
Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging

Paulin de Schoulepnikoff,1, 2 Oriel Kiss ,2, 3, ∗ Sofia Vallecorsa ,2 Giuseppe Carleo,1 and Michele Grossi 2, †

1Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland

3Department of Nuclear and Particle Physics, University of Geneva, Geneva 1211, Switzerland
(Dated: April 10, 2024)

Entanglement forging based variational algorithms leverage the bi-partition of quantum systems
for addressing ground state problems. The primary limitation of these approaches lies in the expo-
nential summation required over the numerous potential basis states, or bitstrings, when performing
the Schmidt decomposition of the whole system. To overcome this challenge, we propose a method
for entanglement forging employing generative neural networks to identify the most pertinent bit-
strings, eliminating the need for the exponential sum. Through empirical demonstrations on systems
of increasing complexity, we show that the proposed algorithm achieves comparable or superior per-
formance compared to the existing standard implementation of entanglement forging. Moreover,
by controlling the amount of required resources, this scheme can be applied to larger, as well as
non-permutation-invariant systems, where the latter constraint is associated with the Heisenberg
forging procedure. We substantiate our findings through numerical simulations conducted on spin
models exhibiting one-dimensional ring, two-dimensional triangular lattice topologies, and nuclear
shell model configurations.

I. INTRODUCTION

In recent years, significant advances have been made in
simulating the static and dynamical properties of many-
body quantum systems using variational algorithms. For
instance, density matrix renormalisation group meth-
ods based on matrix-product states [1–3], neural net-
works quantum states [4], equivariant neural networks
[5] or kernels methods [6] have accurately computed the
ground state energy of spin systems [7], or also fermi sys-
tems, such as molecules [8] or nuclei [9]. While neural
network quantum states represent wave functions using
classical representations, we can also consider their quan-
tum counterpart, where the wave function ansatz takes
the form of a parametrized quantum circuit [10], such as
in the popular variational quantum eigensolver (VQE)
[11]. Even if VQE has been successfully applied in various
areas, such as chemistry [11–13], spin chains [14–17] or
nuclei [18–21], it is still unclear whether VQE is a scalable
algorithm. Hence, the optimization procedure becomes
increasingly difficult [22] with the system size because of
the presence of barren plateaus in the loss landscape [23].
It is consequently desirable to conceive variational quan-
tum algorithms acting on a minimal number of qubits.

Although the VQE is already a hybrid algorithm, in
the sense that it relies on classical resources to perform
the optimization, we take a step forward and design an
algorithm relying on both neural networks and quantum
circuits. More specifically, we consider VQE based on
entanglement forging (EF) [24], a circuit-knitting strat-
egy that effectively performs a Schmidt decomposition of
the variational quantum state, optimizes the two sub-sys-
tems separately, before reconstructing the entanglement

∗ oriel.kiss@cern.ch
† michele.grossi@cern.ch

classically. This procedure has the desirable properties
of reducing the number of qubits while still reproducing
the ground-state energy with high accuracy. It is similar
in spirit to quantum-embedded density functional the-
ory [25], where quantum resources are only used for the
most challenging parts.

Besides computing ground state energies, EF also al-
lows practical heuristic simulations, notably in analyz-
ing bipartite entanglement. This concept is fundamental
in quantum mechanics, as its measurement provides an
understanding of the behavior of strongly correlated sys-
tems [26]. For instance, bipartite entanglement has been
used in condensed matter physics to study phenomena
such as quantum phase transitions, topological order,
and many-body localization [27, 28]. Advances in ex-
perimental techniques have made it possible to measure
entanglement entropy in a variety of condensed matter
systems over the past few years, revealing insights into
their underlying quantum properties [29].

The main contribution of this paper is a Schrödinger
forging procedure using an autoregressive neural network
(ARNN) [30, 31]. This method combines the versatility
of Schrödinger forging with controlling the computational
resources required via the introduction of a cutoff. Gen-
erative neural networks have already been proposed for
EF [32], but only in the context of Heisenberg forging,
which requires permutation symmetry of the two sub-
systems. Our method, however, does not require permu-
tation symmetry between the two sub-systems, making it
a more versatile approach to solving ground-state prob-
lems using quantum computers. Moreover, our algorithm
naturally includes a cutoff in the number of basis states,
limiting the required number of quantum circuits.

This paper is structured as follows. We first introduce
EF in Sec. IIA, as well as two ways to tackle its scala-
bility issue based on Monte Carlo sampling and neural
networks. The main contribution of this paper is then

ar
X

iv
:2

30
7.

02
63

3v
2

 [
qu

an
t-

ph
]

 4
 A

pr
 2

02
4

https://orcid.org/0000-0001-7461-3342
https://orcid.org/0000-0002-7003-5765
https://orcid.org/0000-0003-1718-1314
mailto:oriel.kiss@cern.ch
mailto:michele.grossi@cern.ch

2

proposed in Sec. II B as a third option. We conclude our
work with numerical simulations in Sec. III testing our
hybrid architecture on various physical models, such as
one-dimensional spin chains, spins on a triangular lattice
with a random external field, and the nuclear shell model.

II. METHODS

The general strategy of variational algorithms for
ground state problems is to prepare a wave function
ansatz |ψ⟩, and using the variational principle,

E0 ≤ ⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

, (1)

to approximate the ground state energy E0 of the Hamil-
tonian of interest H. The ansatz can take the form of,
e.g., a neural network [4] or a quantum circuit [11], while
the variational parameters are usually optimized with,
e.g., gradient-based methods. In the following, we will
explore hybrid classical-quantum models aiming at de-
scribing a bipartite system with quantum circuits, while
the entanglement between the partitions is forged classi-
cally.

A. Entanglement Forging

The starting point of the EF procedure is to employ a
Schmidt decomposition, a direct application of a singular
value decomposition (SVD), to write a quantum state
|ψ⟩ of a bipartite H = HA ⊗HB quantum system, with
dimensions NA and NB , as

|ψ⟩ = U ⊗ V
∑
σ

λσ |σ⟩A |σ⟩B . (2)

In the above, U and V are unitaries and |σ⟩X ∈
{0, 1}NX and λσ are the corresponding Schmidt coeffi-
cient. The latter are positive, normalized

∑
σ |λσ|2 = 1,

and the number of Schmidt coefficients is called the
Schmidt rank. We recall that the distribution of the
Schmidt coefficients is related to the level of entangle-
ment between the two sub-systems, with the von Neu-
mann entropy being calculated by

SvN = −2
∑
σ

λ2σ log(|λσ|). (3)

Therefore, maximal entanglement is characterized by a
uniform distribution, while minimal entanglement by a
dirac delta.

The variational state is obtained by parametrizing U
and V with two quantum circuits and considering the
Schmidt coefficients as additional variational parame-
ters. Following Eddins et al. [24], the most direct way
to compute the expectation values, called Schrödinger

forging, is to directly insert the Schmidt decomposition,
e.g. Eq. (2), into ⟨O⟩ = ⟨ψ|O|ψ⟩. Assuming that the
observable O admits a bipartition O = OA ⊗ OB , the
expectation value can then be expressed as

⟨ψ|O|ψ⟩ =
2N/2∑
n=1

λ2n
〈
σn
∣∣U†OAU |σn

〉 〈
σn
∣∣V †OBV |σn

〉
+

2N/2∑
n=1

n−1∑
m=1

λnλm
∑
p∈Z4

(−1)p
〈
ϕpσn,σm

∣∣U†OAU |ϕpσn,σm

〉
·
〈
ϕpσn,σm

∣∣V †OBV |ϕpσn,σm

〉
,

(4)

where
∣∣ϕpσn,σm

〉
= |σn⟩ + ip |σm⟩, Z4 = {0, 1, 2, 3} and

all the bitstrings σ have been labeled with a number n
(or m). Decompositions with equally sized subsystems
are considered: NA = NB =: N/2. We note that this is
not a strict requirement, but we use it to simplify the
notations.
We remark that this involves an exponential sum in

the system size. As such, two methods have been sug-
gested to solve this scalability issue [24]. The first uses
an unbiased estimator of ⟨ψ|OA ⊗OB |ψ⟩, that can be
evaluated by importance sampling according to ∼ λnλm.
The second approach, is to leverage permutation sym-
metry between the two sub systems, producing another
EF scheme. Since it is defined at the operator level, we
refer to it as Heisenberg forging. This approach has been
further developed by Huembeli et al. [32] using ARNN.
More details about Heisenberg forging can be found in
Appendix A.

