
A controller-stopper-game with hidden controller type

Andi Bodnariu
Department of Mathematics, Stockholm University

Kristoffer Lindensjö
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Abstract: We consider a continuous time stochastic dynamic game between a stopper
(Player 1, the owner of an asset yielding an income) and a controller (Player 2, the manager of
the asset), where the manager is either effective or non-effective. An effective manager can choose
to exert low or high effort which corresponds to a high or a low positive drift for the accumulated
income of the owner with random noise in terms of Brownian motion; where high effort comes at
a cost for the manager. The manager earns a salary until the game is stopped by the owner, after
which also no income is earned. A non-effective manager cannot act but still receives a salary.
For this game we study (Nash) equilibria using stochastic filtering methods; in particular, in
equilibrium the manager controls the learning rate (regarding the manager type) of the owner.
First, we consider a strong formulation of the game which requires restrictive assumptions for
the admissible controls, and find an equilibrium of (double) threshold type. Second, we consider
a weak formulation, where a general set of admissible controls is considered. We show that the
threshold equilibrium of the strong formulation is also an equilibrium in the weak formulation.

1 Introduction

We consider a continuous time two player stochastic game between a stopper (Player 1) and a
controller (Player 2). The controlled process (Xt) is given by

Xt =

∫ t

0
(θλs − c) ds+Wt, (1)

where (λt) is a process chosen by the controller, (Wt) is a Brownian motion, θ is an independent
Bernoulli random variable with P(θ = 1) = 1 − P(θ = 0) = p ∈ (0, 1) indicating whether the
controller is effective (or active) or not, and c > 0 is a constant. On the other, based on the
observations of (Xt), the stopper selects a stopping time τ at which the game ends.

For a given stopping-control strategy pair (τ, (λt)) the reward of the stopper is

J 1 (τ, (λt), p) = E
[∫ τ

0
e−rs (θλs − c) ds

]
(2)

and the reward of the controller is

J 2 (τ, (λt), p) = E

[∫ τ

0
e−rs

(
c− (λs −

¯
λ)2
)
ds

∣∣∣∣∣θ = 1

]
, (3)

where r > is a constant (discount rate).
The control process values are restricted to take one of two constants {λ̄,

¯
λ} at each time t,

where we assume that λ̄ >
¯
λ > c > 0. The model is further specified in Sections 2 and 3 where
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we also define notions of (Nash) equilibria corresponding to both players wishing to maximize
their respective rewards.

The interpretation is that (Xt) is the accumulated income of Player 1 who wants to maximize
the discounted accumulated income by selecting a time τ at which the game ends. This income
has a positive drift if θ(ω) = 1 and a negative drift if θ(ω) = 0; however, the outcome of θ cannot
be observed by Player 1 who must make the stopping decision based only on observations of (Xt).
The stopping decision will in equilibrium, as we will show, be made based on the probability that
Player 1 assigns to the event {θ = 1}, which is dynamically updated based on the observations
of (Xt).

On the other hand, an active Player 2, i.e., in case θ(ω) = 1, can affect the drift of the
income (Xt) by dynamically selecting the effort level, i.e., (λt), and thereby, as we shall see,
affect the probability that Player 1 assigns to the event {θ = 1}. The accumulated income of
an active Player 2 is based on the constant income rate c minus the cost rate (λt −

¯
λ)2 which

is zero when effort is low and positive otherwise; cf. (3). Moreover, an active Player 2 wants to
dynamically select the effort level (λt) in order to maximize the discounted accumulated income
of Player 2 until Player 1 ends the game. Player 2 must therefore consider the trade-off between
exerting a large effort, which is costly, and a small effort, which implies no cost but decreases
the probability that Player 1 assigns to {θ = 1} compared to the large effort. An inactive Player
2 cannot act at all.

In line with the interpretation above, our ansatz to this problem is to use stochastic filtering
methods to search for an equilibrium which depends on the conditional probability of the event
{θ = 1} based on the observations of (Xt), which corresponds to Player 1’s continuously updated
belief about Player 2 being active. Indeed, we find such an equilibrium of (double) threshold
type meaning that we find two thresholds 0 < b∗1 < b∗2 < 1 such that an equilibrium is that
Player 2 exerts the smaller effort

¯
λ when the conditional probability of {θ = 1} is above b∗2 and

the larger effort λ̄ when the conditional probability is below b∗2, and Player 1 stops the game
whenever the conditional probability of {θ = 1} falls below b∗1; see Remark 6 for details.

We study this game in an increasing order of generality regarding the set of admissible control
strategies. First using a strong formulation and second using a weak formulation of the game.
The same threshold equilibrium is obtained in both formulations.

• Strong formulation: In the strong formulation we admit control strategies only of Marko-
vian type in the sense that λt = λ(Pt), where λ : [0, 1]→ {λ̄,

¯
λ} (a deterministic function)

and (Pt) is defined as a process which in equilibrium coincides with the conditional prob-
ability that the stopper assigns to {θ = 1}. The process (Pt) is here the strong solution to
a particular stochastic differential equation; see the beginning of Section 2 for details. In
this formulation the main results are: (i) we provide a verification theorem for a double
threshold equilibrium, and (ii) we prove that a double threshold equilibrium exists under
certain parameter restrictions.

• Weak formulation: In the weak formulation, admissible control strategies correspond
to a general set of stochastic processes adapted to a filtration generated by (Xt) taking
values in {

¯
λ, λ̄}. Here, however, we start by defining (Xt) as a Brownian motion and we

achieve a controlled process analogous to the one in (1) by means of a measure change,
with which we define the reward functions and a corresponding equilibrium; see Section 3
for details. The main result is that the double threshold equilibrium found in the strong
formulation is also an equilibrium in the weak formulation, i.e., when allowing a larger set
of admissible control strategies.

In Section 1.1 we survey related previous literature and clarify the contribution of the present
paper. In Section 1.2 we present stochastic filtering arguments which are relevant to the subse-
quent sections. The strong formulation of our game is studied in Section 2. In particular, the
beginning of Section 2 specifies the strong formulation further, Section 2.1 contains a heuristic
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derivation of an equilibrium candidate, Section 2.2 reports the verification result, and Section
2.3 reports the equilibrium existence result. The weak formulation is studied in Section 3.

1.1 Previous literature and contribution

The problem studied in the present paper belongs to a new class of dynamic stochastic control
and stopping games with the key feature being that the player’s may be ghosts (cf. [7]) in the
sense that a player does not necessarily exist, or equivalently is not activity, or not effective.
This ghost feature was first studied in [7], where a two-player stopping game is studied and the
term ghost was introduced. In [10], a controller-stopper-game where the stopper faces unknown
competition in the form of a ghost controller is studied, in the context of a fraud detection
application. In [11], a de Finetti controller-stopper-game (of resource extraction) where the
controller faces unknown competition in the form of a stopper ghost with the option to extract
all the remaining resources instantaneously is studied.

From a game theoretic interpretation our main contribution is that our game is a non-zero-
sum game where the player objectives agree in the sense that both players would benefit if the
hidden controller were revealed (in the case of an active Player 2). In this sense, both players are
not exactly competing against each other, but rather aiming on finding an agreement that would
benefit both. Typically, such situations are complicated since it makes existence of (non-trivial)
Nash equilibria sensitive to the specific player payoffs. This stands in contrast to previously
studied games of these type, see e.g., [10] where the profit of one player is an immediate loss
for the other, which results in opposite player objectives in the sense that the controller aims at
staying hidden, which is the opposite to our situation.

From a technical view-point, our main contribution is twofold. First, we constrain the control
process to take values in a finite set, i.e., {λ̄,

¯
λ}. This means that we can interpret the problem

of the controller as an optimal switching problem without a cost for switching, implying that
switching (between the two control values {λ̄,

¯
λ}) may occur infinitely often, which stands in

contrast to the usual formulation of optimal switching problems; see e.g., [25] and the references
therein. Second, we consider a weak formulation for these types of games, based on defining
the state process (Xt) as a Brownian motion, and the reward functions in terms of measure
changes. Then we show that the Nash equilibrium in Markovian strategies (i.e., in the strong
formulation), is also a Nash equilibrium in the weak formulation.

This weak approach is inspired by [9], which formulates a weak approach in the study of a
sequential estimation problem, where the optimizer can choose a bounded control representing
the rate at which the information is received and a stopping time at which the experiment ends,
in particular, [9] considers an optimization problem and not a game. Weak solution approaches
to dynamic stochastic games have previously been considered in a variety of recent papers; see
e.g., [26], and [27] which contain surveys of the related literature.

In a broader context, the problem studied in the present paper can be regarded as a controller-
stopper-game under incomplete information. Controller-stopper-games were first studied for
zero-sum games. In [19] a zero-sum game between a controller and a stopper is studied for a
one-dimensional diffusion, whereas [1] considers the game in a multidimensional setting. In [24]
a zero-sum game between a stopper and a controller choosing a probability measure is studied.
Singular controls for zero-sum controller-stopper-games were studied in [16] for a one-dimensional
diffusion and in [3, 4] for the multidimensional setting. In [17] zero-sum controller-stopper-games
with singular control are studied for a spectrally one-sided Lévy process. A zero-sum game
between a stopper and a player controlling the jumps of the state process is studied in [2].

Stochastic games under asymmetric information were first considered in [5], which considers
a zero-sum stochastic differential game between two controllers. In [6] path-wise non-adaptive
controls are studied for a zero-sum game between two controllers. An asymmetric information
Dynkin game with a random expiry time observed by one of the players is studied in [20]. In
[15] a two-player zero-sum game under asymmetric information is considered where only one
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player can observe the underlying Brownian motion, while the second the player only observes
the strategy chosen by the first player. A zero-sum game where both players observe different
processes is studied in [14]. Non-Markovian zero-sum games under partial information are also
considered; see e.g., [8].

For a background regarding the interpretation of our game as a dynamic signaling game
between an owner (Player 1, the stopper) and a manager (Player 2, the controller) see [12] and
the references therein.

1.2 The underlying stochastic filtering theory arguments

The present section contains a brief account of the stochastic filtering arguments that underlie the
analysis of the present paper. The section is included as an informal and heuristic precursor for
content of the subsequent sections. A formal result in the direction of this section is Proposition
5.

