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Finite time mixing and enhanced dissipation for 2D
Navier-Stokes equations by Ornstein—Uhlenbeck flow
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Abstract

We consider the vorticity form of 2D Navier-Stokes equations perturbed by an Ornstein—
Uhlenbeck flow of transport type. Contrary to previous works where the random perturba-
tion was interpreted as Stratonovich transport noise, here we understand the equation in a
pathwise manner and show the properties of mixing and enhanced dissipation for suitable
choice of the flow.
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1 Introduction

Let T? := R2?/Z? be the two-dimensional (2D) torus; we consider the vorticity form of 2D
Navier-Stokes equations on T?, perturbed by a smooth transport term:

(1.1)

D +1u-VE+b-VE= KA,
u:K*€7 f‘t:o :€07

where ¢ and u are the fluid vorticity and velocity field, K being the Biot-Savart kernel on T?:

K &= —VH(=A)7',

with V+ = (0q, —01), 0; = 8%1-‘ k > 0 is a fixed small number representing molecular diffu-
sivity, and b : [0,00) x T2 — R? is a random time-dependent and divergence free vector field,
continuous in time and smooth in space variables, standing for the small-scale parts of fluid
velocity, thus the term b - V& models the effects of fluid small scales on the larger component
¢. It is well known that for L2-initial condition &, P-a.s., equation (1.1) admits a unique
weak solution satisfying the usual energy estimate. Our purpose is to study, under suitable
conditions on b, the properties of mixing and dissipation enhancement for the system (1.1).

The above model can be heuristically derived from the deterministic 2D Navier-Stokes equa-
tion by separating the fluid into large-scale components and small-scale ones, and modeling
the corresponding small-scale velocity by a random field b, see for instance [17, Section 1.2] for
derivations in the 3D case and also [31, Section 1.2] for similar discussions on 2D Boussinesq
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systems. In these papers, the small-scale perturbations are interpreted as Stratonovich multi-
plicative noises of transport type, delta-correlated in time and colored in space, and thus the
first equation in (1.1) is understood as a stochastic partial differential equation (SPDE); we
refer to the recent works [8, 22, 23, 28] for more rigorous derivations of such stochastic fluid
dynamics models. Indeed, the investigations of regularizing effects of multiplicative transport
noise on various models began much earlier, see e.g. [9, 14, 15]. More recently, inspired by
the scaling limit method introduced by Galeati [25], stochastic fluid equations with transport
noise have been studied intensively, and it is by now well understood that transport noise pro-
duces eddy dissipation/viscosity under certain rescaling of spatial covariance, see for instance
[7, 10, 13, 19, 20, 21, 31, 34]. Moreover, the larger the noise intensity, the stronger the addi-
tional viscous term in the limit equations; the extra strong viscosity can be used to suppress
possible blow-up of various deterministic equations, yielding long-term (even global) existence
of strong solutions with large probability, cf. [1, 11, 16, 17, 32]. In a sense, the above results
can be regarded as partial verifications of Boussinesq’s eddy viscosity hypothesis [6], which is
one of the basis for large eddy simulation (see [5]).

However, noises with delta-correlation in time are just idealized approximations of real
objects, and it is worthy of considering more practical perturbations, see [35, Section 4] for
related discussions. As an attempt in this respect, Flandoli and Russo [24] showed that the
dissipation properties of a stochastic transport term of fractional Brownian motion with Hurst
parameter H > 1/2 are weaker than standard Brownian motion. In a slightly earlier work [36],
Pappalettera studied the mixing and dissipation enhancement properties of Ornstein-Uhlenbeck
flows for passive scalar on d-dimensional torus T¢:

Oth +b-Vh=kAh, hli—o = ho € L*(T%). (1.2)

The time-dependent vector field b takes the form

b(t,x) =Y bi(x)n™ (1),

jed

where J is a finite index set, {b;};cs are divergence free vector fields on T¢ and {n®7},cs
are independent real Ornstein-Uhlenbeck processes with covariance Cov(n®7(t),n%(s)) =
Sexp(—alt — s|), @ > 0 being a parameter. As a — oo, the covariance §exp(—alt — s])
converges in distribution to the Dirac delta function, and thus n%7 can be seen as approxima-
tions of the white noise. Assuming suitable conditions on the spatial properties of the family
{b;}jes, it is shown in [36] that the solution h is close, in negative Sobolev norms, to the
solution of the deterministic equation

E?Jz = (KA + ﬁ)il, ilo = hg, (1.3)

where the second order differential operator Lh = ;b V(b; - Vh) stands for the enhanced
dissipation. As mentioned above, the small-scale perturbations are understood in previous
works (e.g. [10, 13, 25]) as Stratonovich transport noise, and thus the additional operator £
arises naturally as Stratonovich-Ito corrector. Here, however, one has to compute the iterated
integral of Ornstein-Uhlenbeck processes and to borrow some ideas from the proof of Wong-
Zakai type results; see [23, Section 3] for related computations. There are also many other
advanced and very sophisticated works on mixing and dissipation enhancement properties,
using different methods from ergodic theory, see e.g. [3, 4, 26].

Motivated by [36], we aim at studying the properties of mixing and enhanced dissipation of
Ornstein-Uhlenbeck flow b for 2D Navier-Stokes equations (1.1) in vorticity form. To overcome



difficulties arising from the nonlinearity, we follow [10, 13, 25] and assume that the time-
dependent vector field b takes the more precise form

b(t,x) =2Vv Y O ow(z) n™* (b),

keZ3

where v > 0 is the intensity of perturbation, Z2 = Z?\{0} is the set of nonzero lattice points,
and 0 = {0} kezz € (%(Z3), the latter being the space of square summable sequences. We always

assume that 6 is a radial function of k € Z3 with only finitely many nonzero components, and

18]z = (Zkezg 02)1/2 = 1. The vector fields oy(z) = If—lj‘ezmk'“":, where k+ = (ko, —k1) and
k-x = ki1 +kow, constitute a CONS of the space L?(T?, R?) of divergence free vector fields on
T? with zero mean, while %" are independent Ornstein-Uhlenbeck processes as above. Thanks
to the exact choice of b, the additional operator £ takes the much simpler form vA (see (5.3)
below for related computations), and thus our purpose is to show that the solution & of (1.1)

is close to that of the deterministic 2D Navier-Stokes equation with extra viscosity:

OHE+1-VE= (rk+ V)AL, (1.4)

u=K=x¢ Eli=o = &- '

Note that ¢ has a fast exponential decay in L?-norm (and also in negative Sobolev norms) for
large v which comes from the intensity of noise.

To state more exactly our main results, we need some notation. For s € R, let H® = H*(T?)
be the usual Sobolev space on T? endowed with the norm || - ||7s; we will write H? as L? and
Il - llzo as || - |lz2. Unless mentioned explicitly, we will use the same notation for spaces of
functions and vector fields on T2. Since the equations (1.1) and (1.4) preserve the spatial
average of solutions, we shall assume that the spaces H* consist of functions of zero average.
We write ||0]|¢= for the supremum norm of § € ¢2(Z2). In the sequel, the notation a < b means
that a < Cb for some constant C' > 0; if we want to emphasize the dependence of C' on some
parameters 7, p, then we write a <, b.

Here is the first main result of our work; it gives us a quantitative estimate on the distance,
in terms of negative Sobolev norms, between the solutions ¢ and €. Since ¢ has a much faster
decay in such norms, we can regard the result as a mixing property of the Ornstein-Uhlenbeck
flow b, valid on finite time intervals.

Theorem 1.1. Let &y € L*(T?) and &, € be the unique solutions of (1.1) and (1.4) respectively.
Then for any v € (0, %), 9 >0 and T > 1, there exist ( € (0,1) and € > 0 such that for o
sufficiently large, it holds

_ 7 e 1
E[l¢ — Elloqorya—) < Cilléollzz exp (Calléoll2) (W30 + w2 9] e)°, (1.5)

where Cp > 0 is a constant depending on k,v,(,v,T and Co > 0 only depends on k,v,T.

We can make the right-hand of inequality (1.5) small by first choosing 6 € ¢2(Z3) with small
norm ||f||~ (see Examples 2.7 and 2.8 in Section 2 below), and then taking « big enough. This
result is an analogue of [36, Theorem 1.1], where the author measured the closedness of solutions
in the stronger Hélder space C°([0,1], H~7), § > 0. The key idea in the proof of [36, Theorem
1.1] is to express the difference h — h of solutions to (1.2) and (1.3) in terms of a random
distribution f, see the beginning of [36, Section 4] or (4.1) below for a similar quantity. If f

were differentiable in time, then h — h could be estimated using the mild expression involving
f and an analytic semigroup; in the absence of time regularity on f, one needs to apply [27,



Theorem 1] which can be thought of as a generalization of such estimates. In our case, we have

to deal with the extra nonlinear terms in equations (1.1) and (1.4), thus we shall combine the

above idea with the quantitative arguments developed in [12], and then apply the Gronwall

lemma to get the desired estimate. Compared to [12, Theorem 1.1], the coefficient C; in (1.5)

might explode as kK — 0, thus we cannot prove a similar estimate for the 2D Euler equation.
Our second main result shows the phenomenon of dissipation enhancement.

Theorem 1.2. Given A > 0, p > 1 and R > 0, we can find parameters v > 0, a > 0 and
0 € (2, such that for every & with ||&o|2 < R, there exists a random constant C' = C(w) > 0
with finite p-th moment, such that the solution of (1.1) satisfies the following exponential decay:
P-a.s.,

l€ell 2 < Ce™€oll 2 for allt > 0.