B. Schrödinger forging with generative neural
networks

In this section, we present an approach to Schrödinger
forging. The starting point is to remark that the Schmidt
coefficients decay exponentially if the two subsystems are
weakly entangled, as it is the case in low-energy eigen-
states of chemical and spin lattice model Hamiltonians.
By introducing a cutoff in the sum, it is therefore pos-
sible to improve the efficiency of the estimation while
keeping a sufficiently low additive error. However, it re-
quires a selection of a set of bitstrings among the 2N/2

total possibilities, which represents an open problem for
EF. To this end, we propose to use generative models
(more specifically ARNN [33]) to select the best candi-
dates. ARNN is a type of neural network architecture
commonly used in time-series forecasting and sequence
modeling tasks. The autoregressive property means that
the output at a given time step is regressed on its own
past values. In fact, autoregressive models predict the
next value in a sequence based on the previous values in
that sequence. The use of an ARNN is motivated by the
fact that the Schmidt coefficients are normalized and can

3

thus be interpreted as a probability density. Following
[34], we propose an algorithm, which is summarized in Al-
gorithm 1. We note that this approach shares some sim-
ilarities with quantum-inspired genetic algorithms, see
e.g., [35]. The parametrized unitaries and the Schmidt
coefficients are finally optimized with a gradient-descent-
based algorithm. A summary of the entire algorithm is
shown in Fig. 1.

Algorithm 1 Generation of the set of bitstrings

Inputs:
Cut-off k

Outputs:
Set of k bitstrings

Initialize:
Start with a random set A of k bitstrings

while the algorithm has not converged do
1. Generate a set of bitstrings G with

the ARNN
2. Using the bitstrings σ in the set A ∪G,

find their Schmidt coefficient λσ by solving the
system of equations

∂ ⟨H⟩
∂λσ

= 0 with
∑
σ

|λσ|2 = 1

3. Create the set A′ composed of the bitstrings
from A ∪G with the k biggest λσ

4. Train the ARNN such that it models p(σ) ∼ |λσ|2
5. Update A← A′

end while
return the set A of k bitstrings

First, we explain how to use an auto-regressive neu-
ral network to efficiently identify the relevant bit-
strings. Since the Schmidt coefficients are normalized
as
∑

σ |λσ|2 = 1, they can be interpreted as a probability
density. The chain rule from probability theory can be
used to write

|λσ|2 ∼ p(σA, σB) =
∏
i

p((σ)i|{(σ)j , j < i}), (5)

and the bitstring pairs, associated with λσ can be en-
coded by stacking the bitstrings of subsystem B at the
end of the bitstrings of subsystem A,

σ = |σA, σB⟩
=
∣∣(σ)1, · · · , (σ)N/2, (σ)N/2+1 · · · , (σ)N

〉
.

(6)

Note that here (σ)i denotes the ith bit of the bitstring σ.
Neural networks, and more particularly, auto-regres-

sive methods are powerful tools to model such conditional
densities [36] by generating elements sequentially condi-
tioned on the previous ones. To build the autoregressive
model, we consider a dense ARNN, whose architecture is
very similar to a dense feedforward neural network. The
notable difference is that the weights are tridiagonal ma-
trices, ensuring the autoregressive nature of the model.
From the ARNN, the bitstrings can then be sampled di-
rectly and efficiently, as detailed in Appendix B.

Exploring the full space of bitstrings is exponentially
difficult, motivating the use of machine learning tech-
niques to select the basis states that contribute the most
to the wave function. Inspired by the work of Herzog
et al. [34], we introduce an algorithm whose primary ob-
jective is to bypass exploring the extremely large space
of basis states. Starting from a random set of bitstrings
A0, the strategy consists of adding bitstrings generated
according to the approximation of the |λσ|2 modeled by
the ARNN. Since the variational energy is quadratic with
respect to the Schmidt coefficient λσ, at each iteration,
they can be determined by solving the constrained linear
equation system

∂ ⟨H⟩
∂λσ

= 0∑
σ

|λσ|2 = 1,
(7)

where the sum runs over the set A∪G, with A being the
current set of bitstrings while G is the set of bitstrings
sampled by the ARNN. The first equation ensures that
the forged wave function has minimal energy, while the
second guarantees its normalization. In a second step,
the current set A is updated by taking the k bitstrings
with the highest Schmidt coefficients. The ARNN is fi-
nally trained to model p(σA, σB) ∼ |λσ|2 in a supervised
way. These steps are iterated until convergence, which is
reached when the current set A is stable and the loss of
the ARNN is close to zero. The choice of the cutoff k
is usually optimized by trial and errors. Here, we start
with a small cutoff, and slowly increase it until no further
improvement is observed. We note that small cutoffs are
often preferable, since they requires less expensive calcu-
lations, but also make the ARNN easier to train. This
is why the ARNN plays an important role in choosing
the optimal set of bitstrings. In summary, the training is
composed of two stages: the training of the ARNN using
some random initialization for U and V , followed by the
optimization of the two unitaries in order to tailor them
to the set of bitstrings. The ARNN is trained to model
the distribution p(θ) on the target q obtained by solving
the system of linear equations in Algorithm 1.

The choice of the loss function L and training set T
play an important role in the training of the ARNN. For
the training set, two possibilities are investigated: the
model is either trained on the current set A and the gen-
erated bistrings G or, following Ref. [34], only on the non
pruned bitstrings, i.e., the new set A′. Concerning the
loss functions, we consider the explicit logcosh loss [37]
and the implicit maximummean discrepancy (MMD) loss

4

Figure 1: Schema of the end to end algorithm. The set of bitstrings is first generated by the ARNN, and is then
used to perform the Schrödinger forging VQE. This involves iteratively computing the variational energy on the

quantum processing unit and classically optimizing the variational parameters until convergence.

[38]

LMMD(θ) =
∑

σ1,σ2∈T
q(σ1)q(σ2)K(σ1, σ2)

− 2
∑

σ1,σ2∈T
q(σ1)pθ(σ2)K(σ1, σ2)

+
∑

σ1,σ2∈T
pθ(σ1)pθ(σ2)K(σ1, σ2),

(8)

where K(σ1, σ2) = e−
||σ1−σ2||22

2∆ is chosen to be a Gaus-
sian kernel, with || · ||2 the 2-norm and ∆ the bandwidth
parameter. The latter determines the width of the kernel
and controls the sensitivity of the MMD measurement. A
larger bandwidth allows more global comparisons, while
a smaller bandwidth focuses on local details. The MMD
loss function effectively minimizes the difference between
the mean embedding of the two distributions. It involves
a pairwise comparison of every bitstring in the training
set with their contribution being controlled by the kernel.

As a benchmark, we also consider a more standard
approach for modeling probability distributions using the
reversed Kullback-Leibler (KL) divergence for the loss
of the ARNN. A detailed description of this method is
presented in Appendix D.

III. NUMERICAL SIMULATIONS

In this section, we present numerical experiments. We
begin with the performance of the bitstrings selection al-
gorithm on small models. Then, we proceed to expound

upon the bitstrings selection and subsequent energy min-
imization process on various models of increasing com-
plexity.

A. Identify the relevant bitstrings

We investigate the performance of the generative al-
gorithm on small symmetric models: the transverse field
Ising model (TFIM), the Heisenberg and J1-J2 model on
a one-dimensional (1D) chain of 14 spins with periodic
boundary condition, the two-dimensional (2D) TFIM on
a 4 × 3 triangular lattice with a diagonal cut and open
boundary condition and the t-V model on a 4 × 3 grid.
These models, further detailed in Appendix C, allow for
an exact Schmidt decomposition, enabling us to assess
the algorithm’s performance by examining how many bit-
strings associated with high Schmidt coefficients can be
identified.
The results, for a cutoff dimension of k = 8 bitstrings,

are presented in Table I. More specifically, we can find
the performance of Algorithm 1 in terms of the number
of correctly identified bitstrings using logcosh and MMD
loss. Two training sets are considered for the former:
the union T = A ∪ G and the pruned set T = A′. Fur-
thermore, the impact of the parameters’ initialization is
attenuated by model averaging (MA). The ensemble tech-
nique consists of training four ARNNs with different ini-
tial weights and taking their average as the starting point
of a final ARNN. Results obtained with the more stan-
dard reversed KL approach (see Appendix D) are also
presented. Finally, the last column of the table contains

5

Models
standard approach Proposed algorithm ∑7

k=0 |λk|2approach logcosh MMD
reversed KL A ∪G A′ A′ and MA A′

TFIM 1D 14 spins 0/8 4/8 7/8 7/8 7/8 0.9641
Heis. 1D 14 spins 0/8 5/8 5/8 7/8 7/8 0.9605
J1J2 1D 14 spins 2/8 6/8 7/8 7/8 7/8 0.9163

TFIM 2D 12 spins 2/8 6/8 3/8 6/8 7/8 0.9842
tV (4× 3) 2/8 5/8 5/8 4/8 7/8 0.9549

Table I: Small models: number of bitstrings generated which are among the ones with the eight biggest Schmidt
coefficients in the exact decomposition. The proposed algorithm is evaluated with A ∪G or A′ as training set T ,
with or without MA. Furthermore, the ARNN if trained with the reversed KL, logcosh and MMD loss. The final

column shows the sum of the truncated Schmidt coefficients.

the sum of the eight highest Schmidt coefficients squared
from the exact decomposition. It indicates the amount of
entanglement, the cutoff’s accuracy, and the probability
distribution’s sharpness.