Let us first consider the perspective of the stopper. Assuming that the controller uses a
control strategy (λ∗t ) we obtain—using standard filtering theory; see e.g., [21, Chapter 8.1]—
that the innovations process defined by

Ŵt = Xt + ct−
∫ t

0
E[λ∗sθ|FXs ]ds

is a Brownian motion with respect to ((FXt ),P), where (FXt ) is defined as the smallest right-
continuous filtration to which (Xt) is adapted.

Relying again on basic filtering theory, and arguments similar to those in [10, Section 2.1],
we find that if the strategy (λ∗t ) is (FXt )-adapted—we shall later see that an equilibrium with
this property can indeed be found—then the conditional probability (process) that the stopper
assigns to the controller being active, i.e., P(θ = 1|FXt ) = E[θ|FXt ], t ≥ 0 is given by the
stochastic differential equation (SDE)

dPt = λ∗tPt(1− Pt)dŴt, P0 = p. (4)

Note that the observations above rely implicitly on the assumption that the control strategy
(λ∗t ) is fixed in the sense that the stopper knows which process (λ∗t ) that the controller uses.
However, in order to verify that a candidate equilibrium strategy (λ∗t ) is indeed an equilibrium
strategy (cf. Definition 2 below) we must be able to analyze what happens to an equilibrium
stopping strategy—which as we shall see will be determined as a threshold time in terms of the
conditional probability process—when the controller deviates from the candidate equilibrium
strategy.

To this end observe that if we consider an (FXt )-adapted candidate equilibrium strategy (λ∗t )
and an arbitrary admissible deviation (control) strategy (λt), and now define a process (Pt) to
be given by

dPt = λ∗tPt(1− Pt)(θλt − λ∗tPt)dt+ λ∗tPt(1− Pt)dWt, P0 = p, (5)

then (Pt) depends, of course, on the equilibrium candidate (λ∗t ) as well as the deviation strategy
(λt). However, using the observations above it is also directly verified that Pt = P(θ = 1|FXt ), t ≥
0 in the special case of no deviation (i.e., with (λ∗t ) = (λt)). In other words, (Pt) defined as in
(5) coincides with the conditional probability process in the case of no deviation, but it also tells
us how the controller affects (Pt) in the case of deviation, and we may therefore, as we will see,
use this definition of (Pt) to find an equilibrium.

2 Strong formulation

Let (Ω,F ,P) be a probability space supporting the standard one-dimensional Brownian motion
(Wt) and the independent Bernoulli random variable θ, where we recall that P(θ = 1) = 1−P(θ =
1) = p ∈ (0, 1).
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Observe that if both the candidate equilibrium strategy and the deviation strategy in (5)
are of Markov control type, specifically in the sense that λ∗t = λ∗(Pt) and λt = λ(Pt) where

λ∗, λ : [0, 1]→ {λ̄,
¯
λ}, then Pt = P λ,λ

∗

t in (5) will be given by the SDE

dPt = λ∗(Pt)Pt(1− Pt)(θλ(Pt)− λ∗(Pt)Pt)dt+ λ∗(Pt)Pt(1− Pt)dWt, P0 = p. (6)

(Depending on the context we will, to ease notation, sometimes write Pt and sometimes write

P λ,λ
∗

t .)
In the present section we will restrict the set of admissible control strategies to be of Markov

control type. Recall that Section 3 contains a weak formulation of our game where we relax
the notion of admissible strategies to be a set of general stochastic processes (taking values in
{λ̄,

¯
λ}). By restricting to Markov controls we ensure that (Pt) is obtained as the strong solution

to (6); see Proposition 20 in Appendix A. Furthermore, using the definition of (Xt) in (1) as
well as (6) we note that the dynamics of (Pt) can be written as

dPt = λ∗(Pt)Pt(1− Pt)(c− λ∗(Pt)Pt)dt+ λ∗(Pt)Pt(1− Pt)dXt, P0 = p, (7)

and that (Pt) is (FXt )-adapted. Formally, we restrict the set of admissible control strategies to be
of Markov control type by identifying an admissible control strategy (λt) with a deterministic
function λ : [0, 1] → {λ̄,

¯
λ} according to λt = λ(Pt), where (Pt) is given by (6), and where

λ satisfies the conditions of Definition 1 (which also defines the set of admissible stopping
strategies).

Definition 1 (Admissibility in the strong formulation).

• A Markov control (deterministic function) λ : [0, 1] → {
¯
λ, λ̄} is said to be an admissible

control strategy if it is RCLL (right-continuous with left hand limits). The set of admissible
control strategies is denoted by L.

• A stopping time τ is said to be an admissible stopping strategy if it is adapted to (FXt ).
The set of admissible stopping strategies is denoted by T.

To clarify, a control process (λt) is obtained by

λt = λ(P λ,λ
∗

t ), t ≥ 0,

where P λ,λ
∗

t = Pt, with (λ, λ∗) ∈ L2, is given by (6); i.e., a control process (λt) depends gener-
ally on a pair of admissible strategies (λ∗, λ) ∈ L2 which represents the candidate equilibrium
strategy λ∗ and the deviation strategy λ, respectively.

In line with Section 1, both players want to maximize their respective rewards and we define
our Nash equilibrium accordingly.

Definition 2 (Nash equilibrium). A pair of admissible strategies (τ∗, λ∗) ∈ T × L is a said to
be a Nash equilibrium if the corresponding rewards, (2)–(3), satisfyJ

1
(
τ∗, (λ∗(P λ

∗,λ∗

t )), p
)
≥ J 1

(
τ, (λ∗(P λ

∗,λ∗

t )), p
)
,

J 2
(
τ∗, (λ∗(P λ

∗,λ∗

t )), p
)
≥ J 2

(
τ∗, (λ(P λ,λ

∗

t )), p
)
,

(8)

for any pair of deviation strategies (τ, λ) ∈ T× L.

Remark 3. In line with the usual interpretation of a Nash equilibrium we note that the first
condition in (8) implies that deviating from the equilibrium is sub-optimal for the stopper, and
that the second condition implies the same for the controller. Note also that the appearance of
the equilibrium control λ∗ in the right hand side of the second condition in (8) is due to the

role that it plays for the determination of Pt = P λ,λ
∗

t also when the controller deviates from the
equilibrium, cf. (6).
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Remark 4. A connection between our equilibrium definition and a fixed-point in a suitable
best response mapping can be established. In fact we will use this connection when proving the
equilibrium existence result Theorem 10. Let (τ∗, λ∗) be any given admissible strategy pair. Then
we may, in line our equilibrium definition, define the (point-to-set) best response mapping of the
stopper as

λ∗ ∈ L 7→ argmax
τ∈T

J 1
(
τ, λ∗(P λ

∗,λ∗), p
)
,

while the (point-to-set) best response mapping of the controller is given by

(τ∗, λ∗) ∈ T× L 7→ argmax
λ∈L

J 2
(
τ∗, λ(P λ,λ

∗
), p
)
.

It is then immediately clear that our equilibrium definition corresponds to a fixed-point in the
best response mapping

(τ∗, λ∗) ∈ T× L 7→
(

argmax
τ∈T

J 1
(
τ, λ(P λ

∗,λ∗), p
)
, argmax

λ∈L
J 2
(
τ∗, λ(P λ,λ

∗
), p
))

.

In the following result we conclude this section by establishing that (Pt) does indeed corre-
spond to the conditional probability of an active controller, i.e., {θ = 1}, in case the controller
does not deviate from an equilibrium (candidate).

Proposition 5. Let λ∗ ∈ L be an arbitrary admissible control. Suppose λ∗ = λ in (6) and

consider a constant 0 < T < ∞. Then the solution Pt = P λ
∗,λ∗

t to (6) satisfies a.s., for each
0 ≤ t ≤ T ,

Pt = E[θ|FXt ]

and

dPt = λ∗t (Pt)Pt(1− Pt)dŴt, P0 = p, (9)

where

Ŵt = Xt + ct−
∫ t

0
λ∗(Ps)Psds,

is a Brownian motion w.r.t. ((FXt ),P).

Proof. This proof is similar to that of [10, Proposition 11]. Define Πt = E[θ|FXt ]. Then
E[θλ∗(Pt)|FXt ] = λ∗(Pt)Πt, since (Pt) is (FXt )-adapted. Relying on standard filtering theory
(see e.g., [21, Chapter 8.1] and arguments similar to those in the proof of [10, Proposition 11]),
it can now be seen, for 0 ≤ t ≤ T , that

dΠt = λ∗(Pt)Πt(1−Πt)dW̄t,

where

W̄t := Xt + ct−
∫ t

0
λ∗(Ps)Πsds

is a Brownian motion with respect to ((FXt ),P). Hence, by the definition of (Xt) in (1) it is
directly seen that (Πt) satisfies the SDE

dΠt = λ∗(Pt)Πt(1−Πt)(θλ
∗(Pt)− λ∗(Pt)Πt)dt+ λ∗(Pt)Πt(1−Πt)dWt, Π0 = p.

Recalling the definition of (Pt) in (6), we observe that (Pt) and (Πt) are both strong solutions
to the same SDE in case λ∗ = λ. The results follow.
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2.1 Searching for a threshold equilibrium

The aim of the present section is to search for an equilibrium of threshold type in the sense that
the equilibrium strategy pair satisfies (τ∗, λ∗) = (τb∗1 , λb∗2) where

τb∗1 : = inf{t ≥ 0 : Pt ≤ b∗1}, (10)

p→ λb∗2(p) : =
¯
λ+ (λ̄−

¯
λ)I{p<b∗2}, (11)

with 0 < b∗1 < b∗2 < 1.

Remark 6. The (double) threshold strategy pair defined by (10)–(11) corresponds to (i) stopping
the first time that (Pt)—whose dynamics is in this case given by (6) with λ(Pt) = λ∗(Pt) =
λb∗2(Pt)—falls below b∗1, and (ii) the controller using the control process (λb∗2(Pt)), which is equal
to the small controller rate

¯
λ when Pt ≥ b∗2 and the large controller rate λ̄ when Pt < b∗2.

We remark that the content of this section is mainly of motivational value and that a corre-
sponding formal result is the verification theorem reported in Section 2.2, below.

