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Finite time mixing and enhanced dissipation for 2D
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Abstract

We consider the vorticity form of 2D Navier-Stokes equations perturbed by an Ornstein–
Uhlenbeck flow of transport type. Contrary to previous works where the random perturba-
tion was interpreted as Stratonovich transport noise, here we understand the equation in a
pathwise manner and show the properties of mixing and enhanced dissipation for suitable
choice of the flow.

Keywords: 2D Navier-Stokes equation, Ornstein–Uhlenbeck process, mixing, dissipation
enhancement

1 Introduction

Let T
2 := R

2/Z2 be the two-dimensional (2D) torus; we consider the vorticity form of 2D
Navier-Stokes equations on T

2, perturbed by a smooth transport term:

{

∂tξ + u · ∇ξ + b · ∇ξ = κ∆ξ,

u = K ∗ ξ, ξ|t=0 = ξ0,
(1.1)

where ξ and u are the fluid vorticity and velocity field, K being the Biot-Savart kernel on T
2:

K ∗ ξ := −∇⊥(−∆)−1ξ,

with ∇⊥ = (∂2,−∂1), ∂i = ∂
∂xi

. κ > 0 is a fixed small number representing molecular diffu-

sivity, and b : [0,∞) × T
2 → R

2 is a random time-dependent and divergence free vector field,
continuous in time and smooth in space variables, standing for the small-scale parts of fluid
velocity, thus the term b · ∇ξ models the effects of fluid small scales on the larger component
ξ. It is well known that for L2-initial condition ξ0, P-a.s., equation (1.1) admits a unique
weak solution satisfying the usual energy estimate. Our purpose is to study, under suitable
conditions on b, the properties of mixing and dissipation enhancement for the system (1.1).

The above model can be heuristically derived from the deterministic 2D Navier-Stokes equa-
tion by separating the fluid into large-scale components and small-scale ones, and modeling
the corresponding small-scale velocity by a random field b, see for instance [17, Section 1.2] for
derivations in the 3D case and also [31, Section 1.2] for similar discussions on 2D Boussinesq
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systems. In these papers, the small-scale perturbations are interpreted as Stratonovich multi-
plicative noises of transport type, delta-correlated in time and colored in space, and thus the
first equation in (1.1) is understood as a stochastic partial differential equation (SPDE); we
refer to the recent works [8, 22, 23, 28] for more rigorous derivations of such stochastic fluid
dynamics models. Indeed, the investigations of regularizing effects of multiplicative transport
noise on various models began much earlier, see e.g. [9, 14, 15]. More recently, inspired by
the scaling limit method introduced by Galeati [25], stochastic fluid equations with transport
noise have been studied intensively, and it is by now well understood that transport noise pro-
duces eddy dissipation/viscosity under certain rescaling of spatial covariance, see for instance
[7, 10, 13, 19, 20, 21, 31, 34]. Moreover, the larger the noise intensity, the stronger the addi-
tional viscous term in the limit equations; the extra strong viscosity can be used to suppress
possible blow-up of various deterministic equations, yielding long-term (even global) existence
of strong solutions with large probability, cf. [1, 11, 16, 17, 32]. In a sense, the above results
can be regarded as partial verifications of Boussinesq’s eddy viscosity hypothesis [6], which is
one of the basis for large eddy simulation (see [5]).

However, noises with delta-correlation in time are just idealized approximations of real
objects, and it is worthy of considering more practical perturbations, see [35, Section 4] for
related discussions. As an attempt in this respect, Flandoli and Russo [24] showed that the
dissipation properties of a stochastic transport term of fractional Brownian motion with Hurst
parameter H > 1/2 are weaker than standard Brownian motion. In a slightly earlier work [36],
Pappalettera studied the mixing and dissipation enhancement properties of Ornstein-Uhlenbeck
flows for passive scalar on d-dimensional torus Td:

∂th+ b · ∇h = κ∆h, h|t=0 = h0 ∈ L2(Td). (1.2)

The time-dependent vector field b takes the form

b(t, x) =
∑

j∈J

bj(x) η
α,j(t),

where J is a finite index set, {bj}j∈J are divergence free vector fields on Td and {ηα,j}j∈J
are independent real Ornstein-Uhlenbeck processes with covariance Cov(ηα,j(t), ηα,j(s)) =
α
2 exp(−α|t − s|), α > 0 being a parameter. As α → ∞, the covariance α

2 exp(−α|t − s|)
converges in distribution to the Dirac delta function, and thus ηα,j can be seen as approxima-
tions of the white noise. Assuming suitable conditions on the spatial properties of the family
{bj}j∈J , it is shown in [36] that the solution h is close, in negative Sobolev norms, to the
solution of the deterministic equation

∂th̄ = (κ∆+ L)h̄, h̄0 = h0, (1.3)

where the second order differential operator Lh̄ =
∑

j bj · ∇(bj · ∇h̄) stands for the enhanced
dissipation. As mentioned above, the small-scale perturbations are understood in previous
works (e.g. [10, 13, 25]) as Stratonovich transport noise, and thus the additional operator L
arises naturally as Stratonovich-Itô corrector. Here, however, one has to compute the iterated
integral of Ornstein-Uhlenbeck processes and to borrow some ideas from the proof of Wong-
Zakai type results; see [23, Section 3] for related computations. There are also many other
advanced and very sophisticated works on mixing and dissipation enhancement properties,
using different methods from ergodic theory, see e.g. [3, 4, 26].

Motivated by [36], we aim at studying the properties of mixing and enhanced dissipation of
Ornstein-Uhlenbeck flow b for 2D Navier-Stokes equations (1.1) in vorticity form. To overcome
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difficulties arising from the nonlinearity, we follow [10, 13, 25] and assume that the time-
dependent vector field b takes the more precise form

b(t, x) = 2
√
ν
∑

k∈Z2
0

θk σk(x) η
α,k(t),

where ν > 0 is the intensity of perturbation, Z2
0 = Z

2\{0} is the set of nonzero lattice points,
and θ = {θk}k∈Z2

0
∈ ℓ2(Z2

0), the latter being the space of square summable sequences. We always

assume that θ is a radial function of k ∈ Z
2
0 with only finitely many nonzero components, and

‖θ‖ℓ2 = (
∑

k∈Z2
0
θ2k)

1/2 = 1. The vector fields σk(x) = k⊥

|k| e
2πik·x, where k⊥ = (k2,−k1) and

k ·x = k1x1+k2x2, constitute a CONS of the space L2(T2,R2) of divergence free vector fields on
T
2 with zero mean, while ηα,k are independent Ornstein-Uhlenbeck processes as above. Thanks

to the exact choice of b, the additional operator L takes the much simpler form ν∆ (see (5.3)
below for related computations), and thus our purpose is to show that the solution ξ of (1.1)
is close to that of the deterministic 2D Navier-Stokes equation with extra viscosity:

{

∂tξ̄ + ū · ∇ξ̄ = (κ+ ν)∆ξ̄,

ū = K ∗ ξ̄, ξ̄|t=0 = ξ0.
(1.4)

Note that ξ̄ has a fast exponential decay in L2-norm (and also in negative Sobolev norms) for
large ν which comes from the intensity of noise.

To state more exactly our main results, we need some notation. For s ∈ R, let Hs = Hs(T2)
be the usual Sobolev space on T

2 endowed with the norm ‖ · ‖Hs ; we will write H0 as L2 and
‖ · ‖H0 as ‖ · ‖L2 . Unless mentioned explicitly, we will use the same notation for spaces of
functions and vector fields on T

2. Since the equations (1.1) and (1.4) preserve the spatial
average of solutions, we shall assume that the spaces Hs consist of functions of zero average.
We write ‖θ‖ℓ∞ for the supremum norm of θ ∈ ℓ2(Z2

0). In the sequel, the notation a . b means
that a ≤ Cb for some constant C > 0; if we want to emphasize the dependence of C on some
parameters γ, p, then we write a .γ,p b.

Here is the first main result of our work; it gives us a quantitative estimate on the distance,
in terms of negative Sobolev norms, between the solutions ξ and ξ̄. Since ξ̄ has a much faster
decay in such norms, we can regard the result as a mixing property of the Ornstein-Uhlenbeck
flow b, valid on finite time intervals.

Theorem 1.1. Let ξ0 ∈ L2(T2) and ξ, ξ̄ be the unique solutions of (1.1) and (1.4) respectively.
Then for any γ ∈ (0, 13), ϑ > 0 and T ≥ 1, there exist ζ ∈ (0, 1) and ǫ > 0 such that for α
sufficiently large, it holds

E
[

‖ξ − ξ̄‖C([0,T ],H−ϑ)

]

≤ C1‖ξ0‖L2 exp
(

C2‖ξ0‖2L2

)(

ν1+
γ
2α−ǫ + ν

1
2 ‖θ‖ℓ∞

)ζ
, (1.5)

where C1 > 0 is a constant depending on κ, ν, ζ, γ, T and C2 > 0 only depends on κ, ν, T .

We can make the right-hand of inequality (1.5) small by first choosing θ ∈ ℓ2(Z2
0) with small

norm ‖θ‖ℓ∞ (see Examples 2.7 and 2.8 in Section 2 below), and then taking α big enough. This
result is an analogue of [36, Theorem 1.1], where the author measured the closedness of solutions
in the stronger Hölder space Cδ([0, 1],H−ϑ), δ > 0. The key idea in the proof of [36, Theorem
1.1] is to express the difference h − h̄ of solutions to (1.2) and (1.3) in terms of a random
distribution f , see the beginning of [36, Section 4] or (4.1) below for a similar quantity. If f
were differentiable in time, then h− h̄ could be estimated using the mild expression involving
f and an analytic semigroup; in the absence of time regularity on f , one needs to apply [27,
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Theorem 1] which can be thought of as a generalization of such estimates. In our case, we have
to deal with the extra nonlinear terms in equations (1.1) and (1.4), thus we shall combine the
above idea with the quantitative arguments developed in [12], and then apply the Gronwall
lemma to get the desired estimate. Compared to [12, Theorem 1.1], the coefficient C1 in (1.5)
might explode as κ→ 0, thus we cannot prove a similar estimate for the 2D Euler equation.

Our second main result shows the phenomenon of dissipation enhancement.

Theorem 1.2. Given λ > 0, p ≥ 1 and R > 0, we can find parameters ν > 0, α > 0 and

θ ∈ ℓ2, such that for every ξ0 with ‖ξ0‖L2 ≤ R, there exists a random constant C = C(ω) > 0
with finite p-th moment, such that the solution of (1.1) satisfies the following exponential decay:

P-a.s.,

‖ξt‖L2 ≤ Ce−λt‖ξ0‖L2 for all t ≥ 0.

This theorem improves [36, Theorem 1.2] in two aspects: first, we deal with the nonlinear
equation (1.1) rather than the linear heat equation (1.2); second, the enhanced exponential
decay of ‖ξt‖L2 is shown for all sufficiently large t > 0, instead of on a finite interval. We
briefly discuss the key ingredients for proving the latter result. Note that the solution ξ to
(1.1) is time homogeneous, due to the stationarity of the Ornstein-Uhlenbeck flow b; combined
with the estimate (1.5) restricted to the unit interval [0, 1], we conclude easily that similar
result, up to taking conditional expectation, holds on any interval [n, n + 1] if equation (1.4)
is restarted at time t = n with the initial value ξn. As a consequence, we can show that
E‖ξn+1‖L2 ≤ c0E‖ξn‖L2 where c0 > 0 can be very small by choosing parameters ν, α and
‖θ‖ℓ∞ in a suitable way. Once we have such estimate, it is relatively standard to show the
enhanced exponential decay; see Section 4.2 for the detailed proofs. We mention that the
initial condition ξ0 is restricted in a ball of arbitrary (but fixed) radius R; this is due to the
nonlinearity of (1.1), see the end of [33, Section 2.1] for similar discussions.

We make some further comments on the differences between our methods and those in
[36]. First, the main results of [36] are stated in dimension d ≥ 3, while the corresponding 2D
assertions are derived by assuming translation invariance in one direction, see the discussions
in [36, Remark 2.2]. The reason is due to a technical constraint on the Sobolev indices for
product of functions: if φ ∈ Ha(Td) and ψ ∈ Hb(Td) with a, b < d/2 and a+ b > 0, then one
has φψ ∈ Ha+b−d/2 and ‖φψ‖Ha+b−d/2 .a,b,d ‖φ‖Ha‖ψ‖Hb , cf. [36, Lemma 2.1] for the general
case d ≥ 2, or Lemma 2.2 below for the 2D case. If one wants to directly apply this result
to estimate the H1-norm of b(t) · ∇φ, where φ ∈ H2+γ for some small γ > 0, then a possible
choice of parameters would be a = d/2 − γ < d/2, b = 1 + γ < d/2, and one has

‖b(t) · ∇φ‖H1 .γ ‖b(t)‖Hd/2−γ‖∇φ‖H1+γ ≤ ‖b(t)‖Hd/2−γ‖φ‖H2+γ ;

however, the above choice of parameters results in d ≥ 3, γ ∈ (0, (d − 2)/2). In order to treat
directly the 2D case, we make the following simple but key observation: since b(t) is divergence
free in space, the function b(t) · ∇φ has zero spatial average and thus one can apply Poincaré’s
inequality to get

‖b(t) · ∇φ‖H1 . ‖∇(b(t) · ∇φ)‖L2 ≤ ‖∇b(t) · ∇φ‖L2 + ‖b(t) · ∇2φ‖L2 ;

note that now we only need to estimate L2-norm of products, it is possible to choose suitable
parameters such that the above product rule of Sobolev functions is applicable in the 2D case,
see (3.4) below for details.

Next, we have tried to avoid using the supremum in time of Sobolev norms of b(t, ·), with
one exception in Lemma 5.3; in this way, most of the estimates do not involve logarithmic
terms, making them look simpler than those in [36].
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We finish the short introduction with the structure of the paper. We present some prelim-
inary results in Section 2 which will be frequently used below. Then we prove in Section 3 a
few useful estimates on the solution ξ to equation (1.1); as in [36], the main technical estimate
is Proposition 3.3 whose proof will be postponed to Section 5 in order not to interrupt the
readability of the paper. The main results (Theorems 1.1 and 1.2) will be proved in Section 4,
again following some ideas in [36] with suitable modifications to deal with the nonlinearities.

