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Endomorphisms of Artin groups of type D
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Abstract In this paper we determine a classification of the endomorphisms of the Artin group A[D,,]
of type D,, for n > 6. In particular we determine its automorphism group and its outer automorphism
group. We also determine a classification of the homomorphisms from A[D,] to the Artin group
A[A,—1] of type A,—; and a classification of the homomorphisms from A[A,_;] to A[D,] for
n > 6. We show that any endomorphism of the quotient A[D,]/Z(A[D,]) lifts to an endomorphism
of A[D,] for n > 4. We deduce a classification of the endomorphisms of A[D,]/Z(A[D,]), we
determine the automorphism and outer automorphism groups of A[D,]/Z(A[D,]), and we show that
A[D,]/Z(A[D,]) is co-Hopfian, for n > 6. The results are algebraic in nature but the proofs are
based on topological arguments (curves on surfaces and mapping class groups).
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1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (my ), ;es indexed by the elements
of S, with coefficients in NU {oo}, such that m,, = 1 forall s € S and m;; = m;; > 2 forall s,z € S,
s # t. Such a matrix is usually represented by a labeled graph I', called a Coxeter graph, defined as
follows. The set of vertices of I" is §. Two vertices s,¢ € S are connected by an edge if m,; > 3, and
this edge is labeled with my; if my; > 4.

If a, b are two letters and m is an integer > 2, then we denote by 1I(a, b, m) the word aba - - - of length
m. In other words Il(a, b, m) = (ab)% if m is even and Il(a, b, m) = (ab)%a if misodd. Let I" be a
Coxeter graph and let M = (m; ), ;cs be its Coxeter matrix. With I' we associate a group A[I'], called
the Artin group of I", defined by the following presentation.

A[F] == <S ’ H(Sa Z, ms,t) - H(t7s7ms,t) for s, 1 e S7 N ?é z, Mg ¢ # OO> .
The Coxeter group of I', denoted W[I'], is the quotient of A[I'] by the relations s2=1,s€S.

Despite the popularity of Artin groups little is known on their automorphisms and even less on their
endomorphisms. The most emblematic cases are the braid groups and the right-angled Artin groups.
Recall that the braid group on n + 1 strands is the Artin group A[A,] where A, is the Coxeter graph
depicted in Figure 1.1, and an Artin group A[I'] is called a right-angled Artin group if ms, € {2, 00}
forall s,t € S, s # t. The automorphism group of A[A,] was determined by Dyer—Grossman [26] and
the set of its endomorphisms by Castel [12] for n > 5, by Chen—Kordek—Margalit [17] for n > 3 and by
Orevkov [35] for n > 2 (see also Bell-Margalit [2] and Kordek—Margalit [31]). On the other hand there
are many articles studying automorphism groups of right-angled Artin groups (see Charney—Vogtmann
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Figure 1.1: Coxeter graph A,

[15, 16], Day [23, 24], Laurence [33] and Bregman—Charney—Vogtmann [8] for example), but almost
nothing is known on endomorphisms of these groups.

Apart from these two families little is known on automorphisms of Artin groups. The automorphism
groups of two generators Artin groups were determined in Gilbert—-Howie—Metaftsis—Raptis [29], the
automorphism groups of the Artin groups of type B, A, and C, were determined in Charney—Crisp
[14], the automorphisms groups of some 2-dimensional Artin groups were determined in Crisp [20] and
in An—Cho [1], the automorphism groups of large-type free-of-infinity Artin groups were determined
in Vaskou [43], and the automorphism group of A[D4] was determined in Soroko [41]. On the other
hand, as far as we know the set of endomorphisms of an Artin group is not determined for any Artin
group except for those of type A,,.

Recall that an Artin group A[I'] is of spherical type if W[I'] is finite. The study of spherical-type Artin
groups began in the early 1970s with works by Brieskorn [9, 10], Brieskorn—Saito [11] and Deligne
[25], works that marked in a way the beginning of the theory of Artin groups. This family and that of
right-angled Artin groups are the two most studied and best understood families of Artin groups and,
obviously, any question on Artin groups first arises for Artin groups of spherical type and for right-
angled Artin groups. Here we are interested in Artin groups of spherical type and more particularly in
those of type D,,.

An Artin group A[I'] is called irreducible if T" is connected. If 'y, ..., I'y are the connected components
of I', then A[I'] = A[I'{] x --- X A[Il'y] and W[I'] = W[I'{] x --- x W[I'¢]. In particular A[I'] is
of spherical type if and only if A[T;] is of spherical type for all i € {1,...,¢}. So, to classify Artin
groups of spherical type it suffices to classify those which are irreducible. Finite irreducible Coxeter
groups and hence irreducible Artin groups of spherical type were classified by Coxeter [18, 19]. There
are four infinite families, A, (n > 1), B, (n > 2), D,, (n > 4) and I,(m) (m > 5), and six “sporadic”
groups, Eg, E7, Eg, F4, Hz and Hs. As mentioned above, the automorphism group of A[T'] for " of
type A, (n > 1), B, (n > 2) and I,(m) (m > 5) is known. The next step is therefore to understand
the automorphism group of A[D,] for n > 5 (the case I' = D4 is known by Soroko [41]). The Coxeter
graph D, is illustrated in Figure 1.2.

n-1

1 2 n—.2<

n

Figure 1.2: Coxeter graph D,

In this paper we determine a complete and precise classification of the endomorphisms of A[D,]
for n > 6 (see Theorem 2.3). In particular we determine the automorphism group and the outer
automorphism group of A[D,] for n > 6 (see Corollary 2.6). We also determine a complete and precise
classification of the homomorphisms from A[D,] to A[A,—1] (see Theorem 2.1) and a complete and
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precise classification of the homomorphisms from A[A,_] to A[D,] (see Theorem 2.2). Note that all
these results were announced but not proved in Castel [13]; actually the proofs turn out to be much more
difficult than the first author thought when he announced them. Note also that our techniques cannot be
used to treat the cases n = 4 and n = 5. In particular we do not know how to determine Aut(A[Ds]).

From our main result we deduce a classification of the endomorphisms of A[D,]/Z(A[D,]) for n > 6,
where Z(A[D,]) denotes the center of A[D,] (see Theorem 2.8). Then we determine the automorphism
group and the outer automorphism group of A[D,]/Z(A[D,]) (see Corollary 2.10), and we show that
A[D,]/Z(A[D,]) is co-Hopfian (see Corollary 2.11). These results follow from Theorem 2.3 and
Proposition 2.7 which states that any endomorphism of A[D,]/Z(A[D,]) lifts to an endomorphism of
A[D;]. Such results were previously known for braid groups, that is, Artin groups of type A, (see
Bell-Margalit [2]). Note that the application of our main result to the study of A[D,]/Z(A[D,]) was not
present in an earlier version of the paper. It was suggested to us by the referee and we thank her/him
warmly for that.

A geometric representation of an Artin group is a homomorphism from the group to a mapping class
group (see Section 3 for more details). In order to achieve our goals we make a study of a particular
geometric representation of A[D,] previously introduced by Perron—Vannier [40] with one boundary
component replaced by a puncture. This geometric representation will be the key tool for many of our
proofs. Overall, although the results of the paper are algebraic in nature, the proofs are mostly based
on topological arguments (on curves on surfaces and mapping class groups).

The paper is organized as follows. In Section 2 we give the main definitions and precise statements of
the main results. Section 3 is dedicated to the study of some geometric representations of Artin groups
of type A, and type D,,. In Section 4 we determine the homomorphisms from A[D,] to A[A,—1], in
Section 5 we determine the homomorphisms from A[A,_;] to A[D,], and in Section 6 we determine
the endomorphisms of A[D,]. In Section 7 we determine the endomorphisms of A[D,]/Z(A[D,]).

Acknowledgments The authors would like to thank Bruno Cisneros de la Cruz and Juan Gonzélez-
Meneses for helpful comments and conversations. They also want to thank the referee for many helpful
remarks. The second author is partially supported by the French project “AlMaRe” (ANR-19-CE40-
0001-01) of the ANR.

2 Definitions and statements

For n > 4 we denote by s1,...,s,— the standard generators of A[A,_1] numbered as in Figure 1.1
and by 71, ..., 1, the standard generators of A[D,] numbered as in Figure 1.2.

Let I' be a Coxeter graph. For X C § we denote by Ax = Ax[I'] the subgroup of A = A[I"] generated
by X, by Wx = Wx[I'] the subgroup of W = W[I'] generated by X, and by I'x the full subgraph of I"
spanned by X. We know from van der Lek [34] that Ay is the Artin group of I'y and from Bourbaki
[7] that Wy is the Coxeter group of I'y. A subgroup of the form Ay is called a standard parabolic
subgroup of A and a subgroup of the form Wy is called a standard parabolic subgroup of W.
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For w € W we denote by lg(w) the word length of w with respect to S. A reduced expression for w
is an expression w = 153 - - - sy of minimal length, that is, such that £ = 1g(w). Let w : A — W be
the natural epimorphism which sends s to s for all s € S. This epimorphism has a natural set-section
7 : W — A defined as follows. Let w € W and let w = 515, - - - 5y be a reduced expression for w.
Then 7(w) = s157---sp € A. We know from Tits [42] that the definition of 7(w) does not depend on
the choice of its reduced expression.

Assume I' is of spherical type. Then W has a unique element of maximal length, denoted wg, which
satisfies w_% =1 and wsSwgs = S. The Garside element of A is defined to be A = A[I'] = 7(ws). We
know that ASA~! = S and, if I is connected, then the center Z(A) of A is an infinite cyclic group
generated by either A or A? (see Brieskorn—Saito [11]). For X C S we denote by wx the element of
maximal length in Wy and by Ax = Ax[I'] = 7(wx) the Garside element of Ay.

IfI"=A,_, then
A = (Sp—1--851)(Sp—1-52) -+ (Sp—151—2)Sn—1 »

AsiA™! =5, ;forall 1 <i<n—1and Z(A) is generated by AZ. If I' = D,,, then

A= (tl s lp2li—1typ—2 - - tl)(t2 R M) PR ) Y P S t2) T (tn—2tn—1[ntn—2)([n—ltn) .

If n is even, then AA™! = ¢, forall 1 < i < n and Z(A) is generated by A. If n is odd, then
ALAT =g forall 1 <i<n—2, At,_ 1A~ =1,, At,A™' =1,_;, and Z(A) is generated by AZ.

If G is a group and g € G, then we denote by ad, : G — G, h — ghg™!, the conjugation map by
g. We say that two homomorphisms @1, @, : G — H are conjugate if there exists 7 € H such that
2 = adp o p;.

A homomorphism ¢ : G — H is called abelian if its image is an abelian subgroup of H. A
homomorphism ¢ : G — H is called cyclic if its image is a cyclic subgroup of H. If G = A[A,_1],
then ¢ : A[A,—1] — H is abelian if and only if it is cyclic, if and only if there exists 4~ € H such that
p(s;))=hforall 1 <i<n-—1. Similarly, if G = A[D,], then ¢ : A[D,] — H is abelian if and only if
it is cyclic, if and only if there exists 7 € H such that p(;) = h forall 1 <i < n.

Two automorphisms (, x € Aut(A[D,]) play a central role in our study. These are defined by

Ct)=tifor1 <i<n—2, (({ty—1) =ty, C(tn) =ty—1,
X(ti):tl-_lforl <i<n.

Both are of order 2 and commute, hence they generate a subgroup of Aut(A[D,]) isomorphic to
Z7)27 x ZJ2Z. If n is odd, then ( is the conjugation map by A = A[D,]. On the other hand, if 7 is
even, then ( is not an inner automorphism (see Paris [37]). The automorphism Y is never inner.

