Endomorphisms of Artin groups of type D

Fabrice Castel
Luis Paris

Abstract

In this paper we determine a classification of the endomorphisms of the Artin group $A\left[D_{n}\right]$ of type D_{n} for $n \geq 6$. In particular we determine its automorphism group and its outer automorphism group. We also determine a classification of the homomorphisms from $A\left[D_{n}\right]$ to the Artin group $A\left[A_{n-1}\right]$ of type A_{n-1} and a classification of the homomorphisms from $A\left[A_{n-1}\right]$ to $A\left[D_{n}\right]$ for $n \geq 6$. We show that any endomorphism of the quotient $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ lifts to an endomorphism of $A\left[D_{n}\right]$ for $n \geq 4$. We deduce a classification of the endomorphisms of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$, we determine the automorphism and outer automorphism groups of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$, and we show that $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ is co-Hopfian, for $n \geq 6$. The results are algebraic in nature but the proofs are based on topological arguments (curves on surfaces and mapping class groups).

AMS Subject Classification Primary: 20F36. Secondary: 57K20.
Keywords Artin groups of type D, endomorphisms, automorphisms, mapping class groups.

1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix $M=\left(m_{s, t}\right)_{s, t \in S}$ indexed by the elements of S, with coefficients in $\mathbb{N} \cup\{\infty\}$, such that $m_{s, s}=1$ for all $s \in S$ and $m_{s, t}=m_{t, s} \geq 2$ for all $s, t \in S$, $s \neq t$. Such a matrix is usually represented by a labeled graph Γ, called a Coxeter graph, defined as follows. The set of vertices of Γ is S. Two vertices $s, t \in S$ are connected by an edge if $m_{s, t} \geq 3$, and this edge is labeled with $m_{s, t}$ if $m_{s, t} \geq 4$.

If a, b are two letters and m is an integer ≥ 2, then we denote by $\Pi(a, b, m)$ the word $a b a \cdots$ of length m. In other words $\Pi(a, b, m)=(a b)^{\frac{m}{2}}$ if m is even and $\Pi(a, b, m)=(a b)^{\frac{m-1}{2}} a$ if m is odd. Let Γ be a Coxeter graph and let $M=\left(m_{s, t}\right)_{s, t \in S}$ be its Coxeter matrix. With Γ we associate a group $A[\Gamma]$, called the Artin group of Γ, defined by the following presentation.

$$
\left.A[\Gamma]=\langle S| \Pi\left(s, t, m_{s, t}\right)=\Pi\left(t, s, m_{s, t}\right) \text { for } s, t \in S, s \neq t, m_{s, t} \neq \infty\right\rangle .
$$

The Coxeter group of Γ, denoted $W[\Gamma]$, is the quotient of $A[\Gamma]$ by the relations $s^{2}=1, s \in S$.
Despite the popularity of Artin groups little is known on their automorphisms and even less on their endomorphisms. The most emblematic cases are the braid groups and the right-angled Artin groups. Recall that the braid group on $n+1$ strands is the Artin group $A\left[A_{n}\right]$ where A_{n} is the Coxeter graph depicted in Figure 1.1, and an Artin group $A[\Gamma]$ is called a right-angled Artin group if $m_{s, t} \in\{2, \infty\}$ for all $s, t \in S, s \neq t$. The automorphism group of $A\left[A_{n}\right]$ was determined by Dyer-Grossman [26] and the set of its endomorphisms by Castel [12] for $n \geq 5$, by Chen-Kordek-Margalit [17] for $n \geq 3$ and by Orevkov [35] for $n \geq 2$ (see also Bell-Margalit [2] and Kordek-Margalit [31]). On the other hand there are many articles studying automorphism groups of right-angled Artin groups (see Charney-Vogtmann

Figure 1.1: Coxeter graph A_{n}
[15, 16], Day [23, 24], Laurence [33] and Bregman-Charney-Vogtmann [8] for example), but almost nothing is known on endomorphisms of these groups.

Apart from these two families little is known on automorphisms of Artin groups. The automorphism groups of two generators Artin groups were determined in Gilbert-Howie-Metaftsis-Raptis [29], the automorphism groups of the Artin groups of type B_{n}, \tilde{A}_{n} and \tilde{C}_{n} were determined in Charney-Crisp [14], the automorphisms groups of some 2-dimensional Artin groups were determined in Crisp [20] and in An-Cho [1], the automorphism groups of large-type free-of-infinity Artin groups were determined in Vaskou [43], and the automorphism group of $A\left[D_{4}\right]$ was determined in Soroko [41]. On the other hand, as far as we know the set of endomorphisms of an Artin group is not determined for any Artin group except for those of type A_{n}.

Recall that an Artin group $A[\Gamma]$ is of spherical type if $W[\Gamma]$ is finite. The study of spherical-type Artin groups began in the early 1970s with works by Brieskorn [9, 10], Brieskorn-Saito [11] and Deligne [25], works that marked in a way the beginning of the theory of Artin groups. This family and that of right-angled Artin groups are the two most studied and best understood families of Artin groups and, obviously, any question on Artin groups first arises for Artin groups of spherical type and for rightangled Artin groups. Here we are interested in Artin groups of spherical type and more particularly in those of type D_{n}.

An Artin group $A[\Gamma]$ is called irreducible if Γ is connected. If $\Gamma_{1}, \ldots, \Gamma_{\ell}$ are the connected components of Γ, then $A[\Gamma]=A\left[\Gamma_{1}\right] \times \cdots \times A\left[\Gamma_{\ell}\right]$ and $W[\Gamma]=W\left[\Gamma_{1}\right] \times \cdots \times W\left[\Gamma_{\ell}\right]$. In particular $A[\Gamma]$ is of spherical type if and only if $A\left[\Gamma_{i}\right]$ is of spherical type for all $i \in\{1, \ldots, \ell\}$. So, to classify Artin groups of spherical type it suffices to classify those which are irreducible. Finite irreducible Coxeter groups and hence irreducible Artin groups of spherical type were classified by Coxeter [18, 19]. There are four infinite families, $A_{n}(n \geq 1), B_{n}(n \geq 2), D_{n}(n \geq 4)$ and $I_{2}(m)(m \geq 5)$, and six "sporadic" groups, $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}$ and H_{4}. As mentioned above, the automorphism group of $A[\Gamma]$ for Γ of type $A_{n}(n \geq 1), B_{n}(n \geq 2)$ and $I_{2}(m)(m \geq 5)$ is known. The next step is therefore to understand the automorphism group of $A\left[D_{n}\right]$ for $n \geq 5$ (the case $\Gamma=D_{4}$ is known by Soroko [41]). The Coxeter graph D_{n} is illustrated in Figure 1.2.

Figure 1.2: Coxeter graph D_{n}
In this paper we determine a complete and precise classification of the endomorphisms of $A\left[D_{n}\right]$ for $n \geq 6$ (see Theorem 2.3). In particular we determine the automorphism group and the outer automorphism group of $A\left[D_{n}\right]$ for $n \geq 6$ (see Corollary 2.6). We also determine a complete and precise classification of the homomorphisms from $A\left[D_{n}\right]$ to $A\left[A_{n-1}\right]$ (see Theorem 2.1) and a complete and
precise classification of the homomorphisms from $A\left[A_{n-1}\right]$ to $A\left[D_{n}\right]$ (see Theorem 2.2). Note that all these results were announced but not proved in Castel [13]; actually the proofs turn out to be much more difficult than the first author thought when he announced them. Note also that our techniques cannot be used to treat the cases $n=4$ and $n=5$. In particular we do not know how to determine $\operatorname{Aut}\left(A\left[D_{5}\right]\right)$.

From our main result we deduce a classification of the endomorphisms of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ for $n \geq 6$, where $Z\left(A\left[D_{n}\right]\right)$ denotes the center of $A\left[D_{n}\right]$ (see Theorem 2.8). Then we determine the automorphism group and the outer automorphism group of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ (see Corollary 2.10), and we show that $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ is co-Hopfian (see Corollary 2.11). These results follow from Theorem 2.3 and Proposition 2.7 which states that any endomorphism of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ lifts to an endomorphism of $A\left[D_{n}\right]$. Such results were previously known for braid groups, that is, Artin groups of type A_{n} (see Bell-Margalit [2]). Note that the application of our main result to the study of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$ was not present in an earlier version of the paper. It was suggested to us by the referee and we thank her/him warmly for that.

A geometric representation of an Artin group is a homomorphism from the group to a mapping class group (see Section 3 for more details). In order to achieve our goals we make a study of a particular geometric representation of $A\left[D_{n}\right]$ previously introduced by Perron-Vannier [40] with one boundary component replaced by a puncture. This geometric representation will be the key tool for many of our proofs. Overall, although the results of the paper are algebraic in nature, the proofs are mostly based on topological arguments (on curves on surfaces and mapping class groups).

The paper is organized as follows. In Section 2 we give the main definitions and precise statements of the main results. Section 3 is dedicated to the study of some geometric representations of Artin groups of type A_{n} and type D_{n}. In Section 4 we determine the homomorphisms from $A\left[D_{n}\right]$ to $A\left[A_{n-1}\right]$, in Section 5 we determine the homomorphisms from $A\left[A_{n-1}\right]$ to $A\left[D_{n}\right]$, and in Section 6 we determine the endomorphisms of $A\left[D_{n}\right]$. In Section 7 we determine the endomorphisms of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$.

Acknowledgments The authors would like to thank Bruno Cisneros de la Cruz and Juan GonzálezMeneses for helpful comments and conversations. They also want to thank the referee for many helpful remarks. The second author is partially supported by the French project "AlMaRe" (ANR-19-CE40-0001-01) of the ANR.

2 Definitions and statements

For $n \geq 4$ we denote by s_{1}, \ldots, s_{n-1} the standard generators of $A\left[A_{n-1}\right]$ numbered as in Figure 1.1 and by t_{1}, \ldots, t_{n} the standard generators of $A\left[D_{n}\right]$ numbered as in Figure 1.2.

Let Γ be a Coxeter graph. For $X \subset S$ we denote by $A_{X}=A_{X}[\Gamma]$ the subgroup of $A=A[\Gamma]$ generated by X, by $W_{X}=W_{X}[\Gamma]$ the subgroup of $W=W[\Gamma]$ generated by X, and by Γ_{X} the full subgraph of Γ spanned by X. We know from van der Lek [34] that A_{X} is the Artin group of Γ_{X} and from Bourbaki [7] that W_{X} is the Coxeter group of Γ_{X}. A subgroup of the form A_{X} is called a standard parabolic subgroup of A and a subgroup of the form W_{X} is called a standard parabolic subgroup of W.

For $w \in W$ we denote by $\lg (w)$ the word length of w with respect to S. A reduced expression for w is an expression $w=s_{1} s_{2} \cdots s_{\ell}$ of minimal length, that is, such that $\ell=\lg (w)$. Let $\omega: A \rightarrow W$ be the natural epimorphism which sends s to s for all $s \in S$. This epimorphism has a natural set-section $\tau: W \rightarrow A$ defined as follows. Let $w \in W$ and let $w=s_{1} s_{2} \cdots s_{\ell}$ be a reduced expression for w. Then $\tau(w)=s_{1} s_{2} \cdots s_{\ell} \in A$. We know from Tits [42] that the definition of $\tau(w)$ does not depend on the choice of its reduced expression.

Assume Γ is of spherical type. Then W has a unique element of maximal length, denoted w_{S}, which satisfies $w_{S}^{2}=1$ and $w_{S} S w_{S}=S$. The Garside element of A is defined to be $\Delta=\Delta[\Gamma]=\tau\left(w_{S}\right)$. We know that $\Delta S \Delta^{-1}=S$ and, if Γ is connected, then the center $Z(A)$ of A is an infinite cyclic group generated by either Δ or Δ^{2} (see Brieskorn-Saito [11]). For $X \subset S$ we denote by w_{X} the element of maximal length in W_{X} and by $\Delta_{X}=\Delta_{X}[\Gamma]=\tau\left(w_{X}\right)$ the Garside element of A_{X}.

If $\Gamma=A_{n-1}$, then

$$
\Delta=\left(s_{n-1} \cdots s_{1}\right)\left(s_{n-1} \cdots s_{2}\right) \cdots\left(s_{n-1} s_{n-2}\right) s_{n-1}
$$

$\Delta s_{i} \Delta^{-1}=s_{n-i}$ for all $1 \leq i \leq n-1$ and $Z(A)$ is generated by Δ^{2}. If $\Gamma=D_{n}$, then

$$
\Delta=\left(t_{1} \cdots t_{n-2} t_{n-1} t_{n} t_{n-2} \cdots t_{1}\right)\left(t_{2} \cdots t_{n-2} t_{n-1} t_{n} t_{n-2} \cdots t_{2}\right) \cdots\left(t_{n-2} t_{n-1} t_{n} t_{n-2}\right)\left(t_{n-1} t_{n}\right)
$$

If n is even, then $\Delta t_{i} \Delta^{-1}=t_{i}$ for all $1 \leq i \leq n$ and $Z(A)$ is generated by Δ. If n is odd, then $\Delta t_{i} \Delta^{-1}=t_{i}$ for all $1 \leq i \leq n-2, \Delta t_{n-1} \Delta^{-1}=t_{n}, \Delta t_{n} \Delta^{-1}=t_{n-1}$, and $Z(A)$ is generated by Δ^{2}. If G is a group and $g \in G$, then we denote by $\operatorname{ad}_{g}: G \rightarrow G, h \mapsto g h g^{-1}$, the conjugation map by g. We say that two homomorphisms $\varphi_{1}, \varphi_{2}: G \rightarrow H$ are conjugate if there exists $h \in H$ such that $\varphi_{2}=\operatorname{ad}_{h} \circ \varphi_{1}$.

A homomorphism $\varphi: G \rightarrow H$ is called abelian if its image is an abelian subgroup of H. A homomorphism $\varphi: G \rightarrow H$ is called cyclic if its image is a cyclic subgroup of H. If $G=A\left[A_{n-1}\right]$, then $\varphi: A\left[A_{n-1}\right] \rightarrow H$ is abelian if and only if it is cyclic, if and only if there exists $h \in H$ such that $\varphi\left(s_{i}\right)=h$ for all $1 \leq i \leq n-1$. Similarly, if $G=A\left[D_{n}\right]$, then $\varphi: A\left[D_{n}\right] \rightarrow H$ is abelian if and only if it is cyclic, if and only if there exists $h \in H$ such that $\varphi\left(t_{i}\right)=h$ for all $1 \leq i \leq n$.

Two automorphisms $\zeta, \chi \in \operatorname{Aut}\left(A\left[D_{n}\right]\right)$ play a central role in our study. These are defined by

$$
\begin{gathered}
\zeta\left(t_{i}\right)=t_{i} \text { for } 1 \leq i \leq n-2, \zeta\left(t_{n-1}\right)=t_{n}, \zeta\left(t_{n}\right)=t_{n-1} \\
\chi\left(t_{i}\right)=t_{i}^{-1} \text { for } 1 \leq i \leq n
\end{gathered}
$$

Both are of order 2 and commute, hence they generate a subgroup of $\operatorname{Aut}\left(A\left[D_{n}\right]\right)$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. If n is odd, then ζ is the conjugation map by $\Delta=\Delta\left[D_{n}\right]$. On the other hand, if n is even, then ζ is not an inner automorphism (see Paris [37]). The automorphism χ is never inner.

Two other homomorphisms play an important role in our study. The first, $\pi: A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$, is defined by

$$
\pi\left(t_{i}\right)=s_{i} \text { for } 1 \leq i \leq n-2, \pi\left(t_{n-1}\right)=\pi\left(t_{n}\right)=s_{n-1}
$$

The second, $\iota: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$, is defined by

$$
\iota\left(s_{i}\right)=t_{i} \text { for } 1 \leq i \leq n-1
$$

Observe that $\pi \circ \iota=\operatorname{id}_{A\left[A_{n-1}\right]}$, hence π is surjective, ι is injective, and $A\left[D_{n}\right] \simeq \operatorname{Ker}(\pi) \rtimes A\left[A_{n-1}\right]$. We refer to Crisp-Paris [21] for a detailed study on this decomposition of $A\left[D_{n}\right]$ as a semi-direct product. Let $n \geq 4$. For $p \in \mathbb{Z}$ we define a homomorphism $\alpha_{p}: A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$ by

$$
\alpha_{p}\left(t_{i}\right)=s_{i} \Delta^{2 p} \text { for } 1 \leq i \leq n-2, \alpha_{p}\left(t_{n-1}\right)=\alpha_{p}\left(t_{n}\right)=s_{n-1} \Delta^{2 p},
$$

where $\Delta=\Delta\left[A_{n-1}\right]$ is the Garside element of $A\left[A_{n-1}\right]$. Note that $\alpha_{0}=\pi$.
Set $Y=\left\{t_{1}, \ldots, t_{n-1}\right\}$. For $p, q \in \mathbb{Z}$ we define a homomorphism $\beta_{p, q}: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$ by

$$
\beta_{p, q}\left(s_{i}\right)=t_{i} \Delta_{Y}^{2 p} \Delta^{\kappa q} \text { for } 1 \leq i \leq n-1
$$

where $\Delta=\Delta\left[D_{n}\right]$ is the Garside element of $A\left[D_{n}\right], \Delta_{Y}=\Delta_{Y}\left[D_{n}\right], \kappa=2$ if n is odd, and $\kappa=1$ if n is even. Note that $\beta_{0,0}=\iota$. Note also that, by Paris [37, Theorem 1.1], the centralizer of Y in $A\left[D_{n}\right]$ is the free abelian group of rank 2 generated by Δ_{Y}^{2} and Δ^{κ}.
For $p \in \mathbb{Z}$ we define the homomorphism $\gamma_{p}: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ by

$$
\gamma_{p}\left(t_{i}\right)=t_{i} \Delta^{\kappa p} \text { for } 1 \leq i \leq n,
$$

where $\Delta=\Delta\left[D_{n}\right]$ is the Garside element of $A\left[D_{n}\right], \kappa=2$ if n is odd, and $\kappa=1$ if n is even. Note that $\gamma_{0}=\mathrm{id}$.

Concerning $A\left[A_{n-1}\right]$, we define an automorphism $\bar{\chi}: A\left[A_{n-1}\right] \rightarrow A\left[A_{n-1}\right]$ by

$$
\bar{\chi}\left(s_{i}\right)=s_{i}^{-1} \text { for } 1 \leq i \leq n-1,
$$

and for $p \in \mathbb{Z}$ we define an endomorphism $\bar{\gamma}_{p}: A\left[A_{n-1}\right] \rightarrow A\left[A_{n-1}\right]$ by

$$
\bar{\gamma}_{p}\left(s_{i}\right)=s_{i} \Delta^{2 p} \text { for } 1 \leq i \leq n-1
$$

where Δ is the Garside element of $A\left[A_{n-1}\right]$.
The main results of this paper are the following.
Theorem 2.1 Let $n \geq 5$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$ be a homomorphism. Then up to conjugation we have one of the following two possibilities.
(1) φ is cyclic.
(2) There exist $\psi \in\langle\chi\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\alpha_{p} \circ \psi$.

