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Over the past two decades, the enigma of the deconfined quantum critical point (DQCP) has at-
tracted broad attention across the condensed matter, quantum field theory, and high-energy physics
communities, as it is expected to offer a new paradigm in theory, experiment, and numerical simu-
lations that goes beyond the Landau-Ginzburg-Wilson framework of symmetry breaking and phase
transitions. However, the nature of DQCP has been controversial. For instance, in the square-lattice
spin-1/2 J-Q model, believed to realize the DQCP between Néel and valence bond solid states, con-
flicting results, such as first-order versus continuous transition, and critical exponents incompatible
with conformal bootstrap bounds, have been reported. The enigma of DQCP is exemplified in its
anomalous logarithmic subleading contribution in its entanglement entropy (EE), which was dis-
cussed in recent studies. In the current work, we demonstrate that similar anomalous logarithmic
behavior persists in a class of models analogous to the DQCP. We systematically study the quan-
tum EE of square-lattice SU(N) DQCP spin models. Based on large-scale quantum Monte Carlo
computation of the EE, we show that for a series of N smaller than a critical value, the anomalous
logarithmic behavior always exists in the EE, which implies that the previously determined DQCPs
in these models do not belong to conformal fixed points. In contrast, when N ≥ Nc with a finite
Nc that we evaluate to lie between 7 and 8, the DQCPs are consistent with conformal fixed points
that can be understood within the Abelian Higgs field theory with N complex components.

Introduction.—Over the past two decades, the perplex-
ing enigma of the deconfined quantum critical point
(DQCP) [1–6] has attracted broad attention across the
communities of condensed matter and quantum mate-
rials to quantum field theory and high-energy physics.
The DQCP offers a new paradigm in theory beyond the
Landau-Ginzburg-Wilson framework of symmetry break-
ing and phase transitions [1, 4–7], which has inspired
fascinating theoretical ideas such as the connection to
the ’t Hooft anomaly and higher-dimensional symme-
try protected topological states [8], emergent symme-
try and fractionalized degrees of freedom [9–13], etc. It
has since attracted enormous efforts in numerical sim-
ulations [2, 13–18], and experiments [19–24]. However,
the nature of DQCP have remained highly controver-
sial. Take the square-lattice SU(2) J-Q model [2] as an
example: it was initially believed to realize a continu-
ous quantum phase transition between Néel and valence
bond solid (VBS) states, but over the years, conflict-
ing results have been reported, such as first-order ver-
sus continuous transition [25–30], critical exponents that
are found to be incompatible with conformal bootstrap
bounds [3, 18, 31, 32], or possible multi-critical behav-
ior [33]. No consensus has been reached to date.

Similar complications also occur in many more recent
DQCP models, such as the fermionic models realizing
sequences of transitions from a Dirac semimetal (DSM)
through a quantum spin Hall (QSH) insulator to a su-
perconductor (SC) [16, 34], or from a DSM through a

VBS to an antiferromagnet (AFM) [17, 35]. Although
the fermionic models have several advantages over the J-
Q model, e.g., the absence of symmetry-allowed quadru-
ple monopoles and the associated second length scale that
corresponds to the breaking of the assumed U(1) sym-
metry down to Z4, incompatible critical exponents per-
sist, and the accumulating numerical results also point
towards the absence of a conformal field theory (CFT) of
these DQCPs [16, 17, 34–38].

One clear sign of the perplexity of the DQCP is the
anomalous logarithmic subleading contribution to the
perimeter law in the finite-size scaling form of Rényi en-
tanglement entropy (EE). It is known that for a CFT in
2 + 1 dimensions, the second Rényi EE scales as [39, 40]

S
(2)
A (lA) = alA − s ln lA + c+O(1/lA), (1)

where lA is the length of the boundary between the en-
tanglement region A and its complement A, a is the co-
efficient of the perimeter-law term, s is the coefficient
of the logarithmic correction (log-correction), c is a con-
stant and O(1/lA) denotes the leading finite-size correc-
tion. While the value of a is non-universal, the universal
coefficient s of the log-correction depends only on the ge-
ometry of the entanglement region A for a given CFT.
Crucially, in a CFT when the boundary of A is smooth
without any sharp corners, s must vanish. In contrast, if
the boundary of A has sharp corners, then in a unitary
CFT s is generally positive and its value depends on the
opening angles of the corners [39, 41, 42].
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FIG. 1. SU(N) J1-J2-Q model and its phase dia-
gram. (a) J1-J2-Q model on square lattice with white (black)
sites representing sublattice A (B). Solid lines correspond
to nearest-neighbor antiferromagnetic exchange J1 and next-
nearest-neighbor ferromagnetic exchange J2. Green shaded
squares indicate four-spin ring exchange Q. (b) Phase dia-
gram as function of g = J2/J1, q = Q/(Q + J1), and N .
Colored dots indicate transition points, at which we analyze
the finite-size scaling behavior of the EE. When N ≤ 4, the
transition is tuned by q between Néel at small Q and VBS at
large Q. When N > 4, the transition is tuned by g between
VBS at small J2 and Néel at large J2.

It is the goal of this work to show that the anoma-
lous logarithmic subleading contribution, in particular a
non-zero value of s for entanglement regions with smooth
boundary, is actually very ubiquitous, in a series of mod-
els that can be viewed as SU(N) generalizations of the
DQCP. Vanishing of the anomalous log-correction deter-
mines the critical value Nc of N , above which the EE
measurement is consistent with the expectations of CFTs.
Main result.—Our new approach of analyzing DQCP is
to systematically investigate the scaling of the second-
order Rényi EE upon partitioning into subregions with
smooth boundaries as well as subregions with cor-
ners [43]. As a proof of concept, we choose the square-
lattice SU(N) DQCP spin model [44–47] from N = 2, 3
(the J-Q model) to N = 5, 7, 8, 10, 12, 15 (the J1-J2
model), see Fig. 1(a). Using the non-equilibrium incre-
mental quantum Monte Carlo (QMC) algorithm to mea-
sure the EE [48–51], we show that for N = 2, 3, 5, 7,
the previously determined DQCPs all show a finite log-
correction, for subregions with smooth boundaries. These
DQCPs are therefore incompatible with CFT descrip-
tions, and are most likely weakly first-order. In contrast,
when N ≥ 8, the EE scaling with smooth entanglement
boundaries for the DQCPs no longer has an obvious log-
arithmic subleading correction, and they are compati-
ble with continuous phase transitions. This is further
supported by the EE scaling at N = 10, 15 for regions
with corners, which shows a logarithmic correction with
s > 0. In fact, we find that our numerically extracted
value of s for N = 15 is reasonably consistent with the
expectations from the Abelian Higgs theory in the large-
N limit [1, 3, 45, 52], which features unitary conformal