The algorithm proposed in this paper is able to find
the majority of the most important bitstrings. More-
over, the MMD and logcosh loss function are superior to
the standard approach based on the reversed KL diver-
gence. Indeed, with the latter, relevant bitstrings can
only be found if the system is small or when the level
of entanglement is high (leading to a wide probability
distribution). This is not suitable in most applications,
since low entanglement is important to guarantee a low
additive error with a cut-off dimension. The best results
are highlighted in bold, and are in general obtained with
the MMD loss. More precisely, with the MMD loss, it is
always able to find the four bitstrings with the highest
Schmidt coefficient. This loss enables the ARNN to gen-
eralize well and make the algorithms converge quickly, as
it can be further appreciated for the 2d TFIM with 12
spins in appendix G, Fig. 17. In that case, the ARNN has
only seen 24 bitstrings in total during the training and
it is able to find the seven bitstrings with the highest
Schmidt coefficients, containing the five most important
ones, in only two iterations.

To gain a better understanding of the dynamics of the
generative algorithm, the loss of the ARNN and the num-
ber of bitstring updates between two iterations are pre-
sented. Figure 2 shows the results with the MMD loss
on the five different Hamiltonians. In all cases, we ob-
serve that the ARNN loss converges to zero and that the
generated set of bitstrings is stable.

In general, the dynamics can be divided into two
phases: an initial phase where the loss is high and the
model explores a diverse range of bitstrings, followed by
a second phase where the model attempts to exploit its
approximation of the probability distribution to converge
and generate bitstrings with high Schmidt coefficients.
This exploration-exploitation trade-off can be modified
by adjusting the number of bitstrings sampled at each
iteration and the learning rate of the ARNN.

Figure 2: Small models. Training of the generative
algorithm for different physical systems. [Top] the

number of bitstrings updates between two consecutive
iterations. [Bottom] value of the MMD loss at each

iteration.

B. Complete entanglement forging scheme

In the last section, we shown that the ARNN is able
to identify the bitstrings with the highest Schmidt coef-
ficients. We now test the complete EF scheme. First,
spin systems on a ring are considered, before going to a
two dimensional lattice, and finally to the nuclear shell
model.

1. Spins in one dimension

We begin by considering the one-dimensional TFIM.
More precisely, we consider a spin chain with periodic
boundary conditions, an even number N = 20 of spins,
and set the coupling and the external field coefficient to

6

one. The Hamiltonian of the model can be written as

H =

N∑
i=1

ZiZi+1 +Xi. (9)

Since the system is invariant under permutation sym-
metry, we can compare our approach to the Heisenberg
forging with ARNN. Because of the symmetry, we can
choose σA = σB , which reduces the number of possible
bitstrings. As above, a cutoff dimension of k = 8 is cho-
sen for the number of bitstrings, which was chosen by
trial and error. Figure 3 shows the energy error ratio

∆ =

∣∣∣∣E − Eexact

Eexact

∣∣∣∣ (10)

for the three forging schemes, i.e., Schrödinger with a
random uniform set of bitstrings, Schrödinger with the
generated set, and Heisenberg forging with the generated
set. Following Ref. [32], a pre-training of the quantum
circuit over 1000 iterations is performed. In both cases,
the unitaries take the form of hardware efficient ansatz

U(Θ) =

D−1∏
d=0

U(θ0d)

N/2∏
i=0

CXi,i+2 · U(θ1d)

N/2∏
i=1

CXi,i+2

U(θD),

(11)
where D = 15 is the number of layers, CXi,j is a CNOT
gate with control qubit i and target j, while U(x) is
N fold tensor product of arbitrary single-qubit rotation
parametrized with 3N parameters. We denote with Θ
the set containing all indexed θji . Details on the training
procedure, such as values for the hyperparameters and
the optimization algorithm, can be found in Appendix E.

We observe that the choice of the random set has lit-
tle impact on the performance of the Schrödinger forg-
ing procedure. Moreover the models enhanced with the
ARNN display better results, both being quite similar.

To ensure that specific physical properties of the
ground state, outside of its energy, are correctly repro-
duced, the spin-spin correlators

〈
ZiZj

〉
of the forged

states have been calculated. They are shown in Fig. 4.
We observe that the accuracy is not degrading over
the overlap, suggesting that the error can be explained
mainly by the training of the circuits rather than the EF
procedure. The error on the correlators

〈
ZiZj

〉
is mini-

mal when j = i+ 1 and maximal if the two spins are far
apart in the chain. This can be explained by the local-
ity of the ansatz, built using gates acting on neighboring
qubits.

2. Spins in two dimensions

We now move towards two-dimensional spin lattices,
which are more challenging due to local operators being
mapped to non-local ones when projected onto a line.
We consider the TFIM on a 2D topology described by a
triangular lattice, as shown in Fig. 13, see Appendix C.

Figure 3: 1D TFIM 20 spins. Convergence of the
variational energy of forged quantum states. The blue
curve represents the mean energy over ten sets of k = 8
random bitstrings, with the shaded area displaying the
standard deviation. The purple one is instead showing
the training using the set generated by the ARNN. In
addition, the simulation with the Heisenberg forging

algorithm is shown in pink.

We break the permutation symmetry of the two subsys-
tems by applying a random external field hi ∼ U [−1, 1].
Setting the coupling constant to one, the Hamiltonian is
given by

H =
∑
⟨i,j⟩

ZiZj +

N−1∑
i=0

hiX
i, (12)

where ⟨i, j⟩ are neighbors according to the triangular
topology. The triangular lattice has a high coordination
number, leading to strong magnetic susceptibility [39],
meaning that the system is more sensitive to external
magnetic fields and can therefore exhibit stronger mag-
netic order and complex physical phenomena, such as,
e.g., disorder, localization, and heterogeneity.
The two-dimensional lattice is divided with a cut

along the diagonal axis. We consider open bound-
ary conditions (OBC), cylindrical boundary conditions
(CBC), and toroidal boundary conditions (TBC). Since
the boundary conditions can lead to different levels of
entanglement [40, 41], they play an essential role in the
EF procedure, which is why different configurations are
considered.
The convergence of the variational energies for the

three boundary conditions are shown in Fig. 5. Like
in the one-dimensional case, a cutoff of k = 8 is cho-
sen in the Schmidt decomposition. We observe that the
bitstrings generated by the ARNN lead to an improve-
ment of approximately 10−2 in the error energy ratio

7

Figure 4: Correlators in 1D. Correlators
〈
ZiZj

〉
of the Schrödinger and Heisenberg forged states on the TFIM 20

spins in 1D. The pairs ⟨i, j⟩ are ordered as follows: [[⟨i, j⟩ for i < j] for 0 ≤ i < N]. The neighboring cases, with
j = i+ 1, are highlighted with a black vertical line.

with respect to taking a random set. The most strik-
ing result, though, is that the gap between the random
and generated methods is increasing with respect to the
one-dimensional case, suggesting that sampling with the
ARNN is becoming more effective when considering sys-
tems of increased complexity. On the other hand, no
advantage can be noted in the context of TBC. It seems
that the parametrization of the unitaries is the limiting
factor in improving the energy error.

Figure 5: 2D TFIM 12 spins. Convergence of the
variational energy of forged quantum states. The colors
indicate different boundary conditions, while the shaded

curves show the mean energy over ten sets of k = 8
random uniform bitstrings.

3. Nuclear shell model

Finally, we consider light nuclei in the shell model with
Cohen-Kurath [42] interactions, where the Hamiltonian
can be written in second quantization as

H =
∑
i

ϵiâ
†
i âi +

1

2

∑
ijkl

Vijlkâ
†
i â

†
j âkâl . (13)

Here, â†i and âi are the creation and annihilation opera-
tors, respectively, for a nucleon in the state |i⟩. Single-
particle energies are denoted as ϵi and two-body ma-
trix elements as Vijkl. The orbitals |i⟩ = |n = 0, l =
1, j, jz, tz⟩, are described as functions of the radial n and
orbital angular momentum l, the total spin j, its projec-
tion on the z-axis jz its projection, and the z-projection
of the isospin tz.

We consider nucleons in the p shell model space, which
includes six orbitals for the protons and six orbitals for
the neutrons, while each energy is computed with respect
to an inert 4He core. The shell-model Hamiltonian [see
Eq. 13] is converted into a qubit Hamiltonian via the
Jordan-Wigner [43] transformation. Each single-particle
state is represented by a qubit where |0⟩ and |1⟩ refer to
an empty and an occupied state, respectively. Therefore,
each nucleus can be distinguished by the number of ex-
cited orbitals, representing the protons and neutrons on
top of the 4He core.

