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Yannick Couzinié ,1, 2, ∗ Yusuke Nishiya ,1, 2 Hirofumi Nishi ,1, 2 Taichi

Kosugi ,1, 2 Hidetoshi Nishimori ,3, 4, 5 and Yu-ichiro Matsushita 1, 2, 6

1Laboratory for Materials and Structures, Institute of Innovative Research,
Tokyo Institute of Technology, Yokohama 226-8503, Japan

2Quemix Inc., Taiyo Life Nihombashi Building, 2-11-2, Nihombashi Chuo-ku, Tokyo 103-0027, Japan
3International Research Frontiers Initiative, Tokyo Institute of Technology, Shibaura, Minato-ku, Tokyo 108-0023, Japan

4Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
5RIKEN, Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan

6Quantum Material and Applications Research Center,
National Institutes for Quantum Science and Technology (QST),

2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
(Dated: September 13, 2023)

We propose an annealing scheme usable on modern Ising machines for crystal structures prediction
(CSP) by taking into account the general n-body atomic interactions, and in particular three-body
interactions which are necessary to simulate covalent bonds. The crystal structure is represented by
discretizing a unit cell and placing binary variables which express the existence or non-existence of
an atom on every grid point. The resulting quadratic unconstrained binary optimization (QUBO)
or higher-order unconstrained binary optimization (HUBO) problems implement the CSP problem
and is solved using simulated and quantum annealing. Using the example of Lennard-Jones clusters
we show that it is not necessary to include the target atom number in the formulation allowing for
simultaneous optimization of both the particle density and the configuration and argue that this
is advantageous for use on annealing machines as it reduces the total amount of interactions. We
further provide a scheme that allows for reduction of higher-order interaction terms that is inspired
by the underlying physics. We show for a covalently bonded monolayer MoS2 crystal that we can
simultaneously optimize for the particle density as well as the crystal structure using simulated
annealing. We also show that we reproduce ground states of the interatomic potential with high
probability that are not represented on the initial discretization of the unit cell.

I. INTRODUCTION

Crystal structure prediction (CSP) from chemical com-
position alone is still one of the most difficult problems
in materials science, even for the simplest structures [1].
The reason why this problem is still a challenge is that
the variation of possible structures grows exponentially
as the number of atoms increases, making an exhaustive
search for the most stable structure, i.e. finding the global
minimum on the Born-Oppenheimer surface, unfeasible
even with today’s supercomputers. For a small number
of atoms, a brute force approach is possible, but reliably
finding global optima for larger systems is out of reach
of current computers.

Various approaches to develop searching algorithms
that approximate solutions to the CSP have been devel-
oped [2], e.g. random search [3–6], simulated annealing
(SA) [7–9], minima hopping [10, 11], evolutionary algo-
rithm [12–15] and particle swarm optimization [16, 17].
Various software suites such as USPEX [13–15], CA-
LYPSO [16, 17], and CrySPY [18] that implement these
algorithms continue to be developed and improve upon
these algorithms. However, all of these approaches have
one thing in common: as the system size increases, they
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become easily trapped by locally stable solutions, and to
escape from these becomes a non-trivial problem. To ad-
dress this, approaches incorporating experimental data
such as X-ray diffraction patterns into the optimiza-
tion process have been developed [19–21], e.g. the data
assimilation technique which has been successfully ap-
plied to crystal structure and amorphous structure pre-
diction [22–24].

In recent years, the use of quantum computers has at-
tracted a great deal of attention as a means of search-
ing for globally optimal solutions [25–30]. Quantum
computers are characterized by their ability to escape
from locally stable solutions and accelerate the search
for globally optimal solutions by utilizing the quantum
tunneling effect [27, 31]. Quantum annealing (QA) ma-
chines [25, 32–35] and gate-based quantum computers are
the two main current architectures in development. Ex-
haustive structure search using gate-based quantum com-
puters has been reported recently [36, 37]. In the method
described in Ref. [37], space is divided into meshes, and
the presence or absence of atoms on each mesh is rep-
resented as a {0,1} digital number, allowing the crystal
structure to be encoded onto qubits as a bit sequence. On
the qubits, various atomic coordination structures can
be prepared at once by using the quantum superposition
states on the qubits. The idea is to perform exhaus-
tive structural optimization by applying a probabilistic
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imaginary-time evolution technique reported in [30].
In this paper, we report a method to perform exhaus-

tive structural optimization using QA. In particular, we
discuss how to reformulate structural optimization as
a quadratic unconstrained binary optimization problem
(QUBO) or higher-order unconstrained binary optimiza-
tion (HUBO). We provide a scheme for implementing an
empirical three-body interatomic potential on QA hard-
ware, and we provide a detailed analysis of preliminary
SA and QA results. In particular we argue that providing
more physical information in the form of penalty terms
does not necessarily speed up the computation.

The remainder of the paper is structured as followed.
In Section II we present the HUBO formulation for the
CSP. In Section III we introduce the methods and gen-
eral parameters used for optimization. In Section IV
we outline the parameters for a Lennard-Jones cluster
of Krypton atoms for which we optimized both structure
and density using SA and QA. In Section V we present a
covalently bonded MoS2 crystal modeled by a Stillinger-
Weber potential for which we optimized again the struc-
ture and density using SA. We then close with the con-
clusions in Section VI.

II. HUBO FORMULATION

In this section we discuss the construction of our
HUBO. In Section IIA we discuss the notation of our
unit cell discretization and the encoding into a HUBO of
the CSP. In Section II B we disuss the penalty terms we
use and finally in Section IIC we discuss a physically-
motivated scheme to reduce the interaction terms of in-
teraction terms of order higher than quadratic.

A. CSP problem encoding and Hamiltonian

Consider a unit cell that is spanned by a given basis
{a⃗i} with periodic boundary conditions along a chosen
set of basis vectors and a set of atom species S. We look
at a set of N lattice points X in this unit cell generated by
partitioning each basis vectors into g+1 points and form-
ing the corresponding lattice. The lattice points have
the form

∑
i
ki

g a⃗i where ki ∈ {0, . . . , Gi} with Gi = g if

we have no periodic boundary conditions along a⃗i and
Gi = g − 1 otherwise. Consider a set bsx of binary vari-
ables that we define such that if bsx = 1 there is an atom
of species s ∈ S on x ∈ X. Assume that we have a set of
potential functions V s1,...,sm

m (x1, . . . , xm) for a configura-
tion of atoms of species si on xi form ∈ {1, . . . ,M}. As is
usual for interatomic potential functions we assume that
it does not depend on the order in which the argument,
species pairs are supplied, i.e.

V s1,...,sm
m (x1, . . . , xm) ≡ V

sσ(1),...,sσ(m)
m (xσ(1), . . . , xσ(m))

(1)

for any permutation σ. Assuming that we have no pe-
riodic boundary conditions, we define our Hamiltonian
as

H

=
∑
x∈X
s∈S

V s
1 (x)b

s
x

+
1

2!

∑′

x1,x2∈X
s1,s2∈S

V
si,sj
2 (x1, x2)b

s1
x1
bs2x2

+ · · ·

+
1

M !