fixed points [53–55]. Thus our results suggest the exis-
tence of a finite critical Nc above which the DQCP be-
comes continuous. Based on the behavior of EE with
smooth boundary, our numerical results suggest that Nc

lies between 7 and 8.
Distinguishing a weakly-first-order transition from a

truly continuous one is a challenging numerical task
when using conventional local observables and their cor-
relation functions. In our work, this difficulty is over-
comed by studying the EE, which is a non-local ob-
servable and can reveal subtle structures in quantum
many-body wavefunctions beyond conventional measure-
ments [39, 40, 42, 51, 56, 57]. The log-coefficient of the
EE has to satisfy the positivity requirement for a uni-
tary CFT [58]. Our results support the realization of a
true DQCP between Néel and VBS phases at finite but
large N , and allow us to demonstrate the absence of a
conformal fixed point for N = 2, 3, 5, 7.
Model and phase diagram.—We study the SU(N) spin
model defined in a Hilbert space of N local states (col-
ors) at each site of the square lattice [44–47], as shown
in Fig. 1(a). We assume SU(N) spins in the fundamen-
tal representation on sublattice A and in the conjugate
representation on sublattice B, i.e., |α⟩A → Uα,β |β⟩A,
|α⟩B → U∗

α,β |β⟩B , with the state
∑

α |α⟩A|α⟩B an SU(N)
singlet [59, 60]. The Hamiltonian reads

H = −J1
N

∑
⟨ij⟩

Pij −
J2
N

∑
⟨⟨ij⟩⟩

Πij −
Q

N

∑
⟨i,j⟩,⟨k,l⟩

PijPkl, (2)

where the J1 term is the SU(N) generalization of the
nearest-neighbor antiferromagnetic interaction, as Pij is
defined as the projection operator onto the SU(N) sin-
glet between a pair of spins i and j on different sublat-
tices, and the J2 term is the SU(N) generalization of the
next-nearest-neighbor ferromagnetic interaction, as Πij

is the permutation operator acting between sites hav-
ing the same representation on the same sublattice, i.e.,
Πij |αβ⟩ = |βα⟩. We also add a four-spin ring exchange
term Q for the N = 2, 3, 4 cases, where ⟨i, j⟩, ⟨k, l⟩ are
spin pairs located on adjacent corners of a 4-site pla-
quette, see Fig. 1(a). This term preserves the trans-
lational and rotational symmetries of the square lat-
tice, and was found to stabilize a VBS state with Z4

symmetry-breaking at large Q [14, 15, 46]. We compute
the second-order Rényi EE of the model in Eq. (2) with
QMC on lattices with linear sizes L = 8, 12, 16, ..., 40.
We keep the inverse temperature β ≡ 1/T = L at N = 2
and β = 4L for N > 2 to circumvent thermal pollution
(see SM [61] for detailed analysis).

The phase diagram of Eq. (2), spanned by the axes
of q = Q

J1+Q , g = J2

J1
, and N , is shown in Fig. 1(b).

It is consistent with previous QMC works [14, 15, 44–
47, 62]. At N = 2, 3, 4, a transition between Néel and
VBS state can be induced upon tuning q = Q

J1+Q for fixed
J2 = 0 [2, 15, 26, 63, 64]. For N ≥ 5, the J1-only model
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for J2 = Q = 0 already has a VBS ground state [62, 65,
66], and a Néel-VBS transition can be induced by tuning
g = J2/J1 for fixed Q = 0 [14, 46, 62]. In the SM [61],
we show that our critical couplings qc and gc agree with
those in the literature [2, 15, 26, 44–47, 63, 64]. We also
determine the corresponding critical exponents at a few
representative values of N .
Finite-size scaling of EE.—As reviewed earlier, the sub-
leading corrections to the EE in a CFT needs to satisfy
nontrivial conditions [39, 41–43, 67]. We now turn to the
EE measurements of the transitions in the phase diagram
of Fig. 1(b). To this end, a non-equilibrium incremental
QMC algorithm is developed [48–51] for the SU(N) spin
model. Details of the implementation are given in the
SM [61]. Here we only mention that to compute the
second-order Rényi EE S

(2)
A for quantum spin systems,

there are many previous attempts based on the swap op-
erator and its extensions [40, 68–73] and the data quality
is always a serious issue when approaching large system
sizes for extracting the subleading universal scaling coef-
ficients. This problem has been greatly relieved by the
incremental algorithm, which converts the Rényi EE into
the free energy difference between partition functions on
two different manifolds, with the help of Jarzynski equal-
ity [48, 49, 74] and the incremental trick [50]. Controlled
EE results, including the log-coefficient of the EE inside
the Néel phase of the antiferromagnetic Heisenberg model
and at its (2+1)D O(3) quantum critical points [49–
51, 75, 76] and the topological EE inside the Kagome Z2

quantum spin liquid [51], have been obtained. We note
the latest developments, realizing the EE as an exponen-
tial observable [77] and simpler incremental approaches
without non-equilibrium process [35, 78, 79], have been
put forward [35, 77–79].

The scaling of the EE for a quantum critical point
of a 2D lattice model, described by a CFT, is given in
Eq. (1). In a CFT, the coefficient s can be written as
s =

∑
i s(αi), where αi is the opening angle of the i-th

corner on the boundary of the region A. Here s(α) is
a universal quantity for a CFT [39, 41, 42], satisfying
a number of nontrivial constraints. For our purpose, the
following two conditions are the most relevant [58, 80, 81]:

1. In a CFT we must have s(π) = 0 . This is equiv-
alent to the statement that smooth entanglement
cuts should have no log-correction.

