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Asymptotic direction of a ballistic random walk in a
two-dimensional random environment with nonuniform mixing

Julien ALLASIA*

Abstract

In this paper, we study random walks evolving with a directional drift in a two-dimensional
random environment with correlations that vanish polynomially. Using renormalization methods
first employed for one-dimensional dynamic environments along with additional ideas specific to this
new framework, we show that there exists an asymptotic direction for such a random walk. We also
provide examples of classical models for which our results apply.

1 Introduction

Research on random walks in random environments (RWRESs) has been active since the 1970s and has
found its motivation in various applied fields. Typically, in a static framework, we allocate to each point
in Z¢ (d > 1) a transition probability measure on the set of its neighbors, used to determine the law of
the jump of a particle located at this site (we often refer to the random walker as a particle). Contrary to
classical random walks, results as simple as laws of large numbers (LLNs) are often hard to obtain, and
strong assumptions describing the dependencies in the environment and the ballisticity of the random
walk usually have to be made.

The one-dimensional i.i.d. case is well understood, and a LLN was shown in [Sol75] using ergodicity
arguments. In larger dimensions, it is possible to derive a LLN under ballisticity conditions. For instance,
[Zer98] used a drift assumption that implied large deviation results. In [SZ99] and [Zer02], the authors
introduced a seminal regeneration argument that gives a LLN under Kalikow’s condition; see [Kal81]. In
[Szn02], a weaker ballisticity condition known as Sznitman’s condition (T') was introduced, which gives
a LLN in the uniformly elliptic setting. In any cases, not even the i.i.d. framework is well understood
without ballisticity assumptions, and our paper is no exception: we will make a drift assumption that is a
strong version of ballisticity.

One can wonder if conditions on the dependencies of the environment weaker than the i.i.d. assumption
would be sufficient to derive a LLN. In [CZ04], the authors managed to adapt the regeneration argument
from [SZ99] when the environment is assumed to satisfy some uniform mixing conditions. Recent progress
has also been made for one-dimensional dynamic random environments, in which ballisticity is automatic
in the time direction. Similar mixing conditions to that of [CZ04] were used to derive a LLN; see
for instance [AdHR11]. Asymptotic results were also shown for some particular environments using
their specific properties, like the contact process in [dHdS14] and [MV15], or the environment given by
independent simple random walks in [HAHS™15].

In [BHT20] however, a LLN was shown for general environments satisfying a non-uniform polynomial
mixing condition, using multi-scale renormalization methods inspired by percolation theory. The latter
article fundamentally relies on a monotonicity property of the model (see (2.9) in [BHT20]), which is
ensured by the dynamic framework and a nearest-neighbor assumption. Generalizing the methods of
[BHT20] when this essential property is missing was already explored in [Al123] by lifting the nearest-
neighbor assumption. In the present paper, we keep this assumption but we move from the dynamic
one-dimensional framework to a static two-dimensional one.

More precisely, we assume that we are given a polynomially correlated random environment g on Z2,
where for each site x in Z2, u(x) gives the transition probabilities for the jump of a particle located at
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x to one of the four nearest-neighbors of x. We consider X,,, the random walk starting at the origin
in environment p. In order to use the ideas of [BHT20], we give X,, a drift upwards by asking that
Haote, = 1/2 4+ ¢ a.s. for every site z. This allows us to think of the vertical coordinate as roughly
equivalent to time. Thus we will be able to show the existence of an asymptotic direction for our random
walk, which is an almost sure limit of X,,/|X,,| when n goes to infinity, where | - | is the Euclidean norm
on R?; see Theorem 2.4. This could well be the first step towards showing a LLN in this framework, i.e.
the almost sure convergence of X, /n.

The question of the existence of an asymptotic direction for RWRESs has already been discussed in the
ii.d. setup in [Sim07] and [DR10]. One important result is that if the random walk is transient in the
neighborhood of a given direction, then an asymptotic direction can be found using renewal structures.
But again these methods fail when we have weaker decorrelation assumptions for the environments.

Extending the ideas of [BHT20] does not merely consist in rewriting its arguments in a different
framework. On top of the additional technical considerations about ballisticity (which is a given in
the dynamic framework), it requires finding a way to generalize the lost monotonicity property. More
precisely, we need to guarantee that if a particle starts on the left of another particle, it will remain on its
left forever. This is made possible by choosing the right coupling for our random walks and proving a
weaker "barrier" property: see Proposition 5.1 and Figure 4 for an illustration of what can happen in
this new framework. Furthermore, the fact that our random walks can revisit their pasts calls for an
argument to somehow split sample paths into different sections that do not meet. Since the classical
argument of renewal times does not work with our weak decorrelation assumptions, we use a weaker
notion of cut lines, presented in Section 3.5.

OUTLINE OF THE PAPER. In Section 2, we define precisely the framework of this paper by defining
static environments and random walks on them, before stating our main result, Theorem 2.4. Its proof is
divided into two parts, which correspond respectively to Sections 4 and 5. In the first part, we show the
existence of two limiting directions that bound the spatial behavior of our random walks in some sense.
In the second part, we show that these two directions coincide, which will give the asymptotic direction
that we are after. In Section 3, we introduce essential tools that will be instrumental in both parts of the
proof. In Section 6, we give some ideas and problems that we are facing to show a complete LLN. In
Section 7, we present some models for which our results apply.

CONVENTIONS.

o N, Z and R respectively denote the set of natural integers (starting from 0), relative integers and real
numbers. N* denotes N\ {0}, R} denotes {z € R, z > 0} and R* is Ry \ {0}. If a < b, [a,b) is the
interval {x € R, a < = < b}. If n < m are two integers, [n,m] is the set of integers [n, m] N Z. For
a couple x = (a,b) € R?, we write a = m;(z) and b = m2(z), and we refer to them as the horizontal
and vertical coordinates of z. The letter o denotes the origin (0,0) € Z? and 0 the everywhere zero
function of NZ°. If S is a finite set, |S| and #S denote the cardinality of S. When we say that a € R
is "less than" or "at most" (resp. "greater than' or "at least") b € R, we mean a < b (resp. a > b).

e ¢ denotes a positive constant that can change throughout the paper and even from line to line.
Constants that are used again later in the paper will be denoted with an index when they appear for
the first time (for instance cg, c;...).

o The following letters will usually be used to denote the same kind of object: n € N for an integer time
quantity, H € N for an integer space distance, x,vy,z € Z2 for a space location. Capital letters are
usually used for events (A, F, E, F...) or random variables (X, Y, Z, N, U...). I will denote a fixed
history (see Section 2.4) while A will be a random history.

e Drawings across the paper are not to scale and they do not necessarily represent the random walks
in an accurate way: they are only meant to make the reading easier. For instance, sample paths are
depicted as smooth curves, although our random walks evolve on Z2.



2 Framework

2.1 Environment

Let e; = (1,0) and es = (0,1). Let S = {(p:)i_; € R%, Z?lei =1}and O = 5% An element 1 €
is called an environment. For € Z2, we will use the following notation:

/’L(x) = (/J/w,;v-ﬁ-el ) Mw@—el ) Mw,m—ez ) Mw,m-i—eg)a

where, for example, py »+te, Will denote the probability for a particle located at = to jump to = + es.
We consider the topology on S induced by the canonical topology of R*, and the product topology on €.
We denote by 77 the associated Borel o-algebra. If 1 € Q; and y € Z2, we define the translated environment
0V : x € Z2 — p(z +y). We also define, for F € Ty, the translated event 0YF = {0Yu, u € F}.
Take a probability measure P on (4, 77). On (Q1, 71, P), the random variable idg, is called a static
two-dimensional random environment with law P. We denote it using the same letter p by abuse of
notation.

For the rest of the paper, we make the following assumptions on the random environment.

Assumption 2.1 (Translation invariance). For every y € Z? and F € Ty, we assume that

P(OYF) = P(F).
Assumption 2.2 (Drift). There exists ¢ > 0 and A C Qy satisfying P(A) = 1 such that for every u € A,

1
(2.1) Vo € 22, lpotes = 3 +e.

From now on, ¢ is fixed. In anticipation for Definition 3.15, we also fix an integer constant [ satisfying

1/2—¢

All constants introduced from now on are allowed to depend on ¢ and £.

Assumption 2.3 (Vertical decoupling of the environment). Let h > 0. If By and Bs are 2-dimensional
bozes (i.e. sets of R? of the form [a,b) x [c,d) where a < b and ¢ < d), we say that they are h-separated if
the vertical distance between By and By is at least h. We assume that there exist ¢ > 0 and o > 12 such
that for every h > 0, for every pair of h-separated boxes By and Bs with maximal side lengths 2(25 + 1)h,
and for every pair of {0,1}-valued functions fi and fa on Qq such that f1(u) is o(u|p,)-measurable and
fa(w) is o(u|B,)-measurable,

Covg (f1(p), f2()) < coh™.

See Figure 1 for an illustration of this assumption: the environment inside box B; can be decoupled
from that inside box By. We will come back to this property and this figure later, see Fact 2.9.

2.2 Random walker

We will work with random walks jumping at discrete times, but our results also hold in continuous time
(in the Poissonian framework); see Remark 2.6. Mind that in [BHT20], using continuous time was crucial
in the proof, because we needed that particles located at neighboring sites almost surely cannot jump
simultaneously. However with this new model, time will not play such an important role in the coupling
of particles. See Section 2.3 for more details.

We now define the random walk we are interested in and state our main results. For the sake of clarity,
we define it in a simplified intuitive way before introducing a complete construction and a coupling in
Section 2.3.

In a certain probability space with measure P, we define the random walk (X,,),en+ as follows. The
random walk starts at the origin of Z2: Xy = 0. Then, at each integer time n, the random walk jumps
to one of the sites in {X,, + e1, X,, — e1, X, — €2, X;, + ea} with a probability given by u(X,,), and this
jump is independent of { X, k < n} knowing u(X,).



The goal of this paper is to show the existence of an asymptotic direction for X = (X,,)pen. This is
stated in the following theorem, where | - | denotes the Euclidean norm on R? and S* the unit Euclidean
sphere centered at o.

Theorem 2.4 (Asymptotic direction). There exists x € St with ma(x) > 0 such that

P-almost surely, X

n
|Xn| n—00

where \if(::l is almost surely well-defined for n large. Moreover we have a polynomial rate of convergence:

VE>0, Jer =c1(€) >0, Vn e N*, P (| X, — [Xnlx| = €Xn]) <cin™/%

It is straightforward to check that this result is a consequence of the following result. The latter is less
appealing but its formulation is closer to the methods used in [BHT20], which is why we will focus on it
from now on.

Theorem 2.5. There exists v € R such that

Xn)
P-almost surely, 1(Xn — v,
b(X,) e
where :;8((::% is almost surely well-defined for n large. Moreover we have a polynomial rate of convergence:
(2.3) VE>0, Fey = c2(€) >0, Vn € N*, P (Imi(Xp) — vma(Xn)| = €|ma(Xn)]) < can™ /%,

Mind that in the rest of the paper, what we (abusively) call a direction is simply the relation between
the two coordinates of a point in Z2. For instance, m (X,,)/m2(X,,) is the direction of X at time n. We
will refer to v as the limiting direction of X. The link between v and x from Theorems 2.4 and 2.5 is
given by

(v, 1)

X = ——= and v:m(X).
v2+1 m2(x)

Remark 2.6. Theorem 2.4 also holds for the random walk (Y;):>¢ in Z?2, started at o, in the following
continuous time framework. Instead of jumping at integer times, we set a Poisson process (T},)nen+ of
parameter 1 in R (independent of 41) and we allow Y; to jump at each time given by this Poisson process;
everything else is the same as in the discrete time framework. Then, (X,, = Y7, )nen (where Ty = 0)
satisfies Theorem 2.4. From there we can check that Y;/|Y;| converges to the same asymptotic direction
as X, /|X,| when t goes to infinity.

2.3 Complete construction and coupling

Inspired by [BHT20], we want to define random walks starting from all possible starting points in Z? and
couple them in the following way: no matter its starting point, a random walk visiting a fixed site for
the first time should jump to the same neighboring site. To define this properly, we first define a jump
function g : S x [0,1] — {e1, —e1, —ea, €2} by setting, for p = (p1,p2,p3,p4) € S and u € [0, 1],

+e; ifuel0,p1);

—ey ifuep +[0,p2);

—ey if u € p1 + p2 + [0, p3);
+ep if u e [1—p4, 1]

(2.4) g(p,u) =

Then, let (U(x,7))zez2, ien+ be a family of independent uniform random variables in [0, 1], defined on a

probability space (Qg, 73, ). The idea is that U(z,7) will be the source of randomness used for the jump
of a random walk visiting « for the i*® time. Let

(2.5) Q= xQ, T=Ti®T, P=PaP.



We usually call P the annealed law. When p € Q; is a fixed environment, P* = 7, ® P is usually
called the quenched law. We have P(-) = [P#(-) dP(u).

In order to couple random walks, we have to count the number of times that each particle has visited
each site. Therefore, for every starting point y € Z2, we define simultaneously a random walk XV and a
counting process N¥, both as random variables on (2, T'), by the following:

Xo =u;

Va € Z*, N¥(x) = 0;

VneN, Vo e Z? NY | (z) = NY(z)+ 6, xv;

Vn eN, XZH =X)+g (,u(X}{% U(Xy, N;{+1(Xg))) )

(2.6)

where ¢ is the Kronecker symbol. Let us rephrase what these formulas mean. If a particle started at y
reaches z for the first time at time n, then its jump at time n (namely XgH — X7Y) is determined by
U(z,1). If it comes back to z later in time, it will use U(z,2) to choose where to jump, and so on.

Note that when y = o, we do recover the law of random walk X introduced in Section 2.2, because
our coupling ensures that the sequence of uniform variables used for the jumps is i.i.d. (for a detailed
proof, see Proposition 3.3). Therefore, from now on, when working with y = o, the superscript y will be
omitted, and X will denote the random walk (X?),en defined in (2.6).

We will use a more practical notation for the uniform variables that are read by the random walker.

Notation 2.7. For n € N*, we set UY = U(X!_,, NY(X?_))).

n—1»
With this notation, the induction formula that defines our random walks in 2.6 can be written in a
more straightforward manner:
(2.7) vneN, X\, =XY+g(uXy),Ul,).

Notation 2.8. Let y € Z* and P be a subset of R;.. We define X% = {XY, s € PN N} to be the sample
path of XV restricted to the times in P N N.

In practice, we will use decoupling for events that involve our random walks, which are elements of the
sigma-algebra that we denoted by T (recall (2.5)). This is actually not stronger than Assumption 2.3,
because the uniform variables used for the jumps of our random walks are i.i.d., so two sets of uniform
variables supported by disjoint boxes are independent. In practice, we will always use decoupling to
upper bound the probability of the intersection of two events of 7. We will say that an event A € T is
measurable with respect to a set B if it is a measurable function of u|p and {U(x,1), i € N*, x € B}.

Fact 2.9 (Decoupling). Assume Assumption 2.3 is satisfied. Let h > 0. Let By and Bz be h-separated
bozxes with mazximal side lengths 2(28 + 1)h. Let Ay resp. Ag be events of T that are measurable with
respect to By resp. Ba. We have

P(Al N AQ) < ]P(Al)P(AQ) + Coh_a.

See Figure 1 for an illustration of this fact: events describing respectively the two sample paths drawn
here can be decoupled using the decoupling property.

2.4 History

Let ng € N*. Because of our coupling, the random walks given by Xf{o . and X X0 do not necessarily
have the same sample paths. Indeed, the first one has a non-empty history, in the sense that between
time 0 and ng, it has visited a certain number of sites and it has looked at ng random variables among
the {U(w,i), x € Z?, i € N*}, which it will not look at again in the future. In order to address this issue,
it will be convenient to define our random walks by adding an initial condition alongside the starting
point, which we will call the initial history of the random walk.

Definition 2.10.
o ForT :7Z? — N, we define its support as Suppl' = {z € Z%, T'(z) > 0}. We let

H = {T': Z? = N such that SuppT is finite}.
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Figure 1: Illustration of the decoupling property.

o Lety € Z? and n € N. The random variable NY defined in (2.6), taking values in H, is called the
history of random walk XY at time n.

o Lety € Z? and T € H. The random walk X¥'' starting at y with history T is defined in the same way
as before, except that in (2.6), we replace U(x,i) by U(z,i+'(z)). We also define a process N in
the same way as before, and we use UY'Y as in Notation 2.7. We extend the definitions of P* and P to
all the random walks { XY,y € Z2,T € H}.

