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Abstract— Deep neural networks endow the downsampled
superpoints with highly discriminative feature representations.
Previous dominant point cloud registration approaches match
these feature representations as the first step, e.g., using
the Sinkhorn algorithm. A RANSAC-like method is then
usually adopted as a post-processing refinement to filter the
outliers. Other dominant method is to directly predict the
superpoint matchings using learned MLP layers. Both of them
have drawbacks: RANSAC-based methods are computationally
intensive and prediction-based methods suffer from outputing
non-existing points in the point cloud. In this paper, we propose
a straightforward and effective baseline to find correspondences
of superpoints in a global matching manner. We employ the
normalized matching scores as weights for each correspondence,
allowing us to reject the outliers and further weigh the rest
inliers when fitting the transformation matrix without relying
on the cumbersome RANSAC. Moreover, the entire model can
be trained in an end-to-end fashion, leading to better accuracy.
Our simple yet effective baseline shows comparable or even
better results than state-of-the-art methods on three datasets
including ModelNet, 3DMatch, and KITTI. We do not advocate
our approach to be the solution for point cloud registration but
use the results to emphasize the role of matching strategy for
point cloud registration. The code and models are available at
https://github.com/neu-vi/Superpoints_Registration

I. INTRODUCTION

Point cloud registration refers to the task of aligning two
partially overlapping point clouds into a shared coordinate
system. In this paper, we tackle this problem where the goal
is to determine the transformation matrix, including rotation
and translation, from one point cloud (source) to the other
(target). It has attracted a lot of research interest due to
its broad applications in SLAM (Simultaneous Localization
and Mapping) [14], [44], autonomous driving [28], [32], 3D
reconstruction [22], [19], etc.

A prevailing paradigm to solve the registration task is
to leverage the correspondences of superpoints across two
point clouds, which can be obtained using either keypoint
detectors [1], [4], [11], [21] or downsampling in deep neural
networks [37], [38], [47]. Ideally, these superpoints should
capture salient and distinctive points or regions within a
point cloud. With the learned feature representations, the
superpoints are endowed with sufficient discriminative power
so they can be matched across the source and target point
clouds, where the matching strategy is crucial for finding
correspondences of superpoints and can significantly affect
the convergence and performance of the network. Previous
approaches [58], [39] use the Sinkhorn algorithm [45] to
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Fig. 1. Our approach directly matches the superpoints between
the input point clouds to register them by estimating the SE(3)
transformation matrix. The correlation weights obtained from matching
are used to filter out incorrect correspondences (outliers) and further weigh
the rest inliers for the transformation matrix estimation. The source cloud is
shown in blue, with superpoints highlighted in red. Similarly, the target point
cloud is displayed in yellow, with matching superpoints shown in blue. The
intensity of the red and blue colors represents the correspondence weights.
Notice how most keypoints are distributed around the three-way junction
and exhibit high correspondence weights. (Best viewed in color.)

match superpoints, which however is sensitive to initialization
parameters and requires careful tuning. In [46], Dual-Softmax
is adopted for feature matching between two input images
by using kepoints which have softmax correlation scores
greater than a certain threshold. The correspondences of
superpoints, however, are inevitably noisy due to either
the noisy sensory data or simply incorrect estimations of
correspondences, which prevent existing approaches from
directly matching superpoints for point cloud registration.
Postprocessing refinement is usually needed, for instance,
using RANSAC-like approaches to prune the outliers [11],
[12], [63], [61]. But such refinement is inherently slow due
to the iterative nature of the RANSAC pipeline and can not
be easily integrated into an end-to-end trainable system.

The recent work [59] populates another strategy, which
uses a two-layer MLP to direct predict matched superpoints
between the input point clouds. But such predicted correspon-
dences may not exist in the point cloud, leading to inferior
registration accuracy.