2 Preparations

Recall that Z2
0 consists of 2D nonzero integer points; let {W k}k∈Z2

0
be a family of independent

two-sided Brownian motions defined on some filtered probability space (Ω, {Ft}t∈R,P). For
every α > 1, the processes

ηα,k(t) :=

∫ t

−∞
αe−α(t−s) dW k

s , t ≥ 0, k ∈ Z
2
0

constitute a family of independent Ornstein-Uhlenbeck processes, which are solutions of the
1D SDE

dηα,k = −αηα,k dt+ αdW k
t .

It is clear that ηα,k is a stationary process, with the invariant Gaussian measure N(0, α/2).
For the reader’s convenience, we recall that the random vector field b is defined as

b(t, x) = 2
√
ν
∑

k∈Z2
0

θk σk(x) η
α,k(t),

where ν > 0, θ ∈ ℓ2(Z2
0) is radially symmetric and has compact support, ‖θ‖ℓ2 = 1, and

σk(x) = k⊥

|k| e
2πik·x, k ∈ Z

2
0 constitute a CONS of the space of divergence free vector fields in

L2(T2,R2).
We next introduce the definition of weak solutions for the equation (1.1), namely

∂tξ + u · ∇ξ + b · ∇ξ = κ∆ξ,

with u = K ∗ ξ and initial data ξ0 ∈ L2(T2).

Definition 2.1. Suppose ξ0 ∈ L2(T2). A stochastic process ξ : Ω × [0,∞) → L2(T2) is called

a weak solution of (1.1), if there exists a P-negligible set N ⊂ Ω such that for every ω ∈ N c,

it holds ξ(ω, ·) ∈ L∞
(

[0,∞), L2(T2)
)

and

〈φ, ξt〉 = 〈φ, ξs〉+
∫ t

s
〈ur · ∇φ, ξr〉 dr +

∫ t

s
〈b(r) · ∇φ, ξr〉 dr + κ

∫ t

s
〈∆φ, ξr〉 dr,

for every test function φ ∈ C∞(T2) and every 0 ≤ s < t <∞.

It is easy to know that, given any L2-initial condition ξ0, (1.1) admits a unique weak solution
satisfying the following P-a.s. energy estimate:

sup
t∈[0,∞)

(

‖ξt‖2L2 + 2κ

∫ t

0
‖∇ξs‖2L2 ds

)

≤ ‖ξ0‖2L2 . (2.1)

Similarly, for the solution of (1.4), it holds

sup
t∈[0,∞)

(

‖ξ̄t‖2L2 + 2(κ+ ν)

∫ t

0
‖∇ξ̄s‖2L2 ds

)

≤ ‖ξ0‖2L2 . (2.2)
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Now we state several technical lemmas for later use; as they are classical results in harmonic
analysis, we omit their proofs. The first result is concerned with the product of Sobolev
functions, see e.g. [2, Corollary 2.55].

Lemma 2.2. For any s1, s2 < 1, if s1 + s2 > 0, then for any u ∈ Hs1(T2) and v ∈ Hs2(T2),
we have uv ∈ Hs1+s2−1(T2), and the following inequality holds:

‖uv‖Hs1+s2−1 . ‖u‖Hs1‖v‖Hs2 .

The following result follows easily from Gagliardo-Nirenberg’s characterization of Hα-norm
for α ∈ (0, 1), cf. [2, Proposition 1.37]

Lemma 2.3. Let α ∈ (0, 1) and ǫ > 0 be such that α+ ǫ < 1, then for any u ∈ Cα+ǫ(T2) and
v ∈ Hα(T2), it holds

‖uv‖Hα . ‖u‖Cα+ǫ‖v‖Hα .

Lemma 2.4 (Interpolation inequality). For any s1 < s < s2, there exists α ∈ (0, 1) satisfying

s = αs1 + (1− α)s2, such that

‖u‖Hs ≤ ‖u‖αHs1‖u‖1−α
Hs2 .

The next lemma gives a useful estimate on the Sobolev norms of the vector field b.

Lemma 2.5. For every p ≥ 2 and τ > 0, we have the following estimate:

sup
s≥0

E
[

‖b(s)‖pHτ

]

. ν
p
2α

p
2 Cθ,τ,p ,

where Cθ,τ,p :=
∑

k∈Z2
0
θ2k |k|pτ ∈ (0,∞) is a constant depending on θ, τ, p.

Proof. Recall that
∑

k∈Z2
0
θ2k = 1, then by the definition of b(s), Jensen’s inequality yields

‖b(s)‖pHτ =
(

4ν
∑

k∈Z2
0

θ2k (η
α,k(s))2 |k|2τ

)
p
2 ≤ (4ν)

p
2

∑

k∈Z2
0

θ2k
∣

∣ηα,k(s)
∣

∣

p |k|pτ . (2.3)

Taking expectation, we arrive at

E
[

‖b(s)‖pHτ

]

≤ (4ν)
p
2

∑

k∈Z2
0

θ2k |k|pτ E

[

∣

∣ηα,k(s)
∣

∣

p
]

. (να)
p
2

∑

k∈Z2
0

θ2k |k|pτ

which gives us the desired estimate.

Remark 2.6. For n > 1, by Jensen’s inequality we have Cθ,τ,p/n ≤ C
1/n
θ,τ,p.

In the following two examples, we compute explicitly the values of ‖θ‖ℓ∞ and Cθ,τ,p for
special choices of coefficients θ.

Example 2.7. For N ≥ 1, we define θ ∈ ℓ2(Z2
0) as follows:

θk = εN
1

|k|a1{1≤|k|≤N}, k ∈ Z
2
0,

where a ∈ (0, 1), εN is a normalizing constant depending on N such that ‖θ‖ℓ2 = 1. Then for

every p ≥ 1, it holds

‖θ‖ℓ∞ ∼
(1− a

π

)1/2
(

N2−2a − 1
)−1/2 → 0 as N → ∞,

Cθ,τ,p ∼
2− 2a

2− 2a+ pτ

N2−2a+pτ − 1

N2−2a − 1
∼ Npτ as N → ∞.
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Proof. By the definition of Cθ,τ,p, we can get

Cθ,τ,p = ε2N
∑

1≤|k|≤N

|k|−2a+pτ =: ε2N dN ,

where dN =
∑

1≤|k|≤N |k|−2a+pτ . Notice that ‖θ‖2ℓ2 =
∑

1≤|k|≤N ε
2
N |k|−2a = 1, then we can

estimate ε2N =
(
∑

1≤|k|≤N |k|−2a
)−1

by integration as follows:

ε2N ∼
(

∫

1≤|x|≤N
|x|−2a dx

)−1
=

(

∫ N

1

∫ 2π

0

r

r2a
dϕdr

)−1
=

1− a

π

(

N2−2a − 1
)−1

.

Furthermore, we can easily get ‖θ‖ℓ∞ = εN for a fixed N . In the same way, we can estimate
dN ∼ 2π

2−2a+pτ

(

N2−2a+pτ − 1
)

, and therefore we obtain the value of Cθ,τ,p.

Example 2.8. If we change the support set of the above example and define

θk = εN
1

|k|a1{N≤|k|≤2N}, k ∈ Z
2
0,

where a > 0 and εN is still a normalizing constant, then for every p ≥ 1, we can obtain

‖θ‖ℓ∞ ∼















(

1−a
π

)1/2(
22−2a − 1

)−1/2
N−1, 0 < a < 1,

(

2π log 2
)−1/2

N−1, a = 1,
(

a−1
π

)1/2(
1− 22−2a

)−1/2
N−1, a > 1;

Cθ,τ,p ∼
{

(2−2a)(22−2a+pτ−1)
(2−2a+pτ)(22−2a−1)

Npτ , a 6= 1,
2pτ−1
pτ log 2 N

pτ , a = 1.

Finally we present a moment estimate of b in the space C([0, T ],Hτ ), T ≥ 1, which will be
used in Section 5.4.

Lemma 2.9. Consider b as defined before, then for every p ≥ 2 and τ > 0, it holds

E

[

sup
s∈[0,T ]

‖b(s)‖pHτ

]

. ν
p
2α

p
2 Cθ,τ,p log

p
2 (1 + αT ), ∀T ≥ 1.

Proof. Recall the useful estimate from [30]: for every fixed p ≥ 1, it holds

E

[

sup
s∈[0,T ]

|ηα,k(s)|p
]

. α
p
2 log

p
2 (1 + αT ) for all k ∈ Z

2
0;

by (2.3), for p ≥ 2, we take supremum and then expectation on ‖b(s)‖pHτ to obtain

E

[

sup
s∈[0,T ]

‖b(s)‖pHτ

]

≤ (4ν)
p
2

∑

k∈Z2
0

|k|pτθ2k E
[

sup
s∈[0,T ]

|ηα,k(s)|p
]

. ν
p
2α

p
2 Cθ,τ,p log

p
2 (1 + αT ).
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3 Useful Estimates

We first prove an estimate on the time increment of ξ in H−1-norm, which will be repeatedly
used in the proofs of Lemma 3.2 and Proposition 3.3. Thanks to the estimate (2.1), we often
control ‖ξs‖L2 by ‖ξ0‖L2 in the following proofs.

Lemma 3.1. Let t ≥ 0, δ ∈ (0, 1) satisfy δα & 1, then for every p ≥ 2 and γ ∈ (0, 1), it holds

E

[

‖ξt+δ − ξt‖pH−1

]

. δpν
p
2α

p
2 Cθ,1+γ,p ‖ξ0‖pL2

(

1 + ‖ξ0‖pL2

)

.

Proof. By Definition 2.1, for every test function φ ∈ C∞(T2), we have

∣

∣〈φ, ξt+δ − ξt〉
∣

∣ ≤
∫ t+δ

t

∣

∣〈us · ∇φ, ξs〉
∣

∣ ds+

∫ t+δ

t

∣

∣〈b(s) · ∇φ, ξs〉
∣

∣ ds + κ

∫ t+δ

t

∣

∣〈∆φ, ξs〉
∣

∣ ds.

Now we will deal with each term separately. First, according to Sobolev embedding theorem
and Lemma 2.4, for γ ∈ (0, 1), we have the following estimate:

∣

∣〈us · ∇φ, ξs〉
∣

∣ ≤ ‖us‖L∞‖∇φ‖L2‖ξs‖L2 . ‖ξs‖Hγ‖φ‖H1‖ξ0‖L2 . ‖ξs‖γH1‖φ‖H1‖ξ0‖2−γ
L2 .

Hence we can use Hölder’s inequality and (2.1) to get

∫ t+δ

t

∣

∣〈us · ∇φ, ξs〉
∣

∣ ds . ‖φ‖H1‖ξ0‖2−γ
L2

∫ t+δ

t
‖ξs‖γH1 ds

≤ ‖φ‖H1‖ξ0‖2−γ
L2

(

∫ t+δ

t
‖ξs‖2H1 ds

)
γ
2
(

∫ t+δ

t
1 ds

)1− γ
2

≤ κ−
γ
2 δ1−

γ
2 ‖φ‖H1‖ξ0‖2L2 .

(3.1)

In the same way, we can estimate the second term. For γ ∈ (0, 1), we have

∣

∣〈b(s) · ∇φ, ξs〉
∣

∣ ≤ ‖b(s)‖L∞‖∇φ‖L2‖ξs‖L2 . ‖b(s)‖H1+γ‖φ‖H1‖ξ0‖L2 ,

then the following inequality holds:

∫ t+δ

t

∣

∣〈b(s) · ∇φ, ξs〉
∣

∣ ds . ‖φ‖H1‖ξ0‖L2

∫ t+δ

t
‖b(s)‖H1+γ ds. (3.2)

As for the last term, (2.1) and Hölder’s inequality yield

κ

∫ t+δ

t

∣

∣〈∆φ, ξs〉
∣

∣ ds ≤ κ

∫ t+δ

t
‖∆φ‖H−1‖ξs‖H1 ds

≤ κ ‖φ‖H1

(

∫ t+δ

t
‖ξs‖2H1 ds

)
1
2
(

∫ t+δ

t
1 ds

)
1
2

≤ κ
1
2 δ

1
2 ‖φ‖H1‖ξ0‖L2 .

(3.3)

Having (3.1)-(3.3) at hand, we deduce

∣

∣〈φ, ξt+δ − ξt〉
∣

∣ . ‖φ‖H1

[

κ−
γ
2 δ1−

γ
2 ‖ξ0‖2L2 + ‖ξ0‖L2

∫ t+δ

t
‖b(s)‖H1+γ ds+ κ

1
2 δ

1
2 ‖ξ0‖L2

]

.

Since φ is arbitrary, the above formula yields

‖ξt+δ − ξt‖H−1 . κ−
γ
2 δ1−

γ
2 ‖ξ0‖2L2 + ‖ξ0‖L2

∫ t+δ

t
‖b(s)‖H1+γ ds+ κ

1
2 δ

1
2 ‖ξ0‖L2 .
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Taking the p-th moment, we finally get

E

[

‖ξt+δ − ξt‖pH−1

]

. κ−
γ
2
p δ(1−

γ
2
)p‖ξ0‖2pL2 + ‖ξ0‖pL2 E

[

(

∫ t+δ

t
‖b(s)‖H1+γ ds

)p
]

+ κ
p
2 δ

p
2 ‖ξ0‖pL2

≤ κ−
γ
2
p δ(1−

γ
2
)p‖ξ0‖2pL2 + ‖ξ0‖pL2δ

p−1

∫ t+δ

t
E
[

‖b(s)‖p
H1+γ

]

ds+ κ
p
2 δ

p
2 ‖ξ0‖pL2

. κ−
γ
2
p δ(1−

γ
2
)p‖ξ0‖2pL2 + δpν

p
2α

p
2 Cθ,1+γ,p ‖ξ0‖pL2 + κ

p
2 δ

p
2 ‖ξ0‖pL2 .

Noting that κ > 0 is a fixed parameter, we finish the proof by taking into account our restric-
tions on δ and α.

Based on the conclusion of Lemma 3.1, we can further deduce another useful estimate.

Lemma 3.2. Let t ≥ 0, δ ∈ (0, 1) satisfy δα & 1 and δ4α3 . 1, then for every p ≥ 2 and

γ ∈ (0, 1), it holds

E

[

‖ξt+δ − ξt‖pH−2−γ

]

. νp
(

δ
p
2 + α− p

2
)

Cθ,1+γ,2p‖ξ0‖pL2

(

1 + ‖ξ0‖pL2

)2
.