Note that we could have restricted ourselves to an even smaller subset of NZ° for our set of histories.
For instance, the support of a random walk’s history has to be connected. Here we simply chose to define
H as a simple countable subset of NZQ, in order to sum over possible outcomes I' € H without worrying
about uncountability.

Definition 2.10 addresses the issue mentioned just before, for it ensures that for every ng € N, we have

XY NY
VneN, XY  =X," ",

no+n

Using Definition 2.10, we recover (2.6) by noticing that X¥ = X¥°. From now on, an omission of T in
any notation that is defined using a history superscript I" will always mean that we are considering I' = 0.
Also, as mentioned before, the omission of the starting point superscript y will mean that y = o.

The rest of the paper is dedicated to showing Theorem 2.5. Its final proof using lemmas that will be
shown later can be found at the end of Section 3.4.2.

3 Key properties and tools

3.1 Lower-bound random walk

It will often be very handy to lower-bound the vertical position of our random walkers using Assumption 2.2.
Recall Notation 2.7.

Definition 3.1. Let y € Z2 and T € H. We define the lower-bound random walk X' as the random
walk on Z defined by

o (o
Vn € Na ngl = X;#F + g( nyl)7

n

where §(u) = luz1/2-c — Lucijo—e-



The definition of X¥! is made for the following properties to hold. First, X% is simply a biased
standard random walk, with transition coefficients given for every n € N by
P Xﬁfl =z+1|XyT =2 =1+¢g

vyl vyl — _1_
P(X) o =2—1|X) =x) =3 —c.

Second, it is coupled with X¥T in such a way that, for u € A, we have the following inclusion of events:
(3.2) {Xuf = xer w1} < {xuf = xyT + e}

Indeed, assume )A(#_El = )A(ﬁr + 1. By definition of g, this means that Ugfl > 1/2 — e. Now, Assumption
2.2 ensures that for 4 € A, piyvr yur >1/2+4+¢€,s0 Uf{fl 21— piyur yur, , hence the result using
(2.4) and (2.6).

This implies the following essential inequality between increments of X¥' and increments of Xur,

+e2

Fact 3.2 (Increment inequality). For everyy € Z2, T € H, ng € N, n € N* and pu € A,

(3.3) Kl - K" < (X5, - x40
This inequality is a mere consequence of (3.2). It justifies the name "lower-bound random walk" that
was given to X: its role is to lower-bound the vertical behavior of X.

3.2 Markov-type properties

Our coupling makes the definition of our random walks more complex than they usually are. Yet, as we
already said, a single particle will behave just as in the usual framework, meaning that our random walks
are Markov chains under a fixed environment. We make this more precise in the following proposition,
whose proof can be found in the appendix.

Proposition 3.3. Lety € Z2? and I’ € H. Under either P or P*, the (UY""),en- are independent uniform
random variables in [0, 1].

Corollary 3.4. The low under P of X¥'' —y and the law under P or P* of Xul — ma(y) do not depend
ony and T.

Proof. This is a consequence of Assumption 2.1, induction formulas in (2.7) and (3.1), and Proposition 3.3.
O

Oftentimes, we will have to bound the probability of an event describing a random walk whose initial
conditions (starting point and history) are random variables. To do this, we will need Markov-type
properties.

In addition to the invariance property given by Corollary 3.4, Proposition 3.3 ensures that for any
y €Z? and T € H, XY is a Markov chain under the quenched law. Nonetheless in general this Markov
chain is obviously not time-homogeneous, since its transition matrices depend on the location of the
random walker at each step. However, X¥T is indeed a time-homogeneous Markov chain (under either P
or P#), and so we have the strong Markov property given by Corollary 3.6.

Definition 3.5. Lety € Z? and I’ € H. We say that a random variable T is a stopping time for X¥' if
for every t € N, {1 =t} is measurable with respect to u and {UY", n < t}.

Corollary 3.6. Lety € Z?, T € H and let T be a stopping time for XYL, Then, conditioned on T < o0,
{Xn, n <7} is independent from {X, — X, n > 7} (under either P or P*).

However, mind that even if we are working with a deterministic time 7 = ¢ € N and under the quenched
law P one cannot generalize Corollary 3.6 by substituting X with X , because of inhomogeneity. Indeed,
the jumps of the process given by {X,, — X, n > 7} do not involve uniform variables only, but also the
past of the random walk. For instance, the jump of the random walk between time ¢ and ¢ + 1 is given by
considering Uy and p(Xy): even if p is fixed, we still need to know X, which is clearly not independent
of {X,,, n < t}. This is an obstacle to studying the probability of an event describing a random walk
whose initial conditions are given by its past. Nonetheless, we do have the following proposition, which
will be very useful in the future. Recall the definition of A from Assumption 2.2, as well as Definition 3.5.



Proposition 3.7. Let yo € Z2, Ty € H and let T be a stopping time for X¥olo, Fory € Z? and T € H,
let AYT be an event that is measurable with respect to p and (UY'Y)en-. Then

,T ,T
P (AXEO 0N 0) < sup sup P4 (AYT),
neA y,I'

Therefore, if we have an upper bound of P*(AY'Y) that is uniform in u € A, y € Z* and T' € H, it is also
an upper bound of ]P’(AXEO’FO’N}'IU'FO).

Mind that a priori we may not replace sup, p PH(AYT) by P#(A%9). Indeed, although in the quenched
setting A¥!" is a measurable function of (UY'!),,, whose law does not depend on (y,T), the function itself
may depend on y and I'. However we will usually not use Proposition 3.7 in that case and so we will
usually simply use a supremum over pu: see for instance the proof of (3.14).

Proof. For the sake of simplicity, we write the proof for yg = 0 and I'y = 0. Let us fix an environment g,
y € Z? and T' € H. First, note that the (UY""),en- are measurable with respect to {U(z,i), z € Z2, i >
I'(z)}. Furthermore, we claim that for every t € N, {X; =y, N, =T, 7 =t} is measurable with respect
to {U(x,4), x € Z*,i < T'(z)}. Let us prove this claim. Since 7 is a stopping time for X, for every t € N,
there exists some {0, 1}-valued measurable function f; on [0, 1]’ such that {r =t} = {f,(U1,...,U;) = 1}.
Therefore, we can write

{Xt:y7Nt:P,T:t}

_ U {X1 :yl,...,Xt:yt}ﬂ{Nl(yo):no,...Nt(yt_l):nt_l}
NN =T} {fe(U(yo,n0), .-, U(ye—1,n¢-1)) = 1}.

0=YQ,---, Y=y

In the union above, all the choices of y; and n; (where 0 < j < t) such that n; > I'(y;) give an
empty contribution. Indeed, each choice of y; and n; corresponds to an event that is included in
{N;+1(y;) = n;, Ny = T'}; therefore, if n; > I'(y,), then N;11(y;) > N¢(y;), which is impossible since
s + Ng(z) is non-decreasing for any x € Z2. Considering that each event in the union above is measurable
with respect to {U(yo,m0), .., U(yt—1,n1—1)}, the claim is proven.

Consequently, by Proposition 3.3, {X; = y, N; = T', 7 = t} is P#-independent from the o-algebra
generated by (UY!),en+, so it is PA-independent of A%, As a result, we have

PN = 3 [ SR X =y No= T 7 = B
yez?, rer /2 teN

= Z / PH(AYT)PH(X, =y, N, =T)dP(u) by independence
y€Z2, TEH Ut

= > / PHAYT)PH(X, =y, Ny =) dP(u) since P(A) =1
yeZ2, TeH A

< sup sup PH(A¥T),
ueA y,I

concluding the proof of the proposition. O

3.3 2D simplification

As explained in the introduction, the idea of our proof is to adapt arguments from the framework
of one-dimensional dynamic environments from [BHT20]. The idea is therefore to treat the vertical
coordinate as a time coordinate somehow. We will forget about the actual time variable and "hide" the
time information by only considering hitting times of horizontal lines. In other words, we work in two
dimensions instead of three (2 space + 1 time dimension), as was the case in [BHT20] (1 space + 1 time
dimension).



Definition 3.8. Let H €N, y € Z?, w € R x Z and T' € H. The reaching time of height mo(w) + H by
XYL is defined by

Syl _ inf{n € N, mo(X¥T) = mo(w) + H} if mo(y) < mo(w) + H;
Hw ™) 0 otherwise,

where the infimum is in N U {4o0}.

In TI?’;I:U, w is a reference point (whose horizontal coordinate does not play any role). It will be very
useful in the future, because we will want to stop our random walks on a lattice centered at w, and we
will have ma(y) slightly larger that ma(w) (see Definition 3.15 and the proof of Lemma 4.4). Note that
when y = w, T}fll; is simply the time that X¥%' needs to go up H times.

Notations can get very heavy and so we introduce several conventions:

: . . : r_. r r o 0
» Consistently with previous conventions, 7 will mean 77, not 77, . 7 will simply be 777 .

o We will write X yfr without specifying what X%! means - any arbitrary value would work, since
H,w

T}’{fﬂ < 0o almost surely (see Section 3.4.1).
o We will write X% instead of X¥ | and we will write X[yO’FTH  instead of xvr L X Mind that in
s TH w ’ w ’Tf{,w

these special cases, the omission of y and I' does not mean y = o and I" = 0, contrary to the general
rule we gave. Anyway things should be clear with the context.

We also define a stopping time for X¥T as follows.

Definition 3.9. Lety € Z2, T' € H and H € N. We let
(3.4) 0 —inf{n e N, XY =ma(y) + H} € NU {+o0}.
Mind that 73" is the equivalent for X¥T of 74" not 7"
In order to show Theorem 2.5, it will actually be sufficient to show an almost sure asymptotic estimate
for X along the subsequence given by (7x)gen. This is what the following lemma is about.

Lemma 3.10. There exists v € R such that

X
P-almost surely, % v
— 00

The proof of Lemma 3.10 is the purpose of Sections 4 and 5. The fact that Lemma 3.10 implies
Theorem 2.5 is shown at the end of Section 3.4.2.

3.4 Localization properties

3.4.1 Ballisticity
Recall Definition 3.1. Classically, we have, for any y € Z2? and I' € H, the almost sure divergence

X¥T — +o0. Therefore, because of (3.3), we also have
n—oo

(3.5) To(XYT) —— 400 P-almost surely.

n—oQ

In other words, we have directional transience for X¥T along the ey direction. Actually we have a much
stronger ballisticity property that gives a minimum speed along the vertical coordinate, which is one of
the key properties usually required to get a LLN for a RWRE.

Proposition 3.11. For any £ > 0, there exists a constant cs = c3(§) > 0 such that for every n € N,
y €Z? and T € H, we have

(3.6) P (’X}{F —ma(y) — 25n‘ > §n> <ezle o,

and the inequality is also true when replacing P by P* for u € A.



Naturally, the limiting speed 2¢ in Proposition 3.11 is simply the minimal possible expected value
for the vertical jump of X, that is (1 +¢) — (3 — ) = 2¢, according to Assumption 2.2. The proof
of Proposition 3.11 is based on a very classical Chernoff bound, so we choose to leave it out. From
Proposition 3.11 and inequality (3.3), we can easily deduce the following ballisticity property for X¥T.

Corollary 3.12 (Ballisticity). For any ¢ € (0,2¢), y € Z*>, T € H and n € N,
P (ma(XYT) — ma(y) < (n) < cglemn,

where c3 = c3(2e — () is the constant defined in Proposition 3.11. Moreover, the inequality is also true
when replacing P by P*, for u € A.

3.4.2 Vertical lower bound

Another key property of biased random walks is the gambler’s ruin estimate (see for instance [GS01],
Section 3.9), that gives a formula for the probability of exiting a section of Z by either of the two sides.
This will allow us to have a global lower bound for the second coordinate of X¥T.

We define an event guaranteeing that X¥ ! stays above a certain horizontal line by setting, for H € N,

(3.7) EYY = {¥neN, m(XYT) > m(y) — H} .
Proposition 3.13. There exists c4 > 0 such that for every H € N,

(3.8) P ((E}i;r)c) <eofl,

Moreover when H = 0, we even have

(3.9) P ((Eg’F)C) <1- 2.

Both inequalities are also true when replacing P by P* for u € A.

The proof of Proposition 3.13 can be found in the appendix.
The localization properties given by Propositions 3.12 and 3.13 allow us to prove that Lemma 3.10 is
sufficient to prove Theorem 2.5, using an argument of interpolation.

Proof of Theorem 2.5. Let v be as in Lemma 3.10. Let n € N* be such that m5(X,,) > 0 (which, by (3.5),
happens for n large enough P-almost surely). Let H,, € N be such that 77, < n < 7g, 1. Note that,
using (3.5) again,

(3.10) H, == +oo.

Also, note that since mo(X,,) < H, + 1, we have, for n large enough,

(3.11) P(H, <en) <P(m(X,) <en+1) <P <7T2(Xn) < 32671> < eg(e)/2) Lemesle/2m,
Now, note that
m1(Xp) m(Xry,) | m(Xn) —m(Xr,) 1 1
12 = L n X - ).
(812) (X)) H, o, T\ Sy T

First, using (3.10) and Lemma 3.10, we have

ﬂ-l(XTHn) a.s. v.
H, n— oo

(3.13)
As for the second term on the right-hand side of (3.12), let us fix a > 0 and note that

P (|m1(Xy) = m1(Xry, )| > aHy) < P(Th, 41 — 78,

n

> aHy)

10



Xopy Ny
<P (7'1 T aan) + P(H, < en).
Ko

Now, if we fix p € A, we have

PH(m1 > aen) < PH(X | 4en) < €laen]) for n large enough
< es(e) " temes(e)Lasn] using Corollary 3.12
< c—le—cn.

Therefore, using Proposition 3.7 and (3.11),
(3.14) P (Im(Xn) = m1(Xry, )| = aHy,) < lem

)

which is summable in n. Using Borel-Cantelli, we obtain that

7T-1()(”) - 7Tl(‘X‘an) a.s.

H, n—00

(3.15) 0.

In order to estimate the third term on the right-hand side of (3.12), first note that if mo(X,,) > H, — H}/z
and H,, > en, then we have, for n large enough,
1 (Xn

00 (e - ;N = )

In the first equality, we used that H,, — m2(X,,)
|71 (X5)| < n, and that for n large enough, H,

a > 0, we have, for n large enough,

]P’( 1 1

m1(Xn) <7T2(X) — H) ’ > a> < P(ma(Xy) < Hy — HY?) + P(H, < (2n/a)?/3) +P(H,, < en)

H, — 7T2(Xn) < n H7ll/2

< = o2nH 32,
H, H,/2 H, “n

0, since n < Th, +1. In the inequality, we used that
en > 4, so H,, — H}/Q > H, /2. Therefore, if we fix

Vv

X, N, \C€
<P (Bl ) + 30(Hn <en)

—ent/? -1 -
Se cn +3C 16 cn’

using Propositions 3.13 and 3.7, as well as (3.11). Applying the Borel-Cantelli lemma once more, we
obtain that

o ) (e~ 1) 70

Putting together (3.12), (3.13), (3.15) and (3.16), we obtain that

Wl(Xn) a.s. v
7T2(Xn) n—o00

b

concluding the proof of Theorem 2.5. O

3.4.3 Horizontal bounds

It will also be essential to control the horizontal behavior of the random walk. The lack of intrinsic
information on the horizontal jumps of the random walks does not allow us to get a global horizontal
bound as in Section 3.4.2. However, what we can do using Assumption 2.2 is bound the horizontal
displacement of the random walk by the time it reaches a certain height. To that end, we define the
following event, for y € Z2,T € H and H € N*:

(3.17) Dy = {vn e [0,7507,

(X2~ mi(y)| < BHY.