2.1.1 The perspective of the controller

Given a candidate equilibrium strategy λ∗ ∈ L and supposing that the stopper uses a candidate
equilibrium threshold strategy of the kind (10) where b∗1 ∈ (0, 1), the controller faces the optimal
control problem

v(p, b∗1) := sup
λ∈L
J 2
(
τb∗1 , λ(P λ,λ

∗

t ), p
)
, (12)

where we recall that (Pt) = (P λ,λ
∗

t ) is given by (6); however, due to the conditioning on θ = 1
in the controller reward J 2 (see (3)) we may here set θ = 1 in (6).

Indeed writing v(p) = v(p, b∗1) and relying on (3) with the underlying process (Pt) in the
representation (6) with θ = 1, we expect, using the usual dynamic programming arguments,
that the optimal value v(p) satisfies

λ∗(p)2p2(1− p)2

2
vpp(p) +

(
λ∗(p)p(1− p)λ− λ∗(p)2p2(1− p)

)
vp(p)− rv(p) + c− (λ−

¯
λ)2 ≤ 0,

for all λ ∈ {λ̄,
¯
λ} and p ∈ (b∗1, 1), while equality should hold in case λ∗(p) = λ, i.e.,

λ∗(p)2p2(1− p)2

2
vpp(p) +

(
λ∗(p)p(1− p)λ∗(p)− λ∗(p)2p2(1− p)

)
vp(p)

−rv(p) + c− (λ(p)∗ −
¯
λ)2 = 0.

We will from now on ease the presentation by sometimes writing e.g., λ∗ instead of λ∗(p). By
subtracting one of the two equations above from the other we obtain

(λ∗)2p(1− p)vp − (λ∗ −
¯
λ)2 − λ∗p(1− p)λvp + (λ−

¯
λ)2 ≥ 0,

which is equivalent to

(λ∗ − λ)λ∗p(1− p)vp ≥ (λ∗ −
¯
λ)2 − (λ−

¯
λ)2. (13)

We conclude that if (τb∗1 , λ
∗) is an equilibrium then λ∗ = λ∗(p) must satisfy (13) for λ ∈ {λ̄,

¯
λ}

and all p ∈ (b∗1, 1).
We now first consider the case λ∗(p) =

¯
λ with the deviation λ = λ̄ (if λ =

¯
λ, then (13)

trivially holds). In this case (13) becomes

(
¯
λ− λ̄)

¯
λp(1− p)vp ≥ −(λ̄−

¯
λ)2,

7



which is equivalent to

p(1− p)vp ≤
λ̄−

¯
λ

¯
λ

=: (A). (14)

Supposing that p(p − 1)vp is decreasing (this is under additional assumptions on the model
parameters verified in Proposition 27, below) we see, for any given equilibrium strategy λ∗, that
if we can find a value for p that gives equality in (14), then it is a lower threshold for the set
of points p where λ∗(p) =

¯
λ is possible; i.e., for any p smaller than this threshold we must have

λ∗(p) = λ̄. The interpretation is that if the stopper assigns a small probability to an active
controller then the controller will control with the large rate λ̄.

We now consider the case λ∗(p) = λ̄ and obtain, similarly to the above, the condition

(λ̄−
¯
λ)λ̄p(1− p)vp ≥ (λ̄−

¯
λ)2,

which in turns gives the condition

p(1− p)vp ≥
λ̄−

¯
λ

λ̄
=: (B). (15)

Similarly to the analysis of (A) above, this gives us an upper threshold for p where λ∗(p) = λ̄ is
possible; i.e., for any p exceeding this threshold we need λ∗(p) =

¯
λ.

In order for (14) and (15) to be feasible conditions we need that (A) minus (B) is non-
negative, which is is directly verified. Hence, with the observations above as a motivation
we will search for an equilibrium strategy λ∗ of the threshold type (11), where the threshold
switching point b∗2 is a such that

λ̄−
¯
λ

λ̄
≤ b∗2(1− b∗2)vp(b

∗
2) ≤ λ̄−

¯
λ

¯
λ

. (16)

Note that (16) indicates that there may be multiple Nash equilibria, since every b∗2 satisfying
(16) results in an equilibrium candidate strategy for the controller. As our equilibrium controller
candidate we will, however, consider a switching point b∗2 that corresponds to equality in the
right hand side inequality in (16). More precisely, we will search for an equilibrium controller
strategy given by (11), with b∗2 ∈ (b∗1, 1) satisfying

b∗2(1− b∗2)vp(b
∗
2) =

λ̄−
¯
λ

¯
λ

. (17)

Let us lastly note that if the players use a threshold strategy pair (b∗1, b
∗
2), defined as in (10)–(11),

with 0 < b∗1 < b∗2 < 1, then it can be shown that the corresponding value for the controller, i.e.,

J 2
(
τb∗1 , λb∗2(Pt), p

)
= E

[∫ τb∗1

0
e−rs

(
c− (λb∗2(Pt)−

¯
λ)2
)
ds

∣∣∣∣∣θ = 1

]
,

where (Pt) =

(
P
λb∗2

,λb∗2
t

)
is given by (6) with λ(Pt) = λ∗(Pt) = λb∗2(Pt), coincides with v :=

v(p, b∗1, b
∗
2) defined as the solution to

λ̄2p2(1− p)2

2
vpp(p) + λ̄2(1− p)2pvp(p)− rv(p) + c− (λ̄−

¯
λ)2 = 0, p ∈ (b∗1, b

∗
2),

¯
λ2p2(1− p)2

2
vpp(p) +

¯
λ2(1− p)2pvp(p)− rv(p) + c = 0, p ∈ (b∗2, b

∗
1),

v(p) = 0, p ∈ [0, b∗1],

v(1) =
c

r
,

v ∈ C(0, 1) ∩ C1(b∗1, 1)∩C2((b∗1, b
∗
2) ∪ (b∗2, 1)).

(18)
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Indeed we will in the subsequent analysis show that we may choose a stopper-controller threshold
pair (b∗1, b

∗
2) which is an equilibrium with a controller value given by (18), under certain parameter

assumptions; see Theorems 8 and 10.

Remark 7. Note that (18) is a boundary value problem on (b∗1, 1), whose solution v has been
extended to be equal to zero on [0, b∗1). The boundary conditions of (18) follow immediately
from the boundary cases p ≤ b∗1 and p = 1, which result in immediate stopping (corresponding
to no income for the controller) and never stopping (corresponding to the income rate c earned
forever), respectively.

2.1.2 The perspective of the stopper

If the players use a threshold strategy pair (b∗1, b
∗
2), defined as in (10)–(11), with 0 < b∗1 < b∗2 < 1,

then the corresponding value for the stopper is

J 1
(
τb∗1 , λb∗2(Pt), p

)
= E

[∫ τb∗1

0
e−rs

(
θλb∗2(Pt)− c

)
ds

]
,

where (Pt) =

(
P
λb∗2

,λb∗2
t

)
is given by (6) with λ(Pt) = λ∗(Pt) = λb∗2(Pt). However, since λ = λ∗

we may equivalently consider the dynamics of (Pt) in the representation (9); cf. Proposition 5.
Relying again on Proposition 5 we may moreover use that Pt = E[θ|FXt ] and iterated expec-

tation to replace θ in the stopper reward with Pt; in other words we have the representation

J 1
(
τb∗1 , λb∗2(Pt), p

)
= E

[∫ τb∗1

0
e−rs

(
Ptλb∗2(Pt)− c

)
ds

]
,

where (Pt) is given by (9). Based on this it can be shown that the stopper reward coincides
with u = u(p, b∗1, b

∗
2) defined as the solution to

λ̄2p2(1− p)2

2
upp(p)− ru(p) + pλ̄− c = 0, p ∈ (b∗1, b

∗
2),

¯
λ2p2(1− p)2

2
upp(p)− ru(p) + p

¯
λ− c = 0, p ∈ (b∗2, 1),

u(p) = 0, p ∈ [0, b∗1],

u(1) = ¯
λ− c
r

,

u ∈ C(0, 1) ∩ C1(b∗1, 1)∩C2((b∗1, b
∗
2) ∪ (b∗2, 1)).

(19)

Note that (19) is also a boundary value problem on (b∗1, 1) whose solution u has been extended to
be equal to zero on [0, b∗1). The boundary conditions of (19) can be interpreted using arguments
similar to those in Remark 7.

Lastly note that if (b∗1, b
∗
2) corresponds to an equilibrium, then it should hold that up(b

∗
1, b
∗
1, b
∗
2) =

0, by the smooth fit principle of optimal stopping theory, which motivates condition (II) in The-
orem 8 below.

2.2 A threshold equilibrium verification theorem

Here we present our first main result, which is a verification theorem based on the equilibrium
conditions that were informally derived in Section 2.1.

9



Theorem 8 (Verification). Let b∗1, b
∗
2 ∈ (0, 1) satisfy b∗1 < b∗2. Let u(p) = u(p, b∗1, b

∗
2) and

v(p) = v(p, b∗1, b
∗
2) be solutions to the boundary value problems (18) and (19). Suppose that

u(p) ≥ 0, p ∈ [0, 1], (I)

up(b
∗
1) = 0, (II)

d

dp
(p(1− p)vp(p)) < 0, p ∈ (b∗1, b

∗
2) ∪ (b∗2, 1), (III)

b∗2(1− b∗2)vp(b
∗
2) =

λ̄−
¯
λ

¯
λ

. (IV)

Then the stopper-controller strategy pair (τb∗1 , λb∗2) ∈ T× L corresponding to

τb∗1 = inf{t ≥: Pt ≤ b∗1} and p→ λb∗2(p) :=
¯
λ+ (λ̄−

¯
λ)I{p<b∗2} (20)

is a Nash equilibrium (Definition 8). Moreover, u and v correspond to the equilibrium values
for the stopper and the controller respectively, i.e.,

u(p) = J 1
(
τb∗1 , λb∗2(Pt), p

)
, v(p) = J 2

(
τb∗1 , λb∗2(Pt), p

)
.

Remark 9. (i) Recall that (20) corresponds to the control process being λb∗2(Pt) where (Pt) is
given by (6) with λ(Pt) = λ∗(Pt) = λb∗2(Pt). (ii) If a pair (b∗1, b

∗
2) corresponds to an equilibrium

as in Theorem 8 then the equilibrium values u(p) = u(p, b∗1, b
∗
2) and v(p) = v(p, b∗1, b

∗
2) can be

determined explicitly by solving (18) and (19); cf. Section 2.4.