The partition is made at the isospin level, meaning that
sub-system A consists entirely of protons while sub-sys-
tem B consists of neutrons. Therefore the Schrödinger
forging is the only possible choice since the system is not
symmetric under proton-nucleon exchange. To build a
chosen nuclei, we start from an appropriate initial state,
with the desired number of nucleons, and act with an ex-
citation preserving (EP) ansatz. EP ansätze can be built
as a product of two-qubit excitation preserving blocks

8

U(θ, ϕ), also known as hop gates [44, 45], of the form

U(θ) =

1 0 0 0
0 cos (θ) sin (θ) 0
0 sin (θ) − cos (θ) 0
0 0 0 1

 . (14)

This set can be extended with four-qubit excitation pre-
serving gates [46], defined as

Gi,j,k,l(ω) |0011⟩ = cos(ω/2) |0011⟩+ sin(ω/2) |1100⟩
Gi,j,k,l(ω) |1100⟩ = cos(ω/2) |1100⟩ − sin(ω/2) |0011⟩ .

(15)

The parameterized circuit then takes the form of a
layered ansatz composed of a product of excitation-
preserving gates, where the dth layer is described by

U(Θd) =

(
N−1⊗
i=0

RZi(ϕ
i
d)

)
N/2−2∏
i=0

U2i,2i+1(θ
i
d)

×
N/2−3∏
i=1

U2i,2i+1(θ
i
d)

N−4∏
i=0

Gi:i+3(ω
i
d).

(16)

We denote by RZi(ϕ) a rotation of the ith qubit around
the z-axis and the subscript of the U and G gates indicate
the qubit the gate is acting upon (i : j is a slice from i
to j). The large Θd parameters regroup all parameters
in the dth layer, i.e., Θd = {ϕid, θid, ωi

d}. A sketch of the
quantum circuit is depicted in Appendix F.

Figure 6: Convergence of the variational energy of the
Schrödinger forged states corresponding to the various
nuclei of the nuclear p shell model. The Schmidt rank
being at most 20, all bitstrings have been used in the

Schmidt decomposition.

Since the Schmidt rank of the p nuclear shell model is
at most 20, the generative algorithm is unnecessary, as
all bitstrings in the Schmidt decomposition can be used.
The energy minimization for the various nuclei is pre-
sented in Fig. 6. We observe that every ground state en-
ergy in the p shell can be reproduced with an error ratio

(a)

(b)

Figure 7: (a) Von Neumann entropy of the various
nuclei during the training. (b) Visualization of the two
main components of the Von Neumann entropy of the
11B in the variational space. In addition, the value of

the entropy at each training epoch is shown (in gray) as
well as the final value (in red).

of at most 10−3, even for the difficult nuclei such as 12C.
Moreover, having access to the Schmidt decomposition
allows us to evaluate the von Neumann entropy, whose
evolution is presented in Fig. 7, which can be of broader
interest. Figure 7(a) shows the evolution of the von Neu-
mann entropy during the training, while Figure 7(b) dis-
plays a visualization of the von Neumann entropy in the
parameter space. To this end, a principal component
analysis (PCA) is performed on the entire history of the
Schmidt coefficient, and a scan of the entropy along the
two main components is presented. In addition, the en-
tropy value is shown for each training epoch (in gray)
and the final value (in red).

In the final experiment, nucleons in the sd shell model
space, including 12 orbitals for the protons and 12 or-
bitals for the neutrons, are considered. For the latter,
each energy is computed with respect to an inert 16O
core. Using the Jordan-Wigner mapping, this model

9

leads to a 24 qubits Hamiltonian and is composed of a
total of 11’210 overlapping terms. This high number can
make EF particularly expensive, as it scales linearly with
it. However, since most of their coefficients are close to
zeros, an approximate Hamiltonian, consisting of the 38
overlapping terms with the most significant coefficients,
is instead considered. Despite this approximation, the
Hamiltonian can still reproduce 97% of the ground state
energy of the 23Na nucleus, which is the focus of this
experiment.

The 23Na nucleus is composed of three protons and
four neutrons on top of a 16O inert core. The ARNN sam-
pler has therefore been modified to generate bitstrings
with three ones in subsystem A (protons) and four ones
in subsystem B (neutrons). The energy minimization
and the final Schmidt decomposition of the 23Na are
presented in Figs. 8 and 9, respectively. Once again, a
higher accuracy is obtained with the generated set. Mul-
tiple states from the generated set are contributing to the
VQE, meaning that the ARNN is useful in selecting ap-
propriate bitstrings. On the contrary, when the random
set is used, the variational circuit prefers to adapt to one
state, and set the contribution from the others to zero.

Figure 8: Convergence of the variational energy of the
Schrödinger forged states corresponding to the 23Na

nucleus of the nuclear sd shell model.

IV. DISCUSSION AND CONCLUSION

This paper proposes an alternative way to perform
Schrödinger forging using autoregressive neural networks.
We build on the work from Eddins et al. [24], which in-
troduced the EF-based VQE, and on Huembeli et al. [32],
which efficiently compute quantum expectation values as
statistical expectation values over bitstrings sampled by
a generative neural network. While their work leverages
the additional permutation symmetry, our work is fully
general and computationally efficient due to the intro-
duction of a cutoff dimension. Moreover, the latter is
giving us additional control over the amount of quantum

Figure 9: Final Schmidt decomposition of the
variational energy of the Schrödinger forged states
corresponding to the 23Na nucleus of the nuclear sd

shell model.

resources required. This is not the case in the Heisen-
berg forging scenario, as shown in Appendix B, where
the ARNN begins by sampling many bitstrings and fin-
ishes by using only one. Therefore, in this specific case,
the Heisenberg forging with neural networks is expen-
sive at the beginning of the training and loses its expres-
sive power at the end. On the other hand, Schrödinger
forging enables better control on the trade-off between
expressiveness and computational expensiveness of the
variational model without having the assumption of sym-
metric permutation of the two subsystems. When the
additional permutation symmetry is present, we still rec-
ommend using Heisenberg forging, since it requires less
epochs to be trained. However, we stress that many sys-
tems, such as molecules or nuclei, do not exhibit this
symmetry, providing important use cases for Schrödinger
forging.

Numerical simulations have been performed on ring
and triangular lattice spin systems. Schrödinger forging
with the ARNN consistently achieves better performance
for the computation of the ground state energy and corre-
lators, compared with random sampling and Heisenberg
forging with neural networks. In the case of the triangu-
lar lattice, different boundary conditions are considered,
directly affecting the performance. The parametrization
of unitaries is a limiting factor when complex boundary
conditions are considered.

The most striking result is that the performance gap
between random sampling and using the ARNN increases
with the system’s complexity, thus suggesting that our
approach will be more profitable for larger systems. Fi-
nally, the nuclear shell model is also solved using the
Schrödinger forging case up to the 10−3 error ratio for
the most complex nucleus. The ARNN is unnecessary
since the maximum number of possible bitstrings is 20,
as all bitstrings can be used. The approach is then tested
on a larger nucleus in the sd shell model, 23Na. Once

10

again, the generated set results in better accuracy than
a random one.

Autoregressive models are easily interpreted and can
naturally generate bitstrings with a certain number of
excitations. They are also well suited for addressing the
task at hand, owing to their robustness as density es-
timators. They do exhibit certain limitations, specifi-
cally in terms of sampling speed and the requirement for
fixed-order input decomposition [47]. Nevertheless, the
limited number of samples in this algorithm renders the
issue of sampling speed inconsequential. Furthermore,
experiments were conducted by varying the decomposi-
tion orders, and it was determined that such alterations
did not yield any substantial changes in the obtained
results. Masked multilayer perceptrons are a straightfor-
ward choice for building the autoregressive model. How-
ever, other architectures could be more suitable in some
cases. In particular, transformers [48] provide a strong al-
ternative since they are highly parallelizable and efficient
in capturing the global context and long-range dependen-
cies due to their attention mechanism.

At the beginning of this work, simulations were carried
out on small models. In these cases, all bitstrings could
be taken into account during the VQE. It was observed
that the order of the bitstrings, with respect to their co-
efficient (in absolute value), did not significantly change
during the VQE. Therefore, choosing the bitstrings at
the beginning of the circuit training enables us to per-
form well. However, it could be suitable in some cases
to train the quantum circuits and ARNN simultaneously,
taking advantage of parameter sharing.