∑′

x1,...,xM∈X
s1,...,sM∈S

V s1,...,sM
M (x1, . . . , xM )bs1x1

· · · bsMxM
,

(2)

where the prime indicates that the xi ∈ X should be cho-
sen such that xi ̸= xj for any pair i, j (the species are
chosen freely). Defined as such, finding the optimal nu-
clear structure on the lattice X corresponds to finding an
optimal binary string that minimizes this Hamiltonian,
as energy contributions only arise if all binary variables
involved in an interaction are 1, i.e. all atoms involved in
the interaction are present.
Generalising this to the case with periodic boundary

conditions requires a careful consideration of the self-
interactions of atoms with their periodic images and a
fitting definition of the Hamiltonian. This is done in de-
tail in Appendix A.

B. Penalty terms

Eq. (2) allows us to calculate the cohesive energy of
a given configuration (see Appendix B). Thus, for well-
constructed interatomic potentials that accurately model
a wide range of configurations of a material, Eq. (2) not
only gives the optimal configuration, but by simultane-
ously finding the optimal amount of binary variables that
should have the value 1 we optimize for the optimal den-
sity of atoms in the unit cell.
It is possible to a priori fix a target atom number in

the unit cell by adding a penalty term such as

P

(∑
x∈X

bsx − Cs

)2

(3)

to the Hamiltonian for an appropriately large positive P
and all s ∈ S where Cs is the target particle number for
species s atoms. We call this an absolute penalty term.
Equivalently, knowing the chemical formula (e.g.

Al2(SO4)3) but not the optimal density, a penalty term
like

P

(∑
x∈X

bs1x − cs1,s2
∑
x∈X

bs2x

)2

(4)

ensures that the ratios of atoms are respected, where
cs1,s2 is the target ratio (in the above example cS,O =
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1/4). This penalty term allows for finding the optimal
density in the range that the ratio is respected. We call
this a relative penalty term.

C. Reduction of interaction terms

Interatomic potentials will usually include a cutoff dis-
tance. To reduce pairwise interaction terms, it is crucial
to choose the right penalty terms as an absolute penalty
term will introduce interactions between any pair of bi-
nary variables for the same species, even if their pairwise
distance is higher than the cutoff distance. Similarly, rel-
ative penalty terms introduce pairwise interactions be-
tween any pair of binary variables of the two involved
species. Choosing the wrong penalty terms can make
the difference between having a sparse or fully connected
graph of pairwise interactions. Ideally, no penalty terms
would be introduced, but this is dependent on the quality
of the chosen potential.

The number of interaction terms for the cubic or higher
order terms in the HUBO will be orders of magnitudes
higher than for the pair interactions. Often, alongside
the total number of spins, the density of the interac-
tion graph is the main bottleneck for modern anneal-
ing machines [35, 38] and as such it is crucial to devise
schemes that reduce the interaction number beyond just
applying a cutoff. To this end we use the ‘deduc-reduc’
method from [39]. In particular, we make the assump-
tion that if the pairwise interaction between two binary
variables is higher than a user-set threshold T , then any
higher-order interaction containing this pair can safely
be set to 0 without influencing the ground state. At
the same time we replace any pairwise interaction Jij
by min(Jij , T ). The intuition behind this is that for the
interatomic potentials we use in this work, the pairwise
interaction rapidly increases if the atoms are too close,
and thus the ground state does not contain atoms on the
two involved locations and we do not need to evaluate the
higher-order terms. This is a simplification that does not
loose any generality with respect to the ground state of
the HUBO and which in particular also does not require
any a priori knowledge like atomic radii of the involved
species.

III. METHODS

We will find optimal binary strings for the HUBO prob-
lems using SA and QA. In this section we outline the
notation, parameters and settings we used for the opti-
mization.

A. Simulated Annealing

Simulated annealing is a classic algorithm for optimiz-
ing cost functions with several local minima [40]. We

assume some basic knowledge of the algorithm and will
only discuss the specifics of our implementation. We use
a geometric cooling schedule

T (x) = Tmax

(
Tmin

Tmax

)x/Nsteps

, x ∈ [0, Nsteps], (5)

where Tmin and Tmax are the minimum and maximum
temperature. The number of steps Nsteps is the number
of Monte Carlo steps per spin to perform.

Choosing the right neighbourhood for a configuration
in SA (i.e. defining legal transitions of the Markov chain)
is crucial and generally one aims to have a smooth en-
ergy landscape with not too rugged local minima [41–43].
Traditionally, SA for HUBOs performs single bit flips. As
this is equivalent to removing or adding an atom from the
configuration, especially in the presence of penalty terms,
this can be a costly operation. Thus, for each step in the
schedule we loop over every binary variable and attempt
to flip it and then we loop over every opposite valued
pair in the current configuration and attempt to exchange
their values. This latter flip moves an existing atom to a
random location and does not break penalty terms such
as the absolute penalty (3) or relative penalty (4), thus
ensuring a smoother energy landscape. So when we speak
of Monte Carlo steps per spin we mean that we attempt

N · |S|+
(
N ·|S|

2

)
spin flips where N · |S| is the (unreduced)

binary variable number.

B. Quantum Annealing

We also assume familiarity with the basic concepts of
quantum annealing [25, 27]. We use the Advantage sys-
tem available through the D-Wave leap cloud service [44].
Our HUBO and QUBO problems are very densely con-
nected and if the cutoff of the potential function is large
enough or the system small enough, the problem might
even be fully connected. Embedding these onto the Pe-
gasus architecture of the Advantage system [35] requires
us to calculate a minor embedding [45–47]. Instead of
manually calculating an embedding best fit for our prob-
lem, we use the standard implementation for clique em-
bedding in the D-Wave Ocean SDK. This procedure can
lead to results with broken chains which require a fitting
unembedding. While there is evidence that designing a
problem specific unembedding algorithm [48] can be ad-
vantageous we choose the simple majority vote which sets
the binary value of a chain to the one that occurs most
often on the chain.

C. Benchmarking

For benchmarking the various optimization schemes for
the HUBO and QUBO formulation we use the time-to-
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FIG. 1: The target FCC configuration of the Krypton
system with Krypton atoms in pink (graphics due to
Vesta). The solid atoms on the origin and the three
incident face centers are the locations encoded in the
HUBO while the remaining transparent ones are copies
due to the periodic boundary conditions and not part of

X.

solution [49, 50] given by

TTS(τ) = τ
ln(1− pr)

ln(1− PGS(τ))
= τ

ln(0.01)

ln(1− PGS(τ))
, (6)

where τ is the running annealing time as measured on
the local machine and PGS(τ) is the probability of the
corresponding algorithm to return the ground state with
a running time of τ . The time-to-solution can be under-
stood as the average time it takes to get the ground state
with probability pr which we set to 0.99.

IV. KRYPTON SYSTEM

In this section we introduce an LJ cluster system con-
sisting of Krypton atoms in Section IVA and the related
SA and QA results in Section IVB.