2. In a unitary CFT s(α) ≥ s(π) = 0 for α ∈ (0, π].

The corner contribution has previously been numeri-
cally and/or analytically computed for different CFTs.
For example, it is known that s(π/2) = 0.01496 for a
single (2+1)D Dirac fermion CFT [35, 82], s(π/2) =
0.0064 for a single real free boson [43], and 4s(π/2) =
0.081(4) for a square region at the (2 + 1)D O(3) tran-
sition [50, 51, 75, 76, 83]. In addition, a spontaneous-
symmetry-breaking (SSB) phase with Goldstone modes

is expected to exhibit a scaling form of the EE analogous
to Eq. (1), with an additional contribution sG = −nG/2
to the coefficient s of the log-correction, where nG corre-
sponds to the number of Goldstone modes [84].
EE with smooth boundaries.—Our QMC-obtained EE for
the Hamiltonian in Eq. (2) with smooth bipartition (or
equivalently with α = π corners) are shown in Fig. 2.
Since the entanglement region A is of the size L × L/2,
the boundary length of A is lA = 2L. We plot S(2)

A (lA) as
a function of lA for each N at its corresponding putative
DQCP and fit a functional form according to Eq. (1).

As shown in Fig. 2(a), the obtained S
(2)
A for all N

values are dominated by the perimeter-law scaling, i.e.,
when lA becomes large, a linear term in S

(2)
A manifests.

However, a clear difference appears once we subtract the
perimeter-law contribution from the data. In Fig. 2(b),
we plot S(2)

A −alA versus ln lA. The slope of these curves
reveals the values of s for different N . One sees that for
the cases of SU(2), SU(3), SU(5), and SU(7), we have a
finite log-coefficient s < 0 [revealed by a positive slope in
Fig. 2(b)], violating the equality s(π) = 0. Therefore, our
observation of a finite s(π) here shows that the putative
DQCPs for small N , e.g., N = 2, 3, 5, 7, are incompati-
ble with a CFT. Figure 2(c) demonstrates the finite-size
analysis for the fitted s. We can see the s values for
SU(3), SU(5) and SU(7) are robust as one increasing the
smallest retained system size Lmin in the fitting process.
Only from SU(8) on, the value of s becomes close to zero
s ≈ 0 as one increases Lmin.

The N dependence of the EE scaling exhibited in
Figs. 2(b) and 2(c) has important implications for the
fate of SU(N) DQCPs. As one increases N in the SU(N)
model, there is a clear change in the nature of the tran-
sition, as indicated by the fitted s shown in Fig 2(c). A
comprehensive fitting quality analysis is presented in the
SM [61], by comparing the fitting with lnL and 1/L fi-
nite size correction, using the χ2/k value, as well as the
“subtracted EE” devised in Ref. [76]. For N = 2, 3, 5, 7,
s is found to be finite. By contrast, for N = 10, 12, 15,
s vanishes in the thermodynamic limit. Therefore, the
behavior of EE at these transitions is compatible with
CFTs. SU(8) represents a boundary case in which the fit-
ted s of smooth cut becomes indistinguishable from zero
within the error bar, and the subleading correction to the
perimeter law fits equally well with lnL and 1/L (please
refer to the SM [61]). The SU(N ≥ 8) Néel-to-VBS tran-
sitions are, therefore, candidates for genuine DQCPs in
the original sense, i.e., continuous quantum phase tran-
sitions between two different SSB phases, described by
CFTs. This suggests the existence of a finite critical value
Nc, above which the transition becomes continuous. Our
numerical data shown in Fig. 2(c) for smooth boundary,
together with the extended analysis shown in Figs. S8
and S9 of the SM [61], suggest that Nc lies between 7
and 8.
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(b)(a) (c)

FIG. 2. Second-order Rényi EE and its scaling behavior at the SU(N) DQCPs with smooth boundaries. (a) EE
S

(2)
A as function of boundary length lA = 2L of the entanglement region A with smooth boundaries for different values of N ,

with the partitioning shown in the inset. The perimeter-law behavior ∝ alA becomes more prominent for increasing N . (b) EE
with perimeter-law contribution subtracted, i.e., S(2)

A −alA−constant, as a function of ln lA for different values of N . The slopes
of these curves reflect the coefficient s of the logarithmic term in Eq. (1). For N ≤ 7, there is a finite nonzero lnL subleading
correction to the perimeter law; while as N increases over 8, the slope decreases and eventually vanishes at sufficiently large
N . In fact, for N > 8, the subleading correction fits better with the form 1/L rather than lnL, as we discuss quantitatively
with the χ2/k value and the subtracted EE in the supplementary material. For illustration purposes, the fitting in (b) starts
from Lmin = 16 at all N values. (c) Finite-size drift of fitted s as a function of 1/Lmin, where Lmin corresponds to the smallest
retained system size in the fitting process.

EE with sharp corners.—We also analyze the subleading
contribution to EE for subregions with corners, especially
for N > Nc, because at small N the corner contribution
is tiny and veiled by the large negative s(π) from smooth
boundaries.

Figure 3 presents the scaling of Rényi EE for three rep-
resentative values of N , using a bipartitioning with four
α = π/2 corners of subregion A, see inset in Fig. 3(a).
As shown in Fig. 3(b), the SU(3) case shows a negative
log-coefficient, s = −0.35(2) with four α = π/2 corners.
Notably, the obtained log-coefficient with four π/2 sharp
corners is close to that we detected with smooth bound-
aries, s(π) = −0.34(2) as depicted in Fig. 2(b,c). This
suggests the observed log-correction for the square region
with corners [Fig. 3(b,c)] has the same physical origin as
that of a region with smooth boundary. Exactly the same
behavior has been observed in the SU(2) J-Q2 and J-Q3

model [50, 76, 85] together with other fermion DQCP
models [34, 35, 50, 86]. Combining these observations, it
is plausible that at small values of N , including the most
studied SU(2) case, the true corner contribution is small
and concealed by the large negative s(π) from smooth
boundaries.