Finally, we note that there is not necessarily a corre-

lation between having sets of bitstrings associated with
high Schmidt coefficients and the trainability of the corre-
sponding variational state. Indeed, in some cases, taking
a set of bitstrings with lower Schmidt coefficients might
be favorable to make the variational circuits easier to
train. Therefore, it may be possible to include this fea-
ture in the algorithm by choosing bitstrings that maxi-
mize the gradients. Alternatively, an algorithm, adapting
the form of each variational circuit, an approach close to
the ADAPT-VQE [49], could be investigated.

CODE AVAILABILITY

The numerical simulations of the quantum circuits
have been performed with Pennylane [50], powered by
a JAX backend [51], while the NETKET library [52] has
been used for the ARNN. Solving the constraint systems
of equations in the generative algorithm involves a pro-
jected gradient descent algorithm available in the JAX-
opt library [53]. Moreover, the Heisenberg forging code
is available on Github [54]. Visualization of the evolution
of the von Neumann entropy is performed using orqviz
[55]. The Python code of this project is accessible on
Github [56].

ACKNOWLEDGEMENT

The authors thank A. Mandarino and T. Papenbrock
for stimulating discussions as well as for the computa-
tion of the nuclear shell model’s matrix elements. O.K.,
M.G and SV are supported by CERN through the CERN
Quantum Technology Initiative.

[1] Norbert Schuch, Michael M. Wolf, Frank Verstraete, and
J. Ignacio Cirac, “Entropy scaling and simulability by
matrix product states,” Phys. Rev. Lett. 100, 030504
(2008).

[2] Jorge Dukelsky, Miguel A Mart́ın-Delgado, Tomotoshi
Nishino, and Germán Sierra, “Equivalence of the vari-
ational matrix product method and the density matrix
renormalization group applied to spin chains,” Euro-
physics letters 43, 457 (1998).

[3] Stefan Rommer and Stellan Östlund, “Class of ansatz
wave functions for one-dimensional spin systems and
their relation to the density matrix renormalization
group,” Phys. Rev. B 55, 2164–2181 (1997).

[4] Giuseppe Carleo and Matthias Troyer, “Solving the
quantum many-body problem with artificial neural net-
works,” Science 355, 602–606 (2017).

[5] David Pfau, James S. Spencer, Alexander G. D. G.
Matthews, and W. M. C. Foulkes, “Ab initio solution of
the many-electron schrödinger equation with deep neural
networks,” Phys. Rev. Res. 2, 033429 (2020).

[6] Clemens Giuliani, Filippo Vicentini, Riccardo Rossi, and
Giuseppe Carleo, “Learning ground states of gapped
quantum Hamiltonians with Kernel Methods,” Quantum
7, 1096 (2023).

[7] Tom Westerhout, Nikita Astrakhantsev, Konstantin S
Tikhonov, Mikhail Katsnelson, and Andrey A Bagrov,
“Generalization properties of neural network approxima-
tions to frustrated magnet ground states,” Nat Commun
11 (2020), 10.1038/s41467-020-15402-w.

[8] Jan Hermann, James Spencer, Kenny Choo, Anto-
nio Mezzacapo, W Matthew C Foulkes, David Pfau,
Giuseppe Carleo, and Frank Noé, “Ab initio quantum
chemistry with neural-network wavefunctions,” Nature
Reviews Chemistry 7, 692–709 (2023).

[9] Alessandro Lovato, Corey Adams, Giuseppe Carleo, and
Noemi Rocco, “Hidden-nucleons neural-network quan-
tum states for the nuclear many-body problem,” Phys.
Rev. Res. 4, 043178 (2022).

[10] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik, “The theory of variational
hybrid quantum-classical algorithms,” New Journal of
Physics 18, 023023 (2016).

[11] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-
Guzik, and Jeremy L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Com-
munications 5, 4123 (2014).

http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1209/epl/i1998-00381-x
http://dx.doi.org/10.1209/epl/i1998-00381-x
http://dx.doi.org/ 10.1103/PhysRevB.55.2164
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1103/PhysRevResearch.2.033429
http://dx.doi.org/10.22331/q-2023-08-29-1096
http://dx.doi.org/10.22331/q-2023-08-29-1096
http://dx.doi.org/ 10.1038/s41467-020-15402-w
http://dx.doi.org/ 10.1038/s41467-020-15402-w
http://dx.doi.org/ https://doi.org/10.1038/s41570-023-00516-8
http://dx.doi.org/ https://doi.org/10.1038/s41570-023-00516-8
http://dx.doi.org/10.1103/PhysRevResearch.4.043178
http://dx.doi.org/10.1103/PhysRevResearch.4.043178
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/ https://doi.org/10.1038/ncomms5213
http://dx.doi.org/ https://doi.org/10.1038/ncomms5213

11

[12] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and
Jay M. Gambetta, “Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets,” Nature 549, 242–246 (2017).

[13] Jonathan Romero, Ryan Babbush, Jarrod R McClean,
Cornelius Hempel, Peter J Love, and Alán Aspuru-
Guzik, “Strategies for quantum computing molecular en-
ergies using the unitary coupled cluster ansatz,” Quan-
tum Sci. Technol. 4, 014008 (2019).

[14] Alexey Uvarov, Jacob D. Biamonte, and Dmitry Yudin,
“Variational quantum eigensolver for frustrated quantum
systems,” Phys. Rev. B 102, 075104 (2020).

[15] Luca Crippa, Francesco Tacchino, Mario Chizzini,
Antonello Aita, Michele Grossi, Alessandro Chiesa,
Paolo Santini, Ivano Tavernelli, and Stefano Car-
retta, “Simulating static and dynamic properties of
magnetic molecules with prototype quantum comput-
ers,” Magnetochemistry 7 (2021), 10.3390/magneto-
chemistry7080117.

[16] Saverio Monaco, Oriel Kiss, Antonio Mandarino, Sofia
Vallecorsa, and Michele Grossi, “Quantum phase detec-
tion generalization from marginal quantum neural net-
work models,” Phys. Rev. B 107, L081105 (2023).

[17] A. M. Romero, J. Engel, Ho Lun Tang, and Sophia E.
Economou, “Solving nuclear structure problems with the
adaptive variational quantum algorithm,” Phys. Rev. C
105, 064317 (2022).

[18] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R.
Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J.
Dean, and P. Lougovski, “Cloud quantum computing of
an atomic nucleus,” Phys. Rev. Lett. 120, 210501 (2018).

[19] I. Stetcu, A. Baroni, and J. Carlson, “Variational ap-
proaches to constructing the many-body nuclear ground
state for quantum computing,” Phys. Rev. C 105, 064308
(2022).

[20] Oriel Kiss, Michele Grossi, Pavel Lougovski, Federico
Sanchez, Sofia Vallecorsa, and Thomas Papenbrock,
“Quantum computing of the 6Li nucleus via ordered uni-
tary coupled clusters,” Phys. Rev. C 106, 034325 (2022).

[21] Axel Pérez-Obiol, AM Romero, J Menéndez, A Rios,
A Garćıa-Sáez, and B Juliá-Dı́az, “Nuclear shell-model
simulation in digital quantum computers,” Scientific Re-
ports 13, 12291 (2023).

[22] Eric R. Anschuetz and Bobak T. Kiani, “Quantum varia-
tional algorithms are swamped with traps,” Nature Com-
munications 13 (2022), https://doi.org/10.1038/s41467-
022-35364-5.

[23] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy,
Ryan Babbush, and Hartmut Neven, “Barren plateaus
in quantum neural network training landscapes,” Nature
communications 9, 4812 (2018).

[24] Andrew Eddins, Mario Motta, Tanvi P. Gujarati, Sergey
Bravyi, Antonio Mezzacapo, Charles Hadfield, and
Sarah Sheldon, “Doubling the size of quantum simula-
tors by entanglement forging,” PRX Quantum 3, 010309
(2022).

[25] Max Rossmannek, Panagiotis Kl Barkoutsos, Pauline J
Ollitrault, and Ivano Tavernelli, “Quantum hf/dft-
embedding algorithms for electronic structure calcula-
tions: Scaling up to complex molecular systems,” The
Journal of Chemical Physics 154, 114105 (2021).

[26] T. Serwatka, R. G. Melko, A. Burkov, and P.-N. Roy,
“Quantum phase transition in the one-dimensional water

chain,” Phys. Rev. Lett. 130, 026201 (2023).
[27] Alexei Kitaev and John Preskill, “Topological entangle-

ment entropy,” Phys. Rev. Lett. 96, 110404 (2006).
[28] Michael Levin and Xiao-Gang Wen, “Detecting topolog-

ical order in a ground state wave function,” Phys. Rev.
Lett. 96, 110405 (2006).

[29] Rajibul Islam, Ruichao Ma, Philipp M. Preiss,
M. Eric Tai, Alexander Lukin, Matthew Rispoli, and
Markus Greiner, “Measuring entanglement entropy in a
quantum many-body system,” Nature 528, 77–83 (2015).