Proof. The idea of proof is similar to that of Lemma 3.1, but we divide the right hand side
into more terms: for every test function φ ∈ C∞(T2),

∣

∣〈φ, ξt+δ − ξt〉
∣

∣ ≤
∫ t+δ

t

∣

∣〈us · ∇φ, ξs − ξt〉
∣

∣ ds+

∫ t+δ

t

∣

∣〈us · ∇φ, ξt〉
∣

∣ ds

+

∫ t+δ

t

∣

∣〈b(s) · ∇φ, ξs − ξt〉
∣

∣ ds+
∣

∣

∣

∫ t+δ

t
〈b(s) · ∇φ, ξt〉 ds

∣

∣

∣
+ κ

∫ t+δ

t

∣

∣〈∆φ, ξs〉
∣

∣ ds.

We estimate each term respectively. For the first one,
∫ t+δ

t

∣

∣〈us · ∇φ, ξs − ξt〉
∣

∣ ds ≤
∫ t+δ

t
‖us · ∇φ‖H1 ‖ξs − ξt‖H−1 ds

.

∫ t+δ

t
‖∇(us · ∇φ)‖L2 ‖ξs − ξt‖H−1 ds,

where in the second step we have used Poincaré’s inequality. By Lemma 2.2 and Sobolev
embedding theorem, for γ ∈ (0, 1), we have the following estimate:

‖∇(us · ∇φ)‖L2 ≤ ‖∇us · ∇φ‖L2 + ‖us · ∇2φ‖L2

. ‖∇us‖L2‖∇φ‖L∞ + ‖us‖H1−γ‖∇2φ‖Hγ

. ‖us‖H1‖φ‖H2+γ + ‖ξs‖H−γ‖φ‖H2+γ

. ‖ξs‖L2‖φ‖H2+γ ,

(3.4)

substituting this estimate into the above inequality, we arrive at
∫ t+δ

t

∣

∣〈us · ∇φ, ξs − ξt〉
∣

∣ ds . ‖φ‖H2+γ‖ξ0‖L2

∫ t+δ

t
‖ξs − ξt‖H−1 ds.

For the second term, we use Sobolev embedding theorem to get
∫ t+δ

t

∣

∣〈us · ∇φ, ξt〉
∣

∣ ds ≤
∫ t+δ

t
‖us‖L2‖∇φ‖L∞‖ξt‖L2 ds

. ‖φ‖H2+γ‖ξ0‖L2

∫ t+δ

t
‖ξs‖H−1 ds

. δ ‖φ‖H2+γ‖ξ0‖2L2 .
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Similarly to (3.4), we can estimate the third term:

∫ t+δ

t

∣

∣〈b(s) · ∇φ, ξs − ξt〉
∣

∣ ds .

∫ t+δ

t
‖∇(b(s) · ∇φ)‖L2‖ξs − ξt‖H−1 ds

. ‖φ‖H2+γ

∫ t+δ

t
‖b(s)‖H1‖ξs − ξt‖H−1 ds.

As for the next term,

∣

∣

∣

∫ t+δ

t
〈b(s) · ∇φ, ξt〉 ds

∣

∣

∣
=

∣

∣

∣

〈(

∫ t+δ

t
b(s) ds

)

· ∇φ, ξt
〉
∣

∣

∣
≤ ‖∇φ‖L∞‖ξt‖L2

∥

∥

∥

∫ t+δ

t
b(s) ds

∥

∥

∥

L2
;

recalling the definition of b, we have
∫ t+δ

t
b(s) ds = 2

√
ν
∑

k∈Z2
0

θkσk
(

W k
t+δ −W k

t

)

− α−1
(

b(t+ δ)− b(t)
)

,

and therefore, for γ ∈ (0, 1), we can get

∣

∣

∣

∫ t+δ

t
〈b(s) · ∇φ, ξt〉 ds

∣

∣

∣
. ν

1
2 ‖φ‖H2+γ‖ξ0‖L2

[

∑

k∈Z2
0

θ2k
(

W k
t+δ −W k

t

)2
]

1
2

+ α−1 ‖φ‖H2+γ‖ξ0‖L2

(

‖b(t+ δ)‖L2 + ‖b(t)‖L2

)

.

Finally, the fifth term can be estimated as follows:

κ

∫ t+δ

t

∣

∣〈∆φ, ξs〉
∣

∣ ds ≤ κ

∫ t+δ

t
‖∆φ‖L2‖ξs‖L2 ds . κδ ‖φ‖H2+γ‖ξ0‖L2 .

Combining these results together and noticing the arbitrariness of φ, we arrive at

‖ξt+δ − ξt‖H−2−γ . ‖ξ0‖L2

∫ t+δ

t
‖ξs − ξt‖H−1 ds+ δ ‖ξ0‖2L2

+

∫ t+δ

t
‖b(s)‖H1‖ξs − ξt‖H−1 ds+ ν

1
2‖ξ0‖L2

[

∑

k∈Z2
0

θ2k
(

W k
t+δ −W k

t

)2
]

1
2

+ α−1‖ξ0‖L2

(

‖b(t+ δ)‖L2 + ‖b(t)‖L2

)

+ κδ ‖ξ0‖L2 .

(3.5)

To complete the proof, we also need the following several estimates. By Lemma 3.1,

E

[

(

∫ t+δ

t
‖ξs − ξt‖H−1ds

)p
]

≤ δp−1

∫ t+δ

t
E
[

‖ξs − ξt‖pH−1

]

ds

. δ2pν
p
2α

p
2 Cθ,1+γ,p ‖ξ0‖pL2

(

1 + ‖ξ0‖pL2

)

.

(3.6)

Hölder’s inequality yields

E

[

(

∫ t+δ

t
‖b(s)‖H1‖ξs − ξt‖H−1 ds

)p
]

≤ E

[

δp−1

∫ t+δ

t
‖b(s)‖p

H1‖ξs − ξt‖pH−1 ds

]

≤ δp−1

∫ t+δ

t

(

E
[

‖b(s)‖2p
H1

]

)
1
2
(

E
[

‖ξs − ξt‖2pH−1

]

)
1
2
ds

. δ2pνpαp Cθ,1+γ,2p ‖ξ0‖pL2

(

1 + ‖ξ0‖pL2

)

.

(3.7)
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Besides, by Jensen’s inequality, for p ≥ 2, the following formula holds:

E

[

(

∑

k∈Z2
0

θ2k
(

W k
t+δ −W k

t

)2
)

p
2

]

≤ E

[

∑

k∈Z2
0

θ2k
∣

∣W k
t+δ −W k

t

∣

∣

p
]

.
∑

k∈Z2
0

θ2k δ
p
2 = δ

p
2 . (3.8)

According to the definition of b(t), for t ≥ 0, we have

E

[

‖b(t + δ)‖p
L2

]

= E

[

‖b(t)‖p
L2

]

≤ (4ν)
p
2

∑

k∈Z2
0

θ2k E
[

∣

∣ηα,k(t)
∣

∣

p
]

. ν
p
2α

p
2 . (3.9)

Inserting (3.6)-(3.9) into (3.5), we can easily get

E

[

‖ξt+δ − ξt‖pH−2−γ

]

. δ2pν
p
2α

p
2 Cθ,1+γ,p ‖ξ0‖2pL2

(

1 + ‖ξ0‖pL2

)

+ δp ‖ξ0‖2pL2

+ δ2pνpαp Cθ,1+γ,2p ‖ξ0‖pL2

(

1 + ‖ξ0‖pL2

)

+ δ
p
2 ν

p
2 ‖ξ0‖pL2

+ ν
p
2α− p

2 ‖ξ0‖pL2 + κpδp ‖ξ0‖pL2 .

It is clear that the parts involving the L2-norm of initial data are dominated by ‖ξ0‖pL2

(

1 +

‖ξ0‖pL2

)2
; the conclusion follows by noticing our previous assumptions on the parameters.

The following result is analogous to [36, Proposition 3.3] where a similar estimate, against
test functions, was proved for the solution h of (1.2). We remark that the stronger estimate as
below is needed at the end of the proof of Proposition 4.2. We first divide the interval [0, T ]
into many subintervals of the form [nδ, (n + 1)δ], n ∈ N, where δ ∈ (0, 1) is a small parameter
such that T/δ is an integer, then we estimate the quantity in each interval of length δ, and
finally sum them up.

Proposition 3.3. Fix β > 3, γ ∈ (0, 13), then there exist ǫ > 0, δ ∈ (0, 1) and ρ ∈ (0, 14 ) such

that for α large enough, the following estimate holds:

E

[

sup
1≤m<n≤T/δ−1

1

(|n −m|δ)ρ
∥

∥

∥
ξnδ − ξmδ − (κ+ ν)

∫ nδ

mδ
∆ξs ds +

∫ nδ

mδ
us · ∇ξs ds

∥

∥

∥

H−β

]

. T‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2(
ν1+

γ
2α−ǫ + ν

1
2 ‖θ‖ℓ∞

)

.

As the proof of Proposition 3.3 is very long, we postpone it to Section 5. We mention that
some restrictions on the parameters α and δ are necessary in order to obtain a sufficiently small
estimate, and one can find the specific details in Section 5.7.

4 Proofs of main results

This section consists of two parts which are devoted to the proofs of Theorems 1.1 and 1.2,
respectively.

4.1 Proof of Theorem 1.1

To prove Theorem 1.1, we first define a random distribution f as follows:

ft = ξt − ξ0 − (κ+ ν)

∫ t

0
∆ξs ds +

∫ t

0
us · ∇ξs ds. (4.1)

If we replace ξ by ξ̄ and u by ū, then the right-hand side vanishes; since we expect that ξ is
close to ξ̄, the distribution f would be small in suitable norms. We first prove a regularity
estimate on f , which will be used in the proof of Proposition 4.2.
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Lemma 4.1. For every 0 ≤ s < t ≤ T and γ > 0, it holds

‖ft − fs‖H−2 . ‖ξ0‖2L2 |t− s|+ ‖ξ0‖L2

∫ t

s
‖b(r)‖Hγ dr + (κ+ ν) ‖ξ0‖L2 |t− s|.

Proof. By (1.1), for every s, t ∈ [0, T ] and s < t, we have

ξt − ξs = −
∫ t

s
ur · ∇ξr dr −

∫ t

s
b(r) · ∇ξr dr + κ

∫ t

s
∆ξr dr.

Then we can further get

‖ξt − ξs‖H−2 ≤
∥

∥

∥

∫ t

s
ur · ∇ξr dr

∥

∥

∥

H−2
+

∥

∥

∥

∫ t

s
b(r) · ∇ξr dr

∥

∥

∥

H−2
+ κ

∥

∥

∥

∫ t

s
∆ξr dr

∥

∥

∥

H−2

.

∫ t

s
‖ur · ∇ξr‖H−2 dr +

∫ t

s
‖b(r) · ∇ξr‖H−2 dr + κ

∫ t

s
‖ξ0‖L2 dr.

(4.2)

Now we will estimate the first and the second terms respectively. Using the divergence free
property of u, we have

‖ur · ∇ξr‖H−2 = ‖∇ · (ξrur)‖H−2 . ‖ξrur‖H−1 ;

besides, by Hölder’s inequality and Sobolev embedding theorem, for φ ∈ C∞(T2),

∣

∣〈ξrur, φ〉
∣

∣ ≤ ‖ξr‖L2‖ur‖L4‖φ‖L4 . ‖ξ0‖L2‖ur‖
H

1
2
‖φ‖

H
1
2
. ‖ξ0‖2L2‖φ‖H1 .

Then we get ‖ξrur‖H−1 . ‖ξ0‖2L2 and thus ‖ur · ∇ξr‖H−2 . ‖ξ0‖2L2 .
As for the next term, notice that b(r) is divergence free, we use the same method as above

to estimate it: for γ > 0, we have

‖b(r) · ∇ξr‖H−2 . ‖ξr b(r)‖H−1 . ‖ξ0‖L2‖b(r)‖Hγ .

Having the above results at hand, we combine (4.2) with (4.1) and arrive at

‖ft − fs‖H−2 ≤ ‖ξt − ξs‖H−2 + (κ+ ν)

∫ t

s
‖∆ξr‖H−2 dr +

∫ t

s
‖ur · ∇ξr‖H−2 dr

≤
∫ t

s
‖ur · ∇ξr‖H−2 dr +

∫ t

s
‖b(r) · ∇ξr‖H−2 dr + (κ+ ν)

∫ t

s
‖ξ0‖L2 dr

. ‖ξ0‖2L2 |t− s|+ ‖ξ0‖L2

∫ t

s
‖b(r)‖Hγ dr + (κ+ ν)‖ξ0‖L2 |t− s|.

Proposition 4.2. Let β > 3, γ ∈ (0, 13) and T ≥ 1, then there are ρ ∈ (0, 14 ) and ǫ > 0 such

that for every α sufficiently large, it holds

E

[

‖f‖Cρ([0,T ],H−β)

]

. T‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2(
ν1+

γ
2α−ǫ + ν

1
2 ‖θ‖ℓ∞

)

.

Proof. First, as f0 = 0, we give an equivalent norm as follows:

‖f‖Cρ([0,T ],H−β) ∼ sup
0≤s<t≤T

‖ft − fs‖H−β

|t− s|ρ . (4.3)
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Then we will prove Proposition 4.2 in the following two cases.
Case 1: |t− s| ≤ δ. By Hölder’s inequality, for ρ ∈ (0, 14), we have

∫ t

s
‖b(r)‖Hγ dr ≤

(
∫ t

s
1 dr

)1−ρ(∫ t

s
‖b(r)‖

1
ρ

Hγ dr

)ρ

≤ |t− s|1−ρ

(
∫ t

s
‖b(r)‖

1
ρ

Hγ dr

)ρ

.

Furthermore, we can get

E

[

sup
0≤s<t≤T
|t−s|≤δ

∫ t
s ‖b(r)‖Hγ dr

|t− s|ρ

]

≤ δ1−2ρ
E

(
∫ T

0
‖b(r)‖

1
ρ

Hγ dr

)ρ

. δ1−2ρν
1
2α

1
2 T ρCρ

θ,γ,1/ρ ,

where in the last step we have used Lemma 2.5. Then for β > 3, Lemma 4.1 yields

E

[

sup
0≤s<t≤T
|t−s|≤δ

‖ft − fs‖H−β

|t− s|ρ

]

. δ1−ρ ‖ξ0‖2L2 + δ1−2ρν
1
2α

1
2 T ρCρ

θ,γ,1/ρ ‖ξ0‖L2 + (κ+ ν) δ1−ρ ‖ξ0‖L2

. δ1−2ρν
1
2α

1
2 T ρCρ

θ,γ,1/ρ ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)

.