In this paper, we present a strong baseline for point cloud
registration by directly matching superpoints. Specifically,
building upon RegTR [59], instead of using a MLP to predict
correspondences of superpoints, we find the correspondences
by computing the similarity scores of all superpoints across
the source and target point cloud in a global matching manner.
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Their normlized matching scores can be used to filter out
the unreliable correspondences (i.e., outliers). By integrating
the weights of the rest inlier superpoint matchings into a
differentiable variant of the Kabsh-Umeyama Algorithm [50],
[23], we obtain robust estimations of the SE(3) transformation
between the input point cloud pairs. An illustration is shown
in Fig. 1. As a result, no ad hoc postprocessing refinement is
needed, yielding a more efficient model. More importantly, the
entire model can be trained in an end-to-end manner, where
the feature representation learning, superpoints matching, and
transformation estimation can be jointly optimized. Better
registration accuracy can thus be obtained. In addition,
compared to [59], our approach find correspondences of
superpoints by global matching, which does not output non-
existing points in the target point cloud.

We run experiments on three benchmark datasets, including
ModelNet [54], 3DMatch [63], and KITTI [16], and achieve
comparable or even better results than state-of-the-art methods.
We do not advocate our approach to be the solution for point
cloud registration. Rather, we’d like to emphasize the role of
matching strategy for point cloud registration, showcasing the
feasibility of achieving high accuracy without cumbersome ad
hoc postprocessing. By releasing the code and model weights,
we hope our work can foster future research.

II. RELATED WORK

Traditional registration approaches. The most known
algorithm Iterative Closest Point (ICP) [5] has been widely
used for point cloud registration. ICP solves the registration
problem iteratively in two steps: (1) It obtains the spatially
closest point correspondence and then (2) finds the least-
squares rigid transformation. The spatial-distance-based corre-
spondences are sensitive to the initial transformation and point
noises. A lot of variants [41], [9], [43], [6], [40], [30] have
been proposed to improve ICP. Another method is to extract
and match keypoints based on feature extraction methods
such as FPFH [42] and SHOT [48], followed by an outlier
rejection postprocessing step.

Learning-based registration approaches. Recently, many
works have used deep learning for point cloud learning and
registration. Some work first estimates the correspondence
between two point clouds and then computes the transfor-
mation with some robust pose estimators. To predict the
correspondence between two point clouds, 3DMatch [63]
detects the repeatable keypoints and learns discriminative
descriptors for keypoints. The following works aim to either
improve the keypoint detections [4], [26], [57] or learn
better feature descriptors [11], [12], [13], [24], [1], [52].
Predator [21] uses the attention mechanism proposed in Trans-
formers [51] to enhance the point feature descriptors. Other
detector-free methods [61], [39] extract the correspondences
by considering all possible matches. Another line of work [8],
[62] has included the transformation computation into the
training pipeline. Unlike these works which require either ad-
hoc postprocessing or coarse-to-fine registration, our method
directly matches the superpoints without any refinement.

Learning visual correspondence. Various approaches have
been proposed to establish correspondences between the input,
e.g., using nearest neighbor followed by the distance ratio
test [29]. Recent approaches [58], [39] use the Sinkhorn
algorithm [45] to match superpoints for point cloud registra-
tion. However, it is sensitive to initialization parameters and
requires careful tuning. In [46], Dual-Softmax is adopted
for feature matching between two input images by using
kepoints which have softmax correlation scores greater than
a certain threshold. Global Softmax is used in a recent work
of optical flow [56] to find global matchings by simply
taking the correspondence for each pixel with the highest
correlation score. In this paper, we extend Global Softmax
by using the corrleation weights for both filtering unreliable
correspondences and weighing the remaining inliers when
estimating the SE(3) transformation matrix.
Correspondence filters. RANSAC [15] is typically used
to filter out the outliers in the predicted correspondence to
obtain a robust transformation estimation. However, RANSAC
is relatively slow and cannot be incorporated into the
training pipeline because the hypothesis selection step is non-
differentiable. To alleviate these problems, DSAC [7] and
∇-RANSAC [53] modify the RANSAC pipeline and make it
differentiable. But even the differentiable versions are similar
in computational complexity as vanilla RANSAC. Other deep
robust estimators [3], [10], [35], [17], [25], [60] usually use
the classification network to identify which correspondences
are outliers and then reject them. Instead of using these
complex correspondence filters, our method can directly filter
out outliers effectively by leveraging the rich information in
the superpoints matching.

III. METHOD

Given the source and target point clouds X ∈ RM×3 and
Y ∈ RN×3, our goal is to determine the SE(3) transformation
T = {R, t} with rotation R ∈ SO(3) and translation t ∈R3 to
align two point clouds into a common coordinate system. M
and N denote the numbers of points.