This theorem improves [36, Theorem 1.2] in two aspects: first, we deal with the nonlinear
equation (1.1) rather than the linear heat equation (1.2); second, the enhanced exponential
decay of ||& |2 is shown for all sufficiently large ¢ > 0, instead of on a finite interval. We
briefly discuss the key ingredients for proving the latter result. Note that the solution £ to
(1.1) is time homogeneous, due to the stationarity of the Ornstein-Uhlenbeck flow b; combined
with the estimate (1.5) restricted to the unit interval [0, 1], we conclude easily that similar
result, up to taking conditional expectation, holds on any interval [n,n + 1] if equation (1.4)
is restarted at time ¢ = n with the initial value &,. As a consequence, we can show that
Ellént1llz2 < coE||&n|2 where ¢g > 0 can be very small by choosing parameters v, a and
|0]lp=~ in a suitable way. Once we have such estimate, it is relatively standard to show the
enhanced exponential decay; see Section 4.2 for the detailed proofs. We mention that the
initial condition & is restricted in a ball of arbitrary (but fixed) radius R; this is due to the
nonlinearity of (1.1), see the end of [33, Section 2.1] for similar discussions.

We make some further comments on the differences between our methods and those in
[36]. First, the main results of [36] are stated in dimension d > 3, while the corresponding 2D
assertions are derived by assuming translation invariance in one direction, see the discussions
in [36, Remark 2.2]. The reason is due to a technical constraint on the Sobolev indices for
product of functions: if ¢ € H*(T%) and ¢ € H?(T?) with a,b < d/2 and a + b > 0, then one
has ¢ € HH=U2 and ||p | grars-arz Sapd [|6]lza ] go, cf. [36, Lemma 2.1] for the general
case d > 2, or Lemma 2.2 below for the 2D case. If one wants to directly apply this result
to estimate the H'-norm of b(t) - V¢, where ¢ € H**7 for some small v > 0, then a possible
choice of parameters would be a = d/2 —v < d/2, b=1+ v < d/2, and one has

16@) - Vol g Sy [0) | grarz— VOl e < N0 grasz— 91 2445

however, the above choice of parameters results in d > 3, v € (0,(d — 2)/2). In order to treat
directly the 2D case, we make the following simple but key observation: since b(t) is divergence
free in space, the function b(t) - V¢ has zero spatial average and thus one can apply Poincaré’s
inequality to get

() - Vol S IV (b(2) - Vo)ll2 < [Vb(E) - Vo2 + [1b(E) - V29 2

note that now we only need to estimate L?-norm of products, it is possible to choose suitable
parameters such that the above product rule of Sobolev functions is applicable in the 2D case,
see (3.4) below for details.

Next, we have tried to avoid using the supremum in time of Sobolev norms of b(t,-), with
one exception in Lemma 5.3; in this way, most of the estimates do not involve logarithmic
terms, making them look simpler than those in [36].



We finish the short introduction with the structure of the paper. We present some prelim-
inary results in Section 2 which will be frequently used below. Then we prove in Section 3 a
few useful estimates on the solution £ to equation (1.1); as in [36], the main technical estimate
is Proposition 3.3 whose proof will be postponed to Section 5 in order not to interrupt the
readability of the paper. The main results (Theorems 1.1 and 1.2) will be proved in Section 4,
again following some ideas in [36] with suitable modifications to deal with the nonlinearities.

2 Preparations

Recall that Z2 consists of 2D nonzero integer points; let {Wk}kezg be a family of independent
two-sided Brownian motions defined on some filtered probability space (€, {F;}ier,P). For
every o > 1, the processes

t
k() = / ae S gk >0, ke Z2

constitute a family of independent Ornstein-Uhlenbeck processes, which are solutions of the
1D SDE
dn®* = —an®k dt + o dWE.

It is clear that n®F is a stationary process, with the invariant Gaussian measure N (0, /2).
For the reader’s convenience, we recall that the random vector field b is defined as

bt,z) =2yv Y Opop(a) n™" (),

keZ3

where v > 0, 6 € (?(Z3) is radially symmetric and has compact support, [|f]|,z = 1, and

op(z) = %eQWik'x, k € Zg constitute a CONS of the space of divergence free vector fields in
L?(T? R?).

We next introduce the definition of weak solutions for the equation (1.1), namely
hE+u-VE+b-VE = KAE,
with v = K * ¢ and initial data & € L?(T?).

Definition 2.1. Suppose & € L*(T?). A stochastic process & : 0 x [0,00) — L*(T?) is called
a weak solution of (1.1), if there exists a P-negligible set N' C Q such that for every w € N¢,
it holds &(w,-) € L*([0,00), L*(T?)) and

(6.6) = (6.£) + / (wr - V&) dr + / (b(r) - Vo, &) dr + r / (A6, &) dr,

for every test function ¢ € C*®(T?) and every 0 < s < t < oo.

It is easy to know that, given any L2-initial condition &y, (1.1) admits a unique weak solution
satisfying the following P-a.s. energy estimate:

t
sup (el + 25 [ 19613 ds) < ol (21)
te[0,00) 0
Similarly, for the solution of (1.4), it holds

— t —
sup (|6 + 20+ 0) [ V12 d5) < 6. (22)

te[0,00)



Now we state several technical lemmas for later use; as they are classical results in harmonic
analysis, we omit their proofs. The first result is concerned with the product of Sobolev
functions, see e.g. [2, Corollary 2.55].

Lemma 2.2. For any 51,52 < 1, if 51 + so > 0, then for any u € H* (T?) and v € H*(T?),
we have uwv € HF5271(T2) | and the following inequality holds:

[wvllrortoa-1 S lJull e o] sz

The following result follows easily from Gagliardo-Nirenberg’s characterization of H“-norm
for a € (0,1), cf. [2, Proposition 1.37]

Lemma 2.3. Let a € (0,1) and € > 0 be such that a + € < 1, then for any u € C*T¢(T?) and
v e HY(T?), it holds
[wv]| e S [lullcecte 0]l 2

Lemma 2.4 (Interpolation inequality). For any s1 < s < sa, there exists a € (0, 1) satisfying
s =as1 + (1 — a)ss, such that
lullzrs < fallFon el 3755

The next lemma gives a useful estimate on the Sobolev norms of the vector field b.

Lemma 2.5. For every p > 2 and 7 > 0, we have the following estimate:

sup E[|[b(s)|[%.] S vEak Cprp,
s>0

where Cp - p := Zkezg 0% |k|P™ € (0,00) is a constant depending on 0,7, p.

Proof. Recall that > kez? 9,% = 1, then by the definition of b(s), Jensen’s inequality yields

l(s) e = (4 3 B k)2 k) * < ()F 3 e kP k. 2)

keZd keZd
Taking expectation, we arrive at
E[lb(s) 5] < (40)% 37 62 kT E[[n™ ()] < (va)® D 02 [kl
keZ? keZ?

which gives us the desired estimate. O

Remark 2.6. Forn > 1, by Jensen’s inequality we have Cy 1, < C’;/Tnp

In the following two examples, we compute explicitly the values of |6/~ and Cy ,, for
special choices of coefficients 6.

Example 2.7. For N > 1, we define 0 € (*(Z3) as follows:

Or = enT=lp<p<ny, K € Z,

1
||

where a € (0,1), ey is a normalizing constant depending on N such that ||0]|,2 = 1. Then for

every p > 1, it holds
/ 2—2a —-1/2
) (N — 1) —0 as N — o0,

18l ~ (
2—2aq N220HPT ]

Co,rp ~ ~ NPT N — oo.
O.mp 2—2a+pr N22a_1 s >0

1—a\1/2

6



Proof. By the definition of Cy ., we can get

2 —2a+pr . 2
Corp=cy Y K77 =ckdy,
1<|k|<N

where dy = > j5<n |k|72%tPT. Notice that [|0]]2, = ZIS\RISNE?VW_% = 1, then we can

estimate % = (Zlélk\éN |k‘|_2“)_1 by integration as follows:

2w 1 1— _
6%~(/ Iﬂ”%x /‘/ —ﬂwm e
1<]z|<N T

Furthermore, we can easily get ||f||;~ = exn for a fixed N. In the same way, we can estimate
dn ~ (N 2=2atpT _ 1), and therefore we obtain the value of Cp . O

2
2—2a+pt
Example 2.8. If we change the support set of the above example and define

1 2
O = ENwl{N§|k\§2N}a k e Zg,
where a > 0 and ey is still a normalizing constant, then for every p > 1, we can obtain

(Lze) 2 (22=2 _1)"VAN-1 0<a <1,
0]l ~ { (27 log2) /N1, a=1,
(71)1/2( _22—2a)_1/2N—1’ a>1;

(2_2 )(2272a+p‘r _1)
c ~{@2ﬁwm2waﬂwn azl,
0,1,p

2PT —1 pT _
pTlog 2 N a=1

Finally we present a moment estimate of b in the space C([0,T], H™), T' > 1, which will be
used in Section 5.4.

Lemma 2.9. Consider b as defined before, then for every p > 2 and 7 > 0, it holds

E[ sup ||b(s)||% T] <vial Co.rp logg(l +aT), VT >1.
s€[0,7T

Proof. Recall the useful estimate from [30]: for every fixed p > 1, it holds
E[ sup ]no"k(s)\p] <aflogz(1+aT) forall k€ Z3;
s€[0,T

by (2.3), for p > 2, we take supremum and then expectation on ||b(s)|[%;, to obtain

E| sup [[b(s)llf-| < (40)5 D7 IPTORE| sup [ (s)lP] S vEab Corplogh(1+ aT).
s€[0,T] kez2 s€[0,7]



3 Useful Estimates

We first prove an estimate on the time increment of ¢ in H~'-norm, which will be repeatedly
used in the proofs of Lemma 3.2 and Proposition 3.3. Thanks to the estimate (2.1), we often
control ||&s]|r2 by [|€o]|z2 in the following proofs.