Proposition 3.14. There exists c5 > 0 such that for everyy € Z2, T € H and H € N*,
(3.18) P ((Dgf)C) <cgleot

and the same estimate holds with P* for any p € A.
We refer to the appendix for a proof of Proposition 3.14.
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3.4.4 Localization in boxes

In order to apply Fact 2.9, we will have to localize events in boxes. In practice, this will be done by
working on large probability events that ensure that our random walks stay in certain boxes before
reaching a certain height, or, in other words, that they exit those boxes through the top side. This simply
requires to put together the results of Sections 3.4.2 and 3.4.3. However, we actually want something
stronger: we want to control the behavior of a lot of particles simultaneously. This will be instrumental
for Section 5.

Recall the definition of 8 in (2.2). We will also often use the following notation, for H € R% |

(3.19) H = [Hl/ﬂ .

We will also use this notation with specific values of H: for instance in the future we will write Hj, for
[H;/ﬂ or (L) for [(hLy)'/?] .

Definition 3.15. Let H € R and w € R x Z. We define

Iy(w) = (w+[0,H) x [0, H")) N Z?;
(3.20) Ir(w) = (w+[0,H) x {0})NZ?%
Bp(w)=w+[-BH,(B+1)H) x [-H',H] C R

We also define the following events, for H € N* and w € R x Z:

(3.21) Fu(w)= ) {X[%VTHYW] C BH(w)} .
Y€l (w)
As usual, Iy = Ig (o), By = Br(0) and Fyg = Fg(0).

See Figure 2 for an illustration of those definitions.

y
TH,w

Figure 2: Tllustration of Definition 3.15. On Fy(w), random walk X¥ has to exit By (w)
through the top side.

Note that in Definition 3.15, we used a real parameter H > 0, while H is usually an integer. This is
because we will use the objects defined above with non-integer parameters as of Section 5.2.

Naturally, the choice of H'/2 and f8 are made in order for our random walks to exit the boxes that we
defined through the top side with large probability. In fact, we have the following estimates.

Proposition 3.16. There exists cg > 0 such that for every w € R X Z and H € N*, we have
(3.22) P (Fy(w)°) < cgtemeH"”.
This is also true when replacing P by P* for u € A.

Proof. This is a direct consequence of Propositions 3.13 and 3.14, along with a union bound. O
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Remark 3.17. For the rest of the paper, we fix Hy an integer constant satisfying
VH > Hy, H < min(H/2,28H).

Why is that? We will often use Fact 2.9 with By (w) and h = H/2. The horizontal size of boxes By (w) is
precisely (26 + 1)H = 2(25 + 1)h. As for the vertical size, it is equal to H + H’, and we want it to be at
most (28 + 1)H, so we want H' < 28H. As for the H' < H/2 condition, it is because we will encounter
boxes that are (H — H')-separated; in order to apply the decoupling property with vertical separation
h = H/2, we therefore need H' < H/2. For the rest of the paper, we will work with H > Hj.

3.5 Cut lines

When trying to adapt the ideas of [BHT20], the history that our random walk accumulates will raise issues
(see for instance Section 4.2.3). Therefore, it will be very useful to find a time after which our random
walk does not revisit the sites visited in the past. In this sense, everything will be as if, considering the
random walk after this time, its initial history is everywhere zero.

Definition 3.18. Let z € N.

o Let Z = (Zp)nen be a random walk in Z and let T, denote the first hitting time of {z} by Z. We say
that z is a cut point for Z if T, < co and for everyn > T,, Z, > z. In other words, the sample path
of the random walk Z can be split into two parts with each part contained in a half-line delimited by z.
We set

O(Z) =inf{a € N, Zy + a is a cut point for Z};
TC(Z) = TZoJr@(Z)'

o Let now Z = (Z,)nen be a random walk in Z2. We say that R x {2} is a cut line for Z if z is a cut point
for mo(Z). We extend the previous definitions by setting O(Z) = O(ma(Z)) and T.(Z) = T.(m2(2)).

As before, we start by showing estimates on the lower-bound random walk (recall Section 3.1). We
refer to the appendix for a proof of the next Lemma.

Lemma 3.19. There exists c; > 0 such that for everyy € Z?, T € H and a € N,
P (@(XyF) > a) < 6;16767(11/2.

The inequality is also true when replacing P by P* for u € A.

Proposition 3.20. There erists cg > 0 such that for everyy € Z?, T € H and a € N,
P(O(X¥") > a) < cgle_csam.

This estimate is also true when replacing P by P* for p € A.

Proof. We write the proof for y = o and I' = 0 for simplicity. Let u € A and a € N. The crucial idea
here is that X ¢) + R x {0} is a cut line for X. Indeed, using increment inequality (3.3), we have:

o Forn € N, m(Xp xy4,) 2 m2(Xp %)) + XTC(X)+n - XTC(X) > m2(Xp,(x));
e For 0 < n < T.(X), T2(Xr (xy-n) S m2( X7, (%)) + XTC()A()fn - XTC(X) <m (X (%))
Using this observation, if we let b = |ea], we get
H(m2 (X)) > a)
P

(X, ) > 0, O(X) < leal) + PHO(X) > [=a)).

PH(O(X) > a) < P*(ma(Xy,

c

P
P

N

Now, using Lemma 3.19, P#(0(X) > |ea]) < 0;16_07L5“J1/2, and

P (ma(Xr, (%)) > a, O(X) < |ea))
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< PH(me(X4.,,) > a) using increment inequality (3.3)
<P (%Laaj > a)
< es(e)temes(®) fal using Proposition 3.11
hence the result by adjusting cs. O

Corollary 3.21. There exists cg > 0 such that for every y € Z?, T € H and n € N, we have
P(T.(X¥") >n) < 09_16769”1/2.
This estimate is also true when replacing P by P*, for u € A.
Proof. Let y=0,T'=0,n € N and y € A. Using Propositions 3.12 and 3.20,
PH(T.(X) >n) < PHO(X) > |en]) + PH(T.(X) > n, O(X) < |en])
<cglemeslent L Pr(r,) > n)

1 —ent/? 1 —
<c 1e cn +Cg(€) 16 03(5)71’

hence the result by choosing cg properly. O

3.6 The multi-scale renormalization method

The proofs of several major propositions in the rest of the paper are based on the fundamental idea of
multi-scale renormalization, which gives a practical method for using decoupling property (2.9). We now
give a general idea of how such a proof works, and we will often refer to it in the future.

Suppose we want to show an estimate for the probability of a certain family of "bad" events (Ay)men-

o We start by focusing on a certain subsequence (Ap, )k, (Hy)ken being a sequence of scales. We
set pr, = P(Ap,). We show that Ap, , is included in two events of probability pj supported by
Ry-separated boxes of maximal side lengths 2(28 + 1) R.

o We deduce the desired estimate for (p)gen-

— Using Fact 2.9 and a union bound, we get an inequality

Prt1 < Ok (97 + coRy ),

where C}, is a certain integer.

— From this inequality we deduce the desired estimate of py by induction on k. For this to work,
the scales and the bound to show have to be chosen properly. The base case of the induction
(often referred to as "triggering") requires arguments that are specific to each case.

e We conclude by interpolating the estimate from the (Hy)gen to any parameter H.

In order to accommodate to the polynomial decoupling, it will be useful to use the following scales.
Recall the definition of Hy from Remark 3.17.

Definition 3.22. We set Ly = max(10'°, Hy) and, for k >0,
Lk+1 = lk Lk, where lk = I_L]1€/4J.

The choice 10'° will become clearer in the proof of Proposition 5.12.

The rest of this paper will be dedicated to showing Lemma 3.10. To do this, we strongly rely on
methods developed in [BHT20]. First, in Section 4, we will show that there exist limiting directions v_
and v that bound the asymptotic behavior of our random walk with high probability. This requires to
adapt the methods in [BHT20] by addressing two technical issues: the deterministic drift in the time
direction is lost in the static framework, and the random walks can revisit their paths. Then, in Section
5, we will show that these two directions actually coincide, which will give us the limiting direction v in
Lemma 3.10. It is in this part of the proof that introducing a weaker "barrier" property as a replacement
of the monotonicity property of [BHT20] will be instrumental.
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4 Limiting directions

4.1 Definitions and main results

Recall that for us a direction is simply the inverse slope of a line in R?; for instance, all points = € R?
satisfying 71 (x) = ame(x) with ma(z) > 0 have direction a. The goal of this section is to show that there
exist two directions v_ and vy that somehow bound the spatial behavior of our random walker in the
long run. This property is made clearer in Lemma 4.4. It will consist of the first part of the proof of
Lemma 3.10, and we will show that in fact v_ = v4 in Section 5, thus concluding the proof.

As a matter of fact, we aim at showing a stronger version of Lemma 3.10 by considering not only one
fixed particle but all the particles starting simultaneously in Iy (w) from Definition 3.15. This will be
instrumental in Section 5, where we will need to control the directions of lots of particles at once. Recall
also notation T}L’Il; from Definition 3.8.

Definition 4.1. Let w € R X Z and H € N*. Let y € Ig(w) and T' € H. We define the empirical
direction of XY at height H with reference point w to be

v, 1
Vi = = (ml) -m).

As usual, when w or y are not mentioned, it means that we are considering the origin, and an omission
of I' means I' = 0. Now let v € R. We consider the following events:

Apw(v) =43y € Ig(w), V4

s

AHﬂU(U) = Ely S IH(’UJ), VI?_JL

We define the limiting directions by setting

vy = inf {v e R, liminfpy (v) = 0} ;
H—o0

v_ = sup {v € R, H]jrrn_glofﬁH(v) = O} .

(m1(y) + HVg o, w2 (w) + H)

fH BH

Figure 3: Ilustration of Ag . (v). The sample path started at y reaches height mo(w) + H with
a direction V};  larger than the direction v given by the dotted line.
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Note that when mo(y) = ma(w), V;}EH = VI?IZ is simply the inverse slope of the line connecting y and
X;/Ifw: it is the direction of X¥1 at height H. Mind that when ma(y) > m2(w) however, this is not exactly
true anymore.

Note that because of translation invariance, P(Agr ,(v)) and P(Ag ., (v)) actually do not depend on w,
which is why we only considered the origin for the definitions of v_ and v,. Indeed, we can first restrict
ourselves to w € (—1,0] x {0}, using Corollary 3.4. Then, H being an integer here, Iy (w) = Iy (o) for
every w € (—1,0] x {0}, so that Ap ,(v) = Ag(v). This would be wrong if H was any positive real
number, and that is why we will have to be more careful later, in Lemma 5.4.

It may sound unclear why we use liminfs in the definitions of v_ and vy, instead of limsups. In fact,
this will be required in order to get a much needed uniform lower bound on the probability for the random
walk to attain average direction greater but close to v_ over long time intervals (see Lemma 5.4).

Note that we never stated that v_ < v4, although it would be very tempting to say that it is obvious.
In fact, it is not an obvious consequence of their definitions, but it will be a consequence of Lemma 4.4.

Fact 4.2. We have the following bounds on v_ and vy :

(4.1) { 7ﬂ<v+<ﬂ;

—-B<v_<B
Proof. The proof being symmetric, let us just focus on the bounds for v .

e If v < —f, then using Proposition 3.14,

pr(v) =Py ecly, Vi >v)2P(Vy > -B)>P(Dg) =1 —c3le s — 1.

H—o0
o If v > 3, using Proposition 3.14 again,

P(ﬂyEIH, Vﬁl[?U)g (HyEIFU ij>6)

<HH' sup P((DY)°) <cg'HH e H"" — 0.
Y€l (w) H—o00

pr(v)

O

Remark 4.3. Note that v € R — pg(v) is a non-increasing function. Therefore, for v > v, we must have
lim inf pg (v) = 0. Similarly, for v < v_, liminf pg(v) = 0.
H—o0 H—oco

In spite of Remark 4.3, the definitions that we gave for v_ and v, are quite weak at first glance, because
we only have information on the liminfs. Our goal now is to show that for v > v; and v < v_, the liminfs
given in Remark 4.3 are actual limits, and we will even prove a precise estimate for pg(v) and pg(v)
when H goes to infinity.

Lemma 4.4 (Deviation bounds). For every & > 0, there exists c1o = c10(§) > 0 such that for every
H e N*|
{ pu(ve + &) < croH™ %
ﬁH(W_ — 5) < 010H7Q/4.

The proof of Lemma 4.4 is the goal of Section 4.2.
Corollary 4.5. The two limiting directions satisfy v_— < vy.

We will then show the following result, using Corollary 4.5.
Lemma 4.6. We have v— = vy. We call this quantity v.

The proof of Lemma 4.6 is the goal of Section 5 and can be found more precisely in Section 5.5. For
now, let us now prove Lemma 3.10 as a consequence of Lemmas 4.4 and 4.6.
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Proof of Lemma 3.10. Let £ > 0. Combining Lemma 4.4 with Lemma 4.6, we have, for every H € N*,

X,
: (‘H B “’ g 5) < 2en(§) B
H
Therefore, since o > 4, ZHGN P (‘ % — v’ > f) < 00. As a consequence, Borel-Cantelli’s lemma ensures
that

X
P-almost surely, % — v,

concluding the proof of Lemma 3.10. O

4.2 Deviation bounds: proof of Lemma 4.4

4.2.1 Ideas of the proof
Let us first give some heuristic insight on how the proof is going to unfold.

o We will only show the estimate for pg(v), where v > vy. The estimate for py (v) with v < v_ is shown
in the same way, the proof being symmetric.

e The road map for the proof is given by the renormalization method explained in Section 3.6, with
a sequence of scales given by (hoLk)k>k,, Wwhere hg and ko will have to be chosen properly. In the
induction that will give an estimate on this sequence of scales, the choice of ky and the definition of
(Lk)ken will be instrumental in the induction step, while kg is chosen for the base case to work.

o We are going to work with the sequence of events (A, 1, (Vr))k>k, With an appropriate choice of
(Vk)k>ko- The goal is to show that with good probability, on Az, (vk+1), we can find events
AnoLiwr (Vi) and Apgr, w, (k) with certain base points wq,ws located on a grid whose cardinality
does not depend on hy. The challenge is that we asked those two events to have everywhere-zero
histories. One way to find them is to look for the two starting points y; and ys (from the definitions of
AnoLyw, (Vi) and Ay 1, w,(vx)) on cut lines that we ask to be at vertical distance less than (hgLy,)'/?
of two points w; and ws on our grid. This is the whole reason why in our paper, I (w) is a flattened
rectangle, instead of being a true horizontal interval as in [BHT20].

4.2.2 Choice of hg and kg
Let us fix v > v4. Recall Definition 3.22. We let ky = ko(v) € N* be such that

(4.2) > (ié + 6”B> < ;v+.

l
k>ko k

We also set vy, = ”+2”+. Using Remark 4.3, note that since vy, > vy,

li?ii?ofpff(”’“o) = 0.

Therefore there exists H > Ly, such that pg(vg,) < L;OO‘/2. Let hg = H/Ly, € [1,00). By definition, we
have hoL; € N for all £ > kg, and
PhoL, (Vky) < L;ZOQ/Z.
This will be the base case for our estimate on pg(v). Now that hg is fixed, we let
(4.3) Hy, = hoLy for all k > ko.
Recall notation Hj, from (3.19). We now define a sequence (vi)r>k, by setting, for k > ko,
28,
Hj’
65

I

/
v, = Vg +

’
Vg1 = U, +
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This definition combined with (4.2) and the fact that hg > 1 ensures that vy T/L—) Uso < v. Therefore,
— 00

if we show that
(4.4) Wk > ko, pa(v) < L%,

then we get, using Remark 4.3,

(4.5) k> ko, pa, (v) < L%,

So the second step of the proof will be devoted to showing estimate (4.4) by induction on k.

4.2.3 Proof of (4.4)

DEFINITION OF THE GRID. Let us fix k > ko. Recall (3.20). In order to link scales hoLy and hoLg41,
we define the grid C, C R x HyZ to be such that

(4.6) U Zu.(w) = Bu,., N (Z x HiZ),

weCy

where the union above is disjoint (note that boxes By, (w) with w € Cj are not disjoint though). The
cardinality of Cj can be bounded from above by c111%, where ¢11 > 0.