A. Superpoints Feature Extraction and Enhancement

Following [59], we use Kernel Point Convolution (KP-
Conv) [47] as the backbone to selectively downsample the
point cloud into a set of superpoints and extract global
feature vectors for each superpoint. The KPConv backbone
uses a series of ResNet-like blocks [20] and convolutions
to downsample the input point clouds into a reduced set
of superpoints X′ ∈ RM′×3 and Y′ ∈ RN′×3, where M′ < M
and N′ < N. The superpoints are described by their feature
vectors FX′ ∈ RM′×D and FY′ ∈ RN′×D, respectively, with D
being the feature dimension. The network weights are shared
among the two point clouds. We use a shallower backbone for
3DMatch dataset compared to [59], [21] to avoid significant
downsampling by removing the 4-th residual block.

Although KPConv backbone provides reasonably good
representations, the superpoints features are obtained within
each point cloud independently. To obtain highly discrimi-
native feature representations for superpoints matching, We
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Fig. 2. Model Architecture: The KPConv backbone downsamples the input point cloud and generates superpoints and their feature vectors. These
superpoint features are then conditioned on the other point cloud in the feature enhancement block. Lastly, superpoint features can be directly matched
using Global Softmax to estimate SE(3) transformation using the corrleation weights in a robust manner. The intensity of the red and blue colors of the
superpoints after the softmax correlation step represents the correspondence weights. (Best viewed in color.)

use the multi-head attention mechanism in the Transformer
model [51] as the feature enhancement module as suggested
in [59], shown in Fig. 2. It consists of both self and
cross-attention, where the self-attention is to integrate the
information from the other points within the same point
cloud and the cross-attention allows interactions with points
in another point cloud to consider the mutual dependencies.
In addition to the multi-head attention, other components
in the Transformer model, including position encodings of
3D points, residual connections, layer normalization, and
feed-forward network are applied to each layer. The entire
feature enhancement module consists of 6 such layers with
256 dimensions and 8 attention heads.

The outputs of the feature enhancement module are
features F̄X′ ∈RM′×D and F̄Y′ ∈RN′×D which has aggregated
geometric information from both source and target point cloud.
The strongly associated features are strengthened while the
weakly associated features are weakened.

B. Superpoint Matching for SE(3) Transformation Estimation

Unlike [59] that uses a two-layer MLP to predict corre-
sponding points, we find the correspondences of superpoints in
a global matching manner. This change removes the ambiguity
of predicting non-existing corresponding points. To get the
correspondences between two point clouds, we first compare
the feature similarity for each point in F̄X′ to all points in
F̄Y′ by computing their correlations [56], which can be done
efficiently in a single step as follows:

C = Softmax
(
F̄X′ · F̄T

Y′
)
∈ RM′×N′

, (1)

where C is the normalized correlation matrix representing the
similarity between two point clouds. Based on the correlation
matrix, the correspondences between X′ and Y′ can be directly
calculated by using the largest correlation for each point.

The SE(3) transformation between the source and target
point clouds can be then estimated using the superpoints
correspondences with a weighted variant of the Kabsch-

Umeyama algorithm [23], [50]:

R̂, t̂ = argmin
R,t

min(N′,M′)

∑
i

wi∥Rx̂i + t− ŷi∥2, (2)

where wi = C(x̂i, ŷi) is the correspondence weight, x̂i, ŷi are
the i-th pair of matched superpoints. We use min(N′,M′)
operation because corresponding points can only be found
for the point cloud with the minimum number of superpoints.

Although we use the highly discriminative feature rep-
resentations enhanced by the attention module, the cor-
respondences are inevitably noisy. How to filter out the
outliers (i.e., incorrect correspondences)? We show that the
normalized correlation matrix C obtained from superpoints
matching in Eq. (1) contains rich information, allowing us
to effectively reject outliers for robust transformation matrix
estimation. Specifically, if x̂i is similar to multiple superpoints,
e.g., because of the repetitive patterns, its matching to ŷi
tends to be unreliable. Therefore, the normalized correlation
score between them wi = C(x̂i, ŷi) will be low since C is
normalized w.r.t. all other superpoints in the target point
cloud. Unlike [56], which completely discards the correlation
weights in C, we use wi for two purposes: discarding the
unreliable corresondences that have low wi values and further
weighting the rest inliers when fitting the transformation
matrix in Eq. (1). It is important to note here that wi is not
learned and is just the correlation score between the feature
representations of x̂i, ŷi, the i-th pair of matched superpoints.
We show in the experiments that such a matching strategy
works more effectively for superpoints matching than other
approaches [49], [56], [46].