(4.4)

Case 2: |t− s| > δ. We suppose s ∈ [(m− 1)δ,mδ) and t ∈ (nδ, (n+ 1)δ], where n,m ∈ N

and m ≤ n. Hence, if n > m, we have

‖ft − fs‖H−β

|t− s|ρ ≤ ‖ft − fnδ‖H−β

|t− nδ|ρ +
‖fnδ − fmδ‖H−β

|nδ −mδ|ρ +
‖fmδ − fs‖H−β

|mδ − s|ρ ,

while for n = m, the following formula holds:

‖ft − fs‖H−β

|t− s|ρ ≤ ‖ft − fnδ‖H−β

|t− nδ|ρ +
‖fnδ − fs‖H−β

|nδ − s|ρ .

Then we can combine the above two cases and get

sup
0≤s<t≤T

‖ft − fs‖H−β

|t− s|ρ . sup
0≤s<t≤T
|t−s|≤δ

‖ft − fs‖H−β

|t− s|ρ + sup
1≤m<n≤T/δ−1

‖fnδ − fmδ‖H−β

|nδ −mδ|ρ . (4.5)

By the definition of f and Proposition 3.3, for every β > 3, it holds

E

[

sup
1≤m<n≤T/δ−1

‖fnδ − fmδ‖H−β

|nδ −mδ|ρ
]

. T‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2(
ν1+

γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)

. (4.6)

Taking into account (4.4)–(4.6) and noticing the restrictions on the parameters in Proposition
3.3, we use (4.3) to complete the proof of Proposition 4.2.

Now we give the following proposition which indicates that f is bounded in H−1.

Proposition 4.3. Suppose f is defined as in (4.1), then for γ ∈ (0, 1) and T ≥ 1, it holds

sup
t∈[0,T ]

‖ft‖H−1 . T 1− γ
2 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)(

νκ−
1
2 + κ−

γ
2
)

.
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Proof. According to (4.1), the following formula holds:

‖ft‖H−1 ≤ ‖ξt − ξ0‖H−1 + (κ+ ν)

∫ t

0
‖∆ξs‖H−1 ds+

∫ t

0
‖us · ∇ξs‖H−1 ds

. 2‖ξ0‖L2 + (κ+ ν)

∫ t

0
‖ξs‖H1 ds+

∫ t

0
‖us · ∇ξs‖H−1 ds.

(4.7)

Applying Hölder’s inequality and (2.1), we have

∫ t

0
‖ξs‖H1 ds ≤

(

∫ t

0
1 ds

)
1
2
(

∫ t

0
‖ξs‖2H1 ds

)
1
2
. κ−

1
2 t

1
2 ‖ξ0‖L2 . (4.8)

As for the last term, notice that for γ ∈ (0, 1), the following inequality holds:

‖us · ∇ξs‖H−1 . ‖ξs us‖L2 ≤ ‖ξs‖L2 ‖us‖L∞ . ‖ξ0‖L2 ‖ξs‖Hγ ,

then we can use Lemma 2.4 and (2.1) to further get

∫ t

0
‖us · ∇ξs‖H−1 ds . ‖ξ0‖L2

∫ t

0
‖ξs‖γH1 ‖ξs‖1−γ

L2 ds

≤ ‖ξ0‖2−γ
L2

(

∫ t

0
1 ds

)1− γ
2
(

∫ t

0
‖ξs‖2H1 ds

)
γ
2

. κ−
γ
2 t1−

γ
2 ‖ξ0‖2L2 .

(4.9)

Inserting (4.8) and (4.9) into (4.7), we take supremum and deduce

sup
t∈[0,T ]

‖ft‖H−1 . 2‖ξ0‖L2 + (κ
1
2 + νκ−

1
2 )T

1
2 ‖ξ0‖L2 + κ−

γ
2 T 1− γ

2 ‖ξ0‖2L2 .

The proposition follows due to the choices of parameters.

With the above preparations in mind, we can prove the first main theorem now.

Proof of Theorem 1.1. By the definition of f , we have

ξt = ξ0 + (κ+ ν)

∫ t

0
∆ξs ds−

∫ t

0
us · ∇ξs ds+ ft,

while by (1.4), it holds

ξ̄t = ξ0 + (κ+ ν)

∫ t

0
∆ξ̄s ds−

∫ t

0
ūs · ∇ξ̄s ds.

Define

Xt := ft −
∫ t

0
(us · ∇ξs − ūs · ∇ξ̄s) ds,

then the difference ξ − ξ̄ satisfies

ξt − ξ̄t = (κ+ ν)

∫ t

0
∆(ξs − ξ̄s)ds +Xt. (4.10)

We first prove the theorem in the Sobolev spaces H−ϑ̃ with ϑ̃ > 1; without loss of generality
we can assume ϑ̃ ∈ (1, 32). Recall that we have already obtained in Proposition 4.2 an estimate
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on ‖f‖Cρ([0,T ],H−β) for β > 3; we shall fix such a β in the sequel. Besides, Proposition 4.3 gives

us a bound on supt∈[0,T ] ‖ft‖H−1 , hence by Lemma 2.4, for any ϑ̃ ∈ (1, 32), there exists ζ ∈ (0, 1)

satisfying βζ + (1− ζ) = ϑ̃, such that

‖ft − fs‖H−ϑ̃ ≤ ‖ft − fs‖1−ζ
H−1 ‖ft − fs‖ζH−β .

Furthermore, for ρ ∈ (0, 14), we can calculate ‖f‖
Cρζ([0,T ],H−ϑ̃)

as

‖f‖
Cρζ([0,T ],H−ϑ̃)

∼ sup
0≤s<t≤T

‖ft − fs‖H−ϑ̃

|t− s|ρζ

≤ sup
0≤s<t≤T

‖ft − fs‖1−ζ
H−1 ‖ft − fs‖ζH−β

|t− s|ρζ

.
(

sup
t∈[0,T ]

‖ft‖1−ζ
H−1

)

‖f‖ζ
Cρ([0,T ],H−β)

.

(4.11)

Proposition 4.2 implies that, P-a.s., f ∈ Cρζ([0, T ],H−ϑ̃). Next, we have

∥

∥

∥

∫ t

0
ur · ∇ξr dr −

∫ s

0
ur · ∇ξr dr

∥

∥

∥

H−ϑ̃
≤

∫ t

s
‖ur · ∇ξr‖H−ϑ̃ dr .

∫ t

s
‖urξr‖H1−ϑ̃ dr

and by Lemma 2.2, ‖urξr‖H1−ϑ̃ . ‖ξr‖L2‖ur‖H2−ϑ̃ . ‖ξr‖2L2 ≤ ‖ξ0‖2L2 ; thus, the function

t 7→
∫ t
0 ur · ∇ξr dr ∈ H−ϑ̃ is Lipschitz continuous. With slightly more effort, one can show that

it actually belongs to C1([0, T ],H−ϑ̃) by using the fact ξ ∈ C([0, T ], L2); similar result holds

for t 7→
∫ t
0 ūr · ∇ξ̄r dr ∈ H−ϑ̃.

Summarizing the above arguments, for every ϑ̃ ∈ (1, 32 ) and ρ ∈ (0, 14), we deduce that,

P-a.s., X ∈ Cρζ([0, T ],H−ϑ̃) for all T ≥ 1, where ζ ∈ (0, 1) is defined as above. Therefore,
according to [27, Theorem 1], there exists a linear map G, such that

ξ − ξ̄ = G(X) = G(f)− G
(

∫ ·

0
(us · ∇ξs − ūs · ∇ξ̄s) ds

)

; (4.12)

furthermore, the following result holds:

sup
t∈[0,T ]

‖G(ft)‖H−ϑ̃ . ‖f‖
Cρζ([0,T ],H−ϑ̃)

. (4.13)

Now we will deal with the last term in (4.12). As
∫ ·
0(us · ∇ξs − ūs · ∇ξ̄s) ds belongs to

C1([0, T ],H−ϑ̃), then by [27, Theorem 1], it holds

G
(

∫ ·

0
(us · ∇ξs − ūs · ∇ξ̄s) ds

)

(t)

=

∫ t

0
e(κ+ν)(t−s)∆(us · ∇ξs − ūs · ∇ξ̄s) ds

=

∫ t

0
e(κ+ν)(t−s)∆

[

(us − ūs) · ∇ξs
]

ds+

∫ t

0
e(κ+ν)(t−s)∆

[

ūs · ∇(ξs − ξ̄s)
]

ds.

(4.14)

For the first term, we can use the standard heat kernel estimate (see e.g. [12, Section 2]) to get

∥

∥

∥

∫ t

0
e(κ+ν)(t−s)∆

[

(us − ūs) · ∇ξs
]

ds
∥

∥

∥

2

H−ϑ̃
.

1

κ+ ν

∫ t

0
‖(us − ūs) · ∇ξs‖2H−ϑ̃−1 ds. (4.15)
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Noting that ‖(us − ūs) · ∇ξs‖H−ϑ̃−1 = ‖(us − ūs) ξs‖H−ϑ̃ , then for ϑ̃ ∈ (1, 32) and φ ∈ C∞(T2),
Lemma 2.2 yields

∣

∣〈(us − ūs) ξs, φ〉
∣

∣ ≤ ‖us − ūs‖H1−ϑ̃‖ξsφ‖Hϑ̃−1 . ‖ξs − ξ̄s‖H−ϑ̃‖ξs‖
H

1
2
‖φ‖

Hϑ̃−
1
2
.

Therefore, by duality of Sobolev norms and Lemma 2.4,

‖(us − ūs) ξs‖H−ϑ̃ . ‖ξs − ξ̄s‖H−ϑ̃‖ξs‖
H

1
2
. ‖ξs − ξ̄s‖H−ϑ̃‖ξs‖

1
2

H1‖ξ0‖
1
2

L2 .

Applying the above result to (4.15), we obtain

∥

∥

∥

∫ t

0
e(κ+ν)(t−s)∆

[

(us − ūs) · ∇ξs
]

ds
∥

∥

∥

2

H−ϑ̃
.

1

κ+ ν

∫ t

0
‖ξs − ξ̄s‖2H−ϑ̃‖ξ0‖L2‖ξs‖H1 ds. (4.16)

The latter term of (4.14) can be treated similarly as follows:

∥

∥

∥

∫ t

0
e(κ+ν)(t−s)∆

[

ūs · ∇(ξs − ξ̄s)
]

ds
∥

∥

∥

2

H−ϑ̃
.

1

κ+ ν

∫ t

0

∥

∥ūs (ξs − ξ̄s)
∥

∥

2

H−ϑ̃ ds. (4.17)

Let φ ∈ C∞(T2) be a test function; for any fixed s ∈ [0, T ], we denote A(ūsφ) :=
∫

T2(ūsφ)(x) dx.
As

∫

T2(ξs − ξ̄s)(x) dx = 0, we have 〈ξs − ξ̄s, A(ūsφ)〉 = 0, and therefore

∣

∣〈ūs (ξs − ξ̄s), φ〉
∣

∣ =
∣

∣〈ξs − ξ̄s, ūsφ−A(ūsφ)〉
∣

∣ ≤ ‖ξs − ξ̄s‖H−ϑ̃‖ūsφ−A(ūsφ)‖Hϑ̃ .

By Poincaré’s inequality, Lemmas 2.2 and 2.3, for ϑ̃ ∈ (1, 32) and ε ∈ (0, 12 ), we get

‖ūsφ−A(ūsφ)‖Hϑ̃ . ‖∇(ūsφ)‖Hϑ̃−1 ≤ ‖(∇ūs)φ‖Hϑ̃−1 + ‖ūs · ∇φ‖Hϑ̃−1

. ‖∇ūs‖
H

1
2
‖φ‖

Hϑ̃−
1
2
+ ‖ūs‖Cϑ̃−1+ε‖∇φ‖Hϑ̃−1

. ‖ūs‖H2‖φ‖Hϑ̃ .

Summarizing these arguments leads to

‖ūs (ξs − ξ̄s)‖H−ϑ̃ . ‖ξs − ξ̄s‖H−ϑ̃‖ξ̄s‖H1 .

Inserting the above estimate to (4.17), we obtain

∥

∥

∥

∫ t

0
e(κ+ν)(t−s)∆

[

ūs · ∇(ξs − ξ̄s)
]

ds
∥

∥

∥

2

H−ϑ̃
.

1

κ+ ν

∫ t

0
‖ξs − ξ̄s‖2H−ϑ̃‖ξ̄s‖2H1 ds. (4.18)

Combining (4.16) and (4.18), by (4.14) we get

∥

∥

∥
G
(

∫ ·

0
(us · ∇ξs − ūs · ∇ξ̄s) ds

)

(t)
∥

∥

∥

2

H−ϑ̃

.
1

κ+ ν

∫ t

0
‖ξs − ξ̄s‖2H−ϑ̃

(

‖ξ0‖L2‖ξs‖H1 + ‖ξ̄s‖2H1

)

ds.

(4.19)

According to (4.12), for ϑ̃ ∈ (1, 32), we have

‖ξt − ξ̄t‖2H−ϑ̃ . ‖G(ft)‖2H−ϑ̃ +
1

κ+ ν

∫ t

0
‖ξs − ξ̄s‖2H−ϑ̃

(

‖ξ0‖L2‖ξs‖H1 + ‖ξ̄s‖2H1

)

ds.
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By Grönwall’s inequality, it holds

sup
t∈[0,T ]

‖ξt − ξ̄t‖2H−ϑ̃ .
(

sup
t∈[0,T ]

‖G(ft)‖2H−ϑ̃

)

exp

(

1

κ+ ν

∫ T

0

(

‖ξ0‖L2‖ξs‖H1 + ‖ξ̄s‖2H1

)

ds

)

.

(4.20)
Notice that ξ and ξ̄ satisfy (2.1) and (2.2) respectively, then Hölder’s inequality yields

∫ T

0

(

‖ξ0‖L2‖ξs‖H1 + ‖ξ̄s‖2H1

)

ds . T
1
2 ‖ξ0‖L2

(

∫ T

0
‖ξs‖2H1 ds

)
1
2
+

∫ T

0
‖ξ̄s‖2H1 ds

. κ−
1
2T

1
2 ‖ξ0‖2L2 + (κ+ ν)−1‖ξ0‖2L2 .

Substituting this estimate into (4.20) and setting

C =
κ−

1
2T

1
2 + (κ+ ν)−1

κ+ ν
,

we arrive at
sup

t∈[0,T ]
‖ξt − ξ̄t‖2H−ϑ̃ .

(

sup
t∈[0,T ]

‖G(ft)‖2H−ϑ̃

)

exp
(

C‖ξ0‖2L2

)

.