Lemma 3.1. Let t >0, 6 € (0,1) satisfy da 2 1, then for every p > 2 and v € (0,1), it holds
E|less — &l | S 07080k o 0l (1 + 0l152)-

Proof. By Definition 2.1, for every test function ¢ € C*°(T?), we have

t+6

t+6 t+6
‘<¢7£t+6_£t>| < /t ‘(us'v¢y£s>‘d8+/t |<b(8) 'v¢7£s>|ds+’{/t |<A¢7£s>|d8

Now we will deal with each term separately. First, according to Sobolev embedding theorem
and Lemma 2.4, for v € (0,1), we have the following estimate:

[(us - V6, &) < llusllze VSl 2 llEsllze S Nsllmm Il €0l e S 1€ Nla l1€olla""

Hence we can use Holder’s inequality and (2.1) to get
t46 o [1F
|l vo.galas Shelmieoli [ Il ds
_ t+6 ol t+6 1—-2 3.1
<lolm ool ([ I6nas) ([ ras) T Y
t t

Y12
< KTEEE @] (16012

In the same way, we can estimate the second term. For v € (0, 1), we have

|(b(s) - V&, )| < [16(s)llL= [Vl z2llsllzz < 1B() ]| rraes ol l1€oll 2

then the following inequality holds:

t+9

t+0
/t (b(s) - V6, £2)] ds < (16121 o] 22 / 16(5) | sy ds. (3.2)

As for the last term, (2.1) and Hélder’s inequality yield
46 46
k[ l@o g ds <k [ A0l 6l ds
t t
46 1 s 1
3.3
<wllolm ([ Nelras) ([ ras)’ (33
t t

1.1
< k202 @ i [|€oll z2-
Having (3.1)-(3.3) at hand, we deduce

~

5 t+0
(6, Eevs — )| S bl (K263 10l + 1ol 2 / 1B(s) || g1+~ ds + f-e%a%usonm].
t

Since ¢ is arbitrary, the above formula yields
—Ts1-2 2 o 101
[€e+6 — &l S 672072 (|€ollz2 + 1ol 2 [6(8)|| 1+~ ds + k2672 ||€o | L2
t

8



Taking the p-th moment, we finally get

E Hft+5_§tw]){71
—2p s(1=2)p 2% p o p pop p
S KRR+ ollo B ([ 160 ds)” | + kEaE ol
t

t+4
< kP8P g |7 + ||£o||’£25”‘1/t E[|lb(s)I1]ds + x282 [1€0]l]»

el 2 2 P P P P
< wT2P SR 6 |17 + 0PvE A Cp gy 160122 + K282 (1&|12,.

Noting that £ > 0 is a fixed parameter, we finish the proof by taking into account our restric-
tions on § and a. O
Based on the conclusion of Lemma 3.1, we can further deduce another useful estimate.
Lemma 3.2. Lett > 0, § € (0,1) satisfy da = 1 and 6*a® < 1, then for every p > 2 and

v € (0,1), it holds

2 _p 2
E[||£t+6 - &H?pzﬂ] S Vp(5§ + o 3)0671+%2p||50”‘22 (1 + H£O||§2) .

Proof. The idea of proof is similar to that of Lemma 3.1, but we divide the right hand side
into more terms: for every test function ¢ € C*°(T?),

t+0

t+9
‘<¢a£t+6_£t>|§/ |<us'v¢7£s_£t>‘ds+/ |(us - Vo, &) | ds
t ¢

t+4

+/j+5 (b(s) - V. . —&>\ds+1/tt+5<b<s)-v<f>v€t>d8‘ +”‘/t (49,81 &

We estimate each term respectively. For the first one,

t+0 t+0
/t (s - Vo6 — £)] ds < / s - V]l 1€ — ellsr—1 ds

t+6
< / 19 s - Vo) 122 1165 — Eellzr—s ds,
t

where in the second step we have used Poincaré’s inequality. By Lemma 2.2 and Sobolev
embedding theorem, for v € (0, 1), we have the following estimate:

IV (us - V)12 < Vs - V2 + [lus - V2| 12
S IVusllz2 IVl + llusll = IV S| v
S sl g 18l g2y + 1€l - [|@]] 24+
S szl ol 2 s

substituting this estimate into the above inequality, we arrive at

(3.4)

t+4

t+6
/t (s - V&5 — €] ds < 11l 2o 1 0ll 2 /t 16, — &4l ds.

For the second term, we use Sobolev embedding theorem to get

t+0 t+0
/ (s - Vb )] ds < / sl 2 [V 6l oo el 2 ds
t t

t+0
< 116l 2 1ol 2 / 1€l ds
t

< 0 l18ll g2+ €0l 2.

9



Similarly to (3.4), we can estimate the third term:

t+4

t+0
/t [(b(s) - Vo, & — &)|ds S /t IV(b(s) - Vo)l 2[|€s — &l -1 ds

t+0
< 116l 240 / 16(s) 12 165 — &2l ds.

As for the next term,

t+6 t+6 t+4
[ e vosas| = [(( [ blras) - Vo) < IVallmlglse | [ b as]
recalling the definition of b, we have
t+6
/ " b(s)ds = 2Vv Y Ohor(Whs — W) —a (b(t +6) — b(t)),
t

kez3
and therefore, for v € (0,1), we can get
1
3

t+9 L
[0 Vo0 ds| vl allue | 3 6ROV - W)’

kez?
+ a7 |gl] g2 1€l 22 (10(2 4+ 8) 22 + [[B(8)]] 2).-
Finally, the fifth term can be estimated as follows:

t+0 t+0
x / (Ag,€)]ds < & / 1Al 16122 ds < 7811l a2+ ol 2.
t t

Combining these results together and noticing the arbitrariness of ¢, we arrive at

48
16645 = &ellr—2= < [0l 22 / 1€ — &ell g1 ds + 8 [[€oll7
t

t+0 1
n / 1608) L1 €5 — E4ll s ds + 4 ol [ S 02 (Whiy — WE)?
t

kez?
+ a7 ol 2 (I1b(t + 8)l| 2 + [1B(E)I2) + 56 [[€oll z2-

(3.5)
To complete the proof, we also need the following several estimates. By Lemma 3.1,
t+6 » ) t+6
_ _ < 5P~ _ p
E|( [ e - lsas)| <ot [ Elle - s )
S 6Pviat Gy, €017 2 (1 + [1€0l175)-
Holder’s inequality yields
t+6 P
B[ ([ 1 lmle ~ &l as)”
t
L t+6
<IE5P‘/ b(s)||b1 1€ — pd]
<Elo [ bl e - Gl ds o

<ot [ (®D0eE])* (=lle - &) o

N §PvPab C€,1+%2p |’§0”1£2 (1 + HSOHIiz)-
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Besides, by Jensen’s inequality, for p > 2, the following formula holds:
o
B (3 ot ko - wi))T| <B| S Gilwhs - wi| s T etot sk )
keZd keZd keZd
According to the definition of b(t), for ¢ > 0, we have
L «
E(llb(t +9)I15.] =E[Ib(e)I%.] < (40)8 > 2E[[n* )] s v
keZ3

Inserting (3.6)-(3.9) into (3.5), we can easily get

b P 2 2
E[||£t+6 — £t||11){7277] S 0%Pv2a Cyagqp 160l 5 (1 + 1€0llh) + 67 (€l 72
b P
+ 8PP Co 1y op [1€0lh 2 (1 + 1€0llD) + 6202 (&2,

+viaTh ol + #9" loll

It is clear that the parts involving the L®-norm of initial data are dominated by [|& |7, (1 +

HfOH‘Zz)zS the conclusion follows by noticing our previous assumptions on the parameters. [

The following result is analogous to [36, Proposition 3.3] where a similar estimate, against
test functions, was proved for the solution h of (1.2). We remark that the stronger estimate as
below is needed at the end of the proof of Proposition 4.2. We first divide the interval [0, 7]
into many subintervals of the form [nd, (n 4+ 1)d], n € N, where § € (0,1) is a small parameter
such that T'/0 is an integer, then we estimate the quantity in each interval of length ¢, and
finally sum them up.

Proposition 3.3. Fiz 8>3, v € (0,3), then there exist € > 0, 6 € (0,1) and p € (0, %) such
that for « large enough, the following estimate holds:

1
E sup S
1<m<n<T/5-1 ([N —ml[d)P
2 T e 1
STl (1+ [1€ollz2)”" (v 20 + 17 |6] ).

As the proof of Proposition 3.3 is very long, we postpone it to Section 5. We mention that
some restrictions on the parameters o and § are necessary in order to obtain a sufficiently small
estimate, and one can find the specific details in Section 5.7.

§ns —&ms — (K + 1) /néﬁfstJr/n&us-VéstHHB}

mo mo

4 Proofs of main results

This section consists of two parts which are devoted to the proofs of Theorems 1.1 and 1.2,
respectively.

4.1 Proof of Theorem 1.1

To prove Theorem 1.1, we first define a random distribution f as follows:

t

t
ft:&—&)—(/{+u)/ Aﬁsd8+/ us - VEs ds. (4.1)
0 0
If we replace & by € and u by @, then the right-hand side vanishes; since we expect that ¢ is

close to &, the distribution f would be small in suitable norms. We first prove a regularity
estimate on f, which will be used in the proof of Proposition 4.2.

11



Lemma 4.1. For every 0 < s <t <T and~y >0, it holds

t
Ife = Fsll -2 < €0l 72 It — sl + l|€oll 2 / 16(r) [+ dr + (k + ) [[€oll 2 [t = s]-

Proof. By (1.1), for every s,t € [0,7] and s < t, we have

&—ﬁs=—/:ur-Vérdr—/:b(r)-Vgrdr+n/:Agrdr.

Then we can further get

e~ & < | [un-Vear] 4] [0 vear| x| [ agar], "
s s s 4.2
S [l Vesar+ [ 1660) Velsr+ x [ ollzar

Now we will estimate the first and the second terms respectively. Using the divergence free
property of u, we have

lwr - VEllg—2 = IV - (§Gur)llg—2 S N1&rurl -1

besides, by Holder’s inequality and Sobolev embedding theorem, for ¢ € C>°(T?),

|[(&rur, @) < NI& M2 llurllzallgllze S N€ollzzllurll 3 18115 < €ollZ2 0l -

Then we get [&urllg—1 < [|€ol72 and thus Ju, - V& ||g-2 < [ISoll7--
As for the next term, notice that b(r) is divergence free, we use the same method as above
to estimate it: for v > 0, we have

16(r) - V& g2 S 1€ b(r) |- < ll€oll p2]|b(r) |-
Having the above results at hand, we combine (4.2) with (4.1) and arrive at
t t
1= Fllns <16 = &l + Gt 0) [ 18 2drt [ Tl 2 ar
t y ’ t

< [ Geelgzdrt [ 160) - T2 dr + (s 0) [ ol dr
t

< léoll72 [t — sl + ll€oll 2 / 16(r) ||+ dr + (5 + ) [[€oll 2 [t — s].