Theorem 2.2 Let $n \geq 6$. Let $\varphi: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$ be a homomorphism. Then up to conjugation we have one of the following two possibilities.
(1) φ is cyclic.
(2) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q}$.

Theorem 2.3 Let $n \geq 6$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ be a homomorphism. Then up to conjugation we have one of the following three possibilities.
(1) φ is cyclic.
(2) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q} \circ \pi$.
(3) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\psi \circ \gamma_{p}$.

From Theorem 2.3 we deduce a classification of the injective endomorphisms and of the automorphisms of $A\left[D_{n}\right]$ as follows.

Corollary 2.4 Let $n \geq 6$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ be an endomorphism. Then φ is injective if and only if there exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that φ is conjugate to $\psi \circ \gamma_{p}$.

Proof Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ be an endomorphism. By Theorem 2.3 we have one of the following three possibilities up to conjugation.
(1) φ is cyclic.
(2) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q} \circ \pi$.
(3) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\psi \circ \gamma_{p}$.

If φ is cyclic, then $\varphi\left(t_{n-1}\right)=\varphi\left(t_{n}\right)$, hence φ is not injective. If there exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q} \circ \pi$, then, again, $\varphi\left(t_{n-1}\right)=\varphi\left(t_{n}\right)$, hence φ is not injective. So, if φ is injective, then there exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that φ is conjugate to $\psi \circ \gamma_{p}$.

It remains to show that, if $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$, then $\psi \circ \gamma_{p}$ is injective. Since the elements of $\langle\zeta, \chi\rangle$ are automorphisms, it suffices to show that γ_{p} is injective. We denote by $z: A\left[D_{n}\right] \rightarrow \mathbb{Z}$ the homomorphism which sends t_{i} to 1 for all $1 \leq i \leq n$. It is easily seen that $\gamma_{p}(u)=u \Delta^{\kappa p z(u)}$ for all $u \in A\left[D_{n}\right]$. Let $u \in \operatorname{Ker}\left(\gamma_{p}\right)$. Then $1=\gamma_{p}(u)=u \Delta^{\kappa p z(u)}$, hence $u=\Delta^{q}$ where $q=-\kappa p z(u)$. We have $z(\Delta)=n(n-1)$, hence $z(u)=q n(n-1)$, thus

$$
1=\gamma_{p}(u)=\Delta^{q} \Delta^{\kappa p q n(n-1)}=\Delta^{q(1+\kappa p n(n-1))} .
$$

Since $1+\kappa p n(n-1) \neq 0$, this equality implies that $q=0$, hence $u=1$. So, γ_{p} is injective.
Corollary 2.5 Let $n \geq 6$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ be an endomorphism. Then φ is an automorphism if and only if it is conjugate to an element of $\langle\zeta, \chi\rangle$.

Proof Clearly, if φ is conjugate to an element of $\langle\zeta, \chi\rangle$, then φ is an automorphism. Conversely, suppose that φ is an automorphism. We know from Corollary 2.4 that there exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that φ is conjugate to $\psi \circ \gamma_{p}$. Thus, up to conjugation and up to composing on the left by ψ^{-1}, we can assume that $\varphi=\gamma_{p}$. It remains to show that $p=0$.

Let again $z: A\left[D_{n}\right] \rightarrow \mathbb{Z}$ be the homomorphism which sends t_{i} to 1 for all $1 \leq i \leq n$. Recall that $\gamma_{p}(u)=u \Delta^{\kappa p z(u)}$ for all $u \in A\left[D_{n}\right]$. For $u \in A\left[D_{n}\right]$, we have

$$
\left(z \circ \gamma_{p}\right)(u)=(1+n(n-1) \kappa p) z(u) \in(1+n(n-1) \kappa p) \mathbb{Z} .
$$

Since γ_{p} is an automorphism, $z \circ \gamma_{p}$ is surjective, hence $\mathbb{Z}=\operatorname{Im}\left(z \circ \gamma_{p}\right) \subset(1+n(n-1) \kappa p) \mathbb{Z}$. It follows that $(1+n(n-1) \kappa p) \in\{ \pm 1\}$, hence $p=0$.

By combining Corollary 2.5 with Crisp-Paris [21, Theorem 4.9] we immediately obtain the following.

Corollary 2.6 Let $n \geq 6$.

(1) If n is even, then

$$
\operatorname{Aut}\left(A\left[D_{n}\right]\right)=\operatorname{Inn}\left(A\left[D_{n}\right]\right) \rtimes\langle\zeta, \chi\rangle \simeq\left(A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)\right) \rtimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}),
$$

and $\operatorname{Out}\left(A\left[D_{n}\right]\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, where $Z\left(A\left[D_{n}\right]\right)$ denotes the center of $A\left[D_{n}\right]$.
(2) If n is odd, then

$$
\operatorname{Aut}\left(A\left[D_{n}\right]\right)=\operatorname{Inn}\left(A\left[D_{n}\right]\right) \rtimes\langle\chi\rangle \simeq\left(A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)\right) \rtimes(\mathbb{Z} / 2 \mathbb{Z}),
$$

and $\operatorname{Out}\left(A\left[D_{n}\right]\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
We denote by $Z\left(A\left[D_{n}\right]\right)$ the center of $A\left[D_{n}\right]$, we set $A_{Z}\left[D_{n}\right]=A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$, and we denote by $\xi: A\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ the canonical projection. For each $1 \leq i \leq n$, we set $t_{Z, i}=\xi\left(t_{i}\right)$. Note that an endomorphism $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ induces an endomorphism $\varphi_{Z}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ if and only if $\varphi\left(Z\left(A\left[D_{n}\right]\right)\right) \subset Z\left(A\left[D_{n}\right]\right)$. We say that an endomorphism $\psi: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ lifts if there exists an endomorphism $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ such that $\varphi_{Z}=\psi$. Then we call φ a lift of ψ. In Section 7 we prove the following.

Proposition 2.7 Let $n \geq 4$. Then every endomorphism of $A_{Z}\left[D_{n}\right]$ lifts.
From this proposition combined with Theorem 2.3 we will deduce the following.
Theorem 2.8 Let $n \geq 6$. Let $\varphi_{Z}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ be an endomorphism. Then we have one of the following two possibilities up to conjugation.
(1) φ_{Z} is cyclic.
(2) $\varphi_{Z} \in\left\langle\zeta_{Z}, \chi_{Z}\right\rangle$.

In addition to Theorem 2.8 we have the following.
Proposition 2.9 Let $n \geq 4$. There are only finitely many conjugacy classes of cyclic endomorphisms of $A_{Z}\left[D_{n}\right]$.

Proof Let $\varphi_{Z}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ be a cyclic endomorphism. There exists $g_{Z} \in A_{Z}\left[D_{n}\right]$ such that $\varphi_{Z}\left(t_{Z, i}\right)=g_{Z}$ for all $1 \leq i \leq n$. We denote by Δ the Garside element of $A\left[D_{n}\right]$, and we set $\kappa=2$ if n is odd and $\kappa=1$ if n is even. We have $1=\left(\varphi_{Z} \circ \xi\right)\left(\Delta^{\kappa}\right)=g_{Z}^{\kappa n(n-1)}$, hence g_{Z} is of finite order. By Bestvina [3, Theorem 4.5] there are finitely many conjugacy classes of finite subgroups in $A_{Z}\left[D_{n}\right]$. Since $\left\langle g_{Z}\right\rangle$ is a finite subgroup of $A_{Z}\left[D_{n}\right]$, it follows that there are finitely many choices for g_{Z} up to conjugation.

In Lemma 7.1 we will show that, if n is even then $\left\langle\zeta_{Z}, \chi_{Z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$, and if n is odd then $\left\langle\chi_{Z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$. Furthermore, it is well-known that the center of $A_{Z}\left[D_{n}\right]$ is trivial (see Cumplido-Paris [22, Proposition 6] for example). These two remarks combined with Theorem 2.8 imply the following.

Corollary 2.10 Let $n \geq 6$.
(1) If n is even, then

$$
\operatorname{Aut}\left(A_{Z}\left[D_{n}\right]\right)=\operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right) \rtimes\left\langle\zeta_{z}, \chi_{Z}\right\rangle \simeq A_{Z}\left[D_{n}\right] \rtimes(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \simeq \operatorname{Aut}\left(A\left[D_{n}\right]\right)
$$ and $\operatorname{Out}\left(A_{Z}\left[D_{n}\right]\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \simeq \operatorname{Out}\left(A\left[D_{n}\right]\right)$.

(2) If n is odd, then

$$
\operatorname{Aut}\left(A_{Z}\left[D_{n}\right]\right)=\operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right) \rtimes\left\langle\chi_{Z}\right\rangle \simeq A_{Z}\left[D_{n}\right] \rtimes(\mathbb{Z} / 2 \mathbb{Z}) \simeq \operatorname{Aut}\left(A\left[D_{n}\right]\right),
$$

and $\operatorname{Out}\left(A_{Z}\left[D_{n}\right]\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \simeq \operatorname{Out}\left(A\left[D_{n}\right]\right)$.
A group G is said to be co-Hopfian if every injective endomorphism of G is an isomorphism. Another direct consequence of Theorem 2.8 is the following.

Corollary 2.11 Let $n \geq 6$. Then $A_{Z}\left[D_{n}\right]$ is co-Hopfian.
Note that, in addition to the case D_{n} for $n \geq 6$ shown in Corollary 2.11, the only Coxeter graphs Γ for which we know that $A[\Gamma] / Z(A[\Gamma])$ is co-Hopfian are the Coxeter graphs $\Gamma=A_{n}$ for $n \geq 2$ (see Bell-Margalit [2]).

3 Geometric representations

Let Σ be an oriented compact surface possibly with boundary, and let \mathcal{P} be a finite set of punctures in the interior of Σ. We denote by $\operatorname{Homeo}^{+}(\Sigma, \mathcal{P})$ the group of homeomorphisms of Σ that preserve the orientation, that are the identity on a neighborhood of the boundary of Σ, and that setwise leave invariant \mathcal{P}. The mapping class group of the pair (Σ, \mathcal{P}), denoted $\mathcal{M}(\Sigma, \mathcal{P})$, is the group of isotopy classes of elements of $\operatorname{Homeo}^{+}(\Sigma, \mathcal{P})$. If $\mathcal{P}=\emptyset$, then we write $\mathcal{M}(\Sigma, \emptyset)=\mathcal{M}(\Sigma)$, and if $\mathcal{P}=\{x\}$ is a singleton, then we write $\mathcal{M}(\Sigma, \mathcal{P})=\mathcal{M}(\Sigma, x)$. We only give definitions and results on mapping class groups that we need for our proofs and we refer to Farb-Margalit [28] for a complete account on the subject.
Recall that a geometric representation of an Artin group A is a homomorphism from A to a mapping class group. Their study is the main ingredient of our proofs. Important tools for constructing and understanding them are Dehn twists and essential reduction systems. So, we start by recalling their definitions and their main properties.
A circle of (Σ, \mathcal{P}) is the (non-oriented) image of an embedding $a: \mathbb{S}^{1} \hookrightarrow \Sigma \backslash(\partial \Sigma \cup \mathcal{P})$. It is called generic if it does not bound any disk containing 0 or 1 puncture and if it is not parallel to any boundary component. The isotopy class of a circle a is denoted by $[a]$. We denote by $\mathcal{C}(\Sigma, \mathcal{P})$ the set of isotopy classes of generic circles of (Σ, \mathcal{P}). The intersection number of two classes $[a],[b] \in \mathcal{C}(\Sigma, \mathcal{P})$ is $i([a],[b])=\min \left\{\left|a^{\prime} \cap b^{\prime}\right| \mid a^{\prime} \in[a]\right.$ and $\left.b^{\prime} \in[b]\right\}$. The set $\mathcal{C}(\Sigma, \mathcal{P})$ is endowed with a simplicial complex structure, where a finite set \mathcal{A} is a simplex if $i([a],[b])=0$ for all $[a],[b] \in \mathcal{A}$. This complex is called the curve complex of (Σ, \mathcal{P}).
In this paper by a Dehn twist we mean a right Dehn twist and the (right) Dehn twist along a circle a of (Σ, \mathcal{P}) will be denoted by T_{a}. The following is an important tool for constructing and understanding geometric representations of Artin groups. Its proof can be found in Farb-Margalit [28, Section 3.5].

Proposition 3.1 Let Σ be a compact oriented surface and let \mathcal{P} be a finite collection of punctures in the interior of Σ. Let a, b be two generic circles of (Σ, \mathcal{P}).
(1) We have $T_{a} T_{b}=T_{b} T_{a}$ if and only if $i([a],[b])=0$.
(2) We have $T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b}$ if and only if $i([a],[b])=1$.

Let $f \in \mathcal{M}(\Sigma, \mathcal{P})$. A simplex \mathcal{A} of $\mathcal{C}(\Sigma, \mathcal{P})$ is called a reduction system for f if $f(\mathcal{A})=\mathcal{A}$. In that case any element of \mathcal{A} is called a reduction class for f. A reduction class $[a]$ is an essential reduction class if, for all $[b] \in \mathcal{C}(\Sigma, \mathcal{P})$ such that $i([a],[b]) \neq 0$ and for all $m \in \mathbb{Z} \backslash\{0\}$, we have $f^{m}([b]) \neq[b]$. In particular, if $[a]$ is an essential reduction class and $[b]$ is any reduction class, then $i([a],[b])=0$. We denote by $\mathcal{S}(f)$ the set of essential reduction classes for f. The following gathers some key results on $\mathcal{S}(f)$ that will be useful later.

Theorem 3.2 (Birman-Lubotzky-McCarthy [5]) Let Σ be a compact oriented surface and let \mathcal{P} be a finite set of punctures in the interior of Σ. Let $f \in \mathcal{M}(\Sigma, \mathcal{P})$.
(1) If $\mathcal{S}(f) \neq \emptyset$, then $\mathcal{S}(f)$ is a reduction system for f. In particular, if $\mathcal{S}(f) \neq \emptyset$, then $\mathcal{S}(f)$ is a simplex of $\mathcal{C}(\Sigma, \mathcal{P})$.
(2) We have $\mathcal{S}\left(f^{n}\right)=\mathcal{S}(f)$ for all $n \in \mathbb{Z} \backslash\{0\}$.
(3) We have $\mathcal{S}\left(g f g^{-1}\right)=g(\mathcal{S}(f))$ for all $g \in \mathcal{M}(\Sigma, \mathcal{P})$.

The following is well-known and it is a direct consequence of Birman-Lubotzky-McCarthy [5] (see also Castel [12, Corollaire 3.45]). It will be often used in our proofs.

Proposition 3.3 Let Σ be an oriented compact surface of genus ≥ 2 and let \mathcal{P} be a finite set of punctures in the interior of Σ. Let $f_{0} \in Z\left(\mathcal{M}(\Sigma, \mathcal{P})\right.$) be a central element of $\mathcal{M}(\Sigma, \mathcal{P})$, let $\mathcal{A}=\left\{\left[a_{1}\right], \ldots,\left[a_{p}\right]\right\}$ be a simplex of $\mathcal{C}(\Sigma, \mathcal{P})$, and let k_{1}, \ldots, k_{p} be nonzero integers. Let $g=T_{a_{1}}^{k_{1}} T_{a_{2}}^{k_{2}} \cdots T_{a_{p}}^{k_{p}} f_{0}$. Then $\mathcal{S}(g)=\mathcal{A}$.

Let $n \geq 4$. If n is even, then Σ_{n} denotes the surface of genus $\frac{n-2}{2}$ with two boundary components, and if n is odd, then Σ_{n} denotes the surface of genus $\frac{n-1}{2}$ with one boundary component. Consider the circles a_{1}, \ldots, a_{n-1} drawn in Figure 3.1. Then by Proposition 3.1 we have a geometric representation $\rho_{A}: A\left[A_{n-1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}\right)$ which sends s_{i} to $T_{a_{i}}$ for all $1 \leq i \leq n-1$. The following is well-known, it is a direct consequence of Birman-Hilden [6], and its proof is explicitly given in Perron-Vannier [40].

Theorem 3.4 (Birman-Hilden [6]) Let $n \geq 4$. Then $\rho_{A}: A\left[A_{n-1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}\right)$ is injective.
The following is proved in Castel [12] for $n \geq 6$ using the geometric representation ρ_{A} defined above. It is proved in Chen-Kordek-Margalit [17] for $n \geq 5$ with a different method.

Theorem 3.5 (Castel [12], Chen-Kordek-Margalit [17], Orevkov [35]) Let $n \geq 5$. Let φ : $A\left[A_{n-1}\right] \rightarrow A\left[A_{n-1}\right]$ be a homomorphism. Then up to conjugation we have one of the following two possibilities.
(1) φ is cyclic.

Figure 3.1: Geometric representation of $A\left[A_{n-1}\right]$
(2) There exist $\psi \in\langle\bar{\chi}\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\psi \circ \bar{\gamma}_{p}$.

Let $n \geq 6$. Pick a puncture x in the interior of Σ_{n} and consider the circles d_{1}, \ldots, d_{n} drawn in Figure 3.2. Then by Proposition 3.1 we have a geometric representation $\rho_{D}: A\left[D_{n}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ which sends t_{i} to $T_{d_{i}}$ for all $1 \leq i \leq n$. On the other hand, the embedding of $\operatorname{Homeo}^{+}\left(\Sigma_{n}, x\right)$ into $\operatorname{Homeo}^{+}\left(\Sigma_{n}\right)$ induces a surjective homomorphism $\theta: \mathcal{M}\left(\Sigma_{n}, x\right) \rightarrow \mathcal{M}\left(\Sigma_{n}\right)$ whose kernel is naturally isomorphic to $\pi_{1}\left(\Sigma_{n}, x\right)$ (see Birman [4]). It is easily seen that

$$
\theta\left(T_{d_{i}}\right)=T_{a_{i}} \text { for } 1 \leq i \leq n-2, \theta\left(T_{d_{n-1}}\right)=\theta\left(T_{d_{n}}\right)=T_{a_{n-1}}
$$

hence we have the following commutative diagram:

where we denote by $\bar{\rho}: \operatorname{Ker}(\pi) \rightarrow \operatorname{Ker}(\theta)$ the restriction of ρ_{D} to $\operatorname{Ker}(\pi)$.

Figure 3.2: Geometric representation of $A\left[D_{n}\right]$

The proof of the following can be found in Perron-Vannier [40, Theorem 1] with few modifications. As this result is central in our paper, for the sake of completeness we give a proof. Note that our proof is a little shorter than that of Perron-Vannier [40] because it uses results from Crisp-Paris [21] which
were not known and it does not need to deal with some Dehn twist along a boundary component, but our arguments are essentially the same.

Theorem 3.6 (Perron-Vannier [40]) Let $n \geq 4$.
(1) The homomorphism $\bar{\rho}: \operatorname{Ker}(\pi) \rightarrow \operatorname{Ker}(\theta)$ is an isomorphism.
(2) The geometric representation $\rho_{D}: A\left[D_{n}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ is injective.

Proof Part (2) is a consequence of Part (1) because of the following. Suppose $\bar{\rho}$ is an isomorphism. Then, since ρ_{A} is injective, ρ_{D} is injective by the five lemma applied to diagram (3-1).

