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Abstract. The β-model for random graphs is commonly used for representing pairwise in-
teractions in a network with degree heterogeneity. Going beyond pairwise interactions, Stasi
et al. [45] introduced the hypergraph β-model for capturing degree heterogeneity in networks
with higher-order (multi-way) interactions. In this paper we initiate the rigorous study of the
hypergraph β-model with multiple layers, which allows for hyperedges of different sizes across
the layers. To begin with, we derive the rates of convergence of the maximum likelihood (ML)
estimate and establish their minimax rate optimality. We also derive the limiting distribution of
the ML estimate and construct asymptotically valid confidence intervals for the model param-
eters. Next, we consider the goodness-of-fit problem in the hypergraph β-model. Specifically,
we establish the asymptotic normality of the likelihood ratio (LR) test under the null hypoth-
esis, derive its detection threshold, and also its limiting power at the threshold. Interestingly,
the detection threshold of the LR test turns out to be minimax optimal, that is, all tests are
asymptotically powerless below this threshold. The theoretical results are further validated in
numerical experiments. In addition to developing the theoretical framework for estimation and
inference for hypergraph β-models, the above results fill a number of gaps in the graph β-model
literature, such as the minimax optimality of the ML estimates and the non-null properties of
the LR test, which, to the best of our knowledge, have not been studied before.

1. Introduction

The β-model is an exponential family distribution on graphs with the degree sequence as the
sufficient statistic. Specifically, in the β-model with vertex set rns :“ t1, 2, . . . , nu, the edge pi, jq
is present independently with probability

pij :“
eβi`βj

1 ` eβi`βj
, (1.1)

for 1 ď i ă j ď n and β “ pβ1, β2, . . . , βnq P Rn. This model was first considered by Park
and Newman [41] and can also be viewed as the undirected version of the p1-model that appear
in the earlier work of Holland and Leinhardt [26]. Thereafter, the β-model has been widely
used for capturing degree heterogeneity in networks (see Blitzstein and Diaconis [7], Chen et al.
[11], Graham [23], Jackson et al. [28], among several others). The term β-model can be attributed
to the seminal paper of Chatterjee et al. [10], which provides the theoretical foundations for
parameter estimation in this model.

While random graph models, such as the β-model, are important tools for understanding
binary (pairwise) relational data, in many modern applications interactions occur not just be-
tween pairs, but among groups of agents. Examples include folksonomy [17], collaboration
networks [29, 30, 42], complex ecosystems [24], biological networks [37, 43], circuit design [32],
computer vision [1], among others. Hypergraphs provide the natural mathematical framework
for modeling such higher-order interactions [4, 5, 6]. Formally, a hypergraph H is denoted by
H “ pV pHq, EpHqq, where V pHq is the vertex set (the agents in the network) and EpHq is
a collection of non-empty subsets of V pHq. The elements in EpHq, referred to as hyperedges,
represent the interactions among groups of agents. Motivated by the emergence of complex
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relational data with higher-order structures, there has been a slew of recent results on model-
ing random hypergraphs, community detection, recovery, clustering, and motif analysis, among
others (see [2, 3, 15, 18, 19, 20, 21, 22, 27, 33, 34, 35, 36, 40, 51, 57, 58, 59] and the references
therein).

In this paper we study the hypergraph β-model, introduced by Stasi et al. [45], that allows
one to incorporate degree heterogeneity in higher-order networks. Like the graph β-model (1.1),
this is an exponential family on hypergraphs where the (hypergraph) degrees are the sufficient
statistics. In its general form it allows for layered hypergraphs with hyperedges of different
sizes across the layers. To describe the model formally we need a few notations: For r ě 2,

denote by
`

rns

r

˘

the collection of all r-element subsets of rns :“ t1, 2, . . . , nu. A hypergraph
H “ pV pHq, EpHqq is said to be r-uniform if every element in EpHq has cardinality r. (Clearly,
2-uniform hypergraphs are simple graphs.) We will denote by Hn,r the collection of all r-uniform
hypergraphs with vertex set rns and Hn,rrs :“

Ťr
s“2Hn,s, the collection of all hypergraphs with

vertex set rns where every hyperedge has size at most r. Then the r-layered hypergraph β-model
is a probability distribution on Hn,rrs defined as follows:

Definition 1.1. [45] Fix r ě 2 and parameters B :“ pβ2, . . . ,βrq, where βs :“ pβs,vqvPrns P Rn.
The r-layered hypergraph β-model is a random hypergraph in Hn,rrs, denoted by Hrrspn,Bq,

where, for every 2 ď s ď r, the hyperedge tv1, v2, . . . , vsu P
`

rns

s

˘

is present independently with
probability:

pv1,v2,...,vs :“
eβs,v1`...`βs,vs

1 ` eβs,v1`...`βs,vs
. (1.2)

This model can be expressed as an exponential family on Hn,rrs with the hypergraph degrees
up to order r as the sufficient statistics (see (2.2)). Specifically, the parameter βs,u encodes
the popularity of the node u P rns to form groups of size s, for 2 ď s ď r. Consequently, βs,u
controls the local density of hyperedges of size s around the around node u. The model (1.2)
includes as a special case the classical graph β-model (when r “ 2) and also the r-uniform
hypergraph β-model, where only the hyperedges of size r are present. More formally, given
parameters β “ pβ1, β2, . . . , βnq P Rn, the r-uniform hypergraph β-model is a random hypergraph

in Hn,r, denoted by Hrpn,βq, where each r-element hyperedge tv1, v2, . . . , vru P
`

rns

r

˘

is present
independently with probability:

pv1,v2,...,vr :“
eβv1`...`βvr

1 ` eβv1`...`βvr
. (1.3)

It is worth noting that, since the degrees are the sufficient statistics in the aforementioned
models, it is enough to observe only the degree sequences (not the entire network) for inference
regarding the model parameters. This feature makes the β-model particularly attractive because
collecting information about the entire network can often be difficult for cost or privacy reasons.
For example, Elmer et al. [16] (see also Zhang et al. [60]) studied social networks between a group
of Swiss students before and during COVID-19 lockdown, where, for privacy reasons, only the
total number of connections of each student in the network (that is, the degrees of the vertices)
were released. The β-model is also relevant in the analysis of aggregated relational data, where
instead of asking about connections between groups of individuals directly, one collects data on
the number of connections of an individual with a given feature (see, for example, Breza et al.
[8] and the references therein).

Stasi et al. [45] proposed two algorithms for computing the maximum likelihood (ML) esti-
mates for the hypergraph β models described above and reported their empirical performance.
However, the statistical properties of the ML estimates in these models have remained unex-
plored.
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1.1. Summary of Results. In this paper we develop a framework for estimation and inference
in the hypergraph β-model. Along the way, we obtain a number of new results on the graph
β-model as well. The following is a summary of the results:

‚ Estimation: In Section 2 we derive the rates of convergence of the ML estimates in r-
layered hypergraph β-model (1.2), both in the L8 and the L2 norms. Specifically, we
show that given a sample Hn „ Hrrspn,Bq from the r-layered hypergraph β-model, the

ML estimate B̂ “ pβ̂2, . . . , β̂rq of B satisfies:

}β̂s ´ βs}2 Às,M

c

1

ns´2
and }β̂s ´ βs}8 Às,M

c

log n

ns´1
, (1.4)

for 2 ď s ď r, with probability going to 1 (see Theorem 2.1). These extend the results
of Chatterjee et al. [10] on the graph β-model, where the rate of convergence of the ML
estimate was derived only in the L8 norm, to the hypergraph case. Next, in Theorem
2.2 we show that both the rates in (1.4) are, in fact, minimax rate optimal (up to a
?
log n factor for the L8 norm). To the best of our knowledge, these are the first results

showing the statistical optimality of the ML estimates in the β-model even for the graph
case.

‚ Inference: In Section 2.3 we derive the asymptotic distribution of the ML estimate B̂.
In particular, we prove that the finite dimensional distributions of the ML estimate
converges to a multivariate Gaussian distribution (see Theorem 2.3). Moreover, the
covariance matrix of the Gaussian distribution can be estimated consistently, using which
we can construct asymptotically valid confidence sets for the model parameters (see
Theorem 2.4).

‚ Testing: In Section 3 we study the goodness-of-fit problem for the hypergraph β-model,
that is, given γ P Rn we wish to distinguish:

H0 : βs “ γ versus H1 : βs ‰ γ. (1.5)

We show that the likelihood ratio (LR) statistic for this problem (centered and scaled
appropriately) is asymptotically normal under H0 (see Theorem 3.1 for details). Using
this result we construct an asymptotically level α test for (1.5). Next, we study the power
properties of this test. In particular, we show that the detection threshold for the LR

test in the L2 norm is n´ 2s´3
4 , that is, the LR test is asymptotically powerful/powerless

in detecting γ 1 P Rn depending on whether }γ 1 ´ γ}2 is asymptotically greater/smaller

than n´ 2s´3
4 , respectively. We also derive the limiting power function of the LR test

at the threshold }γ 1 ´ γ}2 “ Θpn´ 2s´3
4 q (see Theorem 3.2). Further, in Theorem 3.3

we show that this detection threshold is, in fact, minimax optimal, that is all tests

are asymptotically powerless when }γ 1 ´ γ}2 is asymptotically smaller than n´ 2s´3
4 . In

Section 3.3 we also obtain the detection threshold of the LR test in the L8 norm and
establish its optimality. Again, these appear to be the first results on the non-null
properties of the LR test and its optimality in the β-model for the graph case itself.

In Section 4 we illustrate the finite-sample performances of the proposed methods in simulations.

1.2. Related Work on the Graph β-Model. As mentioned before, Chatterjee et al. [10]
initiated the rigorous study of estimation in the graph β-model. They derived, among others
things, the convergence rate of the ML estimate in the L8 norm. Thereafter, Rinaldo et al.
[44] derived necessary and sufficient conditions for the existence of the ML estimate in terms of
the polytope of the degree sequences. Yan and Xu [52] proved the asymptotic normality of ML
estimate and later, Yan et al. [54] derived the properties of a moment based estimator. Karwa
and Slavkovic [31] studied the problem of estimation in the β-model under privacy constraints.
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In the context of hypothesis testing, Mukherjee et al. [38] considered the problem of sparse
signal detection in the β-model, that is, testing whether all the node parameters are zero versus
whether a (possibly) sparse subset of them are non-zero. Recently, Yan et al. [56] derived the
asymptotic properties of the LR test for the goodness-of-fit problem in the graph β-model, under
the null hypothesis.

The graph β-model has also been generalized to incorporate additional information, such as
covariates, directionality, sparsity, and weights (see Chen et al. [11], Chen and Olvera-Cravioto
[12], Graham [23], Hillar and Wibisono [25], Stein and Leng [46], Wahlström et al. [49], Yan
et al. [53, 55], Zhang et al. [60] and the references therein). For other exponential random graph
models with functions of the degrees as sufficient statistics, see Mukherjee [39] and Xu and
Mukherjee [50].

1.3. Asymptotic Notation. For positive sequences tanuně1 and tbnuně1, an “ Opbnq means
an ď C1bn and an “ Θpbnq (and equivalently, an — bn) means C2bn ď an ď C1bn, for all n large
enough and positive constants C1, C2. Similarly, for positive sequences tanuně1 and tbnuně1,
an À bn means an ď C1bn and an Á bn means an ě C2bn for all n large enough and positive
constants C1, C2. Moreover, subscripts in the above notation, for example O˝, À˝, Á˝, and Θ˝,
denote that the hidden constants may depend on the subscripted parameters. Also, for positive
sequences tanuně1 and tbnuně1, an ! bn means an{bn Ñ 0 and an " bn means an{bn Ñ 8, as
n Ñ 8.

2. Maximum Likelihood Estimation in Hypergraph β-Models

In this section we consider the problem of parameter estimation in the hypergraph β-model
using the ML method. In Section 2.1 we derived the rates of the consistency of the ML estimate.
The central limit theorem of the ML estimate and the construction of confidence intervals for
the model parameters are presented in Section 2.3.

2.1. Rates of Convergence. Given a sample Hn „ Hn,rrspn,Bq from the r-layered hypergraph
β-model, the likelihood function can be written as follows:

LnpBq “
ź

2ďsďr

ź

tv1,v2,...,vsuPprns

s q

eβs,v1`...`βs,vs

1 ` eβs,v1`...`βs,vs
. (2.1)

Therefore, the negative log-likelihood is given by

ℓnpBq :“ ´ logLnpBq

“ ´

r
ÿ

s“2

$

’

&

’

%

n
ÿ

v“1

βs,vdspvq ´
ÿ

tv1,v2,...,vsuPprns

s q

log p1 ` exp pβs,v1 ` . . .` βs,vsqq

,

/

.

/

-

, (2.2)

where

dspvq :“
ÿ

ePEpHnq:|e|“s

1tv P eu, (2.3)

is the s-degree of the vertex v P rns, that is, the number of hyperedges of size s in Hn passing
through v. The negative log-likelihood in (2.2) can be re-written as:

ℓnpBq “

r
ÿ

s“2

ℓn,spβsq, (2.4)
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where

ℓn,spβq :“
ÿ

tv1,v2,...,vsuPprns

s q

log p1 ` exp pβs,v1 ` . . .` βs,vsqq ´

n
ÿ

v“1

βs,vdspvq. (2.5)

Note that (2.4) is separable in β2, . . . ,βr, hence, the ML estimate of B “ pβ2, . . . ,βrq is given

by B̂ “ pβ̂2, . . . , β̂rq, where

β̂s :“ argminβ ℓn,spβq. (2.6)

This implies that the ML estimate β̂s satisfies the following set of gradient equations: For all
v P rns and 2 ď s ď r,

dspvq “
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβ̂s,v`β̂s,v2`...`β̂s,vs

1 ` eβ̂s,v`β̂s,v2`...`β̂s,vs
, (2.7)

where
`

rnsztvu

s´1

˘

denotes the collection of all ps ´ 1q-element subsets of rnsztvu. Stasi et al.

[45] presented two algorithms for computing the ML estimate, an iterative proportional scaling
algorithm and a fixed point algorithm, and showed that both algorithms converge if the ML
estimate exists.

In this paper we study the asymptotic properties of the ML estimates. In the following
theorem we show that the likelihood equations (2.7) have a unique solution with high-probability
and derive its rate of convergence. Hereafter, we denote by }x}8 and }x}2, the L8 and the L2

norms of a vector x, respectively. Also, denote BM “ tx : }x}8 ď Mu, the L8 the ball of radius
M . Throughout we will assume βs P BM , for all 2 ď s ď r, for some constant M ą 0.

Theorem 2.1. Suppose Hn „ Hn,rrspn,Bq is a sample from the r-layered hypergraph β-model
as defined in (1.2). Then with probability 1 ´ op1q the likelihood equations (2.7) have a unique

solution B̂ “ pβ̂2, . . . , β̂rq, that satisfies:

}β̂s ´ βs}2 Às,M

c

1

ns´2
and }β̂s ´ βs}8 Às,M

c

log n

ns´1
, (2.8)

for 2 ď s ď r.

Theorem 2.1 provides the rates for the ML estimate both in the L2 and L8 norms for the
parameters in a r-layered hypergraph β-model. To interpret the rates in (2.8) note that s-degree
of a vertex (recall (2.3)) in the r-layered model Hn,rrspn,Bq is Opns´1q with high probability.

This means there are essentially Opns´1q independent hyperedges containing information about
each parameter in the s-th layer. Hence, each parameter in the s-th layer can be estimated at
the rate 1{

?
ns´1. Aggregating this over the n coordinates gives the rates in (2.8) for the vector

of parameters βs in the s-th layer.
The proof of Theorem 2.1 is given in Appendix A. The following discussion provides a high-

level outline of the proof.