LOCALIZATION AT SCALE k. We first need to define an event Fj that guarantees that the random
walks starting in [, , will stay in By, , and that their horizontal behaviours at scale Hj, are properly
bounded. To define this precisely, we set, for y € Iy, ., and j € [0, lx],

TjH '

XY =XY
(4.7) A
NI = N

Note that A =y and N = 0. Note also that for j > 1, 77 > 0, since ma(Ip,,,) is included in [0, Hy)

(indeed, Hy ,; = [(hoLrs1)"/?] < hoLi/S < Hy,). Therefore, indices satisfying j > 1 will not be a problem
even when ma(y) > 0, while j = 0 will be set aside in the next steps of the proof.
Recall Definitions (3.17) and (3.21). Let

lkfl
XY NY
(4.8) Fe=Fum,n () () Du. -

y€lm, , =0

Note that in order to bound the horizontal displacement of X¥ between times 0 and TIZ{Ik, it would have
been sufficient to consider D?{;r ) instead of D%k, but the stronger event given by (4.8) is more
pleasant to write and work with.

m2(y

.. VN . . . .
For each y and j, in order to bound P ((DH”k / )C), we use Proposition 3.7 with stopping time T;?JHk.

Using Proposition 3.14, for every p € A, z € Z? and T' € H, we have P* ((D;g)c) < cgle’c5H’€, which is

uniform in y, z and I'. So, by Proposition 3.7, for every y and j, we have

XY NY 1 1/2
F ((DHJk. ’ )C) <eztem @
In the end, using union bounds and Proposition 3.16,
1/2

_ _ 1/2 _ _ 1/2 _ _
(4.9) P(F) < g teoHin + Hyp1 Hy ey e e L emte e

where ¢ > 0 does not depend on hg and k.
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LINK BETWEEN SCALES k AND k+ 1. We are now moving on to the crucial idea of the proof: on event
Ap, ., (Vg+1), which is observable at scale k + 1, several similar events occur at scale k.
Let us fix y € Iy, ,. We claim to have the following inclusion of events:

there exist three j € [1,1; — 1]
Y )
(4.10) {VHk+1 2 ’Uk+1} N Fix C { such that m (XY, ;) > m(XY) + v}, Hy

Indeed, let us argue by contraposition and assume that m (X7, ,) > m1 (X)) + v} Hy, for at most two
j € [1,1x — 1]. The horizontal displacement of X¥ between times 0 and T}{’IkH is the sum of [}, horizontal

displacements, I, — 3 of which we can now bound by v}, H, and the three remaining ones can be bounded
Y

. XY N .
using Dy, 7. More precisely, on Fj,

le—1
™ (XgHM) — (X)) = m(XY) + ; (m(XY,,) — m (X))

<mi(y) + (I — 3)v Hy + 36H,
= wl(y) + (’U]/C + ?)(ﬂl_kvk)) Hk+1

6
<m(y) + (Ullc + lf) Hyt1

= m1(y) + vr1 Hrq1,

where in the last inequality, we used bounds (4.1) to get that v}, > vy > vy > —@. This concludes the
proof of (4.10).

REMOVAL OF HISTORIES. The issue now is that in (4.10), events {m1 (X7, ;) > m1(&X}) + v}, Hy } implicitly
feature a non-zero history /\/ Y while our goal is to get zero-history events Am, w(vg) for two w € Cg. In
order to get those, we use cut lines as defined in Section 3.5, which requires defining a new event of large
probability that will fulfill the technical requirements for the rest of the argument, namely that we find
cut lines quickly enough, that before then the random walks do not go too far horizontally, and that they
all stay in boxes allowing us to use decoupling. Recall notation Hj, defined in (3.19). We let

(4.11) G= lﬁl (D}Z {@(XX“N” <Hk}) M Fu,(w

yelmy, , J=1 weCy

In order to control the probability of Gy, we use Proposition 3.7 again, as well as Propositions 3.16 and
3.20. Using a union bound, we have
/ J N 2 — H,
P(G5) < Hipr Hpli sup [P (D37 )) + P (0(X5AY) > Hpj2) | + enntieg e

Y.J

1/2

_ _ 1/2 _ _ —1/2¢71/4 1/2
< Hy1Hy i (0516 e )+c lo=cHy

1/4

(4.12) < clemeh

)

where ¢ > 0 does not depend on hg and k.
Let j € [1,1 — 1], and let 9;’ be the location of XY on the first cut line reached after height jHy, that
is

XY NY
4.13 g = x5 N
(4.13) A

(recall notations from Definition 3.18). On Gy N {m( (X7 1) = m(x)) + v Hy,}, we have

oY
1 <XTI’1MX;J) =m(X/ ) by definition of a cut line
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> mi (X)) + v Hy,
XY NV
> m1(09) + v Hy, — BH}, using D ;"7
k
> 7T1(9§4) + v Hy, by definition of v},

oY
S0, in other words, VHJk v = V. Using (4.10), this means that we have found three points (given by (95-’
A

for three values of j € [1,1; — 1]) with the right lower bound on their directions and with everywhere-
zero initial histories. Furthermore, on F; N Gi, we have 7r2(9§-’) < Wg(XJy) + H; = jHy + H}, (since
for j > 1, 77y > 0). Therefore the 67 are located in three rectangles I, (w;) for w; € Cy, satisfying
|mo(w;) — ma(w;)| = Hy, for ¢ < j. As a result,

w1, w2 ECy
|7 (wy)—mo(wa)|Z2Hy,

Now, events Ap, w, (Vi) N Fu, (w1) and Ag, w, (k) N Fa, (w2) above are respectively measurable with
respect to boxes By, (w1) and By, (ws2), which have maximum side lengths (23 + 1)Hy, and are Hy/2-
separated under condition |mo(w]) — mo(wh)| = 2Hj, (recall Remark 3.17). Therefore, we can use Fact 2.9
to get

P (Fr NGk N Ay, (vks1)) <ICkl* (P, (vr)® + co(Hy/2) ™)
<Al (pa(ve)® + co(Hi/2)7%) .

In the end, using bounds (4.9) and (4.12), we get

P(Amy, (ver1)) < i B (P (v)® + co(Hye/2) ™) + B (Ff) + P (G5)
(4.15) <zl (pr (vi)® + 2L )

for a certain constant cjo > 0 that does not depend on hy and ko (to which we gave a name because
we will need it again for the proof of Proposition 5.12 at the end of our paper). By induction, we can

conclude that if pg, (vg) < L,;a/2, then

PHy41 (vk+1) a/2 14 17— —3a48
7_[/_&/2 gCLk-i-llkLk <cLy, *®
k+1

)

for a well-chosen constant ¢ > 0 that does not depend on hg and k. Since « > 3, up to taking an even
larger ko (independently on hg), we can assume that this is less than 1, which concludes the induction
and the proof of estimate (4.4).

4.2.4 Interpolation

In Section 4.2.3, we proved (4.4), which, as we explained in Section 4.2.2, implies estimate (4.5). To sum
up, so far we have shown that

(4.16) Yo > vy, Fko(v) € N*, Thg = ho(v) = 1, Vk > ko, phor, (v) < L.
We want to interpolate this estimate to show that

(417) Yo > Vg, deig = Clo(’U) > 0, VH € N*, pH(U) < 610H7Q/4.

Let v > vy. Set o/ = Y o = Y40 py — ho(v') and ki > ko(v') be such that

1/10 268
(4.18) L > =

28 20 _
(4.19) LA L)
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Let H > (hoLy, )™/, and let ks > k; be such that
(4.20) (hoLi,) " /10 < H < (hoLpyy 1)/,

Since ko = ko(v') and v' > vy, using (4.16),

(4.21) Phos, (V') < L2

Recall notation Hy, from (4.3). Note that (4.20) implies that H’ < Hy,, therefore every y € Iy satisfies
T}flkZ > 0. Now let H = |H/Hy,| Hj, be the last multiple of Hy, before H. For j € [0, |H/Hy,| — 1]

and y € Iy, we let X = X}!J_Hk and N = . Let us define C to be a minimal set satisfying

TJH
U Zn,, (w) = Bu N (Z x Hy,Z).
weé

We will work with the following events:

A = ﬂ Ay, (V')

wel
A= () {m(X2,) —m(X2,) < (v ") H - BHy, }
yely
F=Fugn (| DY,
yEly
[/l
o= O 0 fe () <),
yely

For any y € Iy, events A; and G (as well as Fiy) allow us to bound the displacement of X¥ between
times T;/Hk and T(j+1)H for j € [1, | H/Hy, — 1]]. Indeed, the conditions on cut lines given by G allow

us to find a point inside /g, (w), for a certain w € C, for which we can use Apy, w (V') given by Aj.
More precisely, on A3 N F NG and for every y € Iy, we have

|H/Hgy | -1
m (X)) = m(XL, )+ > (m(X%MHkQ)—m(X%Hkg)

j=1

<m(XY,, )+ ([H/Hy,] = 1) (BH, + v Hy,)

H
A (BH,€2 + v Hy,) + 2|v'|Hy,
2

1
< m(Xng2 )+v"H,

<m(XY, )+

THk

where in the last line we used (4.19) and (4.20). Therefore, on A; N A2 NF NG, we have, for every y € Iy,

m(X3,) = m) = (mXL, ) -m@) + (mL) - mxy, )+ (m,) - mxy,)
< BHg, + v”H +(v—v"H — ﬁHk2 =vH.
As a result,
(4.22) Ap(v) C AS U ASUFC UGS,

Now, note that

(4.23) P (AS) < ¢ (H/Hi,)* L2,
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using (4.16). Also, by (4.18) and the fact that ko > ki1, as well as (4.20), we have (v —v')H > 28 Hj,,
therefore

Y Y
XY_ NY_

P(AS) < HH'P <7r1 (XTHHH,X}’iI) —m(X;/ﬁ) > 5H;€2)
< / L z, ' \¢
<HH 21613 521711? P ((DHk2) )

(4.24) < HH'c3tem stz

using Propositions 3.14 and 3.7. We also have

4.25 P(F°) < i te=eH'? 4 HH ¢ le=csHea,
(4.25) 6 5 ;
H _ 1/2 ean—1/2gl/4
(4.26) IP’(QC) < HH/H (6516 esHy ) +CS—1€ g2 1 2Hk2 )
k2

Using (4.20), we can see that the upper bounds given by (4.24), (4.25) and (4.26) are all negligible with
respect to that given by (4.23), so we get

P(Ap(v)) < e (H/Hy,)" L
< cH?L;
2
< cH?*H /7 using (4.20)
< cH /4 using that a > 5.

By adjusting ¢ to accommodate small values of H, this concludes the proof of (4.17) and therefore the
proof of Lemma 4.4.

5 Equality of the limiting directions: proof of Lemma 4.6

The goal of this section is to show Lemma 4.6. The heuristic idea behind the proof is the following. The
definitions of v; and v_ ensure that the random walk often has directions close to v— and v4. On the
other hand, the probability that the random walk has a direction larger than vy + & (where £ > 0 is fixed)
decreases quickly, as was shown in Lemma 4.4. Therefore, assuming by contradiction that v4 > v_, the
moments when its direction stays close to v_ may prevent it from reaching a direction close to vy in
the future, which would be a contradiction. However, the random walk might be able to compensate by
going faster than vy + £(H) for some well-chosen £(H). This is why we need precise estimates, and these
will be given by a notion of trap that we will introduce further on.

We start by presenting a major property of our model, which comes from the coupling of random walks
that we chose. The choice of the coupling is actually made in order to get this property, which is inspired
by the arguments from [BHT20]. Roughly, it says that particles block each other in some weak sense: a
random walk can always bypass another random walk, but this happens with low probability.

5.1 Barrier property

Proposition 5.1. Let zg,x( € Z* with ma(z0) > m2(x}) and m1(zg) < m1(x}). Let H € N*. Let T € H

such that Supp ' N X° = 0. Assume that Tfl";; < 0o and Tﬁ‘f% < 00 (which happens almost surely). Then
at least one of the following scenarios occurs:

1. X0l wisits the half-line x), + {0} x (—00,0);
2. X% wvisits the half-line zo + {0} x (=00,0);
3. We have m (ngjfo) <m (szg,xo)-

The statement is also true when we replace xg, xy and T' by values of random variables satisfying the
same assumptions.
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Lo
(a) Scenario 1 (b) Scenario 2
L]
e
PRgEREN ..:
J \ /)\
o : fy) <7
. . To .
0 x) xg ¢
(¢) Scenario 3.a (d) Scenario 3.b (e) Scenario 3.c

Figure 4: Tlustrations of what can happen in each of the three scenarios of Proposition 5.1. In
scenarios 1 and 2, one particle goes around the other one. In scenario 3, they end up with the
same horizontal order because either they never meet or go around each other (scenario 3.a),
or they meet but coalesce (scenario 3.b), or they meet on a loop that they both visit entirely
before carrying on separately (scenario 3.c).

Proof. Replacing xg, x, and T" by values of random variables does not change the proof, since the
statement is deterministic. Even so, the proof is subtle. A lot of different things can happen, as is
illustrated by Figure 4. We start by discussing the issues and ideas of the proof, in order to give some
motivations for the next steps.

HEURISTICS OF THE PROOF. The main problem of the proof is that even if two particles meet, they
may not coalesce (i.e. they may not stay together forever from then on), since the two random walks
do not necessarily look at the same uniform variables every step of the way afterwards. However, we
will show when two particles meet, either they coalesce (as in scenario 3.b)) or they end up splitting
up without having swapped their initial horizontal order (as in scenario 3.c)). In the latter case, what
actually happens is that both particles visit the same loop, and removing this loop is tantamount to
adding the same history to both random walks. This prompts us to show a stronger version of the
proposition by adding a common history I'g to both random walks, which will allow us to apply our line
of reasoning inductively by removing loops one by one.

STRONGER CLAIM. We now add more history. We fix xo,z(, H and I" as in the statement of the
. . . ! T
proposition, and we let I'g € H. From now on, we use simpler notations: 7 for Tﬁ‘jg’clz)"’FO, 7! for TE‘?J’COO, X

for X@o:'+To and X’ for X*0:To. Assume that both 7 and 7/ are finite. We argue by contradiction and
assume that

X does not visit  + {0} x (—o00,0) (1)
(5.1) X' does not visit xg + {0} x (—00,0) (2)
T (XT) > (X;_/) (3)

We want to get to a contradiction from this, and then choosing I'g = 0 will give the desired result.

23



LOOP REMOVAL ALGORITHM. We now define an algorithm allowing us to remove all loops from the
paths of our random walks, so that we can focus on the zero-loop case later on. We consider a path
defined by a parametrization f : P — Z2, where P is a bounded subset of N, satisfying for every s,t € P,
[t —s|=1=||f(t) — f(s)|| = 1, where || - || is the Euclidean norm on R2. If f is not injective, we define

TP (f) = min{t € P, f(t) € {f(s),s € P,s <t}};
Ti"(f) = min{t € P, f(t) = f(T?"'(f))};

Pu(f) = [Ti"(f), TP (f) = 1 0 P;

Li(f) = F(Pu(f))-

We call L;(f) the first loop of f. The times T7"(f) and T¢%(f) are called the first entry and exit times
of Li(f). We define by induction the other loops of f, if they exist, by defining, for i > 2,

T (f) = TP (flevu,cimp) s

T (f) = T (flpvo,-ips() 5

Pi(f) = [T (f), TP (f) — 1 N (P \ Uj<i Pi(f))
Li(f) = f(P(f))

Mind that here we consider functions defined on subsets of P that are not necessarily connected in P,
which is why we did not assume P to be connected in N in the first place.

If there are no more loops, we just set P;(f) =0, L;(f) = 0 and T;™(f) = T ! (f) = oo.

We also define, for such a function f, its interpolated sample path as the curve in R x Z U Z x R
obtained by joining each pair of points {f(¢), f(t + 1)} (for t and t + 1 € P) by a segment. We denote it
by int(f).