Proof. (of Theorem 8.) For ease of exposition we write in this proof λ∗ = λb∗2 and τb∗1 = τb∗ .
Optimality of τb∗ . Note that (I) and (II), together with the boundary condition u(b∗1) = 0,

imply that upp(b
∗
1+) ≥ 0. Thus, using the ODE in (19), we obtain

b∗1 ≤
c

λ̄
. (21)

Let n be fixed number. Relying on Proposition 5 which implies that (Pt) solves (9), as well as
(II) and Itô’s formula we obtain for an arbitrary stopping time τ that

e−r(τ∧n)u(Pτ∧n) = u(p) +

∫ τ∧n

0
e−rt

(
(λ∗(Pt)

2P 2
t (1− Pt)2

2
upp(Pt)− ru(Pt)

)
1{Pt /∈{b∗1,b∗2}}dt

+

∫ τ∧n

0
e−rtλ∗(Pt)Pt(1− Pt)up(Pt)dŴt,

where the Itô integral is a martingale since the integrand is bounded. Now use (19) and (21) to
see that

−
(

(λ∗)2p2(1− p)2

2
upp − ru

)
≥ λ∗p− c. (22)

Using the above together with Proposition 5 and iterated expectation, and (I), we find that

u(p) = E
[
e−r(τ∧n)u(Pτ∧n)−

∫ τ∧n

0
e−rt

(
(λ∗(Pt)

2P 2
t (1− Pt)2

2
upp(Pt)− ru(Pt)

)
1{Pt /∈{b∗1,b∗2}}dt

]
≥ E

[
e−r(τ∧n)u(Pτ∧n) +

∫ τ∧n

0
e−rt (λ∗(Pt)Pt − c) dt

]
≥ E

[∫ τ∧n

0
e−rt

(
λ∗(Pt)E[θ|FXt ]− c

)
dt

]
= E

[∫ τ∧n

0
e−rt (θλ∗(Pt)− c) dt

]
.

10



By sending n→∞ and relying on dominated convergence we thus obtain

u(p) ≥ E
[∫ τ

0
e−rt (θλ∗(Pt)− c) dt

]
= J 2 (τ, λ∗, p) .

Using similar arguments as above with τ = τb∗ we find, by observing that we have equality in
(22) for p ∈ (b∗1, 1), that

u(p) = E
[
e−r(τb∗∧n)u(Pτb∗∧n)

]
+ E

[∫ τb∗∧n

0
e−rt (θλ∗(Pt)− c) dt

]
.

(Note that the equality above is trivial when p ≤ b∗1, since u(0) = 0 for p ≤ b∗1).
Using that u is bounded together with u(b∗1) = 0 we find using dominated convergence that

the first expectation above converges to zero as → ∞. Hence, using dominated convergence
again, we find that

u(p) = E
[∫ τb∗

0
e−rt (θλ∗(Pt)− c) dt

]
= J 1 (τb∗ , λ

∗, p) .

We conclude that

u(p) = J 1 (τb∗ , λ
∗, p) = sup

τ∈T
J 1 (τ, λ∗, p) .

Optimality of λ∗. The controller reward (3) is conditioned on θ = 1. Hence, in order to
find the optimal strategy for the controller, we consider the process (Pt) defined by (6) with
θ = 1; in particular, if the controller selects an admissible control λ, then (Pt) is given by

dPt = λ∗(Pt)Pt(1− Pt)(λ(Pt)− λ∗(Pt)Pt)dt+ λ∗(Pt)Pt(1− Pt)dWt.

We now define the process (Nt) given by

Nt = e−r(t∧τb∗ )v(Pt∧τb∗ ) +

∫ t∧τb∗

0
e−rs(c− (λ(Ps)−

¯
λ)2)ds.

Consider now an arbitrary admissible control strategy λ ∈ L. Using Itô’s formula we obtain for
t ≤ τb∗ that

dNt = e−rt
(

1

2
(λ∗(Pt))

2P 2
t (1− Pt)2vpp(Pt)− rv(Pt)

)
1{Pt 6=b∗2}dt

+ e−rtλ∗(Pt)Pt(1− Pt)(λ(Pt)− λ∗(Pt)Pt)vp(Pt)1{Pt 6=b∗2}dt
+ e−rt(c− (λ(Pt)−

¯
λ)2)1{Pt 6=b∗2}dt+ e−rtλ∗(Pt)Pt(1− Pt)vp(Pt)dWt.

Hence, (Nt) is an Itô process with a drift coefficient given, for p ∈ (b∗1, b
∗
2) ∪ (b∗2, 1), by

e−rt
(

1

2
(λ∗(p))2p2(1− p)2vpp(p)− rv(p) + λ∗(p)p(1− p)(λ(p)− λ∗(p)p)vp(p) + c− (λ(p)−

¯
λ)2

)
.

Note that it also holds, for p ∈ (b∗1, b
∗
2) ∪ (b∗2, 1), that

1

2
(λ∗(p))2p2(1− p)2vpp(p)− rv(p) + λ∗(p)p(1− p)(λ∗(p)− λ∗(p)p)vp(p) + c− (λ∗(p)−

¯
λ)2 = 0.

To see this use (18) and that λ∗ = λb2∗ is given in (20).
Multiplying the equation above by e−rt and subtracting the resulting left hand side (which

is zero) from the drift coefficient of (Nt) yields that the drift coefficient of (Nt) can, for p ∈
(b∗1, b

∗
2) ∪ (b∗2, 1), be written as

e−rt
(
(λ(p)− λ∗(p))λ∗(p)p(1− p)vp(p) + (λ∗(p)−

¯
λ)2 − (λ(p)−

¯
λ)2
)
.
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With arguments similar to those in Section 2.1.1 we find that conditions (III) and (IV) imply
that the expression above is non-positive (compare the above expression with (13)), i.e., the
drift of (Nt) is non-positive (regardless of the choice of λ ∈ L).

We conclude that (Nt) is a bounded process with non-positive drift. Using optional sampling
we find

v(p) = N0 ≥ E[Nτb∗∧n|θ = 1]

for any n ∈ N. Using dominated convergence and limn→∞ e
−r(τb∗∧n)v(Pτb∗∧n) = 0 a.s. we find

v(p) = N0 ≥ E
[

lim
n→∞

Nτb∗∧n|θ = 1
]

= E

[∫ τb∗

0
e−rt(c− (λ(Pt)−

¯
λ)2)dt

∣∣∣∣∣θ = 1

]
= J 2 (τb∗ , λ, p) .

Repeating the same arguments with λ = λ∗ we obtain that the drift of (Nt) vanishes and that

v(p) = N0 = E
[

lim
n→∞

Nτb∗∧n|θ = 1
]
] = E

[∫ τb∗

0
e−rt(c− (λ∗(Pt)−

¯
λ))2dt

∣∣∣∣∣θ = 1

]
= J 2 (τb∗ , λ

∗, p) .

We conclude that

v(p) = J 2 (τb∗ , λ
∗, p) = sup

λ∈L
J 2 (τb∗ , λ, p) .

2.3 Equilibrium existence

The main result of this section is Theorem 10 which reports conditions on the primitives of the
model that guarantee the existence of a threshold equilibrium. The proof of this result, which is
reported in Section 2.4, relies on the Poincaré-Miranda theorem and is in this sense a fixed-point
type proof. In particular, the Poincaré-Miranda theorem follows from the Brouwer fixed-point
theorem; cf. e.g., [22].

The following notation will be used throughout this section

α1(λ) :=
1

2
+

√
8 r
λ2 + 1

2
, α2(λ) :=

1

2
−
√

8 r
λ2 + 1

2
. (23)

In particular, we will use these to express solutions to the ODEs in (18) and (19).

Theorem 10 (Equilibrium existence). Suppose the model parameters
¯
λ, λ̄, c and r are such that

−α2(λ̄)

(
(λ̄−

¯
λ)2

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ

)
<
λ̄−

¯
λ

¯
λ

<
c

r
(24)

and

(λ̄−
¯
λ)2 ≤ c ≤ (1− α1(

¯
λ))λ̄+ α1(

¯
λ)

¯
λ. (25)

Then there exists constants 0 < b∗1 < b∗2 < 1 such that the strategy pair (τb∗1 , λb∗2) given by (20)
is a Nash equilibrium.

Figure 1 contains a numerical example.

Remark 11. (i) The conditions (24)–(25) of Theorem 10 can be directly examined for any given
parameter specification. (ii) If we set λ̄ =

¯
λ+ h, then we can write these conditions as

−α2(λ̄)

r
h2 +

α2(λ̄)

α1(
¯
λ)

¯
λ
h <

h

¯
λ
<
c

r

and

h2 ≤ c ≤ (1− α1(
¯
λ))h+

¯
λ.

Using this observation it is easily verified that there exists, for fixed c and r, a constant h̄ ∈ (0,∞)
such that these conditions are satisfied for each h ≤ h̄. In other words, the conditions of Theorem
10 hold, i.e., an equilibrium exists, whenever

¯
λ and λ̄ are sufficiently close to each other.

12



Figure 1: The value functions v (controller) and u (stopper), as well as the equilibrium thresholds
(b∗1 ≈ 0.125, b∗2 ≈ 0.618) and the equilibrium controller strategy λb∗2 . The parameters are c =
1, r = 0.2, λ̄ = 2.2 and λ = 1.4.

2.4 The proof of Theorem 10

The proof of Theorem 10 is found in Section 2.4.3. It relies on the content of Sections 2.4.1–2.4.2.

2.4.1 Observations regarding Equation (18)

Let 0 < b∗1 < b∗2 < 1 be arbitrary constants. It can be verified that the solution v(p) = v(p, b∗1, b
∗
2)

to (18) is

v(p, b∗1, b
∗
2) =


0, p ≤ b∗1,

k1

(
1−p
p

)α1(λ̄)
+ k2

(
1−p
p

)α2(λ̄)
+

c−(λ̄−
¯
λ)2

r , b∗1 < p < b∗2,

k3

(
1−p
p

)α1(
¯
λ)

+ k4

(
1−p
p

)α2(
¯
λ)

+ c
r , p ≥ b∗2,

(26)

where the constants ki, i = 1, .., 4 can be determined by the boundary and smoothness conditions
in (18). (Recall that αi(λ), i = 1, 2 are defined in (23).) However, instead of directly determining
ki, i = 1, .., 4 to attain these conditions we will determine these constants in order to attain only
the boundary conditions and the continuity in (18) as well as the condition

vp(b
∗
2+, b∗1, b

∗
2) =

λ̄−
¯
λ

b∗2(1− b∗2)
¯
λ
. (27)

(The interpretation of (27) is that condition (IV) in Theorem 10 holds from the right.) After
this we will show that b∗2 can be chosen so that (27) also holds from the left (i.e., so that v
satisfies all conditions of (18) as well as (IV)); see Lemma 12 below.