Furthermore, by (4.13), we have

‖ξ − ξ̄‖
C([0,T ],H−ϑ̃)

. ‖f‖
Cρζ([0,T ],H−ϑ̃)

exp
(C

2
‖ξ0‖2L2

)

. (4.21)

Taking expectation and then applying (4.11), for ϑ̃ ∈ (1, 32), Lemmas 4.2 and 4.3 yield

E

[

‖ξ − ξ̄‖
C([0,T ],H−ϑ̃)

]

. E

[

‖f‖Cρ([0,T ],H−β)

]ζ (

sup
t∈[0,T ]

‖ft‖H−1

)1−ζ
exp

(C

2
‖ξ0‖2L2

)

. T 1+ γ
2
(ζ−1)‖ξ0‖L2

(

ν1+
γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)ζ(
νκ−

1
2 + κ−

γ
2
)1−ζ

exp
(

(

1 +
C

2

)

‖ξ0‖2L2

)

,

(4.22)

where the last step follows from

(

1 + ‖ξ0‖L2

)1+ζ
<

(

1 + ‖ξ0‖L2

)2 ≤ 2
(

1 + ‖ξ0‖2L2

)

≤ 2 exp(‖ξ0‖2L2), ζ ∈ (0, 1).

If we take C1 ∼ T 1+ γ
2
(ζ−1)

(

νκ−
1
2 + κ−

γ
2

)1−ζ
and C2 = 1 + C

2 , then (4.22) can be rewritten as

E

[

‖ξ − ξ̄‖
C([0,T ],H−ϑ̃)

]

≤ C1‖ξ0‖L2 exp
(

C2‖ξ0‖2L2

)(

ν1+
γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)ζ
. (4.23)

Once we have the estimate for ϑ̃ > 1, then for ϑ̂ ∈ (0, 1), we deduce from Lemma 2.4 that

E

[

‖ξ − ξ̄‖
C([0,T ],H−ϑ̂)

]

≤ E

[

‖ξ − ξ̄‖ϑ̂/ϑ̃
C([0,T ],H−ϑ̃)

]

‖ξ0‖1−ϑ̂/ϑ̃
L2

≤ C
ϑ̂/ϑ̃
1 ‖ξ0‖L2 exp

(

C2(ϑ̂/ϑ̃)‖ξ0‖2L2

) (

ν1+
γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)ζϑ̂/ϑ̃

≤ C1‖ξ0‖L2 exp
(

C2‖ξ0‖2L2

)(

ν1+
γ
2α−ǫ + ν

1
2 ‖θ‖ℓ∞

)ζ
,

(4.24)

where in the last step we have used the fact that C1 > 1, C2 > 0 and ϑ̂/ϑ̃ < 1. Hence it holds

C
ϑ̂/ϑ̃
1 < C1 and C2 ϑ̂/ϑ̃ < C2. Combining (4.23) and (4.24), we obtain the final conclusion of

Theorem 1.1 for every ϑ > 0.
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4.2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first present several simple results as follows.

Lemma 4.4. For the solution of (1.1), the energy equality holds with probability one:

d

dt
‖ξ‖2L2 = −2κ ‖ξ‖2H1 .

Proof. This result is well-known; we present the proof for completeness. Notice that

d

dt
‖ξ‖2L2 =

d

dt
〈ξ, ξ〉 =

∫

T2

2ξ
∂ξ

∂t
dx.

By (1.1) , we can further get
∫

T2

2ξ
∂ξ

∂t
dx = 2κ

∫

T2

ξ∆ξ dx− 2

∫

T2

ξu · ∇ξ dx− 2

∫

T2

ξ b · ∇ξ dx

= −2κ

∫

T2

|∇ξ|2 dx+

∫

T2

div(u) ξ2 dx+

∫

T2

div(b) ξ2 dx

= −2κ ‖ξ‖2H1 .

Recall that {Ft}t≥0 is the filtration on the probability space Ω. The following estimate is
an easy consequence of Theorem 1.1.

Lemma 4.5. For any n ∈ N, let {ξ̄nt }t≥n be the solution to
{

∂tξ̄
n + ūn · ∇ξ̄n = (κ+ ν)∆ξ̄n, t ≥ n,

ūn = K ∗ ξ̄n, ξ̄n|t=n = ξn.
(4.25)

Then it holds, P-a.s.,

E

[

sup
t∈[n,n+1]

‖ξt − ξ̄nt ‖H−1

∣

∣Fn

]

≤ C1‖ξn‖L2 exp
(

C2‖ξ0‖2L2

)(

ν1+
γ
2α−ǫ + ν

1
2 ‖θ‖ℓ∞

)ζ
,

where C1 and C2 are defined as in Theorem 1.1 and are independent of n.

Proof. Notice that if we take ϑ = 1 and T = 1 in Theorem 1.1, then we get a quantitative
estimate on the distance between the solutions of (1.1) and (1.4), both with the same deter-
ministic initial value ξ0. Since the Ornstein-Uhlenbeck flow b in (1.1) is a stationary process,
such estimate holds on any unit interval of the form [n, n + 1], as long as we restart (1.4) at
the time t = n with the same value ξn. However, as ξn is random, we need to take conditional
expectation with respect to Fn and get the desired result.

Lemma 4.6. For all n ∈ N, decay of L2-norm of the solution to (4.25) satisfies

‖ξ̄nt ‖2L2 ≤ e−λ1(t−n) ‖ξn‖2L2 ,

where λ1 := 8π2(κ+ ν) is the principal eigenvalue of (κ+ ν)∆ on T
2.

Proof. By (4.25), we use similar method as Lemma 4.4 to get

d

dt
‖ξ̄n‖2L2 = −2(κ+ ν) ‖∇ξ̄n‖2L2 .

Poincaré’s inequality yields ‖ξ̄n‖2L2 ≤ 1
4π2 ‖∇ξ̄n‖2L2 , thus

d

dt
‖ξ̄n‖2L2 ≤ −8π2(κ+ ν)‖ξ̄n‖2L2 .

Solving the differential inequality gives us the desired estimate.
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Remark 4.7. In particular, if we consider (4.25) with initial time n = 0, then it reduces to

equation (1.4), and we get the decay rate of L2-norm for the solution to (1.4) as

‖ξ̄t‖2L2 ≤ e−λ1t ‖ξ0‖2L2 .

On the basis of the above results, now we can provide

Proof of Theorem 1.2. Since the proof is rather long, we divide it into the following four steps.
Step 1. Let R > 0 be given as in the statement of Theorem 1.2, and denote

c1 := C
1/2
1 exp

(C2R
2

2

)

(

ν1+
γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)ζ/2
,

which is sufficiently small by taking α big and ‖θ‖ℓ∞ small. Recall that we have assumed
‖ξ0‖L2 ≤ R; then by Lemma 4.5, we have, P-a.s.,

E

[

sup
t∈[n,n+1]

‖ξt − ξ̄nt ‖H−1

∣

∣Fn

]

≤ c21‖ξn‖L2 . (4.26)

Define the event

An :=
{

ω ∈ Ω : sup
t∈[n,n+1]

‖ξt(ω)− ξ̄nt (ω)‖H−1 > c1‖ξn(ω)‖L2

}

,

and Ac
n is its complement; we want to prove

P(Ac
n) > 1− c1, (4.27)

which is an easy consequence of

P
(

An|Fn

)

= E
[

1An |Fn

]

≤ c1.

Indeed, for any B ∈ Fn, it holds

∫

B
E
[

1An |Fn

]

dP =

∫

B
1An dP ≤

∫

An∩B

supt∈[n,n+1] ‖ξt − ξ̄nt ‖H−1

c1‖ξn‖L2

dP

≤ c−1
1

∫

B
‖ξn‖−1

L2 sup
t∈[n,n+1]

‖ξt − ξ̄nt ‖H−1 dP

= c−1
1

∫

B
E

[

‖ξn‖−1
L2 sup

t∈[n,n+1]
‖ξt − ξ̄nt ‖H−1

∣

∣Fn

]

dP.

Then by the arbitrariness of B and (4.26), we obtain

E
[

1An |Fn

]

≤ c−1
1 E

[

‖ξn‖−1
L2 sup

t∈[n,n+1]
‖ξt − ξ̄nt ‖H−1

∣

∣Fn

]

= c−1
1 ‖ξn‖−1

L2 E

[

sup
t∈[n,n+1]

‖ξt − ξ̄nt ‖H−1

∣

∣Fn

]

≤ c−1
1 ‖ξn‖−1

L2 c
2
1‖ξn‖L2 = c1.

(4.28)

Step 2. In order to estimate the decay rate of L2-norm for ξ, we first try to find the
relationship between ‖ξn‖L2 and ‖ξn+1‖L2 for any n ∈ N, then we use iteration to extend the
conclusion to ‖ξt‖L2 with initial value ξ0 for all t ≥ 0.
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Notice that for t ∈ [n, n + 1], Lemma 4.6 and inequality (4.27) yield, with probability no
less than 1− c1,

‖ξt‖2H−1 ≤ 2‖ξ̄nt ‖2H−1 + 2‖ξt − ξ̄nt ‖2H−1 ≤ 2‖ξn‖2L2

(

e−λ1(t−n) + c21
)

.

Besides, according to Lemma 2.4, we have ‖ξt‖2L2 ≤ ‖ξt‖H−1‖ξt‖H1 . Hence, combining Lemma
4.4 with the above two inequalities leads to

d

dt
‖ξt‖2L2 ≤ −2κ

‖ξt‖4L2

‖ξt‖2H−1

≤ − κ‖ξt‖4L2

‖ξn‖2L2

(

e−λ1(t−n) + c21
) , t ∈ [n, n+ 1].

Solving the differential inequality and then letting t = n+ 1, we get, on the event Ac
n,

‖ξn+1‖2L2 ≤ ‖ξn‖2L2

1 + κ
λ1c21

log
1+c21e

λ1

1+c21

=: c22‖ξn‖2L2 . (4.29)

As the L2-norm of ξ is decreasing, we additionally apply (4.29) to further get

E‖ξn+1‖L2 = E
[

‖ξn+1‖L2 1An

]

+ E
[

‖ξn+1‖L2 1Ac
n

]

≤ E
[

‖ξn‖L2 1An

]

+ E
[

c2‖ξn‖L2

]

.

Using the property of conditional expectation, (4.28) yields

E‖ξn+1‖L2 ≤ E

[

E
[

‖ξn‖L2 1An

∣

∣Fn

]

]

+ c2 E‖ξn‖L2

= E

[

‖ξn‖L2 E
[

1An

∣

∣Fn

]

]

+ c2 E‖ξn‖L2

≤ (c1 + c2)E‖ξn‖L2 .

Afterwards, we denote c0 := c1 + c2 for simplicity. By induction, for any n ∈ N, it holds

E‖ξn‖L2 ≤ cn0‖ξ0‖L2 . (4.30)

Step 3. To show the enhanced dissipation property of Ornstein-Uhlenbeck flow, the constant
c0 > 0 has to be sufficiently small. We start with proving the following quantity in the definition
of c2 can be very large under suitable choice of parameters:

κ

λ1c
2
1

log
1 + c21e

λ1

1 + c21
=

κ

λ1c
2
1

log

(

c21
1 + c21

(

eλ1 − 1
)

+ 1

)

.

First, fix a sufficiently large ν, then λ1 = 8π2(κ+ ν) is also very large. Next, we let α be large
and ‖θ‖ℓ∞ be small enough, and thus c1 is sufficiently small by its definition. In particular, we

can assume that
c21

1+c21
(eλ1 − 1) ∈ (0, 1]. As log(1 + x) ≥ x log 2 for x ∈ (0, 1], we have

κ

λ1c21
log

( c21
1 + c21

(

eλ1 − 1
)

+ 1
)

≥ κ log 2

λ1c21
· c21
1 + c21

(

eλ1 − 1
)

≥ κ log 2

2
· e

λ1 − 1

λ1
,

where in the last step we have used the fact that c21 + 1 ≤ 2. Since λ1 is large, we deduce
that the left-hand side is also very large; as a result, c2 can be very small. Combined with the
smallness of c1, we conclude that c0 = c1 + c2 is also a small constant.

Step 4. Based on the previous discussions, we can now prove the final conclusion of Theorem
1.2. Define λ0 := − log c0 > 0, which can be assumed to be greater than λ(1+ p), where λ and
p are given in the statement of Theorem 1.2. Then by (4.30), it holds

E

[

sup
t∈[n,n+1]

‖ξt‖L2

]

= E‖ξn‖L2 ≤ e−λ0n‖ξ0‖L2 .
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We define the events

En :=
{

ω ∈ Ω : sup
t∈[n,n+1]

‖ξt(ω)‖L2 > e−λn‖ξ0‖L2

}

, n ∈ N.

By Markov’s inequality, it holds

∑

n∈N

P(En) ≤
∑

n∈N

eλn

‖ξ0‖L2

E

[

sup
t∈[n,n+1]

‖ξt‖L2

]

≤
∑

n∈N

e(λ−λ0)n < +∞.

Furthermore, Borel-Cantelli’s lemma implies that for P-a.s. ω ∈ Ω, there exists N(ω) ∈ N,
such that for any n > N(ω),

sup
t∈[n,n+1]

‖ξt‖L2 ≤ e−λn‖ξ0‖L2 .

For the case 0 ≤ n ≤ N(ω), we have

sup
t∈[n,n+1]

‖ξt‖L2 = ‖ξn‖L2 = eλne−λn‖ξn‖L2 ≤ eλN(ω)e−λn‖ξ0‖L2 .

If we let C(ω) = eλ(1+N(ω)), it is not difficult to verify that for P-a.s. ω ∈ Ω,

‖ξt‖L2 ≤ C(ω)e−λt‖ξ0‖L2 , ∀ t ≥ 0. (4.31)

As for the finite p-th moment of C(ω), a similar proof can be found in [12, Section 5.2], so
we omit it here.

5 Proof of Proposition 3.3

We devote this section to the proof of Proposition 3.3. We first divide the desired quantity
into a summation part and two integrals. For the summation term, we follow the idea of [36]
and use equation (1.1) to further decompose it. Then we will estimate each of the decomposed
terms and the two integrals separately. Finally, in order to obtain the desired estimate, we
need to make some restrictions on the parameters.