O

Proposition 4.2. Let 8>3, v € (0,3) and T > 1, then there are p € (0,%) and € > 0 such
that for every a sufficiently large, it holds

2 T 1
E (I flov ozt -] S Tléollze (1+ Iollz2)* (v 73 a7 + 03 6] ).

Proof. First, as fy =0, we give an equivalent norm as follows:

f _fs —B
| fllee o er—sy ~  sup It = Felles

4.3
o<s<t<T |t —8]° (43)

12



Then we will prove Proposition 4.2 in the following two cases.
Case 1: [t — s| < §. By Holder’s inequality, for p € (0,1), we have

/: 16(r)|| gy dr < </8t 1dr>1_p</: Hb(r)HI%i” dr)p <|t— s|1_p</8t Hb(r)HI%{“/ dr)p.

Furthermore, we can get

t
b(r dr T 1 P
E sup M < 51—2[)E</ Hb(T)HIZM dT‘) 5 51—2pyéa% TPCHP p
o<s<t<T [t —s|P 0 1/p
[t—s|<o

where in the last step we have used Lemma 2.5. Then for 5 > 3, Lemma 4.1 yields

Ife — fsll—s _ Loy 11 _
E| sup t_—sf <8 o7z + 0" vzaz Tpcg,fy,l/p|’§0HL2+(H+V)51 7 11€oll 22
0<s<t<T | s|
fi—s|<5

oy 11
<51 2Pp200 Tng’%l/p I1S0ll2 (1 + [l 2) -
(4.4)

Case 2: |t —s| > . We suppose s € [(m — 1)§,md) and t € (nd, (n + 1)d], where n,m € N
and m < n. Hence, if n > m, we have

Lfe = fslla-s _ 1lfe = frollu-s n | frs — fmollr—s n | fms — fsll -5

[t—slp = |t—ndlr |nd — mé|e |md —slp 7

while for n = m, the following formula holds:

Hft_szH*/J’ < Hft_fnSHH*B + ané_szH*/J“

[t—slP — |t—mndlr |nd — sl

Then we can combine the above two cases and get

sup ”ft_fs”H*6 5 sup Hft_fSHH*li + sup ané_fmJHH*ﬂ (45)
o<s<t<T [t — s/ o<s<t<T [t —s|° 1<men<T/5-1 |10 —mdlP
[t—s|<d

By the definition of f and Proposition 3.3, for every § > 3, it holds

E sup ”fn5_fm5HH*»3

I<m<n<T/s—1 |nd —md|’

2 1. 1
S T&llze (1 + [€llz2)* (W 2o + w2 ||f]le=).  (4.6)

Taking into account (4.4)—(4.6) and noticing the restrictions on the parameters in Proposition
3.3, we use (4.3) to complete the proof of Proposition 4.2. O

Now we give the following proposition which indicates that f is bounded in H .

Proposition 4.3. Suppose f is defined as in (4.1), then for v € (0,1) and T > 1, it holds

_a _1 _
S[up]HftHHfl STV &ollpz (1 + (|€ollp2) (ve™2 + 57 2).
te[0,T

13



Proof. According to (4.1), the following formula holds:

t t
1fell—1 < 1€ — Soll - +(/<+V)/ IIAés\|H1d8+/ l[ws - V&l -1 ds
0 0 (4.7)

t t
< 2oz + (s +v) /0 1€l ds + /0 s - V|1 ds.

Applying Holder’s inequality and (2.1), we have

t t 1 t 1
b b 1
[ e ds < ([ ras) ([l ds)” < xEed feole (18)
0 0 0

As for the last term, notice that for v € (0, 1), the following inequality holds:

Jus - V&l S 1€ usllrz < sl 2 lJusllzoe < [1€oll L2 [1€sll v,

then we can use Lemma 2.4 and (2.1) to further get
t t .
e Vel ds S Neolze [ 6T el ds
0 0

< ||£o\|i§”(/0t1ds)l_g(/Otngsnip ds)

S K2R g2

2
—

=

o)
SN—

Inserting (4.8) and (4.9) into (4.7), we take supremum and deduce
1 11 22
sup, 1fill-r S 20€ollze + (82 +vi™2) T2 |[éoll2 + K72 T2 |17
€lo,T
The proposition follows due to the choices of parameters. O

With the above preparations in mind, we can prove the first main theorem now.

Proof of Theorem 1.1. By the definition of f, we have

t t
§t=50+<m+v>/0 Assds—/ous-vssdsm,

while by (1.4), it holds

t t
§t=§0+(f€+v)/0 Assds—/o 4, - VE. ds.

Define .
X, = f, - / (g - VE, — i1 - VE,) ds,
0

then the difference & — ¢ satisfies

t
& — &= (rtv) /0 A(€ — £)ds + X.. (4.10)

We first prove the theorem in the Sobolev spaces H ~ with J > 1; without loss of generality
we can assume ¥ € (1, %) Recall that we have already obtained in Proposition 4.2 an estimate
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on ||f||cp([07TLH75) for > 3; we shall fix such a 8 in the sequel. Besides, Proposition 4.3 gives
us a bound on supycpo 7y || ft[| 71, hence by Lemma 2.4, for any Je (1, 3), there exists ¢ € (0,1)
satisfying ¢+ (1 — () = ¥, such that

”ft_fs”Hfﬁ < ”ft fs” ”ft fs”}cqfﬁ

Furthermore, for p € (0, 4) we can calculate ||f|| ot ([0,7], H~7) 3
T L I fe = follg-s
CPe(O.TLH) = o fer |t — 8]PC
¢
_ Ve — TS = £ (1)
0<s<t<T |t — s[F¢
S sup IG5 ) 1 1oy

t€[0,T

Proposition 4.2 implies that, P-a.s., f € C’pC([O,T],H—’g). Next, we have

t s t t
| [ vedr= [uvear], < [ lu Vel adrs [ lugl i
0 0 H-Y s s

and by Lemma 2.2, HuT&THH1 b S &l goos S 16132 < [1€l32; thus, the function
t— fo u, - V& dr € H™V is Lipschitz continuous. With slightly more effort, one can show that
it actually belongs to C1([0,T], H _”ﬁ) by using the fact ¢ € C([0,7T], L?); similar result holds
for t — fotar V& dr € HY,

Summarizing the above arguments, for every 9 € (1, %) and p € (0, i), we deduce that,

P-as., X € C’pC([O,T],H—é) for all T" > 1, where ¢ € (0,1) is defined as above. Therefore,
according to [27, Theorem 1], there exists a linear map G, such that

£-E=06(X)=3(f) —¢( /0 (10 - V. i, V) ds): (1.12)
furthermore, the following result holds:
sup G0 -5 < N llgwe goury -, (4.13)
te[0,T]

Now we will deal with the last term in (4.12). As fo - V& — s - V&) ds belongs to
C'([0,T], H~?), then by [27, Theorem 1], it holds

Q(/O.(us V€, — i1y - VES) ds) (t)
= / t A=Ay . Ve, — - VE) ds (4.14)
Ot t B
= / el ty)(t=s)A [(us — 1s) - VE&]ds + / elrtv)(t=s)A [as - V(& — &)]ds

0 0

For the first term, we can use the standard heat kernel estimate (see e.g. [12, Section 2]) to get

¢ 2 1 t
k+v)(t—s)A -
H/O Sl )(t=5) [(us—us)-vg]dsHH&gﬁ_i_y/o l(us — @) - VEN2 5 ds.  (4.15)
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Noting that ||(us — s) - VE&|| y-5-1 = [(us — @s) sl -5, then for 9 e (1, 3) and ¢ € C>(T?),
Lemma 2.2 yields

[((us = s) &, D) < s — sl a5 168l o1 S N6s — Esll s lIEsll 3 191

5_ 1.
HY 2

Therefore, by duality of Sobolev norms and Lemma 2.4,

_ _ 1 1
(s = 1s) &sll -5 S s = Esllpr-all€sll ;1 S N€s = Esll r-all€s 1 7 160172 -

Applying the above result to (4.15), we obtain

1
K+v

t 2 t _
HAA“W“MK%—m»VQ@MPﬁS Au@—m@umhﬂmmm&<mw

The latter term of (4.14) can be treated similarly as follows:

1
K+ v

H /Ot =58 [ (e, — 58)]dsu;§ < /Ot s (6 = &), ds. (4.17)

Let ¢ € C*(T?) be a test function; for any fixed s € [0, T], we denote A(tis¢) := [1.(Us¢)(z) dz.
As [12(& — &) () do = 0, we have (&5 — &, A(usp)) = 0, and therefore

(s (&5 — &), 0)| = [(€s — &5, s — A(Us9))| < II€s — Esll yslltisd — A(s®) |l -
By Poincaré’s inequality, Lemmas 2.2 and 2.3, for 9 € (1, %) and € € (0, %), we get

[tsd — AlUsd)l o S NV (Us) oy < N(VEs) @l yoor + s - Vol o

IVl 18] oy + sl grse 961 yas
AP

Summarizing these arguments leads to
”as (58 - 58)”1{715 5 Hfs - gSHHﬂ?HESHHl-
Inserting the above estimate to (4.17), we obtain

1
K+ v

| /Ot e HE=IA g (g — Es)}dsu;§ S /Ot I6s = &2, slIEsl3n ds.  (4.18)

Combining (4.16) and (4.18), by (4.14) we get

' _ 2
G( [ (us- Ve —ay-VE)ds) ()| .
H 1</0 1: - ' 8) t HH% ) (4.19)
5H+VA“@—&%@W@mwame@@g@.