‚ For the rate in the L2 norm we first upper bound the gradient of the log-likelihood at the
true parameter value. Specifically, we show that }∇ℓn,spβsq}22 “ Opnsq with high prob-
ability (see Lemma A.1 for details). Next, we show that the smallest eigenvalue of the
Hessian matrix ∇2ℓn,spβsq is bounded below by ns´1 (up to constants) in a neighborhood
of the true parameter (see Lemma A.2). Then a Taylor expansion of the log-likelihood
around the true parameter, combined with the above estimates, imply the rate in the
L2 norm in (2.8) (see Appendix A.1 for details).
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‚ The proof of the rate in the L8 norm is more involved. For the graph case, [10] analyzed
the fixed point algorithm for solving the ML equations and developed a stability version
of the Erdős-Gallai condition (which provides a necessary and sufficient condition for
a sequence of numbers to be the degree sequence of a graph) to derive the rate of ML
estimate in the L8 norm. One of the technical challenges in dealing with the hypergraph
case is the absence of Erdős-Gallai-type characterizations of the degree sequence. To
circumvent this issue, we take a more analytic approach based on the ‘leave-one-out’
technique, that appear in the analysis of ranking models [13, 14]. Here the idea is to
decompose, for each u P rns, the log-likelihood function of the s-th layer ℓn,s (recall
(2.5)) into two parts: one depending on βs,u and the other not depending on it. Using
the part of the log-likelihood not depending on βs,u we first analyze the properties of the
constrained leave-one-out ML estimate, which is the maximizer of the part of the log-
likelihood not depending on βs,u in a neighborhood of the leave-one-out true parameter.
Then from the part of the log-likelihood depending on βs,u we obtain, by a Taylor
expansion around the true parameter value βs,u, the L8 rate in (2.8) with an extra
additive error term which depends on the constrained leave-one-out ML estimate. Using
the bound on the latter obtained earlier we show this error term is negligible compared
to the L8 rate in (2.8).

The following corollary about the r-uniform model is an immediate consequence of Theorem
2.1. We record it separately for ease of referencing.

Corollary 2.1. Suppose Hn „ Hn,rpn,βq is a sample from the r-uniform hypergraph β-model

as defined in (1.3). Then with probability 1 ´ op1q the ML estimate β̂ is unique and

}β̂ ´ β}2 Àr,M

c

1

nr´2
and }β̂ ´ β}8 Àr,M

c

log n

nr´1
. (2.9)

2.2. Minimax Rates. In the following theorem we establish the tightness of the rates of ML
estimate obtained in the previous section by proving matching lower bounds.

Theorem 2.2. Suppose Hn „ Hn,rrspn,Bq, with B “ pβ2, . . . ,βrq, such that βs P BpMq, for
2 ď s ď r. Given δ P p0, 1q there exists a constant C (depending on M , r, and δ) such that the
following holds for estimation in the L2 norm:

min
β̂

max
βsPBpMq

P

˜

}β̂ ´ βs}2 ě C

c

1

ns´2

¸

ě 1 ´ δ. (2.10)

Moreover, for estimation in the L8 norm the following holds:

min
β̂

max
βsPBpMq

P

˜

}β̂ ´ βs}8 ě C

c

1

ns´1

¸

ě 1 ´ δ. (2.11)

This result shows that the ML estimate is minimax rate optimal in the L2 metric and (up to a
?
log n factor) in the L8 metric. The proof of Theorem 2.2 is given in Appendix B. The bound

in (2.10) is proved using Fano’s lemma. For this we construct 2Θpnq well-separated points in the
parameter space which have ‘small’ average Kulbeck-Leibler (KL) divergence with the origin
(see Appendix B.1). The bound in (2.11) follows by a direct application of Le Cam’s 2-point
method (see Appendix B.2).

2.3. Central Limit Theorems and Confidence Intervals. The results obtained in the pre-
vious section show that the vector ML estimates are consistent in the L8-norm. However, for
conducting asymptotically precise inference on the individual model parameters, we need to
understand the limiting distribution of the ML estimates. In Theorem 2.3 below we show that
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the finite dimensional distributions of the ML estimates (appropriately scaled) converge to a
multivariate Gaussian distribution. Using this result in Theorem 2.4 we construct joint confi-
dence sets for any finite collection of parameters. Towards this, for Hn „ Hn,rrspn,Bq denote
the variance of the s-degree of the node v P rns as:

σspvq2 :“ Varrdspvqs “
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβs,v`βs,v2`...`βs,vs

p1 ` eβs,v`βs,v2`...`βs,vs q2
. (2.12)

Then we have the following result:

Theorem 2.3. Suppose Hn „ Hn,rrspn,Bq is a sample from the r-layered hypergraph β-model
as defined in (1.2). For each 2 ď s ď r fix a collection of as ě 1 indices Js :“ tvs,1, ¨ ¨ ¨ , vs,asu P
`

rns

as

˘

. Then as n Ñ 8,
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rD2pβ̂2 ´ β2qsJ2

rD3pβ̂3 ´ β3qsJ3

...

rDrpβ̂r ´ βrqsJr

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

D
Ñ Nřr

s“2 as
p0, Iq, (2.13)

where Ds “ diag pσspvqqvPrns, for 2 ď s ď r and for any vector x P Rn, rxsJs “ pxvqJ
vPrJss

.

The proof of Theorem 2.3 is given in Appendix C.1. The idea of the proof is to linearize
β̂s,v ´ βs,v in terms of the s-degrees of the node v P rns. Since the s-degree of a node is the sum
of independent random variables, applying Lindeberg’s CLT gives the result in (2.13). In the
special case of the r-uniform model, Theorem 2.3 can be written in the following simpler form:

Corollary 2.2. Suppose Hn „ Hn,rpn,βq is a sample from the r-uniform hypergraph β-model
as defined in (1.3). For all v P rns, let

σpvq2 :“
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβv`βv2`...`βvs

1 ` eβv`βv2`...`βvs
.

Then for any collection of a ě 1 indices J :“ tv1, ¨ ¨ ¨ , vau P
`

rns

a

˘

, as n Ñ 8,

rDsJprβ̂sJ ´ rβsJq
D
Ñ Nap0, Iq,

where D “ diag pσpvqqvPrns, rDsJ “ diag pσpvqqvPJ , rβ̂sJ “ pβvqJ
vPrJs

, and rβssJ “ pβs,vqJ
vPrJs

.

To use the above results to construct confidence sets for the parameters, we need to consis-
tently estimate the elements of the matrix Ds. Note that the natural plug-in estimate of σspvq

is

σ̂spvq2 :“
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβ̂s,v`β̂s,v2`...`β̂s,vs

p1 ` eβ̂s,v`β̂s,v2`...`β̂s,vs q2
. (2.14)

This estimate turns out to be consistent for σspvq, leading to the following result (see Appendix
C.2 for the proof):
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Theorem 2.4. Suppose Hn „ Hn,rrspn,Bq is a sample from the r-layered hypergraph β-model
as defined in (1.2). For each 2 ď s ď r fix a collection of as ě 1 indices Js :“ tvs,1, ¨ ¨ ¨ , vs,asu P
`

rns

as

˘

. Then

lim
nÑ8

P

˜#

r
ÿ

s“2

prpβ̂s ´ βsqsJsqJrD̂2
s sJsprpβ̂s ´ βsqsJsq ď χ2

řr
s“2 as,1´α

+¸

“ 1 ´ α, (2.15)

where D̂2
s “ diagpσ̂spvq2qvPrns, rD̂2

s sJs “ diagpσ̂spvq2qvPJs, for 2 ď s ď r, and for a ě 1, χ2
a,1´α

is the p1 ´ αq-th quantile of the chi-squared distribution with a degrees of freedom.

3. Goodness-of-Fit: Asymptotics of the Likelihood Ratio Test and Minimax
Detection Rates

In this section we consider the problem of testing for goodness-of-fit in the hypergraph β-
model. In particular, given γ P Rn and a sample Hn „ Hn,rrspn,Bq, with B “ pβ2, . . . ,βrq, we
consider the following hypothesis testing problem: For 2 ď s ď r,

H0 : βs “ γ versus H1 : βs ‰ γ. (3.1)

This section is organized as follows: In Section 3.1 we derive the asymptotic distribution and
detection rates of the likelihood ratio (LR) test for the problem (3.1). In Section 3.2 we show
that the detection rate of the LR test is minimax optimal for testing in L2 norm. Rates for
testing in L8 norm are derived in Section 3.3.

3.1. Asymptotics of the Likelihood Ratio Test. Consider the LR statistic for the testing
problem (3.1):

log Λn,s “ ℓn,spγq ´ ℓn,spβ̂sq, (3.2)

where ℓn,s is the log-likelihood function (2.5) and β̂s is the ML estimate (2.6). The following
theorem proves the limiting distribution of the LR statistic (3.2) under H0.

Theorem 3.1. Suppose γ P BpMq. Then under H0,

λn,s :“
2 log Λn,s ´ n

?
2n

D
Ñ N p0, 1q, (3.3)

for log Λn,s as defined in (3.2).

The proof of Theorem 3.1 is given in Appendix D.1. To prove the result we first expand
log Λn,s around the null parameter γ and derive an asymptotic expansion of λn,s in terms of the
sum of squares of the s-degree sequence pdsp1q, dsp2q, . . . , dspnqqJ (see (D.12)). Since the degrees
are asymptotically independent (recall Theorem 2.3), we can show that the sum of squares of
the degrees (appropriately centered and scaled) is asymptotically normal (see Proposition D.1),
establishing the result in (3.3).

Theorem 3.1 shows that the LR test

ϕn,s :“ 1
␣

|λn,s| ą zα{2

(

, (3.4)

where zα{2 is the p1´α{2q-th quantile of the standard normal distribution, has asymptotic level
α. To study the power of this test consider the following testing problem:

H0 : βs “ γ versus H1 : βs “ γ 1, (3.5)

where γ 1 ‰ γ is such that }γ ´ γ 1}2 “ Op1q. Recall that ds “ pdsp1q, dsp2q, . . . , dspnqqJ is the
vector of s-degrees. Also, Covγrdss will denote the covariance matrix of the vector of s-degrees
(see (C.2)).
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Theorem 3.2. Suppose (3.3) holds and γ 1 as in (3.5). Then the asymptotic power of the test
ϕn,s defined in (3.4) satisfies:

lim
nÑ8

Eγ1rϕn,ss “

#

α if }γ 1 ´ γ}2 ! n´ 2s´3
4 ,

1 if }γ 1 ´ γ}2 " n´ 2s´3
4 .

(3.6)

Moreover, if n
2s´3

4 }γ 1 ´ γ}2 Ñ τ P p0,8q, then there exists η P p0,8q depending on τ such that

η “ lim
nÑ8

pγ 1 ´ γqJ Covγrdsspγ
1 ´ γq

?
n

,

where the limit always exists along a subsequence, and

lim
nÑ8

Eγ1rϕn,ss “ P
´ˇ

ˇ

ˇ
N p´

η
?
2
, 1q

ˇ

ˇ

ˇ
ą zα{2

¯

. (3.7)

The proof of Theorem 3.2 is given in Appendix D.2. It entails analyzing the asymptotic
distribution of the scaled LR statistic λn,s under H1 as in (3.5). Specifically, we show that when

}γ 1 ´ γ}2 ! n´ 2s´3
4 , then λn,s

D
Ñ N p0, 1q, hence the LR test (3.3) is asymptotically powerless

in detecting H1. On the other hand, if }γ 1 ´ γ}2 " n´ 2s´3
4 , then the λn,s diverges to infinity,

hence the LR test is asymptotically powerful. In other words, n´ 2s´3
4 is the detection threshold

in the L2 norm of the LR test. We also derive the limiting power function of the LR test at

the threshold n
2s´3

4 }γ 1 ´ γ}2 Ñ τ P p0,8q. In this case, λn,s
D
Ñ N p´η{

?
2, 1q, where ‘effective

signal strength’ η is the limit of the scaled Mahalanobis distance between γ and γ 1, where the
dispersion matrix is the covariance matrix of the degrees. In the next section we will show that
this detection rate is, in fact, minimax optimal.

3.2. Minimax Detection Rate in the L2 Norm. In this section we will show that the
detection threshold of the LR test obtained in Theorem 3.6 is information-theoretically tight.
To formalize this consider the testing problem: For ε ą 0 and γ P BpMq,

H0 : βs “ γ versus H1 : }βs ´ γ}2 ě ε. (3.8)

The worst-case risk of a test function ψn for the testing problem (3.8) is defined as:

Rpψn,γq “ PH0pψn “ 1q ` sup
γ1PBpMq:}γ1´γ}2ěε

Pγ1pψn “ 0q, (3.9)

which is the sum of the Type I error and the maximum possible Type II error of the test
function ψn. Given Hn „ Hn,spn,βsq, for some βs P BpMq, and ε “ εn (depending on n),
a sequence of test functions ψn is said to be asymptotically powerful for (3.9), if for all γ P

BpMq limnÑ8 Rpψn,γq “ 0. On the other hand, a sequence of test functions ψn is said to be
asymptotically powerless for (3.9), if there exists γ P BpMq such that limnÑ8 Rpψn,γq “ 1.

Theorem 3.3. Given Hn „ Hn,spn,βsq and γ P BpMq, consider the testing problem (3.8).
Then the following hold:

(a) The LR test (3.1) is asymptotically powerful for (3.8), when ε " n´ 2s´3
4 .

(b) On the other hand, all tests are asymptotically powerless for (3.8), when ε ! n´ 2s´3
4 .

The result in Theorem 3.3 (a) is a direct consequence of Theorem 3.2. The proof of Theorem
3.3 (b) is given in Appendix E.1. For this we chose γ “ 0 P Rn and randomly perturb (that
is, randomly add or subtract ε{

?
n) the coordinates of γ to construct βs P BpMq satisfying

}βs ´ γ}2 ě ε. Then a second-moment calculation of the likelihood ratio shows that detecting

these two models is impossible for ε ! n´ 2s´3
4 . These results combined show that n´ 2s´3

4 is the
minimax detection rate for the testing problem (3.8) and the LR test attain the minimax rate.



10 S. NANDY AND B.B. BHATTACHARYA

Remark 3.1. (Comparison between testing and estimation rates.) Recall from (2.8) and (2.10)

that the minimax rate of estimating β̂s in the L2 norm is n´ s´2
2 . On the other hand, Theorem

3.3 shows that the minimax rate of testing in the L2 norm is n´ 2s´3
4 ! n´ s´2

2 . For example, in

the graph case (where s “ 2), the estimation rate is Θp1q whereas the rate of testing is n´ 1
4 . This

is an instance of the well-known phenomenon that high-dimensional estimation is, in general,
harder that testing in the squared-error loss.

