝑡 )2 | 𝑋1, . . . , 𝑋𝑛

)
=

∑︁
𝑠,𝑡

𝐸
[
𝑍𝑠𝑍𝑡

]
−

∑︁
𝑠,𝑡

𝑍𝑠𝑍𝑡 𝜌( |𝑠 − 𝑡 |/𝑙𝑛)

=
∑︁
𝑠,𝑡

𝐸
[
𝑍𝑠𝑍𝑡 (1 − 𝜌( |𝑠 − 𝑡 |/𝑙𝑛))

]
−

∑︁
𝑠,𝑡

(
𝑍𝑠𝑍𝑡 − 𝐸 [𝑍𝑠𝑍𝑡 ]

)
𝜌( |𝑠 − 𝑡 |/𝑙𝑛). (6.3)

The last but one term converges to zero by majorized convergence. We conclude from (5.4) and
(5.5) that

sup
𝑡

{
𝐸 | ln(𝑋𝑡 + 1) − 𝐸 ln(𝑋𝑡 + 1) |4+𝛿

}
< ∞.

This and the exponential decay of the mixing coefficients 𝛽𝑋 (𝑟) imply, for 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑢 ≤ 𝑣 ≤ 𝑛

and 𝑟 = max{𝑡 − 𝑠, 𝑢 − 𝑡, 𝑣 − 𝑢}, that��cum(𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢, 𝑍𝑣)
�� = 𝑂

(
𝜌𝑟 𝑛−2)

for some 𝜌 < 1, where
cum(𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢, 𝑍𝑣) = 𝐸 [𝑍𝑠𝑍𝑡𝑍𝑢𝑍𝑣]−𝐸 [𝑍𝑠𝑍𝑡 ]𝐸 [𝑍𝑢𝑍𝑣]−𝐸 [𝑍𝑠𝑍𝑢]𝐸 [𝑍𝑡𝑍𝑣]−𝐸 [𝑍𝑠𝑍𝑣]𝐸 [𝑍𝑡𝑍𝑢]
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denotes the joint cumulant of 𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢 and 𝑍𝑣 . Hence,

𝑛∑︁
𝑠,𝑡 ,𝑢,𝑣=1

��cum(𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢, 𝑍𝑣)
�� ≤ 4!

∑︁
1≤𝑠≤𝑡≤𝑢≤𝑣≤𝑛

��cum(𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢, 𝑍𝑣)
�� = 𝑂 (1/𝑛).

Furthermore, it follows from (5.7) and (5.8) that cov(𝑍𝑠 , 𝑍𝑡 ) =𝑂 (𝑛−1 (𝑎 + 𝑏) |𝑠−𝑡 | ). Therefore we
obtain for the second term on the right-hand side of (6.3) that

𝐸

[ (∑︁
𝑠,𝑡

(
𝑍𝑠𝑍𝑡 − 𝐸 [𝑍𝑠𝑍𝑡 ]

)
𝜌( |𝑠 − 𝑡 |/𝑙𝑛)

)2
]

=

𝑛∑︁
𝑠,𝑡 ,𝑢,𝑣=1

𝜌( |𝑠 − 𝑡 |/𝑙𝑛) 𝜌( |𝑢 − 𝑣 |/𝑙𝑛) cum(𝑍𝑠 , 𝑍𝑡 , 𝑍𝑢, 𝑍𝑣)

+ 2
𝑛∑︁

𝑠,𝑡 ,𝑢,𝑣=1

𝜌( |𝑠 − 𝑡 |/𝑙𝑛) cov(𝑍𝑡 , 𝑍𝑢) 𝜌( |𝑢 − 𝑣 |/𝑙𝑛) cov(𝑍𝑣 , 𝑍𝑠)

= 𝑂

(1
𝑛

)
+ 𝑂

( 𝑙𝑛
𝑛

)
.

(ii) Follows from (i).

Lemma 6.1. Suppose that (1.1a) and (3.1) are fulfilled and that 𝜎0 = 1. Then the function 𝑡 ↦→ 𝐸 ln(𝑋𝑡 +
1) is monotonously increasing.