In comparison to [39], [61], [33], our approach is simple
yet effective, which eliminates the coarse-to-fine strategy and
more importantly, the inherently slow RANSAC-like postpro-
cessing. Although the feature enhancement module is also
used in [59], our approach is fundamentally different. [59]
predicts corresponding points for both source and target point
clouds whereas our approach removes the ambiguity of pre-
dicting non-existing points and directly matches superpoints.
The limitation of [59] can also be seen in outdoor LiDAR



experiments like KITTI. As shown in Table III, it performs
significantly worse due to predicting correspondences that do
not align well with true corresponding points.

C. Loss Functions

We train our approach using the following three loss
functions, where the transformation loss is the main loss
term and the other two are auxiliary ones.

Transformation Loss. We apply the L1 loss on the predicted
transformed locations of all keypoints with the predicted and
ground truth transformation matrix. This is different from
[59]. Since we do not predict corresponding points for each
point cloud, we do not need to compute two transformation
matrices and thus we do not have to force the network to
learn that both matrices are inverses of each other.

LT =
1

M′

M′

∑
i

∣∣R̂x′i + t̂−
(
Rgtx′i + tgt

)∣∣
1 . (3)

Overlap Loss. Inspired by [59], we estimate the overlap
values ÔX′ and ÔY′ using a separate MLP layer based on
the enhanced feature F̄X′ and F̄Y′ , respectively. The overlap
estimation is formulated as a binary classification problem,
so we use the binary cross-entropy loss:

L X
o =− 1

M′

M′

∑
i

o∗x,i · log ôx,i +(1−o∗x,i) · log(1− ôx,i), (4)

where ôx,i is the estimated overlap probability and o∗x,i is the
ground truth probability. We compute the overlap loss L Y

o
for the target point cloud similarly.

Feature Loss. Following [59], to ensure that the enhanced
features of both point clouds are in the same feature space, we
apply an InfoNCE [34] loss on the enhanced features F̄X′ and
F̄Y′ . Given a set of superpoints correspondences {(x̂i, ŷi)}K

i=1
and their associated feature representations {(f̄x̂i , f̄ŷi), the
feature loss is defined as

L f =− 1
K

log
f̄T
x̂i

Wf̄ŷi

f̄T
x̂i

Wf̄ŷi +∑ j ̸=i f̄T
x̂i

Wf̄ŷ j

. (5)

The linear transformation W is enforced to be symmetrical
by parameterizing it as the sum of an upper triangular matrix
U and its transpose, i.e. W = U+UT .

The final loss is a weighted sum of all the losses with

L = LT +αL f +β (L X
o +L Y

o ), (6)

where we set the loss weights α = 0.1 and β = 1 empirically.

IV. EXPERIMENTS

We evaluate our approach on three datasets with overlap
ranging from 10% to 75%. The first dataset is on synthetic
ModelNet dataset with two benchmarks settings following
[21], [59]. The second one is 3DMatch [63] with two
benchmarks following [21], [59], [39], [61]. The last one
is on the challenging large-scale outdoor KITTI dataset [16]

TABLE I
REGISTRATION RESULTS ON MODELNET AND MODELLONET.

Methods ModelNet ModelLoNet

RRE↓ RTE↓ CD↓ RRE↓ RTE↓ CD↓

PNLK [2] 29.725 0.297 0.0235 48.567 0.507 0.0367
OMNet [55] 2.947 0.032 0.0015 6.517 0.129 0.0074
DCPv2 [31] 11.975 0.171 0.0117 16.501 0.300 0.0268
RPMNet [58] 1.712 0.018 0.00085 7.342 0.124 0.0050
Predator [21] 1.739 0.019 0.00089 5.235 0.132 0.0083
RegTR [59] 1.473 0.014 0.00078 3.930 0.087 0.0037
GeoT [39] 1.568 0.018 - 3.809 0.102 -

Ours 1.247 0.011 0.00074 3.809 0.088 0.0040

A. Implementation details

Our approach is implemented using the PyTorch framework
[36] on a system with an Intel i9-1300K CPU and a single
RTX 3090 GPU. The network training is performed with the
AdamW optimizer [31], using a learning rate of 0.0001 and a
weight decay of 0.0001. We tain the network for 400 epochs
with batch size of 4 on ModelNet, 50 epochs with batch size
of 4 on 3DMatch, and 80 epochs with batch size of 1 on
KITTI.

