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Abstract. We consider a finite number of N statistically equal individuals, each moving on a
finite set of states according to a continuous-time Markov Decision Process (MDP). Transition
intensities of the individuals and generated rewards depend not only on the state and action of
the individual itself, but also on the states of the other individuals as well as the chosen action.
Interactions like this are typical for a wide range of models in e.g. biology, epidemics, finance,
social science and queueing systems among others. The aim is to maximize the expected dis-
counted reward of the system, i.e. the individuals have to cooperate as a team. Computationally
this is a difficult task when N is large. Thus, we consider the limit for N → ∞. In contrast to
other papers we treat this problem from an MDP perspective and use Pontryagin’s maximum
principle to solve the limiting problem. This has the advantage that we need less assumptions in
order to construct asymptotically optimal strategies than using viscosity solutions of HJB equa-
tions. We show how to apply our results using two examples: a machine replacement problem
and a problem from epidemics. We also show that optimal feedback policies are not necessarily
asymptotically optimal.

Key words: Continuous-time Markov Decision Process, Mean Field Problem, Process
limits, Pontryagin’s maximum principle

1. Introduction

We consider a finite number of N statistically equal individuals, each moving on a finite set
of states according to a continuous-time Markov Decision Process. Transition intensities of the
individuals and generated rewards can be controlled and depend not only on the state and action
of the individual itself, but also on the states of the other individuals. Interactions like this are
typical for a wide range of models in e.g. biology, epidemics, finance, social science and queueing
systems among others. The aim is to maximize the expected discounted reward of the system,
i.e. the individuals have to cooperate as a team. This can be implemented by a central controller
who is able to observe the whole system and assigns actions to the individuals. Though this
system itself can be formulated as a continuous-time Markov Decision Process, the established
solution procedures are not really practical since the state space of the system is complicated
and of high cardinality. Thus, we consider the limit N → ∞ when the number of individuals
tends to infinity and analyze the connection between the limiting optimization problem which
is a deterministic control problem and the N individuals problem.

Investigations like this are well-known under the name Mean-field approximation, because the
mean dynamics of the individuals can be approximated by differential equations for a measure-
valued state process. This is inspired by statistical mechanics and can be done for different
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classes of stochastic processes for the individuals. In our paper we restrict our investigation
to continuous-time Markov chains (CTMC). Earlier, more practical studies in this spirit with
CTMC, but without control are e.g. Bortolussi et al. (2013); Kolesnichenko et al. (2014) which
consider illustrating examples to discuss how the mean-field method is used in different applica-
tion areas. The convergence proof there is based on the law of large numbers for centred Poisson
processes, see also Kurtz (1970). Ball et al. (2006) look at so-called reaction networks which are
chemical systems involving multiple reactions and chemical species. They take approximations
of multiscale nature into account and show that ’slow’ components can be approximated by
a deterministic equation. Darling and Norris (2008) formulate some simple conditions under
which a CTMC may be approximated by the solution to a differential equation, with quantifi-
able error probabilities. They give different applications. Aspirot et al. (2011) explore models
proposed for the analysis of BitTorrent P2P systems and provide the arguments to justify the
passage from the stochastic process, under adequate scaling, to a fluid approximation driven
by a differential equation. A more recent application is given in Kyprianou et al. (2022) where
a multi-type analogue of Kingman’s coalescent as a death chain is considered. The aim is to
characterize the behaviour of the replicator coalescent as it is started from an initial population
that is arbitrarily large. This leads to a differential equation called the replicator equation. A
similar control model as ours is considered in Cecchin (2021). However, there the author uses
a finite time horizon and solves the problem with HJB equations. This requires a considerable
technical overhead like viscosity solutions and more assumptions on the model data like Lipschitz
properties which we do not need here.

A related topic are fluid models. Fluid models have been introduced in queueing network
theory since there is a close connection between the stability of the stochastic network and
the corresponding fluid model, Meyn (1997). They appear under ’fluid scaling’ where time in
the CTMC for the stochastic queueing network is accelerated by a factor N and the state is
compressed by factor 1/N. Fluid models have also been used to approximate the optimal control
in these networks, see e.g. Avram et al. (1995); Weiss (1996); Bäuerle (2000, 2002); Čudina
and Ramanan (2011). In Yin and Zhang (2012) different scales of time are treated for the
approximation and some components may be replaced by differential equations. But there is no
mean-field interaction in all of these fluid models.

There are also investigations about controlled mean-field Markov decision processes and their
limits in discrete time. An early paper is Gast et al. (2012) where the mean-field limit for
increasing number of individuals is considered in a model where only the central controller is
allowed to choose one action. However, in order to get a continuous limit the authors have
to interpolate and rescale the original discrete-time processes. This implies the necessity for
assumptions on the transition probabilities. The authors show the convergence of the scaled
value functions and derive asymptotically optimal strategies. The recent papers Motte and
Pham (2022); Bäuerle (2023); Carmona et al. (2019) discuss the convergence of value functions
and asymptotically optimal policies in discrete time. Thus, also the limit is a controlled process
in discrete-time.

Another strand of literature considers continuous-time mean-field games on a finite number
of states Gomes et al. (2013); Basna et al. (2014); Bayraktar and Cohen (2018); Cecchin and
Fischer (2020); Belak et al. (2021). These papers among others consider the construction of
asymptotically optimal Nash-equilibria from a limiting equation. The exception is Cecchin and
Fischer (2020) where it is shown that any solution of the limiting game can be approximated by
ϵN -Nash equilibria in the N player game. However, all these papers deal with the convergence of
the HJB equations which appear in the N player game to a limiting equation, called the Master
equation (Cardaliaguet et al. (2019)) which is a deterministic PDE for the value function. This
approach needs sufficient regularity of the value functions and many assumption. Belak et al.
(2021) consider the problem with common noise and reduce the mean field equilibrium to a
system of forward-backward systems of (random) ordinary differential equations.
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The contribution of our paper is first to establish and investigate the limit of the controlled
continuous-time Markov decision processes. In contrast to previous literature which works with
the HJB equation this point of view requires less assumptions e.g. we do not need Lipschitz
conditions on the model data. Second, we are also able to construct an asymptotically optimal
strategy for the N individuals model. Our model is general, has only a few, easy to check
assumptions and allows for various applications. The advantage of our limiting optimization
problem is that we can apply Pontryagin’s maximum principle easily which is often more practi-
cal than deterministic dynamic programming. Further, we show that an optimal feedback policy
in the deterministic problem does not necessarily imply an asymptotically optimal policy for the
N individuals problems. Third, we can consider finite and infinite time horizon at the same
time. There is essentially no difference. We restrict the presentation mainly to the infinite time
horizon.