A. Setup

For the calculation of the potential functions we
rely on the Open Knowledgebase of Interatomic Mod-
els (OpenKIM) [51]. In particular we will look at a three
dimensional cubic unit cell of side length 5.653Å with
the Lennard-Jones potential parameters due to Bernades
for Krypton [51–55] and periodic boundary conditions
along all three basis vectors. We will look for the ground
state configuration of Krypton atoms in this unit cell dis-
cretized into a equipartitioned lattice of size g3, which is
equal to the face-centered cubic configuration and can
be seen in Fig. 1. The energy of the FCC configuration
is −0.431eV and for any interaction value Jij we take
min(Jij , 1eV). While for the SA calculations this is not
strictly necessary, it helps for the QA calculations as the
energy range is normalised to be between 0 and 1 on D-
Wave machines, thus upper bounding the energy ensures
that the physically interesting energy range takes up a
larger portion of the renormalised energy range. We will

FIG. 2: The SA time to solution results for the Krypton
system with a penalty term in blue crosses and without
in orange plus-symbols plotted against various grid

granularities g. The solid line corresponds to a fit of the
measured points to a(N +

(
N
2

)
) where a = 21.015 is the

fitting parameter.

simply refer to this system as the Krypton system. We
perform SA calculations without any penalty terms and
with an absolute number penalty term setting CKr = 4,
we call the former grand canonical and the latter mi-
crocanonical. As the unit cell is smaller than the cutoff
distance of the potential, even the grand canonical cal-
culation QUBO is fully connected. We use a penalty
strength of P = 1, and vary the temperature from 10−2

to 10−4. The various probabilities correspond to the mea-
sured probability across 1000 annealing runs.
Since the systems are fully connected, for the QA cal-

culations, we simplify the QUBO by fixing the binary
variable for the origin to be 1 and removing any binary
variable that had an interaction with the origin of more
then 1eV. This corresponds in essence to removing the
translational invariance of the problem. Further, we use
pausing [56, 57]. We use a base length of the sched-
ule of 20µs and we pause for 3µs. We consider the suc-
cess probability, i.e. the ratio of obtained ground states
over 40000 annealing runs, plotted against the pause lo-
cation sp ∈ (0, 1) so that the dimensionless time in the
annealing schedule goes from 0 to sp at (17 · sp)µs until
(17 · sp)µs + 3µs and then goes to 1 linearly until 20µs.
We use a chain strength of 1.28. These parameters were
heuristically found to provide reasonable results.

B. Results and discussions

In Fig. 2 we plot the TTS against various grid spacings
g for SA calculations for the grand and microcanonical
system. We performed SA until we found the ground
state FCC configuration with a probability of more than
90% and take the minimum TTS across the schedule
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FIG. 3: The histogram for the residual energy of the
Krypton system after running SA for 3 Monte Carlo
steps per spin and the various g together with their
average residual energy, i.e. energy above the ground
state, ⟨H⟩. This is the full histogram, no results have

been cut.

steps as the data point for g. This takes at most 30
schedule steps for both systems and it is apparent that
both systems have comparable performance. In partic-
ular note the fit to the function N +

(
N
2

)
, which is the

scaling of the number of flips the SA algorithm attempts
with the spin number N . There are two main mecha-
nisms that increase the required TTS. The first is that,
as we attempt more spin flips per schedule step with in-
creasing g, SA requires more time per schedule step to
perform the increasing amount of flips. The second is
that with increasing g the atoms have more fine-grained
displacement possibilities so that there are more local
minima of the QUBO problem with energies closer to
the actual ground state leading to an increased time to
escape the local minima to find the ground state.

If the global minimum were harder to find due to in-
creasing amounts of local minima, we would expect an in-
creasing number of required schedule steps with increas-
ing g. What we see is that the fit a(N +

(
N
2

)
) with a con-

stant a = 21.015 reconstructs the data well for g ≥ 12
for both systems. Thus there is no significant scaling
∼ TTS(τ)/(N +

(
N
2

)
) of the required scheduled steps

with g for the microcanonical and the grand canonical
system.

Further, in Fig. 3 we show a representative energy
histogram for the grand canonical calculations with 3
Monte Carlo steps per spin for g ∈ {12, 14, 16, 18, 20}.
Despite not putting any particle number restrictions the
annealing process, even for this low amount of sched-
ule steps, only returns solutions with the correct atom
density and in fact all returned energies are lower than
the first excited state energy corresponding to an FCC
configuration with an atom taken out (see Fig. 8 in the
appendix), a state we call FCC−1. Using the Broy-

FIG. 4: Ground state probabilities for the g = 4
Krypton system using the D-Wave Advantage 4.1

system with various pause locations sp ranging from
0.01 to 0.8. In blue the grand canonical calculation and
in orange the microcanonical with a penalty strength of
0.05. The dashed lines correspond to the ground state
probability after applying BFGS on the results from the

solid lines and the dotted line to the probability of
running annealing with no pauses and an annealing

time of 18.9µs.

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [58–
61] to converge to a local minimum off the grid X we
confirmed that all states with 4 atoms converge to the
ground state meaning that the TTS of the combination
of annealing combined with BFGS is considerably lower
than that of only annealing.

We also confirmed these tendencies on the D-Wave
Advantage 4.1 system available on D-Wave Leap. We
performed calculations only for the g = 4 system since
the minor embedding for the g = 6 system had chain
lengths of up to 20 spins which proved too hard to op-
timize. In Fig. 4 we plot the pause location sp against
the success probability for the grand and microcanonical
system for just QA with pausing and without pausing
and a schedule length of 18.9µs and quantum annealing
with pausing followed by BFGS. The penalty strength in
the microcanonical calculations is 0.05 as it provided the
best ground state probability. First we see that pausing
improves the performance as for both systems the proba-
bilities without pausing are around 0.001 and with paus-
ing the maximum probabilities for the grand canonical
system are 0.0067 at sp = 0.45 and 0.005425 at sp = 0.34
for the microcanonical one. Since there are no same-
density local minima, performing BFGS optimization on
the results with pausing, is equivalent to looking at the
results that have the correct density. We see that for
QA+BFGS calculations both systems have success prob-
abilities between 0.15 and 0.22 with the grand canonical
consistently having a higher probability.

Without pausing QA has a TTS of around 0.9 ∗ 105µs
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FIG. 5: The target 2H ground state configuration of the
MoS2 system with Sulfur in yellow and Molybden in
violet (graphics due to Vesta). The bottom six sulfur
atoms on the boundary, two at (⃗a1 + a⃗2)/2 and four
Molybden atoms with z-coordinate given by a⃗3/2 are
the locations encoded in the HUBO (non transparent
atoms). The remaining ten Sulfur atoms (transparent)
are copies due to the periodic boundary conditions and

not part of X.

comparable with the microcanonical system TTS for SA
in the g = 4 case (see Fig. 2). With pausing we find a
TTS of 13700µs and 16931µs respectively for the grand
and microcanonical system providing comparable times
to the grand canonical SA calculations albeit the QA
calculations are a bit slower. Thus we find no indications
of a quantum speedup. Possible reasons for this result
may include the embedding of full connectivity on the
sparse hardware graph and noise effects. We leave it
for future research to analyse this problem with a wider
set of parameters and using more intricate embedding
techniques.

