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DEGREE HETEROGENEITY IN HIGHER-ORDER NETWORKS:
INFERENCE IN THE HYPERGRAPH 3-MODEL

SAGNIK NANDY AND BHASWAR B. BHATTACHARYA

ABSTRACT. The B-model for random graphs is commonly used for representing pairwise in-
teractions in a network with degree heterogeneity. Going beyond pairwise interactions, Stasi
et al. [45] introduced the hypergraph B-model for capturing degree heterogeneity in networks
with higher-order (multi-way) interactions. In this paper we initiate the rigorous study of the
hypergraph B-model with multiple layers, which allows for hyperedges of different sizes across
the layers. To begin with, we derive the rates of convergence of the maximum likelihood (ML)
estimate and establish their minimax rate optimality. We also derive the limiting distribution of
the ML estimate and construct asymptotically valid confidence intervals for the model param-
eters. Next, we consider the goodness-of-fit problem in the hypergraph B-model. Specifically,
we establish the asymptotic normality of the likelihood ratio (LR) test under the null hypoth-
esis, derive its detection threshold, and also its limiting power at the threshold. Interestingly,
the detection threshold of the LR test turns out to be minimax optimal, that is, all tests are
asymptotically powerless below this threshold. The theoretical results are further validated in
numerical experiments. In addition to developing the theoretical framework for estimation and
inference for hypergraph 8-models, the above results fill a number of gaps in the graph 8-model
literature, such as the minimax optimality of the ML estimates and the non-null properties of
the LR test, which, to the best of our knowledge, have not been studied before.

1. INTRODUCTION

The B-model is an exponential family distribution on graphs with the degree sequence as the
sufficient statistic. Specifically, in the B-model with vertex set [n] := {1,2,...,n}, the edge (i, )
is present independently with probability

Pij -= 1+ eBiths’ (1.1)

forl1 <i<j<mnand B = (01,05, ...,0,) € R". This model was first considered by Park
and Newman [41] and can also be viewed as the undirected version of the p;-model that appear
in the earlier work of Holland and Leinhardt [26]. Thereafter, the 3-model has been widely
used for capturing degree heterogeneity in networks (see Blitzstein and Diaconis [7], Chen et al.
[11], Graham [23], Jackson et al. [28], among several others). The term B-model can be attributed
to the seminal paper of Chatterjee et al. [10], which provides the theoretical foundations for
parameter estimation in this model.

While random graph models, such as the 3-model, are important tools for understanding
binary (pairwise) relational data, in many modern applications interactions occur not just be-
tween pairs, but among groups of agents. Examples include folksonomy [17], collaboration
networks [29, 30, 42], complex ecosystems [24], biological networks [37, 43], circuit design [32],
computer vision [1], among others. Hypergraphs provide the natural mathematical framework
for modeling such higher-order interactions [4, 5, 6]. Formally, a hypergraph H is denoted by
H = (V(H),E(H)), where V(H) is the vertex set (the agents in the network) and E(H) is
a collection of non-empty subsets of V(H). The elements in F(H), referred to as hyperedges,
represent the interactions among groups of agents. Motivated by the emergence of complex
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relational data with higher-order structures, there has been a slew of recent results on model-
ing random hypergraphs, community detection, recovery, clustering, and motif analysis, among
others (see [2, 3, 15, 18, 19, 20, 21, 22, 27, 33, 34, 35, 36, 40, 51, 57, 58, 59] and the references
therein).

In this paper we study the hypergraph B-model, introduced by Stasi et al. [45], that allows
one to incorporate degree heterogeneity in higher-order networks. Like the graph B-model (1.1),
this is an exponential family on hypergraphs where the (hypergraph) degrees are the sufficient
statistics. In its general form it allows for layered hypergraphs with hyperedges of different
sizes across the layers. To describe the model formally we need a few notations: For r > 2,
denote by ([7;]) the collection of all r-element subsets of [n] := {1,2,...,n}. A hypergraph
H = (V(H),E(H)) is said to be r-uniform if every element in E(H) has cardinality r. (Clearly,
2-uniform hypergraphs are simple graphs.) We will denote by #,, , the collection of all r-uniform
hypergraphs with vertex set [n] and H,, [, := (s Hn,s, the collection of all hypergraphs with
vertex set [n] where every hyperedge has size at most r. Then the r-layered hypergraph B-model
is a probability distribution on H, |,) defined as follows:

Definition 1.1. [45] Fix r > 2 and parameters B := (B2, ..., 3;), where B, := (8s)ve[n] € R".
The r-layered hypergraph (-model is a random hypergraph in H,, [, denoted by Hp, (n, B),

where, for every 2 < s < r, the hyperedge {v1,v,...,vs} € ([Z]) is present independently with
probability:
eBsvy oot Bs, s

(1.2)

Pvi,va,...,vs

= 1 _|_ eﬁs,vl'f‘.--'f‘ﬁs,vs :

This model can be expressed as an exponential family on H,, [,] with the hypergraph degrees
up to order r as the sufficient statistics (see (2.2)). Specifically, the parameter (s, encodes
the popularity of the node u € [n] to form groups of size s, for 2 < s < r. Consequently, (s,
controls the local density of hyperedges of size s around the around node u. The model (1.2)
includes as a special case the classical graph B-model (when r = 2) and also the r-uniform
hypergraph B-model, where only the hyperedges of size r are present. More formally, given
parameters 3 = (81, B2, ..., Bn) € R™, the r-uniform hypergraph (3-model is a random hypergraph
in Hy, r, denoted by H,(n,3), where each r-element hyperedge {vi,vs,...,v.} € ([:f]) is present
independently with probability:

oBor +tBu;

Possvscive = T (1.3)

It is worth noting that, since the degrees are the sufficient statistics in the aforementioned
models, it is enough to observe only the degree sequences (not the entire network) for inference
regarding the model parameters. This feature makes the B-model particularly attractive because
collecting information about the entire network can often be difficult for cost or privacy reasons.
For example, Elmer et al. [16] (see also Zhang et al. [60]) studied social networks between a group
of Swiss students before and during COVID-19 lockdown, where, for privacy reasons, only the
total number of connections of each student in the network (that is, the degrees of the vertices)
were released. The 3-model is also relevant in the analysis of aggregated relational data, where
instead of asking about connections between groups of individuals directly, one collects data on
the number of connections of an individual with a given feature (see, for example, Breza et al.
[8] and the references therein).

Stasi et al. [45] proposed two algorithms for computing the maximum likelihood (ML) esti-
mates for the hypergraph 3 models described above and reported their empirical performance.
However, the statistical properties of the ML estimates in these models have remained unex-
plored.



INFERENCE IN THE HYPERGRAPH B-MODEL 3

1.1. Summary of Results. In this paper we develop a framework for estimation and inference
in the hypergraph B-model. Along the way, we obtain a number of new results on the graph
B-model as well. The following is a summary of the results:

e FEstimation: In Section 2 we derive the rates of convergence of the ML estimates in r-
layered hypergraph B-model (1.2), both in the Lo and the Lg norms. Specifically, we
show that given a sample H, ~ Hp,j(n, B) from the r-layered hypergraph B-model, the

ML estimate B = (Ba, ..., B,) of B satisfies:
A 1 5 logn
1B = Bule Sonr \/ =5 and Be = Bl Ser A/~ (L4)

for 2 < s < r, with probability going to 1 (see Theorem 2.1). These extend the results
of Chatterjee et al. [10] on the graph B-model, where the rate of convergence of the ML
estimate was derived only in the L, norm, to the hypergraph case. Next, in Theorem
2.2 we show that both the rates in (1.4) are, in fact, minimax rate optimal (up to a
v/logn factor for the Ly, norm). To the best of our knowledge, these are the first results
showing the statistical optimality of the ML estimates in the 3-model even for the graph
case.

e Inference: In Section 2.3 we derive the asymptotic distribution of the ML estimate B.
In particular, we prove that the finite dimensional distributions of the ML estimate
converges to a multivariate Gaussian distribution (see Theorem 2.3). Moreover, the
covariance matrix of the Gaussian distribution can be estimated consistently, using which
we can construct asymptotically valid confidence sets for the model parameters (see
Theorem 2.4).

e Testing: In Section 3 we study the goodness-of-fit problem for the hypergraph B-model,
that is, given v € R™ we wish to distinguish:

Hy:Bs =~ versus Hj: (s # 7. (1.5)

We show that the likelihood ratio (LR) statistic for this problem (centered and scaled
appropriately) is asymptotically normal under Hy (see Theorem 3.1 for details). Using
this result we construct an asymptotically level a test for (1.5). Next, we study the power
properties of this test. In particular, we show that the detection threshold for the LR
test in the Ly norm is n‘¥, that is, the LR test is asymptotically powerful /powerless
in detecting 4’ € R™ depending on whether ||4" — |2 is asymptotically greater/smaller

than n7¥, respectively. We also derive the limiting power function of the LR test
at the threshold |y — v|2 = @(n7¥) (see Theorem 3.2). Further, in Theorem 3.3
we show that this detection threshold is, in fact, minimax optimal, that is all tests
are asymptotically powerless when ||v — «|2 is asymptotically smaller than n~ . In
Section 3.3 we also obtain the detection threshold of the LR test in the L, norm and
establish its optimality. Again, these appear to be the first results on the non-null
properties of the LR test and its optimality in the 3-model for the graph case itself.

In Section 4 we illustrate the finite-sample performances of the proposed methods in simulations.

1.2. Related Work on the Graph (3-Model. As mentioned before, Chatterjee et al. [10]
initiated the rigorous study of estimation in the graph B-model. They derived, among others
things, the convergence rate of the ML estimate in the Ly norm. Thereafter, Rinaldo et al.
[44] derived necessary and sufficient conditions for the existence of the ML estimate in terms of
the polytope of the degree sequences. Yan and Xu [52] proved the asymptotic normality of ML
estimate and later, Yan et al. [54] derived the properties of a moment based estimator. Karwa
and Slavkovic [31] studied the problem of estimation in the B-model under privacy constraints.
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In the context of hypothesis testing, Mukherjee et al. [38] considered the problem of sparse
signal detection in the B-model, that is, testing whether all the node parameters are zero versus
whether a (possibly) sparse subset of them are non-zero. Recently, Yan et al. [56] derived the
asymptotic properties of the LR test for the goodness-of-fit problem in the graph 3-model, under
the null hypothesis.

The graph B-model has also been generalized to incorporate additional information, such as
covariates, directionality, sparsity, and weights (see Chen et al. [11], Chen and Olvera-Cravioto
[12], Graham [23], Hillar and Wibisono [25], Stein and Leng [46], Wahlstrom et al. [49], Yan
et al. [53, 55], Zhang et al. [60] and the references therein). For other exponential random graph
models with functions of the degrees as sufficient statistics, see Mukherjee [39] and Xu and
Mukherjee [50].

1.3. Asymptotic Notation. For positive sequences {a,}n>1 and {b,}n>1, an, = O(b,) means
an < Cib, and a, = O(b,) (and equivalently, a,, = b,) means Cab,, < a, < C1by,, for all n large
enough and positive constants Cj,Cy. Similarly, for positive sequences {a,}n>1 and {b,}n>1,
an < b, means a, < Cib, and a, = b, means a, = Csb, for all n large enough and positive
constants C'1, Cy. Moreover, subscripts in the above notation, for example O,, <, =4, and O,
denote that the hidden constants may depend on the subscripted parameters. Also, for positive
sequences {an}n>1 and {b,}n>1, an < b, means a,/b, — 0 and a, » b, means a, /b, — 0, as
n — o0.

2. MAXIMUM LIKELIHOOD ESTIMATION IN HYPERGRAPH (3-MODELS

In this section we consider the problem of parameter estimation in the hypergraph @-model
using the ML method. In Section 2.1 we derived the rates of the consistency of the ML estimate.
The central limit theorem of the ML estimate and the construction of confidence intervals for
the model parameters are presented in Section 2.3.