Now, we prove Part (1). We know from Crisp-Paris [21, Proposition 2.3] that $\operatorname{Ker}(\pi)$ is a free group of rank $n-1$. We also know from $\operatorname{Birman}[4]$ that $\operatorname{Ker}(\theta)=\pi_{1}\left(\Sigma_{n}, x\right)$, which is also a free group of rank $n-1$. Recall that a group G is Hopfian if every surjective endomorphism $G \rightarrow G$ is an isomorphism. It is well-known that free groups of finite rank are Hopfian (see de la Harpe [30, Chapter III, Section 19]), hence in order to show that $\bar{\rho}$ is an isomorphism it suffices to show that $\bar{\rho}$ is surjective.
Set $f_{n-1}=T_{d_{n-1}}^{-1} T_{d_{n}}$. Note that $t_{n-1}^{-1} t_{n} \in \operatorname{Ker}(\pi)$ and $f_{n-1}=\bar{\rho}\left(t_{n-1}^{-1} t_{n}\right)$. In particular $f_{n-1} \in \operatorname{Im}(\bar{\rho}) \subset$ $\operatorname{Ker}(\theta)=\pi_{1}\left(\Sigma_{n}, x\right)$. This element, seen as an element of $\pi_{1}\left(\Sigma_{n}, x\right)$, is represented by the loop drawn in Figure 3.3. For $2 \leq i \leq n-1$ we define $f_{n-i} \in \pi_{1}\left(\Sigma_{n}, x\right) \subset \mathcal{M}\left(\Sigma_{n}, x\right)$ by induction on i by setting $f_{n-i}=T_{d_{n-i}} f_{n-i+1} T_{d_{n-i}}^{-1} f_{n-i+1}^{-1}$. The element f_{n-i}, viewed as an element of $\pi_{1}\left(\Sigma_{n}, x\right)$, is represented by the loop drawn in the left-hand side of Figure 3.4 if $i=2 j$ is even, and by the loop drawn in the right-hand side of Figure 3.4 if $i=2 j+1$ is odd, where we compose paths from right to left. Observe that f_{1}, \ldots, f_{n-1} generate $\pi_{1}\left(\Sigma_{n}, x\right)$. So, in order to show that $\bar{\rho}$ is surjective, it suffices to show that $f_{n-i} \in \operatorname{Im}(\bar{\rho})$ for all $i \in\{1, \ldots, n-1\}$. We argue by induction on i. We already know that $f_{n-1}=\bar{\rho}\left(t_{n-1}^{-1} t_{n}\right) \in \operatorname{Im}(\bar{\rho})$. Suppose $i \geq 2$ and $f_{n-i+1} \in \operatorname{Im}(\bar{\rho})$. Let $u \in \operatorname{Ker}(\pi)$ such that $f_{n-i+1}=\bar{\rho}(u)$. Since $\operatorname{Ker}(\pi)$ is a normal subgroup of $A\left[D_{n}\right]$, we have $t_{n-i} u t_{n-i}^{-1} \in \operatorname{Ker}(\pi)$, hence $t_{n-i} u t_{n-i}^{-1} u^{-1} \in \operatorname{Ker}(\pi)$, and therefore

$$
f_{n-i}=T_{d_{n-i}} f_{n-i+1} T_{d_{n-i}}^{-1} f_{n-i+1}^{-1}=\bar{\rho}\left(t_{n-i} u t_{n-i}^{-1} u^{-1}\right) \in \operatorname{Im}(\bar{\rho}) .
$$

Figure 3.3: The loop $f_{n-1} \in \pi_{1}\left(\Sigma_{n}, x\right)$

Figure 3.4: The loop $f_{n-i} \in \pi_{1}\left(\Sigma_{n}, x\right)$
Our last preliminary on geometric representations is a result implicitly proved in Castel [13, Section 3.2], and it is in this theorem that we need the assumption $n \geq 6$.

Theorem 3.7 (Castel [13]) Let $n \geq 6$. Let $\varphi: A\left[A_{n-1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ be a non-cyclic homomorphism. Then there exist generic circles c_{1}, \ldots, c_{n-1} in $\Sigma_{n} \backslash\{x\}, \varepsilon \in\{ \pm 1\}$ and $g \in \mathcal{M}\left(\Sigma_{n}, x\right)$ such that
(a) $\left|c_{i} \cap c_{j}\right|=1$ if $|i-j|=1$ and $\left|c_{i} \cap c_{j}\right|=0$ if $|i-j| \geq 2$, for all $1 \leq i, j \leq n-1$,
(b) g commutes with $T_{c_{i}}$ for all $1 \leq i \leq n-1$,
(c) $\varphi\left(s_{i}\right)=T_{c_{i}}^{\varepsilon} g$ for all $1 \leq i \leq n-1$.

Proof Assume n is even. Let $\partial_{1}, \partial_{2}$ be the two boundary components of Σ_{n}. We denote by $\hat{\Sigma}_{n}$ the closed surface obtained from Σ_{n} by gluing a disk D_{1} along ∂_{1} and a disk D_{2} along ∂_{2}. Moreover, we choose a point \hat{x}_{1} in the interior of D_{1} and a point \hat{x}_{2} in the interior of D_{2} and we set $\hat{\mathcal{P}}=\left\{x, \hat{x}_{1}, \hat{x}_{2}\right\}$. Assume n is odd. Let ∂ be the boundary component of Σ_{n}. We denote by $\hat{\Sigma}_{n}$ the closed surface obtained from Σ_{n} by gluing a disk D along ∂. Moreover, we choose a point \hat{x} in the interior of D and we set $\hat{\mathcal{P}}=\{x, \hat{x}\}$. For each n we denote by $\mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ the subgroup of $\mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ formed by the isotopy classes of elements in $\operatorname{Homeo}^{+}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ which pointwise fix $\hat{\mathcal{P}}$. The embedding of Σ_{n} into $\hat{\Sigma}_{n}$ induces a surjective homomorphism $\varpi: \mathcal{M}\left(\Sigma_{n}, x\right) \rightarrow \mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$. If n is even, then the kernel of ϖ is the free abelian group of rank 2 generated by $T_{\partial_{1}}$ and $T_{\partial_{2}}$, and if n is odd, then the kernel of ϖ is the cyclic group generated by T_{∂}. In both cases $\operatorname{Ker}(\varpi)$ is contained in the center of $\mathcal{M}\left(\Sigma_{n}, x\right)$.
Let $\varphi: A\left[A_{n-1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ be a non-cyclic homomorphism. Assume that $\varpi \circ \varphi$ is cyclic. Then there exists $\hat{g} \in \mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ such that $(\varpi \circ \varphi)\left(s_{i}\right)=\hat{g}$ for all $1 \leq i \leq n-1$. Let $g \in \mathcal{M}\left(\Sigma_{n}, x\right)$ be such that $\varpi(g)=\hat{g}$. For each $1 \leq i \leq n-1$ there exists $h_{i} \in \operatorname{Ker}(\varpi) \subset Z\left(\mathcal{M}\left(\Sigma_{n}, x\right)\right)$ such that $\varphi\left(s_{i}\right)=g h_{i}$. Let $1 \leq i \leq n-2$. Then

$$
g^{3} h_{i}^{2} h_{i+1}=\varphi\left(s_{i} s_{i+1} s_{i}\right)=\varphi\left(s_{i+1} s_{i} s_{i+1}\right)=g^{3} h_{i} h_{i+1}^{2}
$$

hence $h_{i}=h_{i+1}$. This shows that $\varphi\left(s_{i}\right)=g h_{1}$ for all $1 \leq i \leq n-1$, hence that φ is cyclic: contradiction. So, $\varpi \circ \varphi$ is not cyclic.
To differentiate Dehn twists in $\mathcal{M}\left(\Sigma_{n}, x\right)$ from those in $\mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$, for a circle c in $\hat{\Sigma}_{n} \backslash \hat{\mathcal{P}}$ we denote by \hat{T}_{c} the Dehn twist in $\mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ along c. By Castel [13, Theorem 1] there exist generic circles c_{1}, \ldots, c_{n-1} in $\hat{\Sigma}_{n} \backslash \hat{\mathcal{P}}, \varepsilon \in\{ \pm 1\}$ and $\hat{g} \in \mathcal{P} \mathcal{M}\left(\hat{\Sigma}_{n}, \hat{\mathcal{P}}\right)$ such that
(1) $\left|c_{i} \cap c_{j}\right|=1$ if $|i-j|=1$ and $\left|c_{i} \cap c_{j}\right|=0$ if $|i-j| \geq 2$, for all $1 \leq i, j \leq n-1$,
(2) \hat{g} commutes with $\hat{T}_{c_{i}}$ for all $1 \leq i \leq n-1$,
(3) $(\varpi \circ \varphi)\left(s_{i}\right)=\hat{T}_{c_{i}}^{\varepsilon} \hat{g}$ for all $1 \leq i \leq n-1$.

Clearly, we can choose each c_{i} siting in the interior of Σ_{n}. Let $g \in \mathcal{M}\left(\Sigma_{n}, x\right)$ be such that $\varpi(g)=\hat{g}$. It is easily shown with Castel [13, Lemma 3.2.1] that g and $T_{c_{i}}$ commute for all $1 \leq i \leq n-1$. Furthermore, for each $1 \leq i \leq n-1$, there exists $h_{i} \in \operatorname{Ker}(\varpi) \subset Z\left(\mathcal{M}\left(\Sigma_{n}, x\right)\right)$ such that $\varphi\left(s_{i}\right)=T_{c_{i}}^{\varepsilon} g h_{i}$. Let $1 \leq i \leq n-2$. Then

$$
T_{c_{i}}^{\varepsilon} T_{c_{i+1}}^{\varepsilon} T_{c_{i}}^{\varepsilon} g^{3} h_{i}^{2} h_{i+1}=\varphi\left(s_{i} s_{i+1} s_{i}\right)=\varphi\left(s_{i+1} s_{i} s_{i+1}\right)=T_{c_{i+1}}^{\varepsilon} T_{c_{i}}^{\varepsilon} T_{c_{i+1}}^{\varepsilon} g^{3} h_{i} h_{i+1}^{2}=T_{c_{i}}^{\varepsilon} T_{c_{i+1}}^{\varepsilon} T_{c_{i}}^{\varepsilon} g^{3} h_{i} h_{i+1}^{2}
$$

hence $h_{i+1}=h_{i}$. So, there exists $h \in \operatorname{Ker}(\varpi)$ such that $\varphi\left(s_{i}\right)=T_{c_{i}}^{\varepsilon} g h$ and $g h$ commutes with $T_{c_{i}}$ for all $1 \leq i \leq n-1$.

4 Homomorphisms from $A\left[D_{n}\right]$ to $A\left[A_{n-1}\right]$

Proof of Theorem 2.1 Let $n \geq 5$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$ be a homomorphism. By precomposing φ with $\iota: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$, we obtain a homomorphism $\varphi \circ \iota: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$, hence, by Theorem 3.5, one of the following two possibilities holds.

- $\varphi \circ \iota$ is cyclic.
- There exist $\psi \in\langle\bar{\chi}\rangle$ and $p \in \mathbb{Z}$ such that $\varphi \circ \iota$ is conjugate to $\psi \circ \bar{\gamma}_{p}$.

Suppose $\varphi \circ \iota$ is cyclic. Then there exists $u \in A\left[A_{n-1}\right]$ such that $(\varphi \circ \iota)\left(s_{i}\right)=\varphi\left(t_{i}\right)=u$ for all $1 \leq i \leq n-1$. Moreover,

$$
\varphi\left(t_{n}\right)=\varphi\left(t_{n-2} t_{n}\right) \varphi\left(t_{n-2}\right) \varphi\left(t_{n}^{-1} t_{n-2}^{-1}\right)=\varphi\left(t_{n-2} t_{n}\right) \varphi\left(t_{1}\right) \varphi\left(t_{n}^{-1} t_{n-2}^{-1}\right)=\varphi\left(t_{1}\right)=u
$$

hence φ is cyclic.
So, up to conjugating and replacing φ by $\varphi \circ \chi$ if necessary, we can assume that there exists $p \in \mathbb{Z}$ such that $\varphi \circ \iota=\bar{\gamma}_{p}$. This means that $\varphi\left(t_{i}\right)=(\varphi \circ \iota)\left(s_{i}\right)=s_{i} \Delta^{2 p}$ for all $1 \leq i \leq n-1$, where Δ is the Garside element of $A\left[A_{n-1}\right]$. Now we turn to show that $\varphi=\alpha_{p}$.

Set $Y=\left\{s_{1}, \ldots, s_{n-3}\right\}$. By Paris [36, Theorem 5.1] the centralizer of $\left\langle s_{1}, \ldots, s_{n-3}, s_{n-1}\right\rangle$ in $A\left[A_{n-1}\right]$ is generated by $\Delta^{2}, \Delta_{Y}^{2}$ and s_{n-1}, where $\Delta_{Y}=\Delta_{Y}\left[A_{n-1}\right]$. These three elements pairwise commute and generate a copy of \mathbb{Z}^{3}. Set $u=\varphi\left(t_{n}\right)$. Since u commutes with $\varphi\left(t_{i}\right)=s_{i} \Delta^{2 p}$ for all $i \in$ $\{1, \ldots, n-3, n-1\}$ and Δ^{2} in central in $A\left[A_{n-1}\right], u$ belongs to the centralizer of $\left\langle s_{1}, \ldots, s_{n-3}, s_{n-1}\right\rangle$, hence there exist $k_{1}, k_{2}, k_{3} \in \mathbb{Z}$ such that $u=s_{n-1}^{k_{1}} \Delta_{Y}^{2 k_{2}} \Delta^{2 k_{3}}$.

It is well-known that $A\left[A_{n-1}\right]$ is naturally isomorphic to the mapping class group $\mathcal{M}(\mathbb{D}, \mathcal{P})$, where \mathbb{D} denotes the disk and $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of n punctures in the interior of \mathbb{D}. In this identification s_{n-1}^{2} corresponds to the Dehn twist along the circle c_{1} depicted in Figure 4.1, Δ_{Y}^{2} corresponds to the Dehn twist along the circle c_{2} depicted in the same figure, and Δ^{2} corresponds to the Dehn twist along a circle parallel to $\partial \mathbb{D}$. By Proposition 3.3 we have $\mathcal{S}\left(u^{2}\right) \subseteq\left\{c_{1}, c_{2}\right\}$, where $c_{1} \in \mathcal{S}\left(u^{2}\right)$ if and only if $k_{1} \neq 0$ and $c_{2} \in \mathcal{S}\left(u^{2}\right)$ if and only if $k_{2} \neq 0$. We know that $\varphi\left(t_{1}^{2}\right)=s_{1}^{2} \Delta^{4 p}$, hence $\mathcal{S}\left(\varphi\left(t_{1}^{2}\right)\right)$ is formed by a single circle containing two marked points in its interior. Since t_{1}^{2} and t_{n}^{2} are conjugate, $\varphi\left(t_{1}^{2}\right)$ and $\varphi\left(t_{n}^{2}\right)=u^{2}$ are conjugate, hence, by Theorem 3.2, $\mathcal{S}\left(u^{2}\right)$ is also formed by a single circle containing two marked points in its interior. It follows that $\mathcal{S}\left(u^{2}\right)=\left\{c_{1}\right\}$, hence $k_{1} \neq 0$ and $k_{2}=0$. It remains to show that $k_{1}=1$ and $k_{3}=p$.

Figure 4.1: Circles in the punctured disk

From the equality $t_{n-2} t_{n} t_{n-2}=t_{n} t_{n-2} t_{n}$ it follows that $s_{n-2} s_{n-1}^{k_{1}} s_{n-2} \Delta^{4 p+2 k_{3}}=s_{n-1}^{k_{1}} s_{n-2} s_{n-1}^{k_{1}} \Delta^{2 p+4 k_{3}}$, hence $\left(s_{n-2} s_{n-1}^{k_{1}} s_{n-2}\right)\left(s_{n-1}^{k_{1}} s_{n-2} s_{n-1}^{k_{1}}\right)^{-1}=\Delta^{2 k_{3}-2 p}$. We know from Paris [38, Corollary 2.6] that $A_{\left\{s_{n-2}, s_{n-1}\right\}}\left[A_{n-1}\right] \cap\langle\Delta\rangle=\{1\}$, hence $\left(s_{n-2} s_{n-1}^{k_{1}} s_{n-2}\right)\left(s_{n-1}^{k_{1}} s_{n-2} s_{n-1}^{k_{1}}\right)^{-1}=\Delta^{2 k_{3}-2 p}=1$. Let z : $A\left[A_{n-1}\right] \rightarrow \mathbb{Z}$ be the homomorphism which sends s_{i} to 1 for all $1 \leq i \leq n-1$. We have

$$
0=z(1)=z\left(\left(s_{n-2} s_{n-1}^{k_{1}} s_{n-2}\right)\left(s_{n-1}^{k_{1}} s_{n-2} s_{n-1}^{k_{1}}\right)^{-1}\right)=1-k_{1}
$$

hence $k_{1}=1$. Moreover, $\Delta^{2 k_{3}-2 p}=1$ and Δ is of infinite order, thus $k_{3}=p$.

5 Homomorphisms from $A\left[A_{n-1}\right]$ to $A\left[D_{n}\right]$

The formula in the following lemma is a crucial point in various proofs, including that of Lemma 5.4 and that of Theorem 2.8.

Lemma 5.1 Let $n \geq 1$. Then

$$
\Delta\left[A_{n}\right]^{2}=\left(s_{1} \cdots s_{n-1} s_{n}^{2} s_{n-1} \cdots s_{1}\right)\left(s_{2} \cdots s_{n-1} s_{n}^{2} s_{n-1} \cdots s_{2}\right) \cdots\left(s_{n-1} s_{n}^{2} s_{n-1}\right) s_{n}^{2} .
$$

Proof We argue by induction on n. The case $n=1$ is trivial, hence we can assume that $n \geq 2$ and that the induction hypothesis holds. Recall that

$$
\Delta\left[A_{n}\right]=\left(s_{1} \cdots s_{n}\right) \Delta\left[A_{n-1}\right]=\Delta\left[A_{n-1}\right]\left(s_{n} \cdots s_{1}\right) .
$$

Moreover, it is easily checked that $s_{i}\left(s_{n} \cdots s_{1}\right)=\left(s_{n} \cdots s_{1}\right) s_{i+1}$ for all $1 \leq i \leq n-1$. By the induction hypothesis,

$$
\Delta\left[A_{n-1}\right]^{2}=\left(s_{1} \cdots s_{n-2} s_{n-1}^{2} s_{n-2} \cdots s_{1}\right) \cdots\left(s_{n-2} s_{n-1}^{2} s_{n-2}\right) s_{n-1}^{2} .
$$

Hence

$$
\begin{gathered}
\Delta\left[A_{n}\right]^{2}=\left(s_{1} \cdots s_{n}\right) \Delta\left[A_{n-1}\right]^{2}\left(s_{n} \cdots s_{1}\right)= \\
\left(s_{1} \cdots s_{n}\right)\left(\left(s_{1} \cdots s_{n-2} s_{n-1}^{2} s_{n-2} \cdots s_{1}\right) \cdots\left(s_{n-2} s_{n-1}^{2} s_{n-2}\right) s_{n-1}^{2}\right)\left(s_{n} \cdots s_{1}\right)= \\
\left(s_{1} \cdots s_{n}\right)\left(s_{n} \cdots s_{1}\right)\left(\left(s_{2} \cdots s_{n-1} s_{n}^{2} s_{n-1} \cdots s_{2}\right) \cdots\left(s_{n-1} s_{n}^{2} s_{n-1}\right) s_{n}^{2}\right)= \\
\left(s_{1} \cdots s_{n-1} s_{n}^{2} s_{n-1} \cdots s_{1}\right) \cdots\left(s_{n-1} s_{n}^{2} s_{n-1}\right) s_{n}^{2} .
\end{gathered}
$$

Now, Lemmas 5.2 to 5.8 are preliminaries to the proof of Theorem 2.2.
Lemma 5.2 Let $n \geq 6$. Let $\varphi: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$ be a homomorphism. If $\pi \circ \varphi: A\left[A_{n-1}\right] \rightarrow A\left[A_{n-1}\right]$ is cyclic, then φ is cyclic.