First use that v(1, b∗1, b
∗
2) = c

r implies that k4 = 0. Note also that (27) implies that

k3 = − λ̄−
¯
λ

α1(
¯
λ)

¯
λ

(
1− b∗2
b∗2

)−α1(
¯
λ)

.

Using these constants we obtain from (26) that

v(b∗2+, b∗1, b
∗
2) =

c

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ
. (28)

Using the condition v(b∗1, b
∗
1, b
∗
2) = 0 we obtain

k2 =
(λ̄−

¯
λ)2 − c
r

(
1− b∗1
b∗1

)−α2(λ̄)

− k1

(
1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)

13



and hence, using also continuity v(b∗2−, b∗1, b∗2) = v(b∗2+, b∗1, b
∗
2), we obtain

k1 =

(λ̄−
¯
λ)2

r − λ̄−
¯
λ

α1(
¯
λ)

¯
λ +

c−(λ̄−
¯
λ)2

r

(
1−b∗1
b∗1

)−α2(λ̄) (1−b∗2
b∗2

)α2(λ̄)

(
1−b∗2
b∗2

)α1(λ̄)
−
(

1−b∗1
b∗1

)α1(λ̄)−α2(λ̄) (1−b∗2
b∗2

)α2(λ̄)
.

We need the following technical result in the proof of Theorem 10 (in Section 2.4.3). The proof
can be found in Appendix B.

Lemma 12. Suppose (24) holds. (i) Let v(p, b∗1, b
∗
2) be given by (26) with the constants ki, i =

1, . . . , 4 determined above. Then

lim
b∗2↗1

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2) = −α2(λ̄)

(
(λ̄−

¯
λ)2

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ

)
(29)

and
lim
b∗2↘b∗1

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2) =∞. (30)

In particular,

lim
b∗2↗1

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2) <

λ̄−
¯
λ

¯
λ

< lim
b∗2↘b∗1

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2). (31)

(ii) For any fixed b∗1 ∈ (0, 1) there exists a b∗2 ∈ (b∗1, 1) such that the solution v(p) to (18) satisfies
(IV).

2.4.2 Observations regarding Equation (19)

Let 0 < b∗1 < b∗2 < 1 be arbitrary constants. It can be verified that the solution u(p) = u(p, b∗1, b
∗
2)

to (19) is

u(p) =


0, p ≤ b∗1,

p

(
c1

(
1−p
p

)α1(λ̄)
+ c2

(
1−p
p

)α2(λ̄)
)

+ pλ̄−c
r , b∗1 < p < b∗2,

p

(
c3

(
1−p
p

)α1(
¯
λ)

+ c4

(
1−p
p

)α2(
¯
λ)
)

+
p
¯
λ−c
r , p ≥ b∗2,

(32)

where the constants ci are determined by the boundary and smoothness conditions in (19). The

boundary condition u(1, b∗1, b
∗
2) = ¯

λ−c
r gives us c4 = 0, while u(b∗1, b

∗
1, b
∗
2) = 0 gives us

c2 =
c− b∗1λ̄
b∗1r

(
1− b∗1
b∗1

)−α2(λ̄)

− c1

(
1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)

. (33)

Finally, the remaining two conditions give us

c3 =

(
c1

(
1− b∗2
b∗2

)α1(λ̄)

+ c2

(
1− b∗2
b∗2

)α2(λ̄)

+
λ̄−

¯
λ

r

)(
1− b∗2
b∗2

)−α1(
¯
λ)

and

c1 =

α1(
¯
λ)(λ̄−

¯
λ)

r

(
1−b∗2
b∗2

)−α2(λ̄)
+ (α2(λ̄)− α1(

¯
λ))

b∗1λ̄−c
b∗1r

(
1−b∗1
b∗1

)−α2(λ̄)

(α1(λ̄)− α1(
¯
λ))
(

1−b∗2
b∗2

)α1(λ̄)−α2(λ̄)
− (α2(λ̄)− α1(

¯
λ))
(

1−b∗1
b∗1

)α1(λ̄)−α2(λ̄)
. (34)

We will make use of the following technical result in the proof of Theorem 10. The proof can be
found in Appendix B.

Lemma 13. Suppose (25) holds. Then, for the solution to (19) it holds that

lim
b∗1↘0

sup
b∗2∈(b∗1,1)

up(b
∗
1+, b∗1, b

∗
2) = −∞, and lim

b∗1↗1
inf

b∗2∈(b∗1,1)
up(b

∗
1+, b∗1, b

∗
2) =∞.
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2.4.3 The proof

Proof. (Of Theorem 10.) The idea of the proof is to establish existence of a threshold strategy
pair (b∗1, b

∗
2) satisfying the conditions of Theorem 8. The proof consists of several parts. Here

we establish existence of a pair (b∗1, b
∗
2) with 0 < b∗1 < b∗2 < 1 and corresponding functions

u(p) = u(p, b∗1, b
∗
2) and v(p) = v(p, b∗1, b

∗
2) such that (18) and (19), as well as (II) and (IV)

hold. The remaining conditions are established in Appendix C. In particular, (I) follows from
Proposition 29 and (III) follows from Proposition 27.

Consider a pair (b∗1, b
∗
2) with 0 < b∗1 < b∗2 < 1 and let u(p, b∗1, b

∗
2) and u(p, b∗1, b

∗
2) be given

by (26) and (32) with the constants ci, ki, i = 1, ..., 4 determined as in Sections 2.4.1 and 2.4.2.
Then all we have left to do to is to show that the pair (b∗1, b

∗
2) can be chosen so that

up(b
∗
1+, b∗1, b

∗
2) = 0, (35)

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2))− λ̄−

¯
λ

¯
λ

= 0. (36)

To this end we introduce the notation

f(b1, b2) = up(b1+, b1, b2),

g(b1, b2) = arctan

(
b2(1− b2)vp(b2−, b1, b2)− λ̄−

¯
λ

¯
λ

)
,

for an arbitrary threshold strategy pair (b1, b2) ∈ A := {(x, y) ∈ R2 : 0 < x < y < 1}.
Using Lemma 13, it is easy to see that there exist constants 0 <

¯
b1 < b̄1 < 1 such that: (i)

f(
¯
b1, b2) < 0 for all b2 >

¯
b1, and f(b̄1, b2) > 0 for all b2 > b̄1, and (ii) f is continuous on the set

Ã := A ∩ ([
¯
b1, b̄1]× [0, 1]).

Fix two such values
¯
b1 and b̄1 (arbitrarily). We can now find a continuous extension of f on

the whole rectangle [
¯
b1, b̄1]× [0, 1] by

f̃(b1, b2) =

{
f(b1, b2), (b1, b2) ∈ Ã,
f(b1, b1), (b1, b2) 6∈ Ã.

We conclude that f̃ is continuous on [
¯
b1, b̄1]× [0, 1] with the properties that f(

¯
b1, b2) < 0 for all

b2 ∈ [0, 1] and f(b̄1, b2) > 0 for all b2 ∈ [0, 1].
Using Equation (29) and (30) we find a continuous extension of g on the whole rectangle

[
¯
b1, b̄1]× [0, 1] by

g̃(b1, b2) =

{
g(b1, b2), b1 < b2,
π
2 , b1 ≥ b2.

(37)

Based on Lemma 12 (in particular the left hand side inequality of (31)) we may now conclude
that: g̃(b1, 1) < 0, for any b1 ∈ [

¯
b1, b̄1] and g̃(b1, 0) = π/2 > 0, for any b1 ∈ [

¯
b1, b̄1].

The conclusions noted for f̃ and g̃ imply that we may use the Poincaré-Miranda theorem
(cf. [22]). In particular, it implies that there exists a pair (b∗1, b

∗
2) ∈ [

¯
b1, b̄1]× [0, 1] such that

f̃(b∗1, b
∗
2) = g̃(b∗1, b

∗
2) = 0. (38)

Moreover, using (37) and g̃(b1, 1) < 0 (cf. above) we obtain g̃(b1, b2) 6= 0 for (b1, b2) 6∈ Ã, and
hence (b∗1, b

∗
2) ∈ Ã ⊂ A, i.e., 0 < b∗1 < b∗2 < 1.

It is now directly seen by the definitions of f, f̃, g and g̃ that the pair (b∗1, b
∗
2) satisfying (38)

is such that also (35)–(36) hold and we are done.
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3 Weak formulation

The purpose of this section is to consider a more general class of admissible control strategies
compared to that of the strong formulation in Section 2. To this end we consider here a weak
formulation of our game based measure changes and Girsanov’s theorem. We remark that this
formulation is closely related to [9], where a similar weak solution approach is used for an optimal
control problem with discretionary stopping. The main finding of the present section is that the
double threshold equilibrium of Theorem 8 is a Nash equilibrium also in the weak formulation.

Let (Ω,A,P) be a probability space supporting a one-dimensional Brownian motion (Xt)
and a Bernoulli random variable θ with P(θ = 1) = p ∈ (0, 1). Denote by (FXt ) the smallest
right continuous filtration to which (Xt) is adapted. Define the terminal filtration according to

FX∞ := σ
(⋃

0≤t≤∞FXt
)

. Define (FX,θt ) and FX,θ∞ analogously.

Definition 14 (Admissibility in the weak formulation).

• A process (λt) is said to be an admissible control process if it has RCLL paths, is adapted

to (FX,θt ), and takes values in {λ̄,
¯
λ}. The set of admissible control processes is denoted

by L̃.

• A stopping time τ is said to be an admissible stopping strategy if it is adapted to (FXt ).
The set of admissible stopping strategies is denoted by T.

Remark 15. The set of admissible stopping strategies in the weak formulation is analogous to
set of admissible stopping strategies in the strong formulation. The main difference is instead
that we define (Xt) as a Brownian motion in the weak formulation, whereas (Xt) is given by (1)
in the strong formulation.