2.1. Rates of Convergence. Given a sample H,, ~ H,, [,1(n, B) from the r-layered hypergraph
B-model, the likelihood function can be written as follows:

eBswyttBs s

Ln(B) = H H 1+ eBswvrtotBos (21)

2SS () 7U2,...,vs}€([z]>

Therefore, the negative log-likelihood is given by
(a(B) := —log Lu(B)

= — Z Z Bsvds(v) — Z log (1 4+ exp (Bsp; + -+ Bsw.)) ¢ s (2.2)

s=2 | v=l {v1,02,....05 e (1))
where

d(v):= Y. Lvee}, (2.3)

ecE(Hy):|e|=s

is the s-degree of the vertex v € [n], that is, the number of hyperedges of size s in H,, passing
through v. The negative log-likelihood in (2.2) can be re-written as:

en(B) = Z en,s(ﬁs)7 (2'4)
s=2
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where

ln.s(B) := > log (1 + exp (Bsy + -+ + Baw,)) — ) Bawds(v). (2.5)
v=1

{U17U2,-..,vs}e([2])
Note that (2.4) is separable in 39, ..., 3;, hence, the ML estimate of B = (3s,...,3,) is given
by B = (B2, ..., B;), where
By := argming £, 4(8). (2.6)

This implies that the ML estimate ,C:}S satisfies the following set of gradient equations: For all
veln]and 2 <s <,

BSU st st
d E ers: D) +Ps,vs
S(U) 1+ Bs U+qu +...+B§U ’ (2()
{’L)Q,...,Us}e([”;]i{f}) ers $,v2 s,vs

where ([Tgi{f }) denotes the collection of all (s — 1)-element subsets of [n]\{v}. Stasi et al.
[45] presented two algorithms for computing the ML estimate, an iterative proportional scaling
algorithm and a fixed point algorithm, and showed that both algorithms converge if the ML
estimate exists.

In this paper we study the asymptotic properties of the ML estimates. In the following
theorem we show that the likelihood equations (2.7) have a unique solution with high-probability
and derive its rate of convergence. Hereafter, we denote by |x|s and |||2, the Ly and the Lo
norms of a vector x, respectively. Also, denote By = {x : ||| < M}, the Ly, the ball of radius
M. Throughout we will assume 85 € By, for all 2 < s < r, for some constant M > 0.

Theorem 2.1. Suppose Hy, ~ H,, ,1(n, B) is a sample from the r-layered hypergraph B-model
as defined in (1.2). Then with probability 1 — o(1) the likelihood equations (2.7) have a unique
solution B = (Ba,...,By), that satisfies:

R 1 N logn
1B, = Bulls Ser \| =5 and 18— Bulle Sor ) o 23)

for2 <s<r.

Theorem 2.1 provides the rates for the ML estimate both in the Ly and Lo, norms for the
parameters in a r-layered hypergraph 3-model. To interpret the rates in (2.8) note that s-degree
of a vertex (recall (2.3)) in the r-layered model H,, [,1(n, B) is O(n®*~1) with high probability.
This means there are essentially O(n*~!) independent hyperedges containing information about
each parameter in the s-th layer. Hence, each parameter in the s-th layer can be estimated at
the rate 1/v/ns~1. Aggregating this over the n coordinates gives the rates in (2.8) for the vector
of parameters B in the s-th layer.

The proof of Theorem 2.1 is given in Appendix A. The following discussion provides a high-
level outline of the proof.

e For the rate in the Ls norm we first upper bound the gradient of the log-likelihood at the
true parameter value. Specifically, we show that |V4,s(8s)|3 = O(n®) with high prob-
ability (see Lemma A.1 for details). Next, we show that the smallest eigenvalue of the
Hessian matrix V2, s(8s) is bounded below by n*~! (up to constants) in a neighborhood
of the true parameter (see Lemma A.2). Then a Taylor expansion of the log-likelihood
around the true parameter, combined with the above estimates, imply the rate in the
Ly norm in (2.8) (see Appendix A.1 for details).
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e The proof of the rate in the L, norm is more involved. For the graph case, [10] analyzed
the fixed point algorithm for solving the ML equations and developed a stability version
of the Erdés-Gallai condition (which provides a necessary and sufficient condition for
a sequence of numbers to be the degree sequence of a graph) to derive the rate of ML
estimate in the Lo, norm. One of the technical challenges in dealing with the hypergraph
case is the absence of Erdds-Gallai-type characterizations of the degree sequence. To
circumvent this issue, we take a more analytic approach based on the ‘leave-one-out’
technique, that appear in the analysis of ranking models [13, 14]. Here the idea is to
decompose, for each u € [n], the log-likelihood function of the s-th layer ¢, s (recall
(2.5)) into two parts: one depending on f,, and the other not depending on it. Using
the part of the log-likelihood not depending on 3, ,, we first analyze the properties of the
constrained leave-one-out ML estimate, which is the maximizer of the part of the log-
likelihood not depending on fs, in a neighborhood of the leave-one-out true parameter.
Then from the part of the log-likelihood depending on s, we obtain, by a Taylor
expansion around the true parameter value fs,, the Ly rate in (2.8) with an extra
additive error term which depends on the constrained leave-one-out ML estimate. Using
the bound on the latter obtained earlier we show this error term is negligible compared
to the Ly rate in (2.8).

The following corollary about the r-uniform model is an immediate consequence of Theorem
2.1. We record it separately for ease of referencing.

Corollary 2.1. Suppose H,, ~ Hy,  (n,B) is a sample from the r-uniform hypergraph B-model
as defined in (1.3). Then with probability 1 — o(1) the ML estimate B is unique and

] 1 - logn
18=Blz S\ —=  and 18— Blo <rar \| (2.9)

2.2. Minimax Rates. In the following theorem we establish the tightness of the rates of ML
estimate obtained in the previous section by proving matching lower bounds.

Theorem 2.2. Suppose H,, ~ H,, [,(n, B), with B = (B2,...,8;), such that Bs € B(M), for
2 < s<r. Given 6 € (0,1) there exists a constant C (depending on M, r, and §) such that the
following holds for estimation in the Lo morm:

. 1
Y5 sl (Hﬁ =€ ”H> ’ o

Moreover, for estimation in the Lo, morm the following holds:

\%

N 1
min max P <|ﬁ —Bsl|ww = C _1> 1—0. (2.11)

3 BseB(M) ns

This result shows that the ML estimate is minimax rate optimal in the Ly metric and (up to a
vlogn factor) in the Lo, metric. The proof of Theorem 2.2 is given in Appendix B. The bound
in (2.10) is proved using Fano’s lemma. For this we construct 22 well-separated points in the
parameter space which have ‘small’ average Kulbeck-Leibler (KL) divergence with the origin
(see Appendix B.1). The bound in (2.11) follows by a direct application of Le Cam’s 2-point
method (see Appendix B.2).

2.3. Central Limit Theorems and Confidence Intervals. The results obtained in the pre-
vious section show that the vector ML estimates are consistent in the Lo-norm. However, for
conducting asymptotically precise inference on the individual model parameters, we need to
understand the limiting distribution of the ML estimates. In Theorem 2.3 below we show that



INFERENCE IN THE HYPERGRAPH B-MODEL 7

the finite dimensional distributions of the ML estimates (appropriately scaled) converge to a
multivariate Gaussian distribution. Using this result in Theorem 2.4 we construct joint confi-
dence sets for any finite collection of parameters. Towards this, for H, ~ H, 1(n, B) denote
the variance of the s-degree of the node v € [n] as:

eﬁs,v +,Bs,v2 +---+,Bs,v5

2. _ —
o5(v)? := Var[ds(v)] = > R T e (2.12)
{v2,0s}e (M)

Then we have the following result:

Theorem 2.3. Suppose H, ~ H,, ;] (n, B) is a sample from the r-layered hypergraph (B-model
as defined in (1.2). For each 2 < s <1 fix a collection of as = 1 indices Js := {vs1, -+ ,Vsqa,} €
([ans]) Then as n — O,

[D2(B2 — B2)] 1,

D 3 —
[D3(Bs — B3)]ss B’NZQZQ%(O’I)’ (2.13)

[DT (/37' - Br)]Jr

T

where Ds = diag (05(v))yefn]; for 2 < s <r and for any vector x € R, [z];, = (xU)UE[JS].

The proof of Theorem 2.3 is given in Appendix C.1. The idea of the proof is to linearize
Bs,v — Bs,v in terms of the s-degrees of the node v € [n]. Since the s-degree of a node is the sum
of independent random variables, applying Lindeberg’s CLT gives the result in (2.13). In the
special case of the r-uniform model, Theorem 2.3 can be written in the following simpler form:

Corollary 2.2. Suppose H,, ~ Hy, .(n,B) is a sample from the r-uniform hypergraph B-model
as defined in (1.3). For all v € [n], let

ePotBug ..+ Bug

2. _
O-(/U) T Z 1 + eﬁv+6v2+.-.+6vs ’
{vz,...,vs}e(["s]i{lv})

Then for any collection of a =1 indices J := {v1,--- ,v,} € ([Z]), as n — o,

A~

[D15([81s — [81,) = Na(0.1).
where D = diag (O(U))Ue[n]z [D]J = dlag (U(U))UGJ; [B]J = (BU)UTE[J]z and [IBS]J = (Bs,v)IE[J]-

To use the above results to construct confidence sets for the parameters, we need to consis-
tently estimate the elements of the matrix Dg. Note that the natural plug-in estimate of o(v)
is

Bs,v“rés,v +~--+Bs,vs
Gy(0)? = 3 c - +32 — (2.14)
{v2,...,vs}€([n]l{f)}) (1+€ B S’US)

s

This estimate turns out to be consistent for os(v), leading to the following result (see Appendix
C.2 for the proof):
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Theorem 2.4. Suppose H, ~ H, ;] (n, B) is a sample from the r-layered hypergraph (B-model
as defined in (1.2). For each 2 < s <1 fix a collection of as = 1 indices Js := {vs1, -+ ,Vsqa,} €
([ans]) Then

Tim P ({;q(ﬁs — BI15) IO (Bs — BI) < B }) “1-a,  (215)
where D? = diag (65 (v)?) ve[n] [D?];. = diag(65(v)?)vey,, for 2 < s <r, and for a > 1, Xoi1 a
is the (1 — a)-th quantile of the chi-squared distribution with a degrees of freedom.

3. GOODNESS-OF-FIT: ASYMPTOTICS OF THE LIKELIHOOD RATIO TEST AND MINIMAX
DETECTION RATES

In this section we consider the problem of testing for goodness-of-fit in the hypergraph (-
model. In particular, given v € R™ and a sample H,, ~ H,, [,)(n, B), with B = (Ba,...,8;), we
consider the following hypothesis testing problem: For 2 < s < 7,

Hy:Bs =~ versus Hjp: (s # 7. (3.1)

This section is organized as follows: In Section 3.1 we derive the asymptotic distribution and
detection rates of the likelihood ratio (LR) test for the problem (3.1). In Section 3.2 we show
that the detection rate of the LR test is minimax optimal for testing in Lo norm. Rates for
testing in Lo, norm are derived in Section 3.3.

3.1. Asymptotics of the Likelihood Ratio Test. Consider the LR statistic for the testing
problem (3.1):

log An,s = En,s('}’) - En,s(/és), (3.2)

where £, s is the log-likelihood function (2.5) and B is the ML estimate (2.6). The following
theorem proves the limiting distribution of the LR statistic (3.2) under Hy.

Theorem 3.1. Suppose v € B(M). Then under Hy,
2logAps—n D

Mg i=
’ V2n

N(0,1), (3.3)

forlog Ay, s as defined in (3.2).

The proof of Theorem 3.1 is given in Appendix D.1. To prove the result we first expand
log A, s around the null parameter v and derive an asymptotic expansion of A, s in terms of the
sum of squares of the s-degree sequence (ds(1),ds(2),...,ds(n))" (see (D.12)). Since the degrees
are asymptotically independent (recall Theorem 2.3), we can show that the sum of squares of
the degrees (appropriately centered and scaled) is asymptotically normal (see Proposition D.1),
establishing the result in (3.3).

Theorem 3.1 shows that the LR test

¢n,s =1 {‘)\n,s’ > Za/?}a (3'4)

where z,/5 is the (1 —a/2)-th quantile of the standard normal distribution, has asymptotic level
«. To study the power of this test consider the following testing problem:

Hy:Bs=7~ versus Hi:Bs =7+, (3.5)
where 4/ #  is such that |y — 4[]z = O(1). Recall that dy = (ds(1),ds(2),...,ds(n))" is the

vector of s-degrees. Also, Cov,[d,] will denote the covariance matrix of the vector of s-degrees

(see (C.2)).
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Theorem 3.2. Suppose (3.3) holds and " as in (3.5). Then the asymptotic power of the test
On,s defined in (3.4) satisfies:

lim E/[¢ns] =

n—0o0

: _ 253
Loaf [y =Afe»n s
Moreover, if n2s4;3H’y’ — |2 — 7€ (0,0), then there exists n € (0,00) depending on T such that

iy =) Covalds](Y =)
,’7 n—00 ﬁ )

where the limit always exists along a subsequence, and
Jim Bofon] = B (M (51| > 20r2) (37)

The proof of Theorem 3.2 is given in Appendix D.2. It entails analyzing the asymptotic
distribution of the scaled LR statistic A, s under H; as in (3.5). Specifically, we show that when

Iy =2 « n=>T", then An,s 5 N(0,1), hence the LR2 ‘tgst (3.3) is asymptotically powerless

in detecting H;. On the other hand, if |y —~[2 » n™ 7, then the A, diverges to infinity,

hence the LR test is asymptotically powerful. In other words, n~% 7" is the detection threshold
in the Lo norm of the LR test. We also derive the limiting power function of the LR test at
the threshold n¥||'y’ —4ll2 = 7 € (0,00). In this case, Ay s LA N(—=n/v/2,1), where ‘effective
signal strength’ 1 is the limit of the scaled Mahalanobis distance between « and «4’, where the
dispersion matrix is the covariance matrix of the degrees. In the next section we will show that
this detection rate is, in fact, minimax optimal.