3.3. Testing in the L8 Norm. In this section we consider the goodness-of-fit problem when
separation is measured in the L8 norm. This complements our results on estimation in L8

norm in Theorem 2.1. Towards this, as in (3.8), consider the testing problem: For ε ą 0 and
γ P BpMq,

H0 : βs “ γ versus H1 : }βs ´ γ}8 ě ε. (3.10)

In this case the minimax risk of a test function is defined as in (3.9) with the L2 norm }γ 1 ´γ}2
replaced by the L8 norm }γ 1 ´ γ}8. Then consider the test:

ϕmax
n,s :“ 1

#

}β̂s ´ γ}8 ě 2C

c

log n

ns´1

+

,

where C :“ Cps,Mq ą 0 is chosen according to (2.8) such that

Pκ

˜

}β̂s ´ κ}8 ď C

c

log n

ns´1

¸

Ñ 1,

for all κ P BpMq. This implies, Eγrϕmax
n,s s Ñ 0. Also, for γ 1 P BpMq such that }γ ´ γ 1}8 ě ε,

Eγ1rϕmax
n,s s “ Pγ1

˜

}β̂s ´ γ}8 ě 2C

c

log n

ns´1

¸

ě Pγ1

˜

}β̂s ´ γ 1}8 ď C

c

log n

ns´1

¸

Ñ 1, (3.11)

whenever ε "
a

log n{ns´1. This is because }β̂s ´ γ 1}8 ď C
a

log n{ns´1 implies,

}β̂s ´ γ}8 ě }γ ´ γ 1}8 ´ }β̂s ´ γ 1}8 ě ε´ C

c

log n

ns´1
ě 2C

c

log n

ns´1
,

whenever ε "
a

log n{ns´1. This implies that the test ϕmax
n,s in (3.11) is asymptotically powerful

for (3.10) whenever ε "
a

log n{ns´1. The following result shows that this rate is optimal (up
to a factor of

?
log n) for testing in the L8 norm.

Theorem 3.4. Given Hn „ Hn,spn,βsq and γ,βs P BpMq, consider the testing problem (3.10).
Then the following hold:

(a) The test ϕmax
n,s in (3.11) is asymptotically powerful for (3.10), when ε "

b

logn
ns´1 .

(b) On the other hand, all tests are asymptotically powerless for (3.10), when ε !

b

1
ns´1 .

The proof of Theorem 3.4 (b) is given in Appendix E.2. Note that in this case minimax rates
of estimation and testing are the same, since the effect of high-dimensional aggregation does not
arise when separation is measured in the L8 norm.
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4. Numerical Experiments

In this section we study the performance of the ML estimates and the LR tests discussed
above in simulations. To begin with we simulate a 3-uniform hypergraph β-model H3pn,βq,
with n “ 400 vertices and β “ 0 P Rn. Figure 1(a) shows the quantile-quantile (QQ) plot

(over 200 iterations) of the first coordinate of the ML estimate rDs1prβ̂ ´ βs1q (where β̂ is
computed using the fixed point algorithm described in [45] and D is as defined in Corollary
2.2). We observe that the empirical quantiles closely follow the quantiles of the standard normal
distribution, validating the result in Corollary 2.2.
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Figure 1. (a) QQ plot of the ML estimate β̂1, (b) confidence intervals for β1, and (c)
power of the LR test for the goodness of fit problem (4.1), in the 3-uniform hypergraph

β-model.

In the same setup as above, Figure 1(b) shows the 95% confidence interval for rβs1 over 50
iterations. Specifically, we plot the intervals

«

rβ̂s1 ´
1.96

rD̂s1
, rβ̂s1 `

1.96

rD̂s1

ff

,

where D̂ is the estimate of D as defined in Theorem 2.4. This figure shows that 47 out of 50 of
intervals cover the true parameter, which gives an empirical coverage of 47{50 “ 0.94.

Next, we consider the goodness of fit problem in s-uniform hypergraph β-model:

H0 : β “ 0 versus H1 : β ‰ 0, (4.1)

for s “ 2, 3. For this we simulate Hn „ H3pn,γq, with n “ 250 and γ “ α ¨u, where u is chosen
uniformly at random from the n-dimensional unit sphere and α P r0, 1s. Figure 1(c) shows the
empirical power of the LR test (3.4) (over 50 iterations) as α varies over a grid of 25 uniformly
spaced values in r0, 1s, for s “ 2, 3. In both cases, as expected, the power increases with α,
which, in this case, determines the signal strength. Also, the LR test is more powerful in the
3-uniform case compared to the 2-uniform case. This aligns with conclusions of Theorem 3.2,

which shows that the detection threshold of the LR test in the 3-uniform case is n´ 3
4 , while

for 2-uniform case it is n´ 1
4 . Hence, one expects to see more power at lower signal strengths

(smaller α) for s “ 3 compared to s “ 2.

Acknowledgements. B. B. Bhattacharya was supported by NSF CAREER grant DMS 2046393, NSF
grant DMS 2113771, and a Sloan Research Fellowship. Further, we want to thank Rui Feng for pointing
out an important error in our old draft.



12 S. NANDY AND B.B. BHATTACHARYA

References

[1] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and S. Belongie. Beyond pairwise
clustering. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 838–845. IEEE, 2005.

[2] K. Ahn, K. Lee, and C. Suh. Community recovery in hypergraphs. IEEE Transactions on Informa-
tion Theory, 65(10):6561–6579, 2019.

[3] K. Balasubramanian. Nonparametric modeling of higher-order interactions via hypergraphons. The
Journal of Machine Learning Research, 22(1):6464–6498, 2021.

[4] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri.
Networks beyond pairwise interactions: structure and dynamics. Physics Reports, 874:1–92, 2020.

[5] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini,
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Appendix A. Proof of Theorem 2.1

A.1. Convergence Rate in the L2 Norm. As mentioned in the Introduction, the proof
of Theorem 2.1 involves showing the following: (1) a concentration bound on the gradient of
negative log-likelihood ℓn,s (recall (2.5)) at the true parameter value B “ pβ1,β2, . . . ,βrq, and
(2) the strong convexity of ℓn,s in a neighborhood of the true parameter. We begin with the
concentration of the gradient ∇ℓn,s in both the L2 and the L8 norms:

Lemma A.1. Suppose the assumptions of Theorem 2.1 hold. Then for each 2 ď s ď r, there
exists a constant C ą 0 (depending on r and M) such that the following hold:

}∇ℓn,spβsq}22 ď C ns and }∇ℓn,spβsq}28 ď C ns´1 log n, (A.1)

with probability 1 ´O
`

1
n2

˘

.

The next step is to establish the strong convexity of ℓn,s. Towards this we need to show
that the smallest eigenvalue λminp∇2ℓn,sq of the Hessian matrix ∇2ℓn,s (appropriately scaled)
is bounded away from zero in a neighborhood of the true value βs. This is the content of
the following lemma, which also establishes a matching upper bound on the largest eigenvalue
λmaxp∇2ℓn,sq of the Hessian matrix ∇2ℓn,s.

Lemma A.2. Suppose the assumptions of Theorem 2.1 hold. Fix 2 ď s ď r and a constant
K ą 0. Then there exists a constants C 1

1, C
1
2 ą 0 (depending on r and M) such that the following

hold:

C 1
1e

´s}β´βs}8ns´1 ď λminp∇2ℓn,spβqq ď λmaxp∇2ℓn,spβqq ď C 1
2n

s´1. (A.2)
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As a consequence, there exists a constants C1, C2 ą 0 (depending on r, K, and M) such that
the following hold:

C1n
s´1 ď inf

β:}β´βs}2ďK
λminp∇2ℓn,spβqq ď sup

β:}β´βs}2ďK
λmaxp∇2ℓn,spβqq ď C2n

s´1. (A.3)

The proofs of Lemma A.1 and Lemma A.2 are given in Appendix A.1.2 and Appendix A.1.3,
respectively. We first apply these results to prove the rate of convergence in the L2 norm in
Theorem 2.1.

A.1.1. Deriving the L2 Norm Bound in (2.8). To begin with suppose the ML equations (2.7)

have a solution B̂ “ pβ̂2, . . . , β̂rq. This implies, ∇ℓn,spβ̂sq “ 0, for 2 ď s ď r, where ℓn,s is as
defined in (2.5). For 2 ď s ď r and 0 ď t ď 1, define

βsptq :“ tβ̂s ` p1 ´ tqβs,

and gsptq :“ pβ̂s ´ βsq
J∇ℓn,spβsptqq. Note that ∇ℓn,spβsp1qq “ ∇ℓn,spβ̂sq “ 0. Hence, by the

Cauchy-Schwarz inequality,

|gsp1q ´ gsp0q| “ |pβ̂s ´ βsq
J∇ℓn,spβsq| ď }β̂s ´ βs}2 ¨ }∇ℓn,spβsq}2. (A.4)

Also,

g1
sptq “ pβ̂s ´ βsq

J∇2ℓn,spβsptqqpβ̂s ´ βsq ě λminp∇2ℓn,spβsptqqq}β̂s ´ βs}
2
2. (A.5)

We now consider two cases: To begin with assume s ě 3. By Lemma A.2, given a constant
K ą 0 there exists a constant C1 ą 0 (depending on r,K,M) such that

inf
β:}β´βs}2ďK

λminp∇2ℓn,spβqq ě C1n
s´1. (A.6)

Note that }βsptq ´ βs}2 “ |t|}β̂s ´ βs}2. Then

|gsp1q ´ gsp0q| ě gsp1q ´ gsp0q “

ż 1

0
g1
sptqdt

ě

ż mint1, K

}β̂s´βs}2
u

0
g1
sptqdt

ě C1n
s´1}β̂s ´ βs}

2
2min

#

1,
K

}β̂s ´ βs}2

+

,

where the last step follows from (A.5) and (A.6). Therefore, by (A.4) and Lemma A.1, with
probability 1 ´Op 1

n2 q,

mint}β̂s ´ βs}2,Ku Àr,K,M
1

ns´1
¨ }∇ℓn,spβsq}2 Àr,K,M

c

1

ns´2
. (A.7)

Since K ą 0 is fixed and the RHS of (A.9) converges to zero for s ě 3, the L2 norm bound in
(2.8) follows, under the assumption that ML equations (2.7) have a solution.

Next, suppose s “ 2. Since }β2ptq ´ β2}8 “ |t|}β̂2 ´ β2}8. Since t P r0, 1s, by Lemma A.2,

λminp∇2ℓn,2pβ2ptqqq ě C 1
1e

´2|t|}β̂2´β2}8n ě C 1
1e

´2}β̂2´β2}8n, (A.8)

for some constant C 1
1 ą 0 depending on M . Then

|g2p1q ´ g2p0q| ě g2p1q ´ g2p0q “

ż 1

0
g1
2ptqdt

ě C 1
1n}β̂2 ´ β2}22e

´2}β̂2´β2}8 . (by (A.5) and (A.8))
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Therefore, by (A.4) and Lemma A.1, with probability 1 ´ op1q,

}β̂2 ´ β2}2e
´2}β̂2´β2}8 ď

1

C 1
1n

¨ }∇ℓn,2pβ2q}2 ď C 1, (A.9)

for some constant C 1 ą 0 depending on M . Hence, if there exists a bounded solution to (2.7),
the L2 norm rate will follow for s “ 2.

To complete the proof we need to show that bounded solution to equation (2.7) exists, To
this end, for 2 ď s ď r, denote by Ds, the set of all possible degree sequences in an s-uniform
hypergraph on n vertices. Moreover, let Rs be the set of all expected degree sequences in
a hypergraph on n vertices sampled from the s-uniform model (1.3). The following result
shows that any convex combination of s-degree sequences in Ds can be reached by the limit of
expected degree sequences of the s-uniform hypergraph β-model. This was proved in the graph
case (s “ 2) by Chatterjee et al. [10, Theorem 1.4]. Here, we show that the same holds for all
2 ď s ď r.

Proposition A.1. Fix 2 ď s ď r and let Ds and Rs be as defined above. Then conv pDsq “ R̄s,
where conv pDsq denotes the convex hull of Ds and sRs is the closure of Rs.

The proof of the above result is given in Appendix F. Using this proposition we now show
the existence of bounded solutions of the ML equations (2.7). Note that by Proposition A.1,
given Hn „ Hn,rrspn,Bq the s-degree sequence pdsp1q, . . . , dspnqq P Ds Ď R̄s. This implies, there
exists a sequence txtutě0 P Rs satisfying

lim
tÑ8

xt “ pdsp1q, . . . , dspnqq.

Since xt P Rs, there exists tβ̂
ptq
1 , . . . , β̂

ptq
r u such that

xt “
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβ
ptq
s,v`β

ptq
s,v2

`...`β
ptq
s,vs

1 ` eβ
ptq
s,v`β

ptq
s,v2

`...`β
ptq
s,vs

, (A.10)

for 2 ď s ď r. In other words, for each t ě 0, tβ̂
ptq
1 , . . . , β̂

ptq
r u is a solution of the ML equations

(2.7) with pdsp1q, dsp2q, . . . , dspnqq replaced by xt. By the previous argument, there exists C ą 0
(not depending on t) such that with probability 1 ´ op1q,

max
2ďsďr

}β̂ptq
s }8 ď C,

for all t ě 0. Therefore, the sequence tpβ̂
ptq
1 , β̂

ptq
2 , . . . , β̂

ptq
r quě0 has a limit point. This limit point

is a solution to (2.7) (by taking limit as t Ñ 8 in (A.10)) and is bounded. Finally, since ℓn,s is
strongly convex for β P BpMq (see (A.2)), if the gradient equations have a bounded solution, it
is the unique minimizer. Therefore, there exists a unique bounded solution to (2.7) which is the
minimizer of ℓn,s.

A.1.2. Proof of Lemma A.1. Recalling (2.7) note that, for v P rns, v-th coordinate of the gradient
of ∇ℓn,s is given by:

∇ℓn,spβsqv “ Erdspvqs ´ dspvq (A.11)

where

Erdspvqs “
ÿ

tv2,...,vsuPprnsztvu

s´1 q

eβs,v`βs,v2`...`βs,vs

1 ` eβs,v`βs,v2`...`βs,vs
. (A.12)
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Since dspvq is the sum of Opns´1q independent random variables, by Hoeffding’s inequality
and the union bound,

P
`

}∇ℓn,spβsq}28 ě 4Cs,Mn
s´1 log n

˘

ď
1

n2
,

for some constant Cs,M ą 0 (depending on s and M). This establishes the second bound in
(A.1).

Next, we prove the first bound in (A.1). Denote by Bn :“ tx P Rn : }x}2 ď 1u the unit ball
in Rn. By [48, Lemma 5.2], we can construct an 1

2 -net V of Bn satisfying log |V| ď C1n for some

constant C1 ą 0. Now, for any unit vector a “ pa1, a2, . . . , anqJ P Bn and the corresponding
point b “ pb1, b2, . . . , bnqJ P V, recalling (A.11) gives,

n
ÿ

v“1

av∇ℓn,spβsqv “

n
ÿ

v“1

av pErdspvqs ´ dspvqq “

n
ÿ

v“1

bv pErdspvqs ´ dspvqq ` ∆, (A.13)

where

∆ :“
n
ÿ

v“1

pav ´ bvq pErdspvqs ´ dspvqq

ď

g

f

f

e

n
ÿ

v“1

pav ´ bvq2
n
ÿ

v“1

pErdspvqs ´ dspvqq
2

ď
1

2

g

f

f

e

n
ÿ

v“1

pErdspvqs ´ dspvqq
2

“
1

2
}∇ℓn,spβsq}2, (A.14)

by the Cauchy-Schwarz inequality and the fact that }a ´ b} ď 1
2 . Using the above in (A.13)

gives,
n
ÿ

v“1

av∇ℓn,spβsqv ď

n
ÿ

v“1

bv pErdspvqs ´ dspvqq `
1

2
}∇ℓn,spβsq}2. (A.15)

Maximizing over a P Bn and b P V on both sides of (A.15) and rearranging the terms gives,

}∇ℓn,spβsq}2 ď 2max
bPV

n
ÿ

v“1

bv pErdspvqs ´ dspvqq . (A.16)

For e “ pu1, u2, . . . , usq P rnss denote βs,e “ pβs,u1 , βs,u2 , . . . , βs,usqJ. Hence, by (A.16), Hoeffd-
ing’s inequality, and union bound,

P
`

}∇ℓn,spβsq}22 ą 4C2ns
˘

ď
ÿ

bPV
P

˜

n
ÿ

v“1

bv pErdspvqs ´ dspvqq ą 2Cn
s
2

¸

“
ÿ

bPV
P

¨

˚

˝

n
ÿ

v“1

ÿ

ePprns

s q:vPe

bv

#

eβ
J
s,e1

1 ` eβ
J
s,e1

´ 1te P EpHnqu

+

ą 2Cn
s
2

˛

‹

‚

ď
ÿ

bPV
e

´ 2C2n
řn
v“1 b2v ď 2C1ne´2C2n Ñ 0,

by choosing C ą C1 to be large enough. This proves the first inequality in (A.1). l
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A.1.3. Proof of Lemma A.2. For e “ pu1, u2, . . . , usq P
`

rns

s

˘

and β “ pβ1, β2, . . . , βnq P Rn,
denote βe “ pβu1 , βu2 , . . . , βusqJ. Recalling (2.7) note that, the Hessian matrix ∇2ℓn,s can be
expressed as:

∇2ℓn,spβq “
ÿ

u,vPrns

ÿ

ePprns

s q

eβ
J
e 1

p1 ` eβJ
e 1q2

ηuη
J
v 1tu, v P eu,

where ηu is the u-th basis vector in Rn, for 1 ď u ď n.
Note that for β P Rn and βs P BpMq,

|1Jβe| ď s}β}8 ď s}βs}8 ` s}βs ´ β}8.