However, at N ≥ Nc, s(π) vanishes, it is thus reason-
able to identify the fitted log-correction with four π/2
corners as 4s(π/2). As can be seen from the SU(10)

and SU(15) cases, s(π/2) values are compatible with the
positivity constraint. Importantly, s(π/2) = 0.67/4 at
SU(15) is also consistent with the theoretical expecta-
tion from N -component Abelian-Higgs and non-compact
CPN−1 field theories, which have been suggested as con-
tinuum descriptions of the SU(N) DQCPs [6, 46, 87]: In
the large-N limit, these theories are weakly coupled [55].
As the non-compact CPN−1 field theories in large−N is
weakly interacting, the leading contribution to the log-
coefficient should therefore be given by the correspond-
ing Gaussian theory of the scalar bosons [88]. For the
Abelian-Higgs model with N complex components, this
implies s = 0.0064 × 2N per π/2 corner of subregion
A [43]. The dashed line in Fig. 3(b) shows the corre-
sponding expectation for N = 15, the slope of which
agrees with our data considering numerical uncertainties
and potential subleading corrections.

The consistency of s(π) with a CFT for N ≥ 8, to-
gether with the agreement of the value of s(π/2) for
large N with the field-theory expectation, serve as ev-
idence that the transition in the SU(N) lattice model
for N ≥ Nc realizes a genuine DQCP, described by the
N -component Abelian-Higgs field theory.
Discussion.—We have numerically studied the scaling of
EE in a series of SU(N) spin models, realizing direct tran-
sitions between SU(N) Néel and VBS phases. By analyz-
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(b)(a) (c)

FIG. 3. Second-order Rényi EE and its scaling behavior at the SU(N) DQCPs with corner cuts. (a) EE S
(2)
A

as function of boundary length lA = 2L of the entanglement region A with corner cuts for different values of N , with the
partitioning shown in the inset. (b) EE with perimeter-law contribution subtracted, i.e., S(2)

A − al − constant, as a function
of ln lA for different values of N . At small N , e.g., SU(3), the log-correction is negative, s < 0, which we attribute to the
contribution from the smooth part of the boundary. For N > Nc, s becomes positive, consistent with a CFT description. At
large N , e.g., SU(15), the slope agrees within numerical uncertainties with the expectation from a Gaussian theory with 2N
real components [43], depicted here and in (c) as the dashed line for N = 15. (c) demonstrate the fitted s with different smallest
system sizes retained in the fitting process. Note that curves in (b) are fitted with Lmin = 16 for all N values. The fitted s is
labeled closed to each line with a reference error bar denoting the standard deviation of those s obtained using different Lmin

in (c).

ing the subleading logarithmic corrections, we find that
for relatively small values of N (including N = 2, 3, 5, 7)
the transition can not be described by a CFT, while for
larger values N = 8, 10, 12, 15 the EE scaling is compat-
ible with a CFT description. These observations sug-
gest the existence of a critical value Nc above which the
SU(N) DQCP is realized as a true continuous transition.
Taking N as a continuous variable, our data suggest that
Nc lies between 7 and 8.

A recent preprint [89] studied the second-order Rényi
entropy of the SU(2) J-Q model with a different smooth
cut from our current work, i.e. instead of a straight
smooth cut that is along either the x̂ or ŷ direction, the
reference made a “tilted” smooth cut that is along the
x̂ + ŷ or x̂ − ŷ direction. Within error bar it was found
that the logarithmic correction to the perimeter law van-
ishes in this case. However, in an upcoming work we will
show that even with a tilted smooth cut, the subleading
logarithmic contribution still exists in the 3rd and 4th
Renyi entropy of the SU(2) J-Q model, though the coef-
ficient s is smaller than the one for the straight smooth
cut. Hence we expect that the existence of logarithmic
subleading contribution to EE with smooth boundary is
indeed ubiquitous for N < Nc, regardless of the direction
of the cut. But the direction dependence of the coefficient
of the logarithmic term remains as a puzzle which needs

to be addressed in future studies.
A candidate field theory for the family of SU(N)

DQCPs is the N -component Abelian-Higgs model. Four-
loop renormalization group calculations [55] suggest that
the theory has a stable and real fixed point for N ≥
Nc = 12(4), which then collides with a bicritical fixed
point for N ↘ Nc. This Nc is also compatible with nu-
merical results for a lattice version of the Abelian-Higgs
model [90]. The value is in fact close to the estimated
Nc from the EE measurements. For N < Nc, the two
fixed points annihilate and disappear into the complex
plane, leaving behind a weakly-first-order transition gov-
erned by “walking behavior” [91]. This is illustrated in
Fig. 4, which shows the schematic renormalization group
flow of the Abelian-Higgs model for different values of
N . Here, the renormalization group coupling λ can be
understood to parametrize the quartic self-interaction of
the complex order-parameter field. The “walking behav-
ior” for N < Nc is one possible explanation of the ob-
served anomalous logarithmic subleading terms of EE
with smooth boundary [92].

Another possible mechanism for the observed s(π) < 0
is the Goldstone modes from spontaneous symmetry
breaking. In a SSB state with nG Goldstone modes,
the EE indeed has a subleading logarithmic correction
with coefficient sG = −nG/2 when the subregion has a
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FIG. 4. Illustration of fixed-point collision scenario.
(a) Schematic renormalization group β functions for the cou-
pling λ, representing universal field theories that effectively
describe the deconfined quantum phase transition for differ-
ent values of N . An example would be the quartic scalar
coupling of the N -component Abelian-Higgs model. Corre-
sponding renormalization group flow trajectories are shown
in (b). For N > Nc, there are two fixed points, shown as blue
dots in (a). The attractive one leads to true critical scaling,
as indicated by the blue renormalization group trajectories
in (b). Decreasing N shifts the β function down, until the
two fixed points collide at some critical N = Nc, indicated
by the green dashed curves in (a) and (b). Decreasing N
further, the fixed points annihilate and disappear into the
complex plane, i.e., no true critical behavior can occur any-
more. However, for N ≲ Nc, the renormalization group flow
remains slow in the vicinity of the now complex fixed points,
giving rise to walking behavior and drifting in the exponents,
see red curves in (a) and (b).

smooth boundary [84]. For the SU(2) DQCP in the J-Q3

model, this scenario was recently investigated in Ref. [93].
By including finite-size corrections in the formula for the
scaling of EE in the SSB phase, it was found that the
anomalous EE scaling may be captured by a weak SSB
of the emergent SO(5) symmetry with four Goldstone
modes, giving sG = −2. Whether similar scenarios can
interpret the anomalous logarithmic corrections for other
SU(N) DQCPs is left for future work.