[30] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo
Larochelle, “Made: Masked autoencoder for distribu-
tion estimation,” in Proceedings of the 32nd International
Conference on Machine Learning, JMLR W&CP , Vol. 32
(PMLR, 2015) pp. 881–889.

[31] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals,
Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu,
“Conditional image generation with pixelcnn decoders,”
Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems, NIPS’16, 4797–4805
(2016).

[32] Patrick Huembeli, Giuseppe Carleo, and Anto-
nio Mezzacapo, “Entanglement forging with genera-
tive neural network models,” arXiv:2205.00933 (2022),
10.48550/ARXIV.2205.00933.

[33] Thomas D Barrett, Aleksei Malyshev, and AI Lvovsky,
“Autoregressive neural-network wavefunctions for ab ini-
tio quantum chemistry,” Nature Machine Intelligence 4,
351–358 (2022).

[34] Basile Herzog, Bastien Casier, Sébastien Lebégue, and
Dario Rocca, “Solving the schrödinger equation in the
configuration space with generative machine learning,”
Journal of Chemical Theory and Computation 19, 2484–
2490 (2023).

[35] A. Narayanan and M. Moore, “Quantum-inspired genetic
algorithms,” Proceedings of IEEE International Confer-
ence on Evolutionary Computation, Nagoya, Japan , 61–
66 (1996).

[36] Hugo Larochelle and Iain Murray, “The neural autore-
gressive distribution estimator,” Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Re-
search, 15, 29–37 (2011).

[37] Pengfei Chen, Guangyong Chen, and Shengyu Zhang,
“Log hyperbolic cosine loss improves variational auto-
encoder,” (2019).

[38] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola, “A ker-
nel two-sample test,” J. Mach. Learn. Res. 13, 723–773
(2012).

[39] S. Blundell, “Magnetism in condensed matter,” Ox-
ford Master Series in Condensed Matter Physics (2001),
https://doi.org/10.1093/oso/9780198505921.003.0001.

[40] A.Yu. Kitaev, “Fault-tolerant quantum computation by
anyons,” Annals of Physics 303, 2–30 (2003).

[41] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, “Lo-
cal unitary transformation, long-range quantum entan-
glement, wave function renormalization, and topological
order,” Phys. Rev. B 82, 155138 (2010).

[42] S. Cohen and D. Kurath, “Effective interactions for the
1p shell,” Nuclear Physics 73, 1–24 (1965).

[43] P. Jordan and E. Wigner, “Über das paulische Äquiv-
alenzverbot,” Z. Physik 47, 631–651 (1928).

http://dx.doi.org/ https://doi.org/10.1038/nature23879
http://dx.doi.org/10.1088/2058-9565/aad3e4
http://dx.doi.org/10.1088/2058-9565/aad3e4
http://dx.doi.org/ 10.1103/PhysRevB.102.075104
http://dx.doi.org/ 10.3390/magnetochemistry7080117
http://dx.doi.org/ 10.3390/magnetochemistry7080117
http://dx.doi.org/10.1103/PhysRevB.107.L081105
http://dx.doi.org/ 10.1103/PhysRevC.105.064317
http://dx.doi.org/ 10.1103/PhysRevC.105.064317
http://dx.doi.org/10.1103/PhysRevLett.120.210501
http://dx.doi.org/10.1103/PhysRevC.105.064308
http://dx.doi.org/10.1103/PhysRevC.105.064308
http://dx.doi.org/10.1103/PhysRevC.106.034325
http://dx.doi.org/ https://doi.org/10.1038/s41598-023-39263-7
http://dx.doi.org/ https://doi.org/10.1038/s41598-023-39263-7
http://dx.doi.org/ https://doi.org/10.1038/s41467-022-35364-5
http://dx.doi.org/ https://doi.org/10.1038/s41467-022-35364-5
http://dx.doi.org/ https://doi.org/10.1038/s41467-022-35364-5
http://dx.doi.org/https://doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/https://doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1103/PRXQuantum.3.010309
http://dx.doi.org/10.1103/PRXQuantum.3.010309
http://dx.doi.org/ https://doi.org/10.1063/5.0029536
http://dx.doi.org/ https://doi.org/10.1063/5.0029536
http://dx.doi.org/10.1103/PhysRevLett.130.026201
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/ 10.1103/PhysRevLett.96.110405
http://dx.doi.org/ 10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1038/nature15750
https://arxiv.org/abs/1502.03509
https://arxiv.org/abs/1502.03509
http://dx.doi.org/ https://dl.acm.org/doi/10.5555/3157382.3157633
http://dx.doi.org/ https://dl.acm.org/doi/10.5555/3157382.3157633
http://dx.doi.org/ 10.48550/ARXIV.2205.00933
http://dx.doi.org/ 10.48550/ARXIV.2205.00933
http://dx.doi.org/https://doi.org/10.1038/s42256-022-00461-z
http://dx.doi.org/https://doi.org/10.1038/s42256-022-00461-z
http://dx.doi.org/https://doi.org/10.1021/acs.jctc.2c01216
http://dx.doi.org/https://doi.org/10.1021/acs.jctc.2c01216
http://dx.doi.org/10.1109/ICEC.1996.542334
http://dx.doi.org/10.1109/ICEC.1996.542334
http://dx.doi.org/10.1109/ICEC.1996.542334
https://proceedings.mlr.press/v15/larochelle11a.html
https://proceedings.mlr.press/v15/larochelle11a.html
https://openreview.net/forum?id=rkglvsC9Ym
https://openreview.net/forum?id=rkglvsC9Ym
http://jmlr.org/papers/v13/gretton12a.html
http://jmlr.org/papers/v13/gretton12a.html
http://dx.doi.org/ https://doi.org/10.1093/oso/9780198505921.003.0001
http://dx.doi.org/ https://doi.org/10.1093/oso/9780198505921.003.0001
http://dx.doi.org/ https://doi.org/10.1093/oso/9780198505921.003.0001
http://dx.doi.org/ https://doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/ 10.1103/PhysRevB.82.155138
http://dx.doi.org/ https://doi.org/10.1016/0029-5582(65)90148-3
http://dx.doi.org/ https://doi.org/10.1007/BF01331938

12

[44] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor
Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc
Ganzhorn, Daniel J. Egger, Matthias Troyer, Anto-
nio Mezzacapo, Stefan Filipp, and Ivano Tavernelli,
“Quantum algorithms for electronic structure calcula-
tions: Particle-hole hamiltonian and optimized wave-
function expansions,” Phys. Rev. A 98, 022322 (2018).

[45] Bryan T. Gard, Linghua Zhu, George S. Barron,
Nicholas J. Mayhall, Sophia E. Economou, and Ed-
win Barnes, “Efficient symmetry-preserving state prepa-
ration circuits for the variational quantum eigensolver
algorithm,” npj Quantum Inf 6, 10 (2020).

[46] Juan Miguel Arrazola, Olivia Di Matteo, Nicolás Que-
sada, Soran Jahangiri, Alain Delgado, and Nathan Kil-
loran, “Universal quantum circuits for quantum chem-
istry,” Quantum 6, 742 (2022).

[47] Sam Bond-Taylor, Adam Leach, Yang Long, and
Chris G. Willcocks, “Deep generative modelling: A com-
parative review of vaes, gans, normalizing flows, energy-
based and autoregressive models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 7327–7347
(2022).

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” Ad-
vances in Neural Information Processing Systems 30
(2017).

[49] Harper R. Grimsley, Sophia E. Economou, Edwin
Barnes, and Nicholas J. Mayhall, “An adaptive vari-
ational algorithm for exact molecular simulations on a
quantum computer,” Nat Commun 10, 3007 (2019).

[50] Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M. Sohaib
Alam, Guillermo Alonso-Linaje, B. AkashNarayanan,
Ali Asadi, and et al., “Pennylane: Automatic dif-
ferentiation of hybrid quantum-classical computations,”
arXiv:1811.04968 (2018), 10.48550/ARXIV.1811.04968.

[51] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang, “JAX: com-
posable transformations of Python+NumPy programs,”
(2018).

[52] Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian
Wu, Christopher Roth, Clemens Giuliani, Gabriel Pes-
cia, Jannes Nys, Vladimir Vargas-Calderón, Nikita As-
trakhantsev, and Giuseppe Carleo, “NetKet 3: Machine
Learning Toolbox for Many-Body Quantum Systems,”
SciPost Phys. Codebases , 7 (2022).

[53] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy
Frostig, Stephan Hoyer, Felipe Llinares-Lopez, Fabian
Pedregosa, and Jean-Philippe Vert, “Efficient and mod-
ular implicit differentiation,” Advances in Neural Infor-
mation Processing Systems, 35, 5230–5242 (2022).

[54] Giuseppe Carleo Patrick Huembeli and Antonio Mezza-
capo, “Cqsl entanglement forging with gnn models: re-
leases tag v0.2,” (2022).