Proof Assume $\pi \circ \varphi$ is cyclic. Then there exists $u \in A\left[A_{n-1}\right]$ such that $(\pi \circ \varphi)\left(s_{i}\right)=u$ for all $1 \leq i \leq n-1$. For $3 \leq i \leq n-1$ we set $v_{i}=\varphi\left(s_{i} s_{1}^{-1}\right)$. We have $\pi\left(v_{i}\right)=u u^{-1}=1$, hence $v_{i} \in \operatorname{Ker}(\pi)$. We have

$$
\left(s_{3} s_{1}^{-1}\right)\left(s_{4} s_{1}^{-1}\right)\left(s_{3} s_{1}^{-1}\right)=s_{3} s_{4} s_{3} s_{1}^{-3}=s_{4} s_{3} s_{4} s_{1}^{-3}=\left(s_{4} s_{1}^{-1}\right)\left(s_{3} s_{1}^{-1}\right)\left(s_{4} s_{1}^{-1}\right),
$$

hence $v_{3} v_{4} v_{3}=v_{4} v_{3} v_{4}$. Since $\operatorname{Ker}(\pi)$ is a free group (see Crisp-Paris [21, Proposition 2.3]) and two elements in a free group either freely generate a free group or commute, the existence of such equality implies that $v_{3} v_{4}=v_{4} v_{3}$. It follows that $v_{3} v_{4} v_{3}=v_{3} v_{4}^{2}$, hence $v_{3}=v_{4}$, and therefore

$$
\varphi\left(s_{3}\right) \varphi\left(s_{1}\right)^{-1}=v_{3}=v_{4}=\varphi\left(s_{4}\right) \varphi\left(s_{1}\right)^{-1}
$$

So, $\varphi\left(s_{3}\right)=\varphi\left(s_{4}\right)$. We conclude by Castel [13, Lemma 3.1.1] that φ is cyclic.

Let $n \geq 6$. If n is odd, then Σ_{n} has one boundary component that we denote by ∂, and we denote by T_{∂} the Dehn twist along ∂. If n is even, then Σ_{n} has two boundary components that we denote by ∂_{1} and ∂_{2}, and we denote by $T_{\partial_{1}}$ and $T_{\partial_{2}}$ the Dehn twists along ∂_{1} and ∂_{2}, respectively. It is known that the center of $\mathcal{M}\left(\Sigma_{n}\right)$, denoted by $Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$, is the cyclic group generated by T_{∂} if n is odd, and it is a free abelian group of rank two generated by $T_{\partial_{1}}$ and $T_{\partial_{2}}$ if n is even (see Paris-Rolfsen [39, Theorem 5.6] for example).

Lemma 5.3 Let $n \geq 2$. Let $f \in \mathcal{M}\left(\Sigma_{n}\right)$ such that $f T_{a_{i}}^{2}=T_{a_{i}}^{2} f$ for all $1 \leq i \leq n-1$. Then $f^{2} \in Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$.

Proof Assume n is odd. The case where n is even can be proved in the same way. Let $f \in \mathcal{M}\left(\Sigma_{n}\right)$ such that $f T_{a_{i}}^{2}=T_{a_{i}}^{2} f$ for all $1 \leq i \leq n-1$. Since $f T_{a_{i}}^{2} f^{-1}=T_{a_{i}}^{2}$ we have $f\left(\left[a_{i}\right]\right)=\left[a_{i}\right]$ (see FarbMargalit [28, Section 3.3]). The mapping class f may reverse the orientation of each a_{i} up to isotopy, but f^{2} preserves the orientation of all a_{i} up to isotopy, hence f^{2} can be represented by an element of $\operatorname{Homeo}^{+}\left(\Sigma_{n}\right)$ which is the identity on a (closed) regular neighborhood Σ^{\prime} of $\bigcup_{i=1}^{n-1} a_{i}$. We observe that Σ^{\prime} is a surface of genus $\frac{n-1}{2}$ with one boundary component, ∂^{\prime}, and that $\partial \cup \partial^{\prime}$ bounds a cylinder C. This implies that $f^{2} \in \mathcal{M}(C) \subset \mathcal{M}\left(\Sigma_{n}\right)$. Since $\mathcal{M}(C)=\left\langle T_{\partial}\right\rangle=Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$, we conclude that $f^{2} \in Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$.

Lemma 5.4 Let $n \geq 3$. We set $m=n-1$ if n is odd and $m=n-2$ if n is even. Let $1 \leq k \leq m$. Let c be a generic circle of $\Sigma_{n} \backslash\{x\}$ such that $c \cap d_{i}=\emptyset$ for $1 \leq i \leq k-2,\left|c \cap d_{k-1}\right|=1$ if $k \geq 2$, $c \cap d_{k}=\emptyset$, and c is isotopic to d_{k} in Σ_{n}. Then there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g([c])=\left[d_{k}\right]$.

Proof We identify D_{3} with A_{3} in this proof to treat the cases $k=2$ and $k=1$. We first assume that k is even. If c is isotopic in $\Sigma_{n} \backslash\{x\}$ to d_{k}, then it suffices to take $g=\mathrm{id}$. So, we can assume that c and d_{k} are not isotopic in $\Sigma_{n} \backslash\{x\}$. Since c and d_{k} are isotopic in Σ_{n}, by Epstein [27, Lemma 2.4] there exists a cylinder C in Σ_{n} whose boundary components are d_{k} and c. Since c and d_{k} are not isotopic in $\Sigma_{n} \backslash\{x\}$, this cylinder must contain the puncture x.
Let Σ^{\prime} be a regular neighborhood of $\left(\bigcup_{i=1}^{k-1} d_{i}\right) \cup C$. The surface Σ^{\prime} contains the cylinder C with boundaries c and d_{k}, having the puncture x in it, and d_{k-1} intersects c and d_{k} once. Hence an arc of the curve d_{k-1} connects a point on c with a point on d_{k} within the cylinder C, and it may wind around the cylinder in different ways (see Figure 5.1). However, by applying suitable Dehn twists about c and d_{k}, one can unwind this arc to the simplest case, shown in Figure 5.2. Hence, up to homeomorphism of the surface Σ_{n}, we may assume that the circles d_{1}, \ldots, d_{k}, c are arranged as in Figure 5.2.

Figure 5.1: Intersection of C with d_{k-1}

Figure 5.2: Regular neighborhood of $\left(\bigcup_{i=1}^{k-1} d_{i}\right) \cup C$, case where k is even

By Proposition 3.1 there are homomorphisms $\psi_{1}: A\left[D_{k+1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ and $\psi_{2}: A\left[A_{k}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ defined by

$$
\begin{gathered}
\psi_{1}\left(t_{i}\right)=T_{d_{i}} \text { for } 1 \leq i \leq k, \psi_{1}\left(t_{k+1}\right)=T_{c} \\
\psi_{2}\left(s_{i}\right)=T_{d_{i}} \text { for } 1 \leq i \leq k-1, \psi_{2}\left(s_{k}\right)=T_{c}
\end{gathered}
$$

We denote by $\Delta_{D, k}$ the Garside element of $A\left[D_{k+1}\right]$ and by $\Delta_{A, k}$ the Garside element of $A\left[A_{k}\right]$, and we set $g=\psi_{1}\left(\Delta_{D, k}\right) \psi_{2}\left(\Delta_{A, k}^{-2}\right)$. We have $\Delta_{D, k} t_{i} \Delta_{D, k}^{-1}=t_{i}$ for all $1 \leq i \leq k-1, \Delta_{D, k} t_{k+1} \Delta_{D, k}^{-1}=t_{k}$ and $\Delta_{A, k}^{2} s_{i} \Delta_{A, k}^{-2}=s_{i}$ for all $1 \leq i \leq k$, hence $g T_{d_{i}} g^{-1}=T_{g\left(d_{i}\right)}=T_{d_{i}}$ for all $1 \leq i \leq k-1$ and $g T_{c} g^{-1}=T_{g(c)}=T_{d_{k}}$. It follows that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g([c])=\left[d_{k}\right]$ (see Farb-Margalit [28, Fact 3.6]).

Since c and d_{k} are isotopic in Σ_{n}, the corresponding Dehn twists T_{c} and $T_{d_{k}}$ are equal in $\mathcal{M}\left(\Sigma_{n}\right)$, hence for T_{c} and $T_{d_{k}}$, viewed on the surface $\Sigma_{n} \backslash\{x\}$, we have $\theta\left(T_{c}\right)=\theta\left(T_{d_{k}}\right)$. Moreover,

$$
\begin{gathered}
\Delta_{D, k}=\left(t_{1} \cdots t_{k-1} t_{k} t_{k+1} t_{k-1} \cdots t_{1}\right) \cdots\left(t_{k-1} t_{k} t_{k+1} t_{k-1}\right)\left(t_{k} t_{k+1}\right), \\
\Delta_{A, k}^{2}=\left(s_{1} \cdots s_{k-1} s_{k}^{2} s_{k-1} \cdots s_{1}\right) \cdots\left(s_{k-1} s_{k}^{2} s_{k-1}\right) s_{k}^{2}
\end{gathered}
$$

(see Lemma 5.1 for the second equality), hence $\theta\left(\psi_{1}\left(\Delta_{D, k}\right)\right)=\theta\left(\psi_{2}\left(\Delta_{A, k}^{2}\right)\right.$, and therefore $\theta(g)=1$. So, $g \in \operatorname{Ker}(\theta)$.

Now, assume k is odd. If c is isotopic in $\Sigma_{n} \backslash\{x\}$ to d_{k}, then we can take $g=$ id. So, we can assume that c and d_{k} are not isotopic in $\Sigma_{n} \backslash\{x\}$. Since c and d_{k} are isotopic in Σ_{n}, there exists a cylinder C in Σ_{n} whose boundary components are d_{k} and c. Since c and d_{k} are not isotopic in $\Sigma_{n} \backslash\{x\}$, this cylinder must contain the puncture x. Let Σ^{\prime} be a closed regular neighborhood of $\left(\bigcup_{i=1}^{k-1} d_{i}\right) \cup C$. Then Σ^{\prime} is a surface of genus $\frac{k-1}{2}$ with two boundary components and the circles $d_{1}, \ldots, d_{k-1}, d_{k}, c$ are arranged as shown in Figure 5.3. Since $k \leq m$ and k is odd, $\frac{k-1}{2}$ is strictly less than the genus of
Σ_{n}, hence we can choose a sub-surface $\Sigma^{\prime \prime}$ of Σ_{n} of genus $\frac{k+1}{2}$, with one boundary component, and containing Σ^{\prime}. We can also choose a generic circle e in $\Sigma^{\prime \prime} \backslash\{x\}$ such that $\left|e \cap d_{1}\right|=1,|e \cap c|=1$ if $k=1, e \cap d_{i}=\emptyset$ for all $2 \leq i \leq k$ and $e \cap c=\emptyset$ if $k \geq 2$ (see Figure 5.3). By Proposition 3.1 there are homomorphisms $\psi_{1}: A\left[D_{k+2}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ and $\psi_{2}: A\left[A_{k+1}\right] \rightarrow \mathcal{M}\left(\Sigma_{n}, x\right)$ defined by

$$
\begin{gathered}
\psi_{1}\left(t_{1}\right)=T_{e}, \psi_{1}\left(t_{i}\right)=T_{d_{i-1}} \text { for } 2 \leq i \leq k+1, \psi_{1}\left(t_{k+2}\right)=T_{c}, \\
\psi_{2}\left(s_{1}\right)=T_{e}, \psi_{2}\left(s_{i}\right)=T_{d_{i-1}} \text { for } 2 \leq i \leq k, \psi_{2}\left(s_{k+1}\right)=T_{c} .
\end{gathered}
$$

We denote by $\Delta_{D, k+1}$ the Garside element of $A\left[D_{k+2}\right]$ and by $\Delta_{A, k+1}$ the Garside element of $A\left[A_{k+1}\right]$, and we set $g=\psi_{1}\left(\Delta_{D, k+1}\right) \psi_{2}\left(\Delta_{A, k+1}^{-2}\right)$. Then, as in the case where k is even, we have $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1, g([c])=\left[d_{k}\right]$, and $g \in \operatorname{Ker}(\theta)$.

Figure 5.3: Regular neighborhood of $\left(\bigcup_{i=1}^{k-1} d_{i}\right) \cup C$, case where k is odd
The following lemma is the extension of Lemma 5.4 to the case $c \cap d_{k} \neq \emptyset$.
Lemma 5.5 Let $n \geq 3$. Set $m=n-1$ if n is odd and $m=n-2$ if n is even. Let $1 \leq k \leq m$. Let c be a generic circle of $\Sigma_{n} \backslash\{x\}$ such that $c \cap d_{i}=\emptyset$ for $1 \leq i \leq k-2,\left|c \cap d_{k-1}\right|=1$ if $k \geq 2$, and c is isotopic to d_{k} in Σ_{n}. Then there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g([c])=\left[d_{k}\right]$.

Proof We argue by induction on $i\left([c],\left[d_{k}\right]\right.$, which is computed on the surface $\Sigma_{n} \backslash\{x\}$ and not on Σ_{n}. The case $i\left([c],\left[d_{k}\right]\right)=0$ is proved in Lemma 5.4, hence we can assume that $i\left([c],\left[d_{k}\right]\right) \geq 1$ and that the induction hypothesis holds. Note that now c and d_{k} cannot be isotopic in $\Sigma_{n} \backslash\{x\}$ since $i\left([c],\left[d_{k}\right]\right) \neq 0$. We can assume without loss of generality that $i\left([c],\left[d_{k}\right]\right)=\left|c \cap d_{k}\right|$. Since c and d_{k} are isotopic in Σ_{n}, there exists a bigon D in Σ_{n} cobounded by an arc of d_{k} and an arc of c as shown in Figure 5.4. We can choose this bigon to be minimal in the sense that its interior intersects neither c nor d_{k}. The bigon D cannot intersect d_{i} for $1 \leq i \leq k-2$ and one can easily modify c so that D does not intersect d_{k-1} either. Since c and d_{k} are not isotopic in $\Sigma_{n} \backslash\{x\}, D$ necessarily contains the puncture x in its interior. We choose a circle c^{\prime} parallel to c except in the bigon D where it follows the arc of d_{k} which borders D as illustrated in Figure 5.4. By construction $c^{\prime} \cap d_{i}=\emptyset$ for $1 \leq i \leq k-2,\left|c^{\prime} \cap d_{k-1}\right|=1$ if $k \geq 2$, and c^{\prime} is isotopic to d_{k} in Σ_{n}. Moreover $i\left(\left[c^{\prime}\right],\left[d_{k}\right]\right) \leq\left|c^{\prime} \cap d_{k}\right|<\left|c \cap d_{k}\right|=i\left([c],\left[d_{k}\right]\right)$. By the induction hypothesis there exists $g_{1} \in \operatorname{Ker}(\theta)$ such that $g_{1}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g_{1}\left(\left[c^{\prime}\right]\right)=\left[d_{k}\right]$. By Farb-Margalit [28, Lemma 2.9], we can choose $G_{1} \in \operatorname{Homeo}^{+}\left(\Sigma_{n}, x\right)$ which represents g_{1} such that $G_{1}\left(d_{i}\right)=d_{i}$ for all $1 \leq i \leq k-1$ and $G_{1}\left(c^{\prime}\right)=d_{k}$. We set $c^{\prime \prime}=G_{1}(c)$. Then $c^{\prime \prime} \cap d_{i}=\emptyset$ for $1 \leq i \leq k-2,\left|c^{\prime \prime} \cap d_{k-1}\right|=1$ if $k \geq 2, c^{\prime \prime} \cap d_{k}=\emptyset$, and $c^{\prime \prime}$ is isotopic to d_{k} in Σ_{n}. By Lemma 5.4 there exists $g_{2} \in \operatorname{Ker}(\theta)$ such that $g_{2}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g_{2}\left(\left[c^{\prime \prime}\right]\right)=\left[d_{k}\right]$. We set $g=g_{2} \circ g_{1}$. Then $g \in \operatorname{Ker}(\theta), g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $g([c])=\left[d_{k}\right]$.

Figure 5.4: Bigon cobounded by c and d_{k}

Lemma 5.6 Let n be an even number, $n \geq 4$. Let c be a generic circle of $\Sigma_{n} \backslash\{x\}$ such that $c \cap d_{i}=\emptyset$ for all $1 \leq i \leq n-3,\left|c \cap d_{n-2}\right|=1, c \cap d_{n-1}=\emptyset$, and c is isotopic to d_{n-1} in Σ_{n}. Then we have one of the following two possibilities.
(1) c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.
(2) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g([c])=\left[d_{n}\right]$.

Proof The surface Σ_{n} is a surface of genus $\frac{n-2}{2}$ with two boundary components ∂_{1} and ∂_{2}. We assume that the circles $d_{1}, \ldots, d_{n-1}, d_{n}$ are arranged as in Figure 5.5. Let Ω be the surface obtained by cutting Σ_{n} along $\bigcup_{i=1}^{n-1} d_{i}$. Then Ω has two connected components Ω_{1} and Ω_{2}. Each of these components is a cylinder that we represent by a square with a hole in the middle as shown in Figure 5.6. Two opposite sides of each square represent arcs of d_{n-2}, one side represents an arc of d_{n-1}, and the last side represents a union of arcs of d_{1}, \ldots, d_{n-3}. The boundary of the hole represents ∂_{1} for Ω_{1} and ∂_{2} for Ω_{2}. The puncture x sits inside Ω_{2}. The trace of the circle c in Ω is a simple arc ℓ, either in Ω_{1} or in Ω_{2}.