Lastly, there is a distinct possibility that the logarith-
mic correction originates from near-marginal renormal-
ization group flow on the entanglement cut. More pre-
cisely, the Rényi entropy can be viewed as the expecta-
tion value of a Rényi defect operator. The CFT result
s(π) = 0 holds in the deep IR limit of both the bulk
and the defect. In other words, it assumes that the de-
fect is conformal. However, for finite-size calculations
and when the renormalization group flow on the defect
is governed by nearly-marginal operators, for a window
of system sizes logarithmic behavior can arise. However,
it is difficult to explain in this scenario why anomalous
logarithmic corrections are observed for several values of
N = 2, 3, 5, 7, as the scaling dimensions of operators on
defects should change with N , and unlikely to remain
nearly marginal for these different values of N . Thus
we conclude that the anomalous corrections are unlikely
due to defect renormalization group flows, and should be
attributed to bulk properties.
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SUPPLEMENTARY MATERIALS FOR “DECONFINED QUANTUM CRITICALITY LOST”

I. QMC IMPLEMENTATION

QMC simulations for the SU(N) spin models are gen-
eralizations of the SU(2) cases [14, 46, 49, 62, 64, 94, 95].
In particular, there are N colors for spins and loops in the
loop algorithm [96]. Since all the off-diagonal elements
in the Hamiltonian in Eq. (2) in the main text are nega-
tive, the model can be simulated without a sign problem
if off-diagonal operators appear an even number of times
along the imaginary time direction, as in the SU(2) case.

Note that in Eq. (2), the projection operator Pij

[the SU(N) generalization of the nearest-neighbor anti-
ferromagnetic interaction] only acts between spins be-
longing to different sublattices. In contrast, Πij [the
SU(N) generalization of the the next-nearest-neighbor
ferromagnetic interaction] only acts between spins be-
longing to the same sublattice. One can decompose Pij

and Πij into diagonal and off-diagonal parts, namely
Pij = P 1

ij − P 2
ij and Πij = Π1

ij − Π2
ij , where 1 and 2 la-

bels diagonal and off-diagonal parts, respectively. There-
fore, all the non-zero matrix elements can be explicitly
computed as

〈
αAαB |P 1

ij |αAαB

〉
=

〈
αAαA|Π1

ij |αAαA

〉
=〈

βAβB |P 2
ij |αAαB

〉
=

〈
βAαA|Π1

ij |αAβA

〉
= 1

N , where |α⟩,
|β⟩ denotes two out of N possible colors of a spin, and
the subscripts A and B denote the different sublattices.
In particular, the diagonal operators P 1

ij and Π1
ij act

only between spins with the same color and leave the
state intact. P 2

ij simultaneously changes the color of two
spins with the same color, |αAαB⟩ → |βAβB⟩, and Π2

ij

permutes the colors of two spins with different colors,
|αAβA⟩ → |βAαA⟩.

Let us outline the stochastic series expansion (SSE)
QMC sampling process and introduce the generalized
loop update for the SU(N) cases. At the start of each
Monte Carlo step, one performs a diagonal update where
P 1
ij or Π1

ij is inserted or removed with Metropolis prob-
ability determined by the matrix elements listed above.
Next, linked vertices are constructed to form loops in
the configuration. Then, a random color and a starting
position are picked. One follows the trajectory of the
loop and paints the visited spins with the loop color un-
til the loop closes. An exchange between the diagonal
and off-diagonal operators may happen during the paint-
ing. Once a loop closes, a new configuration is generated,
and one can always accept the update since all the non-
zero matrix elements are equal to 1/N and thus share the
same weight. Finally, one performs measurements within
the new configuration.

Loop moves are designed to avoid zero-weighted con-
figurations for high sampling efficiency. Figure S1 shows
typical vertices that may occur in simulating Hamiltoni-

FIG. S1. Typical vertices of the SU(N) Hamiltonian
and different loop updating moves. The left side of each
block is the vertex before the update, and the right side shows
the vertex after the update. The upper panel demonstrates
the vertices involving nearest-neighbor spin interaction Pij

(switch and reversed move). The lower panel exhibits those
for the next-nearest-neighbor interaction Πij (switch and con-
tinued move). Arrows with colors represent the trajectories
of colored loops, which paint the spins. Diagonal operator
(white bar, P 1

ij and Π1
ij) and off-diagonal operator (black bar,

P 2
ij and Π2

ij) may transform each other to ensure a non-trivial
configuration after the update.

ans with Pij and Πij . The upper panel shows the vertices
with Pij requiring a switch and reversed loop move. The
lower one shows the vertices with Πij requiring a switch
and continued loop move. The left vertex in each block
is before the update, along with the path and color of
the loop represented by the colored arrows. The right
side of each block illustrates the vertex after the update.
The spins visited by the loop are painted with the color
of the loop. Meanwhile, the type of the operator is con-
sidered to be changed to ensure the new configuration is
non-trivial.

II. INCREMENTAL ALGORITHM FOR
ENTANGLEMENT ENTROPY OF SU(N) SPINS

We implement the recently developed incremental al-
gorithm to compute the EE [35, 49–51, 75, 97, 98] and
generalize it to SU(N) spin models. We first param-
eterize the partition function Z(2)

A with λ such that
Z(2)

A (λ = 0) = Z(2)
∅ and Z(2)

A (λ = 1) = Z(2)
A . More

explicitly, Z(n)
A (λ) =

∑
B⊆A gA (λ,NB)Z(n)

B where B is
a subset of the entanglement region A, NB is the num-
ber of sites in B and gA(λ,NB) = λNB (1−λ)NA−NB with
λ ∈ [0, 1]. Therefore, S(n)

A can be written as the integral

S
(n)
A = 1

1−n

∫ 1

0
dλ

∂ lnZ(n)
A (λ)

∂λ along the path λ ∈ [0, 1]. In-
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CPU-1

0

CPU-2 CPU-(k+1) CPU-(K-1)