Hence,

1

4
e´spM`}βs´β}8q ď

e1
Jβe

p1 ` e1Jβeq2
ď 1. (A.17)

For x P Rn, consider

xJ∇2ℓn,spβqx “
ÿ

u,vPrns

ÿ

ePprns

s q

eβ
J
e 1

p1 ` eβJ
e 1q2

xuxv1tu, v P eu

“
ÿ

ePprns

s q

eβ
J
e 1

p1 ` eβJ
e 1q2

¨

˝

ÿ

u,vPrns

xuxv1tu, v P eu

˛

‚

“
ÿ

ePprns

s q

eβ
J
e 1

p1 ` eβJ
e 1q2

¨

˝

ÿ

uPrns

xu1tu P eu

˛

‚

2

ě
1

4
e´spM`}βs´β}8q

ÿ

ePprns

s q

¨

˝

ÿ

uPrns

xu1tu P eu

˛

‚

2

,

where the last step uses (A.17). Observe that for any x P Rn

ÿ

ePprns

s q

¨

˝

ÿ

uPrns

xu1tu P eu

˛

‚

2

“ xJLx,

where

L :“
ÿ

u,vPrns

ÿ

ePprns

s q

ηuη
J
v 1tu, v P eu “

ˆˆ

n´ 1

s´ 1

˙

´

ˆ

n´ 2

s´ 2

˙˙

In `

ˆ

n´ 2

s´ 2

˙

11J,

where In is the nˆn identity matrix and 1 “ p1, 1, . . . , 1qJ. Similarly, we can show from (A.17)
that for any x P Rn

xJ∇2ℓn,spβqx ď xJLx.

Thus, for β P Rn

1

4
e´spM`}βs´β}8qλmin pLq ď λminp∇2ℓn,spβqq ď λmaxp∇2ℓn,spβqq ď λmax pLq . (A.18)
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Note that L is a circulant matrix with 2 non-zero eigenvalues:
ˆ

n´ 1

s´ 1

˙

and

ˆ

n´ 1

s´ 1

˙

´

ˆ

n´ 2

s´ 2

˙

.

Hence, there exists constants C2
1 , C

2
2 ą 0 (depending on r), such that

ˆ

n´ 1

s´ 1

˙

ď C2
1n

s´1 and

ˆ

n´ 1

s´ 1

˙

´

ˆ

n´ 2

s´ 2

˙

ě C2
2 n

s´1.

This implies, from (A.18), that there exists constants C 1
1, C

1
2 ą 0 (depending on r and M) such

that (A.2) hold. The result in (A.3) from hold from (A.2) by noting that }βs´β}8 ď }βs´β}2.

A.2. Convergence Rate in the L8 Norm. Suppose Hn „ Hn,rrspn,Bq as in the statement
of Theorem 2.1. From the arguments in Appendix A.1 we know that, with probability 1 ´ op1q,

the ML equations (2.7) have a bounded solution B̂ “ pβ̂1, β̂2, . . . , β̂rq, that is, ∇ℓn,spβ̂sq “ 0,

for 2 ď s ď r, and max2ďsďr }β̂s}8 “ Op1q. To establish the rate in L8 norm we decompose
the likelihood for the s-th layer as follows.

ℓn,spβq “
ÿ

tv1,v2,...,vsuPprns

s q

log
´

1 ` eβv1`...`βvs
¯

´

n
ÿ

v“1

βvdspvq

“
ÿ

ePprns

s q

!

log
´

1 ` eβ
J
e 1
¯

´ 1te P EpHnquβJ
e 1

)

“ ℓ`
n,spβu|βūq ` ℓ´

n,spβūq, (A.19)

where βū “ pβ1, . . . , βu´1, βu`1, . . . , βnq,

ℓ`
n,spβu|βūq :“

ÿ

ePprns

s q:uPe

!

log
´

1 ` eβ
J
e 1
¯

´ 1te P EpHnquβJ
e 1

)

ℓ´
n,spβūq :“

ÿ

ePprns

s q:uRe

!

log
´

1 ` eβ
J
e 1
¯

´ 1te P EpHnquβJ
e 1

)

. (A.20)

Fix a constant K ą 0 and define

β̂˝
s,ū “ arg min

βū:}βū´βs,ū}2ďK
ℓ´
n,spβūq, (A.21)

where βs,ū “ pβs,1, . . . , βs,u´1, βs,u`1, . . . , βs,nq. This is the leave-one-out ML estimate on the
constrained set }βū ´ βs,ū}2 ď K. First we bound the difference (in L2 norm) of constrained
leave-one-out ML estimate defined above and the leave-one-out true parameter βs,ū.

Lemma A.3. Let β̂˝
s,ū and βs,ū be as defined above. Then, for u P rns, with probability 1´op1q,

max
uPrns

}β̂˝
s,ū ´ βs,ū}22 Às,M,K

1

ns´2
. (A.22)

Proof. To begin with, observe that

ℓ´
n,spβs,ūq ě ℓ´

n,spβ̂
˝
s,ūq

“ ℓ´
n,spβs,ūq ` pβ̂˝

s,ū ´ βs,ūqJ∇ℓ´
n,spβs,ūq `

1

2
pβ̂˝

s,ū ´ βs,ūqJ∇2ℓ´
n,spβ̃qpβ̂˝

s,ū ´ βs,ūq,

where }β̃ ´ βs,ū}2 ď }β̂˝
s,ū ´ βs,ū}2 ď K. This implies,

}β̂˝
s,ū ´ βs,ū}2 ¨ }∇ℓ´

n,spβs,ūq}2 ě ´pβ̂˝
s,ū ´ βs,ūqJ∇ℓ´

n,spβs,ūq
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ě
1

2
pβ̂˝

s,ū ´ βs,ūqJ∇2ℓ´
n,spβ̃qpβ̂˝

s,ū ´ βs,ūq. (A.23)

By Lemma A.2,

pβ̂˝
s,ū ´ βs,ūqJ∇2ℓ´

n,spβ̃qpβ̂˝
s,ū ´ βs,ūq Ás,M,K }β̂˝

s,ū ´ βs,ū}2ns´1.

Also, by Lemma A.1, }∇ℓ´
n,spβs,ūq}22 Às,M,K ns with probability 1 ´ Op 1

n2 q. Plugging in the
above inequalities in (A.23), and using the union bound we get (A.22). □

Next, we bound the difference between the constrained leave-one-out ML estimate β̂˝
s,ū and

the (unconstrained) leave-one-out ML estimate β̂s,ū “ pβ̂s,1, . . . , β̂s,u´1, β̂s,u`1, . . . , β̂s,nq.

Lemma A.4. Let β̂˝
s,ū and β̂s,ū be as defined above. Then, with probability 1 ´ op1q,

max
uPrns

}β̂˝
s,ū ´ β̂s,ū}22 Às,M,K

1

ns´1
`

}β̂s ´ βs}
2
8

ns´1
, (A.24)

where Xe “ 1te P EpHnqu, ψpxq “ ex

1`ex , and βs,e “ pβs,u1 , βs,u2 , . . . , βs,usqJ, for e “

pu1, u2, . . . , usq P rnss.

Proof. By the definition of β̂˝
s,ū (recall (A.21))

ℓ´
n,spβ̂s,ūq ě ℓ´

n,spβ̂
˝
s,ūq

“ ℓ´
n,spβ̂s,ūq ` pβ̂˝

s,ū ´ β̂s,ūqJ∇ℓ´
n,spβ̂s,ūq ` pβ̂˝

s,ū ´ β̂s,ūqJ∇ℓ´
n,spβ̄qpβ̂˝

s,ū ´ β̂s,ūq,

where }β̄ ´ β̂s,ū}2 ď }β̂˝
s,ū ´ β̂s,ū}2. Note that }β̂˝

s,ū ´ β̂s,ū}2 “ Op1q, since }β̂s}8 “ Op1q and

}β̂˝
s,ū} “ Op1q. Then by Lemma A.2,

}β̂˝
s,ū ´ β̂s,ū}22 Às,M,K

}∇ℓ´
n,spβ̂s,ūq}22

n2ps´1q
. (A.25)

Since ∇ℓn,spβ̂sq “ 0, that is, B
Bβv

ℓn,spβ̂sq “ 0, for v P rns. Hence, we have from (A.19),

B

Bβv
ℓ´
n,spβ̂s,ūq “ ´

B

Bβv
ℓ`
n,spβ̂s,u|β̂s,ūq “ ´

ÿ

ePprns

s q:tu,vuPe

tXe ´ ψp1Jβ̂s,equ,

where ψpxq :“ ex

1`ex . This implies,

}∇ℓ´
n,spβ̂s,ūq}22

“
ÿ

vPrnsztuu

¨

˚

˝

ÿ

ePprns

s q:tu,vuPe

tXe ´ ψpβ̂J
s,e1qu

˛

‹

‚

2

À
ÿ

vPrnsztuu

»

—

–

¨

˚

˝

ÿ

ePprns

s q:tu,vuPe

tXe ´ ψp1Jβs,equ

˛

‹

‚

2

`

¨

˚

˝

ÿ

ePprns

s q:tu,vuPe

tψp1Jβ̂s,eq ´ ψp1Jβs,equ

˛

‹

‚

2fi

ffi

fl

Àr

ÿ

vPrnsztuu

¨

˚

˝

ÿ

ePprns

s q:tu,vuPe

tXe ´ ψp1Jβs,equ

˛

‹

‚

2

` ns´1}β̂s ´ βs}
2
8, (A.26)

using

|ψp1Jβ̂s,eq ´ ψp1Jβs,eq| À |1Jβ̂s,e ´ 1Jβs,e| Àr }β̂s ´ βs}
2
8.
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By (A.25) and (A.26), to prove the result in (A.24) it suffices show the following holds with
probability 1 ´ op1q,

max
1ďuďn

ÿ

vPrnsztuu

¨

˚

˝

ÿ

ePprns

s q:u,vPe

␣

1te P EpHnqu ´ ψpβJ
s,e1q

(

˛

‹

‚

2

À ns´1. (A.27)

This is proved in Appendix A.2.1. □

We now apply the above lemmas to derive the bound in the L8 norm. To begin with note
that since ℓn,spβ̂sq “ minβs ℓn,spβsq,

ℓ`
n,spβs,u|β̂s,ūq ` ℓ´

n,spβ̂s,ūq ě ℓn,spβ̂sq “ ℓ`
n,spβ̂s,u|β̂s,ūq ` ℓ´

n,spβ̂s,ūq.

The above inequality implies

ℓ`
n,spβs,u|β̂s,ūq

ě ℓ`
n,spβ̂s,u|β̂s,ūq

“ ℓ`
n,spβs,u|β̂s,ūq ` pβ̂s,u ´ βs,uq

B

Bβu
ℓ`
n,spβs,u|β̂s,ūq `

1

2
pβ̂s,u ´ βs,uq2

B2

Bβ2u
ℓ`
n,spβ̃|β̂s,ūq,

where β̃ is a convex combination of β̂s,u and βs,u. Therefore,

pβ̂s,u ´ βs,uq2 ď
4| B

Bβu
ℓ`
n,spβs,u|β̂s,ūq|2

| B2

Bβ2
u
ℓ`
n,spβ̃|β̂s,ūq|2

. (A.28)

From arguments in Appendix A.1 we know that with probability 1 ´ op1q, }β̂s ´ βs}8 ď }β̂s ´

βs}2 À 1. Note that for β P Rn such that }β ´ βs}8 À 1, we have }β}8 À 1 and hence,
|1Jβe| À 1. This implies, ψp1Jβe,sqp1 ´ ψp1Jβe,sqq Á 1 and hence,

B2

Bβ2u
ℓ`
n,spβ̃|β̂s,ūq “

ÿ

ePprns

s q:uPe

ψp1Jβ̄e,sqp1 ´ ψp1Jβ̄e,sqq Á ns´1,

where β̄s “ pβ̂s,1, . . . , β̂s,u´1, βs,u, β̂s,u`1, . . . , β̂s,nqJ. Hence, (A.28) implies,

pβ̂s,u ´ βs,uq2 À
| B

Bβu
ℓ`
n,spβs,u|β̂s,ūq|2

n2s´2
. (A.29)

Now, we bound | B
Bβu

ℓ`
n,spβs,u|β̂s,ūq|2. For this define

β̄˝
s “ prβ̂˝

s,ūs1, . . . , rβ̂
˝
s,ūsu´1, βs,u, rβ̂

˝
s,ūsu`1, . . . , rβ̂

˝
s,ūsnqJ.

Then we have
ˇ

ˇ

ˇ

ˇ

B

Bβu
ℓ`
n,spβs,u|β̂s,ūq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q:uPe

tXe ´ ψp1Jβ̄e,squ

ˇ

ˇ

ˇ

ˇ

ˇ

ď T1puq ` T2puq ` T3puq, (A.30)

where

T1puq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q:uPe

tXe ´ ψp1Jβe,squ

ˇ

ˇ

ˇ

ˇ

ˇ

, T2puq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q:uPe

tψp1Jβ̄˝
e,sq ´ ψp1Jβe,squ

ˇ

ˇ

ˇ

ˇ

ˇ

,
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and

T3puq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q:uPe

tψp1Jβ̄˝
e,sq ´ ψp1Jβ̄e,squ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Note that since tXeu
ePprns

s q
are independent and bounded random variables, using Hoeffding’s

inequality and union bound gives

max
uPrns

T1puq À
a

ns´1 log n,

with probability 1 ´ op1q. Next, we consider T2puq. By Lemma A.3, with probability 1 ´ op1q,

max
uPrns

T2puq À max
uPrns

ÿ

ePprns

s q:uPe

#

ÿ

vPe

|βs,v ´ rβ̂˝
s,ūsv|

+

“ max
uPrns

ÿ

vPrnsztuu

ns´2|βs,v ´ rβ̂˝
s,ūsv|

À ns´ 3
2 max
uPrns

}βs,ū ´ β̂˝
s,ū}2 À

?
ns´1.