THE TWO SAMPLE PATHS MEET. Recall our assumption (5.1), from which we want to get to a contra-
diction. Let C' = int (X|[[077]]) and C' = int (X'|[[0,T/]]). For now, we want to show that C and C’ meet at
some point of R2, which implies, by construction, that the two sample paths X 0,7] and X, [/O,T’] meet at
some point of Z2. To show that, we first form a closed simple curve Cy of R? as shown in Figure 5. First
we consider

CL = int (X' [0, \Uyene P(X7) 5

which is ¢’ from which we removed all the loops and which we interpolated. Then we join the two
extreme points zj, and z} of C’ (note that they both have to be on C.) using horizontal and vertical
segments that go low enough and left enough so that they do not meet C' U C” except at z{, and =} (if C,
intersects z( + {0} x (—o0,0), we remove the initial part of C’, so that x{ is replaced by the lowest point
on C, N (z( + {0} x (—0,0))). This is possible because C' U C’ is a compact set and because of (1) and
(3) in (5.1). By construction, Cj is a closed simple curve, so we can apply Jordan’s theorem to Cy. Point
T = ng:f“‘ro is in the unbounded component, because the half-line 27 + (0,00) x {0} cannot meet Cj.
On the contrary, point ¢ has to be in the bounded component, because the vertical segment joining xq
to a lower point zo in the unbounded component meets Cy only once, because of (2) in (5.1) (here we use
the sometimes called even-odd rule that can be found in [Shi62]). Therefore, curve C' has to meet Cp,
and by construction of Cy, it has to meet it on C. Therefore C' and C’ intersect.

ZERO-LOOP CASE. First consider the simpler case where C’ has no loops intersecting C. By the previous
point, C’ meets C, so we can consider

t =max{t € [0,7'], X, € C},

and & = X. Because of (3) in (5.1), t < 7/. The uniform variable that X’ uses to jump at time # is
U(Z,To(£) + 1) (for there is no loop on C’ intersecting C, so & cannot be on a loop of C’). The same
uniform variable is used by X when it gets to £ for the first time, since by assumption SuppI' N C’ = ().
Therefore, X t’ 41 € C, which contradicts the definition of . At the end of the day, we have a contradiction,
so our assumption (5.1) was false.
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Figure 5

GENERAL CASE. Consider now the case where C’ has a loop intersecting C. For i > 1, let P; = P;(X’),
Li = Li(X'), T/" = Ti*(X') and T = T2 (X"). We let

ny :min{iGN*,LiﬂC#@}.

Let T be the first hitting time of L,,, by X and T" € [T}, T2"* — 1] be the first time such that X/, = Xr.
Let us show by induction on ¢ < T,‘L’;” — T’ that

(5.2) (X1, Xrg1see s Xrgt) = (Xé’u Xér'-s-p e aXé“’-&-t) :

The case t = 0 follows from the fact that X7, = Xp. Suppose (5.2) is true for t < T5*" — T". We need to
show that X711 = Xp 0.

« First, note that X’ cannot have visited X7, , before time 7" +¢. Indeed, suppose that it has; then there
exists i« < nq such that X7, ., € L;, now X7, = X744 so L; N C # (), which contradicts the definition
of ny. Therefore, the uniform variable X’ uses to jump at time 7" + ¢ is U(XF, , To(Xp/ ) +1).

 This also means that X7,,, = X7 is not among {X7.,..., X}, ;}, which is the same set as
{Xr,...,Xr4i-1} by the induction assumption. Therefore, using also the definition of 7', X has
not visited site Xp4; before time T + ¢, so the uniform variable it uses to jump at time 7'+ ¢ is
UXrye, To(Xpye) +1) = U(X70y, To(X70 ) +1) (we also use the fact that SuppT' N C" = ).

Both random walks use the same uniform variable, therefore Xp ;1 = X7, ;, which shows (5.2) for
t+ 1 and ends the induction. Applying equality (5.2) with ¢t = T,0“* — T" yields

(5.3) (XT, Xrits. .., XT+T511n_T,) - (X’TM Xy 7X’Tﬁ¥t) .

With the same arguments, we can show that we also have

_ / ! /
(54) (XT_*_T;L);M_T/, oo 7XT+T°”t _Twl;f) == (XT:L’l” le,,f_’_l, ceey XT/) .

ny

Also, remark that in (X7.,.,,..

ni

. ’X%ﬁ¥t71)7 we have 79" — T" + 1 distinct points of Ly, (by definition of

T2""), so we have all the points in L,, exactly once. Therefore, putting together (5.3) and (5.4), and

considering that X/.., = X/,.., we see that between times T and T+ T)7** — T, X visits all the sites in
o o

L,,, exactly once too. .
Set Ty =To+ Y ,c Oy and Py = [T, T+ T2 — T;" — 1]. Separating what happens before time 7'

resp. T and what happens after time T+ T."* — Ti" resp. T, we get

niy

zo,['+I'1 __ X %o ,['+To

[OiTH«IO] B [OvTH,T/o]\Pl’
z(,T1 _ vao.lo
[0,7H, 2] [0,7H,2]\Pny
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Let K be the number of loops of C’ that intersect C' (K is finite). By applying the same line of reasoning
inductively on the next loops of C’ that intersect C' (which we denote by Ly, ..., Ly, ), we can construct
a history I' such that

zo,I'+I'x _ yxo,I'+T0 .
[07TH,(L'0] [O,THYIO]\(Plu...UPK)’
z5.T’x vz To

[0,7H 2] (0,78, ]\ (Pry U...UP, ;)

Therefore, by construction, the sample path of X z0.'x has no loops intersecting that of X0 ' +I'x 5o we
can apply the previous zero-loop case by replacing I'g by I'x. Assumptions from (5.1) are still satisfied,

and Supp'g N X;;OIK = () by construction, so we do recover a contradiction. O

5.2 Trapped points

Let us move on to the proof of Lemma 4.6. Recall that v_ < vy, on account of Corollary 4.5, so we now
argue by contradiction and assume that v_ < vy. In the rest of this section, we set
o Vyp —U—

(5.5) =TT

Note that § € (0,1/2], using the bounds in (4.1).
The crucial idea of our proof is given by Proposition 5.1, which implies that a particle can be "trapped"
by another particle. We want to ensure that trapped particles will experience a delay with respect to v,

which motivates the first definition below.
Let H € N* and w € R x Z. Recall notation H’ from (3.19). We define

(5.6) 2o =w+ (0H +4BH', —2H') € R x Z;
(5.7) Rp(w) =w + ((—00,6H) x (—oo, H') U [0H, +00) x (—o0, —3H")) C R?.

See Figure 6 for an illustration of these notations.

Definition 5.2 (Trap). Let H € N* and w € RxZ. w is said to be H-trapped if there exists y € Isp/2(2w)
such that:

1. Viom ., Sv-+06/2;
2. XY does not visit Ry (w).

Let us explain heuristically the idea behind this definition. Condition 2 ensures that the random walk
started at y passes the point w + (60H, H') on the right only. This will guarantee, using the barrier
property (Proposition 5.1), that the sample path started at y is a barrier for any random walk starting in
w4 (—o0, §H) x [0, H'). Condition 1 gives quantitative information about this barrier at height mo(w)+ H.
See Figure 6 for an illustration of Definition 5.2.

Remark 5.3. Note that event {w is H-trapped} is measurable with respect to the horizontal strips between
heights mo(w) — 3H' and mo(w) + H. Indeed, the definition of a trap implies that we can define an
algorithm to decide if w is H-trapped or not, only looking at the environment and the uniform variables
outside Ry (w) and below height mo(w) + H.

5.2.1 Probability of being trapped

Of course, we will not be able to show that a point is trapped with a high probability, for point 1 in
Definition 5.2 is very demanding. However, the definition of v_ will allow us to show that we can reach
any distance close to but greater than v_ with a positive probability, so we will be able to get a uniform
lower bound on the probability of being trapped. This is what the following lemma expresses. Recall the
definition of Hg from Remark 3.17.

Lemma 5.4. There exists an integer constant Hy > Hy, depending on §, such that

inf inf P is H - .
H1£H1 oonf (w is H-trapped) > 0
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Y
THA2H! 2y,

+ mo(w) + H

Isty2(2w)

Figure 6: Illustration of w being H-trapped. The line connecting (71 (y), m2(2.)) and XY
has direction less than v_ + §/2.

Proof. Let us first study condition 1 in Definition 5.2. Recall notation p from Definition 4.1. We claim
that there exist two positive constants c14 and c15 such that for H large enough,

(5.8) ei%fxzp (Hy € Isuya(zw)s Vipiop: ., Sv-+ 5/2) > ciy pu(v- +6/4) — Cf316_013H1/2-

Let us prove this claim. Let us fix H > 4/6. We have

inf P (Hy € Isp/2(2w), Vhyr+2H',zw <wv_ + 5/2)

wERXZ

= i Y <
wé%fXZIP’ <3y € Lsnya(w), Vi opw < v- + 6/2)

= inf P(d I vy ;o KU 4+0/2
wel~1.0)x {0} ( Y € Lom2(w): Viggomw S 0=+ /)

> sup ]P’(EIyGL;HM(w), Vi iom w §U,+5/2)
we[0,1)x {0} '

= sup P (Hy € Ispya(w), V§+2H,7w <o+ 6/2) :
wWERXZ

In the first equality, we used that w — z, is a bijection of R x Z. In the second and last equalities,
we used Corollary 3.4. In the inequality, we used that since H > 4/4, for any w € [—1,0) x {0} and
w' € [0,1) x {0}, I5p4(w') is included in Isg/o(w).

Now, we want to replace H + 2H’ by H in the parameter of the direction. Indeed, the information we
have on v_ is a liminf when H goes to infinity, and it could be that we are unlucky and this liminf is
reached on a subsequence that is not eventually in the image of H — H + 2H’. In order to do this, we

work on
X?] Ny

r\ ‘D2Hﬁw H@7
yE€Ilsp/4(w)
which, using Propositions 3.7 and 3.14, has probability at least 1 — cl_5le’615H 1/2, where c15 is a positive

constant that does not depend on H. On this event, provided that 26H' < 6(H + 2H')/6, we have that
if VI?-JI,w < wv_ +6/3, then VI%’HQH,M < v_ + §/2. Therefore, for H large enough,

sup P (3y € Isp/a(w), V5+2H/7w <w_ +5/2)
wWERXZ
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> sup ]P’(Ely € I(;H/él(w)7 V;JI <B +5/3> 167015;11/2
WERXZ

Now, in order to recover parameter H in the size of the rectangle too, we consider Iy and split it into
rectangles I5p/4(w) for a certain number ci4 (which does not depend on H) of values of w € R x Z
satisfying 0 < ma(w) < H'. Let us fix such a w and y € I. In order to link V}; with Vf’[’w, we work on

N oy

yE€lny

which, using Propositions 3.7 and 3.14, has probability at least 1 — ¢ ~le—cisH'? o1 3 certain constant
c16 > 0 that does not depend on H. On this event, the displacement of X¥ between times 77; and 77, , is
less than SH’, which is less than 6H/12 for H large enough. In the end, using a union bound, we have

sup P (Hy € Isp/a(w), ij’w <o+ 6/3)
wWERXZ

2 0;41 (P(Ey = IH; Vy <o +6/4) _0171 —(,16H1/2)
:Cl_41 (pH(U "‘5/4) - 167016H1/2) )

Putting all inequalities together, we derive our claim (5.8) with ¢;3 depending on ¢14, ¢16 and ¢15. Now,
liminf g oo P (v— 4+ 6/4) > 0, since v_ + §/4 > v_ (recall Definition 4.1). Therefore, using (5.8),

liminf inf P (3y€ Lup (), Viisam,., <o-+8/2) >0,

H—oco weRXZ

This implies that there exists Hy > max(4, Hp) such that

c17 = nglfil wé%fXZIP’ <3y € Ispy2(2w), VI%’IHH,,M <o_ + 5/2) > 0.

As for condition 2 in Definition 5.2, we can notice that a scenario on which it is satisfied is when events
Yy Y

X L
EY,, DYy, and Ep, 7w 4105w oceur for every y € Isp o(zyw) (recall (3.7) and (3.17)). Indeed:
o Being on EY,, ensures that X¥ stays outside w + [§H, +00) x (—o0, —3H');

e XY also stays outside w + (—o00,0H) X (—oo, H'). Indeed, the horizontal distance between y and
w+ (0H, H') is at least 48H’ (by definition of z,), so on DY, XY passes w + (6H, H') on the right,
and Eg;N ensures that it never comes back to height mo(w) + H' afterwards.

That being said, for every H > H; and w € R X Z, we get

P(w is H-trapped)
X NY c
sen—ch swp (B84 + B4 + 2 (B e ) )
YE€Ilsm/2(2w)
> ey — cH3/? (2€_C4H1/4 + Cgle_CSﬁHl/2)

C1
P

77 if H; is large enough.

where in the second-to-last inequality, we used Propositions 3.16 and 3.13 as well as Proposition 3.7.
Since < > 0, this yields the result. O

We stated the above result as a lemma because it will later appear as a mere first step towards a
stronger result, Proposition 5.7. The same holds for the next lemma, which is the first step towards
Proposition 5.9.
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5.2.2 Delay near a trapped point

The following lemma explains why the name "trap" was chosen: heuristically speaking, when we start a
random walk X®° near an H-trapped point, with high probability it is delayed by the time it reaches
height H.

Recall the definition of H; in Lemma 5.4. For the next lemma, we need another technical requirement
on H. Note that, since 86§ > 0, there exists Hy > H;, which depends on v_ and vy, such that

(5.9) VH > H,, 486H — (48 — (88 + 7)6 + 2v)H' > 0.

Lemma 5.5. Let H >Hy, we R XZ, xg € w+ (—00,0H) x [0, H') and T’ € H whose support satisfies
SuppT C Ry (w). Suppose that w is H-trapped and that Eff,’r occurs. Then, we have

ﬂl(Xmo’F) < ’/Tl(’w) + (1)+ 726)H

TH,w

Again, the statement is also true when we replace xg, w and I' by values of random variables satisfying
the same assumptions.

Proof. Let H, w, x¢g and ' be as in the statement of the lemma. Suppose w is H-trapped and Eff/r
occurs. By definition, there exists y € I5z/2(2w) such that V;{,HH,’ZW < wv_+6/2 and XY does not visit
Ry (w). Let us apply the barrier property (Proposition 5.1) with zg, I and y (replacing z{ by y and H
by H +2H’).

o Since X¥ does not visit Ry (w) and SuppT’ C Ry (w), we have SuppI’ N X§ = 0.

o Since X¥ does not visit Ry (w) and the half-line zg + {0} X (—o0,0) is included in Rp(w), X¥ cannot
visit that half-line.

« Since Ey%" occurs and mo(y) < ma(xo) — H', X*° cannot visit the half-line y 4 {0} x (—oc, 0) either.

Therefore we must have

m (X)) Sm(X2 L)
<m(y) + (v—i—g) (H +2H") since Vi o, < v- +6/2
0H )
< mi(zw) + - 1 (v + 2) (H+2H") since y € Isp/2(2w)
, OH ) , :
< mi(w)+0H +46H" + - + | v- + 3 (H+2H") using (5.6)
=mi(w) + (vy —28)H — 4BSH + (48 — (88 + 7)6 + 2v, ) H' using (5.5)
< m(w) + (vye —26)H using (5.9).
O

The interest of traps becomes clear with Lemma 5.5. The issue however is that the probability of being
trapped cannot be made arbitrarily close to 1 when H goes to infinity; we only know, thanks to Lemma
5.4, that it is uniformly positive. Therefore, we need to introduce another notion in which we will allow
some entropy on where to find a trap.

5.3 Threatened points

The problem with traps is that the probability of being trapped may be very small; however we will see
that it is sufficient to have a trapped point along a line segment of slope v, in order to experience the
delay, which motivates the new definition below.

Definition 5.6 (Threat). Let H € N*, r € N* and w € R X Z. w is said to be (H,r)-threatened if one
of the points w; = w + jH (v4,1), where j € [0,r — 1], is H-trapped.

29



5.3.1 Probability of being threatened

When r increases (keep in mind that r is the vertical length of the line segment along which we look
for trapped points), it is clear that the probability that w is threatened increases. We now show that it
goes to 1 when r — oo, and quantify the convergence using «. This is the major interest of the notion of
threats. Recall constant H; from Lemma 5.4.

Proposition 5.7. There exists c1s = c15(0) > 0 such that for every H > Hy and r € N*,

(5.10) sup P(w is not (H,r)-threatened) < c1gr~%.
wWERXZ

Proof. We follow again the structure of proof given in Section 3.6 (only here the scale parameter is r
and not H). Mind that here we will need to apply the renormalization method twice to get the desired
estimate.