1

CPU-K

FIG. S2. Incremental computation of EE. As in
Eq. (S1), we split the computation of the ratio of partition
functions into the parallel execution of many ratios and com-
pute the EE via a non-equilibrium process characterized by
λ evolving from λ = 0 to λ = 1. We divide this path into
K pieces and assign each piece to one CPU. The connectivity
of spins in the entanglement region A, depicted as black cir-
cles, between two replicas (or topology of the joint partition
function) is determined stochastically by λ. As λ increases,
more spins in A from different replicas will be ‘glued’ together,
given that they share the same color, resulting in an imagi-
nary time period of 2β. Spins not ‘glued’ together are in the
environment A and experience a regular imaginary time pe-
riod of β.

stead of calculating e−S
(2)
A directly, we further split this

path into K pieces with a step length ∆, the ratio of
partition function can now be written as

e−S
(2)
A =

Z(1)

Z(0)
=
Z(∆)

Z(0)

Z(2∆)

Z(∆)

· · · Z(k∆)

Z((k − 1)∆)
· · · Z(1)

Z((K − 1)∆)
,

(S1)
where we have suppressed the Rényi index in the interme-
diate Z’s on the right-hand side of Eq. (S1) for simplicity.
Each term in the product string, with a well-controlled
value of O(1) instead of exponentially small in the left-
hand side of Eq. (S1), is computed in parallel, as shown
in Fig. S2. Finally, we multiply these pieces and take the
logarithm to get the Rényi entropy S

(2)
A .

To implement the algorithm, we first thermalize the
regular partition function Z and then make two repli-
cas of it as the thermalized configuration of Z(2)

∅ (the
leftmost configuration in Fig. S2). We divide the in-
terval λ ∈ [0, 1] into K pieces with a length of each
sub-interval ∆ and distribute each process to one CPU,
as shown in Fig. S2. Take process k + 1 as an exam-
ple, λ evolves from λ(ti) = k∆ to λ(tf) = (k + 1)∆.
At each λ value, we need to determine the topology of
Z(2)

A (λ). Each site in A is considered to be ‘glued’ or ‘sep-
arated’ according to the probability Pjoin = min

{
λ

1−λ , 1
}

(b)

(c) (d)

(e) (f)

(a)

FIG. S3. Convergence of EE against temperature for
various N . (a)-(f) demonstrates how EE changes against
temperature for various N . The system sizes presented are
L = 8, 12, 16. All panels share the legend in (f).

and Pleave = min
{

1−λ
λ , 1

}
, with the condition that

spins from two replicas at that site share an identical
color. After determining the trace structure, we per-
form a Monte Carlo update and take measurements.
To take non-equilibrium measurements, we gradually in-
crease λ(ti) = k∆ by a small value h and record the
value gA(λ(tm+1),NB(tm))

gA(λ(tm),NB(tm)) , where λ(tm) = k∆+mh. Each

time we increase λ, the topology of Z(2)
A (λ) should be

re-determined. The process is repeated until λ(tm) =
λ(tf) = (k + 1)∆. At the end of process k + 1, we com-
pute Z((k+1)∆)

Z(k∆) =
〈∏∆/h−1

m=0
gA(λ(tm+1),NB(tm))
gA(λ(tm),NB(tm))

〉
. Finally,

we multiply the results all processes together to obtain
S
(2)
A using Eq. (S1).

It is important to note that, although e−S
(2)
A (L) is an

exponentially small number and therefore exponentially
hard to be sampled well as the system size increases, each
term on the right-hand side of Eq. (S1) is of O(1) and
therefore easy to compute precisely [98]. Their product
can then be computed accurately, and one then takes its
logarithm to obtain the S

(2)
A (l). The divide-and-conquer

strategy of the incremental algorithm guarantees the pre-
cise determination of the S

(2)
A (l), such that one can an-

alyze its finite-size scaling behavior and find the log-
coefficient in Eq. (1) in the main text.

To ensure we are computing the EE at a sufficiently low
temperature without thermal pollution, we investigate
the convergence of EE by keeping β = nL with different
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integer ns. Fig. S3 demonstrates the convergence of EE
at various N . For the SU(2) case, EE is converged using
β = L. As N increases, β = L is no longer a sufficient low
temperature to compute EE. We notice that the larger
the N is, the lower the temperature one should keep to
ensure convergence. For the largest N we investigated in
the main text, i.e., N = 15, we show that keeping β = 4L
and β = 8L obtain the same EE value within error bars
(two sets of data overlap in panel (f)). Therefore, keeping
β = 4L is sufficient for other small Ns. In our simulation,
we keep β = L for the SU(2) case and β = 4L for all the
other cases.

III. STOCHASTIC DATA COLLAPSE

We have devised a method for accurately estimating
critical exponents, which involves collapsing data using
a stochastic process [75, 99, 100]. This involves fitting
a polynomial curve through the data points for various
system sizes L, and the quality of the collapse is deter-
mined by how well the data fits the curve. To quantify
this, we use the R-squared value, denoted by R2, rep-
resenting the variation between the data and the fitted
curve. Its definition is R2 = 1 − Sres

Stot
= 1 − δ, with

Sres =
∑n

i=1 wi (yi − ŷi)
2 and Stot =

∑n
i=1 wi (yi − ȳ)

2.
The smaller the value of δ, the smaller the error of the
fitting and the better the quality of the collapse. Sres

measures the deviation between the actual data and the
fitted curve, whereas Stot measures the variance of the
fitted curve itself. The weight wi is used to emphasize
the importance of the critical region, where the quality
of the collapse is of utmost importance. The y value of
the scaled data point is denoted by ŷi, and that of the
fitted curve at the same x value is denoted by yi. The
fitted curve’s mean value of all points yi is denoted by ȳ.