A similar argument shows that, with probability 1 ´ op1q, maxuPrns T3puq À ns´ 3
2 }β̂s,ū ´ β̂˝

s,ū}2.
Combining the bounds on T1, T2 and T3 with (A.29) and (A.30) gives, with probability 1´op1q,

}β̂s ´ βs}8 À

c

log n

ns´1
`

maxuPrns }β̂s,ū ´ β̂˝
s,ū}2

?
n

. (A.31)

Applying (A.31) in (A.24) now gives, with probability 1 ´ op1q,

max
uPrns

}β̂˝
s,ū ´ β̂s,ū}2 Às,M,K

c

1

ns´1
`

}β̂s ´ βs}8
?
ns´1

Às,M,K

c

1

ns´1
`

maxuPrns }β̂˝
s,ū ´ β̂s,ū}2

?
ns

À

c

1

ns´1
.

Using this inequality with (A.31) gives, with probability 1 ´ op1q,

}β̂s ´ βs}8 Às,M,K

c

log n

ns´1
,

establishing the desired bound in (2.8).

A.2.1. Proof of (A.27).

Proof. Denote by Bn´1 “ tx P Rn´1 : }x}2 ď 1u. Using [48, Lemma 5.2], we can construct an 1
2 -

net V1 of Bn´1 satisfying log |V1| ď C2n for some constant C2 ą 0. Now, for any u P rns, any unit

vector ã “ pã1, ã2, . . . , ãn´1qJ P Bn´1 and the corresponding point b̃ “ pb̃1, b̃2, . . . , b̃n´1qJ P V1,

ÿ

vPrnsztuu

ãv

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

“
ÿ

vPrnsztuu

b̃v

$

’

&

’

%

ÿ

ePprns

s q,u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

` ∆u, (A.32)
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where

∆u :“
ÿ

vPrnsztuu

pãi ´ b̃iq

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

.

Proceeding as in (A.14), for all u P rns, we can show

|∆u| ď
1

2

g

f

f

f

f

e

ÿ

vPrnsztuu

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

"

Xe ´
e1Jβe

1 ` e1Jβe

*

,

/

.

/

-

2

.

Maximizing over ã P Bn´1 and b̃ P V1 on both sides of (A.32) we get
g

f

f

f

f

e

ÿ

vPrnsztuu

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

"

Xe ´
e1Jβe

1 ` e1Jβe

*

,

/

.

/

-

2

ď 2max
b̃PV1

ÿ

vPrnsztuu

b̃v

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

.

As the above relation holds for all u P rns we get
g

f

f

f

f

e

max
uPrns

ÿ

vPrnsztuu

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

"

Xe ´
e1Jβe

1 ` e1Jβe

*

,

/

.

/

-

2

ď 2 max
uPrns

max
b̃PV1

ÿ

vPrnsztuu

b̃v

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

. (A.33)

Hence, using (A.33), Hoeffding Inequality and union bound we get

P

¨

˚

˝

max
uPrns

ÿ

vPrnsztuu

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

2

ą 4K2ns´1

˛

‹

‚

ď

n
ÿ

u“1

ÿ

b̃PV1

P

¨

˚

˝

ÿ

vPrnsztuu

b̃v

$

’

&

’

%

ÿ

ePprns

s q:u,vPe

#

Xe ´
e1

Jβe

1 ` e1Jβe

+

,

/

.

/

-

ą 2Kn
s´1
2

˛

‹

‚

ď

n
ÿ

u“1

ÿ

b̃PV1

e
´ 2K2n

řn´1
v“1 b̃2v

ď n 2C2ne´2K2n Ñ 0,

for K large enough. □

Appendix B. Estimation Lower Bounds: Proof of Theorem 2.2

The lower bound in the L2 norm is proved in Appendix B.1 and the lower bound in the L8

norm is proved Appendix B.2.
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B.1. Estimation Lower Bound in the L2 Norm: Proof of (2.10). For γ P Rn, denote the
probability distribution of s-uniform model Hspn,γq by Pγ . To prove the result (2.10) recall
Fano’s lemma:

Theorem B.1 ([47, Theorem 2.5]). Suppose there exists γp0q, ¨ ¨ ¨ ,γpJq P Rn, with }γpjq} P BM
for all 0 ď j ď J , such that

p1q }γpjq ´ γpℓq}2 ě 2s ą 0 for all 0 ď j ‰ ℓ ď J ,

p2q 1
J

řJ
j“1 KLpPγpjq ,Pγp0qq ď α log J ,

where α P p0, 1{8q. Then

min
γ̂

max
γ

P p}γ̂ ´ γ}2 ě sq ě

?
J

?
J ` 1

ˆ

1 ´ 2α ´

c

2α

log J

˙

. (B.1)

To obtain γp0q, . . . ,γpJq P Rn as in the above lemma we will invoke the Gilbert-Varshamov
Theorem (see [47, Lemma 2.9]) which states that there exists ωp0q, . . . ,ωpJq P t0, 1un, with

J ě 2n{8, such that ωp0q “ p0, ¨ ¨ ¨ , 0qJ and

}ωpjq ´ ωpℓq}1 ě
n

8
, (B.2)

for all 0 ď j ‰ ℓ ď J . For ωp0q, . . . ,ωpJq P t0, 1un as above and δ P p0, 1{8q define,

γpjq “ εnω
pjq, for 0 ď j ď J,

where εn “ 16Cn´ s´1
2 , with C “ Cpδ, sq ą 0 a constant depending on δ and s to be chosen

later. By (B.2) we have

}γpjq ´ γpℓq}2 ě 2Cn´ s´2
2 .

Now,

KLpPγpjq ,Pγp0qq

“

s
ÿ

t“0

ˆ

}ωpjq}1

t

˙ˆ

n´ }ωpjq}1

s´ t

˙

!

ψ ptεnq log p2ψ ptεnqq ` p1 ´ ψ ptεnqq log p2 p1 ´ ψ ptεnqqq

)

,

where ψpxq “ ex

1`ex is the logistic function defined in Lemma A.4. By a Taylor expansion,
for small enough x ą 0,

ψpxq logp2ψpxqq ` p1 ´ ψpxqq logp2p1 ´ ψpxqqq “
x2

8
`Opx3q.

Hence, using
`

}ωpjq}1
t

˘`

n´}ωpjq}1
s´t

˘

Às n
s gives

1

J

J
ÿ

j“1

KLpPγpjq ,Pγp0qq Às n
sε2n Às C

2n ď δ log J,

for C “ Cpδ, sq chosen appropriately. Hence, applying Theorem B.1 and taking J Ñ 8 in (B.1)
gives

min
γ̂

max
γ

P
´

}γ̂ ´ γ}2 ě Cn´ s´2
2

¯

ě 1 ´ 2δ.

This completes the proof of (2.10).
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B.2. Estimation Lower Bound in L8 Norm: Proof of (2.11). Choose 2 points γ,γ 1 P Rn
as follows: γ “ 0 and γ 1 “ pγ1

1, γ
1
2, . . . , γ

1
nq such that

γ1
i “

#

Cn´ s´1
2 if i “ 1,

0 otherwise,

for some constant C ą 0 to be chosen later. Clearly, }γ ´ γ 1}8 “ Cn´ s´1
2 :“ ε. Denote

the probability distribution of the s-uniform models Hspn,γq and Hspn,γ
1q by Pγ and Pγ1 ,

respectively. Observe that

KLpPγ ,Pγ1q “
1

2

ÿ

ePprns

s q:1Pe

„

log

"

p1 ` eεq

2 eε

*

` log

"

1

2
p1 ` eεq

*ȷ

. (B.3)

By Taylor’s theorem, we get

log

"

p1 ` eεq

2 eε

*

` log

"

1

2
p1 ` eεq

*

“ ε2 `Opε3q “
C2

ns´1
`O

ˆ

1

n
3
2

ps´1q

˙

.

Hence, from (B.3),
KLpPγ ,Pγ1q “ LsC

2 ` op1q,

for some constant Ls depending on s. This implies, by Le Cam’s two-point method (see [47,
Theorem 2.2]), for δ P p0, 1q,

min
γ̂

max
γ

P

˜

}γ̂ ´ γ}8 ě C

c

1

ns´1

¸

ě max

#

e´ 1
4
LsC2

,
1

2
´

1

2

c

LsC2

2

+

ě 1 ´ δ,

by choosing C, depending on δ and s, small enough.

Appendix C. Proof of Theorem 2.3 and Theorem 2.4

We begin with the proof of Theorem 2.3 in Section C.1. The proof of Theorem 2.4 is given
in Section C.2.

C.1. Proof of Theorem 2.3. Recall that, for 2 ď s ď r, ds “ pdsp1q, dsp2q, . . . , dspnqqJ is the

vector of s-degrees. The first step in the proof of Theorem 2.3 is to derive a linearization of β̂s
in terms of the s-degrees as in Proposition C.1 below. The proof is given in Appendix C.1.1.

Proposition C.1. Fix 2 ď s ď r. Then under the assumptions of Theorem 2.3, with probability
1 ´ op1q as n Ñ 8,

}β̂s ´ βs ´ Σ´1
n,spds ´ Erdssq}8 “ O

ˆ

log n

ns´1

˙

, (C.1)

where Σn,s “ ppσspu, vqqqu,vPrns is a nˆ n matrix with

σspu, vq :“
ÿ

ePprns

s q:u,vPe

e1
Jβs,e

p1 ` e1
Jβs,eq2

and σspu, uq :“ σspuq2 “
ÿ

ePprns

s q:uPe

e1
Jβs,e

p1 ` e1
Jβs,eq2

, (C.2)

where σspuq2 is also defined in (2.12).

Next, define the matrix Γn,s “ ppγspu, vqqqu,vPrns as follows:

γspu, vq :“
1tu “ vu

σspuq2
. (C.3)

The following lemma shows that it is possible to replace the matrix Σ´1
n,s in (C.1) with the matrix

Γn,s asymptotically. The proof of the lemma is given in Appendix C.1.2.
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Lemma C.1. Suppose Σn,s and Γn,s be as defined in (C.2) and (C.3), respectively. Then under
the assumptions of Theorem 2.3,

}Γn,s ´ Σ´1
n,s}8 ď O

ˆ

1

ns

˙

, (C.4)

where }A}8 “ maxu,vPrns |au,v| for a matrix A “ ppau,vqqu,vPrns. Furthermore,

}CovrpΓn,s ´ Σ´1
n,sqpds ´ Erdssqs}8 ď }Γn,s ´ Σ´1

n,s}8 `O

ˆ

1

ns

˙

. (C.5)

To complete the proof of Theorem 2.3, consider Js P
`

rns

as

˘

, for as ě 1 fixed. Proposition C.1
and Lemma C.1 combined implies,

}rpβ̂s ´ βsqsJs ´ rΓn,spds ´ ErdssqsJs}8 “ O

ˆ

log n

ns´1

˙

,

with probability 1´op1q. Now, recall from the statement of Theorem 2.3 thatDs “ diag pσspvqqvPrns.

From (C.2) observe that maxvPrns σspvq2 — ns´1, since }βs}8 ď M “ Op1q. Hence,

}rDspβ̂s ´ βsqsJs ´ rDspΓn,spds ´ ErdssqsJs}8 “ O

ˆ

log n
?
ns´1

˙

.

Note that for v P Js,

σspvqrΓn,spds ´ Erdsqssv “
dspvq ´ Erdspvqs

σspvq
. (C.6)

Therefore, from (C.6),

rDssJsprpβ̂s ´ βsqsJsq “

˜˜

dspvq ´ Erdspvqs
a

Varrdspvqs

¸¸

vPJs

`O

ˆ

log n
?
n

˙

D
Ñ Nasp0, Iq,

using the central limit theorem for sums of independent bounded random variables. Since β̂s
are independent across 2 ď s ď r, the result in (2.13) follows.

C.1.1. Proof of Proposition C.1. For 2 ď s ď r and e “ pu1, u2, . . . , usq P
`

rns

s

˘

, let βs,e “

pβs,u1 , βs,u2 , . . . , βs,usqJ and β̂s,e “ pβ̂s,u1 , β̂s,u2 , . . . , β̂s,usqJ. Moreover, 1 will denote the vector
of ones in the appropriate dimension. To begin with, (2.7) and (A.12) gives, for v P rns,

dspvq ´ Erdspvqs “
ÿ

ePprns

s q:vPe

#

e1
Jβ̂s,e

1 ` e1
Jβ̂s,e

´
e1

Jβs,e

1 ` e1
Jβs,e

+

. (C.7)

Note that for e P
`

rns

s

˘

, by a Taylor expansion,

e1
Jβ̂s,e

1 ` e1
Jβ̂s,e

´
e1

Jβs,e

1 ` e1
Jβs,e

“
e1

Jβs,e

p1 ` e1
Jβs,eq2

´

1Jβ̂s,e ´ 1Jβs,e

¯

` Rs,e,

where

|Rs,e| ď
1

2

ˇ

ˇ

ˇ
1Jβ̂s,e ´ 1Jβs,e

ˇ

ˇ

ˇ

2
Àr }β̂s ´ βs}

2
8. (C.8)

Then, from (C.7),

dspvq ´ Erdspvqs “

”

Σn,spβ̂s ´ βsq
ı

v
`Rv,s, (C.9)
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where Rv,s “
ř

ePprns

s q:vPe
Rs,e. From (C.9), we have

β̂s ´ βs “ Σ´1
n,spds ´ Erdssq ` Σ´1

n,sRn,s, (C.10)

where Rn,s “ pR1,s, R2,s, . . . , Rn,sq
J. Note that from (C.8),

|Rv,s| ď
ÿ

ePprns

s q:vPe

|Rs,e| Àr n
s´1}β̂s ´ βs}

2
8. (C.11)

To bound }Σ´1
n,sRn,s}8, note that for v P rns,

|rΣ´1
n,sRn,ssv| ď |rΓn,sRn,ssv| ` |rpΣ´1

n,s ´ Γn,sqRn,ssv|. (C.12)

Observe that

rΓn,sRn,ssv “
Rv,s
σspvq2

.

Using σspvq2 — ns´1, (C.11), and (2.8) gives,

|rΓn,sRn,ssv| À }β̂s ´ βs}
2
8 “ O

ˆ

log n

ns´1

˙

,

with probability 1 ´ op1q. Further, by Lemma C.1, (C.11), and (2.8),

|rpΣ´1
n,s ´ Γn,sqRn,ssv| ď }pΣ´1

n,s ´ Γn,sq}8 ˆ n}Rn,s}8 À }β̂s ´ βs}
2
8

ď O

ˆ

log n

ns´1

˙

,

with probability 1 ´ op1q. Hence, by (C.10) and (C.12) the result in (C.1) follows. l

C.1.2. Proof of Lemma C.1.

Proof of (C.4). Denote ∆n,s “ Γn,s ´ Σ´1
n,s “ ppδspu, vqqqu,vPrns, Zn,s “ In ´ Σn,sΓn,s “

ppzspu, vqqqu,vPrns, and Θn,s “ Γn,sZn,s “ ppθspu, vqqqu,vPrns. Then

∆n,s “ pΓn,s ´ Σ´1
n,sqpIn ´ Σn,sΓn,sq ´ Γn,spIn ´ Σn,sΓn,sq “ ∆n,sZn,s ´ Θn,s.