According to (4.12), for 9 € (1, 3), we have

_ 1 t _ _
1€ = &ill3, 5 SNGUDIZ, 5 + K—JFV/O 1€ = & 113, 5 (1€oll 2 sl + 1Esll7) ds.
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By Gronwall’s inequality, it holds

I _
sup =&l 5 5 (s 19001, ) v (5 [ (ollisledn + 1) ds)

te[0,7] te[0,T K+v Jo
) (4.20)
Notice that £ and £ satisfy (2.1) and (2.2) respectively, then Hélder’s inequality yields
T - ) T ) 1 T o
| Qeolzzlectim + 1605 ds S THolla ([ el as)” + [ 16l as
1,1 _
S RT2T2|6oll72 + (5 + )Mol T2
Substituting this estimate into (4.20) and setting
k2T + (k +v)7t
N K+v ’
we arrive at
sup (& —&l%,_5 S ( sup G(A)IF,_5 ) exp (CliéollZ2)-
Jup 116 =&l 5 sup 1603)1,) exp (Cléol2)
Furthermore, by (4.13), we have
I~ Elleo -5 S W loncgora-s oo (5 leolZ). (4.21)
Taking expectation and then applying (4.11), for Je (1, %), Lemmas 4.2 and 4.3 yield
E (1€ - Elogory 15|
¢ 1-¢ C
< 3 3 ~ 2
SE( o) (2 Iillan) " exe (3 Kol (4.22)

Y 1, 1 _1 _ay1— C
< T8 2 (VHga +V2H9”goo)<(V/£ 24K g)1 Cexp <(1 + 5) HSOH%Z),
where the last step follows from
1 2
(1+ [lollz2) ™€ < (1+ I6ollz2)* < 2 (1+ [1€132) < 2exp(llo]22), ¢ € (0,1).

If we take Cy ~ T2 (l//i_% + /1_%)1_( and Cy =1+ %, then (4.22) can be rewritten as
_ Y ¢ 1

E[l¢ = El ooy i) < Crlléollze exp (Calléoll22) (v 73 a7 + w3 6] =) (4.23)

Once we have the estimate for 9 > 1, then for Je (0,1), we deduce from Lemma 2.4 that

[Hf £||C'(OT e 19] <E[H5 £Hv9/z9 } H&)Hl /b

c(lo,1),H-?
< Cl/ €0]l 2 exp (Co(D/9)[1€0]12) (v 20 + w2 ][] oo ) </* (4.24)
< Cy|&l 2 exp (Call&oll22) (V1207 + % Hg”zw)fj

where in the last step we have used the fact that C; > 1, C5 > 0 and 19/ ¥ < 1. Hence it holds

Cﬁw < O and Cy0/9 < Cy. Combining (4.23) and (4.24), we obtain the final conclusion of
Theorem 1.1 for every 9 > 0. O
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4.2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first present several simple results as follows.

Lemma 4.4. For the solution of (1.1), the energy equality holds with probability one:

d 2 2
gl = —2n €l
Proof. This result is well-known; we present the proof for completeness. Notice that

d s  d B o€
GlelEe = 5 6.6 = [ 2 G

By (1.1) , we can further get

08 o — _ . _ .
/Tz2gada;—2/£/W§A§daz 2/Tz§u Védx 2/Tz§b V¢ dx
:—2/4/ |V£|2d:n—|—/ div(u) €2 dz + | div(b) % dx
T2 T2 T2
= —2x €12 O

Recall that {F;}+>0 is the filtration on the probability space 2. The following estimate is
an easy consequence of Theorem 1.1.
Lemma 4.5. For any n € N, let {'}y>n be the solution to
0" +u" -VE" = (k + V)AL, t>n,
e Ve T e as (1.25)
U :K*f, £|t:n:£n-

Then it holds, P-a.s.,

B[ sup 6= &l 1] < Cullalleexp (Calfollf) (2™ +0418]1)
ten,n+

where C and Cy are defined as in Theorem 1.1 and are independent of n.

Proof. Notice that if we take ¥ = 1 and T = 1 in Theorem 1.1, then we get a quantitative
estimate on the distance between the solutions of (1.1) and (1.4), both with the same deter-
ministic initial value &y. Since the Ornstein-Uhlenbeck flow b in (1.1) is a stationary process,
such estimate holds on any unit interval of the form [n,n + 1], as long as we restart (1.4) at
the time ¢ = n with the same value £,,. However, as &, is random, we need to take conditional
expectation with respect to F,, and get the desired result. ]

Lemma 4.6. For all n € N, decay of L?>-norm of the solution to (4.25) satisfies
€172 < e M iga 2,
where Ay := 8m%(k + v) is the principal eigenvalue of (k + v)A on T2

Proof. By (4.25), we use similar method as Lemma 4.4 to get
d - _
7 1€ 72 = —2(k +v) [VE" |72
Poincaré’s inequality yields [|€"(|7, < # [VE™)3,, thus
d . - _
LR < ~87(s + V) IE" R

Solving the differential inequality gives us the desired estimate. O
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Remark 4.7. In particular, if we consider (4.25) with initial time n = 0, then it reduces to
equation (1.4), and we get the decay rate of L?>-norm for the solution to (1.4) as

I€ell72 < e [[oll7-

On the basis of the above results, now we can provide

Proof of Theorem 1.2. Since the proof is rather long, we divide it into the following four steps.
Step 1. Let R > 0 be given as in the statement of Theorem 1.2, and denote

2
cy = 011/2 exp <—C22R ) (l/l+%01_6 + V3 ||9Hgoo)</2,

which is sufficiently small by taking « big and ||f||p~ small. Recall that we have assumed
ll€ol| 72 < R; then by Lemma 4.5, we have, P-a.s.,

E| swp & - &g Fa] < lalla: (4.26)
te[n,n+1]

Define the event

Api={we: swp e =gl > alé@le ),
te[n,n+1]

and A¢ is its complement; we want to prove
P(AS) > 1 — ¢, (4.27)
which is an easy consequence of
P(An|Fn) =E[14,|F] < .

Indeed, for any B € F,, it holds

su n,n —&p -
[Eair) = [ aps [ Senaenls Gl
B B AnNB a1 l|&nll e

T / Ialls} sup 16— &l dP
B te[n,n+1]

::cfljgﬂzﬂgﬁuzg sup ]Hgt-gyuﬂlLfg]dP.

te[n,n+1

Then by the arbitrariness of B and (4.26), we obtain

E[ta, 0] < B[l sup I — &'l |7l
te[n,n+1]

=QWMEE[?mM@—$M1m4 (4.28)
te|n,n+

< M&allzs Allénlle = e

Step 2. In order to estimate the decay rate of L?norm for &, we first try to find the
relationship between ||&,||z2 and ||€,+1||z2 for any n € N, then we use iteration to extend the
conclusion to ||&|72 with initial value & for all ¢ > 0.
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Notice that for ¢ € [n,n + 1], Lemma 4.6 and inequality (4.27) yield, with probability no
less than 1 — ¢4,

el < 20€0 -+ 201& — &7 < 20€allF2 (e + 7).

Besides, according to Lemma 2.4, we have ||&[|7, < ||&]| -1 ]| ]|z - Hence, combining Lemma
4.4 with the above two inequalities leads to

d I€¢ 1172 Kl
— ll&Z: < —2 < - . teln,n41).
ar 1> 162 = el (e + )
Solving the differential inequality and then letting ¢ = n + 1, we get, on the event A¢,
N
an—i—l”L2 = 14c2edt - C2HSHHL2’ (4’29)

_Kk_
1+ Arc? log 14cf

As the L?-norm of ¢ is decreasing, we additionally apply (4.29) to further get

Ellént1llzz = E[lént1llz2 1a, ] + E[lént1llz2 Lag] < E[l|&nllz2 14, ] +E[c2llénll12]-

Using the property of conditional expectation, (4.28) yields

Elénilize < E[E[Inlz 1, | 5] | + c2 Bllal o
=E[llgall2 E[14, | 7] + e Bl
< (1 + c2) E[|6nll2-

Afterwards, we denote ¢y := ¢1 + ¢y for simplicity. By induction, for any n € N, it holds

Ellénllrz < cgll€ollz- (4.30)

Step 3. To show the enhanced dissipation property of Ornstein-Uhlenbeck flow, the constant
co > 0 has to be sufficiently small. We start with proving the following quantity in the definition
of ¢y can be very large under suitable choice of parameters:

(eM—1)+ 1).

First, fix a sufficiently large v, then \; = 872(k + ) is also very large. Next, we let a be large
and ||0||g~ be small enough, and thus ¢; is sufficiently small by its definition. In particular, we

2
can assume that %2‘(6)\1 —1) €(0,1]. Aslog(l+x) > xlog2 for x € (0, 1], we have
1

K 1+ cZeM K ( c?
g

O =
ST A W A W e

2 2 A
K c klog2 ¢ A\ klog2 e —1
lo < L_(eM—1 —|—1>> L (M —1) > : ,
Aic? & 1—1—0%( ) NG 1—1—0%( )_ 2 A1

where in the last step we have used the fact that ¢ + 1 < 2. Since A\; is large, we deduce
that the left-hand side is also very large; as a result, ¢y can be very small. Combined with the
smallness of ¢1, we conclude that ¢y = ¢1 + ¢ is also a small constant.

Step 4. Based on the previous discussions, we can now prove the final conclusion of Theorem
1.2. Define )y := —log ¢y > 0, which can be assumed to be greater than A(1+ p), where A\ and
p are given in the statement of Theorem 1.2. Then by (4.30), it holds

E| sup [&lze] = Eliéallzz < e " ollze.
te[n,n+1]
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We define the events

Bom{we s swp Ja@lis > e Mlgls} ne
te[n,n+1]

By Markov’s inequality, it holds
e)\n
SOP(E) <> B[ sup Gl < Y0P < o

Furthermore, Borel-Cantelli’s lemma implies that for P-a.s. w € €, there exists N(w) € N,
such that for any n > N(w),

sup ||z < e M |€ol| e
te[n,n+1]

For the case 0 <n < N(w), we have

sup [&llz2 = [lénllz2 = e [[€nll 2 < ANV -
te[n,n+1]

If we let C'(w) = XN it is not difficult to verify that for P-a.s. w € Q,
€] > < Clw)e ™ éoll2, Vi > 0. (4.31)

As for the finite p-th moment of C'(w), a similar proof can be found in [12, Section 5.2], so
we omit it here. O

5 Proof of Proposition 3.3

We devote this section to the proof of Proposition 3.3. We first divide the desired quantity
into a summation part and two integrals. For the summation term, we follow the idea of [36]
and use equation (1.1) to further decompose it. Then we will estimate each of the decomposed
terms and the two integrals separately. Finally, in order to obtain the desired estimate, we
need to make some restrictions on the parameters.