To investigate the drift of exponents against system
sizes, we fix the critical point at the extrapolated value at
L → ∞ and use three different sizes Lmax−24, Lmax−12,
and Lmax together at a time to obtain the exponents.
Then, we can set β and ν as free parameters, and the
stochastic process is done in the two-dimensional plane
spanned by β and ν. A random set of parameters is
proposed and fitted by a polynomial curve. The fitting
error δ is calculated. Then one randomly moves parame-
ters in the two-dimensional parameter space as shown
in Fig. S4, while recording the fitting error δ. After
enough steps, the best estimate is the parameter set with
the smallest error. Distributions of δ are exemplified in
Fig. S4 for SU(3), SU(5) and SU(15), for different Lmax.
Figure S5 illustrates the corresponding collapses of the
squared magnetization m2

z using the fitted critical expo-
nents ν and β.

IV. QMC BENCHMARK OF DQCPS AND
DRIFT OF CRITICAL EXPONENTS

In this section, we first show representative data in
which the positions of the DQCPs are obtained from the

crossing of the Néel order Binder ratios Rs =
⟨m4

z⟩
⟨m2

z⟩2
for

different N . Figure S6(a) and (b) show, for N = 3 and
5, that the location of the transition points are consis-
tent with previous works [15, 46]. Figure S6(c) shows
the corresponding data for N = 15, for which no results
were previously available in the literature. The EE com-
putation discussed in the main text is performed at the
so-determined transition points qc and gc, respectively.

Then, we further carry out the finite-size analysis
based on stochastic data collapse [75, 99, 100] as in-
troduced in Sec. III to determine the critical exponents
as a function of the system size L, see Fig. S7. Previ-
ous work [14] has obtained critical exponents for small
N = 2, 3, 4 in the J-Q model. They found a non-
convergent and increasing trend of the exponent 1/ν
against system sizes, implying a weakly-first-order tran-
sition at N = 2, 3, 4. Our results for 1/ν for SU(3)
and SU(5), as shown in Fig. S7, manifest a similar non-
convergent and increasing behavior as in Ref. [14]. In
fact, our estimated exponents for SU(3) match quantita-
tively well with those of Ref. [14].

On the other hand, when N ≥ 8, where the DQCPs
are consistent with CFTs as discussed in the main text,
we find that the 1/ν values converge quickly as a func-
tion of system sizes, showing no anomaly, see Fig. S7 for
SU(15) case. This observation strengthens our conclu-
sion that SU(N < Nc) transitions are weakly first order,
while SU(N ≥ Nc) transitions, with Nc between 7 and 8,
as obtained from the scaling of the EE for smooth bound-
aries, are continuous and well described by the Abelian
Higgs or noncompact CPN−1 nonlinear sigma models.

The last row in Fig. S7 shows our estimated ηN =
2β/ν−1 for the antiferromagnetic order. It is interesting
to see that, in the SU(3) case, our η ∼ 0.3 and in the
SU(5) case, our η ∼ 0.5, are all consistent with previous
values [44] up to the studied system sizes. The dashed
lines in Fig. S7 indicate the large-N prediction for the
Abelian Higgs model: ν−1 = (1 − 48

π2N )−1 and ηN =
1− 32

π2N at order 1/N [53, 101]. Our obtained ηN values
at N = 15 follow the trend of the large-N prediction,
providing precious results in addition to those reported
in Ref. [46].

V. FITTING QUALITY ANALYSIS

In this section, we analyze the quality of the fitting
of our data. To reliably remove the leading perimeter
law contribution and expose the subleading correction,
we investigate both the subtracted EE [76], S(2)

A (2L) −
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FIG. S4. Stochastic data collapse to determine critical exponents. Color plots display distribution of fitting error δ
in ν-β plane for SU(3), SU(5) and SU(15) from left to right, using different maximal lattice sizes Lmax = 48, 84, and 108 from
top to bottom. Black dot in each panel indicates the optimal set of exponents in each case.
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FIG. S5. Data collapse of squared magnetization. Panels show data collapses of squared magnetization m2
z for SU(3),

SU(5) and SU(15) from left to right, from three consecutive system sizes L ∈ [Lmax − 24, Lmax] with Lmax = 48, 84, and 108
from top to bottom, with the optimal β and ν as determined in Fig. S4.
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(a)

(b)

(c)

FIG. S6. Crossings of Binder ratios to determine
the transition points qc and gc for SU(3), SU(5)
and SU(15). We use the Binder ratio for the antiferro-
magnetic Néel order to determine the critical q = Q

J1+Q

for (a) the SU(3) case and the critical g = J2
J1

for (b)(c)
the SU(5) and SU(15) cases, for different system sizes L =
24, 34, 48, 60, 72, 84, 96, 108 and inverse temperatures β = L.
Insets show the crossing points qc and gc as function of 1/L.
The extrapolated values of the critical points in the thermo-
dynamic limit are well consistent with previous work [15, 46].

2S
(2)
A (L) (whose perimeter law term is automatically can-

celled out), and directly minus the leading perimeter law
contribution, S

(2)
A − alA, using beforehand fitted coeffi-

cient a. We fit both quantities against lnL and 1/L to
identify whether there is indeed an anomalous logarith-
mic subleading contribution, or a regular finite-size cor-
rection ∼ 1/L. From Eq. (2) in the main text, we expect
for a CFT, the EE scales as

S
(2)
A (L)− aL = −s lnL+ c′ +O(1/L), (S2)

and

S
(2)
A (2L)− 2S

(2)
A (L) = +s lnL+ c′′ +O(1/L), (S3)

where c′ and c′′ are nonuniversal constants. As a conse-
quence, the slopes of S(2)

A (2L)−2S
(2)
A (L) and S

(2)
A (L)−aL

as function of lnL give the universal coefficient s and −s,
respectively, of the log-correction. The results for smooth
boundaries are presented in Fig. S8 for the subtracted EE
S
(2)
A (2L) − 2S

(2)
A (L) and Fig. S9 for S

(2)
A (L) − aL using

beforehand fitted coefficient a. The corresponding results
for corner cuts are summarized in Fig. S10.

One quantitative way of measuring the quality of the
data fitting to a model is through the χ2 value per de-
gree of freedom, namely χ2/k. χ2 is defined as χ2 =∑M

i=1
(f(xi)−yi)

2

σ2
i

, M is the number of data points to be
fitted. k denotes the fitting degree of freedom and is
obtained by k = M − r, where r is the number of fit-
ting parameters and, to be more specific, r = 2 for the
linear fitting functions we used. χ2/k should be typi-
cally distributed within the range [1−

√
2/k, 1+

√
2/k].