Hence, for u, v P rns,

δspu, vq “

n
ÿ

w“1

δspu,wqzspw, vq ´ θspu, vq

“

n
ÿ

w“1

δspu,wq

#

1tw “ vu ´

n
ÿ

b“1

σspw, bqγspb, vq

+

´ θspu, vq

“

n
ÿ

w“1

δspu,wq

#

1tw “ vu ´

n
ÿ

b“1

σspw, bq
1tv “ bu

σspvq2

+

´ θspu, vq (by (C.3))

“

n
ÿ

w“1

δspu,wq

"

1tw “ vu ´
σspw, vq

σspvq2

*

´ θspu, vq

“ ´

n
ÿ

w“1

δspu,wq

"

1tw ‰ vu
σspw, vq

σspvq2

*

´ θspu, vq, (C.13)

since
ř

bPrnsztwu σspw, bq “ σspw,wq “ σspwq2. The following lemma bounds the maximum norm

of Θn,s “ Γn,sZn,s “ ppθspu, vqqqu,vPrns.
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Lemma C.2. For u, v, w P rns,

max t|θspu, vq|, |θspu, vq ´ θspv, wq|u À
σs,max

σ2s,minn
2
, (C.14)

where σs,min :“ min1ďuăvďn σspu, vq and σs,max :“ max1ďuăvďn σspu, vq.

Proof. Note that Θn,s “ Γn,sZn,s “ Γn,s ´ Γn,sΣn,sΓn,s. This means for u, v P rns,

θspu, vq “ γspu, vq ´
ÿ

x,yPrns

γspu, xqσspx, yqγspy, vq. (C.15)

Then recalling the definition of γspu, vq from (C.3) gives,

ÿ

x,yPrns

γspu, xqσspx, yqγspy, vq “
ÿ

x,yPrns

1tu “ xu1ty “ vuσspx, yq

σspuq2σspvq2

“
σspu, vq

σspuq2σspvq2
.

Hence, from (C.3) and (C.15),

|θspu, vq| “

ˇ

ˇ

ˇ

ˇ

σspu, vq1tu ‰ vu

σspuq2σspvq2

ˇ

ˇ

ˇ

ˇ

À
σs,max

σ2s,minn
2
.

This completes the proof of (C.14). □

Now, for u P rns, let m,m P rns be such that

δspu,mq “ max
wPrns

δspu,wq and δspu,mq “ min
wPrns

δspu,wq.

The following lemma gives bounds on δspu,mq and δspu,mq.

Lemma C.3. For u P rns,

n
ÿ

w“1

δspu,wqσspw, uq “ 0.

This implies, δspu,mq ě 0 and δspu,mq ď 0.

Proof. Note that
řn
w“1 δspu,wqσspw, uq is the u-th diagonal element of the matrix ∆n,sΣn,s “

Γn,sΣn,s ´ In (recall that ∆n,s “ Γn,s ´Σ´1
n,s). Note that the u-th diagonal element of Γn,sΣn,s

is given by

ÿ

wPrns

γspu,wqσspw, uq “
ÿ

wPrns

1tu “ wu

σspuq2
σspw, uq “ 1,

since σspu, uq “ σspuq2. Hence, u-th diagonal element of ∆n,sΣn,s is zero. □

Now, recalling (C.13) note that

δspu,mq ´ δspu,mq ` pθspu,mq ´ θspu,mqq

“

n
ÿ

w“1

δspu,wq

"

1tw ‰ muσspw,mq

σspmq2
´

1tw ‰ muσspw,mq

σspmq2

*

“

n
ÿ

w“1

pδspu,wq ´ δspu,mqq

"

1tw ‰ muσspw,mq

σspmq2
´

1tw ‰ muσspw,mq

σspmq2

*

, (C.16)
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since
ř

wPrnsztmu σspw,mq “ σspmq2 and
ř

wPrnsztmu σspw,mq “ σspmq2. Define

Ω :“

"

w P rns :
1tw ‰ muσspw,mq

σspmq2
ě

1tw ‰ muσspw,mq

σspmq2

*

,

and λ :“ |Ω|. Then, we have

ÿ

wPΩ

pδspu,wq ´ δspu,mqq

"

1tw ‰ muσspw,mq

σspmq2
´

1tw ‰ muσspw,mq

σspmq2

*

ď pδspu,mq ´ δspu,mqq

"ř

wPΩ σspw,mq

σspmq2
´

ř

wPΩ 1tw ‰ muσspw,mq

σspmq2

*

. (C.17)

Note that
ř

wPΩ σspw,mq

σspmq2
“

ř

wPΩ σspw,mq
ř

wPΩ σspw,mq `
ř

wPrnszpΩ
Ť

mq σspw,mq
“

1

1 `

ř

wPrnszpΩ
Ť

mq σspw,mq
ř

wPΩ σspw,mq

,

since m R Ω. Now, observe that
ř

wPrnszpΩ
Ť

mq σspw,mq
ř

wPΩ σspw,mq
ě

pn´ λ´ 1qσs,min

λσs,max

This implies,
ř

wPΩ σspw,mq

σspmq2
ď

λσs,max

λσs,max ` pn´ λ´ 1qσs,min
. (C.18)

Similarly,
ř

wPΩ 1tw ‰ muσspw,mq

σspmq2
“

ř

wPΩ 1tw ‰ muσspw,mq
ř

wPrns 1tw ‰ muσspw,mq
“

1

1 `

ř

wPrnszΩ 1tw‰muσspw,mq
ř

wPΩ 1tw‰muσspw,mq

Therefore, since m P Ω,
ř

wPrnszΩ 1tw ‰ muσspw,mq
ř

wPΩ 1tw ‰ muσspw,mq
ď

pn´ λqσs,max

pλ´ 1qσs,min
.

Hence,
ř

wPΩ 1tw ‰ muσspw,mq

σspmq2
ě

pλ´ 1qσs,min

pλ´ 1qσs,min ` pn´ λqσs,max
. (C.19)

Applying (C.18) and (C.19) in (C.17) gives,

ÿ

wPΩ

pδspu,wq ´ δspu,mqq

"

1tw ‰ muσspw,mq

σspmq2
´

1tw ‰ muσspw,mq

σspmq2

*

ď pδspu,mq ´ δspu,mqqfpλq, (C.20)

where

fpλq “
λσs,max

λσs,max ` pn´ 1 ´ λqσs,min
´

pλ´ 1qσs,min

pλ´ 1qσs,min ` pn´ λqσs,max
.

Note that fpλq attains maximum at λ “ n{2 over λ P p1, n´ 1q and

fpn{2q “
nσs,max ´ pn´ 2qσs,min

nσs,max ` pn´ 2qσs,min
.

Therefore, from Lemma C.2, (C.16), there exists a constant C ą 0 such that (C.20),

δspu,mq ´ δspu,mq ď
nσs,max ´ pn´ 2qσs,min

nσs,max ` pn´ 2qσs,min
pδspu,mq ´ δspu,mqq `

Cσs,max

σ2s,minn
2
.
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This implies,

δspu,mq ´ δspu,mq ď
Cσs,maxpnσs,max ` pn´ 2qσs,minq

2pn´ 2qσ3s,minn
2

À
σ2s,max

σ3s,minn
2
.

Hence, from Lemma C.3,

max
1ďwďn

|δspu,wq| ď δspu,mq ´ δspu,mq ď
σ2s,max

σ3s,minn
2

À
1

ns
,

since σs,min — ns´2 and σs,max — ns´2, using }βs}8 ď M “ Op1q. This completes the proof of
(C.4). □

Proof of (C.5). Define

Un,s “ CovrpΓn,s ´ Σ´1
n,sqpds ´ Erdssqs “ Covr∆n,spds ´ Erdssqs,

since ∆n,s “ Γn,s ´ Σ´1
n,s. Observe that

Un,s “ ∆n,sErpds ´ Erdssqpds ´ Erdssq
Js∆J

n,s

“ ∆n,sΣn,s∆
J
n,s

“ pΓn,s ´ Σ´1
n,sq ´ Γn,spIn ´ Σn,sΓn,sq

“ pΓn,s ´ Σ´1
n,sq ´ Θn,s, (C.21)

since Θn,s “ Γn,sZn,s and Zn,s “ In ´ Σn,sΓn,s. By Lemma C.2,

}Θn,s}8 À
σs,max

σ2s,minn
2

À
1

ns
, (C.22)

since σs,min — ns´2 and σs,max — ns´2, using }βs}8 ď M “ Op1q. By (C.4), (C.21), and (C.22)
the result in (C.5) follows. □

C.2. Proof of Theorem 2.4. For x “ px1, x2, . . . , xnq P Rn and u P rns define the function

gupxq “
ÿ

ePprns

s q:uPe

e1
Jxe

p1 ` e1Jxeq2
,

where xe “ pxu1 , xu2 , . . . , xusq for e “ pu1, u2, . . . , usq. Then recalling (2.12) and (2.14), σspvq2 “

gvpβsq and σ̂spvq2 “ gvpβ̂sq. Hence, by a Taylor expansion,

|σ̂spvq2 ´ σspvq2| “ |gvpβ̂sq ´ gvpβsq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q:uPe

#

e1
Jβ̂s,e

p1 ` e1
Jβ̂s,eq2

´
e1

Jβs,e

p1 ` e1
Jβs,eq2

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Àr }β̂s ´ βs}8. (C.23)

Recalling the definition of Js “ tvs,1, . . . , vs,asu from Theorem 2.4, this implies
r
ÿ

s“2

prpβ̂s ´ βsqsJsqJrD̂2
s sJsprpβ̂s ´ βsqsJsq

“

r
ÿ

s“2

as
ÿ

j“1

σ̂spvaj q2pβ̂s,vaj ´ βs,vaj q2

“

r
ÿ

s“2

as
ÿ

j“1

σspvaj q2pβ̂s,vaj ´ βs,vaj q2 `

r
ÿ

s“2

as
ÿ

j“1

pσ̂spvaj q2 ´ σspvaj q2qpβ̂s,vaj ´ βs,vaj q2
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D
Ñ χ2

řr
s“2 as

` oP p1q,

by Theorem 2.3, (C.23) and (2.8). This completes the proof of (2.15).

Appendix D. Proofs of Theorems 3.1 and 3.2

D.1. Proof of Theorem 3.1. Suppose Hn „ Hn,spn,γq for γ as in (3.1). Let Σn,s be as defined
in (C.2) with βs replaced by γ “ pγ1, γ2, . . . , γnqJ. Then ∇2ℓn,spγq “ Σn,s. Then by a Taylor
expansion,

ℓn,spγq ´ ℓn,spβ̂sq “ pβ̂s ´ γqJ∇ℓn,spγq `
1

2
pβ̂s ´ γqJΣn,spβ̂s ´ γq ` Tn,s, (D.1)

where

Tn,s “ T p1q
n,s ` T p2q

n,s ` T p3q
n,s , (D.2)

with

T p1q
n,s :“

1

6

n
ÿ

u“1

B3ℓn,spγ ` θpβ̂s ´ γqq

Bpβs,uq3
pβ̂s,u ´ γuq3,

T p2q
n,s :“

1

3

ÿ

1ďu‰vďn

B3ℓn,spγ ` θpβ̂s ´ γqq

Bpβs,uq2Bβs,v
pβ̂s,u ´ γuq2pβ̂s,v ´ γvq,

T p3q
n,s :“

1

6

ÿ

1ďu‰v‰wďn

B3ℓn,spγ ` θpβ̂s ´ γqq

Bβs,uBβs,vBβs,w
pβ̂s,u ´ γuqpβ̂s,v ´ γvqpβ̂s,w ´ γwq,

for some θ P p0, 1q.
Now, by arguments as in (C.10) it follows that

β̂s ´ γ “ Σ´1
n,spds ´ Eγrdssq ` Σ´1

n,sRn,s, (D.3)

where Rn,s is as defined in (C.9) and (C.10) with βs replaced by γ. Using this and noting that
´∇ℓn,spγq “ ds ´ Eγrdss,

pβ̂s ´ γqJ∇ℓn,spγq “ pds ´ Eγrdssq
JΣ´1

n,s∇ℓn,spγq ` RJ
n,sΣ

´1
n,s∇ℓn,spγq

“ ´pds ´ Eγrdssq
JΣ´1

n,spds ´ Eγrdssq ´ RJ
n,sΣ

´1
n,spds ´ Eγrdssq. (D.4)

Similarly, using (D.3),

pβ̂s ´ γqJΣn,spβ̂s ´ γq

“ pds ´ Eγrdssq
JΣ´1

n,spds ´ Eγrdssq ` 2RJ
n,sΣ

´1
n,spds ´ Eγrdssq ` RJ

n,sΣ
´1
n,sRn,s. (D.5)

Combining (D.1), (D.4), and (D.5) gives,

ℓn,spβ̂sq ´ ℓn,spγq “ ´
1

2
pds ´ Eγrdssq

JΣ´1
n,spds ´ Eγrdssq `

1

2
RJ
n,sΣ

´1
n,sRn,s ` Tn,s. (D.6)

We begin by showing that RJ
n,sΣ

´1
n,sRn,s “ oP p

?
nq. To this end, (C.11) and σspuq2 — ns´1

gives,

ˇ

ˇRJ
n,sΓn,sRn,s

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

u“1

R2
s,u

σspuq2

ˇ

ˇ

ˇ

ˇ

ˇ

À ns}β̂s ´ βs}
4
8 À

log2 n

ns´2
, (D.7)

with probability 1 ´ op1q by (2.8). Next, observe that
ˇ

ˇRJ
n,s∆n,sRn,s

ˇ

ˇ ď n}∆n,sRn,s}8 ¨ }Rn,s}8 ď n2}Rn,s}
2
8 ¨ }∆n,s}8

À ns}β̂s ´ βs}
4
8 (by (C.4) and (C.11))
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À
log2 n

ns´2
, (D.8)

with probability 1 ´ op1q by (2.8). Combining (D.7) and (D.8) it follows that with probability
1 ´ op1q,

ˇ

ˇRJ
n,sΣ

´1
n,sRn,s

ˇ

ˇ ď
ˇ

ˇRJ
n,sΓn,sRn,s

ˇ

ˇ `
ˇ

ˇRJ
n,s∆n,sRn,s

ˇ

ˇ À
log2 n

ns´2
“ oP p

?
nq. (D.9)

This implies, the second term in the RHS of (D.6) does not contribute to the CLT of the
log-likelihood ratio log Λn,s.

Next, we show that the third term in the RHS of (D.6) is oP p
?
nq, hence, it also does not

contribute to the CLT of log Λn,s.

Lemma D.1. Suppose s ě 3 and γ P BpMq. Then Tn,s “ oP p
?
nq.

Proof. Define β̃s “ γ ` θpβ̂s ´ γq, for θ P p0, 1q. Then recalling (D.2) observe that

T p1q
n,s “

1

6

n
ÿ

u“1

»

—

–

ÿ

ePprns

s q:uPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq

p1 ` e1
Jβ̃s,eq3

fi

ffi

fl

pβ̂s,u ´ γuq3,

T p2q
n,s “

1

3

ÿ

1ďu‰vďn

»

—

–

ÿ

ePprns

s q:u,vPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq

p1 ` e1
Jβ̃s,eq3

fi

ffi

fl

pβ̂s,u ´ γuq2pβ̂s,v ´ γvq,

T p3q
n,s :“

1

6

ÿ

1ďu‰v‰wďn

»

—

–

ÿ

ePprns

s q:u,v,wPe

e1
Jβ̃s,ep1 ´ e1

Jβ̃s,eq

p1 ` e1
Jβ̃s,eq3

fi

ffi

fl

pβ̂s,u ´ γuqpβ̂s,v ´ γvqpβ̂s,w ´ γwq,

where β̃s,e “ pβ̃s,u1 , β̃s,u2 , . . . , β̃s,usqJ, for e “ pu1, u2, . . . , usq. Since γ P BM and }β̂s´γ}8 Às,M
a

log n{ns´1 with probability 1 ´ op1q, β̂s P B2M for large n with probability 1 ´ op1q. This
implies,

T p1q
n,s ÀM ns}β̂s ´ γ}38 ÀM,s

c

plog nq3

ns´3
“ oP p

?
nq, (D.10)

for s ě 3. Similarly, we can show that for s ě 3, T p2q
n,s “ oP p

?
nq and T p3q

n,s “ oP p
?
nq. This

completes the proof of the Lemma D.1. □

Remark D.1. Note that Lemma D.1 assumes that s ě 3. This is because when s “ 2 (that
is, the graph case), the proof of Lemma D.1 gives the bound Tn,2 “ Oppolygonpnq{

?
nq which is

not oP p
?
nq (see (D.10)). Nevertheless, it follows from the proof of Theorem 1 (a) in Yan et al.