Our paper is organized as follows: In the next section we introduce our N individuals
continuous-time Markov decision process. The aim is to maximize the expected discounted
reward of the system. In Section 3 we introduce a measure-valued simplification which is due
to the symmetry properties of the problem and which reduces the cardinality of the state space.
The convergence proofs if the number of individuals tends to infinity can be found in Section
4. It is essentially based on martingale convergence arguments. In Section 5 we construct a
sequence of asymptotically optimal strategies from the limiting model for the N individuals
model. We also show that different implementations may be possible. Finally in Section 6 we
discuss three applications. The first one is a machine replacement problem when we have many
machines, see e.g. Thompson (1968). The second one is the spreading of malware which is based
on the classical SIR model for spreading infections, Khouzani et al. (2012); Gast et al. (2012).
The last example shows that one has to be careful with feedback policies.

2. The multi-agent continuous-time Markov Decision Process

We consider a finite number of N statistically equal individuals, each moving on a finite set of
states S according to a continuous-time Markov Decision Process. The vector xt = (x1t , ..., x

N
t ) ∈

SN describes the state of the system at time t ∈ [0,∞), where xkt is the state of individual
k = 1, . . . , N . The action space of one individual is a compact Borel set A. The action space
of the system is accordingly AN . We denote an action of the system by a = (a1, ..., aN ) ∈ AN

where ak is the action chosen by individual k = 1, . . . , N .
Let D(i) ⊂ A be the set of actions available for an individual in state i ∈ S which we again
assume to be compact. Then the set of admissible actions for the system in state x ∈ SN is
given by D(x) := D(x1)× · · · ×D(xN ) ⊂ AN . The set of admissible state-action combinations
for one individual is denoted by D := {(i, a) ∈ S × A | a ∈ D(i) ∀ x ∈ S}, and for the whole
system by D := {(x,a) | a ∈ D(x)}.

For the construction of the system state process we follow the notation of Piunovskiy and
Zhang (2020). The state process of the system is defined on the measurable space (Ω,F) :=(
(SN ×R+)

∞,B((SN ×R+)
∞)
.We denote an element of Ω by ω = (x0, t1,x1, t2, ...). Now define

Xn : Ω → SN , Xn(ω) = xn, n ∈ N0,

τn : Ω → R+, τn(ω) = tn, n ∈ N,

Tn :=
n∑

k=1

τk, T0 := 0.

The controlled state process of the system is then given by

Xt :=
∑
n∈N0

1{Tn≤t<Tn+1}Xn, t ∈ [0,∞).
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The construction of the process can be interpreted as follows: The random variables τn describe
the sojourn times of the system in state Xn−1. Based on the sojourn times, Tn describes the
time of the n-th jump of the process and Xn the state of the process on the interval [Tn, Tn+1).
By construction the continuous-time state process (Xt) has piecewise constant càdlàg-paths and
the embedded discrete-time process is (Xn).

The system is controlled by policies. W.l.o.g. we restrict here to Markovian stationary poli-
cies. Further, we allow for randomized decisions, i.e. each individual can choose a probability
distribution on A as its action. Hence a policy for the system is given by a collection of N
stochastic kernels π(da | x) = (πk(da | x))k=1,...,N , where

πk : SN × B(A) → [0, 1], (x,A) 7→ πk(A | x) (kernel for agent k).

πk(A | x) is the stochastic kernel (it is here considered as a relaxed control) with which agent k
chooses an action, given the state x of the system. Naturally, it should hold that the kernel is
concentrated on admissible actions, i.e. πk(D(xk) | x) = 1 for all individuals k = 1, ..., N .
The action process is thus defined by

πt :=
∑
n∈N0

1{Tn<t≤Tn+1}π(· | Xn), t ∈ [0,∞).

In contrast to the state process, the action process has piecewise constant càglàd-paths. This
means that a new decision can only be taken after a change of state has already occurred. The
general theory on continuous-time Markov decision processes states that the optimal policy can
be found among the piecewise constant, deterministic, stationary policies. In particular, varying
the action continuously on the interval [Tn, Tn+1) does not increase the value of the problem.
Also randomization does not increase the value, but in view of the sections to come, we already
allowed for randomization (relaxation) here.

To prepare the description of the transition mechanism in our model, we define the empiri-
cal distribution of the individuals over the states, i.e.

µ[x] :=
1

N

N∑
k=1

δxk .

where δxk
is the Dirac measure in point xk. The transition intensities for one individual are

given by a signed kernel

q : S ×A× P(S)× P(S) → R, (i, a, µ,Γ) 7→ q(Γ | i, a, µ) =
∑
j∈Γ

q({j} | i, a, µ).

Here P(S) is the set of all probability distributions on S and P(S) is the power set of S. Note
that the transition of an individual depends not only on its own state and action, but also on
the empirical distribution of all individuals over the states.

We make the following assumptions on q:

(Q1) q({j}|i, a, µ) ≥ 0 for all i, j ∈ S, j ̸= i, a ∈ D(i), µ ∈ P(S).
(Q2)

∑
j q({j}|i, a, µ) = 0 for all i ∈ S, a ∈ D(i), µ ∈ P(S).

(Q3) supi,a,j,µ |q({j}|i, a, µ)| =: qmax <∞.
(Q4) µ 7→ q({j}|i, a, µ) is continuous w.r.t. weak convergence for all i, j ∈ S, a ∈ D(i).
(Q5) a 7→ q({j}|i, a, µ) is continuous for all i, j ∈ S, µ ∈ P(S).
Note that (Q3) follows from (Q4) and (Q5), but since it is important we list it here. Based on
the transition intensities for one individual, the transition intensities of the system are given by

q({(x1, . . . , xk−1, j, xk+1, . . . xN )}|x,a) := q({j}|xk, ak, µ[x]) (2.1)
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for all x,a ∈ D(x), j ∈ S, j ̸= xk and

q({x}|x,a) :=
N∑
k=1

q({xk}|xk, ak, µ[x]).

All other intensities are = 0. The intensity in (2.1) describes the transition of individual k from
state xk ∈ S to state j ∈ S, while all other individuals stay in their current state. Since only one
individual can change its state at a time, this definition is sufficient to describe the transition
mechanism of the system.
Further we set (in a relaxed sense) for a decision rule πk(da|x)

q({(x1, . . . , xk−1, j, xk+1, . . . xN )}|x, π) =
∫
A
q({j}|xk, a, µ[x])πk(da|x).

Note that in a certain sense there is abuse of notation here since we use the letter q both for the
individual transition intensity and for the system transition intensity. It should always be clear
from the context which one is meant.

The probability measure of the multi-agent process is now given by the following transition
kernels

Pπ(τn ≤ t,Xn ∈ B|Xn−1) =

∫ t

0
q(B|Xn−1, π)e

s·q({Xn−1}|Xn−1,π)ds

for all t ≥ 0 and B ∈ P(SN ). In particular, the sojourn times τn are exponentially distributed
with parameter −q({Xn−1}|Xn−1, π) respectively.