Two other homomorphisms play an important role in our study. The first, 7 : A[D,] — A[A,—1], is
defined by
() =s;forl1 <i<n—2, n(t,_1) =7(t,) = Sp_1 .

The second, ¢ : A[A,—1] — A[D,], is defined by

s)=tiforl <i<n-—1.
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Observe that mo ¢ = idaa, ], hence 7 is surjective, ¢ is injective, and A[D,] ~ Ker(m) X A[A,—1]. We
refer to Crisp—Paris [21] for a detailed study on this decomposition of A[D,] as a semi-direct product.

Let n > 4. For p € Z we define a homomorphism «, : A[D,] — A[A,—] by
ap(t;) = si AT for 1 <i<n—2, ay(ty—1) = ap(ty) = s, 1A%,
where A = AJA,,_1] is the Garside element of A[A,,_;]. Note that oy = 7.
Set Y = {t1,...,t,—1}. For p,q € Z we define a homomorphism Bp,q : AlAn—11 — A[D,] by
Bp.q(si) = t,-A?,pA”q forl <i<n-—1,

where A = A[D,] is the Garside element of A[D,], Ay = Ay[D,], k =2 if nisodd,and x = 1 if n
is even. Note that 3y o = ¢. Note also that, by Paris [37, Theorem 1.1], the centralizer of Y in A[D,] is
the free abelian group of rank 2 generated by A2 and A*.

For p € 7Z we define the homomorphism ~, : A[D,] — A[D,] by
W(ti) = LA™ for1 <i<n,

where A = A[D,] is the Garside element of A[D,], x = 2 if n is odd, and x = 1 if n is even. Note
that v = id.

Concerning A[A,—1], we define an automorphism ¥ : A[A,—] — A[A,—1] by
)'((sl-):si_l forl1 <i<n-—1,
and for p € Z we define an endomorphism %, : A[A,_1] — A[A,_1] by
Ap(si) = siAP for1 <i<n-— 1,

where A is the Garside element of A[A,—;].
The main results of this paper are the following.
Theorem 2.1 Letn > 5. Let ¢ : A[D,] — A[A,—1] be a homomorphism. Then up to conjugation we
have one of the following two possibilities.

(1) o iscyclic.

(2) There exist ¢ € (x) and p € Z such that ¢ = a, 0 1.
Theorem 2.2 Letn > 6. Let ¢ : A[A,—1] — A[D,] be a homomorphism. Then up to conjugation we
have one of the following two possibilities.

(1)  iscyclic.

(2) There exist v € (¢,x) and p,q € Z such that p =)o 3, ,.
Theorem 2.3 Letn > 6. Let ¢ : A[D,] — A[D,] be a homomorphism. Then up to conjugation we
have one of the following three possibilities.

(1)  iscyclic.

(2) There exist v € (¢, x) and p,q € Z such that p =1p o 3, 0.
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(3) There exist v € (¢, x) and p € Z such that p = 1) 0 ,.

From Theorem 2.3 we deduce a classification of the injective endomorphisms and of the automorphisms
of A[D,] as follows.

Corollary 2.4 Letn > 6. Let ¢ : A[D,] — A[D,] be an endomorphism. Then ¢ is injective if and
only if there exist 1 € ((, x) and p € Z such that ¢ is conjugate to ¢ o ).

Proof Let ¢ : A[D,] — A[D,] be an endomorphism. By Theorem 2.3 we have one of the following
three possibilities up to conjugation.

(1) ¢ iscyclic.

(2) There exist ¢ € ((,x) and p,q € Z suchthat ¢ =1 o 3, 0.

(3) There exist ¢ € (¢, x) and p € Z such that ¢ = 1) 0 ,.
If ¢ is cyclic, then ¢(1,—1) = ¢(t,), hence ¢ is not injective. If there exist ¢ € ((, x) and p,q € Z

such that ¢ = 1) o 3, , o 7, then, again, ¢(t,_1) = ¢(1,), hence ¢ is not injective. So, if ¢ is injective,
then there exist ¢ € (¢, x) and p € Z such that ¢ is conjugate to 1) o 7,.

It remains to show that, if ¢ € ((,x) and p € Z, then v o ), is injective. Since the elements of
(¢, x) are automorphisms, it suffices to show that v, is injective. We denote by z : A[D,] — Z the
homomorphism which sends #; to 1 for all 1 < i < n. Itis easily seen that y,(u) = uA"™ W) for all
u € A[D,]. Let u € Ker(7,). Then 1 = v,(u) = uA*PX hence u = AY where ¢ = —kp z(u). We
have z(A) = n(n — 1), hence z(u) = gn(n — 1), thus

1= ’Yp(l/i) — AIAFRPa(n—1) _ Aq(+rpn(n—1))
Since 1 + kpn(n — 1) # 0, this equality implies that ¢ = 0, hence u = 1. So, =, is injective. .

Corollary 2.5 Letn > 6. Let p : A[D,] — A[D,] be an endomorphism. Then  is an automorphism
if and only if it is conjugate to an element of (C, x).

Proof Clearly, if ¢ is conjugate to an element of ((, x), then ¢ is an automorphism. Conversely,
suppose that ¢ is an automorphism. We know from Corollary 2.4 that there exist ¢ € (¢, x) andp € Z
such that ¢ is conjugate to 1) o 7y,. Thus, up to conjugation and up to composing on the left by P!,
we can assume that ¢ = ~,. It remains to show that p = 0.

Let again z : A[D,] — Z be the homomorphism which sends #; to 1 for all 1 < i < n. Recall that
Yp(u) = ulA*P¥® for all u € A[D,]. For u € A[D,], we have

(zop)u) = (1 4+n(n — Drp)z(u) € (1 + nn — Drp)Z.
Since 7, is an automorphism, z o «, is surjective, hence Z = Im(z o ~y,) C (1 +n(n — Dxp)Z. It

follows that (1 + n(n — 1)kp) € {£1}, hence p = 0. |

By combining Corollary 2.5 with Crisp—Paris [21, Theorem 4.9] we immediately obtain the following.
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Corollary 2.6 Letn > 6.
(1) If n is even, then
Aut(A[D,]) = Inn(A[D,]) % (¢, X) = (A[Dy1/Z(AIDA)) % (Z/2Z x Z/2Z)
and Out(A[D,]) ~ 7 /27 x 7./27, where Z(A[D,]) denotes the center of A[D,].
(2) If n is odd, then

Aut(A[D,]) = Inn(A[D,]) x (x) = (A[D,1/Z(A[Dn)) % (Z/22),
and Out(A[D,]) ~ Z/27.

We denote by Z(A[D,]) the center of A[D,], we set Az[D,] = A[D,]/Z(A[D,]), and we denote by
§ 1 A[D,] — Az[D,] the canonical projection. For each 1 <i < n, we set tz; = £(t;). Note that an
endomorphism ¢ : A[D,] — A[D,] induces an endomorphism ¢z : Az[D,] — Az[D,] if and only if
w(Z(A[D,]) C Z(A[Dy]). We say that an endomorphism v : Az[D,] — Az[D,] lifts if there exists an
endomorphism ¢ : A[D,] — A[D,] such that ¢z = 1. Then we call ¢ a lift of ¥. In Section 7 we
prove the following.

Proposition 2.7 Let n > 4. Then every endomorphism of Az[D,] lifts.
From this proposition combined with Theorem 2.3 we will deduce the following.

Theorem 2.8 Letn > 6. Let @z : Az[D,] — Az[D,] be an endomorphism. Then we have one of the
following two possibilities up to conjugation.

(1) gz iscyclic.
2) vz € {(z,xz)-

In addition to Theorem 2.8 we have the following.

Proposition 2.9 Let n > 4. There are only finitely many conjugacy classes of cyclic endomorphisms
of Az[D,].

Proof Let ¢z : Az[D,] — Az[D,] be a cyclic endomorphism. There exists gz € Az[D,] such that
wz(tz;) = gz forall 1 <i < n. We denote by A the Garside element of A[D,], and we set k = 2 if
nisodd and k = 1 if n is even. We have 1 = (pz 0 £)(AF) = ggn("_l), hence gz is of finite order.
By Bestvina [3, Theorem 4.5] there are finitely many conjugacy classes of finite subgroups in Az[D,].
Since (gz) is a finite subgroup of Az[D,], it follows that there are finitely many choices for gz up to
conjugation. a

In Lemma 7.1 we will show that, if n is even then ((z, xz) N Inn(Az[D,]) = {id}, and if n is odd
then (xz) N Inn(Az[D,]) = {id}. Furthermore, it is well-known that the center of Az[D,] is trivial
(see Cumplido—Paris [22, Proposition 6] for example). These two remarks combined with Theorem 2.8
imply the following.
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Corollary 2.10 Letn > 6.
(1) If n is even, then
Aut(Az[D,]) = Inn(Az[D,]) % (Cz, xz) ~ Az[D,] X (Z/27 x Z]27Z) ~ Aut(A[D,]),
and Out(Az[D,)) ~ Z /27 x 7./27 ~ Out(A[D,]).
(2) If n is odd, then
Aut(Az[D,]) = Inn(Az[Dy]) ¥ (xz) = Az[Dn] % (Z/2Z) ~ Aut(A[D,])
and Out(Az[D,]) ~ Z /27 ~ Out(A[D,]).

A group G is said to be co-Hopfian if every injective endomorphism of G is an isomorphism. Another
direct consequence of Theorem 2.8 is the following.

Corollary 2.11 Letn > 6. Then Az[D,] is co-Hopfian.

Note that, in addition to the case D, for n > 6 shown in Corollary 2.11, the only Coxeter graphs I
for which we know that A[I']/Z(A[I']) is co-Hopfian are the Coxeter graphs I' = A, for n > 2 (see
Bell-Margalit [2]).

3 Geometric representations

Let ¥ be an oriented compact surface possibly with boundary, and let P be a finite set of punctures
in the interior of X. We denote by Homeo™ (X, P) the group of homeomorphisms of 3 that preserve
the orientation, that are the identity on a neighborhood of the boundary of ¥, and that setwise leave
invariant P. The mapping class group of the pair (2, P), denoted M(3, P), is the group of isotopy
classes of elements of Homeo™ (X, P). If P = (), then we write M(X, ) = M(X), and if P = {x}
is a singleton, then we write M(2,P) = M(X,x). We only give definitions and results on mapping
class groups that we need for our proofs and we refer to Farb—Margalit [28] for a complete account on
the subject.

Recall that a geometric representation of an Artin group A is a homomorphism from A to a mapping
class group. Their study is the main ingredient of our proofs. Important tools for constructing and
understanding them are Dehn twists and essential reduction systems. So, we start by recalling their
definitions and their main properties.

A circle of (3, P) is the (non-oriented) image of an embedding a : S - % \ (OX U P). Itis called
generic if it does not bound any disk containing O or 1 puncture and if it is not parallel to any boundary
component. The isotopy class of a circle a is denoted by [a]. We denote by C(33, P) the set of isotopy
classes of generic circles of (X, P). The intersection number of two classes [a],[b] € C(X,P) is
i([a],[p]) = min{|d’ ND'| | d € [a]and b’ € [b]}. The set C(X,P) is endowed with a simplicial
complex structure, where a finite set A is a simplex if i([a], [b]) = O for all [a], [b] € A. This complex
is called the curve complex of (X, P).

In this paper by a Dehn twist we mean a right Dehn twist and the (right) Dehn twist along a circle a of
(22,P) will be denoted by T,. The following is an important tool for constructing and understanding
geometric representations of Artin groups. Its proof can be found in Farb—Margalit [28, Section 3.5].
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Proposition 3.1 Let 3> be a compact oriented surface and let ‘P be a finite collection of punctures in
the interior of 3. Let a, b be two generic circles of (3, P).