[56], where the asymptotic null distribution of the LR test for the graph β-model was derived,
that the result in Lemma D.1 also holds when s “ 2, that is, Tn,2 “ oP p

?
nq. For this one has

to expand ℓn,spβ̂sq ´ ℓn,spγq up to the fourth order term, and show that the third order term
is oP p

?
nq at the true parameter value and the fourth order term is oP p

?
nq at an intermediate

point. For s ě 3, the third order term at an intermediate point is oP p
?
nq, hence, we do not

have to consider the fourth order term.

Now, recall the definition of log Λn,s from (3.2). Then by Lemma D.1 and (D.6)

2 log Λn,s ´ n
?
2n

“
pds ´ Eγrdssq

JΣ´1
n,spds ´ Eγrdssq ´ n
?
2n

` oP p1q. (D.11)

By the following lemma we can replace Σ´1
n,s with Γn,s in the RHS above. The proof of the

lemma is given in Appendix D.1.1.
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Lemma D.2. For L ą 0,

P
`

ds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssq ą L
˘

À
1

L2
.

This implies, pds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssq is bounded in probability.

By Lemma D.2 and recalling (C.3),

pds ´ Eγrdssq
JΣ´1

n,spds ´ Eγrdssq
?
2n

“
pds ´ Eγrdssq

JΓn,spds ´ Eγrdssq
?
2n

` oP p1q

“
1

?
2n

n
ÿ

u“1

pdspuq ´ Eγrdspuqsq2

σspuq2
` oP p1q . (D.12)

Proposition D.1 establishes the asymptotic normality of the leading term in the RHS above.
The proof is given in Appendix D.1.2. l

Proposition D.1. Under the assumption of Theorem 3.1,

1
?
2n

#

n
ÿ

u“1

pdspuq ´ Eγrdspuqsq2

σspuq2
´ n

+

D
Ñ N p0, 1q. (D.13)

The result in (3.3) now follows from (D.11), (D.12), and Proposition D.1.

D.1.1. Proof of Lemma D.2. To begin with note that

Eγrpds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssqs “ trpEγrpds ´ Eγrdssqpds ´ Eγrdssq
JspΣ´1

n,s ´ Γn,sqq

“ trpIn ´ Σn,sΓn,sq

“ n´
ÿ

u,vPrns

σspu, vqγspu, vq

“ n´
ÿ

u,vPrns

σspu, vq
1tu “ vu

σspuq2
“ 0.

Next, we will show that Varγrpds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssqs “ Op1q. The result

in Lemma D.2 then follows by Chebyshev’s inequality. Recall that ∆n,s :“ Σ´1
n,s ´ Γn,s. We

shall denote the entries of ∆n,s by ppδu,vqq for u, v P rns. Then

pds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssq “
ÿ

u,vPrns

δu,vpdspuq ´ Eγrdspuqsqpdspvq ´ Eγrdspvqsq.

Define d̄spuq :“ dspuq ´ Eγrdspuqs, for u P rns. Then

Varγrpds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssqs

“
ÿ

u,v,u1,v1Prns

δu,vδu1,v1 Covγrd̄spuqd̄spvq, d̄spu
1qd̄spv

1qs. (D.14)

To analyze the RHS of (D.14) we consider the following 4 cases.

Case 1: u “ v “ u1 “ v1. In this case we have

Covγrd̄spuqd̄spvq, d̄spu
1qd̄spv

1qs “ Varγrd̄spuq2s.

For e P
`

rns

s

˘

, denote Xe :“ 1te P EpHnqu and X̄e :“ 1te P EpHnqu ´ Er1te P EpHnqus.

Since tX̄e : e P
`

rns

s

˘

u are independent and have zero mean, tX̄eX̄e1 : e, e1 P
`

rns

s

˘

u are
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pairwise uncorrelated. Hence,

Varγrd̄spuq2s “ Varγ

»

—

–

ÿ

e,e1Pprns

s q:uPe
Ş

e1

X̄eX̄e1

fi

ffi

fl

“
ÿ

e,e1Pprns

s q:uPe
Ş

e1

Varγ
“

X̄eX̄e1

‰

“
ÿ

ePprns

s q:uPe

VarγrX̄2
es `

ÿ

e‰e1Pprns

s q:uPeXe1

VarγrX̄esVarγrX̄e1s. (D.15)

Since }γ}8 ď M ,

VarγrX̄es “ VarγrXes “
e1

Jγe

p1 ` e1Jγeq
—M 1,

where γe “ pγu1 , γu2 , . . . , γusqJ, for e “ pu1, u2, . . . , usq. Similarly, VarγrX̄2
es —M 1.

Hence, (D.15) implies that

Varγrd̄spuq2s ÀM n2s´2.

Case 2: u ‰ v “ u1 “ v1. Observe that

Covγrd̄spuqd̄spvq, d̄spu
1qd̄spv

1qs

“ Covγrd̄spuqd̄spvq, d̄spvq2s

“
ÿ

e1,e2,e3,e4Pprns

s q
uPe1,vPe1Xe2Xe3

␣

EγrX̄e1X̄e2X̄e3X̄e4s ´ EγrX̄e1X̄e2sEγrX̄e3X̄e4s
(

.

Note that the non-zero contributions in the RHS above come from the terms when
ei “ ej and ek “ eℓ for i, j, k, ℓ P t1, . . . , 4u. Hence,

Covγrd̄spuqd̄spvq, d̄spvq2s

“
ÿ

ePprns

s q,u,vPe

`

EγrX̄4
es ´ pEγrX̄2

esq2
˘

` 2
ÿ

e1‰e2Pprns

s q
u,vPe1,vPe2

EγrX̄2
e1sErX̄2

e2s

ÀM n2s´3,

since EγrX̄4
es —M 1 and EγrX̄2

esq —M 1.
Case 3: u ‰ v ‰ u1 “ v1: By similar reasoning as the previous two cases it can be shown that

Covγrd̄spuqd̄spvq, d̄spu
1qd̄spv

1qs “ Covγrd̄2spuq, d̄spu
1qd̄spu

1qs ÀM n2s´3.

Case 4: u ‰ v ‰ u1 ‰ v1. In this case, it can be shown that

Covγrd̄spuqd̄spvq, d̄spu
1qd̄spv

1qs ÀM n2s´4.

Combining the 4 cases and using (D.14),

Varγrpds ´ Eγrdssq
JpΣ´1

n,s ´ Γn,sqpds ´ Eγrdssqs ÀM max
u,vPrns

|δu,v|2n2s “ Op1q,

where the last step uses (C.4).
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D.1.2. Proof of Proposition D.1. Suppose Hn “ pV pHnq, EpHnqq „ Hn,spn,γq for γ as in (3.1).

For e “ tv1, v2, . . . , vsu P
`

rns

s

˘

, denote

Xe :“ Xtv1,v2,...,vsu :“ 1te P EpHnqu,

and X̄e :“ 1te P EpHnqu ´ Eγr1te P EpHnqus. Also, for u P rns denote

d̄spuq “ dspuq ´ Eγrdspuqs “
ÿ

ePprns

s q:uPe

X̄e.

Observe that

d̄spuq2 “
ÿ

ePprns

s q:uPe

X̄2
e `

ÿ

e‰e1Pprns

s q:uPeXe1

X̄eX̄e1 . (D.16)

This implies,

Eγrd̄spuq2s “
ÿ

ePprns

s q:uPe

EγrX̄2
es “

ÿ

ePprns

s q:uPe

VarγrX̄2
es “ Varγrdspuqs “ σspuq2.

Hence,

1
?
2n

#

n
ÿ

u“1

pdspuq ´ Eγrdspuqsq2

σspuq2
´ n

+

“
1

?
2n

n
ÿ

u“1

d̄spuq2 ´ Eγrd̄spuq2s

σspuq2

“
1

?
2n

n
ÿ

u“1

ÿ

ePprns

s q:uPe

X̄2
e ´ EγrX̄2

es

σspuq2
`

1
?
2n

n
ÿ

u“1

ÿ

e‰e1Pprns

s q:uPeXe1

X̄eX̄e1

σspuq2
(by (D.16))

:“ T1 ` T2. (D.17)

We will first show that T1 “ oP p1q. Towards this note that

T1 “
s

?
2n

ÿ

ePprns

s q

X̄2
e ´ EγrX̄2

es

σspuq2
.

Since tX̄e : e P
`

rns

s

˘

u are independent,

VarγrT1s “
s2

2n

ÿ

ePprns

s q

VarγrX̄2
es

σspuq4
ÀM

1

ns´1
,

using VarγrX̄2
es —M 1 and σspuq2 —M ns´1. This implies, T1 “ oP p1q.

Therefore, from (D.17), to prove (D.13) it remains to show T2
D
Ñ Np0, 1q. For this we will

express T2 as a sum of a martingale difference sequence. To this end, define the following
sequence of sigma-fields: For u P rns,

Fu :“ σ

˜

u
ď

v“1

tX̄e : v P eu

¸

,
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is the sigma algebra generated by the collection of random variables
Ťu
v“1tX̄e : v P eu. Clearly,

F1 Ď F2 ¨ ¨ ¨ Ď Fn, hence tFuuuPrns is a filtration. Now, for u P rns, define

T2,u :“
ÿ

e,e1Pprns

s q:e‰e1,uPeXe1,

eXt1,...,uu‰∅
and e1Xt1,...,u´1u“∅

we,e1X̄eX̄e1

where we,e1 :“
ř

zPeXe1
1

σspzq2
. Note that T2,u is Fu measurable and EγrT2,u|Fu´1s “ 0, that is,

T2,u, for u P rns, is a martingale difference sequence. Also, recalling the definition of T2 from
(D.17) observe that

T2 “
1

?
2n

n
ÿ

u“1

ÿ

e‰e1Pprns

s q:uPeXe1

X̄eX̄e1

σspuq2
“

1
?
2n

ÿ

e‰e1Pprns

s q,eXe1‰∅

we,e1X̄eX̄e1

“
1

?
2n

n
ÿ

u“1

T2,u,

that is, T2 is the sum of a martingale difference sequence. Now, invoking the martingale central

theorem [9] it can be shown that T2
D
Ñ Np0, 1q. The details are omitted.

D.2. Proof of Theorem 3.2. Suppose Hn „ Hn,spn,γ
1q for γ 1 as in (3.5). Then by arguments

as in (D.6),

ℓn,spβ̂sq ´ ℓn,spγ
1q “ ´

1

2
pds ´ Eγ1rdssq

JΣ
´1
n,spds ´ Eγ1rdssq `

1

2
RJ
n,sΣ

´1
n,sRn,s ` Tn,s,

where Σn,s and Rn,s are as defined in (C.2) and (C.9), respectively, with βs replaced by γ 1 and
Tn,s as defined in (D.2) with γ replaced by γ 1. Therefore,

ℓn,spβ̂sq ´ ℓn,spγq “ ´
1

2
pds ´ Eγ1rdssq

JΣ
´1
n,spds ´ Eγ1rdssq

`
1

2
RJ
n,sΣ

´1
n,sRn,s ` Tn,s ` ℓn,spγ

1q ´ ℓn,spγq, (D.18)

By Taylor expansion,

ℓn,spγ
1q ´ ℓn,spγq “ pds ´ Eγ1rdssq

Jpγ 1 ´ γq `
1

2
pγ 1 ´ γqJΣ̃n,spγ

1 ´ γq,

where Σ̃n,s is the covariance matrix defined in (C.2) with βs replaced by γ̃ “ γ 1 ` θpγ 1 ´ γq for
some 0 ă θ ă 1. Then by arguments as in (D.9) and Lemma D.1, Lemma D.2, (D.18) can be
written as:

ℓn,spβ̂sq ´ ℓn,spγq “ ´
1

2
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ` pds ´ Eγ1rdssq
Jpγ 1 ´ γq

`
1

2
pγ 1 ´ γqJΣ̃n,spγ

1 ´ γq ` oP p
?
nq, (D.19)

where Γn,s is as defined in (C.3) with the parameter βs replaced by γ 1.

We begin with the case }γ 1 ´ γ}2 ! n´ 2s´3
4 . In this case, since ∇2ℓn,spγ

1q “ Σn,s, by Lemma
A.2

pγ 1 ´ γqJΣn,spγ
1 ´ γq — ns´1}γ 1 ´ γ}22 !

?
n. (D.20)

Similarly,
pγ 1 ´ γqJΣ̃n,spγ

1 ´ γq — ns´1}γ 1 ´ γ}22 !
?
n. (D.21)

Hence,
Varrpds ´ Eγ1rdssq

Jpγ 1 ´ γqs “ pγ 1 ´ γqJΣn,spγ
1 ´ γq ! n,
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which implies, pds´Eγ1rdssq
Jpγ 1´γq “ oP p

?
nq, since Erpds´Eγ1rdssq

Jpγ 1´γqs “ 0. Therefore,
under H1 as in (3.5),

2 log Λn,s ´ n
?
2n

“
2pℓn,spγq ´ ℓn,spβ̂sqq ´ n

?
2n

“
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ´ n
?
2n

` oP p1q

(by (D.19), (D.20), and (D.21))

D
Ñ N p0, 1q,

by Proposition D.1. This proves the first assertion in (3.6).

Next, suppose }γ 1 ´ γ}2 " n´ 2s´3
4 . In this case, by Lemma A.2, pγ 1 ´ γqJΣn,spγ

1 ´ γq —

ns´1}γ 1 ´ γ}22 "
?
n. We will first assume:

?
n ! pγ 1 ´ γqJΣn,spγ

1 ´ γq À n. (D.22)

Then we have Varrpds ´ Eγ1rdssq
Jpγ 1 ´ γqs “ pγ 1 ´ γqJΣn,spγ

1 ´ γq “ Opnq. Using this and
Proposition D.1 it follows that

1
?
n

„

1

2
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ` pds ´ Eγ1rdssq
Jpγ 1 ´ γq

ȷ

is bounded in probability. Hence, from (D.19),

2 log Λn,s ´ n
?
2n

“
pℓn,spγq ´ ℓn,spβ̂sqq ´ n

?
2n

Ñ 8,

in probability, since by Lemma A.2, pγ 1 ´γqJΣ̃n,spγ
1 ´γq — ns´1}γ 1 ´γ}22 "

?
n. This implies,

Eγ1rϕn,ss Ñ 1, whenever (D.22) holds. Next, we assume

pγ 1 ´ γqJΣn,spγ
1 ´ γq " n. (D.23)

For notational convenience denote ϑn,s :“ pγ 1 ´ γqJΣn,spγ
1 ´ γq. Then Proposition D.1 and

(D.23) imply that

1
a

ϑn,s

„

1

2
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ` pds ´ Eγ1rdssq
Jpγ 1 ´ γq

ȷ

is bounded in probability. Using (D.20) and (D.21) we also get

pγ 1 ´ γqJΣ̃n,spγ
1 ´ γq

a

ϑn,s
— n

s´1
2 }γ 1 ´ γ}2 Ñ 8.