Now for any given control process (λt) ∈ L̃ we define the process (W λ
t ) according to

Xt =

∫ t

0
(θλs − c)ds+W λ

t . (39)

By Girsanov’s theorem ([18, Chapter 3.5]) there exists a measure Pλt ∼ P on (Ω, (FX,θt )), given
by

dPλt
dP

∣∣∣∣
FX,θt

= exp

(∫ t

0
(θλt − c)dXt −

1

2

∫ t

0
(θλt − c)2dt

)
:= Λλt , (40)

such that {W λ
t ,F

X,θ
t ; 0 ≤ t ≤ T} is a Brownian motion on (Ω,FX,θT ,PλT ) for each fixed T ∈ [0,∞).

Moreover, we note that (Λλt ) is a martingale by Novikov’s condition. Thus, the theory of the

Föllmer measure gives us the existence of a measure Pλ on FX,θ∞ , which satisfies Pλ(A) = Pλt (A)

for every t ∈ [0,∞) and A ∈ FX,θt ; see [9, Section 2], and also [13] and [18, p.192].
This allows us to give definitions of the reward functions based on measure changes.

Definition 16. Given a strategy pair (τ, (λt)) ∈ T× L̃ we define the payoff of the stopper as

J̃ 1 (τ, (λt), p) = EPλ
[∫ τ

0
e−rs (θλs − c) ds

]
, (41)

and the payoff of the controller as

J̃ 2 (τ, (λt), p) = EPλ
[∫ τ

0
e−rs

(
c− (λs −

¯
λ)2
)
ds

∣∣∣∣∣θ = 1

]
. (42)
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Remark 17. Let us motivate Definition 16 further. In the strong formulation (Section 2) we
consider a fixed probability measure and define the controlled process (Xt) in terms of a control
process (λt) and a given Brownian motion (Wt); cf. (1). In the present weak formulation we in-
stead define (Xt) as a Brownian motion, and let the control process (λt) imply a measure change
Pλ, such that W λ defined by (39) is a Brownian motion under this measure. By comparing the
resulting weak formulation equation for (Xt) (i.e., (39)) and the equation for (Xt) in the strong
formulation (in (1)) the connection between the formulations becomes clear.

The Nash equilibrium is now defined in the usual way:

Definition 18. A pair of admissible strategies (τ∗, (λ∗t )) ∈ T× L̃ is a said to be a Nash equilib-
rium if {

J̃ 1 (τ∗, (λ∗t ), p) ≥ J̃ 1 (τ, (λ∗t ), p) ,

J̃ 2 (τ∗, (λ∗t ), p) ≥ J̃ 2 (τ∗, (λt), p) ,
(43)

for any pair of deviation strategies (τ, (λt)) ∈ T× L̃.

In line with the strong formulation solution approach (cf. (10) and (11)) we define a double
threshold strategy pair (τb∗1 , λb∗2), where 0 < b∗1 < b∗2 < 1, by

τb∗1 := inf{t ≥ 0 : Pt ≤ b∗1} (44)

λb∗2(Pt) =
¯
λ+ (λ̄−

¯
λ)I{Pt<b∗2}, (45)

where (Pt) is (in analogy with (7)) given by the SDE

dPt = λ∗(Pt)Pt(1− Pt)(c− λ∗(Pt)Pt)dt+ λ∗(Pt)Pt(1− Pt)dXt, P0 = p. (46)

(Recalling that (Xt) is a Brownian motion we find that (46) has a strong solution using analogues
arguments as in the strong solution formulation; cf. Proposition 20).

The main result of the present section is that the double threshold equilibrium investigated in
the strong formulation is also an equilibrium in the weak formulation. Note that this implies that
equilibrium existence in the weak formulation is guaranteed by the same parameter conditions
as in Theorem 10.

Theorem 19. Suppose (b∗1, b
∗
2) with 0 < b∗1 < b∗2 < 1 are such that the conditions of Theo-

rem 8 hold (implying that they correspond to a double threshold equilibrium (10)–(11), in the
strong formulation). Then, (τb∗1 , λb∗2) given by (44), (45) and (46) is an equilibrium in the weak
formulation (Definition 18).

Proof. In this proof we write λ∗ = λb∗2 . For any admissible deviation strategy (λt) it follows
from (39) and (46) that (Pt) has the representation

dPt = λ∗(Pt)Pt(1− Pt)(θλt − λ∗(Pt)Pt)dt+ λ∗(Pt)Pt(1− Pt)dW λ
t , (47)

where we recall that (W λ
t ) is a Brownian motion under the measure Pλ. We remark that (Pt)

depends in this sense on both λ∗ and (λt) when the controller deviates from the equilibrium.

Note that the representation of (Pt) = (P λ
∗,λ∗

t ) in (47) is analogous to (6) in the strong
formulation. Moreover, it is directly seen that the value functions are the same for both formu-
lations in the case of no deviation, i.e.,

J 1
(
τ∗, λ∗(P λ

∗,λ∗), p
)

= J̃ 1
(τ∗, λ∗, p) ,

J 2
(
τ∗, λ∗(P λ

∗,λ∗), p
)

= J̃ 2
(τ∗, λ∗, p) .

17



Hence, u(p) = J̃ 1
(τ∗, λ∗, p) and v(p) = J̃ 2

(τ∗, λ∗, p), with u(p) and v(p) as in Theorem 8.
Using this it is directly checked that the proof of Theorem 8 can be adjusted so that it shows
that (b∗1, b

∗
2) corresponds to an equilibrium also in the present weak formulation. Indeed, this

requires only minor adjustments including that (Pt) is here given by (47), and that the deviation
strategies are allowed to be processes in L̃. Particularly, note that Proposition 5 holds also in
this case.

Acknowledgment The authors are grateful to Erik Ekström at Uppsala University for discus-
sions regarding games of the kind studied in the present paper, and suggestions that lead to
improvements of this manuscript.

A Properties of (Pt) in the strong formulation

Proposition 20. The SDE (6) has a strong solution (Pt) =
(
P λ,λ

∗

t

)
for any admissible pair of

Markov strategies (λ∗, λ) ∈ L2.

Proof. Consider the interval I = [ε, 1 − ε], for a small arbitrary constant ε > 0. Then the
diffusion coefficient is uniformly bounded away from zero in I. Thus we obtain for both cases
{θ = 0} and {θ = 1} that: (i) a weak solution (Pt) to (6) exists (cf. e.g., [18, Ch. 5]), and (ii)
a solution to (6) is pathwise unique in I (see [23]). By Lemma 21, we obtain that (Pt) cannot
reach 0 or 1 in finite time. Hence, (6) admits a strong solution (Pt) by [18, Corollary 3.23].

Lemma 21. For any pair (λ∗, λ) ∈ L2 it holds for (Pt) =
(
P λ,λ

∗

t

)
given by (6) that

τ0 := inf{t ≥ 0 : Pt = 0} =∞, (48)

τ1 := inf{t ≥ 0 : Pt = 1} =∞. (49)

Proof. In order to prove (48), it is suffices to show that

τ̃0 := inf{t ≥ 0 : P̃t = 0} =∞,

where P̃t solves the SDE

dP̃t = −λ̄2P̃ 2
t (1− P̃t)dt+ λ∗(P̃t)P̃t(1− P̃t)dWt, (50)

with P̃0 = P0 = p; indeed, it follows by comparison (see [28, Chapter IX.3]) that τ̃0 ≤ τ0 a.s.
(The existence of a strong solution to (50) is given by arguments similar to those in the proof
of Proposition 20.)

Since λ∗ is RCLL in [0, 1] (and is piece-wise constant), there exists a z ∈ (0, 1) such that
λ∗(p) = λ∗(z) for p ∈ (0, z]. With some calculations we now obtain that the scale function of
(50), is for a ≤ z given by

s′(a) = exp

(
−2

∫ a

z

−λ̄2p2(1− p)
(λ∗(p))2p2(1− p)2

dp

)
= exp

(
−2

(
λ̄

λ∗(z)

)2 ∫ z

a

1

(1− p)
dp

)
= C(z)

1

(1− a)
2
(

λ̄
λ∗(z)

)2 ,

where C(z) > 0, and density of the speed measure for p ≤ z is given by

m(p) =
2

λ∗(z)2p2(1− p)2s′(p)
.
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Using that s′(x) is increasing for x ∈ (0, 1) we have∫ z

0
s′(a)

(∫ z

a
m(p)dp

)
da ≥ C(z)

2

λ∗(z)2(1− z)2s′(z)

∫ z

0

(∫ z

a

1

p2
dp

)
da =∞.

Hence, τ̃0 =∞ follows from Feller’s test for explosion, and (48) follows.
For reasons similar to the proof of the previous statement it is sufficient to prove that

τ̂1 := inf{t ≥ 0 : P̂t = 1} =∞ where

dP̂t = λ̄2P̂t(1− P̂t)dt+ λ∗(P̂t)P̂t(1− P̂t)dWt. (51)

We fix a z ∈ (0, 1) such that λ∗(p) = λ∗(z) for p ∈ [z, 1). For (51) and a ∈ (z, 1), we have

s′(a) = exp

(
−2

∫ a

z

λ̄2p(1− p)
(λ∗(p))2p2(1− p)2

dp

)

= D1(z)

(
1− a
a

)2
(

λ̄
λ∗(z)

)2

,

where D1(z) > 0, and for p ∈ (z, 1), we have

m(p) =
2

λ∗(z)2p2(1− p)2s′(p)
.

Hence, for some positive constants D2(z), D3(z), D4(z), we have

∫ 1

z
s′(a)

(∫ a

z
m(p)dp

)
da ≥ D2(z)

∫ 1

z
(1− a)

2
(

λ̄
λ∗(z)

)2

∫ a

z

1

(1− p)2
(

λ̄
λ∗(z)

)2
+2
dp

 da

= D3(z)

∫ 1

z

1

1− a
da−D4(z) =∞.

Hence, τ̂1 =∞ follows by Feller’s test for explosion, and (49) follows.

B Proofs of Lemmas 12 and 13

Proof. (of Lemma 12.) Observe that

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2) = −k1

(
α1(λ̄)

(
1− b∗2
b∗2

)α1(λ̄)

− α2(λ̄)

(
1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)
)

+ α2(λ̄)
c− (λ̄−

¯
λ)2

r

(
1− b∗1
b∗1

)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)

.