(1) We have T,T, = T,T, if and only if i([a], [b]) = 0.
(2) We have T,T,T, = T,T,T} if and only if i([a],[b]) = 1.

Let f € M(3,P). A simplex A of C(3,P) is called a reduction system for f if f(A) = A. In that
case any element of A is called a reduction class for f. A reduction class [a] is an essential reduction
class if, for all [b] € C(X,P) such that i([a], [b]) # O and for all m € Z \ {0}, we have f™([b]) # [b].
In particular, if [a] is an essential reduction class and [b] is any reduction class, then i([a], [b]) = O.
We denote by S(f) the set of essential reduction classes for f. The following gathers some key results
on S(f) that will be useful later.

Theorem 3.2 (Birman-Lubotzky—McCarthy [5]) Let > be a compact oriented surface and let P be
a finite set of punctures in the interior of .. Let f € M(X,P).

(1) If S(f) # 0, then S(f) is a reduction system for f. In particular, if S(f) # (), then S(f) is a
simplex of C(2, P).

(2) We have S(f") = S(f) foralln € Z \ {0}.
(3) We have S(gfs~!) = g(S(f)) forall g € M(Z,P).

The following is well-known and it is a direct consequence of Birman—Lubotzky—McCarthy [5] (see
also Castel [12, Corollaire 3.45]). It will be often used in our proofs.

Proposition3.3 Let Y be an oriented compact surface of genus > 2 andlet P be a finite set of punctures

in the interior of ¥. Let fy € Z(M(X,P)) be a central element of M(X,P), let A = {[ai],...,[a,]}

be a simplex of C(X,P), and let ki, ...k, be nonzero integers. Let g = T,]l‘} Tfl‘; o T,];” 0. Then

S =A.

Let n > 4. If n is even, then ¥, denotes the surface of genus % with two boundary components,
and if n is odd, then ¥,, denotes the surface of genus % with one boundary component. Consider the
circles ay, . ..,a,—1 drawn in Figure 3.1. Then by Proposition 3.1 we have a geometric representation

pa : Al[An—1] = M(X,) which sends s; to T,, forall 1 <i <n — 1. The following is well-known, it
is a direct consequence of Birman—Hilden [6], and its proof is explicitly given in Perron—Vannier [40].

Theorem 3.4 (Birman—Hilden [6]) Letn > 4. Then p4 : A[A,—1] — M(X,) is injective.

The following is proved in Castel [12] for n > 6 using the geometric representation p4 defined above.
It is proved in Chen—Kordek—Margalit [17] for n > 5 with a different method.

Theorem 3.5 (Castel [12], Chen—Kordek—Margalit [17], Orevkov [35]) Let n > 5. Let ¢ :
AlA,—1] — A[A,—1] be a homomorphism. Then up to conjugation we have one of the following
two possibilities.

(1) ¢ iscyclic.
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n even

n odd

(S

Figure 3.1: Geometric representation of A[A,_]

(2) There exist v € (X) and p € Z such that ¢ = 1 0 7),.

Let n > 6. Pick a puncture x in the interior of X, and consider the circles dy, ..., d, drawn in Figure
3.2. Then by Proposition 3.1 we have a geometric representation pp : A[D,] — M(2,, x) which sends
t; to Ty for all 1 < i < n. On the other hand, the embedding of Homeo ™ (X, x) into Homeo™ (X))
induces a surjective homomorphism 6 : M(%,, x) — M(3,) whose kernel is naturally isomorphic to
m1(2n, x) (see Birman [4]). It is easily seen that

O0Ty)=T,forl <i<n—-2,0Ty_,)=0Ty4)="T,,,,
hence we have the following commutative diagram:
(3-1) 1 —— Ker(r) ——A[D,] — = A[A,—1] —1

C

1 — = Ker(f) —= M(Zp, x) —2— M(S,) — 1

where we denote by p : Ker(m) — Ker(#) the restriction of pp to Ker(m).

n even

Figure 3.2: Geometric representation of A[D,,]

The proof of the following can be found in Perron—Vannier [40, Theorem 1] with few modifications.
As this result is central in our paper, for the sake of completeness we give a proof. Note that our proof
is a little shorter than that of Perron—Vannier [40] because it uses results from Crisp—Paris [21] which
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were not known and it does not need to deal with some Dehn twist along a boundary component, but
our arguments are essentially the same.

Theorem 3.6 (Perron—Vannier [40]) Letn > 4.
(1) The homomorphism p : Ker(w) — Ker(0) is an isomorphism.
(2) The geometric representation pp : A[D,] — M(2,, x) is injective.

Proof Part (2) is a consequence of Part (1) because of the following. Suppose g is an isomorphism.
Then, since py4 is injective, pp is injective by the five lemma applied to diagram (3-1).

Now, we prove Part (1). We know from Crisp—Paris [21, Proposition 2.3] that Ker(r) is a free group of
rank n — 1. We also know from Birman [4] that Ker(6) = (X, x), which is also a free group of rank
n — 1. Recall that a group G is Hopfian if every surjective endomorphism G — G is an isomorphism.
It is well-known that free groups of finite rank are Hopfian (see de la Harpe [30, Chapter III, Section
19]), hence in order to show that p is an isomorphism it suffices to show that p is surjective.

Set f,—1 = szilen. Note that t,;llt,, € Ker(w) and f,,—1 = ﬁ(tnilltn). In particular f,_; € Im(p) C
Ker(0) = m(3,,x). This element, seen as an element of 7;(3,, x), is represented by the loop drawn
in Figure 3.3. For 2 <i < n — 1 we define f;,_; € m(X,,x) C M(3,,x) by induction on i by setting
Jo—i = Tg,_, fn_,-+]T[;L_ fn__li Iy The element f,,_;, viewed as an element of m((3,,x), is represented
by the loop drawn in the left-hand side of Figure 3.4 if i = 2j is even, and by the loop drawn in
the right-hand side of Figure 3.4 if i = 2j + 1 is odd, where we compose paths from right to left.
Observe that fi,...,f,—1 generate m(2%,,x). So, in order to show that p is surjective, it suffices to
show that f,,_; € Im(p) forall i € {1,...,n — 1}. We argue by induction on i. We already know
that f, | = ﬁ(tnilltn) € Im(p). Suppose i > 2 and f,—i+1 € Im(p). Let u € Ker(w) such that
Sfu—i+1 = p(u). Since Ker(w) is a normal subgroup of A[D,], we have tn_iut;,li € Ker(m), hence
tn_iutn__ll-u_l € Ker(), and therefore

Jn—i = Tdn_,-fnfiJrlTJnL-fn:liH = P(ta—ut, ‘") € Im(p). O

dn-l

Figure 3.4: The loop f,—; € m1(X,, x)

Our last preliminary on geometric representations is a result implicitly proved in Castel [13, Section
3.2], and it is in this theorem that we need the assumption n > 6.
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Theorem 3.7 (Castel[13]) Letn > 6. Let : A[A,—1] = M(Z,, x) be anon-cyclic homomorphism.
Then there exist generic circles cy, . ..,c,—1 in X, \ {x}, e € {£1} and g € M(Z,,x) such that

@ |cinc|=1if|li—jl=1and|ciN¢cj|=0if|i—j|>2,forall 1 <i,j<n-—1,
(b) g commutes with T, forall 1 <i<n-—1,
(c) @(s))=T.gforalll1 <i<n-—1.

Proof Assume n is even. Let 01,9, be the two boundary components of ¥,. We denote by 3, the
closed surface obtained from X3, by gluing a disk D; along 0; and a disk D, along d,. Moreover, we
choose a point x; in the interior of D and a point X, in the interior of D, and we set P = {x,%1,%}.
Assume n is odd. Let @ be the boundary component of X,. We denote by 3, the closed surface
obtained from X, by gluing a disk D along 0. Moreover, we choose a point X in the interior of D and
we set P = {x,%}. For each n we denote by PM(fDn, 75) the subgroup of M(ﬁ?n, 75) formed by the
isotopy classes of elements in Homeo+(f]n, 75) which pointwise fix P. The embedding of ¥, into i]n
induces a surjective homomorphism w : M(3,, x) — 73/\/1(2,,, 75). If n is even, then the kernel of @
is the free abelian group of rank 2 generated by T, and Tp,, and if » is odd, then the kernel of w is
the cyclic group generated by T5. In both cases Ker(w) is contained in the center of M(3,, x).

Let ¢ : A[A,,—1] — M(X,, x) be a non-cyclic homomorphism. Assume that w o ¢ is cyclic. Then
there exists § € PM(3,, P) such that (w o p)(s;) = & forall 1 <i<n—1. Let g € M(Zy,x)
be such that w(g) = &. Foreach 1 < i < n — 1 there exists #; € Ker(w) C Z(M(%,,x)) such that
p(s;) = gh;. Let 1 <i<n—2. Then

Ehihiyy = p(sisip15) = o(sip18isiv1) = & hihi,
hence h; = h;y1. This shows that ¢(s;)) = gh; for all 1 < i < n — 1, hence that ¢ is cyclic:
contradiction. So, @ o ¢ is not cyclic.

To differentiate Dehn twists in M(3,,, x) from those in PM(fDn, 75), for a circle ¢ in in \75 we denote
by 7, the Dehn twist in PM(3,, P) along c. By Castel [13, Theorem 1] there exist generic circles
Cly.oyCny in 3, \ P,ee {£1} and g € PM(E,, P) such that

(1) |einc|=1if|i—jl=1and |c;N¢|=0if [i—j| >2,forall 1 <i,j<n-—1,

(2) g commutes with Tci forall1 <i<n-—1,

(3) (@wop)s)=T:gforalll <i<n-—1.
Clearly, we can choose each ¢; siting in the interior of 3.,. Let g € M(X,, x) be such that w(g) = &.
It is easily shown with Castel [13, Lemma 3.2.1] that g and T,, commute for all 1 < i < n—1.

Furthermore, foreach 1 <i < n—1, there exists h; € Ker(w) C Z(M(X,,x)) such that (s;) = T¢ gh;.
Let1 <i<n-—2. Then

TETS, TS hihivy = @(sisiy1si) = Q(sivisisip) = Te, TeT, &hihl, = TETe, Tog hihl,

Ci™ Ci417 Ci Cit17Ci™ Ciyp Cit+17 Ci

hence h;y1 = h;. So, there exists h € Ker(w) such that ¢(s;) = T¢ gh and gh commutes with T¢, for
all 1 <i<n-—1. O
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4 Homomorphisms from A[D,] to A[A,,_]

Proof of Theorem 2.1 Letn > 5. Let ¢ : A[D,)] — A[A,—1] be a homomorphism. By precomposing
o with ¢ : A[A,—1] — A[D,], we obtain a homomorphism ¢ o ¢ : A[A,—1] — A[D,] — A[A,—1],
hence, by Theorem 3.5, one of the following two possibilities holds.

* (o iscyclic.
e There exist ¢ € () and p € Z such that ¢ o ¢ is conjugate to ) 0 7,.

Suppose @ o ¢ is cyclic. Then there exists u € A[A,—_1] such that (p o t)(s;) = p(t;)) = u for all
1 <i<n-—1. Moreover,

(1) = Pta—stn) P(tn—2) Pty "1 15) = @taaty) p(t1) oty 1 15) = p(t)) = u,
hence ¢ is cyclic.

So, up to conjugating and replacing ¢ by ¢ o x if necessary, we can assume that there exists p € Z
such that ¢ o ¢ = 4,. This means that ¢(t;) = (p 0 1)(s;) = 5;A% forall 1 <i <n— 1, where A is
the Garside element of A[A,_1]. Now we turn to show that ¢ = «,.