Figure 5.5: Circles d_{1}, \ldots, d_{n}

Figure 5.6: The surface Ω

Suppose ℓ is in Ω_{1}. Let q be the intersection point of c with d_{n-2}. Then q is represented in Ω_{1} by two
points q_{1} and q_{2} on two opposite sides of Ω_{1} as shown in Figure 5.6 , and ℓ is a simple arc connecting q_{1} with q_{2}. Up to isotopy pointwise fixing the boundary of Ω_{1}, there exist exactly two simple arcs in Ω_{1} connecting q_{1} to q_{2} that are represented by the arcs ℓ_{1} and ℓ_{2} depicted in Figure 5.6. The arc ℓ cannot be isotopic to ℓ_{1}, otherwise c would not be isotopic to d_{n-1} in Σ_{n}. So, ℓ is isotopic to ℓ_{2} in Ω_{1} which implies that c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.

Now suppose ℓ is in Ω_{2}. Let q be the intersection point of c with d_{n-2}. Then q is represented in Ω_{2} by two points q_{3} and q_{4} on two opposite sides of Ω_{2} as shown in Figure 5.6, and ℓ is a simple arc connecting q_{3} with q_{4}. Up to isotopy (in Ω_{2} and not in $\Omega_{2} \backslash\{x\}$) pointwise fixing the boundary of Ω_{2}, there exist exactly two simple arcs in Ω_{2} connecting q_{3} to q_{4} that are represented by the arcs ℓ_{3} and ℓ_{4} depicted in Figure 5.6. The arc ℓ cannot be isotopic to ℓ_{3} in Ω_{2}, otherwise c would not be isotopic to d_{n-1} in Σ_{n}. So, ℓ is isotopic to ℓ_{4} in Ω_{2}. Let $\left\{F_{t}: \Omega_{2} \rightarrow \Omega_{2}\right\}_{t \in[0,1]}$ be an isotopy such that $F_{0}=\mathrm{id}$, $F_{1}(\ell)=\ell_{4}$ and F_{t} is the identity on the boundary of Ω_{2} for all $t \in[0,1]$. The arc ℓ_{4} divides Ω_{2} into two parts, the lower one which does not contain the hole bordered by ∂_{2} and the puncture x, and the upper one which contains the hole bordered by ∂_{2} and the puncture x, as shown in Figure 5.6.

Suppose $F_{1}(x)$ is in the upper part. Let C be the domain of Ω_{2} bounded by ℓ_{4}, two arcs of d_{n-2} and an arc of d_{n-1} as shown in Figure 5.6. Let $C^{\prime}=F_{1}^{-1}(C)$. Then C^{\prime} is a domain of Ω_{2} bounded by ℓ, two arcs of d_{n-2} and an arc of d_{n-1} and C^{\prime} does not contain the puncture x. The existence of such a domain implies that c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.

Now, suppose $F_{1}(x)$ is in the lower part. We can assume without loss of generality that the trace of d_{n} on Ω_{2} is the simple arc ℓ_{5} drawn in Figure 5.7. We can choose an isotopy $\left\{F_{t}^{\prime}: \Omega_{2} \rightarrow \Omega_{2}\right\}_{t \in[0,1]}$ such that $F_{0}^{\prime}=\mathrm{id}, F_{1}^{\prime}\left(\ell_{4}\right)=\ell_{5}, F_{t}^{\prime}$ is the identity on the boundary of Ω_{2} for all $t \in[0,1]$, and $F_{1}^{\prime}\left(F_{1}(x)\right)=x$. Let $\tilde{F}: \Sigma_{n} \rightarrow \Sigma_{n}$ be the homeomorphism which is $F_{1}^{\prime} \circ F_{1}$ on Ω_{2} and is the identity outside Ω_{2}, and let $g \in \mathcal{M}\left(\Sigma_{n}, x\right)$ be the mapping class represented by \tilde{F}. Then $g \in \operatorname{Ker}(\theta), g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$, and $g([c])=\left[d_{n}\right]$.

Figure 5.7: The arc ℓ_{5}

Remark The element g at the end of the proof of Lemma 5.6 is not necessarily trivial. For example, ℓ can be as shown in Figure 5.8 up to isotopy and, in this case, g must be non-trivial. In fact, g can be any element of the fundamental group $\pi_{1}\left(\Omega_{2}, x\right)$, which is an infinite cyclic group, seen as a subgroup of $\mathcal{M}\left(\Sigma_{n}, x\right)$.

The following lemma is the extension of Lemma 5.6 to the case $c \cap d_{k} \neq \emptyset$.

Figure 5.8: An arc ℓ non-isotopic to ℓ_{5}

Lemma 5.7 Let n be an even number, $n \geq 4$. Let c be a generic circle of $\Sigma_{n} \backslash\{x\}$ such that $c \cap d_{i}=\emptyset$ for all $1 \leq i \leq n-3,\left|c \cap d_{n-2}\right|=1$, and c is isotopic to d_{n-1} in Σ_{n}. Then there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g([c])=\left[d_{n-1}\right]$ or $g([c])=\left[d_{n}\right]$.

Proof In this proof the intersection number of two circles is computed on the surface $\Sigma_{n} \backslash\{x\}$ and not on Σ_{n}. We can assume that $\left|c \cap d_{n-1}\right|=i\left([c],\left[d_{n-1}\right]\right)$ and $\left|c \cap d_{n}\right|=i\left([c],\left[d_{n}\right]\right)$. We argue by induction on $\left|c \cap d_{n-1}\right|+\left|c \cap d_{n}\right|=i\left([c],\left[d_{n-1}\right]\right)+i\left([c],\left[d_{n}\right]\right)$. The case $\left|c \cap d_{n-1}\right|=0$ follows directly from Lemma 5.6, and the case $\left|c \cap d_{n}\right|=0$ is proved in the same way by replacing d_{n-1} with d_{n}. So we can assume that $i\left([c],\left[d_{n-1}\right]\right)=\left|c \cap d_{n-1}\right| \geq 1, i\left([c],\left[d_{n}\right]\right)=\left|c \cap d_{n}\right| \geq 1$, and that the induction hypothesis holds. Note that now c and d_{n-1} cannot be isotopic in $\Sigma_{n} \backslash\{x\}$. Since c and d_{n-1} are isotopic in Σ_{n}, there exists a bigon D in Σ_{n} cobounded by an arc of d_{n-1} and an arc of c (see Figure 5.9). Since c and d_{n-1} are not isotopic in $\Sigma_{n} \backslash\{x\}$, this bigon necessarily contains the puncture x. We can choose D to be minimal in the sense that its interior does not intersect c and d_{n-1}. Moreover, up to exchanging the roles of d_{n-1} and d_{n} if necessary, we can also assume that d_{n} does not intersect the interior of D. Clearly, D does not intersect d_{i} for any $1 \leq i \leq n-3$ and, up to replacing c with an isotopic circle, we can assume that D does not intersect d_{n-2} either. Let c^{\prime} be a circle parallel to c except in the bigon D where it follows the arc of d_{n-1} which borders D as illustrated in Figure 5.9. We have $c^{\prime} \cap d_{i}=\emptyset$ for all $1 \leq i \leq n-3,\left|c^{\prime} \cap d_{n-2}\right|=1$ and c^{\prime} is isotopic to d_{n-1} in Σ_{n}. We also have $i\left(\left[c^{\prime}\right],\left[d_{n-1}\right]\right)<i\left([c],\left[d_{n-1}\right]\right)$ and $i\left(\left[c^{\prime}\right],\left[d_{n}\right]\right) \leq i\left([c],\left[d_{n}\right]\right)$, hence by the induction hypothesis there exists $g_{1} \in \operatorname{Ker}(\theta)$ such that $g_{1}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g_{1}\left(\left[c^{\prime}\right]\right)=\left[d_{n-1}\right]$ or $g_{1}\left(\left[c^{\prime}\right]\right)=\left[d_{n}\right]$. Without loss of generality we can assume that $g_{1}\left(\left[c^{\prime}\right]\right)=\left[d_{n-1}\right]$. We choose $G_{1} \in \operatorname{Homeo}^{+}\left(\Sigma_{n}, x\right)$ which represents g_{1} such that $G_{1}\left(d_{i}\right)=d_{i}$ for all $1 \leq i \leq n-2$ and $G_{1}\left(c^{\prime}\right)=d_{n-1}$. We set $c^{\prime \prime}=G_{1}(c)$. Then $c^{\prime \prime} \cap d_{i}=\emptyset$ for all $1 \leq i \leq n-3,\left|c^{\prime \prime} \cap d_{n-2}\right|=1$, $c^{\prime \prime} \cap d_{n-1}=\emptyset$, and $c^{\prime \prime}$ is isotopic to d_{n-1} in Σ_{n}. By Lemma 5.6 there exists $g_{2} \in \operatorname{Ker}(\theta)$ such that $g_{2}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g_{2}\left(\left[c^{\prime \prime}\right]\right)=\left[d_{n-1}\right]$ or $g_{2}\left(\left[c^{\prime \prime}\right]\right)=\left[d_{n}\right]$. We set $g=g_{2} \circ g_{1}$. Then $g \in \operatorname{Ker}(\theta), g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g([c])=\left[d_{n-1}\right]$ or $g([c])=\left[d_{n}\right]$.

Lemma 5.8 Let $n \geq 6$. Let c_{1}, \ldots, c_{n-1} be generic circles in $\Sigma_{n} \backslash\{x\}$ such that
(a) $\left|c_{i} \cap c_{j}\right|=1$ if $|i-j|=1$ and $\left|c_{i} \cap c_{j}\right|=0$ if $|i-j| \geq 2$, for all $1 \leq i, j \leq n-1$,
(b) c_{i} is isotopic to d_{i} in Σ_{n} for all $1 \leq i \leq n-1$.

Then:

Figure 5.9: Bigon cobounded by c and d_{n-1}
(1) If n is odd, then there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$.
(2) If n is even, then there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g\left(\left[c_{n-1}\right]\right)=\left[d_{n-1}\right]$ or $g\left(\left[c_{n-1}\right]\right)=\left[d_{n}\right]$.

Proof For $1 \leq k \leq n-2$ we construct by induction on k an element $g_{k} \in \operatorname{Ker}(\theta)$ such that $g_{k}\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k$. Assume $k=1$. Then, by Lemma 5.5 applied to $k=1$, there exists $g_{1} \in \operatorname{Ker}(\theta)$ such that $g_{1}\left(\left[c_{1}\right]\right)=\left[d_{1}\right]$. Suppose $2 \leq k \leq n-1$ and g_{k-1} is constructed. We choose $G_{k-1} \in \operatorname{Homeo}^{+}\left(\Sigma_{n}, x\right)$ which represents g_{k-1} and such that $G_{k-1}\left(c_{i}\right)=d_{i}$ for all $1 \leq i \leq k-1$, and we set $c_{k}^{\prime}=G_{k-1}\left(c_{k}\right)$. Note that, since $g_{k-1} \in \operatorname{Ker}(\theta)$, the circle c_{k}^{\prime} is isotopic to c_{k} in Σ_{n}. Then, by Lemma 5.5, there exists $h_{k} \in \operatorname{Ker}(\theta)$ such that $h_{k}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k-1$ and $h_{k}\left(\left[c_{k}^{\prime}\right]\right)=\left[d_{k}\right]$. We set $g_{k}=h_{k} \circ g_{k-1}$. Then $g_{k}\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq k$. Note that when n is odd we can extend the induction to $k=n-1$ and conclude the proof here by setting $g=g_{n-1}$. The case where n is even requires an extra argument.

Assume n is even. We choose $G_{n-2} \in \operatorname{Homeo}^{+}\left(\Sigma_{n}, x\right)$ which represents g_{n-2} and such that $G_{n-2}\left(c_{i}\right)=$ d_{i} for all $1 \leq i \leq n-2$, and we set $c_{n-1}^{\prime}=G_{n-2}\left(c_{n-1}\right)$. Again, since $g_{n-2} \in \operatorname{Ker}(\theta)$, the circle c_{n-1}^{\prime} is isotopic to c_{n-1} in Σ_{n}. By Lemma 5.7 there exists $h_{n-1} \in \operatorname{Ker}(\theta)$ such that $h_{n-1}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $h_{n-1}\left(\left[c_{n-1}^{\prime}\right]\right)=\left[d_{n-1}\right]$ or $h_{n-1}\left(\left[c_{n-1}^{\prime}\right]\right)=\left[d_{n}\right]$. We set $g=h_{n-1} \circ g_{n-2}$. Then $g\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2$, and either $g\left(\left[c_{n-1}\right]\right)=\left[d_{n-1}\right]$ or $g\left(\left[c_{n-1}\right]\right)=\left[d_{n}\right]$.

Proof of Theorem 2.2 Let $n \geq 6$ and let $\varphi: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right]$ be a homomorphism. Composing φ with π, we get a homomorphism $\pi \circ \varphi: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right] \rightarrow A\left[A_{n-1}\right]$. We know by Theorem 3.5 that we have one of the following possibilities.

- $\pi \circ \varphi$ is cyclic.
- There exist $\psi \in\langle\bar{\chi}\rangle$ and $p \in \mathbb{Z}$ such that $\pi \circ \varphi$ is conjugate to $\psi \circ \bar{\gamma}_{p}$.

By Lemma 5.2, if $\pi \circ \varphi$ is cyclic, then φ is cyclic. So, we can assume that there exists $\psi \in\langle\bar{\chi}\rangle$ and $p \in \mathbb{Z}$ such that $\pi \circ \varphi$ is conjugate to $\psi \circ \bar{\gamma}_{p}$. Up to conjugating and composing φ on the left by χ if necessary, we can assume that $\pi \circ \varphi=\bar{\gamma}_{p}$, that is, $(\pi \circ \varphi)\left(s_{i}\right)=s_{i} \Delta_{A}^{2 p}$, where Δ_{A} denotes the Garside element of $A\left[A_{n-1}\right]$.

Set $U=\rho_{A}\left(\Delta_{A}^{2}\right)$. If n is odd, then $U^{2}=T_{\partial}$, where ∂ is the boundary component of Σ_{n}, and if n is even, then $U=T_{\partial_{1}} T_{\partial_{2}}$, where ∂_{1} and ∂_{2} are the two boundary components of Σ_{n} (see Labruère-Paris [32, Proposition 2.12]). In particular $U^{2} \in Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$ in both cases.

By Theorem 3.7 we know that there exist generic circles c_{1}, \ldots, c_{n-1} in $\Sigma_{n} \backslash\{x\}, \varepsilon \in\{ \pm 1\}$ and $f_{0} \in \mathcal{M}\left(\Sigma_{n}, x\right)$ such that
(a) $\left|c_{i} \cap c_{j}\right|=1$ if $|i-j|=1$ and $\left|c_{i} \cap c_{j}\right|=0$ if $|i-j| \geq 2$, for all $1 \leq i, j \leq n-1$,
(b) f_{0} commutes with $T_{c_{i}}$ for all $1 \leq i \leq n-1$,
(c) $\left(\rho_{D} \circ \varphi\right)\left(s_{i}\right)=T_{c_{i}}^{\varepsilon} f_{0}$ for all $1 \leq i \leq n-1$.

For $1 \leq i \leq n-1$ we denote by b_{i} the circle in Σ_{n} obtained by composing $c_{i}: \mathbb{S}^{1} \rightarrow \Sigma_{n} \backslash\{x\}$ with the embedding $\Sigma_{n} \backslash\{x\} \hookrightarrow \Sigma_{n}$. In addition we set $g_{0}=\theta\left(f_{0}\right)$. Then $\left(\theta \circ \rho_{D} \circ \varphi\right)\left(s_{i}\right)=T_{b_{i}}^{\varepsilon} g_{0}$ for all $1 \leq i \leq n-1$. Note that, since $\theta \circ \rho_{D}=\rho_{A} \circ \pi$ (see Diagram 3-1), we also have $\left(\theta \circ \rho_{D} \circ \varphi\right)\left(s_{i}\right)=$ $\left(\rho_{A} \circ \bar{\gamma}_{p}\right)\left(s_{i}\right)=\rho_{A}\left(s_{i} \Delta_{A}^{2 p}\right)=T_{a_{i}} U^{p}$ for all $1 \leq i \leq n-1$, where the a_{i} 's are the circles depicted in Figure 3.1.

Claim. We have $\varepsilon=1, g_{0}=U^{p}$ and b_{i} is isotopic to a_{i} in Σ_{n} for all $1 \leq i \leq n-1$.
Proof of the claim. Note that $g_{0}=\theta\left(f_{0}\right)$ commutes with $T_{b_{i}}=\theta\left(T_{c_{i}}\right)$ and $U=\rho_{A}\left(\Delta_{A}^{2}\right)$ commutes with $T_{a_{i}}=\rho_{A}\left(s_{i}\right)$, hence $T_{b_{i}}^{2 \varepsilon} g_{0}^{2}=\left(T_{b_{i}}^{\varepsilon} g_{0}\right)^{2}=\left(T_{a_{i}} U^{p}\right)^{2}=T_{a_{i}}^{2} U^{2 p}$. Since g_{0}^{2} commutes with $T_{b_{i}}^{2 \varepsilon} g_{0}^{2}=T_{a_{i}}^{2} U^{2 p}$ and $U^{2} \in Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$, g_{0}^{2} commutes with $T_{a_{i}}^{2}$ for all $1 \leq i \leq n-1$. By Lemma 5.3 it follows that $g_{0}^{4} \in Z\left(\mathcal{M}\left(\Sigma_{n}\right)\right)$. By Proposition 3.3 applied to $\mathcal{M}\left(\Sigma_{n}\right)$ we deduce that $\mathcal{S}\left(T_{a_{i}}^{4} U^{4 p}\right)=\mathcal{S}\left(T_{b_{i}}^{4 \varepsilon} g_{0}^{4}\right)=$ $\left\{\left[a_{i}\right]\right\}=\left\{\left[b_{i}\right]\right\}$, hence $\left[a_{i}\right]=\left[b_{i}\right]$ for all $1 \leq i \leq n-1$. Then $T_{a_{i}}^{4-4 \varepsilon}=U^{-4 p} g_{0}^{4}$, hence, by Proposition $3.3,4-4 \varepsilon=0$, and therefore $\varepsilon=1$. Finally, from the equality $T_{a_{i}} U^{p}=T_{a_{i}} g_{0}$ it follows that $g_{0}=U^{p}$. This finishes the proof of the claim.