5.1 Decomposition

We decompose the quantity we want to estimate as follows:

nd nd
Ens —&me — (K + V) A{sds—i-/ ug - V& ds

mo mo

n—1 n—1 (51)
= &ns —ms — 6(k+ 1) Y Aéns + 0 (uns - Véns) + In + I,
h=m h=m
where
nd nd
[a = (/i + V) / 5 A(f[s] - fs)ds, [b = / 5 (us . st - U[S] : Vf[s})ds,

and [s] := sup;en{jd : j0 < s}. We first consider

n—1 n—1
€ns — &ms — 0k +v) > Abus+06 > (uns - Véns), n>m,

h=m h=m
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which can also be written as

gn—i—l —&ms — (kK + ) ZAgh(S-i-(SZ ups - VEns), n>m.

h=m h=m

According to Definition 2.1, for every h =0,1,...,7/6 — 1, we have

(h+1) (h+1)5 (h+1)5
€y — En = — / uy - Ve ds — / b(s) - V€, ds + / A&, ds
ho he he (5.2)

=: I1(h) + Ly(h) + Is(h).

Furthermore, we can make the following decomposition for Ia(h):

(h+1)5 (h+1)5
I(h) = —/h b(s) V(& — &Eps) ds — /h5 b(s) - Vépsds

5
=: Io1(h) + Io2(h) + I3(h) + I24(h) + I25(h),

where Iy;(h),i =1,...,5 are defined as

(h+1)5
Ii(h /h /h5 V(u, - V&) drds,
(h+1)5
Ts(h / / b(s) - V(b(r) - V(& — Ens)) drds,
hé hé
(h+1)5
Lns(h /h /h 5 r) - Véns) drds,

(h+1)6
Iyy(h) = —R/ / V(AE,) drds,
hd hd

(h+1)
Izs5(h) = _/h5 b(s) - V&ps ds.

By the definition of b, the term I23(h) can be rewritten as follows:

(h+1)0 ,
Ips(h) = 4v / / Okoin™*(s) - V(O opn™* (r) - Véns) drds
k k’€Z2 ho ho
(h+1)6 §
=4v Z HkO'k V k’Uk’ th(; </ / )deS — 5k k' = )
Kok €72 ho ho

+ 208 Z Oror - V(0roy - VEns)
kez?

=: I3 (h) + [232(h)’

Using the radial symmetry of 6 € ¢*(Z) and the expression of oy, it is not difficult to prove
the following identity (see e.g. [18, Lemma 2.1])

1
> ok @on)(x) = §||9H?2 Id,
keZd

where Id is the two dimensional identity matrix; hence by divoy, = 0 and [|6]|2, = 1, we have

. 1
Z QkO'k . V(@kdk . th(;) = le( Z 9,% (O’k X ak)th(;) = §A§h5. (53)
keZd keZd
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Therefore, Io3a(h) = vdAEys. As for the term I3(h), we can divide it into two terms:
(h+1)
I3(h) = /{/5 A(&s = &ps) ds + kOAEps =: I31(h) + I32(h).
h

Taking the sum of (5.2) over h = m,...,n, and noticing that
[ggg(h) + [32(h) = (5(/1 + I/)Afh(;,

we can finally get

Ems1)s —Ems — S(k +v) D Abns +6 Y (uns - Véns)
h=m h=m

(5.4)

= Z Il —|— 121 ) + [gg(h) + Iggl(h) + 124(h) + [25(h) + Igl(h) + 5(uh5 . th(;)).

In the following several subsections, we will estimate each term of the above formula. For
readers’ convenience, we give a brief introduction here. The estimates on terms I51(h), l22(h),
I54(h) and I31(h) will be given in Section 5.2. As the terms Is31(h) and I5(h) are more technical
to deal with, we consider them in Sections 5.3 and 5.4, respectively. In Section 5.5, we treat
I, (h) together with 0(ups - VErs). We mention that the two remaining intergrals I, and I in
(5.1) are similar to I3 (h) and I;(h) 4 d(ups - VEps), respectively, hence we give their estimates
in Section 5.6 without proof. Finally, we combine all the estimates and provide in Section 5.7
the proof of Proposition 3.3.

5.2 The terms [Ql(h,), IQQ(h), ]24(h), ]31(h)
The estimates on these four terms are collected in the next lemma.

Lemma 5.1. Let v € (0, ) 8>3 and T > 1, then we have the following estimates:

r n

E sup 3" In(n) < viaz TC ., &%,
L 1i<m<n<T/s-1 /= H=A | -
) n ]
+2
E|  suwp S Lo)|| | S8R TR el (1 ol2)
L1<m<n<T/5-1" 1= H=F |
) n _
E sup > I(h) Sk T vian TC;/2272||£OHL2
L1<m<n<r/s-1 ! /) H=F |
) n ]
Bl sup | Y Ia()|, | S sdTvia TCR 5 6ol (1+ 1Golle2)".

L1<m<n<T/j-1 hem

Proof. First, we consider the term

(h+1)6
Iy (h / / V(u, - V&) drds.
hd hd
Taking a test function ¢ € H?(T?) and integrating by parts, it holds
[(b(s) - V(ur - V&), 0)] = [Cur - V(b(s) - V§), &)

< lur - ( ( ) Vo)lr2lérll 2
< lur [ g~ IV (b(s) - V)L~ ([0l 22,
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where the last step follows from Lemma 2.2; again by Lemma 2.2, for v € (0, %), we have

IV (b(s) - Vo)l r < [IVb(s) - Vol v + [[b(s) - V2ol 1
S IV - IVl 2 + 10() | 111+ V2| 2+
S 10(s) [ 2= |9l ey + [[0(s) | 1= 1]l 224
S N6(s)l g2 110l g+2s -

Combining the above two estimates, we can easily get for 5 > 3,

[6(s) - V(ur - VE) | g5 < llurll g 16() | 2= €oll 2 S €072 16() | 2=+

(5.5)

Furthermore,

, [BHDS s , [0
122 (W), < 160l /h 5 /h 65z drds S 3 6ol /h bl ds

Taking supremum and then expectation, Lemma 2.5 yields

T/5—1

e | m], ] < X el

1<m<n<T/§-1
<4 2 E[|[b(s)||? %d
S 6 [1ollz2 . [H (S)HHZ*W] s

1

11 1/2
S ov2 2TC9/2 72HSOHL2

Let us turn to the term

(h+1)8 s
= [ [ 661019 — 1) s

For any test function ¢ € H?(T?) with 3 > 3, it holds

[(b(s) - V(b(r) - V(& — &ns)), &)| = |(b(r Vo), & — &ns)l-

By Lemma 2.3 and Lemma 2.4, for v € (0, %), we have

[(b(r) - V(b(s) - V), & — &ns)|
< |[|b(r) - V(b(s) - V)| v 1€ — Ensll -
S o(M)lle2 [V (b(s) - V) v 1€ — Ensll -
S B rreas IV (B(s) - V) |1 1 — Ensll i 1 — Enslly"

Then for v € (0, 1), we use (5.5) to get
16(s) - V(b(r) - V(& = &) | -5 S 10 12+ 10() |2 1 — Ensl Gy 1€r = Enall 2"

Hence we have

(h+1)6 s
[Fo2(P)]| -5 < /h ) /h 2 165121 16 = €ns - 16 = €nsllp” drds

(h+1)s

(h+1)5
< Jleoll'5 /h IO g = Easlly - dr /h 1) ds
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We take expectation on the above formula and obtain

. (h+1)5 § 013
a0 -] Wl [B( [ 100 e s~ usly )
hé
(h+1)8 212
<Je( [ 1l as)
hé
Now we use Holder’s inequality to further deal with the two terms respectively. By Lemma 2.5
and Lemma 3.1,
(h+1)5 2
B[ IO lg ol )
(h+1)5 , )
<Blo [ IO g~ Sl o]

(h+1)0 1 1
<5 [ (BU0e-1) " (Ele — gl 1) ar

1/2 2
< G20 v 14 C9/2 » 91+’Y2H§0” L(1+ (1%l 22) v

(5.6)

2y
to get the last line, we have used E[||¢, — £h5\|§,1] < (E[Hﬁr - £h5\|%{,1]> . Besides, for the
second term, Lemma 2.5 yields

(h+1)5 2 (h+1)8
B( [ Wl ds) <6 [ BB s £ raChaa 6D
hd hd
Hence we can combine (5.6) and (5.7) to get
1/4 2 1/2
B[ B2 -] S #3013 CGhL L O L GO s N6ollie (1 + ol 22)

Taking supremum, Remark 2.6 yields

n T/5—1
5|, Hgfzmuw]é§E{1r122<h>\\Hﬁ}

1<m<n<T/§-1

o4 ol
<SR IO ol (14 [ol2)

(h+1)s
124 = —K,/ / Afr d’f’dS
hd hd

notice that for every test function ¢ € H?(T?), it holds |(b(s)-V(AE),d)| = [(A(b(s)-V), &) |:
and by Lemma 2.4, for v € (0,1), we have

[{A®b(s) - Vo), &)] < [AWD(s) - V)l g1 llE i S [V (B(s) - Vo)l 1l 1ol

Then we can use (5.5) to obtain for 8 > 3 and v € (0, 3),

As for the term

16(5) - V(A& |5 S N1B() |z 160 1172 1€011 T
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Furthermore, Holder’s inequality and (2.1) yield

(h+1)3 . (h+1)5
L4 s S #1160l / 611 dr /M ()| g2 ds

1

(h+1)8 19 r(h+1)8
+
<wleolled ([ elpar) T [ s ds

1+

(h+1)5
< w56 6o e /h B s

By Lemma 2.5, we take expectation and deduce
T/6-1

E{ sup Hiﬂ[%(h)HHﬂ] < Z [H124 )HHfﬁ}

1<m<n<T/6—-1" ; h=

[y

T 1
L 2
SHFEE ol [ (BIb)IF]) ds
5 ﬁ%aL %Oﬁz TC972_,Y72 |’§OHL2.