5.1 Decomposition

We decompose the quantity we want to estimate as follows:

ξnδ − ξmδ − (κ+ ν)

∫ nδ

mδ
∆ξs ds+

∫ nδ

mδ
us · ∇ξs ds

= ξnδ − ξmδ − δ(κ + ν)

n−1
∑

h=m

∆ξhδ + δ

n−1
∑

h=m

(uhδ · ∇ξhδ) + Ia + Ib,

(5.1)

where

Ia := (κ+ ν)

∫ nδ

mδ
∆
(

ξ[s] − ξs
)

ds, Ib :=

∫ nδ

mδ

(

us · ∇ξs − u[s] · ∇ξ[s]
)

ds,

and [s] := supj∈N{jδ : jδ ≤ s}. We first consider

ξnδ − ξmδ − δ(κ + ν)

n−1
∑

h=m

∆ξhδ + δ

n−1
∑

h=m

(uhδ · ∇ξhδ), n > m,
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which can also be written as

ξ(n+1)δ − ξmδ − δ(κ + ν)
n
∑

h=m

∆ξhδ + δ
n
∑

h=m

(uhδ · ∇ξhδ), n ≥ m.

According to Definition 2.1, for every h = 0, 1, . . . , T/δ − 1, we have

ξ(h+1)δ − ξhδ = −
∫ (h+1)δ

hδ
us · ∇ξs ds−

∫ (h+1)δ

hδ
b(s) · ∇ξs ds + κ

∫ (h+1)δ

hδ
∆ξs ds

=: I1(h) + I2(h) + I3(h).

(5.2)

Furthermore, we can make the following decomposition for I2(h):

I2(h) = −
∫ (h+1)δ

hδ
b(s) · ∇(ξs − ξhδ) ds−

∫ (h+1)δ

hδ
b(s) · ∇ξhδ ds

=: I21(h) + I22(h) + I23(h) + I24(h) + I25(h),

where I2i(h), i = 1, . . . , 5 are defined as

I21(h) =

∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇(ur · ∇ξr) drds,

I22(h) =

∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇

(

b(r) · ∇(ξr − ξhδ)
)

drds,

I23(h) =

∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇

(

b(r) · ∇ξhδ
)

drds,

I24(h) = −κ
∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇(∆ξr) drds,

I25(h) = −
∫ (h+1)δ

hδ
b(s) · ∇ξhδ ds.

By the definition of b, the term I23(h) can be rewritten as follows:

I23(h) = 4ν
∑

k,k′∈Z2
0

∫ (h+1)δ

hδ

∫ s

hδ
θkσkη

α,k(s) · ∇(θk′σk′η
α,k′(r) · ∇ξhδ) drds

= 4ν
∑

k,k′∈Z2
0

θkσk · ∇(θk′σk′ · ∇ξhδ)
(
∫ (h+1)δ

hδ

∫ s

hδ
ηα,k(s)ηα,k

′

(r) drds − δk,k′
δ

2

)

+ 2νδ
∑

k∈Z2
0

θkσk · ∇(θkσk · ∇ξhδ)

=: I231(h) + I232(h).

Using the radial symmetry of θ ∈ ℓ2(Z2
0) and the expression of σk, it is not difficult to prove

the following identity (see e.g. [18, Lemma 2.1])

∑

k∈Z2
0

θ2k(σk ⊗ σk)(x) =
1

2
‖θ‖2ℓ2 Id,

where Id is the two dimensional identity matrix; hence by divσk = 0 and ‖θ‖2ℓ2 = 1, we have

∑

k∈Z2
0

θkσk · ∇(θkσk · ∇ξhδ) = div
(

∑

k∈Z2
0

θ2k (σk ⊗ σk)∇ξhδ
)

=
1

2
∆ξhδ. (5.3)
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Therefore, I232(h) = νδ∆ξhδ. As for the term I3(h), we can divide it into two terms:

I3(h) = κ

∫ (h+1)δ

hδ
∆(ξs − ξhδ) ds+ κδ∆ξhδ =: I31(h) + I32(h).

Taking the sum of (5.2) over h = m, . . . , n, and noticing that

I232(h) + I32(h) = δ(κ + ν)∆ξhδ,

we can finally get

ξ(n+1)δ − ξmδ − δ(κ + ν)

n
∑

h=m

∆ξhδ + δ

n
∑

h=m

(uhδ · ∇ξhδ)

=

n
∑

h=m

(

I1(h) + I21(h) + I22(h) + I231(h) + I24(h) + I25(h) + I31(h) + δ(uhδ · ∇ξhδ)
)

.

(5.4)

In the following several subsections, we will estimate each term of the above formula. For
readers’ convenience, we give a brief introduction here. The estimates on terms I21(h), I22(h),
I24(h) and I31(h) will be given in Section 5.2. As the terms I231(h) and I25(h) are more technical
to deal with, we consider them in Sections 5.3 and 5.4, respectively. In Section 5.5, we treat
I1(h) together with δ(uhδ · ∇ξhδ). We mention that the two remaining intergrals Ia and Ib in
(5.1) are similar to I31(h) and I1(h) + δ(uhδ · ∇ξhδ), respectively, hence we give their estimates
in Section 5.6 without proof. Finally, we combine all the estimates and provide in Section 5.7
the proof of Proposition 3.3.

5.2 The terms I21(h), I22(h), I24(h), I31(h)

The estimates on these four terms are collected in the next lemma.

Lemma 5.1. Let γ ∈ (0, 13), β > 3 and T ≥ 1, then we have the following estimates:

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I21(h)
∥

∥

∥

H−β

]

. δν
1
2α

1
2 TC

1/2
θ,2−γ,2 ‖ξ0‖2L2 ,

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I22(h)
∥

∥

∥

H−β

]

. δ1+γν1+
γ
2α1+ γ

2 TC
1
2
+ γ

4
θ,2−γ,4 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
,

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I24(h)
∥

∥

∥

H−β

]

. κ
1+γ
2 δ

1+γ
2 ν

1
2α

1
2 TC

1/2
θ,2−γ,2 ‖ξ0‖L2 ,

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I31(h)
∥

∥

∥

H−β

]

. κδγν
γ
2α

γ
2 TC

γ/2
θ,1+γ,2 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
.

Proof. First, we consider the term

I21(h) =

∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇(ur · ∇ξr) drds.

Taking a test function φ ∈ Hβ(T2) and integrating by parts, it holds
∣

∣

〈

b(s) · ∇(ur · ∇ξr), φ
〉∣

∣ =
∣

∣

〈

ur · ∇(b(s) · ∇φ), ξr
〉∣

∣

≤ ‖ur · ∇(b(s) · ∇φ)‖L2‖ξr‖L2

≤ ‖ur‖H1−γ‖∇(b(s) · ∇φ)‖Hγ‖ξ0‖L2 ,
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where the last step follows from Lemma 2.2; again by Lemma 2.2, for γ ∈ (0, 12), we have

‖∇(b(s) · ∇φ)‖Hγ ≤ ‖∇b(s) · ∇φ‖Hγ + ‖b(s) · ∇2φ‖Hγ

. ‖∇b(s)‖H1−γ‖∇φ‖H2γ + ‖b(s)‖H1−γ‖∇2φ‖H2γ

. ‖b(s)‖H2−γ‖φ‖H1+2γ + ‖b(s)‖H1−γ‖φ‖H2+2γ

. ‖b(s)‖H2−γ‖φ‖H2+2γ .

(5.5)

Combining the above two estimates, we can easily get for β > 3,

∥

∥b(s) · ∇(ur · ∇ξr)
∥

∥

H−β . ‖ur‖H1−γ‖b(s)‖H2−γ‖ξ0‖L2 . ‖ξ0‖2L2 ‖b(s)‖H2−γ .

Furthermore,

∥

∥I21(h)
∥

∥

H−β . ‖ξ0‖2L2

∫ (h+1)δ

hδ

∫ s

hδ
‖b(s)‖H2−γ drds . δ ‖ξ0‖2L2

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds.

Taking supremum and then expectation, Lemma 2.5 yields

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I21(h)
∥

∥

∥

H−β

]

≤
T/δ−1
∑

h=1

E

[

∥

∥I21(h)
∥

∥

H−β

]

. δ ‖ξ0‖2L2

∫ T

0

(

E
[

‖b(s)‖2H2−γ

]

)
1
2
ds

. δν
1
2α

1
2 TC

1/2
θ,2−γ,2 ‖ξ0‖2L2 .

Let us turn to the term

I22(h) =

∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇

(

b(r) · ∇(ξr − ξhδ)
)

drds.

For any test function φ ∈ Hβ(T2) with β > 3, it holds

∣

∣

〈

b(s) · ∇
(

b(r) · ∇(ξr − ξhδ)
)

, φ
〉
∣

∣ =
∣

∣

〈

b(r) · ∇(b(s) · ∇φ), ξr − ξhδ
〉
∣

∣.

By Lemma 2.3 and Lemma 2.4, for γ ∈ (0, 12), we have

∣

∣

〈

b(r) · ∇(b(s) · ∇φ), ξr − ξhδ
〉
∣

∣

≤ ‖b(r) · ∇(b(s) · ∇φ)‖Hγ‖ξr − ξhδ‖H−γ

. ‖b(r)‖C2γ‖∇(b(s) · ∇φ)‖Hγ‖ξr − ξhδ‖H−γ

. ‖b(r)‖H1+2γ‖∇(b(s) · ∇φ)‖Hγ‖ξr − ξhδ‖γH−1‖ξr − ξhδ‖1−γ
L2 .

Then for γ ∈ (0, 13 ), we use (5.5) to get

∥

∥b(s) · ∇
(

b(r) · ∇(ξr − ξhδ)
)
∥

∥

H−β . ‖b(r)‖H2−γ‖b(s)‖H2−γ‖ξr − ξhδ‖γH−1‖ξr − ξhδ‖1−γ
L2 .

Hence we have

∥

∥I22(h)
∥

∥

H−β .

∫ (h+1)δ

hδ

∫ s

hδ
‖b(r)‖H2−γ‖b(s)‖H2−γ‖ξr − ξhδ‖γH−1‖ξr − ξhδ‖1−γ

L2 drds

. ‖ξ0‖1−γ
L2

∫ (h+1)δ

hδ
‖b(r)‖H2−γ‖ξr − ξhδ‖γH−1 dr

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds.
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We take expectation on the above formula and obtain

E

[

∥

∥I22(h)
∥

∥

H−β

]

. ‖ξ0‖1−γ
L2

[

E

(

∫ (h+1)δ

hδ
‖b(r)‖H2−γ‖ξr − ξhδ‖γH−1 dr

)2
]

1
2

×
[

E

(

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds

)2
]

1
2

.

Now we use Hölder’s inequality to further deal with the two terms respectively. By Lemma 2.5
and Lemma 3.1,

E

(
∫ (h+1)δ

hδ
‖b(r)‖H2−γ‖ξr − ξhδ‖γH−1 dr

)2

≤ E

[

δ

∫ (h+1)δ

hδ
‖b(r)‖2H2−γ‖ξr − ξhδ‖2γH−1 dr

]

≤ δ

∫ (h+1)δ

hδ

(

E
[

‖b(r)‖4H2−γ

]

)
1
2
(

E
[

‖ξr − ξhδ‖4γH−1

]

)
1
2
dr

. δ2(1+γ)ν1+γα1+γ C
1/2
θ,2−γ,4C

γ
θ,1+γ,2 ‖ξ0‖

2γ
L2

(

1 + ‖ξ0‖L2

)2γ
,

(5.6)

to get the last line, we have used E
[

‖ξr − ξhδ‖4γH−1

]

≤
(

E
[

‖ξr − ξhδ‖2H−1

]

)2γ
. Besides, for the

second term, Lemma 2.5 yields

E

(
∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds

)2

≤ δ

∫ (h+1)δ

hδ
E
[

‖b(s)‖2H2−γ

]

ds . δ2ναCθ,2−γ,2. (5.7)

Hence we can combine (5.6) and (5.7) to get

E

[

∥

∥I22(h)
∥

∥

H−β

]

. δ2+γν1+
γ
2α1+ γ

2 C
1/4
θ,2−γ,4C

γ/2
θ,1+γ,2C

1/2
θ,2−γ,2 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
.

Taking supremum, Remark 2.6 yields

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I22(h)
∥

∥

∥

H−β

]

≤
T/δ−1
∑

h=1

E

[

∥

∥I22(h)
∥

∥

H−β

]

. δ1+γν1+
γ
2α1+ γ

2 TC
1
2
+ γ

4
θ,2−γ,4 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
.

As for the term

I24(h) = −κ
∫ (h+1)δ

hδ

∫ s

hδ
b(s) · ∇(∆ξr) drds,

notice that for every test function φ ∈ Hβ(T2), it holds
∣

∣〈b(s)·∇(∆ξr), φ〉
∣

∣ =
∣

∣〈∆(b(s)·∇φ), ξr〉
∣

∣;
and by Lemma 2.4, for γ ∈ (0, 1), we have

∣

∣〈∆(b(s) · ∇φ), ξr〉
∣

∣ ≤ ‖∆(b(s) · ∇φ)‖Hγ−1‖ξr‖H1−γ . ‖∇(b(s) · ∇φ)‖Hγ‖ξr‖1−γ
H1 ‖ξ0‖γL2 .

Then we can use (5.5) to obtain for β > 3 and γ ∈ (0, 12),

∥

∥b(s) · ∇(∆ξr)
∥

∥

H−β . ‖b(s)‖H2−γ‖ξr‖1−γ
H1 ‖ξ0‖γL2 .
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Furthermore, Hölder’s inequality and (2.1) yield

∥

∥I24(h)
∥

∥

H−β . κ ‖ξ0‖γL2

∫ (h+1)δ

hδ
‖ξr‖1−γ

H1 dr

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds

≤ κ ‖ξ0‖γL2 δ
1+γ
2

(

∫ (h+1)δ

hδ
‖ξr‖2H1 dr

)
1−γ
2

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds

. κ
1+γ
2 δ

1+γ
2 ‖ξ0‖L2

∫ (h+1)δ

hδ
‖b(s)‖H2−γ ds.

By Lemma 2.5, we take expectation and deduce

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I24(h)
∥

∥

∥

H−β

]

≤
T/δ−1
∑

h=1

E

[

∥

∥I24(h)
∥

∥

H−β

]

. κ
1+γ
2 δ

1+γ
2 ‖ξ0‖L2

∫ T

0

(

E
[

‖b(s)‖2H2−γ

]

)
1
2
ds

. κ
1+γ
2 δ

1+γ
2 ν

1
2α

1
2 TC

1/2
θ,2−γ,2 ‖ξ0‖L2 .