First we consider the limit b∗2 → 1. For the first part we have that

k1α1(λ̄)

(
1− b∗2
b∗2

)α1(λ̄)

=

(
(λ̄−

¯
λ)2

r − λ̄−
¯
λ

α1(
¯
λ)

¯
λ

)(
1−b∗2
b∗2

)−α2(λ̄)
+

c−(λ̄−
¯
λ)2

r

(
1−b∗1
b∗1

)−α2(λ̄)

(
1−b∗2
b∗2

)α1(λ̄)−α2(λ̄)
−
(

1−b∗1
b∗1

)α1(λ̄)−α2(λ̄)
α1(λ̄)

(
1− b∗2
b∗2

)α1(λ̄)

→ 0,
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as b∗2 ↗ 1, since α1(λ̄),−α2(λ̄) > 0. We consider the remaining term. We obtain

k1α2(λ̄)

(
1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)

+ α2(λ̄)
c− (λ̄−

¯
λ)2

r

(
1− b∗1
b∗1

)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)

= α2(λ̄)

(λ̄−
¯
λ)2

r − λ̄−
¯
λ

α1(
¯
λ)

¯
λ(

1−b∗2
b∗2

)α1(λ̄)−α2(λ̄) (1−b∗1
b∗1

)α2(λ̄)−α1(λ̄)
− 1

+ α2(λ̄)

(
1− b∗2
b∗2

)α2(λ̄)

 c−(λ̄−
¯
λ)2

r

(
1−b∗1
b∗1

)−α2(λ̄)

(
1−b∗2
b∗2

)α1(λ̄)−α2(λ̄) (1−b∗1
b∗1

)α2(λ̄)−α1(λ̄)
− 1

+
c− (λ̄−

¯
λ)2

r

(
1− b∗1
b∗1

)−α2(λ̄)


= (A1) + (B1).

For (A1) we obtain using α1(λ̄)− α2(λ̄) > 0, that

(A1) = α2(λ̄)

(λ̄−
¯
λ)2

r − λ̄−
¯
λ

α1(
¯
λ)

¯
λ(

1−b∗2
b∗2

)α1(λ̄)−α2(λ̄) (1−b∗1
b∗1

)α2(λ̄)−α1(λ̄)
− 1

→ −α2(λ̄)

(
(λ̄−

¯
λ)2

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ

)
,

as b∗2 ↗ 1. For (B1) we have

(B1) = α2(λ̄)
c− (λ̄−

¯
λ)2

r

(
1− b∗1
b∗1

)−α2(λ̄)


(

1−b∗2
b∗2

)α1(λ̄) (1−b∗1
b∗1

)α2(λ̄)−α1(λ̄)

(
1−b∗2
b∗2

)α1(λ̄)−α2(λ̄) (1−b∗1
b∗1

)α2(λ̄)−α1(λ̄)
− 1


→ 0,

as b∗2 ↗ 1. Adding the limits gives us (29), and using (24) we thus obtain the first part of (31).
For the second limit we find

lim
b∗2→b∗1

b∗2(1− b∗2)vp(b
∗
2−, b∗1, b∗2)

= α2(λ̄)
c− (λ̄−

¯
λ)2

r
+

(
1− b∗1
b∗1

)α1(λ̄)

(α1(λ̄)− α2(λ̄)) lim
b∗2→b∗1

−k1.

(52)

We note that α1(λ̄)−α2(λ̄) > 0 and further investigate the limit by considering the denominator
and numerator of k1 separately. For the denominator of k1 we have that(

1− b∗2
b∗2

)α1(λ̄)

−
(

1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)

=

(
1− b∗2
b∗2

)α1(λ̄)
(

1−
(

1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)−α1(λ̄)
)
↗ 0,

as b∗2 ↘ b∗1; to see this use e.g., that x 7→ 1−x
x is decreasing for x > 0. For the numerator of k1

we use (24) to find

(λ̄−
¯
λ)2

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ

+
c− (λ̄−

¯
λ)2

r

(
1− b∗1
b∗1

)−α2(λ̄)(1− b∗2
b∗2

)α2(λ̄)

→ c

r
− λ̄−

¯
λ

α1(
¯
λ)

¯
λ
> 0.

It follows that limb∗2↘b∗1 k1 = −∞ and by (52) we obtain (30) (from which the second part of
(31) follows). Hence, statement (i) has been proved.
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Relying on the continuity of vp(b
∗
2−, b∗1, b∗2) for b∗2 ∈ (b∗1, 1) it follows immediately from (31)

and the intermediate value theorem that we can choose b∗2 so that

vp(b
∗
2−, b∗1, b∗2) =

λ̄−
¯
λ

b∗2(1− b∗2)
¯
λ
.

Hence, if we choose b∗2 in this way then p 7→ v(p, b∗1, b
∗
2) satisfies (18) as well as (IV) and hence

statement (ii) holds.

We need the following technical result in the proof of Lemma 13.

Lemma 22. Let c1 be given by (34), then we have

(a)

c1 > −
(

1− b∗1
b∗1

)−α1(λ̄) b∗1λ̄− c
b∗1r

,

for b∗1 ≤ c/λ̄,

(b)

c1 <

(
α1(

¯
λ)(λ̄−

¯
λ)

r(α1(λ̄)− α2(λ̄))
− b∗1λ̄− c

b∗1r

)(
1− b∗1
b∗1

)−α1(λ̄)

,

for b∗1 ≥ c/λ̄.

Proof. Let us prove (a) by showing that showing that c1 is strictly decreasing in b∗2 (recall that
b∗2 ∈ (b∗1, 1)); the result then follows by taking b∗2 = 1 in c1. It holds that the denominator of c1

is positive and strictly increasing in b∗2. To see this use e.g., that α1(λ̄) − α1(
¯
λ) < 0 and that

1−x
x is strictly decreasing for x > 0, which implies that

(α1(λ̄)− α1(
¯
λ))

(
1− b∗2
b∗2

)α1(λ̄)−α2(λ̄)

− (α2(λ̄)− α1(
¯
λ))

(
1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)

≥
(

1− b∗1
b∗1

)α1(λ̄)−α2(λ̄)

(α1(λ̄)− α2(λ̄)) > 0.

Additionally, −α2(λ̄) > 0 and b∗1 ≤ c/λ̄ implies that the numerator is positive and decreasing in
b∗2. We conclude that c1 is strictly decreasing on b∗2.

In order to prove (b) we write

c1 =

α1(
¯
λ)(λ̄−

¯
λ)

r

(
1−b∗2
b∗2

)−α2(λ̄)

D(b∗1, b
∗
2)

+
(α2(λ̄)− α1(

¯
λ))

b∗1λ̄−c
b∗1r

(
1−b∗1
b∗1

)−α2(λ̄)

D(b∗1, b
∗
2)

where D(b∗1, b
∗
2) denotes the denominator of c1. Note that b∗1 ≥ c/λ̄ implies that the second

expression is non-positive. Thus, by similar arguments to (a) the result follows by taking b∗2 = b∗1
in the first and b∗2 = 1 in the second expression.

Proof. (of Lemma 13.) We find with some work (use e.g.,(33)) that

up(b
∗
1+, b∗1, b

∗
2) =

c

b∗1r
− 1

1− b∗1

(
α1(λ̄)c1

(
1− b∗1
b∗1

)α1(λ̄)

+ c2α2(λ̄)

(
1− b∗1
b∗1

)α2(λ̄)
)

=
c

b∗1r
+
α2(λ̄)(b∗1λ̄− c)

(1− b∗1)b∗1r
− α1(λ̄)− α2(λ̄)

1− b∗1
c1

(
1− b∗1
b∗1

)α1(λ̄)

.
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Suppose b∗1 ≤ c/λ̄. Thus, Lemma 22(a) implies

up(b
∗
1+, b∗1, b

∗
2) <

c

b∗1r
+
α2(λ̄)(b∗1λ̄− c)

(1− b∗1)b∗1r
+

(α1(λ̄)− α2(λ̄))(b∗1λ̄− c)
(1− b∗1)b∗1r

=
(1− b∗1)c− α1(λ̄)c

(1− b∗1)b∗1r
+

α1(λ̄)λ̄

(1− b∗1)r
→ −∞,

as b∗1 ↘ 0, since α1(λ̄) > 1, and the first result follows.
Now suppose b∗1 ≥ c/λ̄. Then Lemma 22(b) implies

up(b
∗
1+, b∗1, b

∗
2) >

c

b∗1r
+
α2(λ̄)(b∗1λ̄− c)
b∗1(1− b∗1)r

− α1(
¯
λ)(λ̄−

¯
λ)

(1− b∗1)r
+

(α1(λ̄)− α2(λ̄))(b∗1λ̄− c)
(1− b∗1)b∗1r

=
c

b∗1r
+

(
α1(λ̄)

(
λ̄− c

b∗1

)
− α1(

¯
λ)(λ̄−

¯
λ)
)

(1− b∗1)r
. (53)

Fix a sufficiently small ε > 0. Then, α1(λ̄) > 1 implies that there exists a b̄ ∈ (0, 1) such that

α1(λ̄)
(
λ̄− c

b∗1

)
> λ̄ − c + ε for any b∗1 ∈ (b̄, 1). Thus, (25) implies that for b∗1 ∈ (b̄, 1), we have

that

up(b
∗
1+, b∗1, b

∗
2) >

c

b∗1r
+

(
λ̄− c+ ε− α1(

¯
λ)(λ̄−

¯
λ)
)

(1− b∗1)r

≥ c

b∗1r
+

ε

(1− b∗1)r
→∞,

for b∗1 ↗ 1. Hence, the second result follows.

C Results for the proof of Theorem 10

Throughout this section we consider the setting of the proof of Theorem 10. Particularly, we
here consider a pair (b∗1, b

∗
2) such that (II) and (IV) hold. We also rely on condition (25).

Lemma 23. It holds that v(p) < c/r for p ∈ (b∗1, 1).

Proof. Let us first prove v(p) ≤ c/r by contradiction. Assume there exists a p̃ ∈ (b∗1, 1) such that
v(p̃) > c/r. Then v ∈ C1(b∗1, 1) and v(1) = c/r implies that there exists p̂ ∈ (p̃, 1) with v(p̂) > c/r
such that v attains a local maximum at p̂. Using the ODE in (18) we find vpp(p̂−) ≥ vpp(p̂+) > 0,
which is a contradiction.