Set Y = {s1,...,8,-3}. By Paris [36, Theorem 5.1] the centralizer of (sy,...,$,—3,5,—1) in A[A,_1]
is generated by A2, A%, and s,_1, where Ay = Ay[A,_1]. These three elements pairwise commute
and generate a copy of 73. Set u = ©(t,). Since u commutes with o(t;) = s;A% for all i €
{1,...,n—3,n—1} and A? in central in A[A,_], u belongs to the centralizer of (s1,...,$,_3,5,_1),
hence there exist k1, ky, k3 € Z such that u = sﬁl_lAikz AZs

It is well-known that A[A,_] is naturally isomorphic to the mapping class group M (D, P), where D
denotes the disk and P = {xj, ..., x,} is a set of n punctures in the interior of D). In this identification
3,21—1 corresponds to the Dehn twist along the circle ¢; depicted in Figure 4.1, A% corresponds to the
Dehn twist along the circle ¢, depicted in the same figure, and A? corresponds to the Dehn twist along
a circle parallel to ). By Proposition 3.3 we have S u?) C {c1,¢2}, where ¢; € S (u?) if and only if
ki # 0 and ¢> € Su?) if and only if k» # 0. We know that cp(t%) = S%A“P , hence S((p(t%)) is formed
by a single circle containing two marked points in its interior. Since t% and £2 are conjugate, cp(t%) and
©(t?) = u® are conjugate, hence, by Theorem 3.2, S(u?) is also formed by a single circle containing
two marked points in its interior. It follows that Sw?) = {c1}, hence k; # 0 and k; = 0. It remains
to show that k; = 1 and k3 = p.

Figure 4.1: Circles in the punctured disk
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From the equality #, ot,t, 2 = tyt,_»t, it follows that Sn—ZSl:,l_ [ Sn—p AT = sfl'_ 1sn_2sfl‘_1A21’+4k3,

hence (s,,_zsﬁl_ 1s,,_z)(sﬁl_ lsn_zsﬁ‘_ 1)_1 = A%=2  We know from Paris [38, Corollary 2.6] that
Afs s 1 An110 (A) = {1}, hence (s,—28" su2)(sk 1 spasit )7! = A% = 1. Let z :
A[A,—1] — Z be the homomorphism which sends s; to 1 forall 1 <i<n— 1. We have

0 =z(1) = 2((sn_25"" 5025 (s 28 )T =1k,

hence k; = 1. Moreover, A%3=27 — | and A is of infinite order, thus k3 = p. O

5 Homomorphisms from A[A, ;] to A[D,]

The formula in the following lemma is a crucial point in various proofs, including that of Lemma 5.4
and that of Theorem 2.8.

Lemma 5.1 Letn > 1. Then

2 2 2 2 2
AlA,]° = (s1--- Sn—18,5n—1""" s Sp—18Sn—1"" " §2) - (snflsnsnfl)sn .

Proof We argue by induction on n. The case n = 1 is trivial, hence we can assume that n > 2 and
that the induction hypothesis holds. Recall that

A[AL] = (51 -+ 50) AlA, 1] = AlAy 1] (sn -+ 51) -

Moreover, it is easily checked that s;(s;, - - - s1) = (s, - - - 51)s;41 forall 1 < i <n— 1. By the induction
hypothesis,
A[Ap—11* = (51 Sn—aSp_Sn—2 "+ 51)+* (Sn—25h_1Sn—2)Sp_1 -

Hence
A[AL = (51 s)AlA, 115 - - - 51) =
(51 5) (51~ Sn2Sp_18n—2 - $1) - (Sn25p_S-2)Sp_1 ) (S - 51) =
(517 s)(sn - SD((527+ Sp—180Sn—1 7+ +82)  + (Su_1SpSn—1)S3) =

2 2 2
(51 Sn—18ySn—1-+-81) =+ - (Sp—18,,50—1)S}, -

Now, Lemmas 5.2 to 5.8 are preliminaries to the proof of Theorem 2.2.

LemmaSs.2 Letn > 6. Lety : A[A,—1] — A[D,] be ahomomorphism. If mop : A[A,—1] — AlA,—1]
is cyclic, then ¢ is cyclic.

Proof Assume 7 o ¢ is cyclic. Then there exists u € A[A,—_1] such that (7 o )(s;) = u for all
1 <i<n—1. For3<i<n-—1wesetvy = go(s,-sl_l). We have 7(v;) = uu—' = 1, hence
v; € Ker(m). We have

—1 —1 —1 -3 -3 —1 —1 —1
(5357 (5487 (387 ) = 538548538, ° = 545385485, ° = (545, )(s35, )(s45| ),
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hence v3v4v3 = vq4v3v4. Since Ker(m) is a free group (see Crisp—Paris [21, Proposition 2.3]) and two
elements in a free group either freely generate a free group or commute, the existence of such equality
implies that v3v4 = v4v3. It follows that v3v4v3 = V3vﬁ, hence v3; = vy, and therefore

p(s3)p(s1) ™" = v3 = va = p(sa) p(s1) .
So, ¢(s3) = ¢(s4). We conclude by Castel [13, Lemma 3.1.1] that ¢ is cyclic. O

Let n > 6. If n is odd, then X, has one boundary component that we denote by J, and we denote by
Ty the Dehn twist along 0. If n is even, then X, has two boundary components that we denote by 0,
and 0, and we denote by Ty, and Tj, the Dehn twists along 0; and 0», respectively. It is known that
the center of M(%,), denoted by Z(M(X,,)), is the cyclic group generated by T} if n is odd, and itis a
free abelian group of rank two generated by Ty, and Tp, if n is even (see Paris—Rolfsen [39, Theorem
5.6] for example).

Lemma 53 Letn > 2. Let f € M(S,) such that fT., = T.f forall 1 < i < n— 1. Then
2 € ZM(Zy)).

Proof Assume 7 is odd. The case where »n is even can be proved in the same way. Let f € M(X,)
such that fTi, = Tif forall 1 <i<n-—1. Since ]‘Tif_1 = TZ,- we have f([a;]) = [a;] (see Farb-
Margalit [28, Section 3.3]). The mapping class f may reverse the orientation of each a; up to isotopy,
but f2 preserves the orientation of all a; up to isotopy, hence f> can be represented by an element of

n—1

Homeo ™ (X,) which is the identity on a (closed) regular neighborhood ¥’ of Ui:1 a;. We observe that
Y is a surface of genus ”51 with one boundary component, 9, and that 9 U 9’ bounds a cylinder
C. This implies that 2 € M(C) C M(E,). Since M(C) = (Ty) = Z(M(X,)), we conclude that

2 e ZIM(Z))). O

Lemma54 Letn>3. Wesetm=n—1ifnisoddandm=n—2 ifniseven. Letl <k < m.
Let ¢ be a generic circle of ¥, \ {x} suchthat cNd; =0 for 1 <i<k—2,|cNdy_1|=1ifk>2,
cNd, =0, and c is isotopic to dy in ¥,,. Then there exists g € Ker(#) such that g([d;]) = [d;] for all
1 <i<k-—1andg([c]) = [di].

Proof We identify D3 with A3 in this proof to treat the cases k = 2 and k = 1. We first assume that k
is even. If ¢ is isotopic in 3, \ {x} to di, then it suffices to take g = id. So, we can assume that ¢ and
dy are not isotopic in 3, \ {x}. Since ¢ and dy are isotopic in ¥, by Epstein [27, Lemma 2.4] there
exists a cylinder C in X, whose boundary components are dj and c. Since ¢ and dj are not isotopic
in ¥, \ {x}, this cylinder must contain the puncture x.

Let X' be a regular neighborhood of (Uf;ll d;) U C. The surface X’ contains the cylinder C with
boundaries ¢ and di, having the puncture x in it, and dj_ intersects ¢ and d; once. Hence an arc of
the curve dj;_; connects a point on ¢ with a point on dj within the cylinder C, and it may wind around
the cylinder in different ways (see Figure 5.1). However, by applying suitable Dehn twists about ¢ and
dy, one can unwind this arc to the simplest case, shown in Figure 5.2. Hence, up to homeomorphism of
the surface ¥, we may assume that the circles d, . . ., dy, ¢ are arranged as in Figure 5.2.
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C dk

C dk
L fe i
C

dy
dig o 1
X

Figure 5.1: Intersection of C with dj_

(&

Figure 5.2: Regular neighborhood of (Uf;ll d,-) U C, case where k is even

By Proposition 3.1 there are homomorphisms ¢ : A[Di41] = M(X,,x) and ¢, : A[Ax] — M(3X,, x)
defined by

1) =Ty for 1 <i <k, Pi1(teg1) = Te,
Pa(si) =Ty for 1 <i<k—1, o(sk) =Te.

We denote by Ap; the Garside element of A[Dy,1] and by Ay ; the Garside element of A[A], and
we set ¢ = V1(Apx) ¢2(A;i). We have Al)’kt,-AB}k =fiforalll <i<k-1, AD,ktk+1AB’lk =1
and Ai’ks,A;’i =s; forall 1 <i <k, hence gT;g™ ! = ey = Tq; forall 1 < i < k—1 and
gT.g ! = o) = Tg.. It follows that g([d;]) = [d;] forall 1 <i < k—1 and g([c]) = [di] (see
Farb—Margalit [28, Fact 3.6]).

Since ¢ and dj are isotopic in Y,, the corresponding Dehn twists T, and Ty, are equal in M(%,),
hence for T, and T, viewed on the surface ¥, \ {x}, we have 0(T.) = 0(T,,). Moreover,

Api = (11 - ti—ttitiprti—t - - 1) - - (— 1 itrep 1 — 1) (Bt g1)
2 2 2 2
AL g = (51 Sk—15gSk—1 " 51) * - (Sk—15,Sk—1)5 »

(see Lemma 5.1 for the second equality), hence 6(1)1(Apx)) = 0(¢2(Ai7k)), and therefore 6(g) = 1.
So, g € Ker(0).

Now, assume k is odd. If ¢ is isotopic in 3, \ {x} to dj, then we can take ¢ = id. So, we can assume
that ¢ and dj are not isotopic in 3, \ {x}. Since ¢ and dj are isotopic in ¥, there exists a cylinder
C in ¥, whose boundary components are dj and c. Since ¢ and dy are not isotopic in ¥, \ {x}, this
cylinder must contain the puncture x. Let X’ be a closed regular neighborhood of (Uf;ll d,») ucC.
Then Y is a surface of genus % with two boundary components and the circles dy, . ..,dx_1,d,
are arranged as shown in Figure 5.3. Since £ < m and k is odd, ]‘_Tl is strictly less than the genus of
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3,, hence we can choose a sub-surface X" of ¥, of genus ﬂ, with one boundary component, and
g 2 y p

containing X’. We can also choose a generic circle e in X"\ {x} suchthat [eNnd,| =1, [eNc| = 1if
k=1,end; =0 forall2<i<kandenNc=0if k> 2 (see Figure 5.3). By Proposition 3.1 there
are homomorphisms ¥ : A[Dyy2] — M(X,,x) and ¢, : A[Agr1] — M(XE,, x) defined by

i) =T, , 1(t) =Ty, for2 <i<k+1, Pi1(tig2) = T¢,
Pa(s1) =T, a(si) = Tg,, for2 <i <k, Yo(sps1) =Te .
We denote by Ap 41 the Garside element of A[Dy] and by Ay x4 the Garside element of A[Az41],

and we set g = Y1(Apt1) wz(AgiH). Then, as in the case where k is even, we have g([d;]) = [d;]
forall 1 <i<k-—1, g([c]) = [dy], and g € Ker(F). O

Figure 5.3: Regular neighborhood of (|J\=}' d;) U C, case where k is odd

The following lemma is the extension of Lemma 5.4 to the case ¢ N dy # 0.