Returning to the model’s control mechanism, keep in mind that the policy of an individual
πk(da | x) is allowed to depend on the state of the whole system, i.e. we assume that each indi-
vidual has information about the position of all other individuals. Therefore, we can interpret
our model as a centralized control problem, where all information is collected and shared by a
central controller.
The goal of the central controller is to maximize the social reward of the system. In order to
implement this, we introduce the (stationary) reward function for one individual as

r : D × P(S) → R, (i, a, µ) 7→ r(i, a, µ),

which does not only depend on state and action of the individual, but also on the empirical
distribution of the system. We make the following assumptions on the reward function:

(R1) For all (i, a) ∈ D the function µ 7→ µ(i)r(i, a, µ) is continuous w.r.t. weak convergence.
(R2) For all i ∈ S and µ ∈ P(S) the function a 7→ r(i, a, µ) is continuous.

Since the set of admissible actions D(i) is compact, (R1) and (R2) imply that the following
expression is bounded:

sup
(i,a)∈D, µ∈P(S)

|µ(i)r(i, a, µ)| <∞. (2.2)

The (social) reward of the system is the average of the individuals’ rewards

r(x,a) :=
1

N

N∑
k=1

r(xk, ak, µ[x]), (2.3)

or, in a relaxed sense for a decision rule πk(da | x)

r(x, π) :=
1

N

N∑
k=1

∫
A
r(xk, a, µ[x])πk(da | x).
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The aim is now to find the social optimum, i.e. to maximize the joint expected discounted
reward of the system over an infinite time horizon. For a policy π, a discount rate β > 0 and
an initial configuration x ∈ SN define the value function

Vπ(x) = Eπ
x

[ ∫ ∞

0
e−βtr(Xt, πt)dt

]
V (x) = sup

π
Vπ(x). (2.4)

We are not discussing solution procedures for this optimization problem here since we will
simplify it in the next section and present asymptotically optimal solution methods in Section
5.

3. The measure-valued continuous-time Markov Decision Process

As N is getting larger, so does the state space SN , which could make the model increasingly
complex and impractical to solve. Therefore we seek for some simplifications. An obvious
approach which is common for these kind of models, is to exploit the symmetry of the system
by capturing not the state of every single individual, but the relative or empirical distribution
of the individuals across the |S| states.
Thus, let µN

t := µ[Xt] and define as new state space the set of all distributions which are
empirical measures of N atoms

PN (S) := {µ ∈ P(S) | µ = µ[x], for x ∈ SN}.

It holds that the new state process µN
t is the same as

µN
t =

∑
n∈N0

1{Tn≤t<Tn+1}µ[Xn], t ∈ [0,∞).

As action space take the |S|-fold Cartesian product P(A)|S| of P(A). Hence, an action is given
by |S| probability measures α(da) = (αi(da))i∈S with αi(D(i)) = 1. Hereby the i-th component
indicates the distribution of the individuals’ actions in state i ∈ S. The set of admissible state-
action combinations of the new model is given by D̂ := PN (S)× P(A)|S|.

For the policies we restrict again to Markovian, stationary policies given by a collection of
|S| stochastic kernels π̂(da|µ) = (π̂i(da|µ))i∈S , where

π̂i : P(S)× B(A) → [0, 1], (µ,A) 7→ π̂i(A | µ) (kernel for state i).

where π̂i(D(i) | µ) = 1. In what follows we denote µN
n := µ[Xn]. Then we can express the action

process by setting

π̂t :=
∑
n∈N0

1{Tn<t≤Tn+1}π̂(·|µ
N
n ), t ∈ [0,∞). (3.1)

The transition intensities of the process (µN
t )t≥0 are given by

q({µi→j}|µ, α) = Nµ(i)

∫
A
q({j}|i, a, µ)αi(da), µ ∈ P(S), α ∈ P(A)|S|, (3.2)

with µi→j := µ− 1
N δi+

1
N δj for all i, j ∈ S, i ̸= j if µ(i) > 0. This intensity describes the transition

of one arbitrary individual in state i ∈ S to state j ∈ S, while all other individuals stay in their
current state. Note that the intensity follows from the usual calculations for continuous-time
Markov chains, in particular from the fact that if X,Y are independent random variables with
X ∼ Exp(λ), Y ∼ Exp(ν), then X ∧ Y ∼ Exp(λ + ν). In the situation in (3.2) we have Nµ(i)

individuals in state i. Further we set for all µ ∈ P(S) and α ∈ P(A)|S|

q({µ}|µ, α) := −
∑

i,µ(i)>0

∑
j ̸=i

q({µi→j}|µ, α).
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All other intensities are zero, since again only one individual can change its state at a time.

The probability distribution of the measure-valued process under a fixed policy π̂ is now given
by the following transition kernels

Pπ̂(τn ≤ t,µN
n ∈ B|µN

n−1) =

∫ t

0
q(B|µN

n−1, π̂)e
s·q({µN

n−1}|µN
n−1,π̂)ds

for all t ≥ 0 and B ⊂ PN (S) measurable, where the random variables (τn) are the same as before.

The reward function of the system is derived from the reward for one individual:

r(µ, α) :=
∑
i∈S

∫
r(i, a, µ)αi(da)µ(i).

In view of (2.2) r(µ, α) is bounded. The aim in this model is again to maximize the joint expected
discounted reward of the system over an infinite time horizon. For a policy π̂, a discount rate
β > 0 and an initial configuration µ ∈ PN (S) define the value function

V N
π̂ (µ) = Eπ̂

µ

[ ∫ ∞

0
e−βtr(µN

t , π̂t)dt
]

V N (µ) = sup
π̂
V N
π̂ (µ). (3.3)

We can now show that both formulations (2.4) and (3.3) are equivalent in the sense that the
optimal values are the same. Of course, an optimal policy in the measure-valued setting can
directly be implemented in the original problem. The advantage of the measure-valued formula-
tion is the reduction of the cardinality of the state space. Suppose for example that S = {0, 1},
i.e. all individuals are either in state 0 or state 1. Then |SN | = 2N in the original formulation
whereas |PN (S)| = N + 1 in the second formulation.

Theorem 3.1. It holds that V (x) = V N (µ) for µ = µ[x] for all x ∈ SN .

Proof. First of all observe that the reward function r in (2.3) in the multi-agent problem is
symmetric, i.e. r(x,a) = r(s(x), s(a)) for any permutation s(·) of the vectors. Moreover, the
individual transition intensities q(·|i, a, µ[Xt]) depend only on the own state of the individual
and on µ[Xt]. Thus, the optimal policy in the multi-agent problem at time t only depends on
µ[Xt]. Now for a decision rule π for the multi-agent problem define for all states i ∈ S :

π̂i(da|µ) := 1

Nµ(i)

N∑
k=1

πk(da|x)1{xk=i}

where µ = µ[x]. On the right-hand side we consider all agents in state i and take a convex
combination of their action distributions as the action distribution in state i. If π depends only
on µ[x], then this is also true for π̂.