[55] Manuel S. Rudolph, Sukin Sim, Asad Raza, Michal
Stechly, Jarrod R. McClean, Eric R. Anschuetz, Luis
Serrano, and Alejandro Perdomo-Ortiz, “Orqviz:
Visualizing high-dimensional landscapes in varia-
tional quantum algorithms,” arXiv:2111.04695 (2021),
https://doi.org/10.48550/arXiv.2111.04695.

[56] Paulin de Schoulepnikoff, Kiss Oriel, Grossi Michele, Val-
lecorsa Sofia, and Carleo Giuseppe, “Github: Learning
schmidt decompositions with artificial neural networks
and quantum circuits,” .

[57] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C
Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan, “Adabelief optimizer: Adapting
stepsizes by the belief in observed gradients,” Advances
in neural information processing systems 33, 18795–
18806 (2020).

[58] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton, “On the importance of initialization and
momentum in deep learning,” Proceedings of the 30th In-
ternational Conference on Machine Learning, Atlanta,
USA, Proceedings of Machine Learning Research, 28,
1139–1147 (2013).

[59] Günter Klambauer, Thomas Unterthiner, Andreas Mayr,
and Sepp Hochreiter, “Self-normalizing neural networks,”
Proceedings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, 972–981
(2017).

http://dx.doi.org/10.1103/PhysRevA.98.022322
http://dx.doi.org/ https://doi.org/10.1038/s41534-019-0240-1
http://dx.doi.org/ 10.22331/q-2022-06-20-742
http://dx.doi.org/10.1109/TPAMI.2021.3116668
http://dx.doi.org/10.1109/TPAMI.2021.3116668
http://dx.doi.org/10.1109/TPAMI.2021.3116668
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/ https://doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/10.48550/ARXIV.1811.04968
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://dx.doi.org/ 10.21468/SciPostPhysCodeb.7
https://proceedings.neurips.cc/paper_files/paper/2022/file/228b9279ecf9bbafe582406850c57115-Paper-Conference.pdf
https://github.com/cqsl/Entanglement-Forging-with-GNN-models
https://github.com/cqsl/Entanglement-Forging-with-GNN-models
http://dx.doi.org/https://doi.org/10.48550/arXiv.2111.04695
http://dx.doi.org/https://doi.org/10.48550/arXiv.2111.04695
https://github.com/PaulinDS/Learning-Schmidt-decompositions-with-NN-and-QC
https://github.com/PaulinDS/Learning-Schmidt-decompositions-with-NN-and-QC
https://github.com/PaulinDS/Learning-Schmidt-decompositions-with-NN-and-QC
https://proceedings.neurips.cc/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
http://dx.doi.org/ https://dl.acm.org/doi/10.5555/3294771.3294864
http://dx.doi.org/ https://dl.acm.org/doi/10.5555/3294771.3294864

13

Appendix A: Heisenberg Forging

In the section, we briefly cover the basis of Heisenberg forging, covered in more details in Refs. [24, 32]. In this
scenario, we assume a symmetric bipartition, i.e., with UA = VB ≡ U and find a more efficient way to compute the
expectation value. We first need to decompose O as

OA ⊗OB +OB ⊗OA =
a0
2

({OA, OB} ⊗ 1 + 1 ⊗ {OA, OB}) +
∑

α,β∈{0,1}

aα,βC
∗
α,β ⊗ Cα,β , (A1)

where {·, ·} denotes the anti-commutator, |aα,β | ≤ 1 are real coefficients, and Cα,β n-qubit Clifford operators that are
defined below. Combining this with the Schmidt decomposition, and by symmetrizing the observable, we obtain

⟨ψ|O|ψ⟩ = a0
∑
n

λ2σn
Re(⟨σn|U†OAOBU |σn⟩) +

∑
α,β∈{0,1}

aα,β
2

∑
n,m

λσn
λσm

|⟨σm|U†Cα,βU |σn⟩|2. (A2)

Since OA, OB ∈ {1, X, Y, Z}⊗N/2, we either have [OA, OB] = 0 or {OA, OB} = 0. In the first case, we can find a
Clifford circuit V such that OA = V ZpV

† and OB = V ZqV
†. We can then define

Cα,β =
1

2
V
(
1 + (−1)αZp + (−1)βZq − (−1)α+βZpZq

)
V † (A3)

In the remaining case, we can simply use C0,0 = (OA +OB)/
√
2, C0,1 = (OA −OB)/

√
2 and a1,0 = a1,1 = 0.

The estimation of the sums can be performed non-trivially, using Monte Carlo sampling, where the number of sam-
ples grows as 1/ϵ2, with ϵ the additive error. However, the sampling step is not obviously scalable in the Schrödinger
case, and it will be discussed below. We also point out that, despite a sampling overhead, the individual quantum
circuits are easier to implement than without the Schmidt decomposition because they are shallower and require fewer
qubits.

Appendix B: Sampling from the ARNN

In this section, we provide more details on how to efficiently and directly sample the bitstrings with the ARNN.
We proceed recursively, as shown in Fig. 10. We begin by sampling the first bit of the string, which is then given as
an input to sample the second bit, and so on up to the last bit.

Figure 10: Description of the sampling procedure of a bitstring with the ARNN. Each bit of the bitstring is
generated sequentially and randomly, according to the probability modeled by the network. The latter is the output

of the ARNN with the inputs being the values of the previous bit, already generated. The illustrated situation
corresponds to a system of four qubits divided equally into two sub-systems of two qubits. Note that the picture

describes in fact one ARNN used in parallel to sample the different bits, and not multiples ARNN used in a
sequential manner, as could be induced by the arrows in the diagram.

In the nuclear shell model, it is important to control the number of value-one bit appearing in the string, since
each nucleus is defined by a certain amount k of excited orbitals. Thus, the same procedure can be slightly modified

14

to generate bitstrings with a fixed number of ones. Indeed, we just need to change the conditional probability in the
sampling procedure, which can be done by setting p(σi|{(σ)j , j < i}) = 0 if

∑
j<i(σ)j = k. This ensures a maximum

of k excitation. If, on the other hand, there is only l < k excitation at the end of the string, the last k − l bits are
turned into one to correct for it. While this leads to non-uniform sampling at the beginning of the training, we expect
the ARNN to overcome this issue by incorporating it through the learning stage.

Figure 11: Comparison between the number of different bitstrings sampled for Heisenberg and Schrödinger forging.
In the Heisenberg case, at the beginning, a large number of states are required to be prepared on the quantum

computer, while at the end, only one state remains. For Schrödinger forging instead, we have full control over the
number of states we want to prepare.

A notable difference between the Schrödinger and Heisenberg forging schemes is that for the latter, it is impossible
to control how many states one has to prepare on the quantum hardware. Indeed, in this case, all bitstrings sampled
by the ARNN must be taken into account. In practice, as shown in Fig. 11, many states must be prepared at the
beginning of the training and only one at the end. In the case of Schrödinger forging, since the cut-off can be fixed at
the beginning, the number of states to be prepared on the hardware is constant. Following Ref. [32] a 1000-epoch pre
training on the unitaries has been performed as proposed in Ref. [32]. However, other optimization strategies could
be considered.

Appendix C: Overview of the many-body Hamiltonians of the small models

Here, we present the many-body quantum Hamiltonians used for the numerical simulations. First, we consider
spins models: the TFIM, Heisenberg and J1-J2 model on a 1d chain and the 2D TFIM on a triangular lattice. We
also consider fermionic models, such as the t-V model on a 4×3 grid and the nuclear shell model.
The Hamiltonians of the 1D TFIM is

H = J

N∑
i=0

ZiZi+1 +Xi. (C1)

The Hamitonian of the 1D Heisenberg model is

H = J

N∑
i=0

XiXi+1 + Y iY i+1 + ZiZi+1, (C2)

while for the 1D J1-J2 model 1d we have

H = J1

N∑
i=0

XiXi+1 + Y iY i+1 + ZiZi+1 + J2

N∑
i=0

XiXi+2 + Y iY i+2 + ZiZi+2. (C3)

For these models, J = 1, J1 = 1, J2 = 0.2, and periodic boundary condition (PBC), i.e., N ≡ 0, N + 1 ≡ 1, are used.
The topology of the spin chain with the separation between the two subsystems is presented in Fig. 12 (a) and (b)
for 14 and 20 spins, respectively.

15

(a) (b)

Figure 12: One dimensional spin chain with PBC, N = 14 spins (a) and N = 20 spins (b). The blue cut represents
the separation between the 2 subsystems.