3.2. Minimax Detection Rate in the L; Norm. In this section we will show that the
detection threshold of the LR test obtained in Theorem 3.6 is information-theoretically tight.
To formalize this consider the testing problem: For ¢ > 0 and v € B(M),

Hy:Bs =~ versus Hp:|Bs—v|2=¢. (3.8)
The worst-case risk of a test function v, for the testing problem (3.8) is defined as:
R(Yn,vy) = Puy (¢ = 1) + sup Py (n = 0), (3.9)
Y EB(M):|y —v]2>e
which is the sum of the Type I error and the maximum possible Type II error of the test
function v¢,. Given H, ~ H,s(n,3s), for some 85 € B(M), and ¢ = ¢, (depending on n),
a sequence of test functions 1, is said to be asymptotically powerful for (3.9), if for all v €

B(M) limy, o R(¢n,v) = 0. On the other hand, a sequence of test functions v, is said to be
asymptotically powerless for (3.9), if there exists v € B(M) such that lim,, o R (¢, y) = 1.

Theorem 3.3. Given H, ~ H,s(n,Bs) and v € B(M), consider the testing problem (3.8).
Then the following hold:

(a) The LR test (3.1) is asymplotically powerful for (3.8), when & > n™ 7"
(b) On the other hand, all tests are asymptotically powerless for (3.8), when € n= T

The result in Theorem 3.3 (a) is a direct consequence of Theorem 3.2. The proof of Theorem
3.3 (b) is given in Appendix E.1. For this we chose v = 0 € R™ and randomly perturb (that
is, randomly add or subtract ¢/4/n) the coordinates of v to construct Bs € B(M) satisfying
|Bs — ]2 = . Then a second-moment calculation of the likelihood ratio shows that detecting
these two models is impossible for € « n~>T". These results combined show that n= "7 is the
minimax detection rate for the testing problem (3.8) and the LR test attain the minimax rate.
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Remark 3.1. (Comparison between testing and estimation rates.) Recall from (2.8) and (2.10)
that the minimax rate of estimating BS in the Lo norm is n~"3". On the other hand, Theorem
3.3 shows that the minimax rate of testing in the Ly norm is n~ " « 5. For example, in
the graph case (where s = 2), the estimation rate is ©(1) whereas the rate of testing is n~1. This
is an instance of the well-known phenomenon that high-dimensional estimation is, in general,

harder that testing in the squared-error loss.

3.3. Testing in the L,, Norm. In this section we consider the goodness-of-fit problem when
separation is measured in the Ly, norm. This complements our results on estimation in L,
norm in Theorem 2.1. Towards this, as in (3.8), consider the testing problem: For ¢ > 0 and

v € B(M),
Hy:Bs =~ versus Hi:|Bs —v|w =c¢. (3.10)

In this case the minimax risk of a test function is defined as in (3.9) with the Ly norm |y — /|2
replaced by the Lo, norm |v" — ~|lo. Then consider the test:

max . /logn
nys 1 {|:68 _7HOO > 2C 31} )
n
where C' := C(s, M) > 0 is chosen according to (2.8) such that
- logn
]P)F-" <||168 - K’HOO <C nsg_1> - 17

for all k € B(M). This implies, E~[¢5%*] — 0. Also, for ' € B(M) such that |y — [ > €,

n,s

x A logn 5 logn
Ey[¢ns] = Py <|ﬂS — vl = 2C n31> =Py (55 e < C n31> -1, (3.11)

whenever & » 1/logn/n*=1. This is because |Bs — 7|0 < C+/logn/ns1 implies,

. . logn logn
18s = Yleo = |7 = ¥'lloo = 1Bs =¥l = € = C\| =27 = 20—,
n n

whenever € » y/logn/n*~1. This implies that the test ¢;'5* in (3.11) is asymptotically powerful

for (3.10) whenever £ » 4/logn/ns~!. The following result shows that this rate is optimal (up
to a factor of v/logn) for testing in the Ly norm.

Theorem 3.4. Given H,, ~ H, s(n,Bs) and vy, 3s € B(M), consider the testing problem (3.10).
Then the following hold:

(a) The test ¢ in (3.11) is asymptotically powerful for (3.10), when & » /287

n78 n87

(b) On the other hand, all tests are asymptotically powerless for (3.10), when € < 4/ ﬁ

The proof of Theorem 3.4 (b) is given in Appendix E.2. Note that in this case minimax rates
of estimation and testing are the same, since the effect of high-dimensional aggregation does not
arise when separation is measured in the Ly norm.
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4. NUMERICAL EXPERIMENTS

In this section we study the performance of the ML estimates and the LR tests discussed
above in simulations. To begin with we simulate a 3-uniform hypergraph B-model Hs(n,3),
with n = 400 vertices and 8 = 0 € R™. Figure 1(a) shows the quantile-quantile (QQ) plot
(over 200 iterations) of the first coordinate of the ML estimate [D]i([8 — B]1) (where 3 is
computed using the fixed point algorithm described in [45] and D is as defined in Corollary
2.2). We observe that the empirical quantiles closely follow the quantiles of the standard normal
distribution, validating the result in Corollary 2.2.

(a) (b) (c)

FIGURE 1. (a) QQ plot of the ML estimate 31, (b) confidence intervals for 3;, and (c)
power of the LR test for the goodness of fit problem (4.1), in the 3-uniform hypergraph
[B-model.

In the same setup as above, Figure 1(b) shows the 95% confidence interval for [3]; over 50
iterations. Specifically, we plot the intervals

- 1.96 _ . 1.96
[B]1 — ﬁa (Bl + ﬁ )

where D is the estimate of D as defined in Theorem 2.4. This figure shows that 47 out of 50 of
intervals cover the true parameter, which gives an empirical coverage of 47/50 = 0.94.
Next, we consider the goodness of fit problem in s-uniform hypergraph B-model:

Hy:B3=0 wversus H;:03+#0, (4.1)

for s = 2,3. For this we simulate H,, ~ Hz(n,~), with n = 250 and v = « - u, where u is chosen
uniformly at random from the n-dimensional unit sphere and « € [0, 1]. Figure 1(c) shows the
empirical power of the LR test (3.4) (over 50 iterations) as « varies over a grid of 25 uniformly
spaced values in [0, 1], for s = 2,3. In both cases, as expected, the power increases with «,
which, in this case, determines the signal strength. Also, the LR test is more powerful in the
3-uniform case compared to the 2-uniform case. This aligns with conclusions of Theorem 3.2,
which shows that the detection threshold of the LR test in the 3-uniform case is n_%, while

for 2-uniform case it is n~1. Hence, one expects to see more power at lower signal strengths
(smaller «v) for s = 3 compared to s = 2.

Acknowledgements. B. B. Bhattacharya was supported by NSF CAREER grant DMS 2046393, NSF
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APPENDIX A. PROOF OF THEOREM 2.1

A.1. Convergence Rate in the Ls Norm. As mentioned in the Introduction, the proof
of Theorem 2.1 involves showing the following: (1) a concentration bound on the gradient of
negative log-likelihood ¢, s (recall (2.5)) at the true parameter value B = (31, B2,...,8;), and
(2) the strong convexity of £, s in a neighborhood of the true parameter. We begin with the
concentration of the gradient V/,, s in both the Ls and the Lo norms:

Lemma A.1l. Suppose the assumptions of Theorem 2.1 hold. Then for each 2 < s < r, there
exists a constant C' > 0 (depending on r and M ) such that the following hold:

van,S(/BS)H% <Cn® and ”Vén,S(ﬁS)Hgo <Cn* 'logn, (A.1)
with probability 1 — O (n%)

The next step is to establish the strong convexity of ¢, ;. Towards this we need to show
that the smallest eigenvalue Amin(V?£,s) of the Hessian matrix V2¢, s (appropriately scaled)
is bounded away from zero in a neighborhood of the true value Bs;. This is the content of
the following lemma, which also establishes a matching upper bound on the largest eigenvalue
Amax (V24 5) of the Hessian matrix V2, .

Lemma A.2. Suppose the assumptions of Theorem 2.1 hold. Fix 2 < s < r and a constant
K > 0. Then there exists a constants C,Ch > 0 (depending on r and M ) such that the following
hold:

CesIB=Bslons=1 < A\ in (V20.5(8)) < Amax (V0 5(8)) < Chyn*~L. (A.2)
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As a consequence, there exists a constants C1,Cy > 0 (depending on r, K, and M) such that
the following hold:

Clﬁsjl < )\min(v26n5<18>) < sup )‘max(vzen,s(ﬁ)) < 0277’871' (A3)

inf
B:B—Bsll2<K B:|B—Bs|2<K

The proofs of Lemma A.1 and Lemma A.2 are given in Appendix A.1.2 and Appendix A.1.3,
respectively. We first apply these results to prove the rate of convergence in the Ly norm in
Theorem 2.1.

A.1.1. Deriving the Ly Norm Bound in (2.8). To begin with suppose the ML equations (2.7)
have a solution B = (832, ...,0,). This implies, V¢, s(Bs) = 0, for 2 < s < r, where ¢, ; is as
defined in (2.5). For 2 < s <r and 0 <t < 1, define

Bs(t) :=tBs + (1 —1)Bs,
and gs(t) := (BS — ,BS)TV&LS(,BS(t)). Note that V{, ¢(8s(1)) = VﬁmS(BS) = 0. Hence, by the
Cauchy-Schwarz inequality,
195(1) = g5(0)] = [(Bs — Bs) " Vins(Bs)| < 18 = Bsll2 - [Vn,s(Bs)2- (A.4)
Also,

9o(t) = (Bs — B5) "V 5(Bs(1))(Bs — Bs) = Amin(Vns(Bs(1))) 85 — B3 (A.5)

We now consider two cases: To begin with assume s > 3. By Lemma A.2, given a constant
K > 0 there exists a constant C; > 0 (depending on r, K, M) such that

inf Amin (V0. > Oyns L A
g1k i Amin (Vs (8)) = € "

Note that [8s(t) = Bsll2 = [¢]|8s — Bs[l2- Then
1

195(1) = 92(0)] > ga(1) — ga(0) = j gl ()t

min{l,%}
>f 1Bs—Bsl2 gL (t)dt

0
R K
> Cin® 1B — B[z min 4 1, =———— ¢,
HIBS - ﬁs”Q
where the last step follows from (A.5) and (A.6). Therefore, by (A.4) and Lemma A.1, with
probability 1 — O(#),

1

- (A 1
mln{Hﬁs - BSHQ?K} gr,K,M ns—1 ! Hven,S(IBS)”Q gr,K,M P (A7)

Since K > 0 is fixed and the RHS of (A.9) converges to zero for s > 3, the Ly norm bound in
(2.8) follows, under the assumption that ML equations (2.7) have a solution.

Next, suppose s = 2. Since [B2(t) — B2/l = |t]|B2 — B2] . Since ¢ € [0,1], by Lemma A.2,
)\min(vzgn,Q(/@Q(t>)) > Cie—Q\tH\ﬁz—ﬂzHoon > 016—2\\32—52\%”, (A.8)

for some constant C7 > 0 depending on M. Then
1

192(1) — g2(0)] > ga(1) — g2(0) = fo gh(t)dt

> OBy — Bs| 3¢ 2182 Bzl (by (A.5) and (A.8))
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Therefore, by (A.4) and Lemma A.1, with probability 1—o(1),

12 — Ballae 218 ele < |Vl a(Ba)] < (A9)
1n
for some constant C’ > 0 depending on M. Hence, if there exists a bounded solution to (2.7),
the Lo norm rate will follow for s = 2.