Choosing π̂ in the measure-valued MDP yields the reward (again µ = µ[x])

r(µ, π̂) =
∑
i∈S

∫
r(i, a, µ)

1

Nµ(i)

N∑
k=1

πk(da|x)1{xk=i}µ(i)

=
1

N

N∑
k=1

∑
i∈S

1{xk=i}

∫
r(i, a, µ)πk(da|x) = r(x, π).
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Thus, the reward in both formulations is the same. Finally the transition intensity in the
multi-agent model that one individual changes its state from i to j is given by (again µ = µ[x])

N∑
k=1

1{xk=i}

∫
q({j}|i, a, µ)πk(da|x)

=Nµ(i)

∫
A
q({j}|i, a, µ) 1

Nµ(i)

N∑
k=1

πk(da|x)1{xk=i}

=Nµ(i)

∫
A
q({j}|i, a, µ)π̂i(da|µ) = q({µi→j}|µ, α).

Thus, the empirical measure process of the multi-agent problem is statistically equal to the
measure-valued MDP process and they produce the same expected reward under measure-
dependent policies which implies the result. A formal proof has to be done by induction like in
Bäuerle (2023) Thm. 3.3. □

The problem we have introduced is a classical continuous-time Markov Decision Process and
can be solved with the established theory accordingly. Thus, we obtain:

Theorem 3.2. There exists a continuous function v : PN (S) → R satisfying

βv(µ) = sup
α∈P(A)|S|

{
r(µ, α) +

∫
v(ν)q(dν|µ, α)

}
for all µ ∈ PN (S) and there exists a maximizer π̂(·|µ) of the r.h.s. such that v = V N and π̂
determines the optimal policy by (3.1).

Follows from Theorem 4.6, Lemma 4.4 in Guo et al. (2009) or Theorem 3.1.2 in Piunovskiy
and Zhang (2020).

Theorem 3.2 implies a solution method for problem (3.3). It can e.g. be solved by value or
policy iteration. However, as already discussed, even in this simplified setting, the computation
may be inefficient if N is large, since this leads to a large state space.

4. Convergence of the state process

In this section we discuss the behaviour of the system when the number of individuals tends to
infinity. In this case we obtain a deterministic limit control model which serves as an asymptotic
upper bound for our optimization problem with N individuals. Moreover, an optimal control of
the limit model can be used to establish a sequence of asymptotically optimal policies for the
N individual model.

In what follows we consider (µN
t ) as a stochastic element of DPN (S)[0,∞), the space of càdlàg

paths with values in PN (S) equipped with the Skorokhod J1-topology and metric dJ1 . On PN (S)
we choose the total variation metric.

Further, we consider (π̂it) as an stochastic element of R := {ρ : R+ → P(A)} endowed with
the Young topology (cf. Davis (2018)). It is possible to show that R is compact and metrizable.
Measurability and convergence in R can be characterized as follows:

Lemma 4.1. a) ρ : R+ → P(A) is measurable if and only if ρ is a transition probability
from R+ into A.

b) Let ρn, ρ ∈ R. ρn → ρ for n→ ∞ if and only if∫ ∞

0

∫
A
ψ(t, a)ρnt (da)dt→

∫ ∞

0

∫
A
ψ(t, a)ρt(da)dt

for all measurable functions ψ : R+ × A → R such that a 7→ ψ(t, a) is continuous for all
t ≥ 0 and

∫∞
0 supa |ψ(t, a)|dt <∞.
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In a first step we define for N ∈ N, a fixed policy π̂N and arbitrary j ∈ S, the one-dimensional
process

MN
t (j) := µN

t (j)− µN0 (j)−
∫ t

0

∑
ν∈PN (S)

(ν(j)− µN
s (j))q({ν}|µN

s , π̂s)ds.

Then (MN
t (j)) are martingales w.r.t. the filtration FN

t = σ(µN
s , s ≤ t). This follows from the

Dynkin formula, see e.g. Davis (2018), Proposition 14.13. Next we can express the process
(MN

t (j)) a bit more explicit. Note that the difference ν(j) − µN
s (j) can either be −1/N if an

individual changes from state j to a state k ̸= j or it could be 1/N if an individual changes from
state i ̸= j to state j. Since by (Q2)∑

k ̸=j

∫
q({k}|j, a,µN

s )π̂N,j
s (da) = −

∫
q({j}|j, a,µN

s )π̂N,j
s (da) (4.1)

we obtain by inserting the intensity (3.2) and by using (4.1)

MN
t (j) =µN

t (j)− µN0 (j)−
∫ t

0

∑
k ̸=j

− 1

N
NµN

s (j)

∫
q({k}|j, a,µN

s )π̂N,j
s (da)ds

−
∫ t

0

∑
i ̸=j

1

N
NµN

s (i)

∫
q({j}|i, a,µN

s )π̂N,i
s (da)ds

=µN
t (j)− µN0 (j)−

∫ t

0

∑
i∈S

µN
s (i)

∫
q({j}|i, a,µN

s )π̂N,i
s (da)ds. (4.2)

With this representation we can prove that the sequence of stochastic processes (MN (j)) con-
verges weakly (denoted by ⇒) in the Skorokhod J1-topology to the zero process.

Lemma 4.2. We have for all j ∈ S that

(MN
t (j))t≥0 ⇒ 0, N → ∞

Proof. First we show that MN
t (j) is bounded for fixed t:

|MN
t (j)| =

∣∣∣µN
t (j)− µN0 (j)−

∫ t

0

∑
i∈S

µN
s (i)

∫
q({j}|i, a,µN

s )π̂N,i
s (da)ds

∣∣∣
≤ |µN

t (j)− µN0 (j)|+
∫ t

0

∑
i∈S

µN
s (i)

∫
|q({j}|i, a,µN

s )|π̂N,i
s (da)ds

≤ 1 + qmax · t <∞

Therefore (MN
t (j))t≥0 are square-integrable martingales. Now we take advantage of the fact

that there are only jumps of height 1
N in our model, since no two individuals change their state

simultaneously. With the quadratic variation of the process we obtain

E[(MN
t (j))2] = E[⟨MN

t (j)⟩] ≤ 1

N2
E[# jumps in [0, t]]

≤ 1

N2
·N · qmax · t =

1

N
· qmax · t

N→∞−→ 0.

Doob’s Lp-inequality provides on [0, t]

E[( sup
s∈[0,t]

MN
s (j))2] ≤ 4 · E[(MN

t (j))2]
N→∞−→ 0.

Thus for the sequence (sups∈[0,t]M
N
s (j))N∈N it holds that

sup
s∈[0,t]

MN
s (j)

L2

−→ 0.
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Now we can find a suitable probability space (Ω,F ,P), such that for P-almost all ω ∈ Ω the
sequence of functions ((MN

s (j)(ω))s∈[0,t])N∈N converges uniformly to the zero-function.
The finite-dimensional distributions with arbitrary time-points t1, .., tk ∈ [0, t] then obviously
fulfill

(MN
t1 (j), ...,M

N
tn (j))

a.s.−→ (0, ..., 0)

and therefore in particular

(MN
t1 (j), ...,M

N
tn (j)) ⇒ (0, ..., 0).

Here ⇒ is the usual weak convergence of random vectors in Rn. To apply Theorem VI.16 in
Pollard (1984) we check Aldous’ condition. Let (δN ) be a sequence of positive numbers with
δN → 0 and (ρN ) a sequence of stopping times w.r.t. (FN

t ) with values in [0, t]. Then we have

E[(MN
ρN

(j))2] ≤ E[( sup
s∈[0,t]

MN
s (j))2] ≤ 4 · E[(MN

t (j))2]
N→∞−→ 0.