Proof of Lemma 6.1. We construct two versions (𝜎̃𝑡 )𝑡∈N0 and (𝜎̃′
𝑡 )𝑡∈N0 of the intensity process such

that 𝜎̃0 = 𝜎̃′
0 = 1 and

𝜎̃𝑡 ≤ 𝜎̃′
𝑡+1 ∀𝑡 ∈ N (6.4)

holds with probability 1. This will be achieved by feeding the first process with innovations 𝑌1,𝑌2, . . .

while the second one is fed with 𝑌0,𝑌1,𝑌2, . . ., where (𝑌𝑡 )𝑡∈N0 is a sequence of independent random

variables such that 𝑌𝑡
𝑑
=𝑌 , i.e. we define for 𝑡 ≥ 1

ln(𝜎̃𝑡 ) = 𝑎 ln(𝜎̃𝑡−1) + 𝑏 ln(⌊𝜎̃𝑡−1𝑌𝑡 ⌋ + 1) + 𝑐 ln(𝑡)

and

ln(𝜎̃′
𝑡 ) = 𝑎 ln(𝜎̃′

𝑡−1) + 𝑏 ln(⌊𝜎̃′
𝑡−1𝑌𝑡−1⌋ + 1) + 𝑐 ln(𝑡).

Then

ln(𝜎̃′
1) = 𝑎 ln(𝜎̃′

0) + 𝑏 ln(⌊𝜎̃′
0𝑌0⌋ + 1) + 𝑐 ln(1)

≥ 0 = ln(𝜎̃0).

Suppose now that, for 𝑡 ≥ 1, ln(𝜎̃′
𝑡 ) ≥ ln(𝜎̃𝑡−1). Then

ln(𝜎̃′
𝑡+1) = 𝑎 ln(𝜎̃′

𝑡 ) + 𝑏 ln(⌊𝜎̃′
𝑡𝑌𝑡 ⌋ + 1) + 𝑐 ln(𝑡 + 1)

> 𝑎 ln(𝜎̃𝑡−1) + 𝑏 ln(⌊𝜎̃𝑡−1𝑌𝑡 ⌋ + 1) + 𝑐 ln(𝑡)

= ln(𝜎̃𝑡 ),
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which proves that (6.4) holds for all 𝑡 ∈ N and with probability 1. This implies that

𝐸 ln(𝑋𝑡 + 1) = 𝐸 ln(⌊𝜎̃𝑡𝑌𝑡 ⌋ + 1) < 𝐸 ln(⌊𝜎̃′
𝑡+1𝑌𝑡 ⌋ + 1) = 𝐸 ln(𝑋𝑡+1 + 1).

7. A few auxiliary results
In this section we collect a few technical results which contribute to the proof of our main result.

Lemma 7.1. Suppose that 𝑌 is a non-negative random variable with a density 𝑝.

(i) If 𝑝 is monotonously non-increasing on [0,∞), then

𝑑𝑇𝑉
(
𝑃⌊𝜎𝑌 ⌋ , 𝑃⌊𝜎′𝑌 ⌋ ) ≤

�� ln(𝜎) − ln(𝜎′)
�� ∀𝜎,𝜎′ > 0.

(ii) If 𝑝 is everywhere differentiable on (0,∞) and
∫ ∞

0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥 <∞, then

𝑑𝑇𝑉
(
𝑃⌊𝜎𝑌 ⌋ , 𝑃⌊𝜎′𝑌 ⌋ ) ≤

�� ln(𝜎) − ln(𝜎′)
�� {1 +

∫ ∞

0
𝑥 |𝑝′ (𝑥) | 𝑑𝑥

}
/2. ∀𝜎,𝜎′ > 0.