To complete the proof we need to show that bounded solution to equation (2.7) exists, To
this end, for 2 < s < r, denote by Dy, the set of all possible degree sequences in an s-uniform
hypergraph on n vertices. Moreover, let Rs be the set of all expected degree sequences in
a hypergraph on n vertices sampled from the s-uniform model (1.3). The following result
shows that any convex combination of s-degree sequences in D, can be reached by the limit of
expected degree sequences of the s-uniform hypergraph B3-model. This was proved in the graph
case (s = 2) by Chatterjee et al. [10, Theorem 1.4]. Here, we show that the same holds for all
2<s<r.

Proposition A.1. Fiz 2 < s < r and let Dy and Rs be as defined above. Then conv (Ds) = R,
where conv (Ds) denotes the convex hull of Dy and R is the closure of Rs.

The proof of the above result is given in Appendix F. Using this proposition we now show
the existence of bounded solutions of the ML equations (2.7). Note that by Proposition A.1,
given H,, ~ H,, ,1(n, B) the s-degree sequence (dy(1),...,ds(n)) € Dy = R,. This implies, there
exists a sequence {x;}i>0 € Ry satisfying

tlirg)a:t = (ds(1),...,ds(n)).

Since x; € R, there exists {,B(t) . ,[%7(})} such that

BIABD, 488,

D N | e e (A.10)
{va,...0s}e (M)
for 2 < s < r. In other words, for each ¢t > 0, {BY/), e ,B,(,t)} is a solution of the ML equations

(2.7) with (ds(1),ds(2),...,ds(n)) replaced by x;. By the previous argument, there exists C' > 0
(not depending on t) such that with probability 1 — o(1),

mas |80 < C.
for all ¢ = 0. Therefore, the sequence {(Blt ,Bét), e ,Bﬁt))} >0 has a limit point. This limit point
is a solution to (2.7) (by taking limit as ¢ — oo in (A.10)) and is bounded. Finally, since ¢, s is
strongly convex for 3 € B(M) (see (A.2)), if the gradient equations have a bounded solution, it
is the unique minimizer. Therefore, there exists a unique bounded solution to (2.7) which is the
minimizer of £, s.

A.1.2. Proof of Lemma A.1. Recalling (2.7) note that, for v € [n], v-th coordinate of the gradient
of V4, s is given by:

Vi s(Bs)y = Elds(v)] — ds(v) (A.11)

where

eBs.vFBs vy + .t Bs, s

Elds(v)] = 2, 1+ eBsvtBovgtrtBsvs (A.12)

{va,.. ,vs}e( " \{” )
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Since ds(v) is the sum of O(n*~!) independent random variables, by Hoeffding’s inequality
and the union bound,

_ 1
P (HV&L’S(,BS)H%O > 4C5 myn® Hog n) < et

for some constant Cs s > 0 (depending on s and M). This establishes the second bound in
(A.1).

Next, we prove the first bound in (A.1). Denote by B" := {x € R" : |x|2 < 1} the unit ball
in R". By [48, Lemma 5.2], we can construct an 3-net V of B" satisfying log |V| < Cyn for some
constant C; > 0. Now, for any unit vector @ = (ay,as,...,a,)’ € B" and the corresponding
point b = (by,bs,...,b,)" €V, recalling (A.11) gives,

Z 0,V s(Bs)o = Y au ( = dy(v)) = Y bu (E[ds(0)] = ds(v)) + A, (A.13)

v=1 =1 v=1

e

where

< ;J 2, (Elds(v)] = ds(v))* = §|\wn,s<ﬁs>|\2, (A.14)

by the Cauchy-Schwarz inequality and the fact that |a — b| < 3. Using the above in (A.13)
gives,

n

Z ayVlys(Bs)o < 2 by (E[ds(v)] — ds(v)) + %HV&LS(QS)H?- (A.15)
v=1

v=1

Maximizing over a € B"™ and b € V on both sides of (A.15) and rearranging the terms gives,

[V6n,5(85) > < 2max Z by ( — ds(v)) . (A.16)

For e = (u1,us, ..., us) € [n]* denote Bse = (Bsuyy Bsuss - - -5 Bsus) |- Hence, by (A.16), Hoeffd-

ing’s inequality, and union bound,

P (| V4ns(8:)13 > 4C°n°)

< P (2 —ds(v)) > 20n§>
n Blel .
=Y P> > by{m@el—l{eeE(Hn)}} > 2Cn2

beV v=1 ee([n]) ce
S

202n
< Z 6_2;’;21 b2 < 201716—20271 N 0,
beV
by choosing C' > C to be large enough. This proves the first inequality in (A.1). O
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A.1.3. Proof of Lemma A.2. For e = (uy,us,...,us) € ([TSL]) and B8 = (B1,052,...,0n) € R™,
denote Be = (Buy» Buss - - - Pu,) |- Recalling (2.7) note that, the Hessian matrix V24, s can be
expressed as:

ﬂT
e
V2,8 Z Z 1+ ohil) g Tl T1{u,v e e},

u,ve[n) ee(["]

where 7, is the u-th basis vector in R, for 1 < u < n.
Note that for 8 € R™ and 3, € B(M),

117 Be| < 5[Blo0 < 51850 + 5185 — Blleo-

Hence,
.
L —su+—plz) « € P
- sTRle) < ————— 1. A17
46 (1 + elTﬁe)Q ( )
For x € R", consider

(Al

mTV2€n7S(ﬂ)x = Z mxuxvl{u, Ve e}
wveln] ee () ere
Bl
e e
- Z (17 )2 Z Ty xy{u,v € e}
ee( ere u,veln]
Bl ?
e e

I
—
_|_
Q
=
0
=
e
8
e
—
~
IS
m
0
——

\%

L s(M+18s—B0
Lesarioat (S sauee ] |

ee([n]) ue[n]

E]

where the last step uses (A.17). Observe that for any = € R"
Z xul{u € e}
ee([z]) u€ln
where

(LT (5

where I,, is the n x n identity matrix and 1 = (1,1,...,1) . Similarly, we can show from (A.17)
that for any x € R

=YY menli{uvee) - (( -

u,ve(n) EE([:])

x' 'V, (B)x <x'Lzx.
Thus, for 3 € R"

16 MHBBLD o (£) < Ain(V2H0,(8)) < AV (8)) < A (E). (A1)
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Note that L is a circulant matrix with 2 non-zero eigenvalues:

() = () -(52)

Hence, there exists constants C7,Cy > 0 (depending on r), such that

n—l _ n—l n—2 _
(s—l) <C{n*7! and (5_1> — (5_2> > CY L

This implies, from (A.18), that there exists constants C7, C% > 0 (depending on r and M) such
that (A.2) hold. The result in (A.3) from hold from (A.2) by noting that ||8s — 8|l < |35 — 8|2

A.2. Convergence Rate in the Lo, Norm. Suppose H,, ~ H, [,j(n, B) as in the statement
of Theorem 2.1. From the arguments in Appendix A.1 we know that, with probability 1 — o(1),
the ML equations (2.7) have a bounded solution B = (,31,[92, - ,Br), that is, an,s([;s) =0,
for 2 < s < r, and maxocs<r ||Bsllc = O(1). To establish the rate in Ly, norm we decompose
the likelihood for the s-th layer as follows.

ln.s(B) = Z log (1 - +...+/3/US) _ i Buds(v)
v=1

{vl,vg,..,,vs}e([z])
- log (1+ ¢ 1) —1{ee E(H,)}B]1
2 fes(iee) }
= g;:,s(ﬁﬂﬁﬂ) + g’r:,s(ﬁﬂ)a (Alg)
where ;Bﬂ = (617 e 76u—17 ﬁu—i—h e 7Bn>7
BB = Y {log (1+7) — 1fe e B(H,)}BI |

ee([z]):uee
lriBa) = Y] {1og (1 + eﬁ§1> “1{ee E(Hn)}ﬁ;rl} . (A.20)
ee([z]):uée
Fix a constant K > 0 and define

Bia = arg €5 (Ba), (A.21)

min
Ba:|Ba—Bs,al2<K
where Bsa = (Bs1s-- - Bsu—15Bsu+ls---,Bsn). This is the leave-one-out ML estimate on the

constrained set |8z — Bsall2 < K. First we bound the difference (in Ly norm) of constrained
leave-one-out ML estimate defined above and the leave-one-out true parameter G ;.

Lemma A.3. Let B;’ﬁ and Bsu be as defined above. Then, for u € [n], with probability 1 —o(1),

~ 1
. 2
weln] 1854 — Bs,allz Ss,m,k 2

(A.22)
Proof. To begin with, observe that
s (Bsa) = € (B20)
= G (Bo) + (B~ Boa) Vi (Bo) + (Bl — Bui) V2L (B) (B — o),
where |8 — Bal2 < 824 — Bsa
1826 — Bsall2 - [Vl ((Bsa)l2 = —(B2a — Bs,a) "V, o(Bsa)

o < K. This implies,

9 -
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(B34 — Bsa) 'V, (B)(B2 4 — Bsa). (A.23)

[\D\H

By Lemma A.2,
(Bsa— Bsa) V2o (B)(Ba — Bsa) R 1850 — Boal*n® .

Also, by Lemma A.1, |V, (Bsa)l3 <smx n® with probability 1 — O(#) Plugging in the
above inequalities in (A.23), and using the union bound we get (A.22). O

Next, we bound the difference between the constrained leave-one-out ML estimate ﬂs 5 and

the (unconstrained) leave-one-out ML estimate ,35,u = (6371, A 65#_1, Bs7u+1, A stn).
Lemma A.4. Let Bj;ﬂ and Bsﬁ be as defined above. Then, with probability 1 — o(1),
18— Bi%

~6 ~ )
ma 1854 — Bs,alz <s,m.k e ey

: (A.24)

where Xe = 1{e € E(H,)}, ¥(z) = %, and Bse = (Bs,ulvﬁs,ugv-”7Bs,us)—r7 for e =
(ui,ug,...,us) € [n]°.

Proof. By the definition of 35 ; (recall (A.21))
g;,s(lés,ﬂ) = E;,s(/ég,ﬁ)
= lns(Bsa) + (B — Bsn) 'V (Bsa) + Bz — Bsa) 'V, (B)(Bea — Bsa),
where 9 < HB;a — Bsal2 Note that HBgﬂ 3 — O(1), since |Bs] = O(1) and
HBS@H = O(1). Then by Lemma A.2,

20 2 HV&;S(BS,TA)H%
H/Bs,a - ﬁs,ﬂ”% s, MK w (A.25)

Since Vi, 4(Bs) = 0, that is, 9,3 ln.s(Bs) = 0, for v € [n]. Hence, we have from (A.19),

0 . 6 .
7&;3(:65,11) = n S(,BS U|Bs u) = Z {Xe - @Z)(lT/@S,E)}a
By aﬂv ee([t:]):{u,v}ee

where ¥ (x) := This implies,

1+6z'
IVt (Bsa) 3
2
= ) > {Xe— (B}
ve[n]\{u} ee([z]):{u,v}ee
r 2 2
Y Y {Xe—v(ATBie)} | + S w1 Bee) — (17 Bie)}
ve[n]\{u} ee([z]):{u,v}ee ee([z]):{u,v}ee
) 2
S > (Xe—v(B} | 0B - Bl (A.26)

ve[n]\{u} ee([:]):{u,v}ee

using

W1 Bse) — V(1 Bse)| S 117 Bse — 1 Bsel < 185 — Bsl|%-
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By (A.25) and (A.26), to prove the result in (A.24) it suffices show the following holds with
probability 1 — o(1),

2
T s—1
pmax ) S {lfee B(H,)} — (B} | 0o (A.27)
ve[n]\{u} ee([z]):u,vee
This is proved in Appendix A.2.1. ]

We now apply the above lemmas to derive the bound in the L, norm. To begin with note
that since ¢, s(8s) = ming, £, s(Bs),

K:L_,s (68@‘1@3,&) + 67_;,5 (Bs,ﬂ) = en,s (Bs) = e;;s(Bs,u‘/és,ﬂ) + e;,s(/és,ﬂ)'
The above inequality implies
gg,s(/@s,u’Bs,ﬁ)
= grt,s(BS7u|BS,ﬂ)

N A 0 - 1 4 02 ~
= grts(/@s,u’/gs,ﬁ) + (5s,u - Bs,u)%e:{,s (55@‘:85,71) + §<Bs,u - Bs,u)Q(}iBge:{,s(ﬁLgs,ﬂ)y
where B is a convex combination of BAS,u and fBs,. Therefore,
A 4|6L£’rts(/83,u Bs,ﬁ)|2
(ﬂs,u - Bs,u)2 < By . (A28)