Usually, a large χ2/k suggests underfitting, while a small
χ2/k does not necessarily indicate a satisfactory fitting
but can potentially be overfitting or troublesome uncer-
tainties in the data [102, 103]. For the subtracted EE in
Fig. S8, we have k = 4 − 2 = 2, and a good χ2/k lies
within [1 − 1/

√
1, 1 + 1/

√
1] = [0, 2]. For the scheme in

Fig. S9, k = 9− 2 = 7 and therefore a reference interval
for good χ2/k is approximately [0.46, 1.53].

Figures S8 and S9 show that for small N ≤ 7, a linear
fit of the subleading correction against lnL is significantly
better than those against 1/L, as the corresponding χ2/k
values for the lnL fitting are consistently smaller than
those for the 1/L fitting. This shows that these tran-
sitions cannot be described by CFTs. For N ≥ 8, by
contrast, the χ2/k values for the lnL fitting are larger
than those for the 1/L fitting, indicating a vanishing
log-correction s = 0 for smooth boundaries. Hence, for
N ≥ 8, the DQCPs are consistent with CFT descriptions.
From these results, we conclude that the critical value
Nc, above which the log-correction to the EE for smooth
boundaries vanishes for all N , lies between 7 and 8. The
fitted values for s using different Lmin are presented in
Table I, for all cases of N simulated in this work. The
cases N = 3, 5, 8, 10, 15 are plotted in Fig. 2(c) in the
main text.
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FIG. S7. Drift of 1/ν, β and ηN for SU(3), SU(5) and their convergence in SU(15) cases. In the cases of the SU(3)
and SU(5), one sees 1/ν values are still not converged as the largest system size Lmax used in the stochastic data collapse
analysis gradually increases, suggesting that these transitions are weakly-first-order. But in the case of SU(15), the exponents
1/ν converge as Lmax increases. Green dashed lines are the large-N prediction for the Abelian Higgs model: ν−1 = (1− 48

π2N
)−1,

ηN = 1− 32
π2N

and β = ν(ηN + 1)/2 at order 1/N . Orange dashed lines show the large-N prediction for ηN at order 1/N2 [46].

FIG. S8. Smooth cuts: subtracted EE versus lnL and 1/L, respectively, for different N . Corresponding χ2/k values
from linear fits (solid lines) are displayed in each panel. For N ≤ 7, the χ2/k values for lnL fitting are smaller than those for
1/L fitting, justifying the existence of a finite subleading log-correction with a finite slope s, which is inconsistent with CFTs.
For N ≥ 8, the χ2/k values for lnL fitting are larger than those for 1/L fitting, indicating a vanishing log-correction s = 0 and
a CFT description.



7

FIG. S9. Smooth cuts: direct S
(2)
A − alA versus lnL and 1/L, respectively, for different N . Corresponding χ2/k

values from linear fits (solid lines) are displayed in each panel. The data are consistent with the subtracted EE data shown in
Fig. S8. For N ≤ 7, the χ2/k values for lnL fitting are smaller than those for 1/L fitting, justifying the existence of a finite
subleading log-correction. Note that the slope of S(2)

A − alA versus lnL corresponds to −s, Eq. (S2), in contrast to the slope
of the subtracted EE, which corresponds to +s, Eq. (S3). For N ≥ 8, the χ2/k values for lnL fitting are larger than those for
1/L fitting, indicating a vanishing log-correction s = 0 and a CFT description.

(a) (b) (c) (d)

FIG. S10. Corner cuts: subtracted EE and direct S
(2)
A − alA versus lnL and 1/L, respectively, for different N .

Corresponding χ2/k values from linear fits (solid lines) are displayed in each panel. For N = 3, the lnL fit is preferred over
1/L, with a significantly smaller χ2/k. The fitted slope s is negative, which we attribute to the smooth part of the boundary.
For N = 10 and N = 15, a direct fit of S(2)

A − alA versus lnL and 1/L shows that the χ2/k values for lnL are again smaller
than those for 1/L fitting, indicating a finite log-correction s > 0 from sharp corners, consistent with a CFT description. The
data for subtracted EE (top panels) and direct S

(2)
A − alA (bottom panels) are consistent with each other, even though the

subtracted EE data suffers from enhanced finite-size effects for N = 10 and 15. For these values of N , the direct S
(2)
A − alA

gives a better analysis since we can discard the smallest few system sizes during the fitting.
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TABLE I. Fitted values of log-correction coefficient s in Eq. (1) for smooth boundaries from direct fitting of S(2)
A − alA. Values

of s that vanish within error bars are colored into grey. Values of s with Lmin = 20 are omitted for the N = 15 and N = 20
cases due to the limited data quality at large N .

Lmin

N 2 3 5 7 8 10 12 15

8 -0.272(7) -0.304(8) -0.245(9) -0.20(1) -0.16(7) -0.11(1) -0.13(2) -0.21(2)
12 -0.28(1) -0.34(2) -0.24(2) -0.19(2) -0.11(2) -0.04(3) -0.06(4) -0.05(5)
16 -0.28(3) -0.37(4) -0.31(5) -0.27(5) -0.06(6) -0.05(6) -0.07(8) -0.01(10)
20 -0.45(6) -0.32(9) -0.44(9) -0.17(10) -0.11(11) 0.01(13) - -

Figure S10 summarizes the fitting analysis for corner
cuts. For SU(3), the lnL subleading term is preferred
over 1/L, and the fitted s is negative, which is attributed
to the contribution of the smooth part of the boundary
of the subregion. In the SU(10) and SU(15) cases, the
subtracted EE for lnL and 1/L fitting give large χ2/k
values. This may be attributed to the strong finite-size
effect at large N . However, the data points of subtracted

EE are limited and prevent us from discarding small sys-
tem sizes. S

(2)
A − alA, on the other hand, gives a better

analysis since we have more data points and enable us
to discard the smallest few system sizes during the fit-
ting. The bottom panels of Fig. S10(c) and (d) point to
a finite log-correction from sharp corners, instead of 1/L
corrections. The fitted log-coefficient s at both SU(10)
and SU(15) cases are positive, which is consistent with
the prediction of unitary CFTs.
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