This implies, from from (D.19),

Eγ1rϕn,ss “ Pγ1

˜
ˇ

ˇ

ˇ

ˇ

ˇ

2 log Λn,s ´ n
a

ϑn,s

ˇ

ˇ

ˇ

ˇ

ˇ

ě zα{2

d

2n

ϑn,s

¸

Ñ 1.

This concludes the proof. This completes the proof of the third assertion in (3.6).

Now, we consider the case n
2s´3

4 }γ 1 ´ γ}2 Ñ τ P p0,8q. By Taylor expansion,

ℓn,spγ
1q ´ ℓn,spγq “ pds ´ Eγ1rdssq

Jpγ 1 ´ γq `
1

2
pγ 1 ´ γqJΣn,spγ

1 ´ γq ` T̃n,s,
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where Σn,s is as defined in (C.2) with βs replaced by γ and T̃n,s is as defined in (D.2) with the

parameter γ̃ “ γ 1`θpγ 1´γq for some 0 ă θ ă 1. By arguments as in Lemma D.1 T̃n,s “ oP p
?
nq.

Then (D.9) and Lemma D.1, Lemma D.2, (D.18) can be written as:

ℓn,spβ̂sq ´ ℓn,spγq “ ´
1

2
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ` pds ´ Eγ1rdssq
Jpγ 1 ´ γq

`
1

2
pγ 1 ´ γqJΣn,spγ

1 ´ γq ` oP p
?
nq. (D.24)

Note that Erpds ´ Eγ1rdssq
Jpγ 1 ´ γqs “ 0 and by Lemma A.2,

Varrpds ´ Eγ1rdssq
Jpγ 1 ´ γqs “ pγ 1 ´ γqJΣn,spγ

1 ´ γq —n,r

?
n,

when }γ 1 ´ γ}2 — n´ 2s´3
4 . Hence, in this case, pds ´ Eγ1rdssq

Jpγ 1 ´ γq “ oP p
?
nq. This also

implies that

η :“ lim
nÑ8

pγ 1 ´ γqJΣn,spγ
1 ´ γq

?
n

exists along a subsequence. (Note that Covγrdss “ Σn,s.) Hence, from (D.24),

2 log Λn,s ´ n
?
2n

“
2pℓn,spγq ´ ℓn,spβ̂sqq ´ n

?
2n

“
pds ´ Eγ1rdssq

JΓn,spds ´ Eγ1rdssq ´ n
?
2n

´
pγ 1 ´ γqJΣn,spγ

1 ´ γq
?
2n

` oP p1q

D
Ñ N p´

η
?
2
, 1q.

This completes the proof of (3.7).

Appendix E. Testing Lower Bounds

In this section we prove the lower bounds for the goodness-of-fit problem in the L2 and L8

norms, that is, Theorem 3.3 (b) and Theorem 3.4 (b), respectively. For this, suppose πn be a
prior probability distribution on the alternative H1 (as in (3.8) or (3.10)). Then the Bayes risk
of a test function ψn is defined as

Rpψn,γ, πnq “ PH0pψn “ 1q ` Eγ1„πn

“

Pγ1pψn “ 0q
‰

. (E.1)

For any prior πn the worst-case risk of test function ψn, as defined in (3.9), can be bounded
below as:

Lemma E.1. Let Hn,s denote the collection of s-uniform hypergraphs on n vertices. Then

Rpψn,γq ě Rpψn,γ, πnq ě 1 ´ 1
2

b

EH0rL2
πns ´ 1, (E.2)

where Lπn “
Eγ1„πnrPγ1 pωqs

PH0
pωq

, ω P Hn,s, is the πn-integrated likelihood ratio.

Proof. Clearly, Rpψn,γq ě Rpψn,γ, πnq. To show the second inequality in (E.2) observe that,

Rpψn,γ, πnq ě inf
ψn

␣

PH0pψn “ 1q ` Eγ1„πn

`

Pγ1pψn “ 0q
˘(

ě 1 ´ sup
ψn

ˇ

ˇPH0pψn “ 1q ´ Eγ1„πn

`

Pγ1pψn “ 1q
˘ˇ

ˇ

ě 1 ´ sup
ωPHn,s

ˇ

ˇPH0pωq ´ Eγ1„πn

“

Pγ1pωq
‰ˇ

ˇ
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ě 1 ´
1

2

ÿ

ωPHn,s

ˇ

ˇ

ˇ

ˇ

ˇ

Eγ1„πn

“

Pγ1pωq
‰

PH0pωq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

PH0pωq

“ 1 ´ 1
2EH0 |Lπn ´ 1|

ě 1 ´ 1
2

b

EH0rL2
πns ´ 1,

where the last step uses the Cauchy-Schwarz inequality. □

Therefore, to show all tests are powerless it suffices to construct a prior πn on H1 such that
EH0rL2

πns Ñ 1. We show this for the L2 norm in Appendix E.1 and for the L8 norm in Appendix
E.2.

E.1. Testing Lower Bound in L2 Norm: Proof of Theorem 3.3 (b). We choose γ “ 0,

ε ! n´ 2s´3
4 , and construct a prior πn onH1 as in (3.8) as follows: Suppose γ 1 “ pγ1

1, γ
1
2, . . . , γ

1
nqJ P

Rn with

γ1
u “ ηu ¨

ε
?
n
,

for u P rns, where η1, . . . , ηn are i.i.d Rademacher random variables, taking values t˘1u with
probability 1

2 . Clearly, }γ ´ γ 1}2 “ ε. Then, for H P Hn,s, the πn integrated likelihood ratio is
given by

Lπn “ Eη

„

Pγ1pHq

P0pHq

ȷ

“ Eη

»

—

–

ź

ePprns

s q

2ewηpeqXe

1 ` ewηpeq

fi

ffi

fl

,

where Xe :“ 1te P EpHqu, η :“ pη1, . . . , ηnq, and wηpeq :“ ε?
n

ř

uPe ηu, for e P
`

rns

s

˘

. Then

L2
πn “ Eη,η1

»

—

–

ź

ePprns

s q

4epwηpeq`wη1 peqqXe

p1 ` ewηpeqqp1 ` ewη1 peq
q

fi

ffi

fl

,

where η1
1, . . . , η

1
n are i.i.d Rademacher random variables which are independent of η1, . . . , ηn,

η1 :“ pη1
1, . . . , η

1
nq, and wη1peq :“ ε?

n

ř

uPe η
1
u, for e P

`

rns

s

˘

. Taking expectation with respect to

H0 gives,

EH0rL2
πns “ Eη,η1

»

—

–

ź

ePprns

s q

2 pepwηpeq`wη1 peqq
` 1q

p1 ` ewηpeqqp1 ` ewη1 peq
q

fi

ffi

fl

“ Eη,η1

»

—

–

ź

ePprns

s q

2
␣

ψpwηpeqqψpwη1peqq ` p1 ´ ψpwηpeqqqp1 ´ ψpwη1peqqq
(

fi

ffi

fl

, (E.3)

where ψpxq is the logistic function as defined in Lemma A.4. Using the Taylor expansions of
ψpxq and 1 ´ ψpxq around 0, we can show that for all x P R,

ψpxq ď
1

2
`
x

4
`
x3

48
and 1 ´ ψpxq ď

1

2
´
x

4
`
x3

48
.

As a consequence, for e P
`

rns

s

˘

,

2
␣

ψpwηpeqqψpwη1peqq ` p1 ´ ψpwηpeqqqp1 ´ ψpwη1peqqq
(
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ď 1 `
1

4
wηpeqwη1peq `

1

24
pwηpeq3 ` wη1peq3q `

1

242
wηpeq3wη1peq3.

Using this bound in (E.3) gives,

EH0rL2
πns

ď Eη,η1

»

—

–

ź

ePprns

s q

ˆ

1 `
1

4
wηpeqwη1peq `

1

24
pwηpeq3 ` wη1peq3q `

1

242
wηpeq3wη1peq3

˙

fi

ffi

fl

ď Eη,η1

«

e

ř

ePprns
s q

!

1
4
wηpeqwη1 peq` 1

24
pwηpeq3`wη1 peq3q` 1

242
wηpeq3wη1 peq3

)ff

, (E.4)

since 1 ` x ď ex.
Recalling the definition of wηpeq observe that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePprns

s q

wηpeq3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε3

n
3
2

ÿ

ePprns

s q

˜

ÿ

uPe

|ηu|

¸3

ď ε3ns´ 3
2 .

Hence,

E
„

e
2
ř

ePprns
s q

wηpeq3
ȷ

ď e2ε
3ns´ 3

2
Ñ 1, (E.5)

since ε ! n´ 2s´3
4 and, for s ě 2, ´ s

2 ` 3
4 ą 0. Similarly, it can be shown that

lim
nÑ8

E
„

e
2
ř

ePprns
s q

wηpeq3wη1 peq3
ȷ

“ 1. (E.6)

Then Hölder’s inequality applied to (E.4) followed by (E.5) and (E.6) gives

EH0rL2
πs ď

"

Eη,η1

„

e
3
4

ř

ePprns
s q

wηpeqwη1 peq
ȷ*1{3

p1 ` op1qq. (E.7)

Next, observe that

ÿ

ePprns

s q

wηpeqwη1peq “
ε2

n

$

’

&

’

%

ÿ

ePprns

s q

˜

ÿ

uPe

ηu

¸˜

ÿ

vPe

η1
v

¸

,

/

.

/

-

“
ε2

n

#

ˆ

n´ 1

s´ 1

˙ n
ÿ

u“1

ηuη
1
u `

ˆ

n´ 2

s´ 2

˙

ÿ

1ďu‰vďn

ηuη
1
v

+

ď ε2ns´2
n
ÿ

u“1

ηuη
1
u ` ε2ns´3

ÿ

1ďu‰vďn

ηuη
1
v

“ ε2ns´2
n
ÿ

u“1

ηuη
1
u ` ε2ns´3

#˜

n
ÿ

u“1

ηu

¸˜

n
ÿ

v“1

η1
v

¸

´

n
ÿ

u“1

ηuη
1
u

+

. (E.8)

Note that ε2ns´3 |
řn
u“1 ηuη

1
u| ď ε2ns´2. Hence,

E
”

e
9
4
ε2ns´3

řn
u“1 ηuη

1
u

ı

À eε
2ns´2

Ñ 1, (E.9)
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since ε ! n´ 2s´3
4 . From (E.7), by Hölder’s inequality followed by (E.8) and (E.9) gives

EH0rL2
πs Às

!

Eη,η1

”

e
9
4
ε2ns´2

řn
u“1 ηuη

1
u

ı)1{9 !

Eη,η1

”

e
9
4
ε2ns´3p

řn
u“1 ηuqp

řn
v“1 η

1
vq
ı)1{9

p1 ` op1qq.

(E.10)

Denote Xn :“
řn
u“1 ηu and Yn :“

řn
v“1 η

1
u. Since Xn and Yn are independent and each of them

is a sum of i.i.d. Rademacher random variables,

Eη,η1

”

e
9
4
ε2ns´3XnYn

ı

“ E
”

E
”

e
9
4
ε2ns´3XnYn |Yn

ıı

“ E
„ˆ

cosh

ˆ

9

4
ε2ns´3Yn

˙˙nȷ

ď E
”

e
81
16
ε4n2s´5Y 2

n

ı

,

where last step uses coshpxq ď ex
2
, for all x P R. Since |Yn| ď n, this implies,

Eη,η1

”

e
9
4
ε2ns´3XnYn

ı

ď e
81
16
ε4n2s´5Y 2

n ď e
81
16
ε4n2s´3

Ñ 1, (E.11)

since ε ! n´ 2s´3
4 . Next, observe that ηuη

1
u, for u “ 1, ¨ ¨ ¨ , n, are i.i.d. Rademacher random

variables. Again using coshpxq ď ex
2
for all x P R, we can show that

Eη,η1

”

e
9
4
ε2ns´2

řn
u“1 ηuη

1
u

ı

“

ˆ

cosh

ˆ

9

4
ε2ns´2

˙˙n

ď e
81
16
ε4n2s´3

Ñ 1, (E.12)

since ε ! n´ 2s´3
4 . Hence, using (E.11) and (E.12) in (E.10) gives,

lim
nÑ8

EH0rL2
πs “ 1.

By Lemma E.1, this completes the proof of Theorem 3.3 (b).

E.2. Testing Lower Bound in L8 Norm: Proof of Theorem 3.4 (b). We choose γ “ 0,

ε ! n´ s´1
2 and define γ 1 “ pγ1

1, γ
1
2, . . . , γ

1
nqJ P Rn, where γ1

1 “ ε and γ1
u “ 0, for u ě 2. Clearly,

}γ ´ γ 1}8 “ ε. Then, for H P Hn,s, the likelihood ratio is given by

Ln “
Pγ1pHq

P0pHq
“

ź

ePprns

s q:1Pe

2eεXe

1 ` eε
,

where Xe :“ 1te P EpHqu. Observe that

EH0rL2
ns “ EH0

»

—

–

ź

ePprns

s q:1Pe

4e2εXe

p1 ` eεq2

fi

ffi

fl

“
`

2ψpεq2 ` 2 p1 ´ ψpεqq2
˘p n

s´1q , (E.13)

where ψpxq “ ex

1`ex . Since ε ! n´ s´1
2 , a Taylor expansion around zero gives ψpεq “ 1

2` 1
4ε`Opε2q.

Hence,

2ψpεq2 ` 2p1 ´ ψpεqq2 “ 1 `Opε2q.

Therefore, by (E.13) and using 1 ` x ď ex gives,

EH0rL2
ns ď eOpε2ns´1q Ñ 1,

since ε ! n´ s´1
2 . By Lemma E.1, this completes the proof of Theorem 3.4 (b).
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Appendix F. Proof of Proposition A.1

Define g “ pg1, g2, . . . , gnq : Rn Ñ Rn where gu : Rn Ñ R, for u P rns, as follows:

gupxq “
ÿ

ePprns

s q:uPe

ex
J
e 1

1 ` exJ
e 1
,

where x “ px1, x2, . . . , xnqJ and xe “ pxu1 , xu2 , . . . , xusqJ for e “ pu1, u2, . . . , usq. Observe that
Rs is the range of g. Since the expected degree of a vertex is a weighted combination of all the
possible degrees in s-uniform hypergraphs on n vertices, this implies R̄s Ď conv pDsq.

To show the other side, for every y P Rn we define,

fypxq “

n
ÿ

i“1

xiyi ´
ÿ

tv1,v2,...,vsuPprns

s q

logp1 ` exv1`...`xvs q.

Since the probability of observing an s-uniform hypergraph with parameter x and s-degree
sequence ds “ pdsp1q, . . . , dspnqq is

e
řn

v“1 dspvqxv
ś

tv1,v2,...,vsuPprns

s q
p1 ` exv1`...`xvs q

.

and is less than 1, taking logarithm on both sides we get fdspxq ď 0. Further as fypxq depends
linearly on y, we have fypxq ď 0 for all y P conv pDsq and x P Rn. Now, let us fix y P conv pDsq.
It can be shown that the Hessian ∇2fypxq is uniformly bounded, hence, by [10, Lemma 3.1]
there exists a sequence txkukě1 such that ∇fypxkq Ñ 0. Observing that ∇fypxkq “ y ´ gpxq,
we get gpxkq Ñ y. As y P conv pDsq is arbitrary, this implies conv pDsq Ď R̄s. l
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