B. ModelNet and ModelLoNet Benchmarks

The ModelNet40 [54] dataset comprises of synthetic CAD
models. Following the data setting in [21], [59], the point
clouds are randomly sampled from mesh faces of the CAD
models, cropped and subsampled.

Our network is trained exclusively on ModelNet, and evalu-
ated for generalization on ModelLoNet. For benchmarking the
performance of our model we use the Relative Rotation Error
(RRE) and Relative translation Error (RTE) and Chamfer
Distance (CD) as the primary metrics, following [59].

The results are shown in Table I. We compare against
correspondence-based approaches [21], [59], coarse-to-fine
registration approaches [39], and end-to-end methods [2],
[58], [55]. Our approach performs well on both benchmarks
improving results on ModelNet benchmark by 15% in RRE
and 21% in RTE. The low chamfer error suggests that
predicted correspondences have very high accuracy. Our
approach is also able to outperform methods using post-
processing steps like RANSAC [21] by a significant margin.

C. 3DMatch and 3DLoMatch Benchmarks

3DMatch [63] is a collection of 62 scenes, from which
we use 46 for training, 8 for testing, and 8 for validation
following [59], [21], [39]. We use the preprocessed data from
[21] which contains point clouds downsampled using a voxel-
grid subsampling method. The 3DMatch benchmark contains
point clouds pairs with >30% overlap while the 3DLoMatch
benchmark contains scan pairs with only 10%-30% overlap.
Following [59], we perform training data augmentation by
applying small rigid perturbations, jittering, and shuffling of
points. Following the literature [21], [39], [63], We report the
results of 3DMatch dataset on 5 metrics including RRE, RTE,
Registration Recall (RR), Feature Matching Recall (FMR),
and Inlier Ratio (IR).



TABLE II
REGISTRATION RESULTS ON 3DMATCH AND 3DLOMATCH.

Methods 3DMatch 3DLoMatch

RRE↓ RTE↓ RR↑ FMR↑ IR↑ RRE↓ RTE↓ RR↑ FMR↑ IR↑

FCGF 1.949 0.066 85.1 97.4 56.8 3.147 0.100 40.1 76.6 21.4
D3Feat 2.161 0.067 81.6 95.6 39.0 3.361 0.103 37.2 67.3 13.2
Predator 2.029 0.064 89.0 96.6 58.8 3.048 0.093 59.8 78.6 26.7
DGR 2.103 0.067 85.3 - - 3.954 0.113 48.7 - -
RegTR 1.567 0.049 92.0 - - 2.827 0.077 64.8 - -
YOHO - - 90.8 98.2 64.4 - - 65.2 79.4 25.9
CofiNet - - 89.3 98.1 49.8 - - 67.5 83.1 24.4
GeoT 1.625 0.053 91.5 97.7 70.3 2.547 0.074 74.0 88.1 43.3

Ours 1.436 0.045 93.7 96.5 89.8 2.553 0.074 65.0 76.5 57.5

We compare our approach against several learned
correspondence-based algorithms [18], [11], [4], [21] and
coarse-to-fine approaches [61], [39]. The quantitative results
are shown in Table II. For the 3DMatch benchmark, our
approach outperforms all the previous methods in all but
the FMR metric. This implies that in cases of significant
overlap (>30%), the superpoint correspondences are very
distinctive and accurate. For the 3DLoMatch benchmark, in
comparison to all the approaches that do not use any post-
processing, e.g. Predator[21] and CoFiNet[61], our method
performs significantly better. GeoT [39] uses Local to Global
Refinement (LGR) as the refinement step to get best results.
In our case, outliers are filtered by the correlation weights,
thus providing accurate correspondences. The validity of the
correspondences obtained by our approach can be verified
by comparing the mean Inlier Ratio (IR) in Table II. We get
the highest mean IR, almost 19% better than the second-best
approach on 3DMatch and 14% higher in 3DLoMatch. Our
approach does not perform the best in FMR because we
prioritize outputting correct correspondences over a large
number of, yet potentially noisy matchings. In contrast,
CofiNet [61], has a very high FMR but low IR due to its
propensity for producing many inaccurate matches.