Note though, that while the SA+BFGS algorithm
did not provide any other minima than the global one,
QA+BFGS returns the FCC-1 configuration with proba-
bilities between 0.3 and 0.33 across all pause locations sp
for the grand canonical system and 0.21 and 0.25 for the
microcanonical system. Thus while we might not expect
a quantum speedup there might be an advantage due to
the higher breadth of results returned by QA compared
to SA allowing a wider exploration of the potential en-
ergy landscape.

Summarizing, we see that also for QA, at least in this
very simple system, there are no performance costs in
leaving out the penalty and in fact we can expect perfor-
mance increases confirming the tendencies found in SA.

V. MOS2 SYSTEM

In this section we introduce a MoS2 system governed
by the three-body Stillinger-Weber potential in Sec-
tion VA and the related SA results in Section VB.

A. Setup

For the second system we consider the Stillinger We-
ber potential [62, 63] which is a simple three-body po-

tential that reflects covalent bond dynamics. We use
the parametrization for hexagonal monolayer Molybden-
Disulfide due to Wen et al.[64–67]. We do this on the
supercell consisting of a 2× 2 lattice of hexagonal lattice
unit cells with a single unit cell having a lattice con-
stant of 3.20Å and thickness of 3.19Å. Thus the lattice
vectors for our system are a⃗1 = (3.2Å,−

√
3 · 3.2Å, 0),

a⃗2 = (3.2Å,−
√
3 · 3.2Å, 0), a⃗3 = (0, 0, 3.19Å) We build

the lattice by partitioning both a⃗1 and a⃗2 into g = 6
equal parts each and applying periodic boundary condi-
tions and partioining a⃗3 into three equal parts without
periodic boundary conditions. Thus the amount of re-
quired bits scales like 6g2, where the additional 2 comes
from the amount of species. The target ground state
is the 2H configuration (see Fig. 5) and has an energy of
−55.5283eV. The first excited state that we expect to see
is the 1T configuration, with the same amount of atoms
and an energy that is 1.4755eV above the ground state
(see Fig. 9 in the appendix). We will refer to this system
as the MoS2 system.

We use our deduc-reduc with a threshold of 10eV which
in this particular case reduced the amount of non-zero
three-body interaction terms by 18.8% (from 1573728
to 1277267) in the g = 6 system. Any lower thresh-
old seemed to impact the ground state configuration on
our SA calculations. There is no general-use scheme
known to the authors, that would allow to quadratize
this HUBO so as to make it runnable on any modern
Ising machine [68–70] and so while our deduc-reduc step
reduces the interactions it can only be a first step in con-
junction with other approaches yet to be found and we
perform no QA for this system.

We perform SA for the system with both absolute
penalty terms (CMo = 4, CS = 8) and relative penalty
terms (CMo,S = 1/2). For simplicity we call the former
the absolute system and the latter the relative system.
Grand canonical calculations as in the Krypton system
without penalty terms do not work for this potential,
as it is more favourable to produce configurations with
a single atom species rather than a MoS2 mix, so we
limit our analysis to the relative and absolute system
and recall that the former retains the function of simul-
taneously optimizing for the atom density. The num-
ber of pairwise interaction terms without interactions in-
creases by 1.2% using the absolute penalty (from 21420 to
21708) and by 8.4% using the relative penalty (23220),
underlining again the importance of finding potentials
that can be used without penalties to reduce the num-
ber of pairwise interactions necessary. In fact, since this
potential is parametrized for hexagonal MoS2 we can-
not expect it to yield accurate results for non-hexagonal
configurations. This is a problem that does not pertain
to the parametrization but the Stillinger-Weber poten-
tial in general. Since this one of the simplest three-body
potentials we use it anyway for this proof-of-concept cal-
culation.

We use a penalty strength of P = 10 and a tempera-
ture range of 10 to 0.1 for SA. The various probabilities
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FIG. 6: Plot in solid lines of the ground state
probability for SA for the MoS2 system with schedule

steps going from 2 to 500 for both relative penalties and
absolute penalties (blue and orange respectively). The
scale for the probability is to the left. In dashed lines

the average residual energy with the corresponding scale
to the right.

correspond to the measured probability across 1000 an-
nealing runs.

B. Results and discussions

The MoS2 system proves harder to optimize than the
Krypton system. In Fig. 6 the ground state probabilities
for schedule steps going from 2 to 500 are plotted. As
opposed to the Krypton system where even for g = 20
we need only 30 schedule steps to reach a ground state
probability of above 0.9 we see that it hovers around 0.4
for the absolute penalty and around 0.15 for the relative
penalty at 500 schedule steps. In particular note that
here the used penalty terms have an effect on the ground
state probability, and that supplying more information
(in form of the absolute penalty) leads to higher ground
state probabilities. As expected the ground state proba-
bility increases with increasing amount of schedule steps
but the slope does not offset the increase in calculation
length and so the TTS turns out to be minimized for
a number of schedule steps in the single digits for both
system. In Fig. 6 the average residual energies are plot-
ted and we see that both systems seem to converge to
an average residual energy that is well above the target
0eV. To understand this, consider the energy histogram
in Fig. 7 for the resulting states of only SA (top) and
SA followed by BFGS with the same potential (bottom)
after 500 schedule steps. First, note that despite not fix-
ing an absolute number of atoms in the relative penalty,
we find the correct density of Mo4S8 in 42.8% of the
configurations (in green in Fig. 7) and that the average
residual energy for the states with the correct density is

FIG. 7: Histogram of the residual energy for the MoS2
system with SA with 500 schedule steps (top) and SA +
BFGS (bottom) applied to the MoS2 system with the

absolute number penalty Eq. (3) in blue and the
relative number penalty Eq. (4) in orange for results
with sub-optimal density and green for the optimal
density. Found local minima are marked by a dotted

line and the shaded area to the left (see Appendix C for
the configurations). This is not the full histogram, i.e.
there are configurations with energies higher than 10eV.

2.3826eV while it is 10.6117eV for the states with the
wrong density (in orange) so that the relative penalty
calculations allow for simultaneous optimization of the
atom density and the optimal configuration. The prob-
ability to obtain either 2H or 1T configurations is 42%
for the absolute penalty system and 18.9% for the rela-
tive penalty system. To understand the physical nature
of the remaining local minima, which form the majority
of found states, we performed BFGS on all the result-
ing states from SA. While the probability for 2H and 1T
rose to 42.8% and 20.9% for the absolute penalty and rel-
ative penalty system respectively we see that most states
converge to a local minimum that has an energy below
that of 2H. First, for the relative penalty system we see
that 57.2% of all observed configurations have 5 Molyb-
den atoms and 10 Sulfur and form configurations that
have an energy that is more than 2.5eV lower than that
of 2H. In Fig. 7 we only shade the region as the BFGS
algorithm does not converge well for these configurations
so that we do not get well formed peaks but rather a dis-
tribution in the shaded area. The next lower state is a
state we call orthorombic (see Appendix C for an image
of both the orthorombic and an example Mo5S10 config-
uration) and has an energy that is 0.9313eV lower than
that of 2H. We find this configuration with a probability
of 21.8% for the relative penalty system and 57.2% for
the absolute penalty system.