Finally, let us estimate the term

(h+1)s (h+1)8
s <o [ 1AE Gl sds < [ g = €uall d,
hé hé
for any v € (0,1). Then Lemma 2.4 yields
(h+1)5 .
Il < [ 1 = Gl — Gl ds

., [(B+18
Swlllls” [ 16 ol ds

By Lemma 3.1, we arrive at

T/6-1
E{ sup H 2131 H ﬂ] < ;::1 E[HI31(h)HH76}

1<m<n<T/d—1

T/6 1 N
2

(h+1)6
Skl Z / E[1€hr1)5 — EnollF- 1]> ds

< KéTvad Tcgw lollzz (1 + 1ol 2)"-

5.3 The term I3 (h)

In this section, we follow [36] and use Nakao’s method (cf. [29]) to estimate the term
(h+1)0 5
Igi(h) =4v > 640% - V(Orow - Véns) < / / (r) drds — &, k,—>
k,k' €72 ho
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Lemma 5.2. Let 6 € (0,1) satisfy 6*a® < 1, then the following inequality holds for any T > 1:

B s szgl )] 5260 D0 Neolie
1<m<n<T/6—1

where Dy ~ = (Zkezg |0 | ]k\2_7)2 is a finite constant depending on 0 € (*(Z2) and .

Proof. For convenience, we define

(h+1)6
i ( / / (r)drds.
hé hé

By [36, Lemma 5.2], the conditional expectation of ¢y, s (h) with respect to Fjs is

(1-— e_a5)

E [cr, i ()| Fhs] = n** (h6) n** () *——

Now we define two processes as follows:

n—1

My =3%" > 0oy V(bpoy 'tha)<6k,k'(h) - E[Ck,k’(h”}—hé]),

h=1k,k'€72

n—1
)
R, = Z Z Oxor - V(0o - Vgh(;)(E[ck,k/(h)]fh(;] _ 5,67,@,5)_
h=1k k'e7?

Notice that {Mpn},,_y  7/5isa H~P-valued discrete martingale with respect to {F,s},,
hence by Doob’s maximal inequality,

B sw [0l SE[3l ]
1<n<T/8

T/5—1 2
< Z E Z Orok - V(O ow - Vérs) (Ck,k’(h) - E[Ck,k'(h)!fha])
h=1 ook €72 H-P
T/5-1 2
< Z ( > lekak'v(ek’ak"Vghé)HHfﬁ‘Ck,k’(h) —E[Ck,kf(h)lfhé]D :
ko k€72

We first give the following estimate. For any test function ¢ € H?(T?), it holds
|(Okos - V(Owow - Vérs), )| = [(Owow - V(Orow - V), &ns)|;

by Lemma 2.2, for v € (0, 1), we use (5.5) to obtain

(Owow - V(Okor - Vo), Ens)| S IV (Okok - V)| 1210k orns| 12
S Okonll 2 |l 2oy [|0k owr || Lo [|Ens || 12
S Okonll g2 |91 2oy [|0k w2+ [0l L2

Combining the above two results, we get for g > 3,

|0kok - V Orrawr - Véns)|| jr—s S 10k0w ]| 52 10k 0n || 12— ([0 L2
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=1,..,T/8"

(5.9)

(5.10)



hence,

2
E< Z |Okor - V(O ow - vghé)HHfﬁ‘Ck,k’(h) — E[ck ()| Fns) D
Kok €T3

sngon%zE( S~ 100oull s 0002

2
ek (R) — E [cppr (R)| Fs] D -
kb €22

We regard each term of ||0xo || g2— |0k 0k || r2—~ as the product of their square roots; then the
Cauchy-Schwartz inequality and the projective property of conditional expectation yield

E( ST 10k0k gz B 0n 72

2
Ck,k’(h) - E[Ck,k’(h)‘fhis] D

k,k' €72
< (D2 16eoulli0wonine-)

k,k' €7}

2
x < Z HQkUkHH%vH@k"fk’HH%wE‘Ck,k'(h) _E[Ck,k’(h)‘-/rh&]‘ >
k,k' €72
2

< (Z HekUkHHQ*”f) ( Z Heko—kHH?VHek’O—k’HH?’YE[Ck,k’(h)z]>-

keZ? k.k'e€Z3

Notice that the following formula holds:

E[ck,k,(h)ﬂ —E </h(h+1 /h(s )drds)T

= E_</h(h+1 ne ( )(Wk/ W é(na’k/(s) — na’k/(hé))>ds>2]

5
T p(h+1)S 1

/ / / ! 2
<E|s ()| (WE = Wil = = (1 (5) = ¥ (n9)) ) ds}
L Jhs @

Again by Cauchy’s inequality, we have

E[Ck7k’(h)2] <5 h;hﬂ)é <E[|na’k(s)|4]>% (E[(Wf’ Wk - é(navk’(s) _ na’k’(ha)))‘l])%ds
1
59 [, o (ElWKen w1+ JEll 1] o
S Sa+ 62

Summarizing the above estimates yields

2
E( Z Heko'k . V(ek'ka . vihé)"H*B ‘Ck,k’(h) — E[Ck’k/(h)‘fh(;] D
k,k' €72

2
S H50||%2< Z HekakHH?*’Y) < Z 10kok || 72— 10k o || 12—~ (5304 + 52))

kez2 k,k'€Z2

4
= ||%ll72 ( > HekakHHzﬂ) (B +02).

kez?
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Substituting this estimate into (5.9), we deduce

[NIES

E M, <E M,
o (Ml <E[ s o]

2
T%HSOHL2< Z HQWkHHM> (5a% +5%)

kez?
1,1 2
S 003 Tl (D 164] 1K277)
keZd
= 6a2T7 Dy |||z -

Now let us turn to the term R, notice that (5.10) yields

n—1

)
| Rl s < Z Z |Okow - V(Orow - Véns)|| s ‘E[Ck,k'(h)\fh(s] - 5k,k’§‘
h=1k k'e72

n—1
Sléollz D> D 10kokll 2 16k 0wl 2

h=1k k'€72

E [k (R)| Frs| — 6k k’_‘

We use the same method as the term M,, to further deal with the above formula as follows:

E [, (1) | Fhs] —&m—‘

> 116kokll g2 100wl 2

k,k' €72
5
= D= lsorllas 180w 37 16k0w 12 w0l |Elen ()] Fira] — S
kK €22
512\ 2
< ( > H9k0kHH2w)< > N0k0kllr2— 10k 01| 2 [E [cx. 1 (B)| Fs] — Ok ) :
kez2 k,k'€Z2
By (5.8), we can easily get
512
E“E[Cm/(hﬂfha] - 5k,k’§‘ }
—E na’k(hé)na’kl(hé)(l - €_a5)2 44 ,l(e—aé —1+ 1(1 _ 6—2016))‘2
202 R 4
<a 2

Combining the above results, we take supremum and then expectation on HRnH -5 to get

T/6—1
E R, < a1 0
o Rl S0 el > (gzjzu willm)

<0 aT Dy 6ol -

Taking our assumptions on the parameters into consideration, and noticing that
Z Ingi(h) = 4v(Mp41 + Rps1 — My, — Riy),
we complete the proof of Lemma 5.2.
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5.4 The term Iy;(h)

In this section, we focus on the term

(h+1)s

(h+1)
Ios(h) = — /M b(s) - VEusds = - ( /ha b(s) ds ) - Véss.

According to the definition of b(s), it holds

(h+1)5
/h ' b(s)ds = 2\/v Z Ooi (W, h+1) Wh&) 2vva™! Z ek"k(na’k((h+1)5)—ﬁa’k(hé))=

J keZd keZd
then we can further decompose Io5(h) as follows:

(h+1)8
Irs(h) = —2\/; Z / Oroy, - Vins dWSk
keZd

+ 2yt Y (Okok - Véns) (™" ((h + 1)8) — n™* (hd))

keZd
= 1251(]1) + 1252(]1).

The following lemma gives the result for the term Io52(h), as for the term Io51(h), we will
separately discuss it after the proof of Lemma 5.3.

Lemma 5.3. Let v € (0,3), 8>3 and T > 1, then we have

I D=

1<m<n<T/6-1
5 243~y
< B se=y (5_2(1+"/) o T 4 5_mo¢_1+v) TC’4“+7)4 [€ollz2 (1 + H&]HLz)

+via 3Ol HlogE(1+ aT) |I&ll -

Proof. We first reformulate the sum as follows:

> Isa(h) = Z ((h+1)0) — b(hd)) - Véps
h=m

[ Z b(hd) - V(&ns — En—1)s) + b(mI) - VEms — b((n +1)8) - Vns |-

h=m+1

We will estimate each term of the above formula respectively. For the first term, notice that
for any test function ¢ € H?(T?), it holds

[(b(h6) - V(Ers — Er—1)s), )| = |(b(RS) - V¢, Ens — En1)s)|;
meanwhile, (5.5) yields

[(b(hd) - V&, Ens — En—1)s)| S IV (B(RD) - V)| 1+ 11Ems — En—1ysl -1
S 10(h)| 2= |9l 242+ 1€ — En—1)sll -1+

Hence we can further get for 8 > 3 and v € (0, %),

|6(R6) - V(&ns — En—1)8) || g5 S 1B(RO) | 12 €05 — Enys |l -1
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As for the second term, we can use Sobolev embedding theorem to get for ¢ € HP(T?),

[(B(m0) - Vs, 9)] = [(b(m0) - Vb, &ms) | S 16(mO)|| 21|V oo [|€ms ] 2
S [6(md) | 2= | @]l 2+ 160l 2

Hence Hb(m&) . Vﬁm(;HH,B < ||b(md)|| g2~ ||€o]| 72 for any 8 > 3 and v € (0,1).
Besides, the third term can be estimated in the same way as the second one and therefore
we can get the similar result. Summarizing the above estimates, we obtain

Hzfzsz<h>\\wsa-1( D2 16(10)l| 2 s — En-nysllar---
h=m

h=m+1

T llb(m) o oll 2 + 6((n + 1>5>HHMHso|rL2).