Proof. Note that the total variation distance 𝑑𝑇𝑉
(
𝑃𝜎 , 𝑃𝜎′

)
= (1/2)∑∞

𝑘=0 |𝑃𝜎 ({𝑘}) − 𝑃𝜎′ ({𝑘}) | be-
tween 𝑃𝜎 and 𝑃𝜎′ can be bounded from above by

𝑑𝑇𝑉
(
𝑃𝜎 , 𝑃𝜎′

)
= 1 −

∞∑︁
𝑘=0

𝑃𝜎 ({𝑘}) ∧ 𝑃𝜎′ ({𝑘})

≤ 1 −
∫ ∞

0

1
𝜎
𝑝(𝑥/𝜎) ∧ 1

𝜎′ 𝑝(𝑥/𝜎
′) 𝑑𝑥

=
1
2

∫ ∞

0

�� 1
𝜎
𝑝
( 𝑥
𝜎

)
− 1

𝜎′ 𝑝
( 𝑥
𝜎′

) �� 𝑑𝑥, (7.1)

which is just the total variation distance between the distributions of 𝜎𝑌 and 𝜎′𝑌 .
Let 𝜎 < 𝜎′. If 𝑝 is non-increasing on [0,∞), then

1 −
∫ ∞

0

1
𝜎
𝑝(𝑥/𝜎) ∧ 1

𝜎′ 𝑝(𝑥/𝜎
′) 𝑑𝑥 ≤ 1 −

∫ ∞

0

1
𝜎′ 𝑝

( 𝑥
𝜎

)
𝑑𝑥

= 1 − 𝜎

𝜎′ ≤
∫ 𝜎′

𝜎

1
𝑥
𝑑𝑥 = ln(𝜎′) − ln(𝜎).

If 𝑝 is everywhere differentiable on (0,∞) and
∫ ∞

0 𝑥 |𝑝′ (𝑥) | 𝑑𝑥 <∞, then

1
2

∫ ∞

0

�� 1
𝜎
𝑝
( 𝑥
𝜎

)
− 1

𝜎′ 𝑝
( 𝑥
𝜎′

) �� 𝑑𝑥 ≤ 1
2

∫ ∞

0

∫ 𝜎′

𝜎

��� 𝜕
𝜕𝑢

( 1
𝑢
𝑝
( 𝑥
𝑢

) )��� 𝑑𝑢 𝑑𝑥
≤ 1

2

∫ ∞

0

∫ 𝜎′

𝜎

1
𝑢2 𝑝

( 𝑥
𝑢

)
+ 𝑥

𝑢3

��𝑝′ ( 𝑥
𝑢

) �� 𝑑𝑢 𝑑𝑥
=

1
2

∫ 𝜎′

𝜎

1
𝑢

{∫ ∞

0

1
𝑢
𝑝
( 𝑥
𝑢

)
+ 𝑥

𝑢2

��𝑝′ ( 𝑥
𝑢

) �� 𝑑𝑥} 𝑑𝑢
=

ln(𝜎′) − ln(𝜎)
2

{
1 +

∫ ∞

0
𝑥
��𝑝′ (𝑥)�� 𝑑𝑥},
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which completes the proof.

Lemma 7.2. Suppose that 𝑌 is a non-negative random variable with a bounded density 𝑝 and
𝐸 [ln+ (𝑌 )] <∞. Then

𝐸
�� ln(⌊𝜎𝑌⌋ + 1) − ln(𝜎 + 1)

�� ≤ ∥𝑝∥∞ + 𝐸 [ln+ (𝑌 )] ∀𝜎 > 0.

Proof. Using

⌊𝜎⌋∑︁
𝑘=0

(
ln(𝜎 + 1) − ln(𝑘 + 1)

)
=

(
⌊𝜎⌋ + 1

)
ln(𝜎 + 1) −

⌊𝜎⌋∑︁
𝑘=1

ln(𝑘 + 1)

≤
(
⌊𝜎⌋ + 1

)
ln(𝜎 + 1) −

∫ ⌊𝜎⌋+1

1
ln(𝑦) 𝑑𝑦

=
(
⌊𝜎⌋ + 1

)
ln(𝜎 + 1) −

[
𝑥 ln(𝑥) − 𝑥

] ⌊𝜎⌋+1
1

=
(
⌊𝜎⌋ + 1

) (
ln(𝜎 + 1) − ln(⌊𝜎⌋ + 1)