St (1o P

From arguments in Appendix A.1 we know that with probability 1 — o(1), HBS — Bslloo < \|Bs —
Bsl2 < 1. Note that for 3 € R™ such that |3 — Bs|e < 1, we have 3]s < 1 and hence,
|17 8| < 1. This implies, 9(17Be,s)(1 — (17 Be,s)) = 1 and hence,

32

(7826;3(@38,@): S AT Be) A — (1T Be)) 2 07,

ee([z]):uee

where Bs = (Bs,la s 7Bs,u717 Bs,ua Bs,qula ceey Bs,n)—r- Hencev (A'28) implies,

|25t (BoalBot) 2

(Bsw — Bsw)® < o (A.29)
Now, we bound |35-6f ((BsulBsa)|?. For this define
B5 = (1B2alts - [B2alumts Bous [Baurts- - [Boala) -
Then we have
ot BealBes)] = ee(%uee{xe (T Ben)}| < Ta(w) + To(w) + To(w),  (A.30)
where S
Ti(w)i=| D, {Xe=v(17Bes)}, Tolw:=| >, {&(178:,) —v(17Bes)});

ee([z]):uee ee([Z]):uee
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and

TB(U) = Z {¢(1T52,5) - w(lTBe,s)}"
EG([Z])ZUGG
Note that since {Xe}ee([n]) are independent and bounded random variables, using Hoeffding’s

inequality and union bound gives

max 77 (u) < +/n*"Llogn,

ue(n]

with probability 1 — o(1). Next, we consider 75(u). By Lemma A.3, with probability 1 — o(1),

max Th(u) < max Z { Z |Bsw — [B;&]“} = max Z ns_2|BS,v - [Bg,ﬂ]v|

ue[n] ue[n] ee(["]):'uEe vEe ueln] ve[n]\{u}

_3 A
sn2max |Bsa — Bigla s vl
Uu

€[n]

(e}

A similar argument shows that, with probability 1 —o(1), max,e[,) T5(u) < ns3 |Bs.a — Bsﬁ 2.
Combining the bounds on T3, T» and T3 with (A.29) and (A.30) gives, with probability 1 —o(1),

N logn — MaXye[y] 18s,a _BS,E
HBS - BSHOO < \/; + \/ﬁ

Applying (A.31) in (A.24) now gives, with probability 1 — o(1),
o A [ 1 18— Bele
gé%fj H:Bs,ﬂ — Bsal2 Ssm,i sl + Vi1

<MK 1 n maXye[n] H/B(sj,ﬁ - :38711”2 < 1 ‘
sV ns—l W ns—l

Using this inequality with (A.31) gives, with probability 1 — o(1),

. logn
1Bs = Bslloo Ssmx 4/ o

establishing the desired bound in (2.8).

2

(A.31)

A.2.1. Proof of (A.27).

Proof. Denote by B" ™! = {x e R""! : ||z|, < 1}. Using [48, Lemma 5.2], we can construct an 3-
net V; of B" ! satisfying log |V1| < Can for some constant Co > 0. Now, for any u € [n], any unit

vector @ = (@1,@s2,...,a,_1) € B" ! and the corresponding point b = (by,ba,...,b,_1)" € V1,
178
- e
2 Ay Z {Xe_ 1+61Tﬁe}
ve[n]\{u} ee([z]):u,vee

178
~ e e
= Z b’U Z {Xe - m:ﬂﬁe} + Au, (A32)

ve[n]\{u} ee([z]),u,vee
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where

N e17Be
Ayi= >0 (ai—b) > {X‘f—mme}

ve[n]\{u} ee([:]):u,vee

Proceeding as in (A.14), for all u € [n], we can show

178
A<z | Y 2 {Xe - 1_T_61,6’}

ve[n]\{u} ee([z]):u,vee

N | =

Maximizing over @ € B"~! and b e V; on both sides of (A.32) we get

2

elT Be = elTﬁe
> 2 {X_Hﬁ} <2max D, by ) yXe—m o

velnl\{u} | ee(I))u,vee PV e} | ee(I))uvee

As the above relation holds for all u € [n] we get

2
1T Be
e
mx 30X - phi)
ve[n]\{u} | ec ( )uvee
~ 61 ﬂe
< 2 max max Z by Z Xe — i, . (A.33)
ueln] bev, ve[n]\{u} ee([{b]);u,vee Lt o
Hence, using ( ), Hoeffding Inequality and union bound we get
2
178
e _
maX Z {Xe_mfr,ﬁe} >4K2n8 1
\{u} ee([:’]>:u,v€e

n - elTBe s—1
Z ]P) Z b’U Z Xe — m > QKTL 2
u=1 pey; ve[n]\{u} ee([z]):u,vee

2K2n

n
n12
SDIDIEEL

%

o2
<n202”6 2K*n —>O,

S

—
o
,_.

for K large enough. O

APPENDIX B. ESTIMATION LOWER BOUNDS: PROOF OF THEOREM 2.2

The lower bound in the Ls norm is proved in Appendix B.1 and the lower bound in the L,
norm is proved Appendix B.2.
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B.1. Estimation Lower Bound in the Ly Norm: Proof of (2.10). For v € R", denote the
probability distribution of s-uniform model Hy(n,v) by P5. To prove the result (2.10) recall
Fano’s lemma:

Theorem B.1 ([47, Theorem 2.5)). Suppose there exists (0, --. ) e R™ with |[v9)|| € By
for all 0 < j < J, such that

(1) H’Y(j) —’Y@)HQ =>2s >0 forall0<j#0<J,

(2) %23‘]:1 KL(P,t),Pyo) < alogJ,
where a € (0,1/8). Then

VI ( [ 2a )
minmaxP (|4 — >38) > 1—2a— . B.1

To obtain 4, ..., ~(/) € R as in the above lemma we will invoke the Gilbert-Varshamov
Theorem (see [47, Lemma 2.9]) which states that there exists w©®, ... w(/) € {0,1}", with
J = 2"/8 such that w©® = (0,---,0)" and

n
87
forall 0 < j # £ < J. For w©® ... wl/) € {0,1}" as above and § € (0,1/8) define,

lw® — W@ > (B.2)

7(3) :5nw(J)’ f0r0<]<<]a

where ¢, = 16C’n7%7 with C = C(d,s) > 0 a constant depending on ¢ and s to be chosen
later. By (B.2) we have

s—2

[y =4Oy = 200777

Now,

KL(P,0), Pyo)

> Hw(])Hl n H“"(])Hl
= P (teg) log (24 (tey,)) + (1 — 4 (tey)) log (2 (1 — o (te, ,
§)< " )( >{ (ten)log (29 (ten)) + ( (ten))log (2 ( (5)))}

s—t

where ¥ (x) = % is the logistic function defined in Lemma A.4. By a Taylor expansion,
for small enough x > 0,
2
x
() log(2¢(2)) + (1 — ¥(2))log(2(1 — ¥(2))) = o + O(z?).

. () —Jlew @ .
Hence, using (H“’Z ”1) (" ‘L“itj ”1) <s n® gives

J
1
7 Z KL(P,Y(J'),]P),Y(O)) <s 1”&‘9672Z <s C?n < 0 log J,
j=1

for C = C(4, s) chosen appropriately. Hence, applying Theorem B.1 and taking J — oo in (B.1)
gives

min max PP (H‘Ay — Y2 = Cn_%) >1-26.
¥

This completes the proof of (2.10).
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B.2. Estimation Lower Bound in L,, Norm: Proof of (2.11). Choose 2 points v,~’ € R"
as follows: v =0 and 7' = (7,75, - --,7,) such that

, fonT iri=1,
K 0 otherwise,

for some constant C' > 0 to be chosen later. Clearly, ||v — /|| = Cn~"% := e. Denote

the probability distribution of the s-uniform models H,(n,7) and Hy(n,~v') by Py and P,
respectively. Observe that

KL(IP’.,,IP&,/)zé (% [log{(l;efa)}+log{;(1+e€)}]. (B.3)
ee(I"):1ee

By Taylor’s theorem, we get

(1+€°) 1 A o 5 C? 1
log{ 58 + log 2(1+e) =¢ +O(5)_ns—1+0 o)
Hence, from (B.3),

KL(P~,P,/) = LsC? + o(1),
for some constant Ls depending on s. This implies, by Le Cam’s two-point method (see [47,

Theorem 2.2]), for § € (0,1),
2
max {e_iL“"CQ, % - % LC } >1-06,

\Y

. R 1
H};nm’anP <|’Y Yo =C ns—l) 2

by choosing C', depending on  and s, small enough.

APPENDIX C. PROOF OF THEOREM 2.3 AND THEOREM 2.4

We begin with the proof of Theorem 2.3 in Section C.1. The proof of Theorem 2.4 is given
in Section C.2.

C.1. Proof of Theorem 2.3. Recall that, for 2 < s < r, ds = (ds(1),ds(2),...,ds(n))" is the
vector of s-degrees. The first step in the proof of Theorem 2.3 is to derive a linearization of 3
in terms of the s-degrees as in Proposition C.1 below. The proof is given in Appendix C.1.1.

Proposition C.1. Fiz 2 < s < r. Then under the assumptions of Theorem 2.3, with probability
1—o0(1) asn — oo,

R _ logn
16, - B~ Bk - Bl - 0 (7). (1)
where 3, s = ((05(u,v)))uve[n] 18 @ n X n matriz with
1765 e 1765 e
— e . 2 _ e
os(u,v) 1= []Z: m and os(u,u) := os(u)” = Z (1t el e (C.2)
ee( " ):u,vee ee([z]) uce
where o4(u)? is also defined in (2.12).
Next, define the matrix T'n s = ((7s(t,v)))y,ve[n] as follows:
 Hu=v}
Vs(u, v) 1= W‘ (C.3)

The following lemma shows that it is possible to replace the matrix E;}g in (C.1) with the matrix
I',, s asymptotically. The proof of the lemma is given in Appendix C.1.2.
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Lemma C.1. Suppose 3, s and Ty, 5 be as defined in (C.2) and (C.3), respectively. Then under
the assumptions of Theorem 2.3,

1
|Ts — E;éHOO <0 (ns) . (C4)
where | Al = max, ye[n] |auv| for a matriv A = ((auv))uwe[n)- Furthermore,
— _ 1
| Covl(Ty. ~ B 2) (@, ~ B < [T = Zible + 0 (1) (©5)

To complete the proof of Theorem 2.3, consider Js € ([CZ]), for as = 1 fixed. Proposition C.1
and Lemma C.1 combined implies,

~

1(Be — By, — [Tl — E[du])] oo = O (bg”) ,

ns—l

with probability 1—o(1). Now, recall from the statement of Theorem 2.3 that Dy = diag (0s(v))ve[n]-
From (C.2) observe that max,e[, 05(v)? = n*1, since |Bs]c < M = O(1). Hence,

DB = )1, ~ DT~ Bl = 0 (FEL).

Note that for v € Jg,

o5(V)[Tns(ds — E[ds)]]w =

Therefore, from (C.6),

(D15, ((Bs — B)]1.) = ((ds(”i/;ri[ﬁ(ﬁ”)) Lo (j;)
§ veJg

B N, (0,1),

using the central limit theorem for sums of independent bounded random variables. Since ,[:15
are independent across 2 < s < r, the result in (2.13) follows.

C.1.1. Proof of Proposition C.1. For 2 < s < r and e = (uj,ug,...,us) € ([Z]), let Bse =
(Bsurs Bsugs -+ -5 Bsuy) | and Bs,e = (BSM,BASM, e ,BS,US)T. Moreover, 1 will denote the vector
of ones in the appropriate dimension. To begin with, (2.7) and (A.12) gives, for v € [n],

17 Bse 1785
el Ps el Ps
ds(v) - E[dS(U)] = Z {1 N 611—’3578 - 14+ el Bee } (C7)
ee([z]):vee
Note that for e € ([Z]), by a Taylor expansion,
TA T T
e]- ﬁs,e _ 61 ,Bs,e B e]- Bs,e ITB _ 1T5 + R
1 T elTﬁs,e 1 + elTﬂs,e - (1 + elTﬁs,e)2 s,e s,e s,e»

where . )

Reel < 5|17 Bue =17 Bue| <0 18, = B2 (C8)

Then, from (C.7),
4s(v) = E[dy(0)] = [Ens(Bs — B)] + Russ, (C.9)
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where R, s = Zee(["]):vee Rs.e. From (C.9), we have

Bs - ﬁs = Er:,ls(ds - E[ds]) + EﬁéRmS? (ClO)
where R, s = (Ri1s, Ras, - - ,RmS)T. Note that from (C.8),
|RU,8| < Z |Rs,e| <r 77}71”35 - ﬁs”?o (Cll)

ee(["]) vEe

To bound |, L Ry, 5«0, note that for v € [n],

1255 sl < [T sRslol + () — Tos) Ruslol- (C.12)
Observe that
R’U S
Fn s slv = .
CocBode = 0%

Using o4(v)? = n®~!, (C.11), and (2.8) gives,

- logn
PRl < 18- % = 0 (122).
with probability 1 — o(1). Further, by Lemma C.1, (C.11), and (2.8),
|[(27;,1s - Fn,S)Rn,S]U| < H(Ev;,ls - Fn,S)”OO X nHRn,SHOO < HBS - Bs“go

<O<losgﬁ>,
n

with probability 1 — o(1). Hence, by (C.10) and (C.12) the result in (C.1) follows. O

C.1.2. Proof of Lemma C.1.