From the claim it follows that c_{i} is isotopic to d_{i} in Σ_{n} hence, by Lemma 5.8, there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[c_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g\left(\left[c_{n-1}\right]\right)=\left[d_{n-1}\right]$ if n is odd, and either $g\left(\left[c_{n-1}\right]\right)=\left[d_{n-1}\right]$ or $g\left(\left[c_{n-1}\right]\right)=\left[d_{n}\right]$ if n is even. These equalities imply that $g T_{c_{i}} g^{-1}=T_{d_{i}}$ for $1 \leq i \leq n-2$, $g T_{c_{n-1}} g^{-1}=T_{d_{n-1}}$ if n is odd, and either $g T_{c_{n-1}} g^{-1}=T_{d_{n-1}}$ or $g T_{c_{n-1}} g^{-1}=T_{d_{n}}$ if n is even. By Theorem 3.6 (1) there exists $v \in \operatorname{Ker}(\pi)$ such that $\rho_{D}(v)=g$. So, up to composing φ on the left by ad_{v} first, and composing on the left by ζ if necessary after, we can assume that $\left(\rho_{D} \circ \varphi\right)\left(s_{i}\right)=T_{d_{i}} f_{0}$ for all $1 \leq i \leq n-1$, where f_{0} commutes with $T_{d_{i}}$ for all $1 \leq i \leq n-1$. Since $T_{d_{1}}=\rho_{D}\left(t_{1}\right) \in \operatorname{Im}\left(\rho_{D}\right)$, we have $f_{0} \in \operatorname{Im}\left(\rho_{D}\right)$, hence there exists $u_{0} \in A\left[D_{n}\right]$ such that $\rho_{D}\left(u_{0}\right)=f_{0}$. Since ρ_{D} is injective (see Theorem 3.6), we deduce that $\varphi\left(s_{i}\right)=t_{i} u_{0}$ for all $1 \leq i \leq n-1$ and u_{0} commutes with t_{i} for all $1 \leq i \leq n-1$. We set $Y=\left\{t_{1}, \ldots, t_{n-1}\right\}, \Delta_{Y}=\Delta_{Y}\left[D_{n}\right], \Delta_{D}=\Delta\left[D_{n}\right], \kappa=2$ if n is odd, and $\kappa=1$ if n is even. By Paris [37, Theorem 1.1] the centralizer of Y in $A\left[D_{n}\right]$ is generated by Δ_{Y}^{2} and Δ_{D}^{κ}, hence there exists $q, r \in \mathbb{Z}$ such that $u_{0}=\Delta_{Y}^{2 q} \Delta_{D}^{\kappa r}$. We conclude that $\varphi=\beta_{q, r}$.

6 Endomorphisms of $A\left[D_{n}\right]$

The following lemma is a counterpart of Lemma 5.8 for the case of odd n, and it is a preliminary to the proof of Theorem 2.3.

Lemma 6.1 Let n be an odd number, $n \geq 5$. Let c be a generic circle of $\Sigma_{n} \backslash\{x\}$ such that $c \cap d_{i}=\emptyset$ for $1 \leq i \leq n-3,\left|c \cap d_{n-2}\right|=1, c \cap d_{n-1}=\emptyset$, and c is isotopic to d_{n-1} in Σ_{n}. Then we have one of the following three possibilities.
(1) c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.
(2) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g([c])=\left[d_{n}\right]$.
(3) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g\left(\left[d_{n-1}\right]\right)=\left[d_{n}\right]$ and $g([c])=\left[d_{n-1}\right]$.

Proof The surface Σ_{n} is a surface of genus $\frac{n-1}{2}$ with one boundary component, ∂. We assume that the circles $d_{1}, \ldots, d_{n-1}, d_{n}$ are arranged as shown in Figure 6.1. The circles d_{n-3} and d_{n-1} divide d_{n-2} into two arcs, e_{1} and e_{2}, where the arc e_{1} intersects d_{n} and the arc e_{2} does not intersect d_{n} (see Figure 6.1). Let Ω be the surface obtained by cutting Σ_{n} along $\bigcup_{i=1}^{n-1} d_{i}$. Then Ω is a cylinder represented by an octagon with a hole in the middle (see Figure 6.2). Two opposite sides of this octagon represent arcs of d_{n-1} and two opposite sides represent arcs of d_{1}, \ldots, d_{n-3}, as shown in the figure. Two other sides represent arcs of e_{1} and the last two sides represent arcs of e_{2}, arranged as shown in Figure 6.2. The boundary of the hole represents ∂.

Figure 6.1: The circles d_{1}, \ldots, d_{n}

Figure 6.2: The surface Ω

The circle c intersects d_{n-2} in a point q, and q is either on the arc e_{1} or on the arc e_{2}. Suppose first that q is on the arc e_{1}. Then q is represented on Ω by two points q_{1} and q_{2} lying on two different sides of Ω that represent e_{1}, and the trace of c in Ω is a simple arc ℓ connecting q_{1} to q_{2}. Up to isotopy (in Ω and not in $\Omega \backslash\{x\}$) pointwise fixing the boundary of Ω, there are exactly two simple arcs in Ω connecting q_{1} to q_{2} represented by the arcs ℓ_{1} and ℓ_{2} depicted in Figure 6.2. The arc ℓ cannot be isotopic to ℓ_{2}, otherwise c would not be isotopic to d_{n-1} in Σ_{n}. So, ℓ is isotopic to ℓ_{1} in Ω. Let $\left\{F_{t}: \Omega \rightarrow \Omega\right\}_{t \in[0,1]}$ be an isotopy such that $F_{0}=\mathrm{id}, F_{1}(\ell)=\ell_{1}$ and F_{t} is the identity on the boundary of Ω for all $t \in[0,1]$. The arc ℓ_{1} divides Ω into two parts, the lower one which does not contain the hole bounded by ∂ and the puncture x, and the upper one which contains the hole bounded by ∂ and the puncture x, as shown in Figure 6.2.
Suppose $F_{1}(x)$ is in the upper part. Let C be the domain of Ω bounded by ℓ_{1}, two arcs of e_{1} and an arc of d_{n-1} as shown in Figure 6.2. Let $C^{\prime}=F_{1}^{-1}(C)$. Then C^{\prime} is a domain of Ω bounded by ℓ, two arcs of e_{1} and an arc of d_{n-1} which does not contain the puncture x. The existence of such a domain implies that c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.

Suppose $F_{1}(x)$ is in the lower part. We can suppose that the trace of d_{n} on Ω is the arc ℓ_{3} depicted in Figure 6.2. We can choose an isotopy $\left\{F_{t}^{\prime}: \Omega \rightarrow \Omega\right\}_{t \in[0,1]}$ such that $F_{0}^{\prime}=$ id, $F_{1}^{\prime}\left(\ell_{1}\right)=\ell_{3}, F_{t}^{\prime}$ is the identity on the boundary of Ω for all $t \in[0,1]$, and $F_{1}^{\prime}\left(F_{1}(x)\right)=x$. Let $\tilde{F}: \Sigma_{n} \rightarrow \Sigma_{n}$ be the homeomorphism which is $F_{1}^{\prime} \circ F_{1}$ on Ω and is the identity outside Ω, and let $g \in \mathcal{M}\left(\Sigma_{n}, x\right)$ be the mapping class represented by \tilde{F}. Then $g \in \operatorname{Ker}(\theta), g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$, and $g([c])=\left[d_{n}\right]$.

Suppose now that q is on the arc e_{2}. Then q is represented on Ω by two points q_{3} and q_{4} lying on two different sides of Ω which represent e_{2}, and the trace of c in Ω is a simple arc ℓ connecting q_{3} to q_{4}. Up to isotopy (in Ω and not in $\Omega \backslash\{x\}$) pointwise fixing the boundary of Ω, there are exactly two simple arcs in Ω connecting q_{3} to q_{4} represented by the arcs ℓ_{4} and ℓ_{5} depicted in Figure 6.2. The arc ℓ cannot be isotopic to ℓ_{5}, otherwise c would not be isotopic to d_{n-1} in Σ_{n}. So, ℓ is isotopic to ℓ_{4} in Ω. Let $\left\{F_{t}: \Omega \rightarrow \Omega\right\}_{t \in[0,1]}$ be an isotopy such that $F_{0}=\mathrm{id}, F_{1}(\ell)=\ell_{4}$ and F_{t} is the identity on the boundary of Ω for all $t \in[0,1]$. The arc ℓ_{4} divides Ω into two parts, the upper one which does not contain the hole bounded by ∂ and the puncture x, and the lower one which contains the hole bounded by ∂ and the puncture x, as shown in Figure 6.2.

Suppose $F_{1}(x)$ is in the lower part. Let D be the domain of Ω bounded by ℓ_{4}, two arcs of e_{2} and an arc of d_{n-1} as shown in Figure 6.2. Let $D^{\prime}=F_{1}^{-1}(D)$. Then D^{\prime} is a domain of Ω bounded by ℓ, two arcs of e_{2} and an arc of d_{n-1} which does not contain the puncture x. The existence of such a domain implies that c is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.

Suppose $F_{1}(x)$ is in the upper part. Let c^{\prime} be the circle drawn in Figure 6.3. We can assume that the trace of c^{\prime} on Ω is the arc ℓ_{6} drawn in Figure 6.2. We can choose an isotopy $\left\{F_{t}^{\prime}: \Omega \rightarrow \Omega\right\}_{t \in[0,1]}$ such that $F_{0}^{\prime}=\mathrm{id}, F_{1}^{\prime}\left(\ell_{4}\right)=\ell_{6}, F_{t}^{\prime}$ is the identity on the boundary of Ω for all $t \in[0,1]$, and $F_{1}^{\prime}\left(F_{1}(x)\right)=x$. Let $\tilde{F}: \Sigma_{n} \rightarrow \Sigma_{n}$ be the homeomorphism which is $F_{1}^{\prime} \circ F_{1}$ on Ω and is the identity outside Ω, and let $g_{1} \in \mathcal{M}\left(\Sigma_{n}, x\right)$ be the mapping class represented by \tilde{F}. Then $g_{1} \in \operatorname{Ker}(\theta), g_{1}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$, and $g_{1}([c])=\left[c^{\prime}\right]$.

Figure 6.3: The circle c^{\prime} and the loop μ

Let $g_{2} \in \pi_{1}\left(\Sigma_{n}, x\right)=\operatorname{Ker}(\theta)$ be the element represented by the loop μ drawn in Figure 6.3. Let us mention here that g_{2} is not the Dehn twist T_{μ} along μ, but rather the image of the point-pushing map applied to μ, which is equal to $T_{\mu_{1}} T_{\mu_{2}}^{-1}$ for μ_{1} and μ_{2} the two boundary curves of a small regular neighborhood of μ, as explained in Farb-Margalit [28, Section 4.2.2]. We have $g_{2}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g_{2}\left(\left[d_{n-1}\right]\right)=\left[d_{n}\right]$ and $g_{2}\left(\left[c^{\prime}\right]\right)=\left[d_{n-1}\right]$. Set $g=g_{2} \circ g_{1}$. Then $g \in \operatorname{Ker}(\theta)$, $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g\left(\left[d_{n-1}\right]\right)=\left[d_{n}\right]$ and $g([c])=\left[d_{n-1}\right]$.

Proof of Theorem 2.3 Let $n \geq 6$. Let $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ be an endomorphism. Consider the
composition homomorphism $\varphi \circ \iota: A\left[A_{n-1}\right] \rightarrow A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$. We know from Theorem 2.2 that we have one of the following two possibilities up to conjugation.
(1) $\varphi \circ \iota$ is cyclic.
(2) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi \circ \iota=\psi \circ \beta_{p, q}$.

Suppose $\varphi \circ \iota$ is cyclic. Then there exists $u \in A\left[D_{n}\right]$ such that $\varphi\left(t_{i}\right)=(\varphi \circ \iota)\left(s_{i}\right)=u$ for all $1 \leq i \leq n-1$. We also have

$$
\begin{gathered}
\varphi\left(t_{n}\right)=\varphi\left(t_{n-2} t_{n} t_{n-2} t_{n}^{-1} t_{n-2}^{-1}\right)=\varphi\left(t_{n-2} t_{n}\right) \varphi\left(t_{n-2}\right) \varphi\left(t_{n}^{-1} t_{n-2}^{-1}\right)= \\
\varphi\left(t_{n-2} t_{n}\right) \varphi\left(t_{1}\right) \varphi\left(t_{n}^{-1} t_{n-2}^{-1}\right)=\varphi\left(t_{1}\right)=u,
\end{gathered}
$$

hence φ is cyclic.
So, we can assume that there exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi \circ \iota$ is conjugate to $\psi \circ \beta_{p, q}$. We set $Y=\left\{t_{1}, \ldots, t_{n-2}, t_{n-1}\right\}, \Delta_{Y}=\Delta_{Y}\left[D_{n}\right], \Delta_{D}=\Delta\left[D_{n}\right], \kappa=2$ if n is odd, and $\kappa=1$ if n is even. Up to conjugating and composing φ on the left by ζ if necessary, we can assume that there exist $\varepsilon \in\{ \pm 1\}$ and $p, q \in \mathbb{Z}$ such that $\varphi\left(t_{i}\right)=(\varphi \circ \iota)\left(s_{i}\right)=t_{i}^{\varepsilon} \Delta_{Y}^{2 p} \Delta_{D}^{\kappa q}$ for all $1 \leq i \leq n-1$. The remainder of the proof is divided into four cases depending on whether p is zero or not and whether n is even or odd.

Case 1: n is even and $p \neq 0$. Then Σ_{n} is a surface of genus $\frac{n-2}{2}$ with two boundary components, ∂_{1} and ∂_{2}, and $\kappa=1$. We have $\rho_{D}\left(t_{i}\right)=T_{d_{i}}$ for $1 \leq i \leq n-1$ and, by Labruère-Paris [32, Proposition 2.12], $\rho_{D}\left(\Delta_{Y}^{2}\right)=T_{e} T_{\partial_{1}}$ and $\rho_{D}\left(\Delta_{D}\right)=T_{\partial_{1}} T_{\partial_{2}}$, where e is the circle drawn in Figure 6.4. Set $f_{i}=\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)$ for all $1 \leq i \leq n$. Then, by the above,

$$
f_{i}=T_{d_{i}}^{\varepsilon} T_{e}^{p} T_{\partial_{1}}^{p+q} T_{\partial_{2}}^{q} \quad \text { for all } 1 \leq i \leq n-1
$$

In particular, $\mathcal{S}\left(f_{i}\right)=\left\{\left[d_{i}\right],[e]\right\}$ for all $1 \leq i \leq n-1$. Since t_{n} is conjugate in $A\left[D_{n}\right]$ to t_{1}, f_{n} is conjugate to f_{1} in $\mathcal{M}\left(\Sigma_{n}, x\right)$, hence f_{n} is of the form $f_{n}=T_{d^{\prime}}^{\varepsilon} T_{e^{\prime}}^{p} T_{\partial_{1}}^{p+q} T_{\partial_{2}}^{q}$, where d^{\prime} is a non-separating circle and e^{\prime} is a circle that separates Σ_{n} into two components, one being a cylinder containing x and the other being a surface of genus $\frac{n-2}{2}$ with two boundary components, ∂_{1} and e^{\prime}, which does not contain x. Moreover, by Theorem 2.1, $(\pi \circ \varphi)\left(t_{n-1}\right)=(\pi \circ \varphi)\left(t_{n}\right)$, hence

$$
T_{d_{n-1}}^{\varepsilon} T_{e}^{p} T_{\partial_{1}}^{p+q} T_{\partial_{2}}^{q}=\theta\left(f_{n-1}\right)=\theta\left(f_{n}\right)=T_{d^{\prime}}^{\varepsilon} T_{e^{\prime}}^{p} T_{\partial_{1}}^{p+q} T_{\partial_{2}}^{q}
$$

on Σ_{n}, that is, $T_{d_{n-1}}^{\varepsilon} T_{e}^{p}=T_{d^{\prime}}^{\varepsilon} T_{e^{\prime}}^{p}$ as multitwists on Σ_{n}. Now we can invoke Farb-Margalit [28, Lemma 3.14] to conclude that each curve of the set $\left\{d_{n-1}, e\right\}$ is isotopic to a curve from the set $\left\{d^{\prime}, e^{\prime}\right\}$ in Σ_{n}. To decide which curve of one set is isotopic to which curve in the other set we observe that removing a puncture does not change the property of a curve being non-separating, but can make a separating curve peripheral. Since both d_{n-1} and d^{\prime} are non-separating, whereas e and e^{\prime} are both separating or peripheral in Σ_{n}, we conclude that d_{n-1} is isotopic to d^{\prime} in Σ_{n} (and also that e is isotopic to e^{\prime} in Σ_{n}).

We have $f_{1} f_{n}=f_{n} f_{1}$, hence by Theorem $3.2(3)$ we have $f_{n}\left(\mathcal{S}\left(f_{1}\right)\right)=\mathcal{S}\left(f_{1}\right)$, thus [e] is a reduction class for f_{n}, and therefore $i\left([e],\left[e^{\prime}\right]\right)=0$, because $\left[e^{\prime}\right]$ is an essential reduction class for f_{n}. We can choose representatives e and e^{\prime} such that $e \cap e^{\prime}=\emptyset$ either by eliminating bigons, or by choosing geodesic representatives. Let $C, C^{\prime} \subset \Sigma_{n}$ be cylinders containing x and having boundary $\partial_{2} \cup e, \partial_{2} \cup e^{\prime}$, respectively. Then either $C \subset C^{\prime}$ if $e \subset C^{\prime}$, or $C^{\prime} \subset C$ if $e^{\prime} \subset C$, with $x \in C \cap C^{\prime}$. Say $C \subset C^{\prime}$. Being a separating circle on Σ_{n}, e separates C^{\prime} into two subsurfaces, one containing ∂_{2} and x, and
the other containing e^{\prime}. Being a subsurface with two boundary components lying inside a cylinder, the latter must be a cylinder itself. This cylinder establishes an isotopy between e and e^{\prime} in $\Sigma_{n} \backslash\{x\}$, hence $[e]=\left[e^{\prime}\right]$. So, we can assume that $e=e^{\prime}$.
Choose representatives d_{n-1}, d^{\prime} in minimal position in $\Sigma_{n} \backslash\{x\}$. Denote by C_{0} and Σ^{\prime} the two components into which the curve e separates Σ_{n}, with C_{0} being a cylinder containing x, and Σ^{\prime} being the rest of the surface Σ_{n}, containing d_{1}, \ldots, d_{n-1}. Suppose $d_{n-1} \cap d^{\prime} \neq \emptyset$. Then d_{n-1} and d^{\prime} cobound a bigon. Since d_{n-1} and d^{\prime} were chosen to be in minimal position in $\Sigma_{n} \backslash\{x\}$, such a bigon must contain x. This implies that d^{\prime} has nonempty intersection with the cylinder C_{0} which e separates from the rest of the surface Σ_{n}, and since e and d^{\prime} are disjoint, d^{\prime} lies entirely in C_{0}. This is not possible because any generic circle in C_{0} is peripheral in Σ_{n} and d^{\prime} is non-separating in Σ_{n}. So, $d_{n-1} \cap d^{\prime}=\emptyset$. Then there exists an embedded cylinder C in Σ_{n} with boundary components d_{n-1} and d^{\prime}. Since e is disjoint from d^{\prime} and d_{n-1}, e either lies entirely in C or is disjoint from C. The circle e cannot lie entirely in C because e is peripheral in Σ_{n} and, since both d_{n-1} and d^{\prime} are non-separating in Σ_{n}, any generic circle lying in C must be non-separating. So, e is disjoint from C, hence C lies in Σ^{\prime}, and therefore d_{n-1} is isotopic to d^{\prime} in $\Sigma_{n} \backslash\{x\}$. Thus, we can also assume $d^{\prime}=d_{n-1}$.
In conclusion we have $\left(\rho_{D} \circ \varphi\right)\left(t_{n-1}\right)=\left(\rho_{D} \circ \varphi\right)\left(t_{n}\right)=T_{d_{n-1}}^{\varepsilon} T_{e}^{p} T_{\partial_{1}}^{p+q} T_{\partial_{2}}^{q}$, hence $\varphi\left(t_{n-1}\right)=\varphi\left(t_{n}\right)=$ $t_{n-1}^{\varepsilon} \Delta_{Y}^{2 p} \Delta_{D}^{q}$. We conclude that $\varphi=\beta_{p, q} \circ \pi$ if $\varepsilon=1$ and $\varphi=\chi \circ \beta_{-p,-q} \circ \pi$ if $\varepsilon=-1$.