FIRST ESTIMATE. We start by considering only r = 3* for k € N. We set

qx = q.(H) = sup P(w is not (H,3%)-threatened).
wERXZ

Let us start by showing that g converges to 0 when k — oo, uniformly in H large enough. More precisely,
we show that there exists c19 € [1/3,1) and k3 € N such that

(5.11) Vk > 2, VH > H, quqr < cly.

Note that the problem with this bound is that it does not involve «, which is why we will need to show a
second estimate after this one. To prove (5.11), we use induction on k > 2. Let us fix k3 € N (we will
choose it later in the proof).

Base case. If a point is not (H,r)-threatened, in particular it is not H-trapped, so, by Lemma 5.4,

SUp Qr,4+2 < sup sup P(w is not H-trapped) < 1.
H>H, H>H; weRxZ

Therefore there exists c19 € [1/3,1) such that the case k = 2 in (5.11) is satisfied, namely g, 2 < ¢3q for
all H > H;, and the choice of ¢;9 can be made independently of k3.
Induction step. Fix k > 2 and suppose that

(5.12) SUD Gk ke < Clo-
H>H,

Fix an integer H > H; and w € R x Z. Note that event {w is not (H,3*+**1)-threatened} is included
in the events given by

gkatk_q gka+E+1l_q
A = ﬂ {wj is not H-trapped} and Aj = ﬂ {w; is not H-trapped}.
j=0 j=2-3k3+k

Using Remark 5.3, those events are measurable with respect to horizontal strips separated in time by
3kstk [ — 3H', which is larger than 3¥3+* /2. In order to replace those strips by boxes of side lengths at
most (28 + 1) - 3***H (anticipating the use of Fact 2.9), first note that by definition, {w; is H-trapped}
is measurable with respect to the sigma-algebra generated by

Xv Y € Lspya(zw;) ¢ s
[077—H+2H’,zu,j}

which motivates the introduction of the following events:

gk3+k_q gha+h+l_q
/
Ok = ﬂ Gj(w) and Ok = ﬂ Gj(w2,3k3+k)
Jj=0 j=2-3k3tk
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W3ks+k+1 ff

Wo.gka+kfg

B3k3+kH(w2_3k3+kH — (3k3—"_k:£[/27 0))

' B3k3+kH(’LU — (3k3+kH/2, 0))

Figure 7

where, for w € R x Z,

Giw)= ) XY C Byrgrrg(w — (387 H/2,0)) b .
[07TH+2H’ 2 ]
yElsm/2(2w;) g
Now, A, N Oy, is measurable with respect to box Bgks+x gy (w— (3" 15 H/2,0)), and A} N O}, is measurable
with respect to box Bsks+x g (wa.gks+x — (3FFH/2,0)). Those two boxes are (3¥3+* H /2)-separated and
have maximum side lengths (23 + 1) - 3% +F .
Let us now bound the probability of (Gj(w))c. For j € [0,3k+% — 1], we have

YElsr/2(2w;)

Indeed, let us assume that ks is large enough so that for every H we have 3*+*=1H/3 > H + 2H'. Let
7 €[0,3%%% —1], y € Isp/2(2w,) and n € [0,7f 55 .. . On the event on the left-hand side of (5.13),

we have

I (X3) — m(w)| < [m(XF) — mi(y)| + [m1(y) — mi(w)]
6H
<3kl 4 jHv, |+ 6H + 48H' + -
oH
< 3hsth=lp 4 3ksthgp 4 GH + 4BH' + 5 using (4.1)
3hkatk [

2 )

< 3kstkg 4

provided that k3 is large enough (independently of H), which gives a first condition to choose k3. From
these horizontal bounds, noting that the vertical bounds are always satisfied by construction, we obtain

XY C Byrsrpg(w — (38T H/2,0)),

I:OvTH+2H’,zwj]

which ends the proof of (5.13). Similarly, with the exact same arguments, for j € [2-3Fs+F ghath+l 1]
we have

(5.14) ﬂ ng?*'*"“_lH/B - Gj(w2.3k3+k).

YE€lst/2(Zw;)
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Using (5.13) and (5.14) along with union bounds and Proposition 3.14, we have

)

2
P(OF) < 05_1 A (65> e—cs3" /B < —le—cdttH

where ¢ > 0 does not depend on H, and the same holds for O}.. So, using Fact 2.9,
Qrsrhtr < P((Ar N Ok) N (AL NOY)) +P(OF) +P((O)°)

kst " ,
< Gyyn a1 ( 2 ) A

< g + 37 RoHRe using that H > 1.

In the end, using induction assumption (5.12) as well as the fact that 1/3 < c19 <1, a > 1 and k > 2,

Qks+k+1 E—1 kz—1 kz—1
gki_i_lgclg —f—CCl(j <019+0015 <1,
(&2
19

provided that ks is chosen large enough (recall that the choice of ¢19 was independent of k3).

ESTIMATE ON THE SUBSEQUENCE. We now prove the desired estimate on the subsequence; more
precisely, we prove that there exists k4 € N* such that

1
(5.15) Yk € N', VH > Hi, qeoin < 5 3ok,

We use exactly the same method as in the proof of the first estimate (5.11). Since g goes to 0 uniformly
in H > H; (on account of (5.11)), we have, for any k4 € N large enough and H > Hj,

qk4+1 g

We now show by induction on k > 1 that gg, 41 < %3_0"“. For the induction step, we obtain with the
same arguments as before,

Qhat+ht1 oalk+1) [ Lo2ak —a(katk)
Tyt <279 <43 +c3olkath) )

which is less than 1 provided that k4 is large enough. This gives a second condition to choose k4. This
constant being properly chosen, we get (5.15).

INTERPOLATION. Let H > Hy, r > 3%%! and k € N* such that 3%1* < r < 3kaTk+1 Then

P(w is not (H,r)-threatened) < P(w is not (H,3%**)-threatened) by definition
1
< 53—0”c by (5.15)
3a(k4+1)
g e € )
g "
It remains to tailor constant c1g in order for (5.10) to hold for every r € N*. O

5.3.2 Delay near a threatened point

Now that we have shown that every point is threatened with a high probability, we need to quantify the
delay caused by threats for the random walk, just as we did for traps with Lemma 5.5.

First a technical definition is required, because we do not want to look for threats among too many
points for entropy reasons (see the proof of Lemma 5.10).
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Definition 5.8. Let y € Z? and H € N such that H > 4/ and H' > 1 (recall (3.19)). We denote by
ly|u the point of |0H/4|Z x H'Z given by

MHQf§WHwﬁ?JH)zmmﬁmﬂm.

Let H3 > Hs be an integer (depending on v_ and v, ) satisfying

AH' < H;
H > 4/6;
(5.16) for every H > Hs, H >1;
ABH' < §H/5;
Avy H' > —6H/20.

The second and third conditions ensure that Definition 5.8 can be used, and the others are technical

requirements that will appear later on.

Proposition 5.9. Let H > H3, r € N* and y € Z?. We set w = |y|yg. Let T € H be such that
SuppT C Ry (w). For every j € [0,r], set

R y,I' y,I — y, ' y,[' .
‘)fﬂ B ‘/Yj r B XTjIIg,y and ‘/\f] B ‘/\f] r o NTj?y’
. — ¥l — xv = NV — NV .
&= A0 =Xyt and N = NPT = NEL
i = :l'h = y,r . = y’ = y, I’
Z; ZJ XT(j+1)H—4H’,y and A AJ NT(j+1>H—4H',y'

Assume the following conditions are met:

1. w is (H,r)-threatened;

2. For every j € [0,r — 1], VI;(JXJJVJ S U4+ %;

. XN Z; A
3. For every j € [0,r — 1], VH’_’ﬁ},,Xj <vg + % and D337 occurs;

4. For every j € [0,r — 1], E;’}’Nj occurs;
5. For every j € [1,r], fo}’Nj occurs.
Then we have m (X)) < m1(y) + (vy — ) rH.
Again, y and I' can be replaced by random variables satisfying the same assumptions.

Let us explain the proposition heuristically. Suppose that a point w close to y is threatened (condition
1). Divide the strip 7, *([m2(y), 72(y) + rH]) into 7 strips of height H, and assume that the random walk
started at y does not go too fast on each of these r strips (condition 2). The fact that a point w near
y is threatened and that XY does not go too fast will imply that X¥ meets a potential barrier on its
right (which is given by a certain trapped point w;, = w + joH (v4, 1)), and it cannot get around this
barrier because of condition 4. Condition 3 ensures that X¥ stays inside Ry (wj,), which is required to
apply Lemma 5.5 (see Figures 8 and 9 for an illustration). So by combining the upper bound we have on
each of the r strips, and the new upper bound that the barrier gives us on this particular strip, we get a
global upper bound. Mind that in this proposition two grids coexist, one with lines at heights ma(y) + jH
(j € [0,7]), where the X; are, and one with lines at heights m2(w) + jH (j € [1,7]), where the X; are.
Condition 5 allows us to control the error of displacement between /'E'j and &;.

Proof. Let H > Hz, r € N*, y € Z?, w = |y|u, I' € H such that Suppl’ C Ry (w). Assume all five
assumptions from the statement are satisfied. Because of condition 1, there exists jo € [0, — 1] such
that wj, is H-trapped. We want to apply Lemma 5.5 replacing w in the statement by wj,, o by &,
and T' by NV}, (recall that the lemma was also true for a random choice of x¢, w and I'), which requires
justifying that

(517) on € wj, + (*OO,(SH) X [O,H’);

(5.18) Supp Nj, € Ru(wj,)-

Note that the fact that E;;i"’ Mo occurs is a direct consequence of condition 4.
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why

Figure 8: Tllustration of w = |y ]y being (H,r)-threatened and the random walk starting from
y experiencing a delay on account of the trap. In this example, at the point labeled z, the
sample path started at y coalesces with the dotted curve, which causes a delay.

wj, + (46 H/5, H')

HIX *****************
Wi X SH/5
4H'
,,,,,,,,,,,,,,,,,,,,,, Ziot T
ABH’ < 6H/5

on—l J

Figure 9: Nlustration of condition 3 and the proof of (5.18). The fact that Vi linr 2,

wjo + (0H, H')

onfl’/\/’j()*l
jo—1 ~

vy + 2 (along with condition 2) ensures that Z;,_; lies on the left of the point labeled z (see

Y,

(5.20)). Then, staying in the gray box horizontally until time 7 IF{y ensures that X¥! does

not exit Ry (wj,) before that time.

PROOF OF (5.17). We compute
Jo—1
m1(Xj,) = m(y) + Z (m1(Xj41) — ™1 (X))
=0
<)+ (vs+ 2 ) joH
S ™Y +T o Jo
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0H 6H
(5.19) < m(wj,) + - + 5 by definition of w = |y |y and w;, = w + joH (vy, 1)

< ﬂl(wjo) +6H.
As for the second coordinate, by definition of w we have
T2 (X)) = ma(y) + joH € ma(w) + joH + [0, H') = ma(wy,) + [0, H')

This proves (5.17).

PROOF OF (5.18). When jo = 0, N, =T' C Ry(w) by assumption, so (5.18) is satisfied. Suppose
now that jo > 1. See Figure 9 for an illustration of the following arguments. Mind that without
condition 3, in spite of (5.19), there is a possibility that between time T(Z/j’OF_I)H and time 7’%’};, xXvr
exits Ry (wj,). Note that since TI'Q(Z]O 1) = mo(X;,) —4H' < mo(wj,) — 3H', we only need to check
that for every n € [[T;"O’H iy TIVH, y]] we have 71 (X¥T) < m (w;,) + §H. Now, condition 3 ensures that

Xjo—1 'A/Jo 1 5
Vil 2y, SO+t 2 therefore,

6
m1(Zjo-1) < m(Xjo—1) + (U+ + 27«) (H —4H')

<mi(y) + <U+ + ;) (jo—1)H + (v+ + 25 ) (H —4H") using condition 2
r

) )
7r1(y)+(v++2>]0H 4('U++2>H/

30H §
< m(wjy) + o " 4 <U+ + 27”) H using the same ideas as in (5.19)

46H

3 using (5.16).

(5.20) < m(wjy) +

Now, condition 3 also ensures that D4;1°, 2Rt oecurs. Now, by (5.16), we have 43H’ < §H/5. Combining
that with (5.20), we get that for every n € [[ij(]{lf4H’,y7ij0’Ir;T,yﬂ7

0H
(X)) <mi(Zjo-1) + =
46H O0H
< m(wj,) + = + = using (5.20)

Therefore, X¥" C Ry (wj,), and therefore Supp Nj, C Ry (wj,).

0,750 8,y) =
CONCLUSION. By applying Lemma 5.5, we get that

~ . ,M
(5.21) 1 (Fpi1) = m (X0 ) <miwy,) + (vy — 20)H

Jo+1 Nyo+1 (

Therefore, using that we are on D, condition 5), we get

< 1 (Xjys1) + BH'
< m(wj,) + (vy —20)H + BH'
<

1(w10) (U-i- - )H7

using (5.16). Consequently, we have

m1(Xr) = i (Xjo41) + Z (m1(Xj1) — (X))
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< (wjy) + (vy —0)H 4+ (r—jo—1) <v+ + ;ﬂ) H using (5.21) and condition 2

)
< m ) dov T (v = OH + (== 1) (w4 4 5 )

0
<mi(y) +rveH — §H

— ) + (u _ ;) rH.

5.4 Threatened paths

We now know that when a particle passes near a threatened point, it will be delayed to the left with
a high probability (Proposition 5.9), and that each point has a high probability of being threatened
(Proposition 5.7). The goal of this section is to improve the latter result, by showing that with a high
probability, every particle meets a lot of threatened points along its way. Mind that this is not a direct
consequence of Proposition 5.7, because the random walk could unfortunately go precisely to areas where
there are few threats. From now on, we will focus on specific values of the parameters introduced before :
H = hL; with k > ks for a wise choice of h € N* and ks € N, and r = .

Lemma 5.10. There exists ks € N and cog = co9(d) > 0 such that the following conditions are met:
o Ly, > Hs;
o For every h € N*,

(5.22) P(3ye Iniy, o Yy, is not (hLpg, Lk, )-threatened) < CQOLIZS(_?_OI_S)/lo;

o The following two technical requirements are satisfied

(5.23) 4981y, < Slpy 11

(5.24) c12(c1z2 + &) L,ZS(GQ_49)/4O < g0,

where c12 was defined in (4.15).

Proof. Let h € N* and ks € N satisfying Ly, > H3 and (5.23). Then, using Proposition 5.7 and the fact
that Hs > Hy, we have

P(3y € Inry, .1 [Y)nLy, is not (hLgg, Ik, )-threatened)

hLig+1 (th5+1)/ =
= {ML,CSJ (hLk,)' C18 by,
—_ = 5

—(2a—3)/10
< CLks-H .

Therefore, we do get inequality (5.22) with a certain constant cag = ¢20(0) > 0. Now that cog is fixed, it
suffices to take a larger k5 so that inequality (5.24) holds as well, which is possible because « > 9. [

Conditions (5.23) and (5.24) will appear naturally later in the proof. Also, note that considering only
rounded points |y]p L,, Was crucial here to obtain a bound that is uniform in h.

Definition 5.11. Let ks be defined as in Lemma 5.10. Let k > ks, w € R x Z, h € N* and y € Ip,p, (w).
We set the threatened density of random walk XY to be

Lis41 , Ly ,
(5.25) Dy (w) = % H {O <j< 7 LX” JthS is (th5,lk5)-thr6atened} .

) TjhLy, N
k ks+1 ISk 101
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Y
TahLjg yq.w

(]
|~X7?{4}LLk5+1,wJ h‘Lks

Figure 10: Tllustration of a point y € Iy, (w) whose density is more than 1/2: there are more
threatened points (the large filled circles) than non-threatened points (the empty large circles)
along the way.

As usual, we also set Dy , = Dy ; (o).

Mind that contrary to what is depicted in Figure 10, we could have m1(y) — 71 (w) > hLg.+1. In that
case, whenever jhLy. 1 < m(y) — m(w), ijthSH’w 0, so X%}LLk o =Y That is why, in (5.27), we
are not interested in the j = 0 term.

Let us now state our final proposition before ending the proof of Lemma 4.6: with a high probability,

our random walks encounter threats more than half of the time along the way.