Further, for N sufficiently large it holds that

E[(MN
ρN+δN

(j))2] ≤ E[( sup
s∈[0,2t]

MN
s (j))2] ≤ 4 · E[(MN

2t (j))
2]

N→∞−→ 0.

Therefore MN
ρN

(j) and MN
ρN+δN

(j) converge in L2 to 0 (and thus their difference). Hence, the

conditions of Theorem VI.16 in Pollard (1984) are fulfilled, and the sequence MN
t (j) converges

weakly on [0,∞) towards 0 in the sense of the Skorokhod J1-metric. □

Next we show that an arbitrary state-action process is relatively compact which implies the
existence of converging subsequences.

Theorem 4.3. A sequence of arbitrary state-action processes (µN , π̂N )N is relatively compact.
Thus, there exists a subsequence (Nk) which converges weakly

(µNk , π̂Nk) ⇒ (µ∗, π̂∗), for k → ∞.

Moreover, the limit µ∗ satisfies

a) (µ∗
t ) has a.s. continuous paths,

b) and for each component j we have

µ∗
t (j) = µ∗

0(j) +

∫ t

0

∑
i∈S

µ∗
s(i)

∫
q({j}|i, a,µ∗

s)π̂
∗,i
s (da)ds.

Proof. We start by showing the relative compactness of a sequence (µN )N . We use Theorem
2.7 in Kurtz (1981). The sequence (µN )N has paths in DP(S)[0,∞), where P(S) is complete and
separable with respect to the total variation distance.
In what follows let SN

T be the set of (FN
t )-stopping times τ with τ ≤ T a.s.

For every ε > 0 and rational t ≥ 0 choose the compact set Γt,ε ≡ P(S). Then we obtain by
construction of the model

P(µN
t ∈ Γt,ε) = 1.

Moreover, for every T > 0 it holds that

lim
δ→0

lim sup
N→∞

sup
τ∈SN

T

E[min{1, ||µN
τ − µN

τ+δ||TV }]

≤ lim
δ→0

lim sup
N→∞

sup
τ∈SN

T

E[||µN
τ − µN

τ+δ||TV ]

≤ lim
δ→0

lim sup
N→∞

sup
τ∈SN

T

E[# state changes in [τ, τ + δ]] · 1

N

≤ lim
δ→0

lim sup
N→∞

sup
τ∈SN

T

N · qmax · δ ·
1

N
= 0.



11

The second inequality holds because ||µN
s − µN

t ||TV = 1
N , provided that in [s, t] only one state

change occurs, i.e. one individual changes its state. Theorem 2.7 in Kurtz (1981) now states
that (µN )N is relatively compact.

Since R is compact, so is R|S| and we obtain directly the relative compactness of (π̂N )N . The
relative compactness of the sequence of state-action-processes (µN , π̂N )N then follows by Propo-
sition 3.2.4 in Ethier and Kurtz (1986). Thus, a converging subsequence exists. To ease the
notation we will still denote it by (N).

To prove the continuity of the limit state process define for arbitrary µ ∈ DP(S)[0,∞)

J(µ, u) = sup
0≤t≤u

||µt − µt−||TV .

J(µ) =

∫ ∞

0
e−uJ(µ, u)du.

For the sequence of state processes (µN )N we get

lim
N→∞

J(µN ) = lim
N→∞

∫ ∞

0
e−u sup

0≤t≤u
||µN

t − µN
t−||TV du ≤ lim

N→∞

1

N
= 0.

We exploit the fact that there can be at most jumps of height 1
N in the state processes with N

individuals. Theorem 3.10.2 a) in Ethier and Kurtz (1986) then implies the a.s. continuity of
the limit state process (µ∗

t )t≥0.

In particular, due to the Skorokhod representation theorem we find a probability space such
that convergence of µN ⇒ µ∗ holds almost surely in J1 and is uniformly on compact sets such
as [0, t] since µ∗ is a.s. continuous (see p. 383 in Whitt (2002)). Thus, component-wise for
almost all ω in the probability space above we obtain:

lim
N→∞

sup
0≤s≤t

||µN
s (ω)− µ∗

s(ω)||TV = 0

for every t ∈ [0,∞).

Finally we have to take the limit N → ∞ in (4.2). By the previous Lemma 4.2 we know that
the martingale on the left-hand side converges to zero and that µN

t (ω) → µ∗
t . Now consider the

integral on the right-hand side:∣∣∣∣∣
∫ t

0

∑
i∈S

µN
s (i)

∫
q({j}|i, a,µN

s )π̂N,i
s (da)ds−

∫ t

0

∑
i∈S

µ∗
s(i)

∫
q({j}|i, a,µ∗

s)π̂
∗,i
s (da)ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∑
i∈S

µN
s (i)

∫
q({j}|i, a,µN

s )π̂N,i
s (da)ds−

∫ t

0

∑
i∈S

µ∗
s(i)

∫
q({j}|i, a,µ∗

s)π̂
N,i
s (da)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∑
i∈S

µ∗
s(i)

∫
q({j}|i, a,µ∗

s)π̂
N,i
s (da)ds−

∫ t

0

∑
i∈S

µ∗
s(i)

∫
q({j}|i, a,µ∗

s)π̂
∗,i
s (da)ds

∣∣∣∣∣ .
The second expression tends to 0 for N → ∞ due to the definition of the Young topology and the
fact that a 7→ q({j}|i, a, µ∗s) is continuous by assumption. The first expression can be bounded
by ∫ t

0

∑
i∈S

∫ ∣∣µN
s (i)q({j}|i, a,µN

s )− µ∗
s(i)q({j}|i, a,µ∗

s)
∣∣ π̂N,i

s (da)ds

≤
∫ t

0

∑
i∈S

sup
a∈D(i)

∣∣µN
s (i)q({j}|i, a,µN

s )− µ∗
s(i)q({j}|i, a,µ∗

s)
∣∣ ds
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which also tends to zero due to dominated convergence, (Q4),(Q5) and Lemma 7.1.

Now putting things together, equation (4.2) implies that the limit satisfies the stated differ-
ential equation. □

Remark 4.4. In Cecchin (2021) it has been shown that the rate of convergence which is achieved

under the scaling in Theorem 4.3 is of the order 1/
√
N.

5. The deterministic limit model

Consider the following deterministic optimization problem:

(F ) sup
π̂

∫ ∞

0
e−βtr(µt, π̂t)dt,

s.t. µ0 ∈ P(S), π̂it ∈ P(A), π̂it(D(i)) = 1,

µt(j) = µ0(j) +

∫ t

0

∑
i∈S

µs(i)

∫
q({j}|i, a, µs)π̂is(da)ds, ∀t ≥ 0, j = 1, . . . , N, i ∈ S.