Lemma5.5 Letn>3.Setm=n—1ifnisoddandm =n—2 ifniseven. Letl <k <m. Letc
be a generic circle of ¥, \ {x} suchthat cNd; =0 for 1 <i<k—2,|cNdy_1|=1ifk>2,andc
is isotopic to dy in X,,. Then there exists g € Ker(f) such that g([d;]) = [d;] forall 1 <i < k—1 and
g([c]) = [di].

Proof We argue by induction on i([c], [di]), which is computed on the surface ¥, \ {x} and noton %,,.
The case i([c], [dx]) = O is proved in Lemma 5.4, hence we can assume that i([c], [dx]) > 1 and that the
induction hypothesis holds. Note that now ¢ and dy cannot be isotopic in 3, \ {x} since i([c], [dk]) # 0.
We can assume without loss of generality that i([c], [dx]) = |cNdk|. Since ¢ and dy are isotopic in ¥,,,
there exists a bigon D in X, cobounded by an arc of d; and an arc of ¢ as shown in Figure 5.4. We
can choose this bigon to be minimal in the sense that its interior intersects neither ¢ nor di. The bigon
D cannot intersect d; for 1 < i < k — 2 and one can easily modify ¢ so that D does not intersect dj_
either. Since ¢ and dj are not isotopic in ¥, \ {x}, D necessarily contains the puncture x in its interior.
We choose a circle ¢’ parallel to ¢ except in the bigon D where it follows the arc of dj which borders D
as illustrated in Figure 5.4. By construction ¢/’ Nd; = () for 1 <i <k—2, |’ Ndj—1| = 1 if k > 2, and
¢ is isotopic to dj in ¥,,. Moreover i([c], [di]) < |¢' Ndy| < |c N di| = i([c], [dk]). By the induction
hypothesis there exists g, € Ker(f) such that g;([d;]) = [d;] forall 1 <i<k— 1 and g([c']) = [d].
By Farb—Margalit [28, Lemma 2.9], we can choose G; € Homeo™ (X, x) which represents g; such
that G1(d;) = d; forall 1 <i <k — 1 and Gi(c') = dr. We set ¢ = Gi(c). Then ¢" Nd; = 0 for
1<i<k-=2,|"Ndi—|=1ifk>2,"Ndy =10, and ¢” is isotopic to di in X,,. By Lemma 5.4
there exists g, € Ker(#) such that g,([d;]) = [d;] forall 1 < i <k — 1 and g,([c"]) = [dix]. We set
g=gr0g1. Then g € Ker(0), g([d;]) = [d;] forall 1 <i<k—1 and g([c]) = [di]. O
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Figure 5.4: Bigon cobounded by ¢ and dy

Lemma 5.6 Let n be an even number, n > 4. Let ¢ be a generic circle of ¥, \ {x} such that cNd; = ()
forall1 <i<n-3,|cNd,—2| =1, cNd,—; =0, and c is isotopic to d,,—y in X,. Then we have
one of the following two possibilities.

(1) c isisotopic to dy,—; in ¥, \ {x}.

(2) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i<n—1 and g([c]) = [d,].

Proof The surface ¥, is a surface of genus % with two boundary components d; and 0,. We
assume that the circles dy, . ..,d,_1,d, are arranged as in Figure 5.5. Let €) be the surface obtained
by cutting >, along U?:_II d;. Then ) has two connected components €2; and €2,. Each of these
components is a cylinder that we represent by a square with a hole in the middle as shown in Figure
5.6. Two opposite sides of each square represent arcs of d,,_, one side represents an arc of d,,—, and
the last side represents a union of arcs of d, . .., d,_3. The boundary of the hole represents 0; for €2,
and 0, for €. The puncture x sits inside 2. The trace of the circle ¢ in €2 is a simple arc ¢, either in
Q) orin €2;.

Figure 5.5: Circles dy, ..., d,

d; tod, d;tod,;
Ay L duy  dyy Is Ao
ok ke
C
d,.i d,;
0 92

Figure 5.6: The surface (2

Suppose ¢ isin 2. Let g be the intersection point of ¢ with d,_,. Then ¢ is represented in €2; by two
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points ¢g; and g, on two opposite sides of {2; as shown in Figure 5.6, and ¢ is a simple arc connecting
g1 with g>. Up to isotopy pointwise fixing the boundary of {2, there exist exactly two simple arcs in
Q)1 connecting g; to g» that are represented by the arcs ¢; and ¢, depicted in Figure 5.6. The arc ¢
cannot be isotopic to ¢1, otherwise ¢ would not be isotopic to d,_ in X,. So, £ is isotopic to £ in €2
which implies that ¢ is isotopic to d,,—; in ¥, \ {x}.

Now suppose £ is in §2,. Let g be the intersection point of ¢ with d,,_». Then ¢ is represented in 2
by two points g3 and g4 on two opposite sides of {2, as shown in Figure 5.6, and ¢ is a simple arc
connecting g3 with g4. Up to isotopy (in €2, and notin €2, \ {x}) pointwise fixing the boundary of €,
there exist exactly two simple arcs in {2, connecting g3 to g4 that are represented by the arcs ¢3 and /4
depicted in Figure 5.6. The arc £ cannot be isotopic to 3 in {2, otherwise ¢ would not be isotopic to
dy—1 in X,. So, { is isotopic to ¢4 in . Let {F; : Q2 — Q2 },¢(0,17 be an isotopy such that Fy = id,
F1(f) = {4 and F; is the identity on the boundary of €2, for all ¢ € [0, 1]. The arc ¢4 divides {2, into
two parts, the lower one which does not contain the hole bordered by 0, and the puncture x, and the
upper one which contains the hole bordered by 0, and the puncture x, as shown in Figure 5.6.

Suppose Fi(x) is in the upper part. Let C be the domain of €2, bounded by ¢4, two arcs of d,_, and
an arc of d,_| as shown in Figure 5.6. Let C' = Fl_l(C). Then C’ is a domain of €, bounded by /,
two arcs of d,_, and an arc of d,_; and C’ does not contain the puncture x. The existence of such a
domain implies that ¢ is isotopic to d,—1 in 3, \ {x}.

Now, suppose F(x) is in the lower part. We can assume without loss of generality that the trace of d,,
on 2, is the simple arc /5 drawn in Figure 5.7. We can choose an isotopy {F; : 2 — Qs }c(0,17 such
that Fjy = id, F|({4) = {s, F} is the identity on the boundary of Q, forall 7 € [0, 1], and F}(F;(x)) = x.
Let F: ¥, — X, be the homeomorphism which is F' ’1 o F| on €5 and is the identity outside €);, and
let g € M(Z,,x) be the mapping class represented by F. Then g € Ker(d), g([d;]) = [d;] for all

1<i<n-—1,and g([c]) = [d,]. O
d; tod,
d,. d,.
L,
dn-]

Figure 5.7: The arc /s

Remark The element g at the end of the proof of Lemma 5.6 is not necessarily trivial. For example,
£ can be as shown in Figure 5.8 up to isotopy and, in this case, ¢ must be non-trivial. In fact, g can be
any element of the fundamental group ({2, x), which is an infinite cyclic group, seen as a subgroup
of M(X%,,x).

The following lemma is the extension of Lemma 5.6 to the case ¢ N dj # 0.
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d; tod,

dn-Z [ dn-2

qs O o r(I4

Figure 5.8: An arc ¢ non-isotopic to /5

Lemma 5.7 Let n be an even number, n > 4. Let ¢ be a generic circle of ¥, \ {x} such that cNd; = ()
forall 1 <i<n-3,|cNd,—2| =1, and c is isotopic to d,,—1 in ¥,,. Then there exists g € Ker(6)
such that g([d;]) = [d;] forall 1 <i <n — 2, and either g([c]) = [d,—1] or g([c]) = [d,].

Proof In this proof the intersection number of two circles is computed on the surface ¥, \ {x} and
not on ¥,. We can assume that |c N d,—;| = i([c], [d,—1]) and |c N d,| = i([c], [d,]). We argue by
induction on |c Nd,—1| + |c N d,| = i([c], [dy-1]) + i([c], [dn]). The case |c Nd,—1| = 0 follows
directly from Lemma 5.6, and the case |c N d,| = 0 is proved in the same way by replacing d,_; with
d,. So we can assume that i([c], [d,—1]) = |cNdy—1]| > 1, i([c],[dy]) = |cNd,| > 1, and that the
induction hypothesis holds. Note that now ¢ and d,_; cannot be isotopic in 3, \ {x}. Since ¢ and
d,—1 are isotopic in 3,, there exists a bigon D in Y, cobounded by an arc of d,—; and an arc of ¢
(see Figure 5.9). Since ¢ and d,_; are not isotopic in ¥, \ {x}, this bigon necessarily contains the
puncture x. We can choose D to be minimal in the sense that its interior does not intersect ¢ and
d,—1. Moreover, up to exchanging the roles of d,,_; and d, if necessary, we can also assume that d,,
does not intersect the interior of D. Clearly, D does not intersect d; for any 1 < i < n — 3 and, up
to replacing ¢ with an isotopic circle, we can assume that D does not intersect d,,_, either. Let ¢/
be a circle parallel to ¢ except in the bigon D where it follows the arc of d,_; which borders D as
illustrated in Figure 5.9. We have ¢/ Nd; = () forall 1 <i<n-—3,|c’ Nd,—»| =1 and ¢’ is isotopic
to d,_1 in X,. We also have i([c'], [d,_1]) < i([c], [d,—1]) and i([c'], [d,]) < i([c], [d.]), hence by the
induction hypothesis there exists g; € Ker() such that g;([d;]) = [d;] forall 1 <i < n— 2, and either
21([c']) = [d,—1] or g1([c']) = [d,]. Without loss of generality we can assume that g{([¢']) = [d,_1].
We choose G; € Homeo™t (X, x) which represents g; such that Gi(d;) = d; forall 1 <i <n—2
and Gi(¢') = dy—1. Weset " = Gi(c). Then " Nd; =D forall 1 <i<n-3, | Nd,—»| =1,
" Nd,—1 = 0, and " is isotopic to d,_; in ¥,. By Lemma 5.6 there exists g» € Ker(f) such
that g>([d;]) = [d;] forall 1 < i < n — 2, and either g2([¢"]) = [d,_1] or g2([c"]) = [d,]. We set
g =g og1. Then g € Ker(9), g([d;]) = [d;] forall 1 < i < n — 2, and either g([c]) = [d,—1] or
g(lc]) = [d,]. O

Lemma 5.8 Letn > 6. Letcy,...,c,—1 be generic circles in ¥, \ {x} such that
@ |eiNe|=1ifli—jl=1and|ciN¢| =0if|i—j| >2, forall 1 <ij<n-—1,
(b) c;isisotopictod; in Xy, forall 1 <i<n-—1.

Then:



Endomorphisms of Artin groups of type D 21

Figure 5.9: Bigon cobounded by ¢ and d,,_

(1) If n is odd, then there exists g € Ker(6) such that g([c;]) = [d;] forall 1 <i<n—1.

(2) If n is even, then there exists g € Ker(f) such that g([c;]) = [d;] forall 1 < i < n— 2, and
either g([c,—1]) = [dn—1] or g([c,—1]) = [d,].

Proof For 1 < k < n — 2 we construct by induction on k an element g € Ker(f) such that
gr([c;]) = [d;] forall 1 <i < k. Assume k = 1. Then, by Lemma 5.5 applied to k = 1, there exists
g1 € Ker(#) such that g1([c;]) = [di]. Suppose 2 < k < n— 1 and gx_ is constructed. We choose
Gy_1 € Homeo™(Z,,, x) which represents gx—1 and such that Gx_(¢;) = d; forall 1 <i<k—1, and
we set ¢, = Gig—1(cx). Note that, since gx—; € Ker(6), the circle ¢} is isotopic to ¢ in X,. Then, by
Lemma 5.5, there exists i; € Ker(6) such that 4, ([d;]) = [d;] forall 1 <i<k—1 and hk([cz]) = [di].
We set g = hi o gr—1. Then gr([c;]) = [d;] for all 1 < i < k. Note that when 7 is odd we can extend
the induction to k = n — 1 and conclude the proof here by setting g = g,—1. The case where n is even
requires an extra argument.