The Hamiltonian of the 2D TFIM is given by

H =
∑
⟨i,j⟩

ZiZj +

N−1∑
i=0

Xi, (C4)

where ⟨i, j⟩ are neighbors according to the triangular topology, see Fig. 13, which also shows the different cuts and
boundary conditions. This model is more challenging due to local operators being mapped to non-local ones when
projected onto a line. Moreover, it has a high coordination number which leads to a strong magnetic susceptibility
[39], meaning that the system is more sensitive to external magnetic fields and can exhibit stronger magnetic order.

(a) (b)

(c)

Figure 13: Triangular lattices used for the simulations. Lattices of 12 spins with OBC, CBC and TBC are shown in
(a), (b) and (c) respectively. The two subsystems are defined with a diagonal cut (blue).

16

The Hamiltonian of the t-V model is

H = −t
∑
⟨i,j⟩

(a†iaj + a†jai) + V
∑
⟨i,j⟩

a†iaia
†
jaj , (C5)

with ai and a
†
i being respectively the creation and annihilation operators on site i. A 4×3 system of spinless fermions

with periodic boundaries and t = V = 1 is considered. It is mapped to a qubit Hamiltonian with the Jordan-Wigner
transformation. In this model, fermions are allowed to move on the grid, modifying the energy of the system. In this
spinless version, there is only one spin-orbit per site, giving a final Hamiltonian of 12 qubits.

Appendix D: Modelling the probability distribution with a more standard approach

In this section, we present a more standard approach for modeling probability distributions using the reversed KL
divergence for the loss of ARNN. We show why it is unsuitable for the considered problem situation.

This approach aims to model the full probability distribution |λσ|2. Since we only have samples from the ap-
proximated probability distribution p(σA, σB), the reversed KL can be used to learn the best representation of the
distribution self-consistently. Thus, at each iteration, the training set comprises bitstrings sampled from the ap-
proximation distribution given by the ARNN. The latter is then trained in a supervised way to model the target
distribution |λσ|2 by minimizing the reversed KL divergence

Lrev-KLD
ARNN = E

σ∼p

[
log

p(σA, σB)

λ2σ

]
. (D1)

With this choice, wherever p(σA, σB) has a high probability, λ2σ will also take a high value. This mode-seeking behavior
is desired since the objective is mainly to sample bitstrings associated with a high Schmidt coefficient.

Figure 14: Exact Schmidt decomposition on the TFIM 14 spins with periodic boundary conditions. The coefficients
have been arranged in descending order and are presented with a linear (blue) and a logarithmic (purple) scale.

With weakly entangled systems, which is desirable to have a low additive error with the cut-off in the Schmidt
decomposition, the target probability distribution is very sharp, as shown in Fig. 14. Such probability densities are
very difficult to model with this approach. Indeed, with high probability, the training sets are composed of bitstrings
associated with very small Schmidt coefficients. In this flat region (left of Fig. 14), the probability density appears
uniform, and it is challenging to extrapolate the relevant bitstrings. Moreover, due to the normalization constraint,
the Schmidt coefficients of a small set of bitstrings are not good estimators of the Schmidt coefficients of the ground
truth distribution.

However, this defeats our purpose of identifying bitstrings with a high Schmidt coefficient rather than modeling
the entire probability distribution. Hence, adopting a training strategy that keeps the bitstrings with high Schmidt
coefficients through the iterations is convenient. With such a training strategy, employing a loss composed of an
average over the model data samples is impossible. The explicit form of the reversed KL divergence

Lexpl-rev-KLD
ARNN =

∑
σ

p(σA, σB)
[
log

p(σA, σB)

λ2σ

]
, (D2)

would be an alternative if only the target probability distribution is not very sharp. Hence, the reversed KL divergence
is not a symmetric measure. Consequently, the gradients obtained from the reversed KL divergence may not provide

17

stable and robust updates for the model when the predicted distribution diverges significantly from the target distri-
bution. This lack of robustness makes it challenging to learn in highly uncertain situations or when the model needs
to adapt to changes in the training set, which is the case here. The logcosh and MMD loss were therefore used since
they are more robust and suitable for modeling sharp distributions. Indeed, they do not suffer the same limitations
since they focus on individual samples rather than the overall distribution and do not overemphasize outliers.

Appendix E: Optimization details and hyperparameters

In this section, details on the optimization procedure are given. During the VQE stage of the training, the adabelief
optimizer [57] is used to update the quantum circuit parameters, while Nesterov’s accelerated gradient descent scheme
[58] is performed for the Schmidts coefficient. One iteration of the Schmidts coefficient is done every ten iterations
of the circuit parameters. The hyperparameters of the adabelief optimizers, following the convention of the original
paper, are β1 = 0.9, β2 = 0.999 and ϵ = 10−16, while for Nesterov, a momentum coefficient of 0.6 is used. In both
cases, we set the learning rate between 0.1 and 0.01.

The generative algorithm is trained using adabelief with the same hyperparameters and a learning rate of 0.001.
The ARNN comprises five hidden layers and a hidden neuron density of α = 2. At each iteration of the generative
algorithm, the ARNN samples between 10 and 50 bitstrings to build the set G, while the exact value has been
manually tuned for each simulation. This influences the performance since low values cause the ARNN to converge
very quickly, leading to spikes caused by the lack of generalization and overfitting. On the other hand, high values
deteriorate the algorithm’s computational efficiency, convergence speed, and memory requirement in the same way as
batches in stochastic gradient descent. For ARNN, the Lecun normal initializer for the weight, zero initial biases, and
scaled exponential linear unit (SELU) activation function λ = 1.0507 α = 1.6733 were used [59].

Appendix F: Variational Circuits

In this section, we provide a visual example of the quantum circuits used for VQE ansätze. A layer of the variational
circuit used for the spin systems is shown in Fig. 15 for N = 4 qubits, while Fig. 16 shows one layer of the circuits
used for the nuclear shell model. We use the notation Rot to describe a generic rotation around the Bloch sphere,
composed of Ry, Rz and Ry rotation.

Rot(ϕ1
1, θ

1
1, ω

1
1) Rot(ϕ2

i , θ
2
1, ω

2
1)

Rot(ϕ1
2, θ

1
2, ω

1
2) Rot(ϕ2

2, θ
2
2, ω

2
2)

Rot(ϕ1
3, θ

1
3, ω

1
3) Rot(ϕ2

3, θ
2
3, ω

2
3)

Rot(ϕ1
4, θ

1
4, ω

1
4) Rot(ϕ2

4, θ
2
4, ω

2
4)

Figure 15: Variational quantum circuit used for parametrizing the unitaries in the Schmidt decomposition for spin
and fermionic models.

18

Rz(ϕi
1)

U(θi1)

G(ωi
1)

Rz(ϕi
2)

U(θi2)

G(ωi
2)

Rz(ϕi
3)

U(θi3)

G(ωi
3)

Rz(ϕi
4)

U(θi4)

Rz(ϕi
5)

U(θi5)

Rz(ϕi
6)

Figure 16: Variational quantum circuit used for parametrizing the unitaries in the Schmidt decomposition for the
shell models. The gates correspond to the ones described in the main text.

Appendix G: Evolution of the generated set

A histogram was produced to visualize the ARNN training set evolution. Shown in Fig. 17, it illustrates the number
of times each bitstring has been present in the training set T = A′ of the ARNN. The bitstrings present in the final
set are shown in purple and those present during the algorithm are shown in light blue. The illustrated example is
at the end of the algorithm on the 2D TFIM 12 spins with the MMD loss. Bitstrings are ordered in such a way that
their associated Schmidt coefficient decreases (in absolute value). The bitstrings associated with the highest Schmidt
coefficient are the most frequently viewed by the ARNN.

At the end, the seven bitstrings associated with the biggest Schmidt coefficient are present in the final set. The
eighth bitstring in the set is bitstrings number ten. Given that bitstrings eight and nine were seen during the algorithm
and that their associated Schmidt coefficients squared are very low and close to the one of bitstring ten, we can explain
this lack by numerical errors when determining the Schmidt coefficients.

Figure 17: 2D TFIM 12 spins, MMD loss: Histogram showing the bitstrings seen by the ARNN (present in the
set A′) with the respective number of times (counts). The results after 50 iterations are presented. The bitstrings
contained in the final set A′ are highlighted in purple and the bitstrings seen previously are illustrated in light blue.

	Hybrid Ground-State Quantum Algorithms based on Neural Schrödinger Forging
	Abstract
	Introduction
	Methods
	Entanglement Forging
	Schrödinger forging with generative neural networks

	Numerical Simulations
	Identify the relevant bitstrings
	Complete entanglement forging scheme
	Spins in one dimension
	Spins in two dimensions
	Nuclear shell model

	Discussion and Conclusion
	Code availability
	Acknowledgement
	References
	Heisenberg Forging
	Sampling from the ARNN
	Overview of the many-body Hamiltonians of the small models
	Modelling the probability distribution with a more standard approach
	Optimization details and hyperparameters
	Variational Circuits
	Evolution of the generated set