Using the Vienna ab initio simulation package [71–73]
with the projector augmented-wave method [74, 75] we
find that the energy of the 2H configuration is in fact the
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lowest of the four found local minima, followed by the 1T,
the orthorombic and finally the Mo5S10 configurations.
The fact that this order is not represented is due to the
fact that the Stillinger-Weber potential is parametrized
to model hexagonally ordered MoS2 configurations and
thus does not correctly model other configurations. The
potential is not fit to provide new physical insights in our
application and these results should be taken merely as
a proof of concept.

Noteworthy about these results is that, despite the or-
thorombic and locally optimal Mo5S10 states not being
representable on the discretization of the unit cell, the
combination of SA and BFGS managed to find these
states in a majority of attempts. This is a strong in-
dication that if we are able to provide a fitting potential
or directly a fitting HUBO we can find a wide array of
globally and locally optimal configurations even if they
are not part of the initial discretization. Thus, in partic-
ular it might suffice to have rougher discretizations with
spin numbers that fit onto current quantum hardware in-
stead of trying to be fine grained enough to represent all
possible local minima.

VI. CONCLUSIONS

In this paper we have presented an annealing scheme
for crystal structure prediction based on n-body atomic
interactions. We discretized a given unit cell with a lat-
tice and placed binary variables on the lattice points to
express the existence or non-existence of an atom at every
grid point. In particular this is done for 3-body atomic
interactions which is the minimum order necessary for
covalent crystals. We solved the resulting HUBOs using
SA and QA giving insights into the crystal structure. We
have shown that a grand canonical calculation without
penalty terms allows for the simultaneous optimization
of both the nuclear structure as well as the particle den-
sity inside the unit cell. Further, we have also shown
evidence that the difficulty of solving the nuclear struc-
ture problem does not necessarily scale with the mesh
size. These results show that it might not always be ad-
vantageous to put all the available information into the
QUBO to speed up calculations in particular as this also
increases the amount of total interaction terms the re-
duction of which is crucial for embedding problems into
modern hardware with limited graphs.

We also considered a Molybden-Disulfide monolayer
system modeled by a three-body Stillinger-Weber type
potential. Using our interaction number reduction
scheme we reduced the amount of cubic interactions by

18.8% while maintaining physical accuracy to the extent
of the used potential. We have shown that the potential
contained unphysical ground states that are due to the
limited transferability of the potential outside the context
of hexagonal monolayer MoS2. While these results do not
provide physical insights, we show that our algorithm re-
produces the ground state of the system even if they are
not representable on the chosen discretization of the unit
cell in the annealing step of the algorithm. Thus, while
we could only optimize the roughest discretization for
the Krypton system on the D-Wave quantum annealer,
this could be a hint that rougher discretizations, that are
easier to embed onto quantum annealers, are enough for
the local optimization algorithm to find a wide array of
ground state and locally optimal configurations.
An immediate future research question is to choose a

more fitting potential to construct a HUBO that accu-
rately models a wide array of covalent crystal configura-
tions to test the performance with rough unit cell meshes
on larger unit cells.
Another research direction is to investigate the nature

of returned local minima by QA and to confirm the ten-
dency we found where QA provided a more varied in-
sight into the energy than SA which tended to favour
only ground states.
Note added. During the writing of this manuscript we

have become aware of a similar proposal for the construc-
tion of the QUBO [76] for ionic crystals. That paper does
not address higher-order optimization problems and thus
does not address covalent bonds and did not consider the
grand canonical case, their focus is on classical compu-
tation and providing guarantees that ground truths to
the crystal structure prediction problem are found using
their algorithm. They have similar findings with respect
to the reproducibility of the ground state even if it is not
contained in the initial discretization.

ACKNOWLEDGMENTS

The authors wish to thank Shu Tanaka, Yuya Seki, Ryo
Tamura for the insightful discussions at the draft stage
of this paper and Jun-ichi Iwata for the discussions con-
cerning the HUBO creation. This work was supported
by JSPS KAKENHI as “Grant-in-Aid for Scientific Re-
search(A)” Grant Number 21H04553. The computation
in this work has been done using the TSUBAME3.0 su-
percomputer provided by the Tokyo Institute of Tech-
nology. The work of H. Nishimori is based on a project
JPNP16007 commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO).

[1] J. Maddox, Crystals from first principles, Nature 335,
201 (1988).

[2] A. R. Oganov, C. J. Pickard, Q. Zhu, and R. J. Needs,
Structure prediction drives materials discovery, Nature

Reviews Materials 4, 331 (2019).
[3] C. J. Pickard and R. J. Needs, High-pressure phases of

silane, Phys. Rev. Lett. 97, 045504 (2006).
[4] C. J. Pickard and R. J. Needs, Structure of phase III of

https://doi.org/10.1038/335201a0
https://doi.org/10.1038/335201a0
https://doi.org/10.1038/s41578-019-0101-8
https://doi.org/10.1038/s41578-019-0101-8
https://doi.org/10.1103/PhysRevLett.97.045504


9

solid hydrogen, Nature Physics 3, 473 (2007).
[5] C. J. Pickard and R. J. Needs, Ab initio random struc-

ture searching, Journal of Physics: Condensed Matter
23, 053201 (2011).

[6] R. J. Needs and C. J. Pickard, Perspective: Role of struc-
ture prediction in materials discovery and design, APL
Materials 4, 053210 (2016).

[7] L. Wille, Minimum-energy configurations of atomic clus-
ters: new results obtained by simulated annealing, Chem-
ical Physics Letters 133, 405 (1987).

[8] L. Wille, Simulated annealing and the topology of the
potential energy surface of lennard-jones clusters, Com-
putational Materials Science 17, 551 (2000).

[9] X. Yin and C. E. Gounaris, Search methods for inorganic
materials crystal structure prediction, Current Opinion
in Chemical Engineering 35, 100726 (2022).

[10] S. Goedecker, Minima hopping: An efficient search
method for the global minimum of the potential energy
surface of complex molecular systems, The Journal of
Chemical Physics 120, 9911 (2004).

[11] M. Amsler and S. Goedecker, Crystal structure predic-
tion using the minima hopping method, The Journal of
Chemical Physics 133, 224104 (2010).

[12] T. S. Bush, C. R. A. Catlow, and P. D. Battle, Evolu-
tionary programming techniques for predicting inorganic
crystal structures, J. Mater. Chem. 5, 1269 (1995).

[13] A. R. Oganov and C. W. Glass, Crystal structure predic-
tion using ab initio evolutionary techniques: Principles
and applications, The Journal of Chemical Physics 124,
244704 (2006).

[14] A. R. Oganov, A. O. Lyakhov, and M. Valle, How evo-
lutionary crystal structure prediction works—and why,
Accounts of Chemical Research 44, 227 (2011).

[15] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu,
New developments in evolutionary structure prediction
algorithm USPEX, Computer Physics Communications
184, 1172 (2013).

[16] Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure
prediction via particle-swarm optimization, Phys. Rev.
B 82, 094116 (2010).

[17] Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma,
Computer-assisted inverse design of inorganic electrides,
Phys. Rev. X 7, 011017 (2017).