Note that the theory of continuous-time Markov processes implies that µt is automatically a
distribution. Hence one of the N differential equations in (F ) may be skipped. Also note that
when the transition intensity and the reward are linear in the action, relaxation of the control
is unnecessary. We denote the maximal value of this problem by V F (µ0). We show next, that
this value provides an asymptotic upper bound to the value of problem (3.3).

Theorem 5.1. For all (µN0 ) ⊂ PN (S), µ0 ∈ P(S) with µN0 ⇒ µ0 and for all policies (π̂Nt ) we
have

lim sup
N→∞

V N
π̂N (µ

N
0 ) ≤ V F (µ0).

Proof. According to Theorem 4.3 we can choose a subsequence (Nk) of corresponding state and
action processes such that

(µNk , π̂Nk) ⇒ (µ∗, π̂∗), for k → ∞.

For convenience we still denote this sequence by (N). We show that

lim
N→∞

V N
π̂N (µ

N
0 ) = lim

N→∞
E
[ ∫ ∞

0
e−βtr(µN

t , π̂
N
t )dt

]
= E

[ ∫ ∞

0
e−βtr(µ∗

t , π̂
∗
t )dt

]
≤ V F (µ0).

The last inequality is true due to the fact that by Theorem 4.3 the limit process (µ∗, π̂∗) satisfies
the constraints of problem (F ).

Let us show the second equality. We obtain by bounded convergence (r is bounded)

lim
N→∞

E
[ ∫ ∞

0
e−βtr(µN

t , π̂
N
t )dt

]
= E

[
lim

N→∞

∫ ∞

0
e−βtr(µN

t , π̂
N
t )dt

]
.

Further we have∣∣∣∣∣
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µN

t )π̂N,i
t (da)µN

t (i)dt−
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µ∗

t )π̂
∗,i
t (da)µ∗

t (i)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µN

t )π̂N,i
t (da)µN

t (i)dt−
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µ∗

t )π̂
N,i
t (da)µ∗

t (i)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µ∗

t )π̂
N,i
t (da)µ∗

t (i)dt−
∫ ∞

0
e−βt

∑
i∈S

∫
A
r(i, a,µ∗

t )π̂
∗,i
t (da)µ∗

t (i)dt

∣∣∣∣∣ .
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The second expression tends to zero for N → ∞ due to the definition of the Young topology
and the fact that a 7→ r(i, a, µ) is continuous by (R2). The first expression can be bounded from
above by ∫ ∞

0
e−βt

∑
i∈S

∫
A

∣∣r(i, a,µN
t )µN

t (i)− r(i, a,µ∗
t )µ

∗
t (i)

∣∣ π̂N,i
t (da)dt

≤
∫ ∞

0
e−βt

∑
i∈S

sup
a∈D(i)

∣∣r(i, a,µN
t )µN

t (i)− r(i, a,µ∗
t )µ

∗
t (i)

∣∣ dt
which also tends to zero for N → ∞ due to (R1), (R2), Lemma 7.1 and dominated convergence.
Thus, the statement follows. □

On the other hand we are now able to construct a strategy which is asymptotically optimal in
the sense that the upper bound in the previous theorem is attained in the limit. Suppose that
(µ∗, π̂∗) is an optimal state-action trajectory for problem (F ). Then we can consider for the N
individual problem the strategy

π̂N,i
t := π̂∗,it

which applies at time t the kernel π̂∗,it irrespective of the state µN
t the process is in. More

precisely, the considered strategy is deterministic and not a feedback policy.

Theorem 5.2. Suppose π̂∗ is an optimal strategy for (F ) and let (µN0 ) ⊂ PN (S) be such that
µN0 ⇒ µ0 ∈ P(S). Then if we use this strategy for problem (3.3) for any N we obtain

lim sup
N→∞

V N
π̂∗ (µN0 ) = V F (µ0).

Thus, we call π̂∗ asymptotically optimal.

Proof. First note that π̂∗ is an admissible policy for any N . Further let (µN
t ) be the correspond-

ing state process when N individuals are present. Let (Nk) be a subsequence such that

µNk ⇒ µ∗, for k → ∞
holds (Theorem 4.3). Using the same arguments as in the last proof we obtain

lim
N→∞

E
[ ∫ ∞

0
e−βtr(µN

t , π̂
∗
t )dt

]
= E

[ ∫ ∞

0
e−βtr(µ∗

t , π̂
∗
t )dt

]
= V F (µ0).

Together with the previous theorem, the statement is shown. □

Remarks:

a) If the differential equation for (µt) in (F ) has a unique solution under π̂∗, then we have
convergence µN ⇒ µ∗ for N → ∞ and not only convergence of subsequences.

b) Note that the construction of asymptotically optimal policies which we present here, works
in the same way when we consider control problems with finite time horizon. I.e. instead
of (3.3) we consider

sup
π̂

Eπ̂
x

[ ∫ T

0
e−βtr(µN

t , π̂t)dt+ g(µN
T )

]
with possibly a terminal reward g(·) for the final state. In this case (F ) is given with a
finite time horizon

sup
π̂

∫ T

0
e−βtr(µt, π̂t)dt+ g(µT )

s.t. µ0 ∈ P(S), π̂it ∈ P(A), π̂it(D(i)) = 1,

µt(j) = µ0(j) +

∫ t

0

∑
i∈S

µs(i)

∫
q({j}|i, a, µs)π̂is(da)ds, ∀t ∈ [0, T ], j = 1, . . . , N, i ∈ S,

Theorem 5.2 holds accordingly.
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c) Suppose we obtain for problem (F ) an optimal feedback rule π̂t(·) = π̂(·|µt). If µ 7→ π̂(·|µ)
is continuous, this feedback rule is also asymptotically optimal for problem (3.3). The
proof can be done in the same way as before.

d) Natural extensions of our model that we have not included in the presentation are resource
constraints. For example the total sum of fractions of a certain action may be limited,
i.e. we restrict the set P(A)|S| by requiring that

∑
i∈S π̂

i
t({a0}) ≤ c < |S| for a certain

action a0 ∈ A. As long as the constraint yields a compact subset of P(A)|S| our analysis
also covers this case.

Moreover, a direct implementation of policy π̂∗ in the problem (3.3) might make it necessary
to update the policy continuously. This can be avoided by using the following policy instead.
We assume here that t 7→ π̂∗t is piecewise continuous. Thus, let (tn)n∈N be the discontinuity
time points of π̂∗ and define the set

{TN
n , n ∈ N} ∪ {tn, n ∈ N} =: {T̃N

1 < T̃N
2 < . . .}

where TN
n describes the time of the n-th jump of the N individuals process. The r.v. (T̃n) is

the ordered sequence of the time points in this set. Then

πN,∗
t :=

∞∑
n=0

π̂∗
T̃n
1[T̃N

n ,T̃N
n+1)

(t). (5.1)

The idea of the action process πN,∗
t is to adapt it to π̂∗ only when an individual changes its state

or when π̂∗ has a jump, and to keep it constant otherwise. It can be shown that this sequence
of policies is also asymptotically optimal.