Proof of (C.4). Denote An,s =T, E;s = ((0s(w;0))uveln]y Zns = In — BpsTns =
((2s(u,v)))u,vefn]> and Oy, s = Z = (B4 (u, ))>u,ve[n]- Then
Ams = (F”vs - Eg,ﬁ)(In - ,S) (In - 2n,sI‘n,s) = An,sZn,s - ®n,s-

Hence, for u,v € [n],

M:

ds(u,v) = 0s(u, w)zs(w,v) — Os(u, v)

S
Il
fu

IS
S

I
1=

0 (u, w) {1{w =0} =) as(w,b)'ys(bM} — 0s(u, v)

b=1

g
Il
—

Il
i

g
Il
—

8y (u, w) {1{11} = v} as(w,b)l{”:;’}} — 0, (u,v) (by (C.3))

b=1 7s(v)

= Y w, W w=v _as(w,v) —0.(u,v
_1;155( ) ){1{ } o2 (0)? } 0s(u,v)
= — N u, W w os(w, v) —0.(u.v
- wzzl(ss( ’ ){1{ 7 } s(v)2 } 98( ’ )7 (013)

since D ] \{w} O'S(U),
of ®n,s =I,:Z ,s4in,s

/'\Q“
/\\/
/'\
\_/
~—
~—

£

<

m

3

fladh
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Lemma C.2. For u,v,w € [n],

max {[0 (u, v)], |05 (1, v) — Os(v, w)[} S 7222 (C.14)
Us,minn
where 0g min 1= Milj<y<yp<n Ts(U, V) and 05 max 1= MaX]<y<p<n Ts(U, V).
Proof. Note that ®,, =T, ;Z,, s = TI';, s — T, 43, ;T . This means for u,v € [n],
Os(,v) = Ys(u,0) = > ys(w, 2)os(,y)7s(y, v).- (C.15)
z,y€[n]

Then recalling the definition of vs(u,v) from (C.3) gives,
1 u=2 1 y =v o-S QT, y
D1 vsluz)os(@,y) sy, 0) = ) { }1{ You(,y)

7,yeln] z,yeln] os(u)fos(v)”
_ os(u,v)
os(u)?os(v)?
Hence, from (C.3) and (C.15),
os(u,v)1{u # v O s max
10 (u,v)| = ;S(u))za{s(z; } < Ug,r;in’rﬂ‘
This completes the proof of (C.14). O

Now, for u € [n], let T2, m € [n] be such that

ds(u,m) = mf[i)j 0s(u,w) and ds(u,m) = m%n] ds(u, w).
we|n wEe|n

The following lemma gives bounds on ds(u, m) and d4(u,m).

Lemma C.3. For u € [n],

M=

ds(u, w)os(w,u) = 0.

Il
—

w

This implies, 0s(u,m) = 0 and 0s(u, m) < 0.

Proof. Note that >, _; d5(u, w)os(w,u) is the u-th diagonal element of the matrix A, s3, s =
Iy, 3, — I, (recall that A, s =T, 5 — 2;7}9). Note that the u-th diagonal element of I'), 43,

is given by
H{u=w
Z s (u, w)os(w, u) = Z {()2}05(w,u) =1,
we[n] we[n] Is(t
since os(u,u) = o(u)?. Hence, u-th diagonal element of A,, (3,  is zero. O

Now, recalling (C.13) note that
(58( 17) - 5S(u7m) + (Hs(u,m) - es(uvm))

Hw # mjos(w,m)  L{w #m}os(w, m)
) {HELE i

S
3

Il
i

1

w

(C.16)

[l
=

Hw # mjos(w,m)  L{w # m}as(w,m)}
os(m)? 0s(m)? ’

(b 0) = 8.0, 10) |

w=1
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since 3 epn) fmy Os (W, m) = os(m)? and 2weln)\my Os (W, T2) = os(m)?. Define

1 s , M 1 m s ’*
Q:={weln]: {ws«'ﬁm}a(wm)> {w;«ém}ig(wm) |
os(m)? os(m)?
and A := |Q|. Then, we have

3 (B, w) — 8, m))

{1{10 # mjos(w,m) 1w # m}as(wam)}

fre os(m)? os(m)?
_ 2weq Os(w,m)  ¥eq Hw # Moy (w,m)
< (0s(u, m) — d5(u, we — Swe — . C.1r7
() B, ) { 2222 Pl 17
Note that
Dwen Os(w,m) _ 2wen Os(w,m) _ 1
os(m)? 2weq Os(w, m) + Zwe[n]\(ﬂ Um) Ts (w, m) 1+ Lwe[n)\(©@ Um() s ()“”m) ’
weQ Ts (W,
since m ¢ ). Now, observe that
Zwe[n]\(ﬂum) Us(w? m) < (TL — A= 1)Us,min
Zweﬂ O'S(U), m) ~ AO's,max
This implies,
Z e Os (wv m) )\Us max
w < : . C.18
Og (m>2 )\Us,max + (7’L - - 1)(Ts,min ( )
Similarly,
Dweq Hw # mos(w,m) > cq Hw # mjos(w,m) 1
os(m)2 Y e Hw # mbog(w,m) Yweln)\ Hw#m}os(w,m)
() St 10 7 los(0m) 1 | Speana LAl
Therefore, since m € 2,
2wepnpo Hw = m}pos(w,m) _ (0= N0 max
3w Hw #mos(w,m) (A= 1)0smin |
Hence,
Yrwen Hw # mog(w,m) (A= 1)05 min
w > ! . C.19
os(m)? (A —=1)0smin + (7 — X)0s max ( )
Applying (C.18) and (C.19) in (C.17) gives,
1w # mjoy(w,m) 1w # o, (w,m)
1;1(65(% w) — ds(u,m)) { oo (m)? o2 (72
< (0s(u, m) — 0s(u, m)) f(N), (C.20)

where
)\Us,max ()\ - 1)O's,min

A = _ .
f( ) )\Us,max + (n —-1- )\)Us,min ()\ - 1)Us,min + (TL - )\)Us,max
Note that f(\) attains maximum at A = n/2 over A € (1,n — 1) and

NOs max — (n - 2)05 min
n/2) = : —.
f( / ) NOsmax + (TL - 2)Us,min
Therefore, from Lemma C.2, (C.16), there exists a constant C' > 0 such that (C.20),

__ NOs max — (7’L - 2)(75 min __ Cas max
Os(u,m) — ds(u, m) < : : Os(u,m) — 0s(u, m)) + —,
S( ’ ) S( 77) nO's,max + (n — 2)0—5,min( S( ’ ) S( 77)) Uimng
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This implies,

Co's,max(no's,max + (n - 2)Us7min) < 05, max

_ 3 2 ~ 3 2°
2(n 2)05,minn Us,minn

0s(u, m) — ds(u, m) <

Hence, from Lemma C.3,

05, max

3 . n

1
S S

s
s, min n

max |ds(u, w)| < ds(u,m) — ds(u, m) <

1<w<n o 2

since ogmin = n°72 and o max = n° 2, using |Bsllo < M = O(1). This completes the proof of
(CA4). O

Proof of (C.5). Define
Un,s = Cov[(Tns — Eg,i)(ds —E[d;])] = Cov[Ans(ds — E[ds])],
since A, s =TIy 5 — 2,;;. Observe that
Un.s = A E[(ds — E[ds])(ds — E[ds]) 1A,

= An S sA

= (T ns) ~ Dos(Tn = ZnsTs)

= (In ns) — On, (C.21)
since @, s =T, sZ, s and Z, s = In — EmSI‘n s- By Lemma C.2,

Us ,max 1

|©s,

since o5 min = n°2 and o max = n°"2, using Hﬁsnw < M = 0O(1). By (C4), (C.21), and (C.22)
the result in (C.5) follows. O
C.2. Proof of Theorem 2.4. For « = (z1,22,...,z,) € R” and u € [n] define the function

lTa:e

e
gu(ﬁc) == Z (1+61Tme)2’
ee([:]):uee

where Te = (T4, Tuy, - - -, To, ) for € = (ug, ua, . .., us). Then recalling (2.12) and (2.14), o4(v)? =
90(Bs) and 64(v)? = g,(Bs). Hence, by a Taylor expansion,

elTﬁAs,e elTBs,e
|JS(U) —os(v ) | = |gv(68) 9v(Bs)| = [; (1+ elTﬁs,e)Q - 1+ 61T5378)2
ee( n ):uee
<r 1185 = Bco- (C.23)
Recalling the definition of Jg = {vs1,..., Vs 4.} from Theorem 2.4, this implies

T

Z ([(Bs - IBS)]JS)T[ﬁz]JS([(BS - /Bs)]Js)

s=2

i Mﬁ i M%

Z 5' 'Uaj Bs Va ,Bs,vaj )2
Z 'Uaj Bs Va /Bs,vaj )2 + Z Z (&S(U(lj)Q - Us(va]-)2)(/és,va]- - 58,%]- )2
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D
- XQZZ:2 Qs + OP(l)’
by Theorem 2.3, (C.23) and (2.8). This completes the proof of (2.15).

APPENDIX D. PROOFS OF THEOREMS 3.1 AND 3.2

D.1. Proof of Theorem 3.1. Suppose H,, ~ H,, s(n,7) for v as in (3.1). Let 3,, ; be as defined
in (C.2) with Bs replaced by v = (71,72, --,7) - Then V24, s(v) = %,.5. Then by a Taylor
expansion,
. . 1 - .
lns(Y) = ln,s(Bs) = (Bs — 'Y)Tvgn,sm’) + 5(/65 - ’Y)Tzn,S(:@s — ) + Tus; (D.1)

where

Tos =T + T + T, (D-2)

)

with

1 & 03, 0(Bs — R
7:1(%9) = 2 7 (’;(—;s u()ﬁg 7) (Bsu _’Yu)ga

1 Blns(v +0Bs =) 5 .
7;(25):7 = - s,u u2 s, v Tu)y
7 3 1<u#v<n a(ﬂs,u)2aﬁs,v (ﬁ ’ v ) (ﬁ ’ v )
1 Plos(y +0(Bs =) 5 . .
7;(35) = = n,s S (/BSM - ’Yu)(ﬁs,v - ’Yv)(/Bs,w - ’Yw)7
7 I<u#v#w<n aIBSMaﬁS,vaBs,w

for some 6 € (0,1).
Now, by arguments as in (C.10) it follows that

Bs -7 = E;L,}s’(ds - E"/[dS]) + Eg,lsRn,& (D.3)

where R, ¢ is as defined in (C.9) and (C.10) with 35 replaced by ~. Using this and noting that
—Vlys(7) = ds — E4[ds],

(Bs =) Vs () = (ds = Br[ds]) T2 (Vs (1) + Ry Ty (Vi s(7)
= —(ds — Ey[ds]) 37 ((ds — Ey[di]) = R, 2 (ds — Ey[ds]). (D4
Similarly, using (D.3),
(Bs - 'Y)Tzn,s(Bs -)
= (ds = Bq[dy]) 2,5 (ds — Bq[dy]) + 2R, 3, (ds — Ba[de]) + Ry B iR (D)
Combining (D.1), (D.4), and (D.5) gives,
N 1 1
En,s (ﬁs) - En,s(')’) = _§(ds - Ev[ds])TE;,i(ds - Ev[dS]) + §RZ,SE;,£RH’S + 7;1,3- (D-G)
We begin by showing that R, 3 LR, = op(y/n). To this end, (C.11) and oy(u)? = n*"!
gives,

log?n

R? R
’RT—E,SI‘”»SRWS = S{Z;z < nsHIBS - 55“4 < y (D.7)
s

o2k

TLS_2

with probability 1 — o(1) by (2.8). Next, observe that
|RI’SAn’SR”’5| < nHA”vsanS o0 * HRMS o S n2HRn7S |§o : HAn,s |oo
< n®|Bs — BslL (by (C.4) and (C.11))
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~

F, (D.S)

with probability 1 — o(1) by (2.8). Combining (D.7) and (D.8) it follows that with probability
1 - 0(1)7
T g1 T T log®n
|Rn,szn,sRn,8| < |Rn,srn,5Rn,5| + |Rn,sAn73Rn78| b F = OP(\/E)‘ (Dg)

This implies, the second term in the RHS of (D.6) does not contribute to the CLT of the
log-likelihood ratio log A, 5.