Finally, let us estimate the term

∥

∥I31(h)
∥

∥

H−β ≤ κ

∫ (h+1)δ

hδ

∥

∥∆(ξs − ξhδ)
∥

∥

H−β ds ≤ κ

∫ (h+1)δ

hδ
‖ξs − ξhδ‖H−γ ds,

for any γ ∈ (0, 1). Then Lemma 2.4 yields

∥

∥I31(h)
∥

∥

H−β ≤ κ

∫ (h+1)δ

hδ
‖ξs − ξhδ‖γH−1‖ξs − ξhδ‖1−γ

L2 ds

. κ ‖ξ0‖1−γ
L2

∫ (h+1)δ

hδ
‖ξs − ξhδ‖γH−1 ds.

By Lemma 3.1, we arrive at

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I31(h)
∥

∥

∥

H−β

]

≤
T/δ−1
∑

h=1

E

[

∥

∥I31(h)
∥

∥

H−β

]

. κ ‖ξ0‖1−γ
L2

T/δ−1
∑

h=1

∫ (h+1)δ

hδ

(

E
[

‖ξ(h+1)δ − ξhδ‖2H−1

]

)
γ
2
ds

. κδγν
γ
2α

γ
2 TC

γ/2
θ,1+γ,2 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
.

5.3 The term I231(h)

In this section, we follow [36] and use Nakao’s method (cf. [29]) to estimate the term

I231(h) = 4ν
∑

k,k′∈Z2
0

θkσk · ∇(θk′σk′ · ∇ξhδ)
(
∫ (h+1)δ

hδ

∫ s

hδ
ηα,k(s) ηα,k

′

(r) drds− δk,k′
δ

2

)

.
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Lemma 5.2. Let δ ∈ (0, 1) satisfy δ4α3 . 1, then the following inequality holds for any T ≥ 1:

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I231(h)
∥

∥

∥

H−β

]

. νδ−1α−1TDθ,γ ‖ξ0‖L2 ,

where Dθ,γ :=
(
∑

k∈Z2
0
|θk| |k|2−γ

)2
is a finite constant depending on θ ∈ ℓ2(Z2

0) and γ.

Proof. For convenience, we define

ck,k′(h) :=

∫ (h+1)δ

hδ

∫ s

hδ
ηα,k(s) ηα,k

′

(r) drds.

By [36, Lemma 5.2], the conditional expectation of ck,k′(h) with respect to Fhδ is

E
[

ck,k′(h)|Fhδ

]

= ηα,k(hδ) ηα,k
′

(hδ)
(1− e−αδ)2

2α2
+δk,k′

[

δ

2
+

1

α

(

e−αδ−1+
1

4
(1−e−2αδ)

)

]

. (5.8)

Now we define two processes as follows:

Mn =
n−1
∑

h=1

∑

k,k′∈Z2
0

θkσk · ∇(θk′σk′ · ∇ξhδ)
(

ck,k′(h) − E
[

ck,k′(h)|Fhδ

]

)

,

Rn =
n−1
∑

h=1

∑

k,k′∈Z2
0

θkσk · ∇(θk′σk′ · ∇ξhδ)
(

E[ck,k′(h)|Fhδ ]− δk,k′
δ

2

)

.

Notice that {Mn}n=1,...,T/δ is a H
−β-valued discrete martingale with respect to {Fnδ}n=1,...,T/δ,

hence by Doob’s maximal inequality,

E

[

sup
1<n≤T/δ

∥

∥Mn

∥

∥

2

H−β

]

. E

[

∥

∥MT/δ

∥

∥

2

H−β

]

≤
T/δ−1
∑

h=1

E

∥

∥

∥

∥

∑

k,k′∈Z2
0

θkσk · ∇(θk′σk′ · ∇ξhδ)
(

ck,k′(h)− E
[

ck,k′(h)|Fhδ

]

)

∥

∥

∥

∥

2

H−β

≤
T/δ−1
∑

h=1

E

(

∑

k,k′∈Z2
0

∥

∥θkσk · ∇(θk′σk′ · ∇ξhδ)
∥

∥

H−β

∣

∣

∣
ck,k′(h)− E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

)2

.

(5.9)

We first give the following estimate. For any test function φ ∈ Hβ(T2), it holds

∣

∣

〈

θkσk · ∇(θk′σk′ · ∇ξhδ), φ
〉∣

∣ =
∣

∣

〈

θk′σk′ · ∇(θkσk · ∇φ), ξhδ
〉∣

∣;

by Lemma 2.2, for γ ∈ (0, 12), we use (5.5) to obtain

∣

∣

〈

θk′σk′ · ∇(θkσk · ∇φ), ξhδ
〉
∣

∣ . ‖∇(θkσk · ∇φ)‖L2‖θk′σk′ξhδ‖L2

. ‖θkσk‖H2−γ‖φ‖H2+2γ‖θk′σk′‖L∞‖ξhδ‖L2

. ‖θkσk‖H2−γ‖φ‖H2+2γ‖θk′σk′‖H2−γ‖ξ0‖L2 .

Combining the above two results, we get for β > 3,

∥

∥θkσk · ∇(θk′σk′ · ∇ξhδ)
∥

∥

H−β . ‖θkσk‖H2−γ‖θk′σk′‖H2−γ‖ξ0‖L2 , (5.10)
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hence,

E

(

∑

k,k′∈Z2
0

∥

∥θkσk · ∇(θk′σk′ · ∇ξhδ)
∥

∥

H−β

∣

∣

∣
ck,k′(h) − E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

)2

. ‖ξ0‖2L2 E

(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

∣

∣

∣
ck,k′(h)− E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

)2

.

We regard each term of ‖θkσk‖H2−γ‖θk′σk′‖H2−γ as the product of their square roots; then the
Cauchy-Schwartz inequality and the projective property of conditional expectation yield

E

(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

∣

∣

∣
ck,k′(h) − E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

)2

≤
(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

)

×
(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γE

∣

∣

∣
ck,k′(h) − E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

2
)

≤
(

∑

k∈Z2
0

‖θkσk‖H2−γ

)2
(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ E

[

ck,k′(h)
2
]

)

.

Notice that the following formula holds:

E

[

ck,k′(h)
2
]

= E

[(
∫ (h+1)δ

hδ

∫ s

hδ
ηα,k(s) ηα,k

′

(r) drds

)2 ]

= E

[(
∫ (h+1)δ

hδ
ηα,k(s)

(

W k′

s −W k′

hδ −
1

α

(

ηα,k
′

(s)− ηα,k
′

(hδ)
)

)

ds

)2 ]

≤ E

[

δ

∫ (h+1)δ

hδ

∣

∣ηα,k(s)
∣

∣

2
(

W k′

s −W k′

hδ −
1

α

(

ηα,k
′

(s)− ηα,k
′

(hδ)
)

)2
ds

]

.

Again by Cauchy’s inequality, we have

E

[

ck,k′(h)
2
]

≤ δ

∫ (h+1)δ

hδ

(

E
[

|ηα,k(s)|4
]

)
1
2

(

E

[(

W k′
s −W k′

hδ −
1

α

(

ηα,k
′

(s)− ηα,k
′

(hδ)
)

)4]
)

1
2

ds

. δ

∫ (h+1)δ

hδ
α

(

E

[

∣

∣W k′

(h+1)δ −W k′

hδ

∣

∣

4
]

+
1

α4
E

[

∣

∣ηα,k
′

(s)
∣

∣

4
]

)
1
2

ds

. δ3α+ δ2.

Summarizing the above estimates yields

E

(

∑

k,k′∈Z2
0

∥

∥θkσk · ∇(θk′σk′ · ∇ξhδ)
∥

∥

H−β

∣

∣

∣
ck,k′(h)− E

[

ck,k′(h)|Fhδ

]

∣

∣

∣

)2

. ‖ξ0‖2L2

(

∑

k∈Z2
0

‖θkσk‖H2−γ

)2
(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ (δ3α+ δ2)

)

= ‖ξ0‖2L2

(

∑

k∈Z2
0

‖θkσk‖H2−γ

)4
(δ3α+ δ2).
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Substituting this estimate into (5.9), we deduce

E

[

sup
1<n≤T/δ

∥

∥Mn

∥

∥

H−β

]

≤ E

[

sup
1<n≤T/δ

∥

∥Mn

∥

∥

2

H−β

]
1
2

. T
1
2‖ξ0‖L2

(

∑

k∈Z2
0

‖θkσk‖H2−γ

)2
(

δα
1
2 + δ

1
2
)

. δα
1
2T

1
2‖ξ0‖L2

(

∑

k∈Z2
0

|θk| |k|2−γ
)2

= δα
1
2T

1
2Dθ,γ ‖ξ0‖L2 .

Now let us turn to the term Rn, notice that (5.10) yields

∥

∥Rn

∥

∥

H−β ≤
n−1
∑

h=1

∑

k,k′∈Z2
0

∥

∥θkσk · ∇(θk′σk′ · ∇ξhδ)
∥

∥

H−β

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣

. ‖ξ0‖L2

n−1
∑

h=1

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣
.

We use the same method as the term Mn to further deal with the above formula as follows:

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣

=
∑

k,k′∈Z2
0

‖θkσk‖1/2H2−γ‖θk′σk′‖1/2H2−γ‖θkσk‖1/2H2−γ‖θk′σk′‖1/2H2−γ

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣

≤
(

∑

k∈Z2
0

‖θkσk‖H2−γ

)

(

∑

k,k′∈Z2
0

‖θkσk‖H2−γ‖θk′σk′‖H2−γ

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣

2
)

1
2

.

By (5.8), we can easily get

E

[

∣

∣

∣
E
[

ck,k′(h)|Fhδ

]

− δk,k′
δ

2

∣

∣

∣

2
]

= E

[

∣

∣

∣
ηα,k(hδ)ηα,k

′

(hδ)
(1 − e−αδ)2

2α2
+ δk,k′

1

α

(

e−αδ − 1 +
1

4
(1− e−2αδ)

)

∣

∣

∣

2
]

. α−2.

Combining the above results, we take supremum and then expectation on
∥

∥Rn

∥

∥

H−β to get

E

[

sup
1<n≤T/δ

∥

∥Rn

∥

∥

H−β

]

. α−1‖ξ0‖L2

T/δ−1
∑

h=1

(

∑

k∈Z2
0

‖θkσk‖H2−γ

)2

. δ−1α−1 TDθ,γ ‖ξ0‖L2 .

Taking our assumptions on the parameters into consideration, and noticing that

n
∑

h=m

I231(h) = 4ν
(

Mn+1 +Rn+1 −Mm −Rm

)

,

we complete the proof of Lemma 5.2.
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5.4 The term I25(h)

In this section, we focus on the term

I25(h) = −
∫ (h+1)δ

hδ
b(s) · ∇ξhδ ds = −

(

∫ (h+1)δ

hδ
b(s) ds

)

· ∇ξhδ.

According to the definition of b(s), it holds

∫ (h+1)δ

hδ
b(s) ds = 2

√
ν
∑

k∈Z2
0

θkσk
(

W k
(h+1)δ−W k

hδ

)

−2
√
να−1

∑

k∈Z2
0

θkσk
(

ηα,k((h+1)δ)−ηα,k(hδ)
)

,

then we can further decompose I25(h) as follows:

I25(h) = −2
√
ν
∑

k∈Z2
0

∫ (h+1)δ

hδ
θkσk · ∇ξhδ dW k

s

+ 2
√
να−1

∑

k∈Z2
0

(

θkσk · ∇ξhδ
)(

ηα,k((h+ 1)δ) − ηα,k(hδ)
)

=: I251(h) + I252(h).

The following lemma gives the result for the term I252(h), as for the term I251(h), we will
separately discuss it after the proof of Lemma 5.3.

Lemma 5.3. Let γ ∈ (0, 12), β > 3 and T ≥ 1, then we have

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I252(h)
∥

∥

∥

H−β

]

. ν
2+3γ
2(1+γ)

(

δ
− γ

2(1+γ)α
− γ

2(1+γ) + δ−
γ

1+γ α− γ
1+γ

)

TC
2+3γ
4(1+γ)

θ,2−γ,4 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2

+ ν
1
2α− 1

2 C
1/2
θ,2−γ,2 log

1
2 (1 + αT ) ‖ξ0‖L2 .

Proof. We first reformulate the sum as follows:

n
∑

h=m

I252(h) = α−1
n
∑

h=m

(

b((h + 1)δ) − b(hδ)
)

· ∇ξhδ

= −α−1

[ n
∑

h=m+1

b(hδ) · ∇(ξhδ − ξ(h−1)δ) + b(mδ) · ∇ξmδ − b((n + 1)δ) · ∇ξnδ
]

.

We will estimate each term of the above formula respectively. For the first term, notice that
for any test function φ ∈ Hβ(T2), it holds

∣

∣

〈

b(hδ) · ∇(ξhδ − ξ(h−1)δ), φ
〉
∣

∣ =
∣

∣

〈

b(hδ) · ∇φ, ξhδ − ξ(h−1)δ

〉
∣

∣;

meanwhile, (5.5) yields
∣

∣

〈

b(hδ) · ∇φ, ξhδ − ξ(h−1)δ

〉
∣

∣ . ‖∇(b(hδ) · ∇φ)‖Hγ‖ξhδ − ξ(h−1)δ‖H−1−γ

. ‖b(hδ)‖H2−γ ‖φ‖H2+2γ‖ξhδ − ξ(h−1)δ‖H−1−γ .

Hence we can further get for β > 3 and γ ∈ (0, 12 ),
∥

∥b(hδ) · ∇(ξhδ − ξ(h−1)δ)
∥

∥

H−β . ‖b(hδ)‖H2−γ ‖ξhδ − ξ(h−1)δ‖H−1−γ .
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As for the second term, we can use Sobolev embedding theorem to get for φ ∈ Hβ(T2),

∣

∣〈b(mδ) · ∇ξmδ, φ〉
∣

∣ =
∣

∣〈b(mδ) · ∇φ, ξmδ〉
∣

∣ . ‖b(mδ)‖L2‖∇φ‖L∞‖ξmδ‖L2

. ‖b(mδ)‖H2−γ ‖φ‖H2+γ‖ξ0‖L2 .

Hence
∥

∥b(mδ) · ∇ξmδ

∥

∥

H−β . ‖b(mδ)‖H2−γ ‖ξ0‖L2 for any β > 3 and γ ∈ (0, 1).
Besides, the third term can be estimated in the same way as the second one and therefore

we can get the similar result. Summarizing the above estimates, we obtain

∥

∥

∥

n
∑

h=m

I252(h)
∥

∥

∥

H−β
. α−1

( n
∑

h=m+1

‖b(hδ)‖H2−γ ‖ξhδ − ξ(h−1)δ‖H−1−γ

+ ‖b(mδ)‖H2−γ ‖ξ0‖L2 + ‖b((n + 1)δ)‖H2−γ ‖ξ0‖L2

)

.