[18] T. Yamashita, S. Kanehira, N. Sato, H. Kino, K. Ter-
ayama, H. Sawahata, T. Sato, F. Utsuno, K. Tsuda,
T. Miyake, and T. Oguchi, Cryspy: a crystal structure
prediction tool accelerated by machine learning, Science
and Technology of Advanced Materials: Methods 1, 87
(2021).

[19] B. Meredig and C. Wolverton, A hybrid computational–
experimental approach for automated crystal structure
solution, Nature Materials 12, 123 (2013).

[20] P. Gao, Q. Tong, J. Lv, Y. Wang, and Y. Ma, X-ray
diffraction data-assisted structure searches, Computer
Physics Communications 213, 40 (2017).

[21] N. Tsujimoto, D. Adachi, R. Akashi, S. Todo, and
S. Tsuneyuki, Crystal structure prediction supported
by incomplete experimental data, Phys. Rev. Mater. 2,
053801 (2018).

[22] D. Adachi, N. Tsujimoto, R. Akashi, S. Todo, and
S. Tsuneyuki, Search for common minima in joint op-
timization of multiple cost functions, Computer Physics
Communications 241, 92 (2019).

[23] S. Yoshikawa, R. Sato, R. Akashi, S. Todo, and

S. Tsuneyuki, A noise-robust data assimilation method
for crystal structure determination using powder diffrac-
tion intensity, The Journal of Chemical Physics 157,
224112 (2022).

[24] Y. Zhao, R. Sato, and S. Tsuneyuki, Accelerating sim-
ulated annealing of glassy materials with data assim-
ilation, Journal of Non-Crystalline Solids 600, 122028
(2023).

[25] T. Kadowaki and H. Nishimori, Quantum annealing in
the transverse ising model, Phys. Rev. E 58, 5355 (1998).

[26] C. Durr and P. Hoyer, A quantum algorithm for finding
the minimum (1999), arXiv:quant-ph/9607014 [quant-
ph].

[27] T. Albash and D. A. Lidar, Adiabatic quantum compu-
tation, Rev. Mod. Phys. 90, 015002 (2018).

[28] T. Jones, S. Endo, S. McArdle, X. Yuan, and S. C. Ben-
jamin, Variational quantum algorithms for discovering
hamiltonian spectra, Phys. Rev. A 99, 062304 (2019).

[29] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin,
and X. Yuan, Variational ansatz-based quantum simula-
tion of imaginary time evolution, npj Quantum Informa-
tion 5, 75 (2019).

[30] T. Kosugi, Y. Nishiya, H. Nishi, and Y. Matsushita,
Imaginary-time evolution using forward and backward
real-time evolution with a single ancilla: First-quantized
eigensolver algorithm for quantum chemistry, Phys. Rev.
Res. 4, 033121 (2022).

[31] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Bab-
bush, V. Smelyanskiy, J. Martinis, and H. Neven, What is
the computational value of finite-range tunneling?, Phys.
Rev. X 6, 031015 (2016).

[32] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori,
and W. D. Oliver, Perspectives of quantum annealing:
methods and implementations, Reports on Progress in
Physics 83, 054401 (2020).

[33] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lant-
ing, F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskin-
son, S. Huang, E. Ladizinsky, A. J. R. MacDonald,
G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich,
Y. Sato, J. D. Whittaker, J. Yao, R. Harris, D. A. Lidar,
H. Nishimori, and M. H. Amin, Coherent quantum an-
nealing in a programmable 2,000 qubit ising chain, Na-
ture Physics 18, 1324 (2022).

[34] C. C. McGeoch, R. Harris, S. P. Reinhardt, and P. I.
Bunyk, Practical annealing-based quantum computing,
Computer 52, 38 (2019).

[35] K. Boothby, P. Bunyk, J. Raymond, and A. Roy,
Next-generation topology of D-Wave quantum processors
(2020), arXiv:2003.00133 [quant-ph].

[36] H. Hirai, T. Horiba, S. Shirai, K. Kanno, K. Omiya, Y. O.
Nakagawa, and S. Koh, Molecular structure optimization
based on electrons–nuclei quantum dynamics computa-
tion, ACS Omega 7, 19784 (2022).

[37] T. Kosugi, H. Nishi, and Y. Matsushita, Exhaus-
tive search for optimal molecular geometries using
imaginary-time evolution on a quantum computer (2022),
arXiv:2210.09883 [quant-ph].

[38] T. Kanao and H. Goto, Simulated bifurcation for higher-
order cost functions, Applied Physics Express 16, 014501
(2022).

[39] R. Tanburn, E. Okada, and N. Dattani, Reducing multi-
qubit interactions in adiabatic quantum computation
without adding auxiliary qubits. Part 1: The ”deduc-
reduc” method and its application to quantum factoriza-

https://doi.org/10.1038/nphys625
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1088/0953-8984/23/5/053201
https://doi.org/10.1063/1.4949361
https://doi.org/10.1063/1.4949361
https://doi.org/https://doi.org/10.1016/0009-2614(87)87091-4
https://doi.org/https://doi.org/10.1016/0009-2614(87)87091-4
https://doi.org/https://doi.org/10.1016/S0927-0256(00)00086-0
https://doi.org/https://doi.org/10.1016/S0927-0256(00)00086-0
https://doi.org/https://doi.org/10.1016/j.coche.2021.100726
https://doi.org/https://doi.org/10.1016/j.coche.2021.100726
https://doi.org/10.1063/1.1724816
https://doi.org/10.1063/1.1724816
https://doi.org/10.1063/1.3512900
https://doi.org/10.1063/1.3512900
https://doi.org/10.1039/JM9950501269
https://doi.org/10.1063/1.2210932
https://doi.org/10.1063/1.2210932
https://doi.org/10.1021/ar1001318
https://doi.org/https://doi.org/10.1016/j.cpc.2012.12.009
https://doi.org/https://doi.org/10.1016/j.cpc.2012.12.009
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevX.7.011017
https://doi.org/10.1080/27660400.2021.1943171
https://doi.org/10.1080/27660400.2021.1943171
https://doi.org/10.1080/27660400.2021.1943171
https://doi.org/10.1038/nmat3490
https://doi.org/https://doi.org/10.1016/j.cpc.2016.11.007
https://doi.org/https://doi.org/10.1016/j.cpc.2016.11.007
https://doi.org/10.1103/PhysRevMaterials.2.053801
https://doi.org/10.1103/PhysRevMaterials.2.053801
https://doi.org/https://doi.org/10.1016/j.cpc.2019.02.004
https://doi.org/https://doi.org/10.1016/j.cpc.2019.02.004
https://doi.org/10.1063/5.0125553
https://doi.org/10.1063/5.0125553
https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2022.122028
https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2022.122028
https://doi.org/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/quant-ph/9607014
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1103/PhysRevResearch.4.033121
https://doi.org/10.1103/PhysRevResearch.4.033121
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.1038/s41567-022-01741-6
https://doi.org/10.1038/s41567-022-01741-6
https://doi.org/10.1109/MC.2019.2908836
https://arxiv.org/abs/2003.00133
https://doi.org/10.1021/acsomega.2c01546
https://arxiv.org/abs/2210.09883
https://doi.org/10.35848/1882-0786/acaba9
https://doi.org/10.35848/1882-0786/acaba9


10

tion of numbers (2015), arXiv:1508.04816 [quant-ph].
[40] D. Bertsimas and J. Tsitsiklis, Simulated Annealing, Sta-

tistical Science 8, 10 (1993).
[41] S. A. Solla, G. B. Sorkin, and S. R. White, Configura-

tion space analysis for optimization problems, in Dis-
ordered Systems and Biological Organization, edited by
E. Bienenstock, F. F. Soulié, and G. Weisbuch (Springer
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Elliott, and E. B. Tadmor, A force-matching Stillinger-
Weber potential for MoS2: Parameterization and Fisher
information theory based sensitivity analysis, Journal of
Applied Physics 122, 244301 (2017).