One of the problems associated with superpoint matching in
point clouds is the resolution issue, where we might not have
one-to-one correspondences due to subsampling. In our case,
this is automatically handled by the correlation weights. The
correlation weights are lower for weakly matching superpoints
and thus even if there is no one-to-one correspondence, weak
correspondences will be used according to their weights to
compute the correct SE(3) transformation. Figure 3 shows
the correlation weight distribution on the 3DMatch and
3DLoMatch benchmark. In 3DMatch, we have many high
correlation weights, suggesting that many sample points
are good correspondences. On 3DLoMatch, we have much
fewer good correlations suggesting that many of the sampled
superpoints are not good matches, which is expected because
of very low overlap.

D. KITTI Benchmark

KITTI odometry consists of 11 sequences of outdoor
driving scenarios scanned using the HDL64 LiDAR sensor.
Following [21], we use sequence 0-5 for training, 6-7 for
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Fig. 3. Correlation weight distribution on 3DMatch. Here, many points
exhibit moderate correlations, suggesting that a considerable portion of
sample points are reasonably good matches. In contrast, 3DLoMatch has
fewer points that exhibit strong correlations due to the low data overlap.
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Fig. 4. Qualitative Results on 3DMatch. The source cloud is shown
in blue with the red color representing the matched superpoints. Similarily
target cloud is shown in yellow color with matching superpoints in blue.
(Best viewed in color.)

validation, and 8-10 for testing. As in [21], [39] we only
use the point cloud pairs that are at least 10m apart and their
ground-truth poses are refined using ICP for all evaluations.
Table III shows the results obtained on KITTI. We can see
that the baseline [59] performs significantly worse in RTE.
Since the correspondences are predicted, they do not align
one-on-one with actual correspondences, thus significantly
reducing registration accuracy. We achieve state of the art
results in RRE and RR while performing comparably in RTE.
This showcases the effectiveness of our approach in large
scale outdoor point clouds. Figure 1 shows an example of
matched superpoints on KITTI dataset, our approach is able
to find very distinctive correspondences to register the point
cloud pair.

E. Ablation Studies

Using correlation scores for filtering outliers. We study
the effectiveness of outlier filtering in Table IV. In the
‘No filtering’ approach, we use all the superpoints with
their scores without any filtering. A little surprisingly, it
achieves very competitive results, likely because we use the
correlation weights of the matchings in the transformation
matrix estimation in Eq.(2). If the outlier filtering is used
(the last row), the best accuracy can be obtained.



TABLE III
REGISTRATION RESULTS ON KITTI.

Methods RTE↓ RRE↓ RR↑

3DFeat [57] 25.9 0.25 96.0
FCGF [42] 9.5 0.30 96.6
D3Feat [4] 7.2 0.30 99.8
Predator [21] 6.8 0.27 99.8
CofiNet [61] 8.2 0.41 99.8
RegTR [59] 49.9 0.61 99.1
GeoTransformer [39] 6.8 0.24 99.8
Unified BEV [27] 7.5 0.26 99.8

Ours 7.2 0.24 99.8

TABLE IV
COMPARISONS OF DIFFERENT OUTLIER FILTERING METHODS.

Outlier Filtering 3DMatch 3DLoMatch

Method RRE RTE RR RRE RTE RR Time

No filtering 1.462 0.046 93.4 2.652 0.074 64.6 0.073
Ours + RANSAC 2.788 0.090 82.3 4.653 0.115 32.0 0.141

Ours (top 15%) + RANSAC 1.701 0.051 93.0 2.696 0.078 64.5 0.153
Correlation scores (top 15%) 1.436 0.045 93.7 2.553 0.074 65.0 0.073

We also experiment with RANSAC on the set of super-
points correspondences with and without outlier filtering,
respectively. Without any filtering (‘Ours + RANSAC’),
the large number of outliers impose significant challenges
for RANSAC to find the optimal solution. Even with
filtering (‘Ours (top 15%) + RANSAC’), we can see that
RANSAC gives slightly worse results, partially because it
does not always converge to the optimal solution. Furthermore,
RANSAC requires twice as much time for the estimation of
the transformation matrix compared to our method.