)︸                             ︷︷                             ︸
≤ (𝜎−⌊𝜎⌋ )/(⌊𝜎⌋+1)

+ ⌊𝜎⌋

≤ 𝜎,

we obtain that

𝐸
[
| ln(⌊𝜎𝑌⌋ + 1) − ln(𝜎 + 1) | 1(⌊𝜎𝑌⌋ ≤ 𝜎)

]
=

⌊𝜎⌋∑︁
𝑘=0

(
ln(𝜎 + 1) − ln(𝑘 + 1)

)
𝑃
(
𝜎𝑌 ∈ [𝑘, 𝑘 + 1)

)
≤ ∥𝑝∥∞.

Furthermore, we have that

𝐸
[
| ln(⌊𝜎𝑌⌋ + 1) − ln(𝜎 + 1) | 1(⌊𝜎𝑌⌋ > 𝜎)

]
≤ 𝐸

[
(ln(𝜎𝑌 + 1) − ln(𝜎 + 1)) 1(𝑌 ≥ 1)

]
≤ 𝐸

[
(ln(𝜎𝑌 ) − ln(𝜎)) 1(𝑌 ≥ 1)

]
= 𝐸

[
ln+ (𝑌 )],

which completes the proof.

Lemma 7.3. Suppose that𝑌 is a non-negative random variable with a continuous probability density 𝑝

satisfying 𝛾 :=
∫ ∞

0 sup{𝑝(𝑦) : 𝑦 ≥ 𝑥} 𝑑𝑥 < ∞. Then the function 𝜎 ↦→ 𝐸 ln(⌊𝜎𝑌⌋ + 1) is differentiable
and

𝑑

𝑑𝜎
𝐸 ln

(
⌊𝜎𝑌⌋ + 1

)
≤ 𝛾

𝜎
∀𝜎 > 0.

(If 𝑝 is monotonously non-increasing, then 𝛾 = 1.)

Proof. First note that

𝐸 ln
(
⌊𝜎𝑌⌋ + 1

)
=

∞∑︁
𝑘=1

(
ln(𝑘 + 1) − ln(𝑘)

)
𝑃
(
⌊𝜎𝑌⌋ ≥ 𝑘

)
=

∞∑︁
𝑘=1

(
ln(𝑘 + 1) − ln(𝑘)

)
𝑃
(
𝜎𝑌 ≥ 𝑘

)
.



20

To prove differentiability we consider corresponding difference quotients. Let 𝑔(𝑥) := sup{𝑝(𝑦) : 𝑦 ≥
𝑥}. For 0 < 𝜖 < 𝜎, we have that

𝑃
(
(𝜎 + 𝜖)𝑌 ≥ 𝑘

)
− 𝑃

(
𝜎𝑌 ≥ 𝑘

)
𝜖

=
1
𝜖

∫ 𝑘/𝜎

𝑘/(𝜎+𝜖 )
𝑝(𝑦) 𝑑𝑦

≤ 1
𝜖
𝑘
( 1
𝜎

− 1
𝜎 + 𝜖

)
𝑔
( 𝑘

𝜎 + 𝜖

)
≤ 𝑘

𝜎2 𝑔
( 𝑘

2𝜎
)
≤ 𝑘

𝜎

∫ 𝑘

𝑘−1

1
𝜎
𝑔
( 𝑦

2𝜎
)
𝑑𝑦 =: ℎ1 (𝑘),

and, for −𝜎/2 < 𝜖 < 0, we obtain that

𝑃
(
(𝜎 + 𝜖)𝑌 ≥ 𝑘

)
− 𝑃

(
𝜎𝑌 ≥ 𝑘

)
𝜖

= −1
𝜖

∫ 𝑘/(𝜎+𝜖 )

𝑘/𝜎
𝑝(𝑦) 𝑑𝑦

≤ 1
−𝜖 𝑘

( 1
𝜎 + 𝜖

− 1
𝜎

)
𝑔
( 𝑘
𝜎

)
≤ 𝑘

𝜎2/2
𝑔
( 𝑘
𝜎

)
≤ 𝑘

𝜎

∫ 𝑘

𝑘−1

1
𝜎/2

𝑔
( 𝑦
𝜎

)
𝑑𝑦 =: ℎ2 (𝑘).