Next, we show that the third term in the RHS of (D.6) is op(4/n), hence, it also does not
contribute to the CLT of log A,, 5.

Lemma D.1. Suppose s = 3 and v € B(M). Then Tp s = op(y/n).
Proof. Define Bs = v + 0(8s — ), for 6 € (0,1). Then recalling (D.2) observe that

1 n elTBs,e(l — elTBs,e) N 3
(1 N elTBs,e)S (Bs,u - 7u) ’

elTBs,e (1 — elTBs,e)

(14 el Pee)3

(Bs,u - 7u)2(ﬁs,v - 711),

Sl
Wl
I
W

Isu#vsn ee([z] u,vee

1
7%(?::5 2 Z

Iu#vFwsn ee([:]> u,v,WEe

ITBS e(]_ — ]-TBS e)
(& ’ (& ’ I A A
G epomy | Pon ™ 70)Bon = 30) P = )

where Bs,e = (Bs,upgs,ug, ) Bs,us)—ra for ? = (ula uz, . .. 7us)- Since Y€ B and HBS_’YHOO gs,M
v/1ogn/ns=—1 with probability 1 — o(1), Bs € Baps for large n with probability 1 — o(1). This

implies,

. logn)3
T o n1Bs — 1l Sane | B~ op (), (D.10)
for s > 3. Similarly, we can show that for s > 3, 771(25) = op(4/n) and 771(1) = op(4/n). This
completes the proof of the Lemma D.1. O

Remark D.1. Note that Lemma D.1 assumes that s > 3. This is because when s = 2 (that
is, the graph case), the proof of Lemma D.1 gives the bound 7, 2 = O(polygon(n)/y/n) which is
not op(4/n) (see (D.10)). Nevertheless, it follows from the proof of Theorem 1 (a) in Yan et al.
[56], where the asymptotic null distribution of the LR test for the graph B-model was derived,
that the result in Lemma D.1 also holds when s = 2, that is, 7,2 = op(4/n). For this one has
to expand En,s(ﬁs) — U, s(7y) up to the fourth order term, and show that the third order term
is op(4/n) at the true parameter value and the fourth order term is op(4/n) at an intermediate
point. For s > 3, the third order term at an intermediate point is op(4/n), hence, we do not
have to consider the fourth order term.

Now, recall the definition of log A, s from (3.2). Then by Lemma D.1 and (D.6)

2log Ap s — ds — E,[ds]) "=, L (ds — E4[ds]) — 1
0g Ans — N :( s 'y[ 8]) n,s( s ‘y[ 8]> +0P(1)- (D.ll)
V2n V2n
By the following lemma we can replace 2;715 with T, s in the RHS above. The proof of the
lemma is given in Appendix D.1.1.
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Lemma D.2. For L > 0,

— 1

P (ds — By [d]) " (B75 = Do) (ds — By[ds]) > L) S 75

This implies, (ds — Ey[ds])T (3,7} — Tns)(ds — By [ds]) is bounded in probability.
By Lemma D.2 and recalling (C.3),

(dy — By[d]) TS5 (ds — Eq[di])  (dy — Bo[da]) T u(dy — Eoy[d])

= +op(1
Van W e (0
1 < — Ey[ds(w)])?
+op(1). D.12
“mS e W o
Proposition D.1 establishes the asymptotic normality of the leading term in the RHS above.
The proof is given in Appendix D.1.2. O
Proposition D.1. Under the assumption of Theorem 3.1,
L (ds(u) — Eylds(w)])? D

— — = N(0,1). D.13
Van {1;1 os(u)? ! 0.0 ( :

The result in (3.3) now follows from (D.11), (D.12), and Proposition D.1.

D.1.1. Proof of Lemma D.2. To begin with note that

E‘Y[(ds - E‘Y [dS])T(ET_Lé - Fn,S)(ds - E‘V [dS])] = tr(E‘Y[(ds - E‘Y[dS])(ds - E’Y[dS])T](zr_L,ls - Fn,S))
=tr(Iy, — XpsThs)
=n- Z O'S(U, ’U)’Ys(u, ’U)

u,ve[n]
_ Hu=v}
=n uvZe[n] os(u,v) o0 0.

Next, we will show that Vary[(ds — E4[ds]) T (2, } — Tns)(ds — E4[ds])] = O(1). The result
in Lemma D.2 then follows by Chebyshev’s inequality. Recall that A, ; := Z;; - I, We
shall denote the entries of A, ; by ((5 )) for u,v € [n]. Then

(ds — Ey [dS])T(zﬁé —Ins)(ds — Z Ouw(ds(u) — Ey[ds(w)])(ds(v) — Ey[ds(v)]).-

Define ds(u) := ds(u) — E4[ds(u)], for u € [n]. Then
Var, [(ds — E"r[dS])T(Er:,ls —Tns)(ds — Eq[ds])]
- Z Suw0ur v Covay[ds(w)ds (v), ds(u')ds(v")]. (D.14)

u,v,u’ w'e[n]
To analyze the RHS of (D.14) we consider the following 4 cases.
Case 1: w=v =o' =v'. In this case we have

Cova[ds(u)ds(v), ds(u')ds(v')] = Var[ds(u)?].

For e € (")), denote X, := 1{e € E(H,)} and X, := 1{e € E(H,)} — E[1{e € E(H,)}].
Since {Xe : e € ([Z])} are independent and have zero mean, {X.X. : e, €’ € ([Z])} are
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Case 2:

Case 3:

Case 4:
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pairwise uncorrelated. Hence,

Var, [ds(u)?] = Var, Z XeXo

e,e’e([:]):uee Ne

> Var,[XZ] + > Var, [ X.] Vary [Xo]. (D.15)

ee([z]):uee e#e/e([z]):ueeme’

Since [y[o < M,
elT'Ye

Vary[X] = Vary[Xe] = T

=M 17

where Ye = (Vuys Vugs -+, Yu.) |, for € = (u1,ug,...,us). Similarly, Var.y[Xg] =y 1.
Hence, (D.15) implies that

Vary [ds(u)?] <y n?2

u#v=1u =1 Observe that

Cova[ds(u)ds(v), ds(u)ds(v")]
— Covy [ds(u)ds(v), ds(v)?]
= Z {EW[XelXeresX&;] - E’V[X81X€2]E"/[X€3Xe4]} :

n
617627637846([5])
uecej,veerNneanes

Note that the non-zero contributions in the RHS above come from the terms when
e; = ej and e, = ey for 4,5, k, £ € {1,...,4}. Hence,

_ (By[X2] - By [X2D%) +2 D) E4[XZJE[XZ)]

ee([z] U vEE el #626([2])
u,veel,veey

since E,[X2] =p 1 and E,[X2]) = 1.
u # v # v = v': By similar reasoning as the previous two cases it can be shown that

COV‘Y[JS(U)JS(U)aJS(U/)JS(U/)] = COV"/[C@(U)’JS(UI)JS(U/H SRS
u # v # u # . In this case, it can be shown that

Cova[ds(u)ds(v), ds(u')ds(v)] Spr n* 4

Combining the 4 cases and using (D.14),

Var,[(ds — E‘y[dS])T(E;}s — Iy s)(ds — Eq[ds])] <m max ‘5u,v|2n28 =0(1),

u,ve[n

where the last step uses (C.4).
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D.1.2. Proof of Proposition D.1. Suppose H,, = (V(H,), E(Hy)) ~ Hp s(n,7) for v as in (3.1).
For e = {v1,v2,...,0s} € ([Z]), denote

Xe 1= X{Uh vs} * T He e E(Hn)},

V2;.eey

and X := 1{e € E(H,)} — E4[1{e € E(H,)}]. Also, for u € [n] denote

Observe that

di(u)?= > X2+ > X Xe. (D.16)

This implies,

Eylds(w)?] = > B [X2]= >, Var,[XZ] = Var,[ds(u)] = og(u)’.

Hence,

V2n u=1 US(U)Q
_ 1 Bl
V2n el Us(u 2
;o R2_E[XZ 1 & XXy
— L2 el - by (D.16
TRIP I r i o oy by (D16)
u= ee( " ):uee u= e;ée’e([z]):ueeme’
=T + Ts. (D17)

We will first show that 77 = op(1). Towards this note that

X2 —E,[X?
le S Z e “/[ e].

V2n Os (u)2
es("))
Since {X. : e € ([Z])} are independent,
52 Var- [ X2] 1
T = — 2l el ~
Varﬂy[ 1] m US(U>4 ~M ns—l’
es(")

using Var[X2] =)/ 1 and os(u)? =p n*~ 1. This implies, T} = op(1).

Therefore, from (D.17), to prove (D.13) it remains to show T3 A N(0,1). For this we will
express T as a sum of a martingale difference sequence. To this end, define the following
sequence of sigma-fields: For u € [n],

Fui=0 (O{Xe:vee}> ,
v=1
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is the sigma algebra generated by the collection of random variables UZ:1{X6 :v € e}. Clearly,
F1 € Fa- -+ S Fn, hence {Fu}ye[n) is a filtration. Now, for u € [n], define

T2,u = Z we,e’XeXe’
e,e’e([z]):e;ée’,ueeme’,
en{l,..u}#g
and €' n{l,...,u—1}=9
where We e/ = Y, cone ﬁ Note that Ty, is F,, measurable and E[T5,|F,—1] = 0, that is,

Ty, for u € [n], is a martingale difference sequence. Also, recalling the definition of 75 from
(D.17) observe that

1 < XeXe 1 _
Ty = T > > Ue(u)‘; v > We o XeXer

u=1 e#e/e([z]):ueeme’ s e;ﬁe’e([:‘]),eme/;ﬁ@

that is, T3 is the sum of a martingale difference sequence. Now, invoking the martingale central
theorem [9] it can be shown that T5 A N(0,1). The details are omitted.

D.2. Proof of Theorem 3.2. Suppose H,, ~ H,, s(n,v’) for 4" as in (3.5). Then by arguments
as in (D.6),

h 1 -1 1 <-1
ln,s(Bs) — ln,s ('7,> = *i(ds —Ey [dSDTEn,s(ds —Ey [ds]) + §R:L—,szn,sRn,s + Tn.ss

where 3, s and R, s are as defined in (C.2) and (C.9), respectively, with 3; replaced by +" and
Tn.s as defined in (D.2) with 4 replaced by +’. Therefore,

. 1 —1
gn,s(ﬁs) - gn,s('V) = _§(ds - E‘y’ [ds])TEn,s(ds - E'y’ [ds])
1 —
3R Z R+ Tos + lns(¥) — las(), - (D18)
By Taylor expansion,

lns(Y) = lo,s(7) = (ds = Ep[ds]) T (v — ) + %(7’ — ) (v =),

where 2,175 is the covariance matrix defined in (C.2) with 35 replaced by 4 = 4" + 6(v' — ) for
some 0 < # < 1. Then by arguments as in (D.9) and Lemma D.1, Lemma D.2, (D.18) can be
written as:

fn,S(/és) - gn,s(')’) = _%(ds —E. [dS])Tfn,S(dS —E [ds]) + (ds — E. [dS])T('Y/ -)

b5 =) sl ) op(v),  (D9)

where Ty, 5 is as defined in (C.3) with the parameter 85 replaced by ~'.
25—3

We begin with the case |y — |2 « n~ "1 . In this case, since VZ(,, s(v') = . 5, by Lemma
A2
(Y =N Ty =) =0Ty =] « V. (D-20)
Similarly,
(Y =) By =) =07 =3 < v (D.21)
Hence,
Var[(ds —Ey[ds]) ' (Y = )] = (v =) sy’ =) <,
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which innplies, (dy —Eq[ds])T (7' —) = 0p(vi), since E[(ds—Ey [ds]) T(v'~4)] = 0. Therefore,
under H; as in (3.5),

210gAn7s -—n 2(6 ( ) gnS(IB )) n

V2n - V2n
.
_ (ds —Ey[d]) F:/%Sl —Ey [d])—n+op(1>
(by (D.19), (D.20), and (D.21))
B N(0,1),

by Proposition D.1. This proves the first assertion in (3.6).