Figure 6.4: Circles in Σ_{n}, case where n is even and $p \neq 0$
Case 2: n is odd and $p \neq 0$. Then Σ_{n} is a surface of genus $\frac{n-1}{2}$ with one boundary component, ∂, and $\kappa=2$. We have $\rho_{D}\left(t_{i}\right)=T_{d_{i}}$ for $1 \leq i \leq n-1$ and, by Labruère-Paris [32, Proposition 2.12], $\rho_{D}\left(\Delta_{Y}^{4}\right)=T_{e}$ and $\rho_{D}\left(\Delta_{D}^{2}\right)=T_{\partial}$, where e is the circle drawn in Figure 6.5. Set $f_{i}=\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)$ for all $1 \leq i \leq n$. Then, by the above,

$$
f_{i}^{2}=T_{d_{i}}^{2 \varepsilon} T_{e}^{p} T_{\partial}^{2 q} \quad \text { for all } 1 \leq i \leq n-1
$$

In particular, $\mathcal{S}\left(f_{i}\right)=\mathcal{S}\left(f_{i}^{2}\right)=\left\{\left[d_{i}\right],[e]\right\}$ for all $1 \leq i \leq n-1$. The element t_{n} is conjugate to t_{1} in $A\left[D_{n}\right]$, hence $\varphi\left(t_{n}\right)$ is conjugate to $\varphi\left(t_{1}\right)$ in $A\left[D_{n}\right]$, and therefore there exists $v \in A\left[D_{n}\right]$ such that $\varphi\left(t_{n}\right)=v \varphi\left(t_{1}\right) v^{-1}=\left(v t_{1}^{\varepsilon} v^{-1}\right)\left(v \Delta_{Y}^{2 p} v^{-1}\right) \Delta_{D}^{2 q}$. The element $\rho_{D}\left(v t_{1} v^{-1}\right)$ is conjugate to $\rho_{D}\left(t_{1}\right)=T_{d_{1}}$, hence $\rho_{D}\left(v t_{1} v^{-1}\right)=T_{d^{\prime}}$, where d^{\prime} is a non-separating circle. The element $\rho_{D}\left(v \Delta_{Y}^{4} v^{-1}\right)$ is conjugate to $\rho_{D}\left(\Delta_{Y}^{4}\right)=T_{e}$, hence $\rho_{D}\left(v \Delta_{Y}^{4} v^{-1}\right)=T_{e^{\prime}}$, where e^{\prime} is a circle that separates Σ_{n} into two components, one being a cylinder containing x and the other being a surface of genus $\frac{n-1}{2}$ with one boundary component which does not contain x. We also have $f_{n}^{2}=T_{d^{\prime}}^{2} T_{e^{\prime}}^{p} T_{\partial}^{2 q}$ and $\mathcal{S}\left(f_{n}\right)=\mathcal{S}\left(f_{n}^{2}\right)=\left\{\left[d^{\prime}\right],\left[e^{\prime}\right]\right\}$. By Theorem $2.1(\pi \circ \varphi)\left(t_{n-1}\right)=(\pi \circ \varphi)\left(t_{n}\right)$, hence $\theta\left(f_{n-1}^{2}\right)=\theta\left(f_{n}^{2}\right)$. This implies that d^{\prime} is isotopic to d_{n-1} in Σ_{n}.
Since $f_{1} f_{n}=f_{n} f_{1}$, by Theorem $3.2(3)$ we have $f_{n}^{2}\left(\mathcal{S}\left(f_{1}\right)\right)=\mathcal{S}\left(f_{1}\right)$, hence $[e]$ is a reduction class for f_{n}^{2}, and therefore $i\left([e],\left[e^{\prime}\right]\right)=0$, because $\left[e^{\prime}\right]$ is an essential reduction class for f_{n}^{2}. As in Case 1 , we
can choose representatives e and e^{\prime} such that $e \cap e^{\prime}=\emptyset$. Let $C, C^{\prime} \subset \Sigma_{n}$ be cylinders containing x and having boundary $\partial \cup e, \partial \cup e^{\prime}$, respectively. Then either $C \subset C^{\prime}$ if $e \subset C^{\prime}$, or $C^{\prime} \subset C$ if $e^{\prime} \subset C$, with $x \in C \cap C^{\prime}$. Say $C \subset C^{\prime}$. Being a separating circle on Σ_{n}, e separates C^{\prime} into two subsurfaces, one containing ∂ and x, and the other containing e^{\prime}. Being a subsurface with two boundary components lying inside a cylinder, the latter must be a cylinder itself. This cylinder establishes an isotopy between e and e^{\prime} in $\Sigma_{n} \backslash\{x\}$, hence $[e]=\left[e^{\prime}\right]$. So, we can assume that $e=e^{\prime}$, hence $\rho_{D}\left(v \Delta_{Y}^{4} v^{-1}\right)=T_{e^{\prime}}=T_{e}=\rho_{D}\left(\Delta_{Y}^{4}\right)$. Since ρ_{D} is injective, it follows that $v \Delta_{Y}^{4} v^{-1}=\Delta_{Y}^{4}$.
Using the same argument as in Case 1, from the fact that d^{\prime} does not intersect $e^{\prime}=e$ and that d^{\prime} is isotopic to d_{n-1} in Σ_{n} it follows that d^{\prime} is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$, hence we can also assume that $d^{\prime}=d_{n-1}$. Then $\rho_{D}\left(v t_{1} v^{-1}\right)=T_{d^{\prime}}=T_{d_{n-1}}=\rho_{D}\left(t_{n-1}\right)$, hence, since ρ_{D} is injective, $v t_{1} v^{-1}=t_{n-1}$. At this stage of the proof we have that $\varphi\left(t_{n}\right)=t_{n-1}^{\varepsilon}\left(v \Delta_{Y}^{2 p} v^{-1}\right) \Delta_{D}^{2 q}$ and $\left(v \Delta_{Y}^{2 p} v^{-1}\right)^{2}=v \Delta_{Y}^{4 p} v^{-1}=\Delta_{Y}^{4 p}$. It remains to show that $v \Delta_{Y}^{2 p} v^{-1}=\Delta_{Y}^{2 p}$.

Figure 6.5: Circles in Σ_{n}, case where n is odd and $p \neq 0$

By Theorem 2.2 there exists $\psi \in\langle\zeta, \chi\rangle$ and $r, s \in \mathbb{Z}$ such that $\varphi \circ \zeta \circ \iota$ is conjugate to $\psi \circ \beta_{r, s}$. The automorphism ζ is inner since n is odd, hence we can assume that $\psi \in\langle\chi\rangle$. So, there exist $w \in A\left[D_{n}\right], \mu \in\{ \pm 1\}$ and $r, s \in \mathbb{Z}$ such that $\varphi\left(t_{i}\right)=w t_{i}^{\mu} \Delta_{Y}^{2 r} \Delta_{D}^{2 s} w^{-1}$ for all $1 \leq i \leq n-2$ and $\varphi\left(t_{n}\right)=w t_{n-1}^{\mu} \Delta_{Y}^{2 r} \Delta_{D}^{2 s} w^{-1}$. Set $g=\rho_{D}(w)$. We have $\left(\rho_{D} \circ \varphi\right)\left(t_{i}^{2}\right)=T_{d_{i}}^{2 \varepsilon} T_{e}^{p} T_{\partial}^{2 q}=g T_{d_{i}}^{2 \mu} T_{e}^{r} T_{\partial}^{2 s} g^{-1}$ for all $1 \leq i \leq n-2$ and $\left(\rho_{D} \circ \varphi\right)\left(t_{n}^{2}\right)=T_{d_{n-1}}^{2 \varepsilon} T_{e}^{p} T_{\partial}^{2 q}=g T_{d_{n-1}}^{2 \mu} T_{e}^{r} T_{\partial}^{2 s} g^{-1}$. So, $g^{-1}\left(\mathcal{S}\left(T_{d_{i}}^{2 \varepsilon} T_{e}^{p} T_{\partial}^{2 q}\right)\right)=$ $\mathcal{S}\left(T_{d_{i}}^{2 \mu} T_{e}^{r} T_{\partial}^{2 s}\right)$, hence $g^{-1}\left(\left\{\left[d_{i}\right],[e]\right\}\right) \subset\left\{\left[d_{i}\right],[e]\right\}$ for all $1 \leq i \leq n-1$. This implies $g^{-1}\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$, hence g commutes with $T_{d_{i}}$, and therefore w commutes with t_{i} for all $1 \leq i \leq n-1$. Since Δ_{Y} is in the subgroup of $A\left[D_{n}\right]$ generated by $Y=\left\{t_{1}, \ldots, t_{n-1}\right\}$ and Δ_{D}^{2} is central, it follows that $\varphi\left(t_{i}\right)=t_{i}^{\mu} \Delta_{Y}^{2 r} \Delta_{D}^{2 s}$ for all $1 \leq i \leq n-2$ and $\varphi\left(t_{n}\right)=t_{n-1}^{\mu} \Delta_{Y}^{2 r} \Delta_{D}^{2 s}$. Consider the equality $\varphi\left(t_{1}\right)=t_{1}^{\varepsilon} \Delta_{Y}^{2 p} \Delta_{D}^{2 q}=t_{1}^{\mu} \Delta_{Y}^{2 r} \Delta_{D}^{2 s}$. Then $t_{1}^{\varepsilon-\mu} \Delta_{Y}^{2(p-r)}=\Delta_{D}^{2(s-q)}$. The right-hand side of this equality lies in the center of $A\left[D_{n}\right]$, the left-hand side lies in $A_{Y}\left[D_{n}\right]$ and, by Paris [38, Corollary 2.6], the intersection of $A_{Y}\left[D_{n}\right]$ with the center of $A\left[D_{n}\right]$ is trivial, hence $s=q$ and $t_{1}^{\varepsilon-\mu}=\Delta_{Y}^{2(r-p)}$. The element $\Delta_{Y}^{2(r-p)}$ lies in the center of $A_{Y}\left[D_{n}\right]$ and $\left\langle t_{1}\right\rangle$ is a proper parabolic subgroup of $A_{Y}\left[D_{n}\right]$, hence, again by Paris [38, Corollary 2.6], $t_{1}^{\varepsilon-\mu}=\Delta_{Y}^{2(r-p)}=1$, and therefore $\varepsilon=\mu$ and $r=p$. Here we use that $A\left[D_{n}\right]$ is torsion-free, which follows from Deligne [25] where it is proved that $A\left[D_{n}\right]$ has a finite-dimensional classifying space. So, $\varphi\left(t_{n}\right)=t_{n-1}^{\varepsilon} \Delta_{Y}^{2 p} \Delta_{D}^{2 q}$. We conclude that $\varphi=\beta_{p, q} \circ \pi$ if $\varepsilon=1$ and $\varphi=\chi \circ \beta_{-p,-q} \circ \pi$ if $\varepsilon=-1$.
Case 3: n is even and $p=0$. Then, again, Σ_{n} is a surface of genus $\frac{n-2}{2}$ with two boundary components, ∂_{1} and ∂_{2}, and $\kappa=1$. We have $\rho_{D}\left(t_{i}\right)=T_{d_{i}}$ for $1 \leq i \leq n-1$ and, by Labruère-Paris [32, Proposition 2.12], $\rho_{D}\left(\Delta_{D}\right)=T_{\partial_{1}} T_{\partial_{2}}$. Set $f_{i}=\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)$ for all $1 \leq i \leq n$. Then, by the above,

$$
f_{i}=T_{d_{i}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q} \quad \text { for all } 1 \leq i \leq n-1 .
$$

In particular, $\mathcal{S}\left(f_{i}\right)=\left\{\left[d_{i}\right]\right\}$ for all $1 \leq i \leq n-1$. Since t_{n} is conjugate in $A\left[D_{n}\right]$ to t_{1}, f_{n} is of the form $f_{n}=T_{d^{\prime}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q}$ where d^{\prime} is a non-separating circle.

For $1 \leq i \leq n-3$ we have $t_{i} t_{n}=t_{n} t_{i}$, hence $T_{d_{i}} T_{d^{\prime}}=T_{d^{\prime}} T_{d_{i}}$, and therefore, by Proposition 3.1, $i\left(\left[d_{i}\right],\left[d^{\prime}\right]\right)=0$. Similarly, we have $i\left(\left[d_{n-1}\right],\left[d^{\prime}\right]\right)=0$. Since $t_{n-2} t_{n} t_{n-2}=t_{n} t_{n-2} t_{n}$, we have $T_{d_{n-2}} T_{d^{\prime}} T_{d_{n-2}}=T_{d^{\prime}} T_{d_{n-2}} T_{d^{\prime}}$, hence, by Proposition 3.1, $i\left(\left[d_{n-2}\right],\left[d^{\prime}\right]\right)=1$. So we can assume that $d_{i} \cap d^{\prime}=\emptyset$ for $1 \leq i \leq n-3, d_{n-1} \cap d^{\prime}=\emptyset$ and $\left|d_{n-2} \cap d^{\prime}\right|=1$. Moreover, by Theorem 2.1, $(\pi \circ \varphi)\left(t_{n-1}\right)=(\pi \circ \varphi)\left(t_{n}\right)$, hence $\theta\left(f_{n-1}\right)=\theta\left(f_{n}\right)$, and therefore d^{\prime} is isotopic to d_{n-1} in Σ_{n}. By Lemma 5.6 it follows that we have one of the following two possibilities.
(1) d^{\prime} is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.
(2) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n}\right]$.

Suppose d^{\prime} is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$. Then $\left(\rho_{D} \circ \varphi\right)\left(t_{n}\right)=T_{d_{n-1}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q}$, hence, since ρ_{D} is injective, $\varphi\left(t_{n}\right)=t_{n-1}^{\varepsilon} \Delta_{D}^{q}$. We conclude that $\varphi=\beta_{0, q} \circ \pi$ if $\varepsilon=1$ and $\varphi=\chi \circ \beta_{0,-q} \circ \pi$ if $\varepsilon=-1$.

Suppose there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n}\right]$. We have

$$
\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)=T_{d_{i}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q}=g^{-1} T_{d_{i}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q} g
$$

for all $1 \leq i \leq n-1$ and

$$
\left(\rho_{D} \circ \varphi\right)\left(t_{n}\right)=T_{d^{\prime}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q}=g^{-1} T_{d_{n}}^{\varepsilon} T_{\partial_{1}}^{q} T_{\partial_{2}}^{q} g .
$$

By Theorem 3.6 there exists $v \in \operatorname{Ker}(\pi) \subset A\left[D_{n}\right]$ such that $\rho_{D}(v)=g$. Since, ρ_{D} is injective it follows that

$$
\varphi\left(t_{i}\right)=v^{-1} t_{i}^{\varepsilon} \Delta_{D}^{q} v \quad \text { for all } 1 \leq i \leq n
$$

We conclude that $\varphi=\operatorname{ad}_{v^{-1}} \circ \gamma_{q}$ if $\varepsilon=1$ and $\varphi=\operatorname{ad}_{v^{-1}} \circ \chi \circ \gamma_{-q}$ if $\varepsilon=-1$.
Case 4: n is odd and $p=0$. Then, again, Σ_{n} is a surface of genus $\frac{n-1}{2}$ with one boundary component, ∂, and $\kappa=2$. We have $\rho_{D}\left(t_{i}\right)=T_{d_{i}}$ for $1 \leq i \leq n-1$ and, by Labruère-Paris [32, Proposition 2.12], $\rho_{D}\left(\Delta_{D}^{2}\right)=T_{\partial}$. Set $f_{i}=\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)$ for all $1 \leq i \leq n$. Then, by the above,

$$
f_{i}=T_{d_{i}}^{\varepsilon} T_{\partial}^{q} \quad \text { for all } 1 \leq i \leq n-1
$$

In particular, $\mathcal{S}\left(f_{i}\right)=\left\{\left[d_{i}\right]\right\}$ for all $1 \leq i \leq n-1$. Since t_{n} is conjugate in $A\left[D_{n}\right]$ to t_{1}, f_{n} is conjugate to f_{1} in $\mathcal{M}\left(\Sigma_{n}, x\right)$, hence f_{n} is of the form $f_{n}=T_{d^{\prime}}^{\varepsilon} T_{\partial}^{q}$ where d^{\prime} is a non-separating circle.

For $1 \leq i \leq n-3$ we have $t_{i} t_{n}=t_{n} t_{i}$, hence $T_{d_{i}} T_{d^{\prime}}=T_{d^{\prime}} T_{d_{i}}$, and therefore, by Proposition 3.1, $i\left(\left[d_{i}\right],\left[d^{\prime}\right]\right)=0$. Similarly, we have $i\left(\left[d_{n-1}\right],\left[d^{\prime}\right]\right)=0$. Since $t_{n-2} t_{n} t_{n-2}=t_{n} t_{n-2} t_{n}$, we have $T_{d_{n-2}} T_{d^{\prime}} T_{d_{n-2}}=T_{d^{\prime}} T_{d_{n-2}} T_{d^{\prime}}$, hence, by Proposition 3.1, $i\left(\left[d_{n-2}\right],\left[d^{\prime}\right]\right)=1$. So, we can assume that $d_{i} \cap d^{\prime}=\emptyset$ for $1 \leq i \leq n-3, d_{n-1} \cap d^{\prime}=\emptyset$ and $\left|d_{n-2} \cap d^{\prime}\right|=1$. Moreover, by Theorem 2.1, $(\pi \circ \varphi)\left(t_{n-1}\right)=(\pi \circ \varphi)\left(t_{n}\right)$, hence $\theta\left(f_{n-1}\right)=\theta\left(f_{n}\right)$, and therefore d^{\prime} is isotopic to d_{n-1} in Σ_{n}. By Lemma 6.1 it follows that we have one of the following three possibilities.
(1) d^{\prime} is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$.
(2) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n}\right]$.
(3) There exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g\left(\left[d_{n-1}\right]\right)=\left[d_{n}\right]$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n-1}\right]$.

If d^{\prime} is isotopic to d_{n-1} in $\Sigma_{n} \backslash\{x\}$, then we prove as in the case where n is even that $\varphi=\beta_{0, q} \circ \pi$ if $\varepsilon=1$ and $\varphi=\chi \circ \beta_{0,-q} \circ \pi$ if $\varepsilon=-1$. Similarly, if there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-1$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n}\right]$, then we prove as in the case where n is even that $\varphi=\operatorname{ad}_{v^{-1}} \circ \gamma_{q}$ if $\varepsilon=1$ and $\varphi=\operatorname{ad}_{v^{-1}} \circ \chi \circ \gamma_{-q}$ if $\varepsilon=-1$, where v is an element of $\operatorname{Ker}(\pi) \subset A\left[D_{n}\right]$.