Then we take supremum and then expectation to further get

ST horet

1<m<n<T/§-1
T/5-1

Samt 7 E|6(a0) |- I6ns = Ennolli1+] + a7 ol 2B sup  [lb(md)llg- |-
h=1 1<m<T/5—1

(5.11)

By the Cauchy-Schwarz inequality, we obtain

E[l16(20) 122+ 1605 — &nnyallr-1-+] < (B[00 3a-1] ) (E[Ihs — Ennyolliy—s]) ™

Considering the latter expectation, for v € (0,1), Lemma 2.4 yields

2y
[HSM — &yl F-1- ’y:| < E[Hfha — -1yl g = v 11€hs — € 1)5\\1?1277}

< (&[lens - sl 53] )" (= {1ens - -l ] )

moreover, to apply Lemma 3.2, we need to further estimate the second expectation of the last

line as follows:
2y

[HSM — &1 6H11{ﬂ2 y} < E[Hfha - §(h_1)5|!%]72ﬂ] e

Combining the above results together, Lemma 3.1, Lemma 3.2 and Remark 2.6 yield

E [11b(6)ll 172+ l€hs — €n-1yal-1-]
. 5.12
< 22(1++3:Y/) 52(214;'” 2(1+'y) 51+ TH 042(1131) 1 2 ( )
~ Y «Q + TaT 0,2—~,4 H£0||L2( + ||£0HL2) .

In addition, according to Lemma 2.9, we have

1
E| s [bmd)lpe] SE|  sup  [b(md)Fas | S vEad GG, logh (1 4+ aT).
1<m<T/6—1 1<m<T/6—1
(5.13)
Inserting (5.12) and (5.13) into (5.11), we complete the proof. O
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Now let us deal with the term
n—1
S hi(h) = -2 Y / O - VEg AW,
h=m kez2

where [s] is defined as at the beginning of Section 5.1. By the Burkholder-Davis-Gundy’s
inequality, we have
B
H-B

1)
sz 3 / Okor - VL awk|
Let e (z) = €™ and recall the definition of oy, then we have

ke Z2
> 0kor - Veggll-s < 101 D llowallzr-nen < 1611w D llew&sill7-on:
keZd keZd keZd

Z/ 6k~ V][5 )] (5.14)

kez?

furthermore, for § > 3, it holds

2 1
D llen &l s> D Ty (& )| = llellz> > W(ﬁ
keZ? kezi 173 ez
Combing the above two estimates, we obtain
Z || 6o - Vf[s}Hzfﬁ S 1017 l1€oll72 Z e 5 ) < 110117 11€0172,

keZd ez

where we have used ZleZQ 1|72(6=1) < 00. Hence (5.14) yields

|:‘2\/_Z/ ekak-VE[s}de 27

NGNS
ke Z2

By the Kolmogorov Continuity Theorem, for every p € (0, %), we arrive at

E

HZ\/; 2 ke Jif Oxok - V€ AW
sup

0<ty <ta<T to —t1]”

_ 11
= ﬁ] SveT27P)|0lle< IS0l 2. (5.15)

5.5 The term I1(h) + 6(ups - VEns)
For the remaining two terms of (5.4), we will treat them together and prove

Lemma 5.4. For~y € (0,1) and B > 3, the following estimate holds for all T > 1:

1 1
E{ swp | Z (11(h) + 6(uns - Véns)) |, J Sovtar TCE, l60l3: (1 + ol z2).
1<m<n<T/j-1
Proof. For the convenience of calculation, we make the following decomposition:
(h+1)5
Ii(h) + 0(ups - Véns) = /M (uns - Véns — us - V&) ds

(h41)8 (h+1)8
- /h (1ths — 1) - Vs ds + / g - V(Ens — &) ds

1 hé
=: Ill(h) + Ilg(h)
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We first consider the term I11(h). Notice that for every test function ¢ € H?(T?), it holds
K(uh(; — ug) - V&M;,qﬁﬂ = |<uh5 — Ug, Ens V¢>|; besides, by Sobolev embedding theorem, for
€ (0,1), we have

|(uns — us, Ens V)| < lluns — usllr2l1Ens | 22V dlloe S l16ns — &sll =1 l1S0ll 21l pr2+--

Then for § > 3, we can further get

(h+1)6 (h+1)$
[T (B)] ;s < /M (| (uns — ws) - VEns|| s ds S 1ol 22 /h(S [€ns — &sll -1 ds.

Taking supremum and then expectation, Lemma 3.1 yields
T/5-1

I BRETSN D SR N D S ([T

1<m<n<T/§-1

T/5—1

h+16 % (5.16)
Stk 3 [ s -l ) o

1/2
< évial Tc/m 2 1601172 (1 + N1€oll 2)-

As for the term I12(h), we can use (3.4) to estimate it as follows: for any ¢ € H?*7,

[(us - V(€ns — &), 0)| = [(us - Vo, &ns — &)| S IV (s - V)| 12 105 — Esll -1
S ol 2|l 2+ [1€rs — &sll -

Hence for 5 > 3, we have

(h+1)6 (h+1)8
HII2(h)HHﬁ3 < /h& Hus : v(ghé - gs)HHfﬁ ds < HgOHL2 /hé ||£h6 - gsHH*1 ds.

Thus we can get the same estimate as the term I11(h), that is

Bl _ s |3 na }waaiTcm €oll22 (1 + |1€ollz2).- 5.17
[Km@ ool 2 T2 D2 lGollF2 (4 6ll).  (5.07)
Lemma 5.4 follows by combining (5.16) and (5.17). O

5.6 The terms I, and I,

Recall the definitions of I, and I at the beginning of Section 5.1; since their treatments are
similar to those involving I31(h) and I1(h) 4+ §(uns - VEns), respectively, we omit them here to
save space.

Lemma 5.5. Let T > 1, > 3 and v € (0,1), then the following estimates hold:

E[ sup Hfam]sma%(mhu DTCI ol (14 ol ze),
1<m<n<T/§-1

1/2
B sw hlaes| S0 IO Ll 1+ l6ole).
1<m<n<T/5—1
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5.7 Proof of Proposition 3.3

Now we will combine the results of Lemmas 5.1-5.5 and prove

E sup _
1<m<n<T/5-1 (I[N —m[d)P

2 1. 1
STl (1 + [1€ollz2)”" (v F2a™ 4+ v7(0]]e).

Ens — Ems — (K + 1) /TA{S ds + /Mus Vs dSHHJ

m mo

Recalling the decompositions in (5.1) and (5.4), let us start with terms other than I51(h).
Denote

I(h) = Il(h) + Igl(h) + Igg(h) + 1231(}1) + 124(}1) + 1252(]1) + Igl(h) + 5(uh5 . th(;),

then we want to prove

1 " 1o 2
E sup 7“ I(h —i—Ia—i-IbH ] <vitza=eT|&oll2 (1 + |10l z2) "
O P e PRI s Eollz= (1 + Hollz2)

(5.18)
As k < 1, then we can magnify it to 1 for convenience. Besides, observe that v > 1 and the
exponents of v are all smaller than 1+ 7 in estimates in Sections 5.2-5.6, hence we keep vt
in the final result. Moreover, once 6 € 62(23) is fixed, Cy -, and Dy, are finite constants which
do not play a big role in our main results. As for the parts involving the L?-norm of initial
value &, they are all dominated by [|&o][z2(1 + [|€o]|z2)”, so we mainly focus on parameters &
and « in the proof.

To make the term Iso(h) satisfy (5.18), for fixed 6 € ¢3(Z2), we need to make a restriction

on § and « as follows:
§ir=rltate <. (5.19)

Moreover, to apply Lemmas 3.1 and 3.2 in the proofs of Lemmas 5.1-5.5, the following condi-
tions are necessary:
sa® <1, da 1. (5.20)

In order to verify that the above two conditions are consistent with each other, we present
the specific choice of parameters. Indeed, for fixed v € (0, %), there exist sufficiently small
p, € > 0 such that

1

c+p<il-p=2)0 © (1+p)(1+%+6) <(1—)(1+7—p);

therefore, for a big enough, we can choose § satisfying

_l-e _1tv/24e
a T SIS a THe (5.21)

_1l—e
With this choice, it is easy to see that (5.19) is verified. Next, we deduce from a1 < o™ 14 < §
—14+~v—4e—3p

that the second condition of (5.20) also holds. Finally, one has 6*a® <o~ -+ <1 as the
exponent is negative, which yields the first inequality of (5.20).

Based on the previous discussions, we choose several terms in the decomposition of I(h) as
examples to show that (5.18) holds under the condition (5.21), which implies (5.19) and (5.20).

(i) For the term Is4(h), we only need to prove 5 Paate < 1. By (5.19) and (5.20), we
immediately deduce

STt — (51+’y—pa1+%+e) (5(1)_T <1
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(ii) For the term Ip31(h), we want to verify that §~'~?a~!*¢ < 1. Recalling our choice of §
in (5.21), we can further get

5—1—pa—1+e < al—ea—l-i-s - 1.
(iii) For the term I352(h), we only discuss the latter part here, that is:
5Pzt log%(l +aT) < 1.

Note that log(1 + aT) is negligible with respect to as as ais sufficiently large, then by (5.21),
the above inequality holds for small € and p.

We can use similar method to prove that the remaining terms of Lemmas 5.1-5.5 satisfy
(5.18). Finally we consider the term I551(h) separately, noticing that T2, <Taspe€ |0, %),
then we can easily get the desired conclusion by combining (5.15) with (5.18).
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