Next, suppose [v" — |2 » n_¥. In this case, by Lemma A.2, (v — ’Y)Tfn,s(’)’/ ) =
n* 7Ly — 4|3 » v/n. We will first assume:

Vi< (¥ =)' B =) £ (D.22)
Then we have Var[(ds — E/[ds])T (v —v)] = (¥ —v) "Zns(v — ) = O(n). Using this and
Proposition D.1 it follows that

|3~ B ) T~ Bl + (0~ Bl T )]

is bounded in probability. Hence, from (D.19),

2logAp s —n _ (fn,s(’Y) - En,s(BS)) -n 0

Van Van

in probability, since by Lemma A.2, (v —~)" 2, s(v —v) = n*~'|y —~[3 » v/n. This implies,
E/[¢n,s] = 1, whenever (D.22) holds. Next, we assume

¥ =)0y =) » n. (D.23)

For notational convenience denote ¥, s := (7' — ) X, s(¥ — 7). Then Proposition D.1 and
(D.23) imply that

! [1(ds —Ey [dS])Tfn,S(ds —Ey [ds]) + (ds — E [dsDT(’Y, - 7)]

\ 'lgn,s 2

is bounded in probability. Using (D.20) and (D.21) we also get

(Y =) "Zns(Y =)

=1,
=nz2 |[v =] — .
ﬁn,s

This implies, from from (D.19),
2log Aps —n

2n
Ey [d’n,s] =Py ( \/197 = Za)2 Q9> — 1

This concludes the proof. This completes the proof of the third assertion in (3.6).

Now, we consider the case n= T |9 =2 — 7 € (0,00). By Taylor expansion,

1
(V=) B0 (Y =) + T,

en,s('Yl) - en,s(’Y) = (ds — E, [dS])T('Y/ —5) + 2(
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where X, ¢ is as defined in (C.2) with B, replaced by ~ and 73173 is as defined in (D.2) with the

parameter 5 = ' +60(v' —~) for some 0 < § < 1. By arguments as in Lemma D.1 7, s = op(y/n).
Then (D.9) and Lemma D.1, Lemma D.2, (D.18) can be written as:

gn,S(Bs) - gn,s('Y) = _%(ds - E’y’ [dS])TI‘n,S(ds - E’y’ [dS]) + (ds — E’y’ [dS])T(’Y/ - 'Y)
b N s ) Fop(V). (D24)

Note that E[(ds — E/[ds])" (7' —~)] = 0 and by Lemma A.2,
Var[(ds — E./ [dS])T(7/ -7)] = (7/ - V)TEH,S('Y, —) =n,r Vn,

when v — /2 = n~ 7. Hence, in this case, (ds — E4[ds])" (v — ) = op(y/n). This also

implies that

B G e DG et )
- n—oo \/ﬁ

exists along a subsequence. (Note that Covy[ds] = X, s.) Hence, from (D.24),
2log Ans =1 _ 2(bns(7) = bns(Bs)) —

V2n B V2n
_ (ds — E [dS])TFn,S(ds —Ey [ds]) —n _ (v — 7)T2n78(’7/ —) +op(1)
Van Van "
DN (=25,1).

This completes the proof of (3.7).

APPENDIX E. TESTING LOWER BOUNDS

In this section we prove the lower bounds for the goodness-of-fit problem in the Lo and Lo,
norms, that is, Theorem 3.3 (b) and Theorem 3.4 (b), respectively. For this, suppose 7, be a
prior probability distribution on the alternative H; (as in (3.8) or (3.10)). Then the Bayes risk
of a test function 1, is defined as

R(Vn, ¥, 7n) = Pry(¥n = 1) + Eqyrer, [Py (¥n = 0)] . (E.1)

For any prior m, the worst-case risk of test function ), as defined in (3.9), can be bounded
below as:

Lemma E.1. Let H, s denote the collection of s-uniform hypergraphs on n vertices. Then

,R(I/)na’Y) = R(¢na’7: 7Tn) =1- % IE’Ho [L72rn] - 17 (E2)

E’Y/ ~Tn [P’Y, (w)]

where L, = Brr, (o)

, w € Hy s, 15 the m,-integrated likelihood ratio.

Proof. Clearly, R(1n,7) = R(¥n,y, 7). To show the second inequality in (E.2) observe that,
R(wm’)’ﬂrn) = iilf {PHO (¢n = 1) + E7’~7rn, (Pv’(¢n = O))}

= 1—sup |PH0('¢n =1) - Eyr, (Py(% = 1))‘

n

>1— sup [Py, (w) = Eynr, [Py (w)]|

LUEHn,s
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1 Evier, |Pyr(w
Pl | 520[@)( Al
=1-3IEg,|Lr, — 1]
>1—34/Ep,[L2 ] -1,
where the last step uses the Cauchy-Schwarz inequality. O

Therefore, to show all tests are powerless it suffices to construct a prior 7, on H; such that
En, [L,an] — 1. We show this for the Ls norm in Appendix E.1 and for the Lo, norm in Appendix
E.2.

E.1. Testing Lower Bound in L; Norm: Proof of Theorem 3.3 (b). We choose v = 0,

25—3

e «n~ 1 ,and construct a prior 7, on Hy as in (3.8) as follows: Suppose vy’ = (V{,7%,---,75)" €
R” with
, €
Yu Ny * %7
for u € [n], where n1,...,n, are i.i.d Rademacher random variables, taking values {£1} with

probability % Clearly, | — 4|2 = €. Then, for H € H,, s, the m, integrated likelihood ratio is
given by

]PKY/(H)] B S
Po(H) K ec() 1+ ewn(e)

where X¢ := 1{ee E(H)}, n:= (m,...,Mn), and wy(e) := %Zuee Ny, for e € ([Z]). Then

L, =B |

Le(wn(@)+w, (e) Xe

(1 + ewn(@)(1 + en'(©))

Lzrn = Enwy H
es(')
where 77, ...,n,, are i.i.d Rademacher random variables which are independent of n1,..., 7y,
n = n,....n,), and wy(e) := ﬁ Duce M for e € ([Z]). Taking expectation with respect to
Hj gives,

2 (clm(@) tuy(e)) 4 1)

Ewo[L2,] = Epay
mll2,]=Enw | 11 (14 con(@)(1 1 e (@)

ee([”])

E]

=Eny | [] 2 {(wn(e)d(wy(e)) + (1 —v(wy(e))(1 — p(wy(e))} |, (E3)
| (")

where 1 (z) is the logistic function as defined in Lemma A.4. Using the Taylor expansions of
¥(x) and 1 — ¢ (x) around 0, we can show that for all z € R,

As a consequence, for e € ([Z])’

2 {¢(wn (€)Y (wy (€)) + (1 — b(wn(e)))(1 — v(wy(e)))}
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1 1 3 3 1 3
<1+ Jwn(e)wy(e) + o (wn(e)” +wy(e)”) + 5 zwnle) wry (€)”.
Using this bound in (E.3) gives,

Em, [L2 ]

Tn

< Eqpy H (1 + iwn(e)wn/(e) + i(wn(e)3 + wyy(€)?) + Z12wn(e)gwnl(6)3>

<E,, 6266([71]){4wn(e)wn/(e)+ﬂ(wn(e)?”rwy,/( )*)+ 512 wn(e)3wn/(e)3}] ’ (E.4)
since 1 + x < e*.
Recalling the definition of wy(e) observe that
3
3| _ & 3,53
Z wy(e)’| < —5 Z Zlnul <e’n’T2.
ee([n]) nz ee([n]) uce
Hence,
2 " 3 o3
]E [e Zee([s]) w”](e) :| < 62€3n 2 N 1’ (EE))
since e « n~ T and, for s > 2, —5 + % > (. Similarly, it can be shown that
23 _([n]) wn(€)*wpy(e)®]
lim E [e es(f5) T g (E.6)
n—a0 )
Then Holder’s inequality applied to (E.4) followed by (E.5) and (E.6) gives
33 wa(e)w, (e) 1/3
B[22 < { By |7 4o, (£7)
Next, observe that
g2 ,
S wnug(e) =3 S (S (S
ee([n]) ee([”]) uce vEEe
2 n
e <n—1>2 . (n—2> }
== T, + D1 mn
n { s—1 u=1 52 I1<u#v<n !
n
< 252 Z 77u77; + e2ns—3 Z 77u77§;
u=1 I<u#v<n
n n n n
— e2ps2 Z Nl + €203 { (Z 77U> (Z né) - Z nun;} . (E.8)
u=1 u=1 v=1 u=1

Note that e2n*=3 |0 nunl,| < e2n~2. Hence,

)

E [6%82n573 Zz:ln“n;] g 65271,572 1 (Eg)
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since ¢ « n~ "1 . From (E.7), by Holder’s inequality followed by (E.8) and (E.9) gives
ns—2 3 /7Y /9 ns— no 1/9
B [12] <. {Enn [ei 2 ZZu:ﬂuTiu]} {En,n' [egez s(xn_ 1nu)(2v:1m)]} (1+o(1)).
(E.10)

Denote X, := > ny and Y, := >0, 7., Since X,, and Y,, are independent and each of them
is a sum of i.i.d. Rademacher random variables,

Eyp [6352”573)(")/"] =E [E [6%‘52”'573X"Y"’Y =E [(cosh ( 2573y, ))”]

E[ 873 n2s— 5y2]

where last step uses cosh(z) < e*”, for all z € R. Since |Y;,| < n, this implies,

Enm/ [G%EQns—sanH] < 65151€4n2s 5y2 < 681 etn2s—3 . 17 (E.ll)
since ¢ « n~ T, Next, observe that n,n),, for u = 1,--- ,n, are i.i.d. Rademacher random
variables. Again using cosh(z) < ¢*” for all z € R, we can show that

9 2ps—2ym_ 9 45 49 " 814,253
Eq oy [64 u=1 U] = ( cosh En < els — 1, (E.12)

2s—3

since e « n~~ 1 . Hence, using (E.11) and (E.12) in (E.10) gives,
lim Eg,[L2] = 1.

n—ao0

By Lemma E.1, this completes the proof of Theorem 3.3 (b).

E.2. Testing Lower Bound in L,, Norm: Proof of Theorem 3.4 (b). We choose v = 0,

e «n~ "7 and define v = (V1,0 7h) T € R, where 74 = ¢ and 7/, = 0, for u > 2. Clearly,
| —+'|lc = €. Then, for H € H, s, the likelihood ratio is given by

_Py(H) 25 Xe
" Po(H) . ([1:)[1@ 1+e’
where X := 1{e € E(H)}. Observe that
B [L2] = E I AT o) + 21— (o)) ) (E.13)
Hol+nl = &Ho (1 T 65)2 = , .

ee([z]):lee

. _s=1 . .
where ¥ (z) = % Sincee « n~ 2 , a Taylor expansion around zero gives 1(e) = 1 +1e+0(e?).
Hence,

20(e)* +2(1 —(e))* = 1 + O(e?).
Therefore, by (E.13) and using 1 + x < e” gives,

Ep,[L2] < P o 1,

since ¢ < n~ "2 . By Lemma E.1, this completes the proof of Theorem 3.4 (b).
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APPENDIX F. PROOF OF PROPOSITION A.1l

Define g = (91,92, --,9n) : R” — R™ where g, : R — R, for u € [n], as follows:

6m21
gul@) = Z 14 exil’
ee([z]):uee
where & = (21, 72,...,2,) ! and Te = (Tyy, Tuy, .-, Tu,) for e = (ug,us,...,us). Observe that

R is the range of g. Since the expected degree of a vertex is a weighted combination of all the
possible degrees in s-uniform hypergraphs on n vertices, this implies Rs € conv (Ds).
To show the other side, for every y € R"™ we define,

n
fyl@) =) miyi — > log(1 + "1 Trtome),
i=1 {vl,vg,...,vs}e([z])
Since the probability of observing an s-uniform hypergraph with parameter & and s-degree
sequence dg = (ds(1),...,ds(n)) is
623:1 ds(”)wv

H{UI,UQ,A,,,US}E([Z]) (1 + e%u1 FoF T ) .

and is less than 1, taking logarithm on both sides we get fq, () < 0. Further as fy(x) depends
linearly on y, we have fy(x) < 0 for all y € conv (Ds) and « € R". Now, let us fix y € conv (D).
It can be shown that the Hessian V?f,(z) is uniformly bounded, hence, by [10, Lemma 3.1]
there exists a sequence {xj}r>1 such that V fy(xy) — 0. Observing that V fy () = y — g(x),
we get g(x) — y. As y € conv (D) is arbitrary, this implies conv (Ds) S Rs. O
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