Proposition 5.12. For every k > ks and h € N*,
P(3y € Inp,, Dy, <1/2) < ez Ly 2*7V/10,

Proof. The proof uses again the renormalization method presented in Section 3.6 and is very similar to
that of Lemma 4.4. Let us fix k > ks and h € N*. We define a sequence of densities (px)k>k, Dy setting

Prs = 1 )
Vk 2 ks, pr41 =Pk — 7

One can check, using a computational knowledge engine, that since Ly > 10'°, we have Zk>1 o < %,
therefore we have py > 1/2 for every k > k5. We define, for w € R x Z,

Sh(w) = {Jy € Iny, (w), Dy 4 (w) < pr}.
Since p > 1/2, it suffices to show that s = P(Sh (o)) satisfies

(5.26) shp < co0 L P70,
To do this, we use induction on k& > k5.
BASE CASE. When k = k5 + 1, the result follows directly from Definition 5.11 and Lemma 5.10.
INDUCTION STEP. Assume that (5.26) has been shown for a fixed k > ks, and fix y € Ip,r, ., . Recall
the definitions of Ci, Fj, and Gy, from (4.6), (4.8) and (4.11), where Hy, is replaced by hLj. Recall also
notations A} and N/ used in (4.7), and 67 used in (4.13). Note that in the definitions of F and Gy, we
will not use the part with events D (because contrary to Lemma 4.4, here we are not looking at horizontal
displacements). We claim that

Y
(5.27) Ge N {nyl,k-;-l < pk+1} C {there exist three j € [1,1; — 1] such that DZ-fk(X;’) < pk}~

Indeed, suppose that G, occurs but it is not the case that there exist three ] € [1,1x — 1] such that
H
D,/ (X)) < pg. This means that for Iy — 3 values of j € [1,1), — 1], we have Dh k(é\f ) > pk, which means

L 0¥
#0<i< k , {X . XyJ is (hLy,, Ik, )-threatened » > py
L k41 hLig

ks +1 Lig41
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’ 172 H
(hLy) 22 indices i € [0, Ly/ Ly, +1] such that X’

hL)C5+1 Lk5+1 'L'th5+1,Xy

<
(indeed, this occurs only when ihLy, 1 < m2(60%) — ma(X}) < (hLg)'). Therefore, '

Now, on Gy, there are at most = 9;’/

R Ly XY NY . Ly Lllc/Q
0<i< N D G hLg, , . )-threatened p > —2—rE
# { X? Lk5+1 \‘ T@h,Lk5+1,X;’J WEn, 18 ( ks ks) reatene } Pk Lk5+1 Lk5+1
In the end,
DY = Lis 1 #0Kj< Lkt ). ¢4 is (hLg,, ly, )-threatened
AL L List1’ Tinbugrr XY |y T
5

WV

L L LY?
ks +1 (lk — 3) Pk ko _ 9k
Lyt Ly 41 L1

1 3 2

5
>Pk_7 = Pk+1,
k

which proves (5.27).
Now, note that on Fi N G, for every j € [0,1; — 1], 0;4 is in a Iy, (w) with w € Ci. Therefore, in a
similar way as in (4.14), we get

U (Shk(w1) N Fir, (w1))

Fir N ns c
k MGk N Shkt1 C N (Shk(w2) N Frr, (w2)).

w1, w2ECK
|72 (wy)—ma(w2) |22k Ly
Recall constant c¢jo from (4.15). Here again we get

4.2 —a
Shokt+1 < 12l (sp,  + 2Ly ),

and so, using the induction assumption and (5.24), we get

Sh,k+1 2a—3)/8 —(2a—3)/5
m < 612(012 + Cgo) L](C )/ lé Lk ( )/
k+1
< cra(crz + c3p) L;(Gaiw)/m < egp.
This concludes the induction and thus the proof of (5.26). O

5.5 Final proof of Lemma 4.6.

Recall that we argued by contradiction and assumed that v_ < v, therefore § = % > 0. Let

n= ﬁ > 0 where k5 is defined as in Lemma 5.10. We are going to show that
©5

0
(5.28) pu (v =) o 0

which contradicts the definition of v4. From now on, we fix k > k5 + 1, and we work with h = hy = Ly,
which is why it was important for our previous estimates to hold uniformly on h > 1. We let Hy =
higLyk, = LiLy, and r = lj,. In order to prove (5.28), we consider the large box BLi’ which we pave

using small sub-boxes By, (y) for y € Cp, where Cj, is the minimal set satisfying
U Zu(w) = B2 N (Z x H,Z).
weék

Recall notations ij’r, ./\/jz’r, /sz’r, ./\7J-Z’F7 Z;’F and AJZ-’F from the statement of Proposition 5.9, where
2€Z?>and T € H. Fory € Iz and 1 <4 < Li/Lygg+1, we set ZY=XY ~and A = NY ., and for

TirHy,
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Y Y
0<j<r, weset XY, = X]f%i " In the same way, we define NV, XY NV, ; and AY . We define

1,70 Vi, 7 ]7
the following events:

A~

A=) (AHk*“’(”+ +0)° N Ap—anyw(ve + 77)6) ;

wEék
~ Lo/ Lk = i NV XY NV
Fe=Fen () [Diyn ) ﬂDu;z’ ”ﬂE LM p ;J’ SR
yGILi i=1

Ly/Lig—1 p—1

o= 0 N o () <))

yEILz =1

= () {ng > 1/2}.

€l 2
Yy L2

Using Lemma 4.4 and the fact that o > 8, we have

. L. \2 B o
(5.29) P(A;) <c (Lk> (010(77)Hk o/t + c10(6/2r) (Hi — 4H1/<;)_a/4) <cl, (e=8)/4 4.
ks

Using Propositions 3.7, 3.14 and 3.13, we have
(5.30) P(F) < cgleok 4 oL} (265 tem o™ o emestiT)
Using Propositions 3.7, 3.14 and 3.20, we have

(5.31) P(SE) < cL4< “le2eH? 4 oot ) — 0.

k—o0

By Proposition 5.12, we have, using that a > 2,

(5.32) P(F) < eg0 Ly 227310 0,

k—o0

The goal now is to show that on the four events defined above, we have, for every y € I L2,

(5.33) v = Ll,z (m (22,),..) ~m @) <oy =3,

First note that since [(L?)Y/?] = Ly, < Hy < rHy, we have 7.z, > 0 for every i > 1. Therefore, we
will only isolate i = 0 and simply use DY to bound the displacement 71 (27”") — m1(y). Let us now focus
on bounding 71 (2;% ) — m1(%;”) where 1 < i < Ly/Lg,41. First note that Ay along with Frz and G
allow us to bound the displacements of the random walk, similarly to what we did in Section £2.4. We
have, for 1 <4 < Lp/Lp,+1 and 0 < j <,

Wl(Xi?’,/j+1) - 7T1(')5}1’,/]') < ﬂHI/g + (v4 +n)Hy,

3n

(5.34) < (v+ + ) Hy, using (5.23)
5

(5.35) < (11_,_ + o > Hy, by definition of 7.

We can use (5.34) for indices ¢ such that [ 2;”] is not (Hy,r)-threatened. As for the remaining indices 1,
we will use Proposition 5.9, replacing in the statement of the proposition H by Hy, y by Z;¥ and T by
A:Y. Assumption 2 in Proposition 5.9 is satisfied using (5.35), and we can show in a similar way, using

events Ay, —AHw (vy + )¢ in Ap, that we have
Yy Yy 4 /
(5.36) m(Z;;) —m (&) < | v + 5 o (H —4H'),
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R

Figure 11: The final bound in the proof of Lemma 4.6. The large boxes correspond to the
displacements for ¢ € J/ and the specific case ¢ = 0, and the small boxes for the rest.

so assumption 3 is satisfied too. Assumption 4 and 5 are satisfied using event F. Finally, the fact that
Supp A.Y C Ry (| Z;?]) can be shown in the same way as (5.18) in the proof of Proposition 5.9, using
(5.35), (5.36) and Fy. At the end of the day, Proposition 5.9 ensures that for indices i such that | ZY] is
(Hg, r)-threatened, we have

)
(5.37) m(24) - (@) < (00 - 5 ) ri

Denote by J; the set of indices i € [1, Ly/Lg,+1 — 1] such that | 27”], is (Hy,r)-threatened. By
Definition 5.11, we have the inclusion of events

~ Lk‘
5.38 Hy C J| > - 1}.
(5.39) R
yEILi
Therefore,
m (2 ) ~ ™)
Li/Lsy1—1
=m(2Y) —m(y) + (Wl(%il)*ﬁl(%y))
i=1
<Briy+ Y (m(28) —m(2) + Y (m(24) - m(27)) using D}y,
ieJy igJ}
< PBrHE + || vy — — | rHi + —1—|JZ|) vy + = ) rHy using (5.37) and (5.34)
2r Lk5+1 2
3n 6 37
< BrHg +vy L + ?Li =% <2r + 2) rHy,
n., (™ Lyt
- (-3 (F0) 2) 0 by (:38), 7 = bios = 7
< (v+ - %) L using k > ks + 1 and (5.23).

See Figure 11 for an illustration of the above bounds. In the end, we do have (5.33), which is true for any
yel L2, 80

U
pr2 (v+—6) :P(EyGILi, VY

2
k

>0, — ﬂ) < P(A}) + P(F}) + P(GF) + P(Hf) —— 0,

6 k—o0

using (5.29), (5.30), (5.31) and (5.32). Therefore liminfy_,oo pr(v4 —1/6) = 0, where vy — /6 < v4.
This contradicts the definition of v, therefore, v_ = v,.

6 Towards a complete LLN

The next step of our work would be to prove a LLN for the random walk defined in Section 2.2, as is
expressed in the following conjecture.
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Conjecture 1 (LLN). There exists £ € R? such that

Xn
P-almost surelyy, — —— €.
n

n—oo

With Theorem 2.4, we have a result that is weaker - albeit very interesting both in itself and in the
methods used to prove it. Indeed, when assuming conjecture 1, we immediately get Theorem 2.4 with
X = H%\I However, going from Theorem 2.4 to an actual LLN is not trivial at all. It is actually sufficient
to show that “» converges almost surely to derive the LLN from Theorem 2.5. In other words, what we
are missing at this point is the understanding of the temporal behavior of X.

This is a priori a hard question, because the environment from the point of view of the particle may
not behave very nicely under our assumptions. We used renormalization methods to get around this issue,
but it is unclear to which events describing the temporal behaviour of X we could apply a renormalization
method.

7 Applications

In this section, we give examples of environments that satisfy the assumptions introduced in Section 2.1.
These are taken from classical 1D dynamic or 2D static models for which we can control the vertical
dependencies (provided that for a 1D dynamic model, the vertical coordinate is time).

Oftentimes, a static environment p € 27 is constructed using a background environment, namely a
random partition P of Z? into sets (O;);, and allocating to all the points x € O; a common fixed value
w(z) = (p(li), . ,pff)) € S. Typically the number of sets in partition P is finite, often with simply two
sets. This construction ensures that p is a deterministic function of P, so that translation invariance
and decoupling for the background environment implies the same for p. As for the drift assumption, it
suffices to demand that there exist € > 0 such that pff) > 1/2 4 € for every i. All the examples in this
section fall under this framework. In the rest of this section, the subscript b will be used to indicate that
we are working with the background environment.

7.1 One-dimensional dynamic environments

In [BHT20] are presented several models of 1D dynamic environments that have at most polynomial time
correlations. More precisely, let I C N. A one-dimensional dynamic environment is a random variable
on a certain probability space (Q, Tp, Pp) given by n: (y,t) € Z x Ry — n¢(y) € I and taking values in
D(R, I”), the space of cadlag functions from R to I%. The state of environment 1 at time ¢ and site y
is described by 7;(y). We assume that 7 is translation-invariant, that is

(7.1) for every (2,5) € Z x Ry, (1:(y))(y.t)ezxr, and
' (Ns+t(2 +¥)) (y.)ezxr, have the same law under P.

We also assume the following time-decoupling condition. There exists o > 0 such that for every A > 0,

there exists ca; = c21(A) > 0 such that for every h > 0, for every pair of boxes By and By with maximal
side lengths Ah that are h-separated, for all pairs of [0, 1]-valued functions f; and f» on D(R, IZ) such
that f1(n) is o(n|pB, )-measurable and f2(n) is o(n|p,)-measurable,

(72) Covy, (fl (77), f2 (77)) < Cthiaa

where Cov;, denotes the covariance with respect to Py.

This model consists of our background environment in the sense that it partitions Z? into sets given by
0; = {x = (y,t) € Z%,ny(y) = i} for every i € I. Assumption (7.2) implies the decoupling property we
are after using the right choice of A and provided that « is large enough.

Examples of environments satisfying (7.1) and (7.2) are given in [BHT20]: the contact process, Markov
processes with a positive spectral gap, the East model and independent renewal chains.

Mind that our contribution for random walks in those environments is quite different from what is
done in [BHT20], even if we consider the random walks from the 1D dynamic setup as evolving in R? by
seeing time as a second spatial coordinate. For instance, these never go downwards. Another difference is
that in [BHT20], in order to know where to jump, random walks are allowed to look at the environment
not only where they are but in a horizontal interval of R2.
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7.2 Boolean percolation

In [ATT18], the authors show a decoupling property for the Boolean percolation process in R?, a model
first introduced in [Gil61]. Here is a brief account of what this model consists of and how it can be used
in the framework of this paper.

Heuristically, Boolean percolation can be defined using a Poisson point process of intensity A > 0 in
R?, and allocating independently to each point in this point process a ball of random radius, sampled
from a common distribution v in Ry. One way to make this more rigorous is that chosen in [ATT18].

For a subset n € RZ x R, let

om= |J B2),

(z,2)€N

where B(z, z) is the Euclidean open ball of center x and radius z.
Let A > 0 and v be a probability measure on (Ry, B(R1)). We assume that v satisfies the following
moment condition: there exists cv > 0 such that

oo
(7.3) / 22T du(z) = g9 < 00.
0

This common assumption implies, using Markov’s inequality, that the radii of our Boolean percolation
have tails that decrease with a polynomial rate of exponent a + 2.

Let 1 be a Poisson point process in R? x R, with intensity Adx ® dv(z), where dz is the Lebesgue
measure on R?. Let P, denote the law of this random variable. E; and Cov, denote the associated
expectation and covariance.

Random variable O = O(n) is called the Poisson-Boolean percolation of intensity A and radius law v.
For every site x € Z?, we say that x is occupied if z € O. Otherwise, we say that x is vacant. This model
consists of our background environment in the sense that it partitions Z2 into two sets: the occupied
sites and the vacant sites.

Let us now state a decoupling property for this environment. Proposition 7.1 gives a stronger property
than the decoupling property we want to get, using translation invariance, the right choice of k and
provided that « is large enough. For r > 0, let B> (r) = [—r,7]%.

Proposition 7.1 ([ATT18], Proposition 2.2). Recall (7.3). For every k > 0, there exists caz =
ca3(\, v, k) > 0 such that for all v > 1 and for all pairs of functions fi, fo : P(R?) — [—1,1] such
that f1(0) is o(O N B*(r))-measurable and f2(O) is o(O N B> (r(1 + k))¢)-measurable, we have

Cov(f1(0), f2(0)) < cazr™ .

7.3 Gaussian fields

In [BHKT23] (Section 6.1), the authors introduce a background environment on Z? using Gaussian fields.
This environment satisfies a decoupling assumption that is stronger than ours. Here is a brief account of
what we need from [BHKT23] in our framework.

Let ¢ : Z? — R, a non-zero function such that

(7.4) V(wy,22) € ZQ, q(z1,22) = q(—21, 72).
We also assume that there exists A > 2 and co4 > 0 such that
(7.5) Vo € 22\ {0}, q(z) < caalz| ™.

We also consider a family (W, ),cz2 of i.i.d. standard normal random variables and we define the Gaussian
field (g )zez2 by setting

9= =Y alz —y) Wy,

yEeZ?