[65] M. Wen, Stillinger-Weber Model Driver for Monolayer
MX2 systems v001, OpenKIM, https://doi.org/10.

25950/7d664757 (2018).
[66] Y. Kurniawan, C. Petrie, K. Williams, M. K. Transtrum,

R. S. Elliott, E. B. Tadmor, D. S. Karls, and M. Wen,
Modified Stillinger-Weber potential (MX2) for mono-
layer MoS2 by Kurniawan et al. (2022) v000, OpenKIM,
https://doi.org/10.25950/328bfabb (2022).

[67] Y. Kurniawan, C. L. Petrie, J. Williams, Kinamo J.,
M. K. Transtrum, E. B. Tadmor, R. S. Elliott, D. S.
Karls, and M. Wen, Bayesian, frequentist, and infor-
mation geometric approaches to parametric uncertainty
quantification of classical empirical interatomic poten-
tials, The Journal of Chemical Physics 156, 214103
(2022).

[68] E. Boros and A. Gruber, On quadratization of pseudo-
boolean functions (2014), arXiv:1404.6538 [math.OC].

[69] M. Anthony, E. Boros, Y. Crama, and A. Gruber,
Quadratic reformulations of nonlinear binary optimiza-
tion problems, Mathematical Programming 162, 115
(2017).

[70] N. Dattani, Quadratization in discrete optimization and
quantum mechanics (2019), arXiv:1901.04405 [quant-ph].

[71] G. Kresse and J. Hafner, Ab initio molecular dynamics
for liquid metals, Phys. Rev. B 47, 558 (1993).

[72] G. Kresse and J. Furthmüller, Efficient iterative schemes
for ab initio total-energy calculations using a plane-wave
basis set, Phys. Rev. B 54, 11169 (1996).

[73] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using
a plane-wave basis set, Computational Materials Science
6, 15 (1996).
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Appendix A: Periodic boundary condition implementations

Recall that we work with charge neutral atoms and short-range (i.e. integrable) interatomic potentials with cutoffs.
Usually in such cases to calculate interaction terms with periodic boundary conditions, the minimum image convention
is employed, in which the simulation cell is chosen such that for any set of interacting atoms only one image of
the involved atoms should be within the cutoff distance of each other, so there is a unique choice of which atoms
interact [77]. This requires the unit cell to be at least twice the size of the cutoff distance. As we cannot choose the
cutoff distance and the size of the required qubit number scales exponentially with the unit cell size we cannot use
the minimum image convention.

In this section we derive the direct sum formula for an m-body potential with periodic boundary conditions and
then show how to calculate the coefficients in the HUBO in Eq. (2).

The energy of an infinite system due to an m-body potential Vm with atoms located on x1, x2, . . . ∈ R3 is given as

1

m!

∑
i1∈N

∑
i2∈N
i2 ̸=i1

· · ·
∑
im∈N

im ̸=i1,...,im−1

Vm(xi1 , . . . , xim) (A1)

Note that this includes the case where the atoms are of different species, for which the actual parametrized form of
Vm would change depending on the input and the case where we have periodic boundary conditions only on a subset
of basis vectors. We use the word atom on a location to mean an atom of a specific species on a given location to
simplify the notation from Eq. (2).

Assume now that the infinite system is generated by atoms on a unit cell on locations x1, x2, . . . , xN replicated
following a set of lattice vectors L so that Eq. (A1) becomes

1

m!

∑
i∈[N ]m

∑′

n⃗1,...,n⃗m∈L

Vm(xi1 + n⃗1, . . . , xim + n⃗m), (A2)

where we write [N ] := {1, . . . , N} and the prime on the sum indicates that if i = j then n⃗i ̸= n⃗j , i.e. we exclude
interactions with two or more atoms on the same location. This sum can be interpreted as the interaction terms of
the unit cell given on x1 + n⃗1 with the surrounding super cell generated by the other lattice vectors. We thus define
the energy of a single unit cell by setting n⃗1 = 0 as

1

m!

∑
i∈[N ]m

∑′

n⃗2,...,n⃗m∈L

Vm(xi1 , xi2 + n⃗2, . . . , xim + n⃗m), (A3)

where the prime condition on the sum is the same as before with n⃗1 replaced by 0. For example for the two-body
potential given by qiqj/|ri− rj |, where qi and qj are the charges of the atoms on xi and xj , we recover the well-known
formula [78]

1

2

∑
i∈[N ]

∑
j∈[N ]

∑′

n⃗∈L

qiqj
|xi − xj − n⃗|

, (A4)

to calculate Coulomb interactions with periodic boundary conditions. For the case with potentials of various order
governing the system, e.g. Stillinger-Weber with a two- and three-body part, we take the sum over m to obtain the
total energy of a unit cell with periodic boundary conditions given as

E({x1, x2, . . . , xN}) :=
∑

m∈[M ]

1

m!

∑
i∈[N ]m

∑′

n⃗2,...,n⃗m∈L

Vm(xi1 , xi2 + n⃗2, . . . , xim + n⃗m), (A5)

where M is the highest order potential involved.

https://doi.org/10.1038/s41586-023-06071-y
https://doi.org/10.1038/s41586-023-06071-y
https://doi.org/10.1093/oso/9780198526148.001.0001
https://doi.org/10.1093/oso/9780198526148.001.0001
https://doi.org/https://doi.org/10.1002/andp.19213690304
https://doi.org/https://doi.org/10.1002/andp.19213690304
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Let us now come to the calculation of the HUBO coefficients so that the sum over binary variables in Eq. (2)
reproduces Eq. (A5). Consider a set of lattice points {x1, . . . , xm} ⊂ X and associate to each point a species so that
we consider an atom of species s1 on x1 where {s1, s2, . . . , sm} is such that si ∈ S, i ∈ [m]. We define

Hs1,...,sm
x1,...,xm

:=
∑

ℓ∈[M ]
ℓ≥m

1

ℓ!

∑
i∈[m]ℓ

[m]⊂i

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xi1 , xi2 + n⃗2, . . . , xiℓ + n⃗ℓ) (A6)

where for simplicity we leave out the explicit writing of the species and the condition [m] ⊂ i on the second summation
ensures that every index is contained in i. This condition is needed to ensure that we only consider potential
contributions that require all the atoms and not only a subset which would be part of a different HUBO coefficient.