We continue to prove v(p) < c/r by contradiction. For this purpose, assume that v(p̃) = c/r
for some p̃ ∈ (b∗1, 1). Then by v ≤ c/r we have that vp(p̃) = 0. We have two cases:

• If p̃ ∈ (b∗1, b
∗
2] then the ODE (18) implies that vpp(p̃−) > 0, which contradicts v ≤ c/r.

• If p̃ ∈ (b∗2, 1), using the ODE we find v(p) = c/r for p ∈ [b∗2, p̃] (cf. also (26)). Since
v ∈ C1(b∗1, 1), we obtain vpp(b

∗
2−) > 0 as above, which again contradicts v ≤ c/r.

Lemma 24. It holds that (a) vp(b
∗
1+) > 0, and (b) vp(b

∗
2) > 0.

Proof. We will only prove the first statement, since the second statement follows using analogues
arguments. Suppose that vp(b

∗
1+) ≤ 0. We will show that this implies that v has a local minimum

below zero, i.e., there exists a point p̃ ∈ (b∗1, 1) such that vp(p̃) = 0, vpp(p̃+) ≥ 0 and v(p̃) < 0.
This contradicts the ODE in (18) since c− (λ∗(p̃+)−

¯
λ)2 ≥ 0 (by (25)). We have three cases:

• If vp(b
∗
1+) < 0, then v(1) = c

r and continuity immediately imply that v has a local minimum
below zero.
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• If vp(b
∗
1+) = 0, c − (λ̄ −

¯
λ)2 > 0, then the ODE in (18) implies that vpp(b

∗
1+) < 0.

Analogously to the first case this implies that v has a local minimum below zero.

• If vp(b
∗
1+) = 0, c− (λ̄−

¯
λ)2 = 0, then we find using the ODE that v(p) = 0 for p ∈ [b∗1, b

∗
2).

Using also v ∈ C1(b∗1, 1) and the ODE we conclude that v(b∗2) = vp(b
∗
2) = 0 and vpp(b

∗
2+) <

0. With v(1) = c
r this implies that v has a local minimum below zero.

Lemma 25. It holds that vp(p) > 0 for p ∈ (b∗1, 1).

Proof. We show that vp(p) > 0 for p ∈ (b∗1, b
∗
2) by contradiction. The remaining case can be

proved using analogues methods. To this end, assume that p1 ∈ (b∗1, b
∗
2) is the smallest point

such that vp(p1) = 0. We consider three cases:

• If vpp(p1) = 0, then the ODE in (18) implies that v is constant on (p1, b
∗
2), which is a

contradiction to v ∈ C1(b∗1, 1) and Lemma 24(b).

• If vpp(p1) > 0, then p1 is a local minimum and Lemma 24(a) implies that p1 cannot be the
first point with vp = 0.

• Consider the case vpp(p1) < 0. Then since vp(b
∗
2) > 0 and v ∈ C2(b∗1, b

∗
2), we see that there

must exist a second p2 ∈ (p1, b
∗
2) such that vp(p2) = 0 and v(p2) is a local minimum. Let

p2 be the first such a point. Then it is easy to see, that vpp(p2) ≥ 0 and v(p2) < v(p1).
However, using vp(p1) = vp(p2) = 0, vpp(p1) < 0 ≤ vpp(p2) and the ODE we find the
contradiction

v(p1) <
c− (λ̄−

¯
λ)2

r
≤ v(p2).

Lemma 26. Let f(p) := p(1− p)vp(p). Then

(a) f ′(p1) < 0 for any p1 ∈ (b∗1, b
∗
2) ∪ (b∗2, 1) satisfying rv(p1) ≤ c− (λ∗(p1)−

¯
λ)2,

(b) f ′(b∗2−) < 0,

(c) f ′′(p2) > 0 for any p2 ∈ (b∗1, b
∗
2) satisfying f ′(p2) = 0.

Proof. Let us prove the statement in (a). With the help of the ODE, we observe that

f ′(p) = vppp(1− p) + (1− p)vp − pvp

=
2(rv − c+ (λ∗(p)−

¯
λ)2)

p(1− p)(λ∗)2(p)
− vp. (54)

Hence, (a) follows from Lemma 25. Let us prove (b). Using, (27), (28), (54) and v ∈ C1(b∗1, 1),
we find

f ′(b∗2−) =
1

b∗2(1− b∗2)

(
−2r(λ̄−

¯
λ)

α1(
¯
λ)λ̄2

¯
λ

+
2(λ̄−

¯
λ)2

λ̄2
− λ̄−

¯
λ

¯
λ

)
<

λ̄−
¯
λ

b∗2(1− b∗2)

(
2
¯
λ(λ̄−

¯
λ)− λ̄2

λ̄2

¯
λ

)
< 0.
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We continue to prove (c). Using (54), we find

f ′′(p) =
2rvp

p(1− p)λ̄2
− 2(rv − c+ (λ̄−

¯
λ)2)(1− 2p)

p2(1− p)2λ̄2
− vpp

=
2rvp

p(1− p)λ̄2
− 2(rv − c+ (λ̄−

¯
λ)2)(1− 2p)

p2(1− p)2λ̄2
+

2vp
p
− 2(rv − c+ (λ̄−

¯
λ)2)

p2(1− p)2λ̄2

=
2rvp

p(1− p)λ̄2
− 4(rv − c+ (λ̄−

¯
λ)2)

p2(1− p)λ̄2
+

2vp
p

=
2rvp

p(1− p)λ̄2
− 2f ′(p)

p
.

Using f ′(p2) = 0 and Lemma 25 we thus obtain f ′′(p2) =
2rvp(p2)

p2(1−p2)λ̄2 > 0.

Proposition 27. It holds that f(p) = p(1− p)vp(p) is strictly decreasing for p ∈ (b∗1, 1).

Proof. By Lemma 26(a), the statement holds for p ∈ (b∗2, 1), since v < c
r (Lemma 23) and

λ∗−
¯
λ = 0 on (b∗2, 1). We prove f ′(p) < 0 for p ∈ (b∗1, b

∗
2) by contradiction. Note that f ′(b∗1+) < 0,

by 0 = rv(b∗1) ≤ c− (λ̄−
¯
λ)2 and Lemma 26(a). For this purpose, let p̃ ∈ (b∗1, b

∗
2) be a point such

that f ′(p̃) = 0, which is then a local minimum (by Lemma 26(c)). Hence, we obtain f ′(p) ≥ 0
for p ∈ (p̃, b∗2) (cf. Lemma 26(c)). This is a contradiction to Lemma 26(b).

Lemma 28. It holds that b∗1 < c/λ̄.

Proof. We prove the statement by contradiction. To this end assume b∗1 ≥ c/λ̄. Then we can
use the calculations in the proof of Lemma 13 to arrive at (53), which with (II) gives us

0 = up(b
∗
1) >

c

b∗1r
+
b∗1

(
α1(λ̄)

(
λ̄− c

b∗1

)
− α1(

¯
λ)(λ̄−

¯
λ)
)

b∗1(1− b∗1)r

=
(1− α1(λ̄))c+ b∗1

(
α1(λ̄)λ̄− α1(

¯
λ)(λ̄−

¯
λ)− c

)
b∗1(1− b∗1)r

. (55)

Related to the numerator we introduce the function

f(b) = (1− α1(λ̄))c+ b
(
α1(λ̄)λ̄− α1(

¯
λ)(λ̄−

¯
λ)− c

)
.

It is easily verified that f is increasing and that f
(
c/λ̄
)
≥ 0 (use e.g., (25)). This is a contra-

diction to up(b
∗
1) = 0 and the statement follows.

Proposition 29. It holds that u(p) ≥ 0 for p ∈ [0, 1].

Proof. We prove that u(p) > 0 for p ∈ (b∗1, 1] by contradiction. By definition, u(p) = 0 for
p ≤ b∗1. Lemma 28 establishes b∗1 < c/λ̄. Thus the ODE (19) and up(b

∗
1+) = 0 imply that u(p)

is strictly increasing and convex on

{p ∈ (b∗1, 1) : ru(p̂) + c− p̂λ∗(p̂) > 0,∀p̂ ∈ (b∗1, p)},

which is non-empty. Suppose, in order to obtain a contradiction, that p̃ ∈ (b∗1, 1] is the smallest
point such that u(p̃) = 0. It can then be verified that p̃ > c/λ̄.

Let us consider the case p̃ < b∗2. Recall that (53) holds for any c/λ̄ ≤ b∗1 < b∗2 < 1. Hence,
using p̃ instead of b∗1 in (53) and the same reasoning that lead to (55) gives

up(p̃+; p̃, b∗2) >
(1− α1(λ̄))c+ p̃

(
α1(λ̄)λ̄− α1(

¯
λ)(λ̄−

¯
λ)− c

)
p̃(1− p̃)r

.
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Note that that we have up(p̃+; p̃, b∗2) = up(p̃; b
∗
1, b
∗
2) := up(p̃), since both functions u(·; p̃, b∗2) and

u(·; b∗1, b∗2) satisfy the ODE in (19) on (p̃, 1) with the same boundary conditions, in particular
u(p̃; p̃, b∗2) = 0 (by (19)) and u(p̃; b∗1, b

∗
2) = 0 (by the contradiction assumption). Hence, using

p̃ > c/λ̄ and arguments analogous to those after (55) we find that up(p̃) > 0. However, up(p̃) > 0
is a contradiction to the definition of p̃ being the smallest point in (b∗1, 1] where u(p̃) = 0.

Let us consider the case p̃ ≥ b∗2. Then the contradiction up(p̃) > 0 is obtained in a similar
way. More precisely, using the ODE (cf. (32)) with the boundary conditions u(p̃) = 0 and

u(1) = ¯
λ−c
r , we obtain

u(p) = c3p

(
1− p
p

)α1(
¯
λ)

+
p
¯
λ− c
r

, for p > p̃,

where

c3 = − p̃¯λ− c
p̃r

(
1− p̃
p̃

)−α1(
¯
λ)

.

Using also p̃ > c/λ̄, (25), and arguments analogous to those after (55), we find with some work
that

up(p̃) =
c

p̃r
+
α1(

¯
λ)(p̃

¯
λ− c)

p̃(1− p̃)r
> 0.
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