Assume 7 is even. We choose G,_» € Homeo™ (X, x) which represents g,_» and such that G, _»(c;) =
di forall 1 <i<n—2,and weset ¢, ; = G,_2(c,—1). Again, since g,_» € Ker(9), the circle ¢/,_,
is isotopic to ¢, in X,,. By Lemma 5.7 there exists 4, € Ker(6) such that &, ;([d;]) = [d;] for all
1 <i<n—2,and either h,_1([c},_,]) = [dn—1] or hy_1([c},_|]) = [dn]. We set g = h,_1 0 gy—2.

Then g([c;]) = [d;] forall 1 <i < n — 2, and either g([c,—1]) = [dy—1] or g([c,—1]) = [d,]. O

Proof of Theorem 2.2 Let n > 6 and let ¢ : A[A,,—1] — A[D,] be a homomorphism. Composing ¢
with 7, we get a homomorphism 7o ¢ : A[A,—1] — A[D,] — A[A,—1]. We know by Theorem 3.5
that we have one of the following possibilities.

e 7o iscyclic.
* There exist ¢ € () and p € Z such that 7 o ¢ is conjugate to 1 o 7.

By Lemma 5.2, if 7 o ¢ is cyclic, then ¢ is cyclic. So, we can assume that there exists ¢ € () and
p € Z such that 7 o ¢ is conjugate to v o 7,. Up to conjugating and composing ¢ on the left by x if
necessary, we can assume that 7 o ¢ = 7, thatis, (7w o )(s;) = slAip , where A, denotes the Garside
element of A[A,—1].

Set U = pa(A%). If n is odd, then U? = T, where 0 is the boundary component of ¥, and if 7 is
even, then U = Ty, Ty,, where 0; and 0, are the two boundary components of ¥, (see Labruere—Paris
[32, Proposition 2.12]). In particular U? € Z(M(X,)) in both cases.

By Theorem 3.7 we know that there exist generic circles ¢y, ...,c,—; in X, \ {x}, ¢ € {£1} and
fo € M(2,, x) such that
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@ |ciNgl=1if|i—jl=1and |c;N¢|=0if i —j| >2,forall 1 <i,j<n-—1,
(b) fo commutes with 7, forall 1 <i<n—1,
(©) (ppop)s)) =Tfo forall 1 <i<n-—1.

For 1 <i < n— 1 we denote by b; the circle in ¥, obtained by composing ¢; : S' — 3, \ {x} with
the embedding X, \ {x} < X,. In addition we set go = 6(fo). Then (6 o pp o )(s;) = T} go for all
1 <i<n—1. Note that, since 6 o pp = ps o 7 (see Diagram 3—1), we also have (0 o pp o p)(s;) =
(pa o Ap)(si) = pA(siAip) = T,UP forall 1 <i < n—1, where the g;’s are the circles depicted in
Figure 3.1.

Claim. We have € = 1, go = UP and b; is isotopic to @; in X, forall 1 <i<n—1.

Proof of the claim. Note that go = 0(fy) commutes with Tp, = 0(T,) and U = pA(Ai) commutes with
Ta; = pa(si), hence Ty°g§ = (Tj go)* = (T,,UP)* = T, U . Since g§ commutes with T3°g5 = T, U
and U? € ZIM(Z))), g% commutes with Ti forall 1 <i < n-—1. By Lemma 5.3 it follows that
g6 € Z(M(Z,)). By Proposition 3.3 applied to M(,) we deduce that S(T, U) = S(T,°g) =
{lai1} = {[bi]1},hence [a;] = [b;] forall 1 <i<n—1. Then Tf}i_“g = U_4”gg, hence, by Proposition
3.3, 4—4e = 0, and therefore € = 1. Finally, from the equality 7,,U? = T,,go it follows that gg = UP.
This finishes the proof of the claim.

From the claim it follows that ¢; is isotopic to d; in X, hence, by Lemma 5.8, there exists g € Ker(#) such
that g([¢;]) = [d;] forall 1 <i<n—2, g([ch—1]) = [dy—1] if n is odd, and either g([c,—1]) = [dn—1]
or g([ch—1]) = [d,] if n is even. These equalities imply that chl.éfl =Tg forl <i<n-2,
gT., g ' =T, , if nis odd, and either g7, g~' = T, _, or gT,,_,g~' = T,, if n is even. By
Theorem 3.6 (1) there exists v € Ker(w) such that pp(v) = g. So, up to composing ¢ on the left by
ad, first, and composing on the left by ¢ if necessary after, we can assume that (pp o ©)(s;) = T4 fo for
all 1 <i <n—1, where fy commutes with Ty, forall 1 <i <n —1. Since Ty, = pp(t1) € Im(pp),
we have fy € Im(pp), hence there exists ug € A[D,] such that pp(up) = fo. Since pp is injective (see
Theorem 3.6), we deduce that (s;) = tjug forall 1 < i < n—1 and uy commutes with #; for all
1<i<n—1. WesetY = {n,...,ta—1}, Ay = Ay[D,], Ap = A[D,], k = 2 if n is odd, and
k = 1 if n is even. By Paris [37, Theorem 1.1] the centralizer of Y in A[D,] is generated by A% and
AF, hence there exists g, 7 € Z such that ug = A?f’Ag’. We conclude that ¢ = 3, ,. O

6 Endomorphisms of A[D, ]

The following lemma is a counterpart of Lemma 5.8 for the case of odd 7, and it is a preliminary to the
proof of Theorem 2.3.

Lemma 6.1 Let n be an odd number, n > 5. Let ¢ be a generic circle of 3, \ {x} such that cNd; = ()
for1 <i<n-—3,|cNdy,—2| =1, cNd,—; =0, and c is isotopic to d,—; in ¥,. Then we have one
of the following three possibilities.

(1) c isisotopic to d,—; in ¥y, \ {x}.

(2) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i<n—1 and g([c]) = [d,].
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(3) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i < n -2, g(ld,—1]) = [d,] and
g([c]) = [dy—1].

Proof The surface ¥, is a surface of genus ”%1 with one boundary component, 0. We assume that

the circles dy, . . .,d,—1,d, are arranged as shown in Figure 6.1. The circles d,,_3 and d,,— divide d,,_»
into two arcs, e; and e, where the arc e; intersects d,, and the arc e, does not intersect d,, (see Figure
6.1). Let Q be the surface obtained by cutting X, along U;’:_ll d;. Then (Q is a cylinder represented by
an octagon with a hole in the middle (see Figure 6.2). Two opposite sides of this octagon represent arcs
of d,_ and two opposite sides represent arcs of dy, ..., d,_3, as shown in the figure. Two other sides
represent arcs of e; and the last two sides represent arcs of e;, arranged as shown in Figure 6.2. The
boundary of the hole represents 0.

(S

Figure 6.1: The circles d, ... ,d,

dn 1 dn-] dn 1
e, e, ) e; a3 4
B9 o o) B B9) o)
= = = = = =
=} o] =} = =] =]
S B 3 S S 3
N AN VTN Vol N
e € q; qz e; C
dn] dn-] dn 1

Figure 6.2: The surface {2

The circle ¢ intersects d,_» in a point ¢, and ¢ is either on the arc e; or on the arc e;. Suppose first
that ¢ is on the arc ¢;. Then ¢ is represented on €2 by two points ¢g; and ¢, lying on two different
sides of () that represent e, and the trace of ¢ in € is a simple arc ¢ connecting g; to g. Up to
isotopy (in €2 and notin © \ {x}) pointwise fixing the boundary of €2, there are exactly two simple arcs
in 2 connecting g; to g, represented by the arcs ¢ and ¢, depicted in Figure 6.2. The arc ¢ cannot
be isotopic to ¢,, otherwise ¢ would not be isotopic to d,—; in %,. So, ¢ is isotopic to ¢; in 2. Let
{F; : Q@ — Q}q0,17 be an isotopy such that Fy = id, F(¢) = ¢, and F; is the identity on the boundary
of ) for all t € [0, 1]. The arc ¢; divides €2 into two parts, the lower one which does not contain the
hole bounded by O and the puncture x, and the upper one which contains the hole bounded by 0 and
the puncture x, as shown in Figure 6.2.

Suppose F(x) is in the upper part. Let C be the domain of 2 bounded by ¢}, two arcs of ¢; and an

arc of d,_ as shown in Figure 6.2. Let C' = F l_l(C). Then C’ is a domain of 2 bounded by ¢, two
arcs of e; and an arc of d,,_; which does not contain the puncture x. The existence of such a domain

implies that c is isotopic to d,,—; in ¥, \ {x}.
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Suppose Fi(x) is in the lower part. We can suppose that the trace of d, on € is the arc ¢3 depicted
in Figure 6.2. We can choose an isotopy {F; : & — Q},c(0,1] such that F|; = id, F{({;) = {3, F;
is the identity on the boundary of ) for all r € [0, 1], and F{ (Fi(x)) = x. Let F : ¥, = ¥, be
the homeomorphism which is F| o F; on € and is the identity outside €2, and let g € M(3,,x) be
the mapping class represented by F. Then g € Ker(9), g(ld;]) = [d;] forall 1 <i < n—1, and
g([cD) = [du].

Suppose now that ¢ is on the arc e;. Then ¢ is represented on €2 by two points g3 and g4 lying on
two different sides of €2 which represent e,, and the trace of ¢ in 2 is a simple arc ¢ connecting g3 to
g4. Up to isotopy (in © and not in 2 \ {x}) pointwise fixing the boundary of (2, there are exactly two
simple arcs in {2 connecting g3 to g4 represented by the arcs ¢4 and {5 depicted in Figure 6.2. The arc
£ cannot be isotopic to /5, otherwise ¢ would not be isotopic to d,,—1 in X,. So, £ is isotopic to ¢4 in
Q. Let {F; : Q — Q}s¢q0,17 be an isotopy such that Fo = id, Fj(¢) = {4 and F; is the identity on the
boundary of €2 for all ¢ € [0, 1]. The arc ¢4 divides € into two parts, the upper one which does not
contain the hole bounded by 0 and the puncture x, and the lower one which contains the hole bounded
by O and the puncture x, as shown in Figure 6.2.

Suppose F(x) is in the lower part. Let D be the domain of {2 bounded by /s, two arcs of e, and an
arc of d,,_ as shown in Figure 6.2. Let D' = F l_l(D). Then D’ is a domain of 2 bounded by ¢, two
arcs of ep and an arc of d,_; which does not contain the puncture x. The existence of such a domain
implies that c is isotopic to d,—; in X, \ {x}.

Suppose Fi(x) is in the upper part. Let ¢’ be the circle drawn in Figure 6.3. We can assume that the
trace of ¢’ on (2 is the arc {5 drawn in Figure 6.2. We can choose an isotopy {F; : Q — Q}c(0,1] such
that F{) = id, F|({s) = lg, F; is the identity on the boundary of 2 forall ¢ € [0, 1], and F{(F(x)) = x.
Let F : 3, — X, be the homeomorphism which is F’1 o F1 on €2 and is the identity outside €2, and
let g1 € M(X,,x) be the mapping class represented by F. Then g € Ker(0), g1([d;]) = [d;] for all
1 <i<n-—1,and gi([c]) = [c].