To see that Eq. (A6) is the correct way to define the HUBO coefficients, we need to show that the sum in Eq. (2)
reproduces Eq. (A5). Let us consider a subset {y1, . . . , yN} = Y ⊂ X and a set {s1, . . . , sN} of species such that
bsiyi

= 1 for i ∈ [N ] and bsx = 0 else. The sum in Eq. (2) then resolves to

∑
m∈[M ]

∑
i⃗∈[N ]m

H
si1 ,...,sim
xi1

,...,xim
=

∑
m∈[M ]

∑
i⃗∈[N ]m

∑
ℓ∈[M ]
ℓ≥m

1

ℓ!

∑
j∈⃗iℓ

i⃗⊂j

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xj1 , xj2 + n⃗2, . . . , xjℓ + n⃗ℓ) (A7)

=
∑

ℓ∈[M ]

1

ℓ!

∑
m∈[M ]
m≤ℓ

∑
i⃗∈[N ]m

∑
j∈⃗iℓ

i⃗⊂j

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xj1 , xj2 + n⃗2, . . . , xjℓ + n⃗ℓ), (A8)

where the prime on the sum is in reference to the j index, i.e. if jk = jk′ then n⃗k ̸= n⃗k′ . Now use that the sums∑
i⃗∈[N ]m

∑
j∈⃗iℓ ,⃗i⊂j can be written as the sum over all ℓ-element multisets with elements from [N ] that have exactly

m distinct elements, i.e. in an abuse of notation we can write∑
i∈[N ]m

∑
j∈[i]ℓ

[i]⊂j

=
∑

j∈[N ]ℓ

1j has m distinct elements, (A9)

where 1 is the indicator function. Finally, since j has ℓ elements we have∑
m∈[M ]
m≤ℓ

1j has m distinct elements = 1 (A10)

and thus Eq. (A8) can be written as

∑
ℓ∈[M ]

1

ℓ!

∑
j∈[N ]ℓ

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xj1 , xj2 + n⃗2, . . . , xjℓ + n⃗ℓ), (A11)

and we recovered Eq. (A5).
There is an efficient way to calculate Eq. (A6) when you have access to an oracle that calculates the total energy

as is for example the case in the OpenKIM API. This oracle for atoms on some locations Y = y1, . . . , yN ∈ R returns

Fℓ(Y ) :=
∑

i∈[N ]ℓ

i1<i2<...<iℓ

Vℓ(yi1 , yi2 , . . . , yiℓ) =
1

ℓ!

∑′′

i∈[N ]ℓ

Vℓ(yi1 , yi2 , . . . , yiℓ), (A12)

where again we leave out the explicit mention of the species on the potential, use that the potential is constant
under permutation of arguments and the double prime indicates that no two indices ik, ik′ should be the same in the
summation (this is to simplify the notation from Eq. (A1)). Recall that the potentials that we use have a hard cutoff.
To calculate Hs1,...,sm

x1,...,xm
construct a super cell by adding copies of the configuration in the unit cell around the unit cell

in the directions in which we have periodic boundary conditions up until the atoms in the unit cell have no non-zero
interaction with the newly copied unit cells. As an example, for the MoS2 system this means that we create a 5× 5
cell of unit cells with the copied configurations. Call this set SC and their elements y1, y2, . . . , y|SC| and note that
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the set L of lattice vectors is given by the basis vectors of the unit cell. Now,

Fℓ(SC)− Fℓ(SC \ {xj}) =
1

ℓ!

∑′′

z1,...,zℓ∈SC
∃k∈[ℓ]:zk=xj

Vℓ(z1, z2, . . . , zℓ) (A13)

=
1

(ℓ− 1)!

∑′′

z2,...,zℓ∈SC

Vℓ(xj , z2, . . . , zℓ) (A14)

so that ∑
j∈[m]

Fℓ(SC)− Fℓ(SC \ {xj}) =
1

(ℓ− 1)!

∑
i∈[m]ℓ

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xi1 , xi2 + n⃗2, . . . , xiℓ + n⃗ℓ), (A15)

where we used again that the potential is constant under permutation of arguments. The configuration energy with
periodic boundary conditions Eq. (A5) is thus obtained by

E(UC) =
∑

ℓ∈[M ]

1

ℓ

∑
j∈[m]

[Fℓ(SC)− Fℓ(SC \ {xj})] . (A16)

We can now calculate the linear HUBO coefficients in Eq. (A6) as

Ht
x =

∑
ℓ∈[M ]

1

ℓ!

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(x, x+ n⃗2, . . . , x+ n⃗ℓ) = E({x}). (A17)

Now, for quadratic terms we find

Hs1,s2
x1,x2

= E({x1, x2})− E({x1})− E({x2}) (A18)

which is easily seen by looking at the second sum in Eq. (A6) which considers any multiset of indices that contains
the entirety of the original set, i.e. here {1, 2} and by subtracting the single atom energies on the right-hand side, we
subtract those contributions that arise from the summands in which only a single index, either 1 or 2 is present. It is
now clear how to generalise this

Hs1,...,sm
x1,...,xm

= E({x1, . . . , xm})−
∑

Y⊊{x1,...,xm}

HsY
Y (A19)

where on the right hand side we write HsY
Y for the coefficient with atoms on positions given by Y and the appropriate

species set sY .
We close this appendix with a remark on non-parametrized potentials in which you do not have access to the n-body

potential part separately so that the oracle Eq. (A20) looks like

F (Y ) :=
∑

ℓ∈[M ]

1

ℓ!

∑′′

i∈[N ]ℓ

Vℓ(yi1 , yi2 , . . . , yiℓ). (A20)

In this case we have

F (SC)− F (SC \ {xj}) =
∑

ℓ∈[M ]

1

(ℓ− 1)!

∑
i∈[m]ℓ−1

∑′

n⃗2,...,n⃗ℓ∈L

Vℓ(xj , xi2 + n⃗2, . . . , xiℓ + n⃗ℓ), (A21)

and thus it is not clear whether there exists an efficient algorithm to calculate E(UC) with such an oracle.

Appendix B: Cohesive energy

When doing grand canonical calculations we need to ensure that the energies with different numbers of atoms are
comparable. We use the notion of cohesive energy for this, which is usually defined as the difference in energy between
the atoms in a specific configuration and the energy of all the involved atoms at an infinite pairwise distance. In our
case this means that we compare the energy of a configuration on the lattice with the regular lattice constant a and
the energy with a → ∞. For these energy calculations we use interatomic potentials with a hard cutoff and thus the
energy of the atoms with an infinite pairwise distance is 0 while it is non-zero for the regular lattice constant. Thus
the cohesive energy in our case is calculated by Eq. (2) as claimed in the main text.
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FIG. 8: Kr3 configuration that corresponds to an FCC configuration with a single atom taken out and which has a
residual energy of 0.2029eV

(a) (b) (c)

FIG. 9: Local minima of the MoS2 system marked with a dotted line in Fig. 7. From left to right, (a) an example
Mo5S10 configuration with a residual energy of −6.2161eV, (b) the orthorombic state with a residual energy of

−0.9313eV and (c) the 1T configuration of MoS2 1.4755eV

Appendix C: Local minima

We give an overview of the local minima indicated by dotted lines in the histograms Figs. 3 and 7. The local minima
for the Krypton system are given in Fig. 8 and for the MoS2 system in Fig. 9.
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