Theorem 5.3. Suppose π̂∗ is a piecewise continuous optimal strategy for (F ) and let (µN0 ) ⊂
PN (S) be such that µN0 ⇒ µ0 ∈ P(S). Then if we use the strategy (πN,∗

t ) of (5.1) for problem
(3.3) for any N we obtain

lim sup
N→∞

V N
π̂N,∗(µ

N
0 ) = V F (µ0).

Proof. In light of the proof of Theorem 5.2 it is enough to show that πN,∗ ⇒ π∗. Indeed, the
convergence can be shown P-a.s. Now (πN,∗) converges in J1-topology against π∗ on [0,∞) if and
only if (πN,∗)|[0,T ] the restriction to [0, T ] converges in the finite J1-topology to the restriction
π∗[0,T ] for all T which are continuity points of the limit function (see Billingsley (2013) sec.16,

Lem.1). Since π̂∗ is piecewise continuous we can consider the convergence on each compact

interval of the partition separately. Indeed we have if t ∈ [T̃N
n , T̃

N
n+1]

||πN,∗
t − π̂∗t ||TV ≤ sup

s∈[T̃N
n ,T̃N

n+1]

||π̂∗s − π̂∗t ||TV .

Since t 7→ π̂∗t is continuous on this interval and since all |T̃N
n+1− T̃N

n | converge to zero for N → ∞
uniformly (the jump intensity increases with N) we have that the right hand side converges to
zero for N → ∞ uniformly in t which implies the statement. □

6. Applications

In this section we discuss two applications of the previously derived theorems and one example
which shows that state processes under feedback policies do not necessarily have to converge.
More precisely we construct in two applications asymptotically optimal strategies for stochastic
N individuals systems from the deterministic limit problem (F ). The advantage of our problem
(F ) in contrast to the master equation is that it can be solved with the help of Pontryagin’s
maximum principle which gives necessary conditions for an optimal control and is in many cases
easier to apply than dynamic programming. For examples see Avram et al. (1995); Weiss (1996);
Bäuerle and Rieder (2000); Bäuerle (2002) and for the theory see e.g. Seierstad (1987); Zabczyk
(2020).
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6.1. Machine replacement. The following application is a simplified version of the determin-
istic control problem in Thompson (1968). A mean-field application can be found in Huang
and Ma (2016). Suppose a company has N statistically equal machines. Each machine can
either be in state 0=’working’ or in state 1=’broken’, thus S = {0, 1}. Two actions are available:
0=’do nothing’ or 1=’repair’, thus A = {0, 1}. A working machine does not need repair, so
D(0) = {0}. The transition rates are as follows: A working machine gets broke with fixed rate
δ > 0. A broken machine which gets repair changes to the state ’working’ with rate ρ > 0.
Thus, we can summarized the transition rates of one machine by

q({1}|0, 0,µN
t ) = δ, q({0}|1, at,µN

t ) = ρδ{at=1}.

The diagonal elements of the intensity matrix are given by

q({0}|0, 0,µN
t ) = −δ, q({1}|1, at,µN

t ) = −ρδ{at=1},

and all other intensities are zero. Obviously (Q1)-(Q5) are satisfied. The initial state of the
system is µN

0 = (1, 0), i.e. all machines are working in the beginning. Each working machine
produces a reward rate g > 0 whereas we have to pay a fixed cost of C > 0 when we have to
call the service for repair, i.e.

r(i, a,µN
t ) = gδ{i=0} − Cδ{a=1}δ{i=1}

1

1− µN
t (0)

.

Hence we obtain an interaction of the individuals in the reward. Note that (R1), (R2) are
satisfied. This yields the reward rate for the system

r(µN
t , π̂t) = gµN

t (0)− C(1− π̂1t ({1}|µN
t )).

Thus, problem (F ) in this setting is given by (we denote the limit by (µt(0), µt(1)) =: (µt, 1−µt)
and let αt := π̂1t ({0})):

(F ) sup
(αt)

∫ T

0
g · µt − C · (1− αt)dt,

s.t. for all t ∈ [0, T ]

µt = 1 +

∫ t

0
ρ(1− µs)(1− αs)− δµsds.

We briefly explain how to solve this problem using Pontryagin’s maximum principle. The Hamil-
tonian function to (F ) is given by

H(µt, αt, pt, t) = gµt − C(1− αt) + pt(ρ(1− µt)(1− αt)− δµt)

= (1− αt)(ρpt(1− µt)− C) + gµt − δptµt

where (pt) is the adjoint function. Pontryagin’s maximum principle yields the following sufficient
conditions for optimality (Seierstad (1987); Zabczyk (2020)):

Lemma 6.1. The control (α∗
t ) with the associated trajectory (µ∗t ) is optimal for (F ) if there exists

a continuous and piecewise continuously differentiable function (pt) such that for all t > 0:

(i) α∗
t maximizes α 7→ H(µt, α, pt, t) for α ∈ [0, 1],

(ii) ṗt = −g + pt(δ + ρ(1− αt)) at those points where pt is differentiable,
(iii) p(T ) = 0.

Inspecting the Hamiltonian it is immediately clear from (i) that the optimal control is essen-
tially ’bang-bang’. For a numerical illustration we solved (F ) for the parameters C = 1, g =
2, δ = 1, ρ = 2 and T = 4. Here it is optimal to do nothing until time point t∗ = ln 2. Then it
is optimal to repair the fraction α∗ = 1/2 of the broken machines which keeps the number of
working machines at 1/2. Finally, ln 2 time units before the end, we do again nothing and wait
until the end of the time horizon. A numerical illustration of the optimal trajectory µt(0) of the
deterministic problem together with simulated paths under this policy for different number of
N can be found in Figure 1, left. A number of different simulations for N = 1000 are shown in
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Figure 1, right. The simulated paths are quite close to the deterministic trajectory.

Figure 1. Left: State trajectories for different numbersN of machines executing
the optimal control for (F ). Right: Ten state trajectories for N = 1000 machines
executing the asymptotically optimal control.

The optimal value in the deterministic model is V F (1, 0) = 9
2 − 3

2 ln(2) ≈ 3.4603. If we
simulate ten times the trajectory of the state process for N = 1000 machines while following the
asymptotically optimal policy and take the average of the respective values, we obtain a mean
of 3.43612 which is slightly less than the value for (F ), cp. Theorem 5.1.