Figure 6.3: The circle ¢’ and the loop u

Let go € m (3, x) = Ker(0) be the element represented by the loop p drawn in Figure 6.3. Let us
mention here that g; is not the Dehn twist 7, along 1, but rather the image of the point-pushing map
applied to p, which is equal to TMTEZ1 for p; and po the two boundary curves of a small regular
neighborhood of p, as explained in Farb—Margalit [28, Section 4.2.2]. We have g»([d;]) = [d;] for
all 1 <i<n-—2, g(d.,—1]) = [d,] and g2([c']) = [d,_1]. Set g = g 0 g1. Then g € Ker(h),
g(ldiD) = [di] forall 1 <i <n—2, g([dy—1]) = [dn] and g([c]) = [dp—1]. o

Proof of Theorem 2.3 Let n > 6. Let ¢ : A[D,] — A[D,] be an endomorphism. Consider the
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composition homomorphism ¢ o ¢ : A[A,—1] = A[D,] — A[D,]. We know from Theorem 2.2 that we
have one of the following two possibilities up to conjugation.

(1) o iscyclic.
(2) There exist ¢ € (¢, x) and p,g € Z suchthat p o =10 3, ,.

Suppose ¢ o ¢ is cyclic. Then there exists u € A[D,] such that ¢(#;) = (¢ o ¢)(s;) = u for all
1 <i<n-—1. Wealso have

P(tn) = Pty—atuty—aty 1)) = Gty_aty) p(ta—2) p(t; "1, 15) =

Pltn—t) p(1) 9t ' 1,15) = p(t1) = u,
hence ¢ is cyclic.

So, we can assume that there exist 1) € (¢, x) and p,q € Z such that ¢ o ¢ is conjugate to ¥ o 3, ,.
Weset Y = {t1,...,th—2,ta—1}, Ay = Ay[D,], Ap = A[D,], k =2 if nisodd, and kK = 1 if n is
even. Up to conjugating and composing ¢ on the left by ( if necessary, we can assume that there exist
e € {£1} and p,q € Z such that p(t;)) = (po1)(s;) = th%pAZq forall 1 <i < n—1. The remainder
of the proof is divided into four cases depending on whether p is zero or not and whether 7 is even or
odd.

Case 1: nisevenand p # 0. Then X, is a surface of genus % with two boundary components, J; and
02, and k = 1. We have pp(t;) = T, for 1 <i < n—1 and, by Labruére—Paris [32, Proposition 2.12],
pD(A%) = T.Ty, and pp(Ap) = T, Ty, , where e is the circle drawn in Figure 6.4. Set f; = (pp o p)(#;)
for all 1 < i < n. Then, by the above,

fi= Zinng_ngz foralll1 <i<n-—1.

In particular, S(f;) = {[d;],[e]} forall 1 < i < n— 1. Since #, is conjugate in A[D,] to t, f, is
conjugate to f in M(Z,,x), hence f, is of the form f, = 7577, ngqugz, where d’ is a non-separating
circle and ¢ is a circle that separates Y, into two components, one being a cylinder containing x and
the other being a surface of genus % with two boundary components, d; and e’, which does not

contain x. Moreover, by Theorem 2.1, (7 o )(t,—1) = (7 o ©)(t,), hence

+ +
TS TPTHHTY = 0(f,_1) = 0(f) = T5 T T3, 9T,

n—1" €

on Y, thatis, Tj}H 0 = T3 Tf, as multitwists on Y,. Now we can invoke Farb—Margalit [28, Lemma
3.14] to conclude that each curve of the set {d,_1, e} is isotopic to a curve from the set {d’,¢'} in %,.
To decide which curve of one set is isotopic to which curve in the other set we observe that removing
a puncture does not change the property of a curve being non-separating, but can make a separating
curve peripheral. Since both d,_; and d’ are non-separating, whereas e and ¢’ are both separating or
peripheral in X,,, we conclude that d,,_ is isotopic to d’ in ¥, (and also that e is isotopic to ¢’ in X,,).

We have fif,, = f,f1, hence by Theorem 3.2 (3) we have f,(S(f1)) = S(f1), thus [e] is a reduction class
for f,, and therefore i([e], [¢']) = 0, because [¢'] is an essential reduction class for f,. We can choose
representatives e and ¢’ such that e N ¢’ = () either by eliminating bigons, or by choosing geodesic
representatives. Let C,C’ C X, be cylinders containing x and having boundary &, Ue, 0, U ¢,
respectively. Then either C C C'if e C C',or C' C Cif ¢ C C,withx € CNC'. Say C C C'.
Being a separating circle on Y, e separates C’ into two subsurfaces, one containing 9, and x, and
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the other containing ¢’. Being a subsurface with two boundary components lying inside a cylinder, the
latter must be a cylinder itself. This cylinder establishes an isotopy between e and ¢’ in X, \ {x}, hence
[e] = [¢']. So, we can assume that e = ¢’.

Choose representatives d,—j, d' in minimal position in 3, \ {x}. Denote by Cy and ¥’ the two
components into which the curve e separates ¥, with Cy being a cylinder containing x, and ¥’ being
the rest of the surface ¥,,, containing dy, . .. ,d,_1. Suppose d,_1Nd" # (). Then d,_; and d’ cobound
a bigon. Since d,—; and d’ were chosen to be in minimal position in X, \ {x}, such a bigon must
contain x. This implies that d’ has nonempty intersection with the cylinder Cy which e separates from
the rest of the surface 33, and since e and d’ are disjoint, d’ lies entirely in Cy. This is not possible
because any generic circle in Cj is peripheral in ¥, and d’ is non-separating in X,,. So, d,_; Nd = .
Then there exists an embedded cylinder C in Y, with boundary components d,,_; and d’. Since e is
disjoint from d’ and d,_;, e either lies entirely in C or is disjoint from C. The circle e cannot lie
entirely in C because e is peripheral in X, and, since both d,,_; and d’ are non-separating in ¥, any
generic circle lying in C must be non-separating. So, e is disjoint from C, hence C lies in ¥/, and
therefore d,,_; is isotopic to d’ in X, \ {x}. Thus, we can also assume d' = d,,_; .

In conclusion we have (pp o ©)(t,—1) = (pp © V)t,) = T;,,,ngTgrqugz’ hence o(t,_1) = o(t,) =
£_ AP A% We conclude that ¢ = Bpgomife=1and p=xo0pB_, _,omife=—1.

Figure 6.4: Circles in %, case where n is even and p # 0

Case 2: n is odd and p # 0. Then 3, is a surface of genus % with one boundary component, 0,
and k = 2. We have pp(t;) = Ty for 1 <i < n— 1 and, by Labruere—Paris [32, Proposition 2.12],
pD(A‘}) =T, and ,oD(A,Z:,) = Ty, where e is the circle drawn in Figure 6.5. Set f; = (pp o )(¢;) for all

1 <i < n. Then, by the above,

fE=TETT, foralll <i<n—1.
In particular, S(f;) = S(fiz) = {[dil,[e]} forall 1 < i < n— 1. The element #, is conjugate to #;
in A[D,], hence (¢,) is conjugate to ¢(¢1) in A[D,], and therefore there exists v € A[D,] such that
oty = vor)v ! = (vt?vfl)(vAipv*I)Aéq. The element pp(vtv—') is conjugate to pp(t;) = Ty, ,
hence pp(vt;jv~!) = Ty, where d' is a non-separating circle. The element pp(vATv~!) is conjugate to
pD(A‘}) = T,, hence pD(vAﬁv_l) = T, where ¢ is a circle that separates Y, into two components,

one being a cylinder containing x and the other being a surface of genus % with one boundary

component which does not contain x. We also have fn2 = T[%/ Tf, qu and S(f,) = S(fnz) = {[d'],[€]}.
By Theorem 2.1 (7 o ¢)(t,—1) = (7 o )(t,), hence 9(}‘,!2_1) = G(fnz). This implies that d’ is isotopic to
dn—l in En.

Since fif, = fufi, by Theorem 3.2 (3) we have fnz(S(fl)) = S(f1), hence [e] is a reduction class for
fnz, and therefore i([e], [¢]) = 0, because [¢'] is an essential reduction class for fnz. As in Case 1, we



Endomorphisms of Artin groups of type D 27

can choose representatives e and ¢’ such that e N e’ = (). Let C,C’ C %, be cylinders containing
x and having boundary 9 U e, 0 U ¢’, respectively. Then either C C C' if e C C', or C' C C if
¢ C C,withx € CNC'. Say C C C'. Being a separating circle on X,, e separates C’ into two
subsurfaces, one containing 0 and x, and the other containing ¢’. Being a subsurface with two boundary
components lying inside a cylinder, the latter must be a cylinder itself. This cylinder establishes an
isotopy between e and ¢’ in 3, \ {x}, hence [e] = [¢/]. So, we can assume that ¢ = €', hence
pD(vA‘;v*I) =T,=T,= pD(A‘)‘,). Since pp is injective, it follows that \/Ai,v*1 = A‘}.

Using the same argument as in Case 1, from the fact that d’ does not intersect ¢’ = ¢ and that d’ is
isotopic to d,,— in X, it follows that d’ is isotopic to d,—; in X, \ {x}, hence we can also assume that

d =d,_;. Then pD(vtlv_l) =Ty = T4, , = pp(ta—1), hence, since pp is injective, vt v l=1,_,.
At this stage of the proof we have that (1) = ££_,(vAYv")AN and (vAYv')2 = vAPv I = AY.
It remains to show that vA?,p vl = A?,p .
d, : Yd.,
1) &
dn-2

Figure 6.5: Circles in X, case where n is odd and p # 0

By Theorem 2.2 there exists ¢ € (C,x) and r,s € Z such that ¢ o { o ¢ is conjugate to 1) o 3.
The automorphism ( is inner since n is odd, hence we can assume that ¢» € (x). So, there exist
w € A[D,], u € {£1} and r,s € Z such that p(t;) = wtf' AZAZw=! forall 1 <i <n—2 and
o(ty) = wtt' [AYAZw™!. Set g = pp(w). We have (pp o p)(1?) = Tngg’qu = gTiHTgT(%Sg’I
forall 1 <i<n—2and (ppop)id) =TF TIT, =T} TiT¥g . So, g " (STFTIT,) =
S(Ti“T;T%‘), hence g~'({[d;],[e]}) C {[di],[e]} forall 1 <i < n— 1. Thisimplies g~'([d;]) = [d}],
hence g commutes with 7, and therefore w commutes with ¢; forall 1 <i < n—1. Since Ay isinthe
subgroup of A[D,] generatedby Y = {¢;,...,1,—;} and A%) is central, it follows that ((t;) = ¢!' A%’A%"
forall 1 <i<n—2and ¢(t,) =1 /A¥A%. Consider the equality p(t]) = EAPAM — AV AE.
Then t‘f—“ A%,(p_r) = Agsi[l). The right-hand side of this equality lies in the center of A[D,], the
left-hand side lies in Ay[D,] and, by Paris [38, Corollary 2.6], the intersection of Ay[D,] with the
center of A[D,] is trivial, hence s = g and #] " = A?,(r_p ). The element A?,(r_p ) lies in the center of
Ay[D,] and (1) is a proper parabolic subgroup of Ay[D,], hence, again by Paris [38, Corollary 2.6],
tf_” = A%,(r_p ) = 1, and therefore ¢ = p and r = p. Here we use that A[D,] is torsion-free, which
follows from Deligne [25] where it is proved that A[D, ] has a finite-dimensional classifying space. So,
Q) = £ AP AL . We conclude that ¢ = f,,omife=1and p = x o, gomife=—1.