In both cases, the corresponding quantities ℎ1 (𝑘) and ℎ2 (𝑘) do not depend on the value of 𝜖 , and we
obtain that

∞∑︁
𝑘=1

(
ln(𝑘 + 1) − ln(𝑘)

)︸                   ︷︷                   ︸
≤ 1/𝑘

ℎ𝑖 (𝑘) ≤ 2
𝜎

∫ ∞

0
𝑔(𝑦) 𝑑𝑦 < ∞,

which allows us to invoke Lebesgue’s theorem on dominated convergence. Since 𝑝 is continuous, we
have

lim
𝜖→0

𝑃
(
(𝜎 + 𝜖)𝑌 ≥ 𝑘

)
− 𝑃

(
𝜎𝑌 ≥ 𝑘

)
𝜖

=
𝑘

𝜎2 𝑝
( 𝑘
𝜎

)
,

which implies that

𝑑

𝑑𝜎
𝐸 ln

(
⌊𝜎𝑌⌋ + 1

)
=

∞∑︁
𝑘=1

𝑘
(
ln(𝑘 + 1) − ln(𝑘)

)︸                      ︷︷                      ︸
≤ 1

1
𝜎2 𝑝

( 𝑘
𝜎

)
≤ 1

𝜎

∞∑︁
𝑘=1

∫ 𝑘

𝑘−1

1
𝜎
𝑔(𝑦/𝜎) 𝑑𝑥 ≤ 𝛾

𝜎
.

Lemma 7.4. It holds, for fixed ℎ ∈ Z,∑︁
𝑡 : 1≤𝑡 ,𝑡+ℎ≤𝑛

ln(𝑡 + ℎ) ln(𝑡) = 𝑛
(
ln(𝑛)

)2 + 𝑂
(
𝑛 ln(𝑛)

)
.

Proof. Let, w.l.o.g., ℎ ≥ 0. Then∑︁
𝑡 : 1≤𝑡 ,𝑡+ℎ≤𝑛

ln(𝑡 + ℎ) ln(𝑡) = (𝑛 − ℎ)
(
ln(𝑛)

)2 −
𝑛−ℎ∑︁
𝑡=1

(
ln(𝑛)

)2 − ln(𝑡 + ℎ) ln(𝑡).
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Since ln(𝑠 + 1) − ln(𝑠) ≤ 𝑠−1 for 𝑠 ≥ 1 we can estimate the right-hand side by

𝑛−ℎ∑︁
𝑡=1

(
ln(𝑛)

)2 − ln(𝑡 + ℎ) ln(𝑡)

≤
𝑛−ℎ∑︁
𝑡=1

(
ln(𝑛)

)2 −
(
ln(𝑡)

)2

=

𝑛−ℎ∑︁
𝑡=1

(
ln(𝑛)

)2 −
(
ln(𝑛 − 1)

)2 +
(
ln(𝑛 − 1)

)2 − · · · −
(
ln(𝑡 + 1)

)2 +
(
ln(𝑡 + 1)

)2 −
(
ln(𝑡)

)2

=

𝑛−1∑︁
𝑠=1

min{𝑠, 𝑛 − ℎ}
[ (

ln(𝑠 + 1)
)2 −

(
ln(𝑠)

)2
]

≤
𝑛−1∑︁
𝑠=1

ln(𝑠 + 1) + ln(𝑠)

≤ 2
𝑛∑︁
𝑡=1

ln(𝑡) = 𝑂
(
𝑛 ln(𝑛)

)
,

which completes the proof.
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