6.2. Spreading malware. This example is based on the deterministic control model considered
in Khouzani et al. (2012), see also Gast et al. (2012) and treats the propagation of a virus in a
mobile wireless network. It is based on the classical SIR model by Kermack–McKendrick, Daley
and Gani (2001). Suppose there are N devices in the network. A device can be in one of the
following states: Susceptible (S), Infective (I), Dead (D) or Recovered (R). A device is in the
susceptible state if it is not contaminated yet, but prone to infection. A device is infective if it is
contaminated by the virus. It is dead if the virus has destroyed the software and recovered if the
device has already a security patch which makes it immune to the virus. The states D and R are
absorbing. The joint process µN

t = (SN
t , I

N
t , D

N
t , R

N
t ) is a controlled continuous-time Markov

chain where XN
t represents the fraction of devices in state X ∈ {S, I,D,R}. The control is a

strategy of the virus which chooses the rate a(t) ∈ [0, ā], infected devices will be destroyed. In
this model we have SN

t + INt + DN
t + RN

t = 1 and SN
t , I

N
t , D

N
t , R

N
t ≥ 0. The transition rates

of one device are as follows: A susceptible device gets infected with rate βIt with β > 0. The
rate is proportional to the number of infected devices and we thus have an interaction of one
individual with the empirical distribution of the others. And it gets recovered with rate ρ > 0
which is the rate the security patch is distributed. An infected device gets killed by the virus
with rate a(t) ∈ [0, ā] chosen by the attacker and gets recovered at rate γ > 0. The rates are
shown in the following figure:

S I

R

D

ρ

βINt

γ

at

Figure 2. Transition intensities of one device between the possible states.
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The intensities of one device at time t are summarized by

q({I}|S, ·,µN
t ) = βINt , q({R}|S, ·,µN

t ) = ρ,

q({D}|I, at,µN
t ) = at, q({R}|I, ·,µN

t ) = γ.

Thus, the diagonal elements of the intensity matrix are given by

q({S}|S, ·,µN
t ) = −βINt − ρ, q({I}|I, at,µN

t ) = −at − γ, q({D}|D, ·,µN
t ) = q({R}|R, ·,µN

t ) = 0

and all other intensities are zero. Note that (Q1)-(Q5) are satisfied and that since the intensities
are linear in a, there is no need for a relaxed control. The initial state of the network is
µN
0 = (SN

0 , I
N
0 , D

N
0 , R

N
0 ) = (1− I0, I0, 0, 0) with 0 < I0 < 1. The aim of the virus is to produce

as much damage as possible over the time interval [0, T ], evaluated by

E
[
DN

T +
1

T

∫ T

0
(INt )2dt

]

which is given when we choose r(i, a, µ) = 1
T (µ(2))

2 (the second component of µ squared) and
an appropriate terminal reward. (R1) and (R2) are satisfied. Thus, problem (F ) in this setting
is given by (we denote the limit by µt = (St, It, Dt, Rt))

(F ) sup
(at)

DT +
1

T

∫ T

0
I2t dt,

s.t. at ∈ [0, ā], and for all t ∈ [0, T ]

St = 1− I0 +

∫ t

0
−βIsSs − ρSsds,

It = I0 +

∫ t

0
βIsSs − γIs − atIsds,

Dt =

∫ t

0
atIsds.

A solution of this deterministic control problem can be found in Khouzani et al. (2012). It
is shown there that a critical time point t1 ∈ [0, T ] exists such that at = 0 on t ∈ [0, t1] and
at = ā on t ∈ (t1, T ]. Thus, the attacker is not destroying devices from the beginning because
this lowers the number of devices which can get infected. Instead, she first waits to get more
infected devices before setting the kill rate to a maximum.
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Figure 3. State trajectories for N = 1000 devices under optimal control for
β = 0.6, ρ = γ = 0.2, ā = 1, T = 10.

A numerical illustration can be found in Figure 3. There we can see the trajectories of the
optimal state distribution in (F ) and simulated paths for N = 1000 devices for β = 0.6, ρ =
γ = 0.2, ā = 1, T = 10. The optimal time point for setting at to the maximum is here 4.9. The
simulated paths are almost indistinguishable from the deterministic trajectories.

6.3. Resource competition. This example shows that feedback policies in the deterministic
problem are not necessarily asymptotically optimal when implemented in the N individual
problem. This may happen when discontinuities in the feedback function are present. The
example is an adaption of the queuing network considered in Kumar and Seidman (1989); Rybko
and Stolyar (1992) to our setting. Suppose the state space is given by S = {1, 2, 3, 4, 5, 6, 7, 8}.
Individuals starting in state 1 change to state 2, then 3 and are finally absorbed in state 4.
Individuals starting in state 5 change to state 6, then 7 and are finally absorbed in state 8. The
intensity for leaving states 1 and 5 is µ1 = µ5 = 1, the full intensity for leaving states 2 and 6
is µ2 = µ6 = 6 and finally the full intensity for leaving states 3 and 7 is µ3 = µ7 = 1.5. The
action space is A = {0, 1} where actions have to be taken in states 2, 3, 6 and 7 and determine
the activation of the transition intensity. Action a = 0 means that the intensity is deactivated
and a = 1 that it is activated. There is a resource constraint such that the sum of the activation
probabilities in states 2 and 7 as well as the sum of the activation probabilities in states 3
and 6 are constraint by 1 (see remark on p.13). When we denote the randomized control by
π̂2t = at, π̂

7
t = 1− at, π̂

6
t = bt, π̂

3
t = 1− bt, at, bt ∈ [0, 1] then the intensities are given by

q({3}|2, at,µN
t ) = atµ2, q({4}|3, 1− bt,µ

N
t ) = (1− bt)µ3,

q({7}|6, bt,µN
t ) = btµ6, q({8}|7, 1− at,µ

N
t ) = (1− at)µ7.

An illustration of this model can be seen in Figure 4.
The initial state distribution is given by µ0 = ( 5

14 ,
1
14 ,

1
14 , 0,

5
14 ,

1
14 ,

1
14 , 0) where we assume

for the simulation that we have N = 1400 individuals. Now suppose further that individuals
in the absorbing states 4 and 8 produce no cost whereas individuals in state 3 and 7 are the
most expensive as soon as there are at least 0.01% of the population present. This optimization
criterion leads to a priority rule where individuals in state 3 receive priority (and thus full
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1 2 3 4

8 7 6 5

µ1 atµ2 (1− bt)µ3

µ5btµ6(1− at)µ7

Figure 4. Transition intensities of one individual for the resource constraint
problem.

capacity) over those in state 6 (as long as there are at least 0.01% present) and individuals in
state 7 receive priority (and thus full capacity) over those in state 2 (as long as there are at least
0.01% present). In the deterministic problem the priority rule can be implemented such that
once the number of individuals in state 3 and 7 fall to the threshold of 0.01% of the population
it is possible to keep this level. This is not possible in the N individuals problem. The priority
switch leads to blocking the individuals in the other line, see Figure 5. The blue line shows
the state trajectories in the deterministic model. The red line is a realization of the system for
N = 1400 individuals where we use the deterministic open-loop control of Theorem 5.2. We
see that the state processes converge. Finally the green line is a realization of the N = 1400
individuals model under the priority rule. We can see that here state processes do not converge.

Figure 5. State trajectories for N = 1400 individuals. Deterministic trajectory
(blue), realization under deterministic open loop (red), realization under feedback
priority rule (green).

7. Appendix

Lemma 7.1. Let X be a separable metric space, Y be compact metric and f : X × Y → R
continuous. Then xn → x for n→ ∞ implies

lim
n→∞

sup
y∈Y

|f(xn, y)− f(x, y)| = 0.
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For a proof see e.g. Lemma B.12, Lange (2017).
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