Case 3: nisevenand p = 0. Then, again, 3, is a surface of genus % with two boundary components,
01 and 0, and k = 1. We have pp(t;) = T4, for 1 <i < n—1 and, by Labruere—Paris [32, Proposition
2.12], pp(Ap) =Ty, Ts,. Set f; = (pp o p)(t;) for all 1 < i < n. Then, by the above,

fi= TjiTnggz foralll <i<n—1.
In particular, S(f;) = {[d;]} forall 1 <i < n— 1. Since #, is conjugate in A[D,] to t;, f, is of the
form f, = Tj; T T, where d' is a non-separating circle.
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For 1 < i < n—3 we have 1;t, = t,¢;, hence T;Ty = TyT,, and therefore, by Proposition 3.1,
i([d;],[d']) = 0. Similarly, we have i([d,_1],[d']) = 0. Since t, styty_2 = tut,_ot,, we have
Ta, ,T4Ty, , = TyTy, Ty, hence, by Proposition 3.1, i([d,—2],[d’']) = 1. So we can assume that
dnd =0forl1 <i<n-3,d,_1Nd =10 and |d,—, Nd'| = 1. Moreover, by Theorem 2.1,
(7 o )ty—1) = (7 o Y)(t,), hence O(f,_1) = 6(f,), and therefore d’ is isotopic to d,_1 in X,. By
Lemma 5.6 it follows that we have one of the following two possibilities.

(1) d isisotopic to d,—; in X, \ {x}.

(2) There exists g € Ker() such that g([d;]) = [d;] forall 1 <i<n— 1 and g([d']) = [d,].
Suppose d’ is isotopic to d,—1 in X, \ {x}. Then (pp o p)(t,) = T T4 T4 . hence, since pp is
injective, ¢(1,) = t5_;A},. We conclude that p = By omife =1 and ¢ = yo fy_4omif e = —1.

Suppose there exists g € Ker(f) such that g([d;]) = [d;] forall 1 <i<n— 1 and g([d']) = [d,]. We
have

(pp 0 p)t) = T4 T4 Th, = ¢~ ' T5T5 Th ¢
forall 1 <i<n-—1and
(pp o P)tn) = ToTh TS = g ' T3 T4 Th 8.
By Theorem 3.6 there exists v € Ker(w) C A[D,] such that pp(v) = g. Since, pp is injective it follows

that
o) =v ALY foralll <i<n.

We conclude that ¢ = ad,~1 0o, if e =1and p =ad,~10oxoy_4if e = —1.

Case 4: nis odd and p = 0. Then, again, %, is a surface of genus ";21 with one boundary component,
0, and kK = 2. We have pp(t;) = T4, for 1 <i < n — 1 and, by Labruere—Paris [32, Proposition 2.12],

pp(A2) = Ty. Set f; = (pp o p)(t;) for all 1 < i < n. Then, by the above,
fi:Ti_Tg foralll <i<n-—1.

In particular, S(f;) = {[d;]} forall 1 <i<n— 1. Since ¢, is conjugate in A[D,] to t;, f, is conjugate
to fi in M(3,, x), hence f, is of the form f,, = T, Tg where d’ is a non-separating circle.

For 1 < i < n— 3 we have 1;t, = t,¢;, hence T;Ty = TyT,, and therefore, by Proposition 3.1,
i([d;1,[d']) = 0. Similarly, we have i([d,_1],[d']) = 0. Since t,_tyt,_2 = Itut,_2t,, We have
Ta, ,TyTy,_, = TyTy,_, Ty, hence, by Proposition 3.1, i([d,—2],[d']) = 1. So, we can assume that
dnd =0forl <i<n-3,d,-1Nd =0 and |d,—» Nd'| = 1. Moreover, by Theorem 2.1,
(m o )th_1) = (7 o Y)(t,), hence O(f,_1) = 6(f,), and therefore d’ is isotopic to d,_1 in X,. By
Lemma 6.1 it follows that we have one of the following three possibilities.

(1) d isisotopic to d,—; in 3, \ {x}.
(2) There exists g € Ker() such that g([d;]) = [d;] forall 1 <i<n— 1 and g([d']) = [d,].

(3) There exists g € Ker(f) such that g([d;]) = [d;] forall 1 <i < n—2, g([d,—1]) = [d,] and
g([d']) = [du—1].
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If 4’ is isotopic to d,,—; in ¥, \ {x}, then we prove as in the case where n is even that ¢ = [ 4 o 7 if
e=1land ¢ = xofy,_4omif ¢ = —1. Similarly, if there exists g € Ker(f)) such that g([d;]) = [d;] for
all 1 <i<n-—1 and g([d']) = [d,], then we prove as in the case where n is even that ¢ = ad,—1 o Vg
ife=1and ¢ =ad,~1 o x 0oy, if € = —1, where v is an element of Ker(7) C A[D,].

Suppose there exists g € Ker(d) such that g([d;]) = [d;] forall 1 <i<n-—2, g([d,—1]) = [d,] and
g([d']) = [dy—1]. We have
(pp o p)t;) = T3 Th = _lTjing forl <i<n-—-2,
(ppo@)tn—1) =T5 Th =g 'T5The,
(pp o P)tn) =T Th =g~ 'T;  Tig.

By Theorem 3.6 there exists v € Ker(m) C A[D,] such that pp(v) = g. Since pp is injective it follows
that

o(ti) = v_lth%)qv forl<i<n-—2,
_ 2 _ )
pltn1) =v ARV, ) = v ApY.

We conclude that ¢ = ad,~10( o7, if e =1and ¢ =ad,—10(oxoy_,if e = —1. a

7 Endomorphisms of A[D,]/Z(A[D,])

Proof of Proposition 2.7 Let A be the Garside element of A[D,,]. Weset k =2 if nisoddand k = 1
if n iseven. Recall that Z(A[D,]) is the cyclic group generated by A”*. Let ¢y : Az[D,] — Az[D,] be an
endomorphism. Foreach 1 <i < n—2 wedefine u; € A[D,] by induction on i as follows. First, choose
any u; € A[D,] such that {(u1) = ¢z(tz,1). Now, assume that 2 < i < n — 2 and that ;_ is defined.
Choose u! € A[D,] such that {(u}) = pz(tz,). Since pz(tz,i—11z7,itz,i—1) = ©z(Iz,itz,i—11z ), there exists
ki € Z such that u;_ ulu;—y = ulw;_ul A% Then set u; = u, A%, Note that &(u;) = E(ul) = ¢z(tz.)
and

Ui Uil = u,-_lugui_1A'ik" = uﬁui_luéAz"k" = u;ui_1U; .
Define in the same way up—1,Up, € A[D,] such that g(un—l) = (PZ(IZ,n—l)’ g(un) = (PZ(IZ,n)e
Up—2Up—\Up—2 = Up_ Uy 2Up—1 AN Uy Ul = Uplly 22Uy, .
Let i,j € {1,...,n} be such that i # j and f;#; = tjt;. We have @z(tz,itzj) = pz(tztz,), hence there
exists £ € Z such that u;u; = uju,A’d. Recall the homomorphism z : A[D,] — Z which sends #; to 1
forall 1 <i <n. Since z(A) = n(n — 1), the previous equality implies that

Z(I/t,') + Z(Mj) = Z(uj) + Z(l/t,') + Iﬁgl’l(l’l — 1) R

hence ¢ = 0, and therefore w;u; = uju;.

By the above we have an endomorphism ¢ : A[D,] — A[D,] which sends ¢; to u; forall 1 <i < n,
and this endomorphism is a lift of ¢ . O

Proof of Theorem 2.8 Let n > 6. Let vz : Az[D,] — Az[D,] be an endomorphism. We know from
Proposition 2.7 that ¢z admits a lift ¢ : A[D,] — A[D,]. By Theorem 2.3 we have one of the following
three possibilities up to conjugation.
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(1) ¢ iscyclic.
(2) There exist ¢ € ((,x) and p,q € Z suchthat ¢ =1 o 5, 0.
(3) There exist ¢ € (¢, x) and p € Z such that ¢ =1 0 ,.

Clearly, if ¢ is cyclic, then 7 is cyclic.
Now, we show that the second case cannot occur. Suppose there exist ) € ((, x) and p,q € Z such
that ¢ = Yo B,,0m. Asever, weset x = 2 if nisodd and K = 1 if n is even. Recall that the
center of A[D,] is generated by A", where A is the Garside element of A[D,]. We need to show
that p(A*) &€ Z(A[D,]) = (AF), which leads to a contradiction. Since ¢ € Aut(A[D,]), we have
PY(Z(A[D,])) = Z(A[D,]), hence we can assume that ¢ = 83, ,0m. Let ¥ = {t1,...,tp—1} and let
Ay = Ay[D,] be the Garside element of Ay[D,]. Since
A= (tl R (7, ) D %) P, S tl) T (tn72tnfltntn72)(tnfltn) )
A[Anfl]2 = (57" Sn72si_1sn72 c sl) ce (Sn72S,21_1Sn72)S,21_1
(see Lemma 5.1 for the second equality), we have 7(A) = A[A,_]?, hence
_ 2 _
PAT) = (Byg 0 THA®) = By g(AlAy 1) = AP D Arann =)
This element does not belong to Z(A[D,]) = (A*), because k(1 + pn(n — 1)) # 0 and (A3) N (AF) =
{1}.
Suppose we are in the third case. So, there exist ¢ € ((, x) and p € Z such that ¢ = 1) 0~,. We have
’YP(AH) — AH(1+I€pn(H—])) c <AI€> ,
hence -y, induces an endomorphism vz, : Az[D,] — Az[D,]. Moreover, forall 1 <i <n,
Vzp(tz,)) = EGAP) = Et) =tz
hence 7z, = id. Clearly, 7 is the lift of an element )z € ((z, xz), hence ¢z =z 07z, =9z. O

Now, as promised in Section 2, we prove the following.

Lemma 7.1 Let n > 4. If n is even, then ((z, xz) N Inn(Az[D,]) = {id}, and if n is odd, then
(xz) N Inn(Az[D,]) = {id}.

Proof We first show that, if ¢ : A[D,] — A[D,] is an automorphism such that ¢z € Inn(Az[D,]),
then ¢ € Inn(A[D,]). Let ¢ € Aut(A[D,]) be such that ¢ € Inn(Az[D,]). There exists gz € Az[D,]
such that pz(tz,;) = gztz,iggl forall 1 <i < n. Again, we denote by A the Garside element of A[D,,],
and we set k = 2 if n is odd and x = 1 if n is even. Let g € A[D,] be such that £(g) = gz. For every
1 <i < n, there exists k; € Z such that o(t;) = gtig”'A"%i. Let i,j € {1,...,n} be such that {t;,}
is an edge of D,. From the equality 7;#;t; = t;1;t; it follows that

ghititig AT — (i) = p(ttity) = grytitig ™ AR,

hence 2k; + k;j = k; + 2k;, and therefore k; = k;. Since D, is a connected graph, it follows that k; = k;
for all i,j € {1,...,n}. So, there exists k € Z such that o(t;) = gt;g”'A™ forall 1 < i < n.
Recall the homomorphism z : A[D,] — Z which sends ¢ to 1 for all 1 < i < n. Since ¢ is an
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automorphism, we have Im(z o ) = Im(z) = Z. Furthermore, since z(A) = n(n — 1), we have
(zow)t)) =1+ kkn(n — 1) for all 1 < i < n, hence Im(z 0 ¢) = (1 + kkn(n — 1))Z. This implies
that kK = 0, hence ¢ = ad, € Inn(A[D,]).

Arguing in a similar way we can see that lifts of (7 and xz in Aut(A[D,]) are unique. Since we know
that (¢, x) N Inn(A[D,]) = {id} if n is even, and (x) N Inn(A[D,]) = {id} if n is odd, it follows that
(Cz, xz) NInn(Az[D,]) = {id} if n is even, and (xz) N Inn(Az[D,]) = {id} if n is odd. O
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