Suppose there exists $g \in \operatorname{Ker}(\theta)$ such that $g\left(\left[d_{i}\right]\right)=\left[d_{i}\right]$ for all $1 \leq i \leq n-2, g\left(\left[d_{n-1}\right]\right)=\left[d_{n}\right]$ and $g\left(\left[d^{\prime}\right]\right)=\left[d_{n-1}\right]$. We have

$$
\begin{gathered}
\left(\rho_{D} \circ \varphi\right)\left(t_{i}\right)=T_{d_{i}}^{\varepsilon} T_{\partial}^{q}=g^{-1} T_{d_{i}}^{\varepsilon} T_{\partial}^{q} g \quad \text { for } 1 \leq i \leq n-2, \\
\left(\rho_{D} \circ \varphi\right)\left(t_{n-1}\right)=T_{d_{n-1}}^{\varepsilon} T_{\partial}^{q}=g^{-1} T_{d_{n}}^{\varepsilon} T_{\partial}^{q} g, \\
\left(\rho_{D} \circ \varphi\right)\left(t_{n}\right)=T_{d^{\prime}}^{\varepsilon} T_{\partial}^{q}=g^{-1} T_{d_{n-1}}^{\varepsilon} T_{\partial}^{q} g .
\end{gathered}
$$

By Theorem 3.6 there exists $v \in \operatorname{Ker}(\pi) \subset A\left[D_{n}\right]$ such that $\rho_{D}(v)=g$. Since ρ_{D} is injective it follows that

$$
\begin{aligned}
\varphi\left(t_{i}\right)=v^{-1} t_{i}^{\varepsilon} \Delta_{D}^{2 q} v & \text { for } 1 \leq i \leq n-2, \\
\varphi\left(t_{n-1}\right)=v^{-1} t_{n}^{\varepsilon} \Delta_{D}^{2 q} v, & \varphi\left(t_{n}\right)=v^{-1} t_{n-1}^{\varepsilon} \Delta_{D}^{2 q} v .
\end{aligned}
$$

We conclude that $\varphi=\operatorname{ad}_{v^{-1}} \circ \zeta \circ \gamma_{q}$ if $\varepsilon=1$ and $\varphi=\operatorname{ad}_{v^{-1}} \circ \zeta \circ \chi \circ \gamma_{-q}$ if $\varepsilon=-1$.

7 Endomorphisms of $A\left[D_{n}\right] / Z\left(A\left[D_{n}\right]\right)$

Proof of Proposition 2.7 Let Δ be the Garside element of $A\left[D_{n}\right]$. We set $\kappa=2$ if n is odd and $\kappa=1$ if n is even. Recall that $Z\left(A\left[D_{n}\right]\right)$ is the cyclic group generated by Δ^{κ}. Let $\varphi_{Z}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ be an endomorphism. For each $1 \leq i \leq n-2$ we define $u_{i} \in A\left[D_{n}\right]$ by induction on i as follows. First, choose any $u_{1} \in A\left[D_{n}\right]$ such that $\xi\left(u_{1}\right)=\varphi_{Z}\left(t_{Z, 1}\right)$. Now, assume that $2 \leq i \leq n-2$ and that u_{i-1} is defined. Choose $u_{i}^{\prime} \in A\left[D_{n}\right]$ such that $\xi\left(u_{i}^{\prime}\right)=\varphi_{Z}\left(t_{Z, i}\right)$. Since $\varphi_{Z}\left(t_{Z, i-1} t_{Z, i} t_{Z, i-1}\right)=\varphi_{Z}\left(t_{Z, i} t_{Z, i-1} t_{Z, i}\right)$, there exists $k_{i} \in \mathbb{Z}$ such that $u_{i-1} u_{i}^{\prime} u_{i-1}=u_{i}^{\prime} u_{i-1} u_{i}^{\prime} \Delta^{\kappa k_{i}}$. Then set $u_{i}=u_{i}^{\prime} \Delta^{\kappa k_{i}}$. Note that $\xi\left(u_{i}\right)=\xi\left(u_{i}^{\prime}\right)=\varphi_{Z}\left(t_{Z, i}\right)$ and

$$
u_{i-1} u_{i} u_{i-1}=u_{i-1} u_{i}^{\prime} u_{i-1} \Delta^{\kappa k_{i}}=u_{i}^{\prime} u_{i-1} u_{i}^{\prime} \Delta^{2 \kappa k_{i}}=u_{i} u_{i-1} u_{i} .
$$

Define in the same way $u_{n-1}, u_{n} \in A\left[D_{n}\right]$ such that $\xi\left(u_{n-1}\right)=\varphi_{Z}\left(t_{Z, n-1}\right), \xi\left(u_{n}\right)=\varphi_{Z}\left(t_{Z, n}\right)$, $u_{n-2} u_{n-1} u_{n-2}=u_{n-1} u_{n-2} u_{n-1}$ and $u_{n-2} u_{n} u_{n-2}=u_{n} u_{n-2} u_{n}$.
Let $i, j \in\{1, \ldots, n\}$ be such that $i \neq j$ and $t_{i} t_{j}=t_{j} t_{i}$. We have $\varphi_{Z}\left(t_{Z, i} t_{Z, j}\right)=\varphi_{Z}\left(t_{Z, j} t_{Z, i}\right)$, hence there exists $\ell \in \mathbb{Z}$ such that $u_{i} u_{j}=u_{j} u_{i} \Delta^{\kappa \ell}$. Recall the homomorphism $z: A\left[D_{n}\right] \rightarrow \mathbb{Z}$ which sends t_{i} to 1 for all $1 \leq i \leq n$. Since $z(\Delta)=n(n-1)$, the previous equality implies that

$$
z\left(u_{i}\right)+z\left(u_{j}\right)=z\left(u_{j}\right)+z\left(u_{i}\right)+\kappa \ln (n-1),
$$

hence $\ell=0$, and therefore $u_{i} u_{j}=u_{j} u_{i}$.
By the above we have an endomorphism $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ which sends t_{i} to u_{i} for all $1 \leq i \leq n$, and this endomorphism is a lift of φ_{Z}.

Proof of Theorem 2.8 Let $n \geq 6$. Let $\varphi_{Z}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$ be an endomorphism. We know from Proposition 2.7 that φ_{Z} admits a lift $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$. By Theorem 2.3 we have one of the following three possibilities up to conjugation.
(1) φ is cyclic.
(2) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q} \circ \pi$.
(3) There exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\psi \circ \gamma_{p}$.

Clearly, if φ is cyclic, then φ_{Z} is cyclic.
Now, we show that the second case cannot occur. Suppose there exist $\psi \in\langle\zeta, \chi\rangle$ and $p, q \in \mathbb{Z}$ such that $\varphi=\psi \circ \beta_{p, q} \circ \pi$. As ever, we set $\kappa=2$ if n is odd and $\kappa=1$ if n is even. Recall that the center of $A\left[D_{n}\right]$ is generated by Δ^{κ}, where Δ is the Garside element of $A\left[D_{n}\right]$. We need to show that $\varphi\left(\Delta^{\kappa}\right) \notin Z\left(A\left[D_{n}\right]\right)=\left\langle\Delta^{\kappa}\right\rangle$, which leads to a contradiction. Since $\psi \in \operatorname{Aut}\left(A\left[D_{n}\right]\right)$, we have $\psi\left(Z\left(A\left[D_{n}\right]\right)\right)=Z\left(A\left[D_{n}\right]\right)$, hence we can assume that $\varphi=\beta_{p, q} \circ \pi$. Let $Y=\left\{t_{1}, \ldots, t_{n-1}\right\}$ and let $\Delta_{Y}=\Delta_{Y}\left[D_{n}\right]$ be the Garside element of $A_{Y}\left[D_{n}\right]$. Since

$$
\begin{gathered}
\Delta=\left(t_{1} \cdots t_{n-2} t_{n-1} t_{n} t_{n-2} \cdots t_{1}\right) \cdots\left(t_{n-2} t_{n-1} t_{n} t_{n-2}\right)\left(t_{n-1} t_{n}\right), \\
\Delta\left[A_{n-1}\right]^{2}=\left(s_{1} \cdots s_{n-2} s_{n-1}^{2} s_{n-2} \cdots s_{1}\right) \cdots\left(s_{n-2} s_{n-1}^{2} s_{n-2}\right) s_{n-1}^{2}
\end{gathered}
$$

(see Lemma 5.1 for the second equality), we have $\pi(\Delta)=\Delta\left[A_{n-1}\right]^{2}$, hence

$$
\varphi\left(\Delta^{\kappa}\right)=\left(\beta_{p, q} \circ \pi\right)\left(\Delta^{\kappa}\right)=\beta_{p, q}\left(\Delta\left[A_{n-1}\right]^{2 \kappa}\right)=\Delta_{Y}^{2 \kappa(1+p n(n-1))} \Delta^{\kappa^{2} q n(n-1)} .
$$

This element does not belong to $Z\left(A\left[D_{n}\right]\right)=\left\langle\Delta^{\kappa}\right\rangle$, because $\kappa(1+p n(n-1)) \neq 0$ and $\left\langle\Delta_{Y}^{2}\right\rangle \cap\left\langle\Delta^{\kappa}\right\rangle=$ \{1\}.

Suppose we are in the third case. So, there exist $\psi \in\langle\zeta, \chi\rangle$ and $p \in \mathbb{Z}$ such that $\varphi=\psi \circ \gamma_{p}$. We have

$$
\gamma_{p}\left(\Delta^{\kappa}\right)=\Delta^{\kappa(1+\kappa p n(n-1))} \in\left\langle\Delta^{\kappa}\right\rangle,
$$

hence γ_{p} induces an endomorphism $\gamma_{Z, p}: A_{Z}\left[D_{n}\right] \rightarrow A_{Z}\left[D_{n}\right]$. Moreover, for all $1 \leq i \leq n$,

$$
\gamma_{Z, p}\left(t_{Z, i}\right)=\xi\left(t_{i} \Delta^{\kappa p}\right)=\xi\left(t_{i}\right)=t_{Z, i},
$$

hence $\gamma_{Z, p}=$ id. Clearly, ψ is the lift of an element $\psi_{Z} \in\left\langle\zeta_{Z}, \chi_{Z}\right\rangle$, hence $\varphi_{Z}=\psi_{Z} \circ \gamma_{Z, p}=\psi_{Z}$.

Now, as promised in Section 2, we prove the following.
Lemma 7.1 Let $n \geq 4$. If n is even, then $\left\langle\zeta_{z}, \chi_{Z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$, and if n is odd, then $\left\langle\chi_{z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$.

Proof We first show that, if $\varphi: A\left[D_{n}\right] \rightarrow A\left[D_{n}\right]$ is an automorphism such that $\varphi_{Z} \in \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)$, then $\varphi \in \operatorname{Inn}\left(A\left[D_{n}\right]\right)$. Let $\varphi \in \operatorname{Aut}\left(A\left[D_{n}\right]\right)$ be such that $\varphi_{Z} \in \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)$. There exists $g_{Z} \in A_{Z}\left[D_{n}\right]$ such that $\varphi_{Z}\left(t_{Z, i}\right)=g_{Z} t_{Z, i} g_{Z}^{-1}$ for all $1 \leq i \leq n$. Again, we denote by Δ the Garside element of $A\left[D_{n}\right]$, and we set $\kappa=2$ if n is odd and $\kappa=1$ if n is even. Let $g \in A\left[D_{n}\right]$ be such that $\xi(g)=g_{Z}$. For every $1 \leq i \leq n$, there exists $k_{i} \in \mathbb{Z}$ such that $\varphi\left(t_{i}\right)=g t_{i} g^{-1} \Delta^{\kappa k_{i}}$. Let $i, j \in\{1, \ldots, n\}$ be such that $\left\{t_{i}, t_{j}\right\}$ is an edge of D_{n}. From the equality $t_{i} t_{j} t_{i}=t_{j} t_{i} t_{j}$ it follows that

$$
g t_{i} t_{j} t_{i} g^{-1} \Delta^{\kappa\left(2 k_{i}+k_{j}\right)}=\varphi\left(t_{i} t_{j} t_{i}\right)=\varphi\left(t_{j} t_{i} t_{j}\right)=g t_{j} t_{i} t_{j} g^{-1} \Delta^{\kappa\left(k_{i}+2 k_{j}\right)}
$$

hence $2 k_{i}+k_{j}=k_{i}+2 k_{j}$, and therefore $k_{i}=k_{j}$. Since D_{n} is a connected graph, it follows that $k_{i}=k_{j}$ for all $i, j \in\{1, \ldots, n\}$. So, there exists $k \in \mathbb{Z}$ such that $\varphi\left(t_{i}\right)=g t_{i} g^{-1} \Delta^{\kappa k}$ for all $1 \leq i \leq n$. Recall the homomorphism $z: A\left[D_{n}\right] \rightarrow \mathbb{Z}$ which sends t_{i} to 1 for all $1 \leq i \leq n$. Since φ is an
automorphism, we have $\operatorname{Im}(z \circ \varphi)=\operatorname{Im}(z)=\mathbb{Z}$. Furthermore, since $z(\Delta)=n(n-1)$, we have $(z \circ \varphi)\left(t_{i}\right)=1+\kappa k n(n-1)$ for all $1 \leq i \leq n$, hence $\operatorname{Im}(z \circ \varphi)=(1+\kappa k n(n-1)) \mathbb{Z}$. This implies that $k=0$, hence $\varphi=\operatorname{ad}_{g} \in \operatorname{Inn}\left(A\left[D_{n}\right]\right)$.

Arguing in a similar way we can see that lifts of ζ_{Z} and χ_{Z} in $\operatorname{Aut}\left(A\left[D_{n}\right]\right)$ are unique. Since we know that $\langle\zeta, \chi\rangle \cap \operatorname{Inn}\left(A\left[D_{n}\right]\right)=\{\mathrm{id}\}$ if n is even, and $\langle\chi\rangle \cap \operatorname{Inn}\left(A\left[D_{n}\right]\right)=\{\mathrm{id}\}$ if n is odd, it follows that $\left\langle\zeta_{Z}, \chi_{Z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$ if n is even, and $\left\langle\chi_{Z}\right\rangle \cap \operatorname{Inn}\left(A_{Z}\left[D_{n}\right]\right)=\{\mathrm{id}\}$ if n is odd.

References

[1] B H An, Y Cho, The automorphism groups of Artin groups of edge-separated CLTTF graphs, J. Korean Math. Soc. 60 (2023), no. 6, 1171-1213.
[2] R W Bell, D Margalit, Braid groups and the co-Hopfian property, J. Algebra 303 (2006), no. 1, 275-294.
[3] M Bestvina, Non-positively curved aspects of Artin groups of finite type, Geom. Topol. 3 (1999), 269-302.
[4] J S Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213-238.
[5] J S Birman, A Lubotzky, J McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107-1120.
[6] J S Birman, H M Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2) 97 (1973), 424-439.
[7] N Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles No 1337. Hermann, Paris, 1968.
[8] C Bregman, R Charney, K Vogtmann, Outer space for RAAGs, Duke Math. J. 172 (2023), no. 6, 1033-1108.
[9] E Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61.
[10] E Brieskorn, Sur les groupes de tresses [d'après V. I. Arnol'd], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, pp. 21-44. Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973.
[11] E Brieskorn, K Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271.
[12] F Castel, Représentations géométriques des groupes de tresses, Ph. D. Thesis, Université de Bourgogne, 2009.
[13] F Castel, Geometric representations of the braid groups, Astérisque No. 378 (2016).
[14] R Charney, J Crisp, Automorphism groups of some affine and finite type Artin groups, Math. Res. Lett. 12 (2005), no. 2-3, 321-333.
[15] R Charney, K Vogtmann, Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41 (2009), no. 1, 94-102.
[16] R Charney, K Vogtmann, Subgroups and quotients of automorphism groups of RAAGs, Low-dimensional and symplectic topology, 9-27, Proc. Sympos. Pure Math., 82, Amer. Math. Soc., Providence, RI, 2011.
[17] L Chen, K Kordek, D Margalit, Homomorphisms between braid groups, preprint, arXiv:1910.00712.
[18] H S M Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) 35 (1934), no. 3, 588-621.
[19] H S M Coxeter, The complete enumeration of finite groups of the form $R_{i}^{2}=\left(R_{i} R_{j}\right)^{k_{i j}}=1$, J. London Math. Soc. 10 (1935), 21-25.
[20] J Crisp, Automorphisms and abstract commensurators of 2-dimensional Artin groups, Geom. Topol. 9 (2005), 1381-1441.
[21] J Crisp, L Paris, Artin groups of type B and D, Adv. Geom. 5 (2005), no. 4, 607-636.
[22] M Cumplido, L Paris, Commensurability in Artin groups of spherical type, Rev. Mat. Iberoam. 38 (2022), no. 2, 503-526.
[23] M B Day, Peak reduction and finite presentations for automorphism groups of right-angled Artin groups, Geom. Topol. 13 (2009), no. 2, 817-855.
[24] MB Day, On solvable subgroups of automorphism groups of right-angled Artin groups, Internat. J. Algebra Comput. 21 (2011), no. 1-2, 61-70.
[25] P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302.
[26] J L Dyer, E K Grossman, The automorphism groups of the braid groups, Amer. J. Math. 103 (1981), no. 6, 1151-1169.
[27] DBA Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
[28] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.
[29] N D Gilbert, J Howie, V Metaftsis, E Raptis, Tree actions of automorphism groups, J. Group Theory 3 (2000), no. 2, 213-223.
[30] P de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
[31] K Kordek, D Margalit, Homomorphisms of commutator subgroups of braid groups, Bull. Lond. Math. Soc. 54 (2022), no.1, 95-111.
[32] C Labruère, L Paris, Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol. 1 (2001), 73-114.
[33] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. (2) 52 (1995), no. 2, 318-334.
[34] H van der Lek, The homotopy type of complex hyperplane complements, Ph. D. Thesis, Nijmegen, 1983.
[35] S Y Orevkov, Homomorphisms of commutator subgroups of braid groups with small number of strings, Ann. Fac. Sci. Toulouse Math. (6), to appear.
[36] L Paris, Parabolic subgroups of Artin groups, J. Algebra 196 (1997), no. 2, 369-399.
[37] L Paris, Centralizers of parabolic subgroups of Artin groups of type A_{l}, B_{l}, and D_{l}, J. Algebra 196 (1997), no. 2, 400-435.
[38] L Paris, Artin groups of spherical type up to isomorphism, J. Algebra 281 (2004), no. 2, 666-678.
[39] L Paris, D Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47-83.
[40] B Perron, JP Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (1996), no. 2, 231-245.
[41] I Soroko, Artin groups of types F_{4} and H_{4} are not commensurable with that of type D_{4}, Topology Appl. 300 (2021), Paper No. 107770, 15 pp.
[42] J Tits, Le problème des mots dans les groupes de Coxeter, 1969 Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1 pp. 175-185 Academic Press, London.
[43] N Vaskou, Automorphisms of large-type free-of-infinity Artin groups, preprint, arXiv:2304.06666.

Fabrice Castel, IMB, UMR 5584, CNRS, Université de Bourgogne, 21000 Dijon, France
Luis Paris, IMB, UMR 5584, CNRS, Université de Bourgogne, 21000 Dijon, France
fabrice.castel@gmail.com, lparis@u-bourgogne.fr