Effectiveness of the loss terms. We also analyze the
effectiveness of each loss function. Table V shows the results
with different loss function configurations. We see that by
just using the feature loss along with the transformation loss,
the model is able to achieve good performance. Using the
overlap loss further helps the model prune remaining outliers.

Matching strategy. The choice of a matching strategy is
crucial for precise pose estimation. In prior approaches, such
as [39], [58], [61], the Sinkhorn algorithm has commonly
been employed to compute optimal transport and derive
matching scores for correspondences. In our research, we opt
for Global Softmax, which, as evidenced by our experiments,
outperforms the Sinkhorn approach (refer to Table VI). Note
that while Sinkhorn algorithm requires careful parameter

TABLE V
EFFECTIVENESS OF DIFFERENT LOSS TERMS.

Overlap Feature 3DMatch 3DLoMatch

Loss Loss RRE RTE RR RRE RTE RR

✗ ✗ 2.521 0.076 76.5 5.272 0.132 31.2
✓ ✗ 2.123 0.062 79.6 4.020 0.105 37.2
✗ ✓ 1.651 0.049 90.3 2.876 0.082 58.0
✓ ✓ 1.436 0.045 93.7 2.553 0.074 65.0

TABLE VI
COMPARISON OF MATCHING STRATEGY

Methods 3DMatch 3DLoMatch Time

RRE↓ RTE↓ RR↑ RRE↓ RTE↓ RR↑

Sinkhorn 1.509 0.046 89.2 2.622 0.074 59.6 0.094
Dual Softmax 1.441 0.045 93.6 2.589 0.074 65.1 0.080
MLP [59] 1.567 0.049 92.0 2.827 0.077 64.8 0.078
Global Softmax (Ours) 1.436 0.045 93.7 2.553 0.074 65.0 0.073

TABLE VII
COMPARISON OF DATA AUGMENTATION SCHEMES

Methods 3DMatch 3DLoMatch

RRE↓ RTE↓ RR↑ RRE↓ RTE↓ RR↑

Ours (Weak Augmentation) 1.436 0.045 93.7 2.553 0.074 65.0
Ours (Large Augmentation) 1.472 0.045 93.4 2.611 0.074 66.8

tuning, our approach is parameter-free and works out of the
box. While Global Softmax has been previously used as a
matching strategy in [49], [58], prior works only utilized it to
identify matching points with probabilities exceeding a certain
threshold, resulting in suboptimal outcomes. Our innovation
lies in utilizing these probabilities as correspondence weights,
facilitating gradient flow through the Weighted Kabsch-
Umeyama Solver which leads to faster optimization and better
results. We also experimented with Dual Softmax matching
used in LofTR [46], but the difference in performance is less
than 1% with Global Softmax being slightly better and faster
than Dual-Softmax.

Data Augmentation Schemes Previous works have tried
different data augmentation schemes. [59] uses a weak
data augmentation, perturbing poses by a small amount
during training. While [39], [58], [21] use large data
augmentation, perturbing poses by a full range of motion.
Weak data augmentation can slightly improve performance
but deteriorates network generalization. Table VII shows that
our approach achieves slightly better performance with weak
data augmentation. But with strong data augmentation, the
generalization on 3DLoMatch benchmarks improves RR by
1.8%.

V. CONCLUSION

In this paper, we presented a strong baseline approach
for point cloud registration. By using Global Softmax to
directly match superpoint features, we remove the ambiguity
of predicting non-existent corresponding points while using
the softmax probabilities as correspondence weights allows
us to filter outliers without any post-processing refinement.
Experimental results on standard benchmarks show that our
model achieves comparable or even better accuracy than
state-of-the-art methods. We do not advocate our approach
to be the solution for point cloud registration. Rather, we’d
like to emphasize the role of matching strategy for point
cloud registration, showcasing the feasibility of achieving
high accuracy without cumbersome ad hoc postprocessing.
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