The background environment we are interested in is given by (7,)zczz where 7, is the sign of g, (that is,
Nz € {£1}). By construction (n;)zezz is translation-invariant. It remains to check that it satisfies our
decoupling assumption. The authors of [BHKT23] show the stronger property that follows.
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Proposition 7.2 ([BHKT23], Lemma 6.2). Recall (7.4) and (7.5). There exists ca5 > 0 such that for
every integer r > 2 and every box C = [a,a + w] X [b,b+ h] C Z* with w,h > 1, there exists a coupling
between 1 and a field n©7 such that

Py(n # n°") < cos(wh + (w + h)r 4+ %) pAE3/2
and, if A C C and B C Z? satisfy d(A, B) > r, then n°7|4 and n°"|p are independent.

This decoupling property implies that if By and B are two boxes with maximum side lengths 2(25+1)h
that are h-separated, and if f; and f; are two measurable functions on {jzl}Zz such that f1(n) is o(n|s, )-
measurable and f»(n) is o(n|p, )-measurable,

Covy(fi(n), f2(n)) <ch™@

for a certain constant ¢ > 0, where & = —(2 — A+ 3/2). Therefore we have a > 12 provided that A > 31/2.

7.4 Factors of i.i.d. with light-tail finite radii

Let Y = (Y)zez2 be a family of i.i.d. random variables in [0, 1] with law P (as usual, E; and Cov, will
denote the associated expectation and covariance). Let 7 : Z? — {0,1} be a random variable. We say
that 7 is a factor of Y with finite radius if there exist two measurable functions ¢ : [0,1]Z° — {0,1} and
p:[0,1%° = R, such that:

e Forall z € Z2, n(z) = ¢(67Y), where 0%y = (ypiv)vezz for every y = (1) € [0,1)%;
o For Py-almost all y,y’ € [0, I]Zz that coincide outside of B(o, p(y)), ¢(y) and ¢(y’) are equal at o.

This implies that we only need to look at Y in a ball of radius p(Y) around a site z € Z? to determine
n(z). Random variable R = p(Y") is called the radius of 7.

Such a process 1 can be seen as a background environment. It is translation-invariant by construction.
In order to show a decoupling property for 7, we need to make an additional assumption on the radius:
we assume that there exist o > 0 and cog > 0 such that for all r > 0,

(7.6) Py(R> 1) < cogr™ ™.

Proposition 7.3. There exists ca7 > 0 such that for every h > 0, for every pair of h-separated bozes
By and By of Z2, for all pairs of [0,1]-valued functions f1 and fa on {0, 1}Z such that f1(n) is o(n|B,)-
measurable and f2( ) is o(n| B, )-measurable,

(7.7) Covy, (f1(n), f2(n)) < car h™7.

Proof. Let us define, for i € {1,2}, abox B; = (B;i+[—h/3, h/3]2)NZ? and a function 1; : [0,1)B — [0,1]%
by setting, for y = (y»),c 5, € [0, 1]31' and z € Z2, Y5, (Y)z = yz1p, (). Also, we define g; = fiopo ¢,
which takes arguments in [0,1]57. The crucial idea is that if R < h/3, we have f;(n) = 9i(Yg,), where
Y, = (Y,) Now, remark that Y and Yz are independent, since B; and B, are disjoint. Therefore,

Ep[f1(n) f2(n)]

vEB; "

Eolg1(Y5,) 92(Y5,) Lr<nss] + Po(R > h/3)
bl91(Y5, )| Eb[g2(Y3,)] +c26 h™°

Ep[f1(m)] + ca6 h™*) (Ep[f2(n)] + c26 %) + ca h™
sl 1M Eo[f2(n)] +ch™?.

—~

NN N //\
=

&=

O

Taking a closer look at this proof, it is clear that in fact the decoupling property holds not only for
boxes that are vertically separated, but for any two sets of Z? between which the distance is at least h.
In the end we do recover the decoupling property that we want, provided that o > 12.
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Remark 7.4. To make things simple, we used a factor of i.i.d. that takes values in {0, 1}, but this does
not affect the proof of the decoupling property. We could work with a much bigger set I and use the
background environment given by O; = {x € Z?, n(x) = i} for i € I. Furthermore, one way to construct
a random environment directly (that is, without using an intermediary background environment as we
have been doing so far), would be to take for I the set S defined in Section 2.1. In that case, if we add
the drift condition, u = ¢(Y) is a random environment satisfying our assumptions.
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Appendix
PROOF OF PROPOSITION 3.3. Let y € Z2 and I’ € H. We want to show that for every k € N* and
f1,- -+, fx measurable non-negative functions on [0, 1], we have
- 1
(7.8) E[f@rT)- - fUrh) / frlu)du - / fi(u) du
0

We show this by induction on k. The case k = 1 simply follows from the fact that UY"" = U(y, T'(y) + 1).
Assume (7.8) is true for a fixed k € N*. Let f1,..., fr+1 be measurable non-negative functions on [0, 1].
Set ng = 1 and xg = y. We have

]E{ﬁ( D) gl k+1)}
k
= > E|AU@o.T(w0) +10)) - firr(Ulan.Tan) + ) T vy Tynr oy,

T1eens x ), €22 j=1
Y. npg ENF

Now in each term of this sum, the variable fy1(U(x,'(zx) + ni)) is independent from all the other
variables that appear, for those are all measurable with respect to p and

{U(20,T'(w0) +10), ..., U(wp—1,T(zg—1) +n121) },

where, for every j € [0,k — 1], either zy # xj or D(zg) + ng, # I(x;) + nj. Now for any z;, € Z? and
ng € N*, E[frs1(U(zk, T(zk) + nk)) fo fr+1(u) du. Therefore

E AT ka(Uf:fl)} =E[AWP)- fuOF)] /0 fenu)du,

and then using the induction assumption allows us to conclude. The exact same arguments work when
replacing P by P¥. O

PROOF OF PROPOSITION 3.13.  We write the proof for y = 0 and T' = 0 for the sake of simplicity (initial
conditions play no part in our reasoning). Let p € A. Recall Definition 3.1 for the lower-bound random
walk, as well as (3.4). Using increment inequality (3.3), we have

PH(ES) = PA(3n € N*, ma(X,) < —H)
<PH(IneN*, X, < —H)
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< ]P)“(f',H < OO)

Now, under P#, X is a standard biased 1D random walk with probability 1 /2+¢ of going up and 1/2 — ¢
of going down. Applying the gambler’s ruin estimate, we get

1/2—5)H7

1/2+4¢

P (7A—7H < OO) = (
hence the result for P#, and integrate to get the result for P. For the case H = 0, we can write

PH(Ep) > P* ({X1 = e} N B 1“”)

— PH(X; = e2) PH (Efz’l{"}) by Proposition 3.3
> <; + 5) PH (Ele2’1{0}> .

. . . 1o ~e2,1¢,
Now we can use the gambler’s ruin estimate again: P# (Ef2 ¢ }) = PH ( S —|—oo) =

1 /2+s This
yields the result for P#, and we integrate to get the result for P. O

PRrROOF OF PROPOSITION 3.14. Let u € A. Again, we only show the case y = o and I" = 0 for the sake
of conciseness. Now, in order to study the horizontal behavior of X, let us define, in the same fashion as
in Definition 3.1, a lazy biased 1D random walk X coupled to X in the following way:

{ Xo=0; )
Vn € N, Xn+1 = Xn + 1Un+1§1/2—8'

We can check that this random walk satisfies, for every n € N,

P“(Xn+1—m+1|X —:1:) =56
(7.9) P (Xpp1 =] Xy =2) = +5;
XnJrl Xn + 1} ) {XnJrl =X, +61}

We also associate a stopping time 7y for every H € N*, in the same way as 7y was associated to X. The
mean speed of this new random walk is 1/2 — €, so we can obtain a ballisticity property similar to that of
Proposition 3.11 where we replace 2¢ by 1/2 — . More precisely, for any £ > 0, there exists a constant
cos = c28(&) > 0 such that for every n € N, we have

G

We could define another random walk for when X goes left, but using only X is sufficient by symmetry
of the problem. Actually, if we fix a parameter ¢ > 0 to be chosen later, we have

(7.10) P ( X, — X > gn) < cpge e,

P (D) < 2PM(Tpm < 7r) < 2P (T > [H/C]) + 2P (T < [H/C]) -

For the first term above, we use Proposition 3.11 and write, for { < 2,

P (7 > [H/C]) < P*(Xppye) < H)
< ez temeslH/C where ¢3 = ¢3(2¢ — ()
<cleoH,
for a certain constant ¢ = ¢(¢) > 0. In the same way, using (7.10), P* (7sg < [H/C]) < —°H when
8 > 1/255, that is ¢ > % This means that our proof works whenever ( € (1/?{5,2 ), which is
non-empty because of (2.2). Therefore, estimate (3.18) is shown. O
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ProoF oF LEMMA 3.19. Let u € A. By Corollary 3.4, we can assume that y = o and I' = 0. We fix
a € Nand k = k(a) an integer to be chosen later. Let us consider hitting times 75 for j € N (recall (3.4)).
Let us consider the following events (with the convention that if 7;; = oo, we just take the empty set):

Ajp = {()A(@.,ﬁn) does not return below jk} = ﬂ {X@,ﬁn > jk} ;
: neN e :

k
flj,k = {(X+jk+n)neN does not return below jk within k& steps} = ﬂ {)A(;jm_n > jk} .

n=0

Remark that, since X jumps at range 1, for every j € N we have 7(; 1), = Tjx + k. Therefore, using

Corollary 3.6 along with an induction argument, the (A, );en are independent events. Moreover they all
have the same probability

pr =P (A k) = P*(Ajr) = P*(Agy) > 2e,

using Proposition 3.3 and the same line of reasoning as in the end of the proof of Proposition 3.13.
Therefore the random variable given by G, = inf{j € N, A, ; occurs} is a geometric variable of parameter
pr. Now, we have

P*(O(X) > a) < P*(Vj < a/k, jk is not a cut point of X)
P (Mj<asn A k)
P (Nj<asi AG k) + P! (Ujcasn Af e N Ajik) -

NCINN

(7.11)

The first term in the last line above can be bounded from above by

(7.12) P (G > la/k]) = (1 — pp)l/MH < (1 — 2¢)%/F,

As for the second term, we use a union bound and remark that, for any j € N, we have
PH(AS N /1]-7;6) =P+ (()A(+jk+n)neN returns below jk but not within k steps)

= Z P ((XtJrn)neN returns below X, but not within k steps, Tjr = t) .
teN

In each term of the sum above, the two events between parentheses are independent, using Corollary 3.6.
Now the probability of the first event actually does not depend on ¢, using Proposition 3.3, so

PH (A5, N A; ) = P*(X returns below 0 but not within & steps)
< P*(X returns below 0 but not within k steps, X, > ek) + P*(X), < k).

Using Proposition 3.11, P*(X}, < ek) < es(e)~Le (k. To study the other term, we remark that it is
less than P# (?ffg,i\j" < oo). Now, we can apply Proposition 3.7 to estimate this, considering that for

any u € A, by the gambler’s ruin estimate, we have

) 12—\
P“(T_LskJ<OO)=<1/2+€> <e 7,

where ¢ > 0 is uniform in . Therefore this bound also holds for P* (%f[“sé\j’“ < oo). At the end of the

day, combining this with (7.11) and (7.12), we get the desired result by choosing k = k(a) = |a'/?] and
adjusting c; properly. To get the same estimate with P, we integrate over p. O

References
[AdHR11] Luca Avena, Frank den Hollander, and Frank Redig. Law of large numbers for a class of

random walks in dynamic random environments. FElectron. J. Probab., 16:no. 21, 587-617,
2011.

46



[Al123]

[ATT18]

[BHKT23]

[BHT20]

[CZ04]

[dHdS14]

[DR10]

[Gil61]

[GS01]

[HdHS*15]

[Kal81]

[MV15]

[Shi62]

[Sim07]

[Sol75)

[SZ99]

[Szn02]

[Zer98]

[Zer02]

Julien Allasia. Law of large numbers for a finite-range random walk in a dynamic random
environment with nonuniform mixing, https://arziv.org/abs/2304.03143, 2023.

Daniel Ahlberg, Vincent Tassion, and Augusto Teixeira. Sharpness of the phase transition
for continuum percolation in R2. Probability Theory and Related Fields, 172(1):525-581, Oct
2018.

Rangel Baldasso, Marcelo R. Hilario, Daniel Kious, and Augusto Teixeira. Fluctuation bounds
for symmetric random walks on dynamic environments via russo-seymour-welsh, 2023.

Oriane Blondel, Marcelo R. Hildrio, and Augusto Teixeira. Random walks on dynamical
random environments with nonuniform mixing. The Annals of Probability, 48(4):2014 — 2051,
2020.

Francis Comets and Ofer Zeitouni. A law of large numbers for random walks in random
mixing environments. The Annals of Probability, 32(1B):880 — 914, 2004.

F. den Hollander and R. S. dos Santos. Scaling of a random walk on a supercritical contact
process. Annales de U'Institut Henri Poincaré, Probabilités et Statistiques, 50(4):1276 — 1300,
2014.

Alexander Drewitz and Alejandro F. Ramirez. Asymptotic direction in random walks in
random environment revisited. Brazilian Journal of Probability and Statistics, 24(2):212-225,
2010.

E. N. Gilbert. Random plane networks. Journal of the Society for Industrial and Applied
Mathematics, 9(4):533-543, 1961.

Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford University
Press, 3rd edition, 2001.

Marcelo Hilario, Frank den Hollander, Vladas Sidoravicius, Renato Soares dos Santos, and
Augusto Teixeira. Random walk on random walks. Electronic Journal of Probability, 20(none):1
— 35, 2015.

Steven A. Kalikow. Generalized Random Walk in a Random Environment. The Annals of
Probability, 9(5):753 — 768, 1981.

Thomas Mountford and Maria Eulalia Vares. Random walks generated by equilibrium contact
processes. Electronic Journal of Probability, 20(none):1 — 17, 2015.

M. Shimrat. Algorithm 112: Position of point relative to polygon. Commun. ACM, 5(8):434,
aug 1962.

Francois Simenhaus. Asymptotic direction for random walks in random environments. Annales
de UInstitut Henri Poincare (B) Probability and Statistics, 43(6):751-761, 2007.

Fred Solomon. Random Walks in a Random Environment. The Annals of Probability, 3(1):1
- 31, 1975.

Alain-Sol Sznitman and Martin Zerner. A law of large numbers for random walks in random
environment. The Annals of Probability, 27(4):1851-1869, 1999.

Alain-Sol Sznitman. An effective criterion for ballistic behavior of random walks in random
environment. Probability Theory and Related Fields, 122(4):509-544, Apr 2002.

Martin P. W. Zerner. Lyapounov exponents and quenched large deviations for multidimen-
sional random walk in random environment. The Annals of Probability, 26(4):1446 — 1476,
1998.

Martin Zerner. A Non-Ballistic Law of Large Numbers for Random Walks in I.I.D. Random
Environment. Electronic Communications in Probability, 7(none):191 — 197, 2002.

47



	1 Introduction
	2 Framework
	2.1 Environment
	2.2 Random walker
	2.3 Complete construction and coupling
	2.4 History

	3 Key properties and tools
	3.1 Lower-bound random walk
	3.2 Markov-type properties
	3.3 2D simplification
	3.4 Localization properties
	3.4.1 Ballisticity
	3.4.2 Vertical lower bound
	3.4.3 Horizontal bounds
	3.4.4 Localization in boxes

	3.5 Cut lines
	3.6 The multi-scale renormalization method

	4 Limiting directions
	4.1 Definitions and main results
	4.2 Deviation bounds: proof of Lemma 4.4
	4.2.1 Ideas of the proof
	4.2.2 Choice of h0 and k0
	4.2.3 Proof of (4.4)
	4.2.4 Interpolation


	5 Equality of the limiting directions: proof of Lemma 4.6
	5.1 Barrier property
	5.2 Trapped points
	5.2.1 Probability of being trapped
	5.2.2 Delay near a trapped point

	5.3 Threatened points
	5.3.1 Probability of being threatened
	5.3.2 Delay near a threatened point

	5.4 Threatened paths
	5.5 Final proof of Lemma 4.6.

	6 Towards a complete LLN
	7 Applications
	7.1 One-dimensional dynamic environments
	7.2 Boolean percolation
	7.3 Gaussian fields
	7.4 Factors of i.i.d. with light-tail finite radii