Then we take supremum and then expectation to further get

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I252(h)
∥

∥

∥

H−β

]

. α−1

T/δ−1
∑

h=1

E

[

‖b(hδ)‖H2−γ ‖ξhδ − ξ(h−1)δ‖H−1−γ

]

+ α−1‖ξ0‖L2 E

[

sup
1≤m<T/δ−1

‖b(mδ)‖H2−γ

]

.

(5.11)

By the Cauchy-Schwarz inequality, we obtain

E

[

‖b(hδ)‖H2−γ ‖ξhδ − ξ(h−1)δ‖H−1−γ

]

≤
(

E
[

‖b(hδ)‖2H2−γ

]

)
1
2
(

E
[

‖ξhδ − ξ(h−1)δ‖2H−1−γ

]

)
1
2
.

Considering the latter expectation, for γ ∈ (0, 1), Lemma 2.4 yields

E

[

‖ξhδ − ξ(h−1)δ‖2H−1−γ

]

≤ E

[

‖ξhδ − ξ(h−1)δ‖
2

1+γ

H−1 ‖ξhδ − ξ(h−1)δ‖
2γ
1+γ

H−2−γ

]

≤
(

E

[

‖ξhδ − ξ(h−1)δ‖
4

1+γ

H−1

]

)
1
2
(

E

[

‖ξhδ − ξ(h−1)δ‖
4γ
1+γ

H−2−γ

]

)
1
2

;

moreover, to apply Lemma 3.2, we need to further estimate the second expectation of the last
line as follows:

E

[

‖ξhδ − ξ(h−1)δ‖
4γ
1+γ

H−2−γ

]

≤ E

[

‖ξhδ − ξ(h−1)δ‖2H−2−γ

]
2γ
1+γ

.

Combining the above results together, Lemma 3.1, Lemma 3.2 and Remark 2.6 yield

E

[

‖b(hδ)‖H2−γ ‖ξhδ − ξ(h−1)δ‖H−1−γ

]

. ν
2+3γ
2(1+γ)

(

δ
2+γ

2(1+γ)α
2+γ

2(1+γ) + δ
1

1+γ α
1

1+γ

)

C
2+3γ
4(1+γ)

θ,2−γ,4 ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2
.

(5.12)

In addition, according to Lemma 2.9, we have

E

[

sup
1≤m<T/δ−1

‖b(mδ)‖H2−γ

]

≤ E

[

sup
1≤m<T/δ−1

‖b(mδ)‖2H2−γ

]
1
2
. ν

1
2α

1
2 C

1/2
θ,2−γ,2 log

1
2 (1 + αT ).

(5.13)
Inserting (5.12) and (5.13) into (5.11), we complete the proof.
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Now let us deal with the term

n−1
∑

h=m

I251(h) = −2
√
ν
∑

k∈Z2
0

∫ nδ

mδ
θkσk · ∇ξ[s] dW k

s ,

where [s] is defined as at the beginning of Section 5.1. By the Burkholder-Davis-Gundy’s
inequality, we have

E

[

∥

∥

∥
2
√
ν
∑

k∈Z2
0

∫ t2

t1

θkσk · ∇ξ[s] dW k
s

∥

∥

∥

4

H−β

]

. ν2 E

[

(

∑

k∈Z2
0

∫ t2

t1

∥

∥θkσk · ∇ξ[s]
∥

∥

2

H−β ds
)2

]

. (5.14)

Let ek(x) = e2πik·x and recall the definition of σk, then we have
∑

k∈Z2
0

∥

∥θkσk · ∇ξ[s]
∥

∥

2

H−β ≤ ‖θ‖2ℓ∞
∑

k∈Z2
0

∥

∥σk ξ[s]
∥

∥

2

H−β+1 ≤ ‖θ‖2ℓ∞
∑

k∈Z2
0

∥

∥ek ξ[s]
∥

∥

2

H−β+1 ;

furthermore, for β > 3, it holds

∑

k∈Z2
0

∥

∥ek ξ[s]
∥

∥

2

H−β+1 .
∑

k∈Z2
0

∑

l∈Z2
0

1

|l|2(β−1)

∣

∣

〈

ξ[s], el−k

〉∣

∣

2
=

∥

∥ξ[s]
∥

∥

2

L2

∑

l∈Z2
0

1

|l|2(β−1)
.

Combing the above two estimates, we obtain

∑

k∈Z2
0

∥

∥θkσk · ∇ξ[s]
∥

∥

2

H−β . ‖θ‖2ℓ∞‖ξ0‖2L2

∑

l∈Z2
0

1

|l|2(β−1)
.β ‖θ‖2ℓ∞‖ξ0‖2L2 ,

where we have used
∑

l∈Z2
0
|l|−2(β−1) <∞. Hence (5.14) yields

E

[

∥

∥

∥
2
√
ν
∑

k∈Z2
0

∫ t2

t1

θkσk · ∇ξ[s] dW k
s

∥

∥

∥

4

H−β

]

. ν2‖θ‖4ℓ∞‖ξ0‖4L2 |t2 − t1|2.

By the Kolmogorov Continuity Theorem, for every ρ ∈ (0, 14), we arrive at

E

[

sup
0<t1<t2<T

∥

∥

∥
2
√
ν
∑

k∈Z2
0

∫ t2
t1
θkσk · ∇ξ[s] dW k

s

∥

∥

∥

H−β

|t2 − t1|ρ
]

. ν
1
2T

1
2
−ρ‖θ‖ℓ∞‖ξ0‖L2 . (5.15)

5.5 The term I1(h) + δ(uhδ · ∇ξhδ)

For the remaining two terms of (5.4), we will treat them together and prove

Lemma 5.4. For γ ∈ (0, 1) and β > 3, the following estimate holds for all T ≥ 1:

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

(

I1(h) + δ(uhδ · ∇ξhδ)
)

∥

∥

∥

H−β

]

. δν
1
2α

1
2 TC

1/2
θ,1+γ,2 ‖ξ0‖2L2

(

1 + ‖ξ0‖L2

)

.

Proof. For the convenience of calculation, we make the following decomposition:

I1(h) + δ(uhδ · ∇ξhδ) =
∫ (h+1)δ

hδ

(

uhδ · ∇ξhδ − us · ∇ξs
)

ds

=

∫ (h+1)δ

hδ
(uhδ − us) · ∇ξhδ ds +

∫ (h+1)δ

hδ
us · ∇(ξhδ − ξs) ds

=: I11(h) + I12(h).
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We first consider the term I11(h). Notice that for every test function φ ∈ Hβ(T2), it holds
∣

∣

〈

(uhδ − us) · ∇ξhδ, φ
〉∣

∣ =
∣

∣

〈

uhδ − us, ξhδ ∇φ
〉∣

∣; besides, by Sobolev embedding theorem, for
γ ∈ (0, 1), we have

∣

∣

〈

uhδ − us, ξhδ ∇φ
〉∣

∣ ≤ ‖uhδ − us‖L2‖ξhδ‖L2‖∇φ‖L∞ . ‖ξhδ − ξs‖H−1‖ξ0‖L2‖φ‖H2+γ .

Then for β > 3, we can further get

∥

∥I11(h)
∥

∥

H−β ≤
∫ (h+1)δ

hδ

∥

∥(uhδ − us) · ∇ξhδ
∥

∥

H−β ds . ‖ξ0‖L2

∫ (h+1)δ

hδ
‖ξhδ − ξs‖H−1 ds.

Taking supremum and then expectation, Lemma 3.1 yields

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I11(h)
∥

∥

∥

H−β

]

≤
T/δ−1
∑

h=1

E

[

∥

∥I11(h)
∥

∥

H−β

]

. ‖ξ0‖L2

T/δ−1
∑

h=1

∫ (h+1)δ

hδ

(

E
[

‖ξhδ − ξs‖2H−1

]

)
1
2
ds

. δν
1
2α

1
2 TC

1/2
θ,1+γ,2 ‖ξ0‖2L2

(

1 + ‖ξ0‖L2

)

.

(5.16)

As for the term I12(h), we can use (3.4) to estimate it as follows: for any φ ∈ H2+γ ,

∣

∣

〈

us · ∇(ξhδ − ξs), φ
〉
∣

∣ =
∣

∣

〈

us · ∇φ, ξhδ − ξs
〉
∣

∣ . ‖∇(us · ∇φ)‖L2 ‖ξhδ − ξs‖H−1

. ‖ξ0‖L2‖φ‖H2+γ‖ξhδ − ξs‖H−1 .

Hence for β > 3, we have

∥

∥I12(h)
∥

∥

H−β ≤
∫ (h+1)δ

hδ

∥

∥us · ∇(ξhδ − ξs)
∥

∥

H−β ds . ‖ξ0‖L2

∫ (h+1)δ

hδ
‖ξhδ − ξs‖H−1 ds.

Thus we can get the same estimate as the term I11(h), that is

E

[

sup
1≤m<n≤T/δ−1

∥

∥

∥

n
∑

h=m

I12(h)
∥

∥

∥

H−β

]

. δν
1
2α

1
2 TC

1/2
θ,1+γ,2 ‖ξ0‖2L2

(

1 + ‖ξ0‖L2

)

. (5.17)

Lemma 5.4 follows by combining (5.16) and (5.17).

5.6 The terms Ia and Ib

Recall the definitions of Ia and Ib at the beginning of Section 5.1; since their treatments are
similar to those involving I31(h) and I1(h) + δ(uhδ · ∇ξhδ), respectively, we omit them here to
save space.

Lemma 5.5. Let T ≥ 1, β > 3 and γ ∈ (0, 1), then the following estimates hold:

E

[

sup
1≤m<n≤T/δ−1

‖Ia‖H−β

]

. δγα
γ
2 (κν

γ
2 + ν1+

γ
2 )TC

γ/2
θ,1+γ,2‖ξ0‖L2

(

1 + ‖ξ0‖L2

)γ
,

E

[

sup
1≤m<n≤T/δ−1

‖Ib‖H−β

]

. δν
1
2α

1
2 TC

1/2
θ,1+γ,2 ‖ξ0‖2L2

(

1 + ‖ξ0‖L2

)

.
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5.7 Proof of Proposition 3.3

Now we will combine the results of Lemmas 5.1-5.5 and prove

E

[

sup
1≤m<n≤T/δ−1

1

(|n−m|δ)ρ
∥

∥

∥
ξnδ − ξmδ − (κ+ ν)

∫ nδ

mδ
∆ξs ds+

∫ nδ

mδ
us · ∇ξs ds

∥

∥

∥

H−β

]

. T‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2(
ν1+

γ
2α−ǫ + ν

1
2‖θ‖ℓ∞

)

.

Recalling the decompositions in (5.1) and (5.4), let us start with terms other than I251(h).
Denote

I(h) := I1(h) + I21(h) + I22(h) + I231(h) + I24(h) + I252(h) + I31(h) + δ(uhδ · ∇ξhδ),

then we want to prove

E

[

sup
1≤m<n≤T/δ−1

1

(|n−m|δ)ρ
∥

∥

∥

n
∑

h=m

I(h) + Ia + Ib

∥

∥

∥

H−β

]

. ν1+
γ
2α−ǫ T‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2
.

(5.18)
As κ < 1, then we can magnify it to 1 for convenience. Besides, observe that ν > 1 and the

exponents of ν are all smaller than 1+ γ
2 in estimates in Sections 5.2–5.6, hence we keep ν1+

γ
2

in the final result. Moreover, once θ ∈ ℓ2(Zd
0) is fixed, Cθ,τ,p and Dθ,γ are finite constants which

do not play a big role in our main results. As for the parts involving the L2-norm of initial
value ξ0, they are all dominated by ‖ξ0‖L2

(

1 + ‖ξ0‖L2

)2
, so we mainly focus on parameters δ

and α in the proof.
To make the term I22(h) satisfy (5.18), for fixed θ ∈ ℓ2(Z2

0), we need to make a restriction
on δ and α as follows:

δ1+γ−ρα1+ γ
2
+ǫ . 1. (5.19)

Moreover, to apply Lemmas 3.1 and 3.2 in the proofs of Lemmas 5.1–5.5, the following condi-
tions are necessary:

δ4α3 . 1, δα & 1. (5.20)

In order to verify that the above two conditions are consistent with each other, we present
the specific choice of parameters. Indeed, for fixed γ ∈ (0, 13 ), there exist sufficiently small
ρ, ǫ > 0 such that

ǫ+ ρ <
1

4
(1− ρ− 2ǫ)γ ⇔ (1 + ρ)

(

1 +
γ

2
+ ǫ

)

< (1− ǫ)(1 + γ − ρ);

therefore, for α big enough, we can choose δ satisfying

α
− 1−ǫ

1+ρ . δ . α
− 1+γ/2+ǫ

1+γ−ρ . (5.21)

With this choice, it is easy to see that (5.19) is verified. Next, we deduce from α−1 ≤ α
− 1−ǫ

1+ρ . δ

that the second condition of (5.20) also holds. Finally, one has δ4α3 . α
−1+γ−4ǫ−3ρ

1+γ−ρ ≤ 1 as the
exponent is negative, which yields the first inequality of (5.20).

Based on the previous discussions, we choose several terms in the decomposition of I(h) as
examples to show that (5.18) holds under the condition (5.21), which implies (5.19) and (5.20).

(i) For the term I24(h), we only need to prove δ
1+γ
2

−ρα
1
2
+ǫ . 1. By (5.19) and (5.20), we

immediately deduce

δ
1+γ
2

−ρα
1
2
+ǫ =

(

δ1+γ−ρα1+ γ
2
+ǫ
)(

δα
)− 1+γ

2 . 1;
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(ii) For the term I231(h), we want to verify that δ−1−ρα−1+ǫ . 1. Recalling our choice of δ
in (5.21), we can further get

δ−1−ρα−1+ǫ . α1−ǫα−1+ǫ = 1.

(iii) For the term I252(h), we only discuss the latter part here, that is:

δ−ρα− 1
2
+ǫ log

1
2 (1 + αT ) . 1.

Note that log(1+αT ) is negligible with respect to α
1
2 as α is sufficiently large, then by (5.21),

the above inequality holds for small ǫ and ρ.
We can use similar method to prove that the remaining terms of Lemmas 5.1–5.5 satisfy

(5.18). Finally we consider the term I251(h) separately, noticing that T
1
2
−ρ ≤ T as ρ ∈ (0, 14),

then we can easily get the desired conclusion by combining (5.15) with (5.18).
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